
Dušan Bernát
bernat@fmph.uniba.sk

Operačné systémy / Správa pamäte

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 2/113

Prehľad

● História a motivácia, monoprogramovanie,
● úseky pevnej a premenlivej dĺžky, fragmentácia,
● stránkovanie, segmentácia,
● logický adresový priestor procesu, preklad logickej adresy na fyzickú,
● tabuľka stránok a jej realizácia,
● výpadok stránky,
● algoritmy výberu obete,
● swapovanie,
● page cache/buffer cache,
● malloc, overcommit, OOM killer,
● hierarchický pamäťový systém, princípy lokality.

Pamäť bez swapovania

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 4/113

Monoprogramovanie

● Pôvodne bol v pamäti len jeden program – monoprogramovanie.
– Celú (fyzickú) pamäť využíval len jeden program a operačný systém (ROM).

– Najjednoduchšia forma správy pamäte.

● Nerobili sa žiadne výmeny (swapping) obsahu na sekundárne médium.
– Pokiaľ sa program do pamäte nezmestil, programátor ho mohol rozdeliť (overlay).

● Každý program sa zavádzal na tú istú adresu (relokácia nebola potrebná).
● Ochrana pamäte OS – zavedenie OS s každou úlohou, OS v ROM, podpora HW.
● Napríklad: kedysi MS DOS, dnes možno jednoduché vnorené systémy.
● Program zavedený do pamäte sa vyonával až kým sa neukončil, alebo kým nebol

zablokovaný vstupno-výstupnou operáciou.
– Procesor bol teda počas čakania na dokončenie V/V nevyužitý.

● Snaha o umiestnenie viacerých programov do pamäte bola motivovaná zvyšovaním
využitia procesora.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 5/113

Multiprogramovanie

● Pamäť bola pri štarte OS rozdelená na viacero úsekov pevnej dĺžky (segmenty),
mohli byť aj rôzne veľké. Ich počet sa nemenil (len pri štarte).

● Novému procesu sa pridelí najmenší vhodný voľný úsek.
● Problémom je interná fragmentácia – program nemusí využiť všetku pridelenú

pamäť. Táto časť pamäte je teda nevyužitá, ale alokovaná.
● Relokácia je potrebná v čase zavádzania (preklad adries, alebo nastavenie

bázového registra na začiatok prideleného úseku).
● Ochrana pred vzájomným prístupom môže byť realizovaná registrom pre limit.
● Každý úsek môže mať vlastný rad čakajúcich programov. Alebo môže byť jeden

spoločný rad a ak nie je voľný menší úsek, môže sa prideliť aj väčší.
● Z pohľadu jedného úseku pamäte sa využívalo stále monoprogramovanie.
● Napríklad: IBM System/360 (MFT – Multiprogramming with Fixed number of Tasks).

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 6/113

Multiprogramovanie

● Nový proces sa pridá do
radu podľa požadovanej
veľkosti.

● Jednotlivé rady sú
obsluhované FCFS.

● Procesorový čas sa delí
medzi úlohy v pamäti.

OS

Partition 1

Partition 2

Partition 3

0

0xFFFF…

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 7/113

Príklad: Multiprogramovanie

● Nech každý proces v priemere polovicu času čaká na vstupno-
výstupnú operáciu. Ako sa zmení využitie procesora, ak budú
v systéme štyri procesy?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 8/113

Príklad: Multiprogramovanie

● Nech každý proces v priemere polovicu času čaká na vstupno-výstupnú
operáciu. Ako sa zmení využitie procesora, ak budú v systéme štyri procesy?

● Pravdepodobnosť čakania na V/V: p = 0.5
● Využitie procesora – pravdepodobnosť, že procesor niečo robí (u = 1 – p).
● Pre jeden program: u1 = 1 – p = 0.5

● Pravdepodobnosť, že všetkých n procesov čaká súčasne: pn = 0.54 = 1/16
● Využitie pri n procesoch: un = 1 – pn = 1 – 1/16 = 0. 938

● Využitie procesora pri jednom procese je 50% a pri štyroch procesoch bude
93.8%.

● Prakticky to bude menej, lebo napríklad aj OS spotrebuje nejaký čas na
prepínanie procesov.

Pamäť so swapovaním

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 10/113

Multiprogramovanie s úsekmi premenlivej dĺžky

● Presúvanie celého procesu medzi hlavnou pamäťou a diskom sa nazýva výmena
(swapovanie).

● Úseky prementlivej dĺžky – veľkosť a teda aj počet jednotlivých úsekov pamäte sa
za behu mení. Umiestnenie segmentu tiež.

● Virtuálne aj fyzické adresy úseku sú súvislé (jeden blok).
● Program však môže byť presunutý na iné miesto. Potrebná je relokácia za behu.
● Interná fragmentácia je premenlivou dĺžkou pridelovaných úsekov eliminovaná.
● Voľná pamäť sa postupne rozdrobí uvoľnenými úsekmi.
● Nevyužité (malé) úseky pamäte medzi pridelenými úsekmi – externá fragmentácia.
● Napríklad: IBM OS 360 MVT (Multiprogramming with Varying number of Tasks), PDP-

10 OS.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 11/113

Externá fragmentácia

● Voľná pamäť je rozdrobená na malé časti medzi obsadenými úsekmi.
● Nevyužiteľná voľná pamäť je mimo alokovaných oblastí.
● Časom môže nastať situácia, že už nie je možné obslúžiť prichádzajúce

požiadavky, hoci v súčte je voľnej pamäte dosť.
● Riešenie:

– Kompaktifikácia (kondenzácia) pamäte – obsadené úseky sa presunú vedľa seba
a voľné miesto sa zlúči do jedného bloku.

● Presúva sa celá alokovaná pamäť, je to príliš náročné.

– Výmena (swap) – jeden proces sa (dočasne) odloží na disk, aby sa mohol zaviesť
nový. Odkladá sa celý proces, zaberá súvislý úsek pamäte.

● Ktorý sa vyberie? Dlho nečinný (zablokovaný). Dlho v pamäti.

● Oba prístupy tiež umožňujú aby sa segment za behu zväčšoval.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 12/113

Príklad: Externá fragmentácia

OS Free 500 kB

OS Free 340 kBA = alloc(160k) A

OS Free 240 kBB = alloc(100k) A B

OS Free 40 kBC = alloc(200k) A B C

OS Free 150 kBfree(B) A C

OS Free 30 kB
Compaction
D = alloc(120k) A C

OSSwap out A
D = alloc(120k) D C

D

Free 80 kB

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 13/113

Príklad: Kondenzácia

● Systém s 1MB pamäte robí kondenzáciu jedenkrát za sekundu.
Prenos jedného bajtu trvá 0.5 mikrosekundy. Priemerná dĺžka
voľného bloku je 0.4 krát veľkosť priemerného prideleného úseku.
Aká časť procesorového času sa spotrebuje na kondenzáciu? Ako
často treba robiť kondenzáciu, aby sa nespotrebovalo viac ako 10%
procesorového času?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 14/113

Príklad: Kondenzácia

● Systém s 1MB pamäte robí kondenzáciu jedenkrát za sekundu. Prenos jedného bajtu
trvá 0.5 mikrosekundy. Priemerná dĺžka voľného bloku je 0.4 krát veľkosť
priemerného prideleného úseku. Aká časť procesorového času sa spotrebuje na
kondenzáciu? Ako často treba robiť kondenzáciu, aby sa nespotrebovalo viac ako
10% procesorového času?

● Kapacita pamäte – celková MC = 1MB, voľná MV, obsadená MO

– Platí: MC = MV + MO, MV = 0.4 ∙ MO → MO = MC / 1.4 = ⌊ 210 / 1.4 ⌋ = 748982 B

● Doba prenosu
– jeden bajt: t1 = 0.5 s,

– celkovo: t = MO ∙ t1 = 748982 ∙ 0.5 ∙ 10-6 = 0.375 s.

● Perióda kondenzácií T = 1 s, z toho kondenzácia zaberie t / T, čo predstavuje 37.5 %.
● 10% ≥ 100% ∙ t / T → T ≥ 100 ∙ 0.375 / 10 = 3.75 s
● Aby kondenzácia zabrala maximálne 10% času, môže sa robiť každých 3.75 s.

Stratégie alokácie

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 16/113

Evidencia pridelených a voľných blokov

● Operačný systém musí vedieť, ktoré časti pamäte sú voľné a ktoré obsadené.
● Bitové mapy (tabuľky)

– Každá časť (alokačná jednotka) má v tabuľke binárny záznam, voľná/obsadená.

– Čím menšie bloky, tým efektívnejšie sa pamäť využíva (zaplnenie posledného
bloku, interná fragmentácia). Zároveň rastie veľkosť tabuľky.

– Pri novej požiadavke je potrebné prehľadávať tabuľku a nájsť súvislú
postupnosť núl, zodpovedajúcu veľkosti požiadavky.

– Prehľadávanie tabuľky je drahé.
● Zoznamy segmentov (voľný/obsadený, začiatok, veľkosť)

– Môže byť usporiadaný podľa adries. Pri uvoľňovaní sa ľahko nájdu sesedia a
zlúčia sa. Výhodnejší môže byť dvojito zreťazený zoznam.

– Pri alokácii sa nájde dostatočne veľký segment a rozdelí sa.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 17/113

Algoritmy alokácie blokov pamäte

● First fit (FF)

– Prehľadáva zoznam a použije prvý voľný segment s dostatočnou veľkosťou.

– Rýchly, jednoduchý.
● Next fit (NF) – alebo tiež Circular First Fit, nezačína vždy od začiatku.
● Best fit (BF)

– prehľadáva celý zoznam a použije voľný segment s najbližšou veľkosťou.

– Vytvára veľa veľmi malých a teda nepoužiteľných voľných blokov.

– First fit vytvára väčšie voľné bloky, čo je výhodnejšie.
● Worst fit (WF)

– prehľadáva vždy celý zoznam, použije voľný segment ktorý vytvorí najväčší voľný blok.

– Pomalší než BF, ten skončí ak nájde segmemt s presnou veľkosťou.

– Rozdeľuje veľké bloky, takže veľké úlohy nebude možné umiestniť.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 18/113

Implementácia a optimalizácia algoritmov

● Pre urýchlenie prehľadávania je možné použiť samostatné zoznamy pre
alokované segmenty (procesy) a voľné segmenty pamäte.

