
Dušan Bernát
bernat@fmph.uniba.sk

Operačné systémy / Uviaznutie

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 2/40

Prehľad

● Definícia uviaznutia.
● Podmienky vzniku.
● Riešenia, detekcia, prevencia, vyhýbanie sa.
● Príklady.
● Reálne príklady.

Čo je uviaznutie?

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 4/40

Uviaznutie

● Uviaznutie vznikne ak proces čaká na udalosť ktorá nemôže nastať.
– Bude teda čakať nekonečne dlho a nikdy sa neukončí.

● Uviaznutie nie je chyba ktorá by sa prejavila chybovým hlásením, alebo nesprávnym
výsledkom.

● Uviaznutý proces čaká (či už aktívne, alebo je zablokovaný).
– Proces nemá možnosť rozoznať či sa čakanie ukončí, alebo nie.

● Definícia [Tanenbaum]:
– Množina procesov je v stave uviaznutia, ak každý čaká na udalosť, ktorú môže spôsobiť

len iný proces z tejto množiny.

● Procesy väčšinou čakajú na prostriedky, ktoré majú pridelené iné čakajúce procesy.
● Predpokladá sa, že procesy nečakajú na nič iné.
● Nie každé “zaseknutie” procesu je uviaznutím.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 5/40

Nutné podmienky vzniku uviaznutia (Coffman, 1971)

1) Vzájomné vylučovanie (Mutual exclusion)
– Prostriedky nie je možné zdieľať. Prostriedok je vždy pridelený práve jednému

procesu, alebo je voľný.

2) Nepreemptívne prideľovanie prostriedkov (Non preemption condition)
– Pridelený prostriedok nie je možné procesu odobrať. Proces musí prostriedok uvoľniť

sám.

3) Čiastočné prideľovanie prostriedkov (Hold and wait condition)
– Proces môže o prostriedky žiadať postupne. Proces už má pridelenú časť prostriedkov

ktoré potrebuje, zatiaľ čo čaká na ďalšie.

4) Čakanie na prostriedky (Circular wait condition)
– Ak proces nemá pridelené prostriedky o ktoré žiadal, čaká.

– Existuje postupnosť procesov (P1, P2, …, Pn) taká, že Pi → Pi+1 pre i<n a Pn → P1, kde
relácia Pi → Pj znamená, že proces Pi čaká na prostriedok pridelený procesu Pj.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 6/40

Podmienky vzniku uviaznutia

● Prvé tri podmienky sú nutnými podmienkami. Ak odstránime platnosť
ľubovoľnej z nich, uviaznutie nemôže nastať.

● Ak je splnená aj štvrtá podmienka, uviaznutie nastane (nastalo).
– Ak nastalo kruhové čakanie a platia prvé tri podmienky, tak je toto čakanie

neodstrániteľné.

● Spolu teda uvedené podmienky predstavujú nutné aj postačujúce
podmienky vzniku uviaznutia.

● Model správania procesu:
– Proces spravidla uvoľní alokované prostriedky keď sa ukončí.

– Na to, aby sa proces ukončil, musí najskôr alokovať všetky potrebné
prostriedky. Prostriedky môže proces alokovať postupne.

– Na pridelenie prostriedkov čaká (bez nich sa nemôže vykonávať ďalej).

Modelovanie uviaznutia

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 8/40

Graf alokácie prostriedkov

● Graf alokácie prostriedkov (Resource allocation graph) je bipartitný
orientovaný graf.
– Vrcholy predstavujú množinu procesov P a množinu prostriedkov R.

– Hrana P → R znamená, že proces P potrebuje prostriedok R (a bude
naň čakať), resp. P čaká na udalosť R.

– Hrana R → P znamená, že proces P má pridelený prostriedok R
(a uvoľní ho, až keď sa ukončí), resp. P generuje R.

P

PR

R

P1

R1 R2

P2P čaká na R P má R uviaznutie

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 9/40

Príklad: Pokus o vzájomné vylučovanie

● Spoločnými prostriedkami sú tu zdieľané premenné.
● Udalosť, na ktorú sa tu čaká, je nastavenie na nulu.
● Všetky plánovania obsahujúce podpostupnosť (P3, Q3) alebo

(Q3, P3) vedú k cyklickému čakaniu.
● K uviaznutiu nemusí dôjsť vždy. Ostatné plánovania budú

bez uviaznutia.

1: ProcessP() { ProcessQ() {
2: while(1) { while(1) {
3: inP = TRUE; inQ = TRUE;
4: while(inQ); while(inP);
5: UseResource(); UseResource();
6: inP = FALSE; inQ = FALSE;
7: } }
8: } }

P

inP inQ

Qčaká na
inP == 0

čaká na
inQ == 0

nastavil
inQ == 1

nastavil
inP == 1

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 10/40

Pokus o vzájomné vylučovanie (Petriho siete)

● Oba prechody inP=T a inQ=T sú
pripravené súčasne.

● Pokiaľ sa oba vykonajú skôr než jeden
z nich vojde do KO, žiadny prechod už
nebude pripravený.

● Ak sú tokeny v oboch čakacích
miestach, nastalo uviaznutie.

1: ProcessP() { ProcessQ() {
2: while(1) { while(1) {
3: inP = TRUE; inQ = TRUE;
4: while(inQ); while(inP);
5: UseResource(); UseResource();
6: inP = FALSE; inQ = FALSE;
7: } }
8: } }

inP=F

inP=T

inP==F

Use R
by P

waiting
for inQ

waiting
finished

inQ=F

inQ=T

inQ==F

Use R
by Q

waiting
for inP

waiting
finished

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 11/40

Príklad: Rad pevnej dĺžky

● Implementácia radu s pevnou dĺžkou pomocou
semaforov.

● Vymenené poradie čakania.
● Existuje taká postupnosť vykonania, ktorá vedie

k cyklickému čakaniu.
– Ak je rad plný a zavolá sa Send().

● Pri pôvodnom (správnom) poradí to nie je možné.

Send(message msg) {
Wait(mutex);
Wait(empty);
enqueue(q, msg);
Signal(mutex);
Signal(full);

};

Receive(message *msg) {
Wait(full);
Wait(mutex);
*msg = dequeue(q);
Signal(mutex);
Signal(empty);

}

S

mutex empty

RWait
(mutex)

Wait
(empty)

Signal
(empty)

Signal
(mutex)

Riešenia problému uviaznutia

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 13/40

Prístupy k riešeniu uviaznutia

● Operačný systém môže riadiť prístup len k prostriedkom ktoré poskytuje
(CPU, pamäť, diskový priestor, súbory, semafory, ...).
– Mnohé z nich sú reprezentované tabuľkami v pamäti.

● Nemá však vplyv na prostriedky implementované priamo procesmi (napr.
spoločnými premennými v ich pamäti).
– Jadro nevie, že nejaká konkrétna adresa v spoločnej pamäti môže pre procesy

predstavovať zdieľaný prostriedok.

● Možné prístupy k problému uviaznutia väčšinou delíme do týchto skupín:

1) Ignorovanie problému

2) Detekcia uviaznutia a zotavenie

3) Predchádzanie uviaznutiu

4) Vyhýbanie sa uviaznutiu

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 14/40

Ignorovanie uviaznutia

● Nie je to skutočné riešenie, je to však možný prístup.
● Uviaznutie môže byť menej problematické, než (nepovšimnutá)

nekonzistencia dát.
● Náklady na návrh a realizáciu riešenia môžu byť značne vyššie než

odstránenie následkov uviaznutia.
● Z praktického hľadiska môže byť výhodnejšie tento problém ignorovať.

– Uviaznutie procesov v dôsledku vyčerpania prostriedkov OS (napr. tabuľka
procesov) je nepravdepodobné a zriedkavé.

● Mnohé používané OS uviaznutie ignorujú.
– Linux má detekciu uviaznutia napr. pre zámky na súboroch (POSIX locks),

FUTEX_LOCK_PI (priority-inheritance lock), aj pre spinlock, rwlock, mutex
v jadre (modul lockdep).

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 15/40

Detekcia uviaznutia a zotavenie

● Pri tomto prístupe môže dôjsť k uviaznutiu. Keď uviaznutie nastane,
OS reštartuje niektorý z množiny uviaznutých procesov.

● Nie je potrebná žiadna zmena v implementácii procesov.
● OS musí mať implementovaný detekčný mechanizmus:

1) V najjednoduchšom prípade to môže byť operátor, ktorý stav zistí a
zasiahne.