● Pri alokácii stačí prehľadávať zoznam voľných.
● Uvoľňovanie je však pomalšie, pretože musia byť modifikované oba zoznamy.
● Zoznam voľných segmentov môže byť usporiadaný podľa veľkosti (nie adresy).
● Je možné tiež použiť samostatné zoznamy pre rôzne často používané veľkosti

segmentov (Quick Fit).

– Hľadanie voľného miesta je veľmi rýchle.

– Podobne ako pri ostatných s usporiadaním podľa veľkosti, uvoľňovanie
segmentu je náročné. Aby fungovalo dobre, musí vyhľadať a zlúčiť
susedné voľné segmenty.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 19/113

Buddy algoritmus (Knowlton 1965, Knuth 1968)

● Udržujú sa zoznamy voľných segmentov s veľkosťou mocnín dvojky.
● Bloky ležiace za sebou tvoria dvojice.
● Pri príchode novej požiadavky sa veľkosť zaokrúhli hore, k najbližšej

mocnine 2 a použije sa segment z príslušného zoznamu (ako pri QF).
● Ak je tento zoznam prázdny, nájde sa najbližší vyšší a rozdelí sa na dve

časti (ak treba, aj viackrát).
● Pri uvoľnení segmentu sa skontroluje, či je dvojička tiež voľná. Ak áno,

zlúčia sa a presunú do vyššieho zoznamu (ak sa dá, aj viackrát).

– Rozdelovanie a zlučovanie sa robí rekurzívne. V najhoršom prípade
však bude veľa zlučovaní nasledovať veľa delení.

● Tvorí základ aj pre alokáciu blokov fyzickej pamäte (stránok) v OS Linux.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 20/113

Implementácia buddy algoritmu

● Linux využíva bitovú mapu aj zoznam voľných blokov.

– Jeden bit na každú dvojicu blokov (úspora pamäte).

– Hodnota sa invertuje pri každej alokácii alebo uvoľnení jedného z nich.

– Hodnota je 0 ak sú oba bloky voľné, alebo oba obsadené, 1 ak je jeden
z dvojice obsadený.

● Pri uvoľňovaní je jasné, že aspoň jeden (práve uvoľnený) je voľný. Ak je
hodnota príslušného bitu po invertovaní 0, oba musia byť voľné a môžu sa
zlúčiť a preniesť do zoznamu väčších blokov.

– Adresa oboch blokov v dvojici je zhodná, líši sa len v najnižšom bite ktorý
nie je trvale nulový.

● Ak počet voľných blokov klesne pod určitú hranicu, zobudí sa kswapd aby
uvoľnil miesto odložením niektorých alokovaných častí na disk.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 21/113

Delenie voľného bloku

0
1
2
3
4
5
6
7
8
9

MAX_ORDER

Free blocks

0
1
2
3
4
5
6
7
8
9

MAX_ORDER

removed 1 × 24

List of free blocks

add 1 × 22

add 1 × 23

split

split

allocated

List of free blocks

Size of 20

Size of 24

Size of 2MAX_ORDER - 1

Virtuálna pamäť

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 23/113

Obmedzenia správy pamäte

● Pre všetky opísané systémy správy pamäte platí:

1) Program zaberá vždy súvislý úsek fyzickej pamäte.

2) Dôsledok: Veľkosť programu je obmedzená dostupnou fyzickou
pamäťou.

● Programátor mohol rozdeliť kód do viacerých častí (overlay), pričom
zabezpečil vždy nahratie tej časti, ktorá sa mala vykonávať.

– Časť trvale prítomná v pamäti zabezpečovala funkcie zavedenia a
nahradenia jednotlivých častí.

– Je to zložité. Za všetko je zodpovedný programátor.
● Virtuálna pamäť odstraňuje obe obmedzenia a prináša ďalšie výhody.

– Správa pamäte je realizovaná v OS.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 24/113

Virtuálna pamäť

● Virtuálna pamäť: Proces (programátor) pracuje so súvislým adresovým priestorom,
ktorý je operačným systémom mapovaný do fyzickej pamäte.

● Preklad virtuálnych adries na fyzické je pre proces transparentný.

– Mapovanie môže byť v podstate ľubovoľné.

– Relokáciu vo fyzickej pamäti rieši operačný systém.

– Proces nemusí byť v súvislom úseku fyzickej pamäti. Umožňuje to eliminovať
externú fragmentáciu. Vďaka prekladu adries je možné alokovať celú fyzickú pamäť.

● OS môže pri preklade kontrolovať hranice úsekov. Rieši problém ochrany pamäte
pridelenej jednotlivým procesom.

● Keďže preklad adries sa robí pri každom prístupe do pamäte, musí byť efektívny.

– Efektívna implementácia virtuálnej pamäte vyžaduje podporu hardvéru.

– Preklad adries robí jednotka procesora MMU (Memory Management Unit), ktorá
generuje fyzické adresy.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 25/113

Stránkovanie

● Mapovať každú jednu adresu samostatne by bolo príliš náročné.
● Virtuálny adresový priestor je rozdelený na súvislé bloky rovnakej dĺžky (mocniny

dvoch) – stránky (Page).

– Typická veľkosť stránky je 4kB.
● Fyzická pamäť je analogicky rozdelená na rovnako veľké bloky – stránkové rámy (Page

Frame).
● Virtuálna adresa konkrétneho slova obsahuje číslo stránky a posunutie (offset) od

začiatku stránky.
● Mapovanie priraďuje stránkovým rámom stránky a je realizované tzv. tabuľkou

stránok.
– Indexom do nej je číslo stránky, obsahuje položku (Page Table Entry) s číslom

stránkového rámu a príznakmi (napr. present/absent, valid, dirty bit, …).
● Každý proces má vlastný virtuálny adresový priestor a teda aj vlastnú tabuľku stránok.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 26/113

Stránkovanie (nie na požiadanie)

● Stránkovanie nie je to isté ako stránkovanie na požiadanie.

– (non-demand) paging ≠ demand paging
● Pri stránkovaní (paging) musí byť celý vykonávaný proces v pamäti.
● Stránkovanie samo o sebe rieši externú fragmentáciu (netreba kompakciu).

– Celá fyzická pamäť je rozdelená na stránky ktoré môžu byť alokované a teda
nie je žiadna nevyužitá voľná pamäť.

– Mapovanie vytvára súvislý virtuálny adresový priestor, hoci stránky môžu byť
rozhádzané v rôznych stránkových rámoch.

● Vzniká interná fragmentácia, v priemere polovica stránky na proces.
● Nie je potrebný algoritmus hľadania vhodnej stránky na pridelenie, lebo všetky

stránky sú rovnaké. Stačí zobrať prvú voľnú.
● Nie je potrebné spájať voľné miesto po uvoľnení stránky.

Stránkovanie na požiadanie

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 28/113

Stránkovanie na požiadanie (Fotheringham, 1961)

● Virtuálna pamäť umožňuje implementáciu stránkovania na požiadanie (demand paging).
● Proces sa môže vykonávať aj keď nie je v pamäti zavedený celý. Stačí ak je rezidentná len

časť, ktorá je aktuálne potrebná. Nevyužívané stránky, môžu byť odložené na disk.
● Niektoré výhody:

– Veľkosť procesu nie je obmedzená fyzickou pamäťou.

– Umožňuje to zaviesť do pamäti ešte viac procesov, teda zvýšiť úroveň multiprocesingu
a tiež využitie procesora.

– Jednoduchšie pre používateľa, preklad adries je transparentný.
● Niektoré nevýhody:

– Zložitejší operačný systém.

– Čas vykonávania procesu sa môže meniť, nie je predvídateľný.

– OS môže prideliť viac pamäte, než je dostupnej (overcommitting).
● V dnešných OS sa využíva predovšetkým tento systém správy pamäte.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 29/113

Preklad adresy

● Virtuálna adresa obsahuje časť určujúcu stránku a posunutie slova od
začiatku stránky.

– Posunutie (offset) je určené spodnými bitmi adresy. Napr. Pri 4kB = 212 B
stránke musí mať adresa pre offset vyhradených 12 bitov.

– Na 32-bitovom systéme by sme mohli mať 32 – 12 = 20 bitov pre číslo
stránky, čo umožňuje mať 220 stránok. Stránkových rámov ovšem môže
byť menej.

● Číslo stránky určuje položku v tabuľke stránok.

– Pokiaľ je nastavený present bit, použije sa číslo stránkového rámu na
výpočet fyzickej adresy.

– Číslo stránkového rámu môže byť zhodné s jeho fyzickou adresou.

– Offset stačí pripočítať, nemení sa, keďže stránky a rámy sú rovnako veľké.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 30/113

Výpadok stránky

● Ak present bit v PTE nie je nastavený, nastáva tzv. výpadok stránky (page fault).

– Procesor odovzdá riadenie obsluhe výnimky, teda OS.
● Ak nie je nastavený valid bit, adresu nie je možné preložiť, pretože daná

virtuálna adresa nezodpovedá alokovanej oblasti.

– Operačný systém pošle procesu signál SIGSEGV.
● Ak je adresa platná, ale stránka nie je v pamäti, nájde sa voľný stránkový rám.

– kswapd sa stará o to, aby vždy nejaké boli. Na základe algoritmu výberu
obete zvolí stránku, ktorá bude uvoľnená.

– Ak je to potrebné, obeť má nastavený dirty bit, najskôr sa vybraná stránka
zapíše na disk (swap). Aktualizuje sa PTE obete.

● Po alokovaní stránky do voľného stránkového rámu sa aktualizuje PTE a OS
reštartuje proces od inštrukcie, ktorá výpadok spôsobila.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 31/113

Príklad: Výpadok stránky

● Vykonanie jednej inštrukcie trvá jednu mikrosekundu. Ak spôsobí
výpadok stránky tak je potrebné vykonať ďalších n inštrukcií pri
obsluhe výpadku. Aký je efektívny čas vykonania jednej inštrukcie
ak výpadok stránky nastáva každých k inštukcií?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 32/113

Príklad: Výpadok stránky, riešenie

● Vykonanie jednej inštrukcie trvá jednu mikrosekundu. Ak spôsobí výpadok stránky
tak je potrebné vykonať ďalších n inštrukcií pri obsluhe výpadku. Aký je efektívny
čas vykonania jednej inštrukcie ak výpadok stránky nastáva každých k inštukcií?