● Nie sú potrebné žiadne zmeny ani v OS.

2) Jednoduchý mechanizmus môže napríklad zrušiť proces zablokovaný
určenú (dlhú) dobu.

3) Do operácií alokácie a uvoľnenia prostriedkov sa pridá úprava
alokačného grafu. Ak sa v ňom nájde slučka, nastalo uviaznutie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 16/40

Detekcia uviaznutia a zotavenie

● Zotavenie:
– Zrušenie všetkých uviaznutých procesov,

– zrušenie jedného z nich,

– návrat do neuviaznutého stavu (checkpoint & restart).

● Napríklad Linux má implementovanú detekciu uviaznutia aj v jadre
(bez zotavenia):
– Modul lockdep implementuje detekciu uviaznutia aj pre spinlock,

rwlock, mutex v jadre.

– Použitie napr. pre ovládače zariadení, alebo iné časti jadra (nie pre
procesy). Skôr pre vývojárov OS než aplikačných programátorov.

Predchádzanie uviaznutiu

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 18/40

Predchádzanie uviaznutiu

● Implementáciu upravíme tak, aby niektorá z nutných podmienok nebola splnená.
– V systéme natrvalo zrušíme platnosť (aspoň) jednej zo štyroch podmienok.

– Vznik uviaznutia je tým štrukturálne vylúčený.

● Uviaznutie nemôže vôbec nastať bez ohľadu na to, ako sú procesy plánované.
● Riešenie by malo mať niektorú z týchto vlastností:

– Nepoužívať vzájomné vylučovanie.

– Používať preempciu, teda možnosť odobrať už pridelený prostriedok.

– Alokovať všetky potrebné prostriedky vždy naraz.

– Zabraňovať vzniku kruhového čakania na prostriedky.

● Prvé tri predstavujú nepriame a štvrtá priame predchádzanie uviaznutiu.
● Tieto podmienky sú značne obmedzujúce, môžu viesť k neefektívnym alebo aj

komplikovaným riešeniam.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 19/40

(1) Odstránenie vzájomného vylučovania

● Prístup k spoločnému prostriedku môže byť sprostredkovaný
koordinačným procesom, ktorý bude k nemu pristupovať ako jediný.

● Ostatné procesy budú komunikovať s koordinačným procesom,
napríklad zasielaním správ.

● Procesy nebudú súťažiť o prístup medzi sebou.
● Príklad: print spooler

– Namiesto toho, aby každý proces ktorý potrebuje tlačiareň si ju alokoval
na čas tlačenia sám, pošle úlohu vyhradenému procesu.

● Tento prístup nie je možné aplikovať na každý typ prostriedku.
– Napríklad tabuľky v jadre OS (tabuľka procesov, i-uzlov, …).

● Môže to viesť k vzniku novej kritickej oblasti.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 20/40

(2) Preemptívne prideľovanie prostriedkov

● Preempcia – odoberanie prostriedku ktorý už bol pridelený (bez toho,
aby ho proces ktorý ho má uvoľnil).

● Už pridelené prostriedky by sa niektorým procesom odobrali, aby ich
bolo možné prideliť inému procesu, ktorý na ne čaká.

● Ten by sa následne ukončil a prostriedky uvoľnil.
– Alebo by mu boli opäť odobrané.

● Odobratie prostriedku ktorý jeden proces využíva a jeho pridelenie
inému procesu môže mať fatálne dôsledky
– Vedie k nesprávnej funkcii a zlým výsledkom.

● Tento prístup je možné využiť pre zdroje ktorých stav je možné uchovať.
– OS ho využíva napríklad pre CPU a fyzickú pamäť.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 21/40

(3) Pridelenie všetkých prostriedkov

● Uviaznutie môže nastať ak má každý proces pridelenú časť
prostriedkov, ale ešte musia čakať na ďalšie, aby sa mohli dokončiť.

● Pokiaľ by proces dostal všetky prostriedky potrebné na svoje
vykonanie naraz, táto situácia by nenastala.
– Ak bude musieť čakať tak bez toho, aby sám ostatným procesom

nejaké prostriedky odoberal.

● Problém je v tom, že mnohé procesy vopred nevedia, koľko
prostriedkov budú potrebovať.