● Vykonanie jednej inštrukcie t = 1s.
● Nech celkový počet vykonaných inštrukcií je N.

– Počet inštrukcií s výpadkom: N1 = N / k

– Počet inštrukcií bez výpadku: N2 = N – N / k

● Celkový čas vykonávania: T = t ∙ (N1 + N2)

– T = N / k ∙ (1 + n) ∙ t + (N – N / k) ∙ t = N ∙ t ∙ (1 + n / k)

● Priemerný čas vykonania inštrukcie: tE = T / N = t (1 + n / k)

● Výpadky sú drahé (n ≈ 1000). 

Tabuľka stránok

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 34/113

Tabuľka stránok

● Tabuľka stránok (PT – Page Table) sa používa na preklad logickej adresy na fyzickú.

– Definuje mapovanie stránok na stránkové rámy.

– Obsahuje položky tabuľky stránok (PTE – Page Table Entry), v podstate je to
pole PTE.

● Každá PTE zodpovedá jednej stránke a obsahuje číslo stránkového rámu
a príznaky.

– Význam jednotlivých bitov v PTE definuje hardvér (procesor).
● Virtuálna a fyzická adresa nemusia byť rovnako veľké.
● Tabuľky stránok sú dnes spravidla umiestnené v pamäti.

– Niektoré procesory s menším počtom stránok mali PT v registroch.

– Napríklad: XDS-940 (Xerox Data Systems), predtým SDS (Scientific Data
Systems): 8 stránok po 4096 slov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 35/113

Mapovanie virtuálnej pamäte procesov do fyzickej

0

1

2

3

4

5

6

7

8

9

a

b

...
a
1
9
5

0

1

2

3

0

1

2

3

0

1

2

3

6
b
0
3

8
4
x
2

PFN
PN

0

Page Table

1
2
3

0
1
2
3

0
1
2
3

PTEindex

...

Process A

Process B

Process N

Physical
Memory

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 36/113

Viacúrovňové tabuľky stránok

● Veľkosť jednoúrovňovej tabuľky stránok pri 32-bitovej virtuálnej adrese a 4 kB
stránkach:

– Počet PTE = 220 = 1 048 576

– Veľkosť PTE = 4B

– Veľkosť PT = 220 ∙ 4 B = 222 B = 4 MB.
● Napríklad pre 100 procesov v systéme by tabuľky zaberali 400 MB.
● Bežný proces pritom nepotrebuje celý 4 GB pamäťový rozsah, čiže väčšina položiek

v tabuľke stránok je nevyužitá.
● Tabuľky stránok musia byť umiestnené v súvislých blokoch pamäti (procesor pozná len

začiatok tabuľky).
● Riešenie:

– viacúrovňové tabuľky stránok, tabuľka stránok sa rozdelí na viaceré tabuľky,

– v pamäti budú len tie, ktoré proces skutočne potrebuje.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 37/113

Dvojúrovňové tabuľky stránok na 32-bit x86

 Page Directory index Page Table index Offset

Page Directory

Page Table

pgd

0

1

2

3

4

5

0xFF...

PFN

121010

CR3
031

031

031

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 38/113

Stránkový adresár

● Stránkový adresár (PD – Page Directory) je jeden.

– Má 210 = 1024 položiek, každá má 4B.

– Veľkosť PD je 4 kB.
● Každá položka v stránkovom adresári (PDE – Page Directory Entry) ukazuje na začiatok

jednej tabuľky stránok.

– PDE a PTE majú podobnú štruktúru, viaceré príznaky sú zhodné.
● Každá položka v tabuľke stránok ukazuje na fyzickú adresu stránkového rámu. Po

pripočítaní offsetu vznikne fyzická adresa konkrétneho slova.
● Ak je nastavený bit 7 (Page Size bit) znamená to, že PDE neukazuje na tabuľku stránok,

ale priamo na stránku.

– Bity Page Table index sa pridajú k offsetu. Stránka má teda veľkosť 2(10+12) = 4 MB.

– Umožňuje to zníženie réžie pri alokovaní väčších blokov pamäte.

– Linux nepoužíva pre stránky procesov tento bit v PDE a teda ani bit 7 v PTE.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 39/113

Príklad: Dvojúrovňové stránkovanie

● Počítač má 32-bitový adresový priestor a používa dvojúrovňové
tabuľky stránok s 9-bitovým indexom do stránkového adresára a 11-
bitovým indexom do tabuľky stránok.

– Aké veľké sú stránky a koľko ich je vo virtuálnom adresovom
priestore procesu?

– Akú časť adresového priestoru je možné adresovať pomocou
jednej položky stránkového adresára a aká je s tým spojená
réžia?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 40/113

Príklad: Dvojúrovňové stránkovanie, riešenie

● Počítač má 32-bitový adresový priestor a používa dvojúrovňové tabuľky stránok s 9-bitovým
indexom do stránkového adresára a 11-bitovým indexom do tabuľky stránok.

– Aké veľké sú stránky a koľko ich je vo virtuálnom adresovom priestore procesu?

● n = 32 b, npd = 9 b, npt = 11 b: noffset = 32 – 9 – 11 = 12b, Spage = 2noffset = 212 = 4 kB.

● Počet stránok: Npage = 2n / Spage = 2(n – noffset) = 232-12 = 220 = 1 048 576 stránok.

– Akú časť adresového priestoru je možné adresovať pomocou jednej položky stránkového
adresára a aká je s tým spojená réžia?

● Počet PTE v jednej PT: Npt = 2npt = 211 = 2048

● Jedna PDE adresuje rozsah: Npt ∙ Spage = 211 ∙ 212 = 223 = 8 MB

● Réžia: v pamäti musí byť PD a jedna PT, teda So = Spd + Spt

● Spd = 2npd ∙ 4 B = 29 ∙ 4 B = 2 kB, Spt = 2npt ∙ 4 B = 211 ∙ 4 B = 8 kB, So = Spd + Spt = 10 kB. 

● Réžia na celý adresový priestor pri jednoúrovňovom stránkovaní by bola S’o = S’pt = 4 MB.

● Sú to údaje len pre jeden proces. Pri dvojúrovňových tabuľkách stránok je menšia réžia.

Efektívnosť prekladu adries

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 42/113

Efektívnosť prekladu adresy

● Prístup do pamäti je častý. Pre každú vykonávanú inštrukciu aspoň
jeden (instruction fetch), niektoré pracujú aj s operandami v pamäti.

● Preklad virtuálnych adries na fyzické musí byť efektívny.

– Preklad robí samostatný hardvér, časť procesora MMU (Memory
Management Unit).

● Viacúrovňové stránkovanie réžiu znižuje, ale pri dnešných veľkostiach
pamäte nie je možné mať všetky potrebné štruktúry v registroch.

● Problém: Pre každý prístup do pamäte sú teraz potrebné dva prístupy
navyše (PD a PT). Rýchlosť klesá na tretinu.

● Riešenie: Často využívané položky z PT sa uchovávajú v zvláštnej
cache – TLB (Translation Lookaside Buffer) priamo v procesore.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 43/113

Návrh TLB

● Čo všetko obsahuje?

– Celú tabuľku stránok, alebo len aktuálne (nedávno) používané položky.
● Ako sa zavádza obsah?

– Transparentne, alebo softvérovo, privilegovanými inštrukciami (OS).
● Ako sa ruší obsah?

– Celý obsah naraz, alebo jednotlivé položky.
● Obsah?

– Len položky jedného procesu, alebo obsah spoločný a položky doplnené
značkou adresového priestoru.

● Jednoúrovňové / viacúrovňové ?
● Hardvérová realizácia?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 44/113

Translation Lookaside Buffer na x86

● Asociatívna pamäť v MMU. Obsahuje niekoľko naposledy použitých položiek z tabuľky pre
aktuálne bežiaci proces. Kľúčom je PN, hodnotou PTE s hľadaným PFN.

– Štruktúra: (PN | PTE), číslo stránky slúži na adresovanie asociatívnej pamäte (tag).

– Hľadané PN sa porovnáva so všetkými položkami v TLB naraz.
● Napĺňa ju transparentne procesor, pri prvom prístupe k stránke.

– V prípade výpadku nájde voľné miesto a nahradí ho potrebnou položkou. OS o výpadku nevie.
● OS musí zabezpečiť, aby v TLB boli len položky pre bežiaci proces.

– Jednotlivé položky je možné zrušiť inštrukciou INVLPG.

● Operandom je adresa. Inštrukcia zruší záznamy všetkých stránok ktoré ju obsahujú.
– Platnosť všetkých položiek sa zruší zápisom do registra CR3. Pri zmene kontextu OS zapíše

do CR3 hodnotu mm_struct->pgd z task_struct.

– Položky (PTE) s nastaveným príznakom G (global) zrušené nebudú (ak je to nastavené v CR4).
Napríklad stránky jadra alebo stránky zdieľané viacerými procesmi (knižnice).

● V multiprocesorovom systéme je potrebné zrušiť TLB na všetkých CPU (TLB shootdown IPI).

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 45/113

Problémy TLB

● Prepnutie kontextu je drahé aj kvôli réžii spojenej s výpadkom TLB.

– Výpadok v TLB je pomerne drahý, preto je výhodné spoločné položky
zachovať.

● Väčšie stránky umožňujú pokryť viac adries jednou PTE (menej výpadkov).

– Zväčšuje sa však aj interná fragmentácia.
● Výpadok položky v TLB spôsobí, že bude potrebné prečítať položku z pamäte.

– Tabuľky stránok sa nachádzajú v logickom adresovom priestore jadra.

– Pri HW-managed TLB musia mať štruktúru ktorú procesor rozozná.
● Následne môže teda dôjsť k ďalšiemu výpadku, ak PTE pre stránku obsahujúcu

hľadanú PT nie je v TLB.
● Riešenie: OS si môže udržiavať softvérovú cache, ktorá bude v globálnej stránke

(teda bude vždy prítomná v TLB).

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 46/113

Translation Lookaside Buffer na SPARC

● Obsah TLB spravuje softvér, nastavuje ho operačný systém.

– Prekladovú mapu môže OS uchovávať v ľubovoľnej štruktúre.
● Výpadok pri hľadaní PTE spôsobí výnimku, ktorú obsluhuje OS.

– Je to pomalé, preto treba výpadky minimalizovať.

– Pokiaľ je to možné, položky by mali zostať v TLB aj pri prepnutí kontextu.

– Niektoré môžu byť označené ako globálne (stránky jadra).
● Štruktúra položky v TLB je doplnená o identifikátor procesu, respektíve

adresového priestoru (ASID – Address Space Identificator, alebo Context ID).

– Pri hľadaní PFN musí byť zhoda nie len v PN, ale aj Context ID.

– Keď je proces naplánovaný na vykonanie, v TLB môžu byť ešte niektoré
jeho položky.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 47/113

TLB - porovnanie x86 a SPARC

● Pentium–M má štyri druhy TLB (hardware managed):

– 128 položiek pre 4 kB stránky inštrukcií, (4-way associative),

– 2 plne asociatívne položky pre veľké stránky inštrukcií,

– 128 položiek pre 4 kB stránky s dátami, (4-way associative),

– 8 položiek pre veľké stránky s dátami, (4-way associative).

– Všetky využívajú stratégiu LRU pre uvoľnenie miesta.
● UltraSPARC III má päť druhov TLB (software managed):

– 16 plne asociatívnych položiek pre všetky veľkosti stránok inštrukcií,

– rovnako pre dáta,

– 128 položiek pre 8 kB stránky inštrukcií (2-way associative),

– 512 položiek pre stránky s dátami (2-way associative), pre dve rôzne veľkosti stránok.
– Podporuje veľkosti stránok 8 kB, 64 kB, 512 kB, 4 MB.

– Obsahuje 13 bitový Context ID.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 48/113

Príklad: Účinnosť TLB

● Logický adresový priestor tvorí 1024 stránok. Tabuľky stránok sú
v pamäti. Čítanie slova z pamäti trvá 500 ns. Na zníženie tejto réžie
má počítač asociatívnu pamäť, ktorá má miesto pre 32 párov
(stránka, stránkový rám) a dokáže vyhľadať položku za 100 ns.

– Aká je úspešnosť vyhľadávania v asociatívnej pamäti (pHIT)?

– Aká je priemerná doba vyhľadania položky (tPT)?

– Aká úspešnosť asociatívnej pamäte je potrebná, aby priemerná
doba vyhľadania položky nepresiahla 200 ns?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 49/113

Príklad: Účinnosť TLB, riešenie

● Logický adresový priestor tvorí 1024 stránok. Tabuľky stránok sú v pamäti. Čítanie slova z pamäti trvá
500 ns. Na zníženie tejto réžie má počítač asociatívnu pamäť, ktorá má miesto pre 32 párov (stránka,
stránkový rám) a dokáže vyhľadať položku za 100 ns.

● Aká je úspešnosť vyhľadávania v asociatívnej pamäti (pHIT)?

– pHIT = NTLB / Npage = 32 / 1024 = 1 / 32 = 0.03125

– Toto platí za predpokladu rovnomerného rozdelenia adries. V skutočnosti to môže byť lepšie.

● Aká je priemerná doba vyhľadania položky (tPT)?

– tMEM = 500 ns, tTLB = 100 ns,

– tPT = pHIT ∙ tTLB + (1 – pHIT) ∙ tMEM = 0.03125 ∙ 100 ns + (1 – 0.03125) ∙ 500 ns = 487.5 ns

● Aká úspešnosť asociatívnej pamäte je potrebná, aby priemerná doba vyhľadania položky
nepresiahla 200 ns?

– 200 ns = t’PT ≥ pHIT ∙ tTLB + (1 – pHIT) ∙ tMEM

– pHIT ≥ (t’PT – tMEM) / (tTLB – tMEM) = (200 – 500) / (100 – 500) = ¾

– Táto hodnota je odvodená bez ohľadu na distribúciu adries. 

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 50/113

64-bitová architektúra

● Ak by proces na 32-bitovej architektúre využíval celý adresový priestor, všetky PTE by
typicky zaberali 4 MB.

– Je to pomerne veľa, ale dá sa to zvládnuť.
● 64-bitové systémy (x86) používajú 48-bitovú logickú a 52-bitovú fyzickú adresu s 4 kB

stránkami. PTE má 8 B, z toho 40 bitov PFN.
● Na 64-bitových systémoch by kompletná tabuľka 4 kB stránok zaberala 252 ∙ 8 B = 255 B

= 32 PB, čo je neúnosné.
● Pri dvojúrovňovom stránkovaní by bol stránkový adresár zrejme príliš veľký (index 48

– 10 – 12 = 26 bitov, max. veľkosť 64 MB). Nezmestil by sa do jednej stránky (ani 4 MB).
● Možné riešenia:

– Hierarchia tabuliek stránok (Multi-level page tables).

– Inverzné tabuľky stránok.

– Rozptylové tabuľky (hash tables).

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 51/113

Multi-level page tables

● Viacúrovňové stránkovanie. Na vyhľadanie PTE sa použije strom tabuliek
stránok.

– Na x86 sa používajú 4 úrovne s 9-bitovým indexom (4 ∙ 9 + 12 = 48). Je
to dané hardvérom (procesorom).

– Ak niektorý z adresárov bude ukazovať priamo do fyzickej pamäte
(niektoré úrovne PT sa preskočia), stránky môžu mať veľkosť 4 kB,
2 MB, 1 GB.

● Názvy tabuliek: Page Table, Page Directory, Page Directory Pointer, Page
Map Level 4 (PML4).

● Každá tabuľka má 29 ∙ 8 B = 512 ∙ 8 B = 212 B = 4 kB (jedna stránka).

– Potrebné sú len tie tabuľky ktoré ukazujú na alokované časti
adresového priestoru.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 52/113

Inverzné tabuľky stránok

● Na systéme s 48-bitovou logickou adresou môže byť 236 stránok, pri 1 GB fyzickej
pamäte (RAM) 218 stránkových rámov.

● Inverzné tabuľky stránok obsahujú jednu položku pre každý stránkový rám.
● Položka obsahuje informáciu o tom, ktorá stránka ktorého procesu (ktorého

logického adresového priestoru) je v ráme umiestnená.
● Pamäť potrebná pre inverzné tabuľky je značne menšia.
● Preklad virtuálnej adresy na fyzickú je však náročnejší.

– Nestačí použiť číslo stránky ako index do tabuľky.

– V podstate je potrebné pri každom prístupe do pamäte prehľadať celú tabuľku.
● TLB môže preklad výrazne urýchliť. Pri výpadku musí OS nájsť potrebnú položku.

– OS môže uchovávať zoznam použitých stránok v rozptylovej (hash) tabuľke.

– Pri obsluhe výpadku OS vloží nájdený pár (PN | PFN) do TLB (SW-managed).

Uvoľnenie stránkového rámu

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 54/113

Položka tabuľky stránok na x86

PFN – číslo stránkového rámu, resp. jeho fyzická adresa, v ktorom je daná stránka umiestnená.

G – Global, stránka je využívaná viacerými procesmi, nap. systémová alebo zdieľaná.

D – Dirty, do stránky bolo zapísané, jej aktuálny obsah sa nachádza len v pamäti.

A – Accessed, stránka bola použitá (referencovaná, čítalo sa z nej, alebo do nej zapisovalo).

C – Cache Disabled, obsah stránky nebude umiestňovaný v cache.

W – Write-Through (1), Write-Back (0), režim cache pamäte pre túto stránku.

U – User / Supervisor, stránka môže byť použitá (neprivilegovaným) procesom, inak len jadrom.

R – Read / Write, ak je bit nastavený, do stránky je možné aj zapisovať.

P – Present / Absent, stránka je prítomná vo fyzickej pamäti.

P

0

R

1

U

2

W

3

C

4

A

5

D

6

0

7

G

8

ignored

9

PFN

1232

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 55/113

Príčiny výpadku stránky

● Výnimku výpadku stránky (page fault) vygeneruje procesor ak:

– proces pristupuje k stránke ktorá nemá v PTE nastavený bit U,

– proces zapisuje do stránky ktorá nemá v PTE nastavený bit R,

– proces pristupuje k stránke ktorá nemá v PTE nastavený bit P.
● Pred obsluhou výnimky procesor uloží:

– na zásobník chybový kód ktorého spodné tri bity sú URP,

– do CR2 adresu ktorá výnimku spôsobila.
● Rutina obsluhy výnimky podľa týchto informácií rozhodne, čo urobiť.

– Napríklad ak proces robí prístup v rozpore s nastavením bitov U a R, ide
o porušenie ochrany pamäte (napr. pokus o prístup k pamäti jadra) a
OS pošle procesu signál SIGSEGV.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 56/113

Obsluha výpadku stránky

● Ak bit P nie je nastavený, môže nastať viacero prípadov.

– Stránka nebola nikdy alokovaná, proces dostane SIGSEGV.

– Nájde sa voľný stránkový rám (ak je to potrebné, uvoľní sa) a
upraví sa PTE.

● Ak je to nová stránka (prvý prístup), koniec.
● Ak je obsah na disku, nahrá sa do pamäte a koniec.

● Ak bit P nie je nastavený, procesor urobí výnimku bez ohľadu na
adresu v PTE.

– 20 bitov v PTE je v tomto prípade možné použiť priamo ako
odkaz na odkladacie médium (swap) a číslo bloku v ňom.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 57/113

Informácie o využití stránok

● Bity D (Dirty, written) a A (Accessed, refrenced) v PTE nastavuje procesor.
● Ich nulovanie musí ale zabezpečiť operačný systém.
● Tieto bity môžu byť použité pri hľadaní obete na uvoľnenie stránkového

rámu.
● Lepšie môže byť vyhodiť menej často používanú stránku.

– OS môže pravidelne nulovať Accessed bity. Stránky ktoré majú tento bit
nastavený boli použité nedávno.

● Výhodnejšie môže byť vyhodiť stránku, ktorá nebola po zavedení do pamäte
modifikovaná (napr. text).

– Modifikovanú stránku je potrebné pred uvoľnením jej stránkového rámu
najskôr zapísať (na swap, alebo do súboru), čo zvyšuje čas obsluhy.

Algoritmy výberu obete

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 59/113

Algoritmy hľadania obete

● Problém výberu obete pri uvoľňovaní bloku pamäte sa vyskytuje aj v iných úrovniach
pamäťového systému, ako napríklad cache medzi CPU a hlavnou pamäťou.