● Alternatívne by proces mohol vždy pred alokovaním ďalších
prostriedkov najskôr dočasne uvoľniť všetky ktoré už má a potom
požiadať znovu o zväčšený objem prostriedkov naraz.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 22/40

(4) Eliminovanie cyklického čakania

● Zrušenie tejto podmienky je možné dosiahnuť rôznymi spôsobmi:
● Len jeden proces. Príliš obmedzujúce.

– Aj ten by mohol uviaznuť v čakaní na prostriedok ktorý už má – rekurzívne získanie zámku,
napríklad v obsluhe prerušenia.

● Len jeden prostriedok. Ak by chcel proces alokovať iný prostriedok, ten prvý by najskôr
musel uvoľniť. To však nemusí byť vždy možné.

● Prístup k prostriedkom v určenom poradí.
– Všetky prostriedky sú zoradené (očíslované). Každý proces smie žiadať o prostriedky len

v poradí ich čísiel (nie o nižší).

– Týmto spôsobom nemôže vzniknúť cyklus v grafe alokácií prostriedkov.

– Alternatívne by proces smel žiadať o prostriedok s vyšším číslom, než práve má. Teda ak
prostriedok s vyšším číslom uvoľní, môže opäť žiadať o nižší.

– Nájsť vhodné usporiadanie všetkých prostriedkov ktoré by umožňovalo vykonanie všetkým
procesom nemusí byť možné.

Vyhýbanie sa uviaznutiu

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 24/40

Vyhýbanie sa uviaznutiu

● Systém síce umožňuje vznik uviaznutia, OS (a procesy) sa ale správajú tak,
aby k uviaznutiu nedošlo.
– Vyhýbajú sa mu počas vykonávania.

● Žiadna z nutných podmienok vzniku uviaznutia nie je trvale odstránená,
ale procesy sa vyhýbajú tomu, aby platili všetky súčasne.
– V každom čase teda aspoň jedna neplatí.

● Tento prístup je menej obmedzujúci než prevencia uviaznutia.
● Procesy musia byť implementované s ohľadom na vyhýbanie sa uviaznutiu.
● Procesy musia vopred vedieť poskytnúť informácie o potrebných

prostriedkoch.
– Napr. koľko jednotlivých prostriedkov celkovo potrebujú na svoje vykonanie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 25/40

Odmietnutie spustenia procesu

● Máme n procesov a m prostriedkov (i=1..n, j=1..m).
● Stav je daný

– A=(aij), aktuálne prideleným množstvom prostriedku j procesu i,

– počtom voľných prostriedkov V=(v1, v2, …, vm),

– MP=(mpij), maximálnou potrebou prostriedku j pre proces i.

● Celková kapacita jednotlivých prostriedkov:
● Platí:
● Nový proces Pn+1, ktorý potrebuje mpn+1j jednotlivých prostriedkov sa

spústí len ak platí:
– Teda ak celkové požiadavky nového a bežiacich procesov nepresiahnu

dostupnú kapacitu jednotlivých prostriedkov. Inak hrozí uviaznutie.

c j=v j+∑i=1

n
aij

aij≤mpij≤c j ,∀ i=1, ...n , j=1, ... ,m

c j≥mpn+1 j+∑i=1

n
mpij ,∀ j=1, ... ,m

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 26/40

Príklad 1

● V systéme sú štyri prostriedky jedného typu zdieľané tromi
procesmi. Každý proces potrebuje najviac dva prostriedky.

● Môže nastať uviaznutie?
● n=3, c=4, mpi=2 pre i=1, 2, 3.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 27/40

Príklad 1

● V systéme sú štyri prostriedky jedného typu zdieľané tromi procesmi. Každý proces
potrebuje najviac dva prostriedky.

● Môže nastať uviaznutie?
● n=3, c=4, mpi=2 pre i=1, 2, 3.

● [Len jeden typ prostriedku, o jeden index menej.]
● Najhorší prípad:

– Každý proces má o jeden prostriedok menej než potrebuje (ai = mpi – 1).

– Všetky procesy teda čakajú, pričom obsadzujú najviac prostriedkov.

– Zostane dosť voľných prostriedkov, aby sa aspoň jeden proces dokončil?