● Vybrať náhodnú stránku

– Jednoduchá implementácia, neuvažuje žiadne informácie o využití stránok. Môže
odstrániť stránku, ktorá bude onedlho opäť potrebná.

● Optimálny algoritmus

– Za obeť vyberie vždy tú stránku, ktorá bude potrebná za nadlhší čas, teda
najďalej v budúcnosti.

– Vo všeobecnosti ho nie je možné implementovať.

– Pokiaľ sa nejaký program vykonáva vždy rovnako, je možné postupnosť prístupov
k stránkam zaznamenať a použiť pri ďalších spusteniach.

– Optimálny algoritmus dáva najlepšie výsledky a preto sa používa na porovnanie a
vyhodnotenie rôznych iných algoritmov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 60/113

Not Recently Used (NRU)

● Využíva bity R (Referenced) a D (Dirty, Modified).
● Bit R, nastavený CPU pri každom prístupe k stránke, OS pravidelne nuluje (pri každom

prerušení od časovača, rádovo každých 10 ms).

– To umožňuje rozlíšiť, ktoré stránky boli použité nedávno a ktoré dávnejšie (pred
posledným prerušením).

– Bit D sa nenuluje. Nie je možné ho vynulovať, pokiaľ sa obsah najskôr neuloží.
● Všetky stránky sa rozdelia do štyroch tried, podľa hodnoty bitov R a D.

– Trieda 0: stránky nepoužité, nezmenené,

– Trieda 1: stránky nepoužité, zmenené,

– Trieda 2: stránky použité, nezmenené,

– Trieda 3: stránky použité, zmenené.
● Za obeť sa vyberie náhodne, spomedzi stránok najnižšej neprázdnej triedy.
● Pomerne jednoduchá implementácia. Stačia informácie z PTE.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 61/113

First-In, First-Out (FIFO)

● Operačný systém udržiava zoznam všetkých stránok prítomných
v pamäti, usporiadaný podľa času, kedy bola stránka zavedená do
pamäti.

● Pomerne jednoduchá implementácia.
● Pri výpadku stránky sa zo zoznamu odstráni stránka zo začiatku

zoznamu (obeť) a nová sa pridá na koniec.
● Pravidelne však môže odstrániť aj stránky, ktoré sú veľmi často

využívané.
● Prakticky sa príliš nepoužíva.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 62/113

Second chance

● Algoritmus využíva rovnaký zoznam ako FIFO.
● Pokiaľ má najstaršia stránka vynulovaný R bit, bude označená ako obeť.
● Ak má však stránka na začiatku zoznamu R bit nastavený, tento sa

vynuluje a stránka sa zaradí na koniec zoznamu, ako by bola nová
(práve zavedená).

– Stránka dostane druhú šancu.
● Ide o modifikáciu FIFO, ktorá však uprednostňuje pri výbere obete

stránky nepoužívané (v poslednej dobe).
● Ak všetky stránky v pamäti boli od posledného prerušenia použité, ide

o FIFO.
● Réžia spojená s presunmi stránok v zozname je pomerne veľká.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 63/113

Clock algorithm

● Princíp je zhodný s algoritmom Second chance.
● Stránky sú organizované v kruhovom zozname, ale nepresúvajú sa.
● Ukazovateľ (pointer) označuje najstaršiu stránku.
● Pokiaľ má R bit nulový, vyberie sa ako obeť. Nová stránku sa zaradí

na toto miesto a ukazovateľ sa posunie na ďalšiu.
● Ak je R bit nastavený, vynuluje sa, a ukazovateľ sa posunie na ďalšiu

stránku.
● Efektívnejšia implementácia ako SC.
● Používané stránky zostávajú v pamäti.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 64/113

Least Recently Used (LRU)

● Za obeť sa vyberie najdávnejšie použitá, resp. najdlhšie nepoužitá, stránka.
● Algoritmus je založený na predpoklade, že to tak zostane aj v budúcnosti.
● Je to dobrá aproximácia optimálneho algoritmu.
● Implementácia je však náročnejšia (v pôvodnej podobe prakticky neúnosná).
● Zoznam uchovávajúci poradie prístupov k stránkam by sa musel aktualizovať

po každom prístupe do pamäti, teda pri každej inštrukcii, čo nie je únosné.
● Musel by to robiť hardvér, OS sa nedostane k slovu po každej inštrukcii.

– Napríklad: hardvérové počítadlo prístupov pre každú stránku, ako súčasť
PTE. Obeťou je stránka s najnižšou hodnotou počítadla;

– Alebo matica, v ktorej sa pri prístupe k stránkovému rámu n nastavia najprv
jednotky do n-tého riadku a potom nuly do n-tého stĺpca. Obeťou je
stránka zodpovedajúca riadku s najnižšou hodnotou.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 65/113

Not Frequently Used (NFU)

● Ide o softvérovú implementáciu LRU, respektíve aproximácie LRU.
● Keďže hardvér neposkytuje počítadlo prístupov pre stránky, môže ho

implementovať OS.
● Pri každom prerušení sa k počítadlu prístupov pre stránku pripočíta

hodnota jej R bitu.

– Aktualizácia sa teda nerobí pri každom prístupe, ide len
o aproximáciu LRU.

● Za obeť sa vyberie stránka s najnižšou hodnotou počítadla.
● Problémom je, že algoritmus nezabúda (je málo adaptívny).

– Ak niektorá stránka získa vysokú hodnotu počítadla, je
uprednostňovaná aj keď už aktuálne nebude využívaná.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 66/113

Algoritmus starnutia (Aging)

● Modifikácia, a vylepšenie, NFU.
● Hodnota počítadla sa najskôr posunie o jeden bit doprava a potom

sa R bit pripočíta na najvyššiu pozíciu.
● Za obeť sa vyberie stránka s najnižšou hodnotou počítadla.
● Ide o dobrú aproximáciu LRU.
● Problémy:

– Počítadlá sa aktualizujú s periódou časovača. Pri zhode v bitoch
z posledného tiku sa rozhoduje na základe bitov
z predchádzajúcich. Aktuálne poradie však už môže byť iné.

– Počítadlo má konečnú šírku. Pri zhode sa vyberá náhodne (čo je
rozdiel voči LRU a nemusí to byť dobre).

Algoritmy – praktické zhrnutie

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 68/113

Zhrnutie

● Optimálny algoritmus

– Založený na znalosti budúceho správania. Ideálny, v princípe nerealizovateľný. Dobrý
na porovnávanie.

● Least Recently Used (LRU)

– Dobrá aproximácia optimálneho.

– Vyžaduje aktualizáciu zoznamov pri každom prístupe do pamäte. Prakticky
nerealizovateľný (v HW aj SW).

● First-In, First-Out (FIFO)

– Vyhodí najstaršiu stránku bez ohľadu na to, či sa používa. Prakticky nepoužiteľný.
● Clock

– Vychádza z FIFO, berie do úvahy aj R bit (Second Chance). Namiesto preusporiadania
zoznamu používa ukazovateľ (ručička hodín).

– Dobrá aproximácia LRU.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 69/113

Zoznamy aktívnych a neaktívnych stránok

● Pri praktickej realizácii by sledovanie zmien vo využívaní všetkých stránok
predstavovali vysokú réžiu.

● OS udržuje dva zoznamy stránok: aktívne a neaktívne (active/inactive list).

– Na prvom zozname sú stránky ktoré sa používajú (pracovné množiny procesov),
na druhom stránky, ktoré sa už asi používať nebudú (kandidáti na vyhodenie).

– Pravidlá pre presun stránok medzi zoznamami sa líšia podľa typu mapovania
stránky (môžu mať vlastné zoznamy).

● Keď sa stránka presunie do zoznamu neaktívnych vynuluje sa Present bit v PTE.
Stránka však zatiaľ zostáva v pamäti.

● Pokiaľ sa vyskytne prístup k stránke zo zoznamu neaktívnych, nastane (soft) page
fault. Obslúži sa rýchlo, lebo stránka je v pamäti a presunie sa do zoznamu aktívnych.

● Ak je zoznam aktívnych stránok väčší než zoznam neaktívnych, niektoré stránky sa
presunú.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 70/113

Pravidlá a vlastnosti algoritmu

● Stránky mapované na súbory sa častokrát použijú len raz.

– Po zavedení do pamäti sa zaradia do zoznamu neaktívnych (prečo?).

– Pokiaľ sa použijú opakovane, presunú sa do zoznamu aktívnych.
● Stránky anonymnej pamäte sa zväčša používajú často.

– Po alokovaní sa zaradia do zoznamu aktívnych (na začiatok).

– Stránka na konci zoznamu aktívnych sa presunie do neaktívnych.
● Zoznam neaktívnych stránok používa starnutie (aging).
● Stránka na konci zoznamu neaktívnych sa vyberie ako obeť a uvoľní miesto.
● Pokiaľ stránky môžu zostať v zozname neaktívnych dosť dlho na to, aby mali

šancu vrátiť sa medzi aktívne, ide o dobrú aproximáciu LRU.

– Algoritmus má podobné správanie ako LRU, prakticky je efektívny.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 71/113

Predpoklady LRU

● Ani LRU nedáva dobré výsledky pre všetky vzory prístupov.

– Problémom je napríklad jednorazový alebo cyklický prístup
k stránkam.

● Môže sa stať, že stránka ktorá bola použitá dávnejšie, bude čoskoro
použitá znova, hoci nedávno použitá stránka bude dlhšie
nepotrebná.

– LRU by ju však označil za obeť a následne by nastal výpadok.

– LRU neberie do úvahy frekvenciu prístupov k stránkam.

Time

Page 1

Page 2

Usage

t

PFLRU

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 72/113

Algoritmus Clock-Pro (Jiang, 2005)

● Metriky lokálnosti prístupov:

– R(p) – Recency, koľko prístupov k iným stránkam sa urobilo od posledného prístupu
k stránke p.

– RD(p) – Reuse distance, (alebo aj Inter-Reference Recency) počet iných stránok ku
ktorým sa pristupovalo medzi dvoma prístupmi k stránke p (medzi posledným a
predposledným prístupom k p).

● Algoritmus LRU vyberie ako obeť stránku v pamäti s najväčším R(p).
● Clock-Pro vyberie ako obeť stránku na základe RD(p) (s najväčšou hodnotou).

– Na určenie RD uchováva aj informácie o stránkach, ktoré už nie sú v pamäti.

– Podobne ako pri pôvodnom Clock algoritme, pri prístupe k stránke v pamäti nie sú
potrebné žiadne akcie OS, len nastavenie R bitu hardvérom.

– V zozname neaktívnych udržuje stránky ku ktorým sa pristupuje menej často, než k tým
na zozname aktívnych.

● Napríklad Linux používa algoritmus založený na Clock-Pro.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 73/113

Page cache

● Operačný systém časť stránkových rámov vyhradí pre cache.
– V OS Linux typicky 1 až 15% z celkovej veľkosti pamäte.

● Stránky prečítané z disku zostávajú v pamäti aj keď ich už žiadny
proces nepotrebuje.
– Nie sú namapované vo virtuálnom adresovom priestore žiadneho

procesu.

● Keďže tieto stránky žiadny proces práve nepotrebuje, pri
nedostatku pamäte môžu byť bez väčšieho dopadu uvoľnené.

● V prípade, že stránky budú opäť potrebné, budú už v pamäti.

Princípy pamäťovej lokality

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 75/113

Hierarchia pamäťového systému

● Počítačové systémy obsahujú viacero typov pamäte, založených na
rôznych technológiách, s rôznym typom prepojení.

– Vyššia rýchlosť → zložitejšie/drahšie → menšia kapacita,

– a naopak.
● Registre (CPU), ~1kB, < 1ns, SRAM
● Cache (CPU), L1, L2, L3, D/I, ~10MB, < 10ns, SRAM
● Hlavná pamäť (RAM), ~100GB, < 100ns, DRAM
● SSD, ~100MB, < 1ms, Flash
● HDD, ~1TB, < 10ms
● Sieťové úložiská, >> 1TB, > 10-100 ms

Ce
na

D
ob

a
pr

ís
tu

pu

Ka
pa

ci
ta

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 76/113

Vlastnosti pamäťovej hierarchie

● Inkluzívnosť
– V úrovni pamäte bližšie k CPU je vždy podmnožina údajov zo vzdialenejšej

úrovne.

– Počas spracovania sa podmnožina dát presúva medzi úrovňami smerom k CPU.

– Hodnota registra môže byť umiestnená v bloku cache, ten je v stránke, tá je
v diskovom bloku, ten je súčasťou súboru, resp. disku, ...

● Koherencia
– Inštancie rovnakých dát v rôznych úrovniach musia byť konzistentné.

– Zmeny v dátach sa musia šíriť aj do úrovní vzdialenejších od CPU (cache
writethrough – okamžite, writeback – keď je to potrebné).

● Lokalita
– Prístup do pamäte nie je distribuovaný rovnomerne, ale vykazuje isté vzory.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 77/113

Princíp lokality

● Adresy generované procesmi počas vykonávania nie sú
distribuované rovnomerne. Pristupované adresy vykazuje isté vzory.
– Sekvenčná, priestorová, časová lokalita.

● Proces vždy pomerne dlho využíva istý malý interval adries, ktorý sa
mení pomerne pomaly.

● Tento interval by sa mal nachádzať čo najbližšie k CPU.
● Efektívna doba prístupu k dátam závisí od toho v ktorej úrovni sa

nachádzajú, respektíve od počtu prenosov medzi rôznymi úrovňami.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 78/113

Sekvenčná lokalita

● Ak procesor v čase n pristupuje k adrese a, tak s vysokou
pravdepodobnosťou bude v čase n+1 pristupovať k adrese a+1.

● Sekvencia je najčastejšou programovou konštrukciou.
– Čítanie inštrukcií z pamäte ide postupne, s výnimkou vetvenia, resp.

skokov.

– Register PC (IP) sa spravidla inkrementuje pri vykonaní každej
inštrukcie.

– Prehľadávanie polí môže viesť k tomuto vzoru aj v dátach.

● Oplatí sa preniesť do vyššej úrovne viac po sebe idúcich blokov
naraz (lookahead).
– Nasledujúce adresy pravdepodobne bude čoskoro treba tiež.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 79/113

Priestorová lokalita

● Ak procesor v čase n pristupuje k adrese a, tak s vysokou
pravdepodobnosťou bude v čase n+1 pristupovať k adrese blízkej a
(a±m).

● Iterácia udržuje program v istých medziach. Po istej dobe sa vráti na
rovnakú adresu.
– Vytvára priestorovú lokalitu prístupov k textu.

● Položky dátových štruktúr sú umiestnené blízko pri sebe.
– Spracovanie štruktúr môže vytvárať priestorovú lokalitu v dátach.

● Do vyššej úrovne hierarchie sa oplatí prenášať väčšie bloky (nie
jednotlivé hodnoty), lebo blízke adresy budú asi tiež potrebné.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 80/113

Časová lokalita

● Ak procesor v čase n pristupuje k adrese a, tak s vysokou
pravdepodobnosťou bude k adrese a znovu pristupovať v blízkom
čase (n+t).

● Iterácia opakuje prístup k inštrukciám aj dátam.
● Lokálne premenné a argumenty.

– Funkcia počas svojho vykonávania k nim bude pristupovať opakovane.

● Údaje prenesené do vyššej úrovne by tam mali zotrvať čím dlhšie,
lebo väčšinou ich procesor potrebuje opakovane.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 81/113

Efektívnosť pamäťovej hierarchie

● Procesy môžu bežať rýchlo aj keď je fyzickej pamäte menej než celkový súčet pamäte
alokovanej procesmi.
– Ak používajú vždy len istú malú časť dát ktorú majú alokovanú.

– Nevracajú sa často k dlho nepoužívanej dátam odloženým na disk.

● Priemerné procesy sa tak skutočne správajú, teda podľa princípov pamäťovej lokality.
● Bežné procesy väčšinou opakovane využívajú len malú časť adresového priestoru a zmeny

sú relatívne pomalé.
– Napríklad po ukončení cyklu, pri volaní alebo ukončení funkcie, po vetvení a pod.

– Sekvenčné prehľadávanie veľkého poľa alebo náhodné a rovnako pravdepodobné prístupy ku
všetkým adresám, sa prakticky nevyskytujú.

● Predpoklad algoritmu LRU, že blok dát ku ktorému proces pristupoval nedávno bude
v najbližšom čase potrebovať opäť, je v súlade s princípmi priestorovej a časovej lokality.
– Využíva sa na rôznych úrovniach hierarchie (cache: CPU  pamäť, stránkovanie: pamäť  disk).

Návrh systému stránkovania

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 83/113

Pracovná množina stránok (Denning, 1968)

● Stránky, ktoré proces práve využíva, tvoria pracovnú množinu stránok (working set).

– Pracovná množina sa počas vykonávania mení, nie však rýchlo.

– Pri systéme stránkovania na žiadosť proces po štarte nemá žiadnu stránku
v pamäti.

● Pokiaľ sú stránky z pracovnej množiny v pamäti, proces sa vykonáva bez väčšieho
počtu výpadkov (ideálne s minimálnym počtom).
– A to aj keď nie je v pamäti celý. Toto je výhoda stránkovania na žiadosť.

● Ak proces nemôže mať celú pracovnú množinu v pamäti, budú počas vykonávania
výpadky vznikať neustále.
– Nech systém používa akýkoľvek algoritmus výberu obete, pravidelne sa vyhodí

stránka ktorú onedlho bude nutné znovu zaviesť.

– Táto situácia, neustále odkladanie a nahrávanie stránok, sa nazýva trashing.

– Vyťažuje disk aj procesor.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 84/113

Veľkosť pracovnej množiny

● Nech w(k, t) je počet (rôznych) stránok ku ktorým proces urobil posledných k
prístupov v čase t.

● S rastúcim k rastie aj veľkosť w(k, t), pretože s väčším počtom prístupov v minulosti
sa počet použitých stránok môže len zväčšiť.

– Ide teda o monotónne rastúcu funkciu (v k).

– Pre fixné k môže veľkosť pracovnej množiny v čase rásť, aj klesať (pomaly).
● Zároveň je to funkcia zhora ohraničená, keďže adresový priestor a teda aj

maximálny počet stránok, sú konečné.

– Limita w(k, t) s rastúcim k sa rovná celkovému počtu všetkých stránok, ktoré
proces počas vykonávania potreboval.

● Veľkosť pracovnej množiny vzhľadom na k rastie najprv rýchlo, potom už len
pomaly. Pre veľký rozsah k je teda pracovná množina podobne veľká.

– Veľkosť pracovnej množiny teda od k príliš nezávisí a s t sa mení pomaly.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 85/113

Predstránkovanie (prepaging)

● Keďže pracovná množina stránok sa pre proces mení len pomaly, v každom čase je
možné odhadnúť, ktoré stránky by mali byť v pamäti, aby proces bežal bez výpadkov.

● Ak bol proces odsunutý z pamäte na záložné médium (swap), po opätovnom
naplánovaní na vykonávanie nebude jeho pracovná množina v pamäti.

● Systém stránkovania na žiadosť postupne zabezpečí zavedenie potrebných stránok,
je to však neefektívne.

– V tomto prípade určite nastane séria výpadkov.
● Ak by operačný systém vedel ktoré stránky patria do pracovnej množiny procesu,

mohol by ich zaviesť vopred – predstránkovanie (prepaging).
● Napríklad ak sa používa systém stranutia (aging), stránky s nastaveným niektorým

z vyšších bitov počítadla pravdepodobne patria do pracovnej množiny.
● Clock algoritmus vyhodí najstaršiu stránku s nenastaveným R bitom. Pokiaľ však OS

vie, že patrí do pracovnej množiny, môže vybrať inú – algoritmus wsclock.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 86/113

Lokálny vs. globálny prístup

● Má sa obeť vyberať len medzi stránkami procesu ktorý potrebuje pamäť,
alebo medzi stránkami všetkých procesov?

● Lokálny prístup:

– Zodpovedá situácii, že proces má pridelený istý počet stránkových rámov
a obeť sa vyberá spomedzi nich.

– Ak veľkosť pracovnej množiny rastie (nad počet pridelených rámov), môže
nastať trashing, hoci pamäť je ešte voľná.