● A = n . (mpi – 1) → A = 3 x (2 – 1) = 3 < c → V = c – A = 4 – 3 = 1 > 0

● Aj v najhoršom prípade zostanú voľné prostriedky.

● Uviaznutie nemôže nastať. P1 P2 P3

mp=2
A=3
V=1

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 28/40

Príklad 2

● V systéme je M prostriedkov jedného typu a N procesov. Procesy
žiadajú a uvoľňujú prostriedky jeden po druhom. Každý potrebuje
1 .. M prostriedkov, pričom platí, že suma pridelených prostriedkov
je vždy menšia než M+N.

● Môže nastať uviaznutie?

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 29/40

Príklad 2

● V systéme je M prostriedkov jedného typu a N procesov. Procesy žiadajú a uvoľňujú
prostriedky jeden po druhom. Každý potrebuje 1 .. M prostriedkov, pričom platí, že
suma pridelených prostriedkov je vždy menšia než M+N.

● Môže nastať uviaznutie?
● Suma pridelených prostriedkov
● Celkový objem prostriedkov c = M, voľné prostriedky V = c – A.
● Nevieme, koľko najviac jeden proces potrebuje, ale bude to najviac M, 1 ≤ pmi ≤ M.

● Najhorší prípad:
– Každý proces má o jeden prostriedok menej než potrebuje (ai = mpi – 1).

● V = M – (mp1 – 1 + mp2 – 1 + … + mpn – 1)

● V = M – (A – N) = M + N – A, a zároveň platí A < M + N → V > 0

● Uviaznutie nemôže nastať. 

A=∑i=1

N
ai<M+N

Bankárov algoritmus

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 31/40

Bankárov algoritmus (Dijkstra, 1965)

● Odmietnutie pridelenia prostriedku.
● Operačný systém (bankár) sa rozhoduje, či klientovi (procesu) dá pôžičku v danej

mene (pridelí prostriedok daného typu).
● Každý proces musí na začiatku oznámiť celkové množstvo jednotlivých

prostriedkov potrebných na svoje dokončenie.
– To je prakticky len ťažko splniteľné.

– Po ukončení proces musí pridelené prostriedky vrátiť. (Ani toto nemusí byť vždy
splnené, napr. súbory.)

– Bankárov algoritmus teda nie je prakticky veľmi použiteľný.

● Bankár prostriedky poskytne len ak existuje postupnosť, ktorá vedie k uspokojeniu
všetkých procesov.
– Stav je bezpečný ak vedie do ďalšieho bezpečného stavu.

– Prostriedky budú pridelené, len ak ich pridelenie vedie do bezpečného stavu.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 32/40

Bankárov algoritmus (Dijkstra, 1965)

● Princíp: snažíme sa postupne uspokojiť jednotlivé procesy a zistiť, či môže
nastať uviaznutie.

1) Každý proces Pi na začiatku deklaruje maximálny objem potrebných
prostriedkov mpij. Voľné prostriedky T := V.

2) Nájsť proces Pi, ktorého aktuálna potreba je menšia než aktuálne voľné
prostriedky, čiže Pi: mpij – aij ≤ tj pre všetky prostriedky j=1, …, m.

– Ak taký neexistuje, stav nie je bezpečný a môže dôjsť k uviaznutiu.

3) Proces Pi môže dostať všetky potrebné prostiredky, ukončí sa a prostriedky
vráti; tj := tj + aij pre všetky prostriedky j.

4) Opakovať kroky 2) a 3).
– Ak sú už všetky procesy ukončené, stav je bezpečný.

– Ak nie, môže nastať uviaznutie, stav nie je bezpečný.

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 33/40

Príklad 1 (Bankárov algoritmus)

● Prostriedok jedného typu. Je stav bezpečný?
● Voľné V = 2
● Prostriedky potrebné na ukončenie ri = mpi – ai

 mpi ai ri

 P0 7 0 7

 P1 3 2 1

 P2 9 3 6

 P3 2 2 0

 P4 4 0 4

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 34/40

Príklad 1, riešenie (Bankárov algoritmus)

● Prostriedok jedného typu. Je stav bezpečný?
● Voľné V = 2
● Prostriedky potrebné na ukončenie ri = mpi – ai

 mpi ai ri

 P0 7 0 7 5) a0 = 7, V = 2 → a0 = 9, V = 9

 P1 3 2 1 2) a1 = 3, V = 3 → a1 = 0, V = 6

 P2 9 3 6 4) a2 = 9, V = 0 → a2 = 0, V = 9

 P3 2 2 0 1) a3 = 2, V = 0 → a3 = 0, V = 4

 P4 4 0 4 3) a4 = 4, V = 2 → a4 = 0, V = 6

● Napríklad postupnosť (P3, P1, P4, P2, P0) vedie k ukončeniu všetkých procesov.

● Stav je bezpečný. 

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 35/40

Príklad 2 (Bankárov algoritmus)

● Prostriedok jedného typu. P4 žiada 3. Je možné prostriedky prideliť?
● Voľné V = 3
● Prostriedky potrebné na ukončenie ri = mpi – ai

 mpi ai ri

 P0 7 0 7

 P1 3 2 1

 P2 9 3 6

 P3 2 2 0

 P4 4 0 4

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 36/40

Príklad 2, riešenie (Bankárov algoritmus)

● Prostriedok jedného typu. P4 žiada 3. Je možné prostriedky prideliť?
● Voľné V = 3
● Prostriedky potrebné na ukončenie ri = mpi – ai

 mpi ai ri

 P0 7 0 7

 P1 3 2 1 3) a1 = 3, V = 2 → a1 = 0, V = 5

 P2 9 3 6

 P3 2 2 0 2) a3 = 2, V = 0 → a3 = 0, V = 3

 P4 4 0 4 1) a4 = 2, V = 1 → a4 = 2, V = 1

● Po pridelení požadovaných prostriedkov procesu P4 by sa procesy P0 a P2 nemohli vykonať.
● Požiadavka nevedie k bezpečnému stavu.

● Požiadavka bude zamietnutá, respektíve proces P4 bude musieť na alokáciu čakať. 

Detekcia uviaznutia v jadre OS

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 38/40

Detekcia uviaznutia v OS Linux

● Systémové volanie futex() môže vrátiť EDEADLK
– pri rekurzívnom volaní, teda ak volajúci už má zamknutú hodnotu na danej adrese (pri

operáciách FUTEX_LOCK_PI, FUTEX_TRYLOCK_PI, FUTEX_CMP_REQUEUE_PI),

– ak jadro zistí uviaznutie pri operácii FUTEX_CMP_REQUEUE_PI.

● Funkcia pthread_mutex_lock() môže vrátiť EDEADLK
– Pri rekurzívnom volaní pre zámok ktorý nebol inicializovaný ako rekurzívny, čiže keď volajúci už

daný zámok má zamknutý.

– Rekurzívne zámky je možné zamknúť opakovane a rovnaký počet krát odomknúť.

● Operačný systém si pre každý proces udržuje zoznam zámkov na ktoré čaká (zoznam je
položkou PCB/task_struct).

● Napríklad:

 struct rt_mutex_waiter *pi_blocked_on;

 ...

 struct mutex_waiter *blocked_on;

DB, KI FMFI UK BA, 2021 Operačné systémy / Uviaznutie 39/40

Detekcia uviaznutia pre zámky na súboroch

● Zámky na súboroch (POSIX locks) je možné nastaviť systémovým volaním fcntl().
● Operácia F_SETLK umožňuje procesu uzamknúť na čítanie alebo zápis (l_type) istý

rozsah súboru (l_whence, l_start, l_len).
– Toto volanie je neblokujúce a v prípade, že zámok nie je možné získať (napríklad ak daný

rozsah je už zamknutý iným procesom), vráti chybový kód.

● Operácia F_SETLKW bude čakať, až kým nebude možné zámok získať.
– V prípade, že jadro zistí kruhové čakanie, systémové volanie fcntl() pre jeden zo

zablokovaných procesov vráti EDEADLK.

– Napríklad:
● Proces A zamkne na zápis bajt 100 a proces B bajt 200. Ak sa potom A pokúsi zamknúť cez

F_SETLKW bajt 200 a B bajt 100, môže nastať uviaznutie. Jeden z nich dostane EDEADLK.

– Detekcia nie je dokonalá. Môže sa vyskytnúť aj nedetegované uviaznutie, aj falošne
detegované uviaznutie.

– Cyklus zablokovaných procesov je obmedzený na dĺžku 10.

To je zatiaľ všetko