– Ak je pracovná množina menšia, pamäť nie je využitá efektívne.
● Globálny prístup:

– Je efektívnejší, ak sa veľkosť pracovnej množiny mení.

– OS musí vedieť aká je veľkosť pracovnej množiny (e.g. aging), aby mohol
prideliť procesu stránkové rámy.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 87/113

Page Fault Frequency (PFF)

● Pri globálnom prístupe sa počet pridelených stránkových rámov určuje dynamicky.
● Počet výpadkov stránok spôsobených procesom za nejaký čas môže byť využitý pri

stanovení počtu pridelených stránkových rámov.

– Meria sa pomerne jednoducho.
● Predpoklad: S rastúcim počtom pridelených stránkových rámov klesá počet

výpadkov.

– Pre väčšinu algoritmov výberu obete to platí.
● Algoritmus sleduje frekvenciu výpadkov a pridávaním alebo odoberaním

stránkových rámov sa ju snaží udržať v prijateľnom intervale.

– Algoritmus má dva parametre, hranice intervalu pre zmenu počtu rámov.
● Dnes sa využíva najmä globálny prístup.
● Procesu je možné nastaviť limit pre počet pridelených stránkových rámov.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 88/113

Príklad: Počet stránkových rámov

● Počet inštrukcií vykonaných medzi dvoma výpadkami stránok je
priamo úmerný počtu stránkových rámov pridelených procesu.

● Vykonanie inštrukcie trvá bežbe 1s a s výpadkom stránky 2001s.
Program trval 60s a mal 15000 výpadkov. Ako dlho by trvalo
vykonanie programu s dvojnásobným počtom stránkových rámov?

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 89/113

Faktory ovplyvňujúce voľbu veľkosti stránky

● Program sa spravidla skladá z viacerých segmentov (text, data, stack, …).
● Veľkosť segmentu nebude vždy celočíselným násobkom veľkosti stránky.
● V dôsledku internej fragmentácie bude v priemere polovica stránky na

každý segment nevyužitá. Z tohto pohľadu sú výhodnejšie menšie stránky.
● Proces väčšinou vykonáva dlhšiu dobu kód len z malého rozsahu adries. Ak

by stránky boli veľké, pamäť by zbytočne zaberal kód, ktorý sa väčšinou
nevykonáva. Podobne to platí aj pre dáta.

● Na druhej strane menšie stránky vyžadujú väčší celkový počet stránok ktoré
proces potrebuje a teda aj väčší priestor v tabuľkách stránok.

● Pri prepnutí kontextu môže zavedenie potrebných PTE do TLB trvať dlhšie.
● Pri presune stránok medzi pamäťou a diskom je kvôli latencii prístupu

výhodnejšie presúvať menej veľkých blokov než veľa malých.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 90/113

Optimálna veľkosť stránky

● Veľkosť tabuliek stránok je nepriamo úmerný veľkosti stránky.
● Nech veľkosť priemerného procesu je s, veľkosť PTE e a veľkosť

stránky p.

– Počet stránok na proces s/p a veľkosť PT bude s∙e/p.

– Interná fragmentácia pri n segmentoch bude n∙p/2.

– Celkový odhad réžie na tabuľku stránok a internú fragmentáciu:
● O(p) = s∙e/p + n∙p/2

– Prvý člen je veľký pre malé stránky, druhý člen pre veľké stránky.

– Extrém (minimum) dosahuje réžia pre veľkosť stránky:

● dO(p)/dp = 0 → popt =  2∙s∙e/n

Segmentácia

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 92/113

Segmenty

● Pri stránkovaní je logický adresový priestor procesu lineárny. Všetky adresy sú
usporiadané sekvenčne, s jedným začiatkom.

● Program sa však prirodzene skladá z viacerých súvislých blokov so samostatným
významom – zo segmentov (text, data, bss, heap, stack, ...).
– Ich veľkosť sa môže meniť (rásť) nezávisle od iných segmentov.

– Každý má vlastné hranice a spôsob prístupu (rwx).

– Dáta – jedno pole – jeden segment – prirodzená kontrola hraníc.

– Zásobník – môže rásť bez toho, aby hrozilo prekrytie s inými časťami.

– Obsah jednotlivých segmentov sa môže kompilovať samostatne.

– Segment môže byť používaný viacerými procesmi (zdieľané knižnice).
● Segmentácia – rozdelenie logického adresového priestoru na samostatné

segmenty.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 93/113

Segmentácia

● Logická adresa sa skladá z čísla segmentu a ofsetu (od začiatku segmentu).

– Každý segment predstavuje samostatný adresový priestor. Fyzicky sa neprekrývajú.

– Stránkovanie je pre programátora transparentné, segmentácia nie je.

– Ochrana a zdieľanie sú pri segmentácii jednoduchšie. Robí to hardvér (MMU).
● Fyzická adresa sa získa súčtom bázovej adresy segmentu vo fyzickej pamäti a ofsetu.

– Na preklad sa používa tabuľka segmentov. Okrem bázovej adresy obsahuje tiež limit
(veľkosť) a typ prístupu (rwx).

● Stránky majú pevnú veľkosť, segmenty premenlivú (aj počas vykonávania).

– Vedie to k externej fragmentácii (potreba kompakcie).
● Výhodnejšia je kombinácia segmentácie so stránkovaním (všeobecnejší prístup).

– Každý segment je rozdelený na stránky. Architektúra Intel Pentium to umožňuje.

– Jediný operačný systém ktorý to využíval bol IBM (MS) OS/2 (1987 – 2001).

– Ostatné OS využívajú len jeden (fyzický) segment (do neho mapujú programové segmenty).

Virtuálny pamäťový priestor

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 95/113

Oblasti virtuálnej pamäte

● Virtuálny adresový priestor je podelený na súvislé oblasti VMA (Virtual Memory Area), pričom
každá je opísaná v štruktúre typu vm_area_struct.

– Obsahuje začiatok (vm_start), koniec (vm_end), typ prístupu (a mapovanie na bity v PTE,
vm_page_prot).

– Ak je rozsah adries namapovaný na obsah súboru, tak vm_file a vm_pgoff.

– Mapovanie bez súboru sa nazýva anonymné, stránky sa ukladajú na swap.

– Obsahuje ukazovatele na operácie s VMA (open, close, mprotect, fault, map_pages, …).
● Každý proces má vo svojej task_struct položku mm (typu mm_struct), ktorá odkazuje na

zoznam VMA (mmap, mm_rb) a tabuľky stránok pgd.
● Každý segment programu (text, data, stack, …) má vlastnú VMA.

– OS však nevie ktorá VMA obsahuje ktorý segment, pre OS sú rovnaké.

– Zoznam dostupný v /proc/pid/maps.
● Nealokované (nenamapované) virtuálne adresy nespadajú do rozsahu žiadnej VMA. Použité

adresy áno.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 96/113

Mapovanie oblastí

● Systémové volanie mmap() vytvára nové mapovanie vo virtuálnom adresovom priestore
procesu.

● void *mmap(void *addr, size_t length, int prot, int flags, int fd,
off_t offset);

– Ak je addr rovné NULL, jadro zvolí vhodnú adresu.

– prot: PROT_EXEC | PROT_READ | PROT_WRITE alebo PROT_NONE

– flags: MAP_SHARED | MAP_PRIVATE, MAP_ANONYMOUS, MAP_HUGETLB, MAP_LOCKED,
MAP_STACK, …

– Údaje použije OS pri nastavení PTE stránok tvoriacich túto oblasť.
● Vytvorí mapovanie od virtuálnej adresy ktorú vráti s dĺžkou length.
● Ak je zadaný deskriptor otvoreného súboru fd, pamäťová oblasť bude mapovaná na obsah

súboru s posunutím offset od začiatku súboru.
● Ak ide o anonymné mapovanie, fd a offset sa ignorujú.
● Volanie munmap() zruší mapovanie, mremap() zmení (zmenší/zväčší/presunie) mapovanie.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 97/113

Implementácia virtuálnej pamäti procesu

KERNEL

Stack

Heap

BSS segment

Data segment

Text segment

Memory Mappings

0x0

0xFFFFFFFF

vm_prot (READ, EXEC)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, EXEC)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_flags (GROWSDOWN)
vm_end
vm_start vm_area_struct

…

/lib/libc.so

file

/bin/sh

file

pgd
mmap

mm_struct

mm

task_struct

Logical Address Space

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 98/113

Virtuálna a fyzická pamäť

KERNEL

Stack

Heap

BSS segment

Data segment

Text segment

Memory Mappings

0x0

0xFFFFFFFF

vm_prot (READ, EXEC)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, EXEC)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_file, vm_pgoff
vm_end
vm_start vm_area_struct

vm_prot (READ, WRITE)
vm_flags (GROWSDOWN)
vm_end
vm_start vm_area_struct

…

/lib/libc.so

file

/bin/sh

file

pgd
mmap

mm_struct

mm

task_struct

pde
…

Page Dir

pte
…

Page Table

pte
…

Page Table

pte
…

Page Table
0x0

Physical Memory Logical Address Space

P
a

g
e

 F
r

a
m

e
s

P
a

g
e

s
`

Overcommit

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 100/113

Knižničné funkcie malloc() a free()

● Knižničné funkcie glibc (stdlib.h).
● Funkcia malloc(size) alokuje size bajtov a vráti pointer na

alokovanú pamäť, alebo NULL v prípade chyby. Funcia free(ptr)
uvoľní pamäť alokovanú volaním malloc().

● Knižnica uchováva zreťazený zoznam voľných blokov.
● Každý pointer vrátený funkciou malloc() ukazuje “do prostriedku”

štruktúry (tzv. chunk).
● Napríklad:

 char *ptr = malloc(256);

 int size = *((int*)ptr – 1);

 // size == 256

prev_size

size

data
…

prev_size

ptrchunk

sizenext
chunk

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 101/113

Funkcia malloc() a systémové volania

● Funkcia malloc() alokuje pamäť v časti heap, ktorej celkovú veľkosť – teda
veľkosť dátového segmentu – je možné nastaviť systémovým volaním brk().

● Pokiaľ je dosť voľnej pamäte v heap-e, funkcia malloc() sa vykoná bez
systémového volania.

● Ak nie, posunie sa hranica dátového segmentu systémovým volaním: int
brk(void *end_data_segment);

● Funkcia free() zníži veľkosť volaním sbrk() a tak vráti pamäť, ak na vrchole
časti heap bude súvislý voľný blok veľkosti M_TRIM_TRESHOLD.

● Ak je veľkosť požadovanej pamäte väčšia než M_MMAP_TRESHOLD (128kB),
funkcia malloc() použije na jej alokáciu systémové volanie mmap().

– Namapuje novú anonymnú oblasť.
● Parametre alokácie je možné nastaviť funciou mallopt(), napr.

M_CHECK_ACTION. Kontrola konzistentnosti mcheck().

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 102/113

Alokácia a dostupná pamäť

● Alokácia pamäte štandardne využíva optimistickú stratégiu.

– Ukazuje sa, že nie všetky alokované oblasti procesy skutočne aj využívajú.
● Nealokovanie fyzickej pamäti pri mapovaní, ale až pri prvom prístupe, šetrí pamäť

ktorá by inak bola nevyužitá.
● Ak funkcia malloc() vráti nenulový pointer neznamená to, že pamäť bude

skutočne k dispozícii.
● Ak sa pri prístupe do pamäti zistí, že nie je možné uvoľniť žiadnu stránku, OS Linux

(OOM killer) vyberie proces ktorý bude zrušený.

– Toto správanie je v podstate nekorektné.
● Vlastnosti je možné nastavovať cez /proc/sys/vm/overcommit_memory.

– 0: heuristika, 1: pamäť sa vždy pridelí, 2: súčet veľkostí všetkých namapovaných
oblastí nemôže prekročiť veľkosť odkladacieho priestoru (swapu) a polovicu
fyzickej pamäte (alokovaná pamäť bude dostupná vždy).

Alokácia pamäti v jadre

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 104/113

SLOB/SLAB/SLUB alokátor

● Jadro poskytuje procesom pamäť vždy v celých stránkach.

– Mapovanie oblasti je vždy zarovnané volaním mmap().

– Proces už spravuje pamäť sám, napr. heap spravuje malloc().
● Jadro však pre svoju činnosť bežne potrebuje omnoho menšie časti pamäte, alokuje

a uvoľňuje rôzne štruktúry typickej veľkosti.
● Aby sa znížila réžia spojená s alokáciou, jadro udržuje “predpripravené” objekty rôznej

veľkosti (8, 16, 32, …, 8k) a vopred inicializované štruktúry.

– Rovnaké objekty sú umiestnené v po sebe idúcich stránkach, čo eliminuje fragmentáciu.
Pole objektov rovnakej dĺžky sa nazýva slab, skupina slab-ov tvorí (slab) cache.

– Každý modul (driver) môže mať vlastnú cache.
● Objekty zostávajú na mieste, ich pamäť netreba zakaždým alokovať, ani uvoľňovať. Zostávajú

v inicializovanom stave. Rozhranie poskytujú funkcie kmalloc()/kfree().
● Pre optimalizáciu prístupu sú objekty tiež zarovnané na veľkosť blokov HW (L1, L2) cache. Ich

rovnomerné využitie sa dosahuje tzv. farbením, rôznym posunutím od začiatku stránky.

DB, KI FMFI UK BA, 2021 Operačné systémy / Procesy 105/113

slabinfo

$ cat /proc/slabinfo

slabinfo - version: 2.1

name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> : tunables <limit>
<batchcount> <sharedfactor> : slabdata <active_slabs> <num_slabs> <sharedavail>

vm_area_struct 81290 89700 200 20 1 : tunables 0 0 0 : slabdata 4485 4485 0

mm_struct 780 780 1088 30 8 : tunables 0 0 0 : slabdata 26 26 0

files_cache 874 874 704 23 4 : tunables 0 0 0 : slabdata 38 38 0

task_struct 1059 1170 6144 5 8 : tunables 0 0 0 : slabdata 234 234 0

kmalloc-8k 173 184 8192 4 8 : tunables 0 0 0 : slabdata 46 46 0

kmalloc-4k 1029 1048 4096 8 8 : tunables 0 0 0 : slabdata 131 131 0

kmalloc-2k 1596 1632 2048 16 8 : tunables 0 0 0 : slabdata 102 102 0

kmalloc-1k 3088 3488 1024 32 8 : tunables 0 0 0 : slabdata 109 109 0

kmalloc-512 3484 4672 512 32 4 : tunables 0 0 0 : slabdata 146 146 0

kmalloc-256 4136 4320 256 32 2 : tunables 0 0 0 : slabdata 135 135 0

kmalloc-192 7424 7581 192 21 1 : tunables 0 0 0 : slabdata 361 361 0

kmalloc-128 4462 4672 128 32 1 : tunables 0 0 0 : slabdata 146 146 0

kmalloc-96 5568 6006 96 42 1 : tunables 0 0 0 : slabdata 143 143 0

kmalloc-64 27264 28864 64 64 1 : tunables 0 0 0 : slabdata 451 451 0

kmalloc-32 78408 80512 32 128 1 : tunables 0 0 0 : slabdata 629 629 0

kmalloc-16 71249 75520 16 256 1 : tunables 0 0 0 : slabdata 295 295 0

kmalloc-8 130478 132608 8 512 1 : tunables 0 0 0 : slabdata 259 259 0

Príklad: stránkovanie, výber obete

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 107/113

Príklad: Umiestnenie programu v pamäti

● Príklad: Veľkosť stránky je 1kB a proces má pridelené štyri stránkové
rámy. Pred začatím vykonávania časti programu sa príslušné stránky
nevyužívali. Koľko nastane výpadkov stránok pri vykonaní
nasledujúcej časti programu pri použití algoritmu výberu obete
LRU?

● for (i=0; i<n; i++) { A[i] = B[i] + C[i]; }

0x0040 MOV R1, ZERO
0x0041 MOV R2, N
0x0042 CMP R1, R2
0x0043 JGE 0x0049
0x0044 MOV R3, B(R1)
0x0045 ADD R3, C(R1)
0x0046 MOV A(R1), R3
0x0047 ADD R1, ONE
0x0048 JMP 0x0042

0x1800 A[]
0x1C00 B[]
0x2000 C[]
0x2400 ONE DW 1
0x2401 ZERO DW 0
0x2402 N DW 1024

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 108/113

Príklad: Umiestnenie programu v pamäti

● Zápis programu vo vyššom jazyku (C):

 for (i=0; i<n; i++) { A[i] = B[i] + C[i]; }

● Po preklade kompilátorom:

0x0040 MOV R1, ZERO
0x0041 MOV R2, N
0x0042 CMP R1, R2
0x0043 JGE 0x0049
0x0044 MOV R3, B(R1)
0x0045 ADD R3, C(R1)
0x0046 MOV A(R1), R3
0x0047 ADD R1, ONE
0x0048 JMP 0x0042

0x1800 A[]
0x1C00 B[]
0x2000 C[]
0x2400 ONE DW 1
0x2401 ZERO DW 0
0x2402 N DW 1024

text sectionaddress

data section

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 109/113

Príklad: Umiestnenie programu v pamäti

● Príklad: Veľkosť stránky je 1kB a proces má pridelené štyri stránkové rámy.
Pred začatím vykonávania časti programu sa príslušné stránky nevyužívali.
Koľko nastane výpadkov stránok pri vykonaní nasledujúcej časti programu
pri použití algoritmu výberu obete LRU?

● Postup:

– Zistíme to “simuláciou” vykonávania programu a algoritmu výberu
obete.

– Aby sme zistili výpadky, musíme vedieť ktoré stránky sú v pamäti a ku
ktorým stránkam sa pristupuje.

– Potrebujeme poznať postupnosť odkazov na stránky – reference string.

– Na to potrebujeme poznať v ktorých stránkach ležia adresy ktoré
program využíva.

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 110/113

Príklad: Výpočet čísla stránky

● Veľkosť stránky: Spage = 1kB, npage = log2 Spage

● Číslo stránky: Np(addr) = addr / Spage = shr addr, npage

0x0040 MOV R1, ZERO
0x0041 MOV R2, N
0x0042 CMP R1, R2
0x0043 JGE 0x0049
0x0044 MOV R3, B(R1)
0x0045 ADD R3, C(R1)
0x0046 MOV A(R1), R3
0x0047 ADD R1, ONE
0x0048 JMP 0x0042

0x1800 A[]
0x1C00 B[]
0x2000 C[]
0x2400 ONE DW 1
0x2401 ZERO DW 0
0x2402 N DW 1024

addr

1000000000100100

1042

90
log2 Spage

00

Np

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 111/113

Príklad: Postupnosť odkazov na stránky

● Reference string:

– Pri vykonávaní uvedenej časti programu bude procesor
postupne robiť prístup k nasledujúcim stránkam.

● 0, 9, 0, 9, (0, 0, 0, 7, 0, 8, 0, 6, 0, 9, 0)1024, 0, 0

 0x0040 MOV R1, ZERO 0,9
 0x0041 MOV R2, N 0,9
 0x0042 CMP R1, R2 0
 0x0043 JGE 0x0049 0
0 0x0044 MOV R3, B(R1) 0,7
 0x0045 ADD R3, C(R1) 0,8
 0x0046 MOV A(R1), R3 0,6
 0x0047 ADD R1, ONE 0,9
 0x0048 JMP 0x0042 0

6 0x1800 A[]
 ...
7 0x1C00 B[]
 ...
8 0x2000 C[]
 ...
 0x2400 ONE
9 0x2401 ZERO
 0x2402 N

DB, KI FMFI UK BA, 2021 Operačné systémy / Správa pamäte 112/113

Príklad: Simulácia algoritmu LRU

● Reference string:
● 0, 9, 0, 9, (0, 0, 0, 7, 0, 8, 0, 6, 0, 9, 0)1024, 0, 0

0 9 0 9 0 0 0 7 0 8 0 6 0 9 0 0 0 0 7 0 8 0 6 0 9 0 0 0
 0 9 0 9 9 9 0 7 0 8 0 6 0 9 9 9 9 0 7 0 8 0 6 0 9 9 9
 9 9 7 7 8 8 6 6 6 6 6 9 9 7 7 8 8 6 6 6 6
 9 9 7 7 8 8 8 8 8 6 6 9 9 7 7 8 8 8 8

PF PF PF PF PF PF PF PF PF PF

1023 

 2 PF + 4 PF + 1023  4 PF = 4098 PF



To je zatiaľ všetko

