
Radovan Cervenka

Activities

Unified Modeling Language

UML.Activities | R. Cervenka

2

Activity Model

 Specification of an algorithmic behavior.

 Used to represent control flow and object flow models.

 Executing activity (of on object) is usually attached to a class or an operation.

 Emergent activity (of several objects) is usually attached to a package or a
use-case.

Consists of:

 Activity diagrams.

 Element descriptions.

Used (mainly) in:

 Requirements  algorithms of use cases.

 Analysis and design  behavior of objects (their operations),
subsystems, and components.

UML.Activities | R. Cervenka

3

Example of Activity Diagram

[no coffee]

[found coffee]

Add Water to
Reservoir

[found cola]

[no cola]

decision

action
control

flow

Find
Beverage

Get
Cups

Put Coffee
in Filter

Put Filter
in Machine

Turn on Machine

Brew
Coffee

Pour Coffee

Get Cans
of Cola

Drink

Prepare Beverage

final

activity

initial

merge

fork

join

UML.Activities | R. Cervenka

4

Activity

 The specification of parameterized behavior as the coordinated sequencing
of subordinate units whose individual elements are actions.

 Activities may describe procedural computation.

 The flow of execution is modeled as activity nodes connected by activity
edges.

 A node can be the execution of a subordinate behavior.

 Activity nodes also include flow-of-control constructs, such as
synchronization, decision, and concurrency control.

 Activities may be applied to organizational modeling for business process
engineering and workflow.

 Formally, the semantics of activities is based on token flow.

 Tokens represent locus of control which execute the activity nodes and
traverse along to the activity edges.

 There can be several distinct tokens in one execution of an activity.

 When a node completes execution, a token is removed from the node
and tokens are offered to some or all of its output edges.

UML.Activities | R. Cervenka

5

Activity (cont.)

 Activities can have inputs and outputs modeled by means of activity
parameters.

 An input/output represents either as a single object or an object set.

 An activity has access to the attributes and operations of its context object
and any objects linked to the context object transitively.

 An activity that is also a method of a behavioral feature has access to the
parameters of the behavioral feature.

input
parameter

output
parameter

activity
content

UML.Activities | R. Cervenka

6

Examples of Activities (1)

UML.Activities | R. Cervenka

7

Examples of Activities (2)

UML.Activities | R. Cervenka

8

Action

 The fundamental unit of executable functionality.

 The execution of an action represents some transformation or processing in
the modeled system.

 Action can have inputs and outputs modeled by pins.

 Action can specify:

 Local pre condition–constraint that must be satisfied when execution is
started.

 Local post condition–constraint that must be satisfied when execution is
completed.

Name Name

«localPrecondition»
constraint

« localPostcondition»
constraint

UML.Activities | R. Cervenka

9

Some Special Kinds of Actions

 Call Behavior Action

 Invokes a behavior directly.

 Call Operation Action

 Transmits an operation call request
to the target object.

 Accept Event Action

 Waits for the occurrence of an event
meeting the specified condition.

 Send Signal Action

 creates a signal instance from its inputs,
and transmits it to the target object

 UML provides much more special action kinds for manipulating structural
features, relations, communication, etc.

Signal

Event

Time Event

ActivityBehavior

operation
Name

(Class::operation)

UML.Activities | R. Cervenka

10

Control Flow

 An activity edge that starts an activity node after the previous one is
finished.

 An activity edge that only passes control tokens.

 Tokens offered by the source node are all offered to the target node.

 Can specify a guard condition which must evaluate to true for every token
that is offered to pass along the edge.

 A connector (a small circle with the name of the edge in it) can also be used
to simplify diagrams with many activity edges.

 Purely notational mechanism, it does not affect the model.

 Every connector with a given label must be paired with exactly one
other with the same label on the same activity diagram.

Source
Action

Target
Action[guard]

name

connector

N

N

UML.Activities | R. Cervenka

11

Examples of Control Flows

UML.Activities | R. Cervenka

12

Initial Node

 A control node at which flow starts when the activity is invoked.

 An initial node has no incoming edges.

 Only control edges can have initial nodes as source.

 A control token is placed at the initial node when the activity starts, but not
in initial nodes in structured nodes contained by the activity.

 Tokens in an initial node are offered to all outgoing edges.

 If an activity has more than one initial node, then invoking the activity
starts multiple flows, one at each initial node.

UML.Activities | R. Cervenka

13

Activity Final Node

 A final node that stops all flows in an activity.

 A token reaching an activity final node terminates the activity.

 It stops all executing actions in the activity, and destroys all tokens in
object nodes, except in the output activity parameter nodes.

 Terminating the execution of synchronous invocation actions also
terminates whatever behaviors they are waiting on for return.

 Any behaviors invoked asynchronously by the activity are not affected.

 Has no outgoing edges.

 An activity may have more than one activity final node.

 If there is more than one final node in an activity, the first one reached
terminates the activity.

UML.Activities | R. Cervenka

14

Flow Final Node

 A final node that terminates a flow.

 Destroys all tokens that arrive at it.

 It has no effect on other flows in the activity.

 Has no outgoing edges.

UML.Activities | R. Cervenka

15

Examples of Final Nodes

UML.Activities | R. Cervenka

16

Object Node

 An abstract activity node that indicates an instance of a particular classifier,
possibly in a particular state, may be available at a particular point in the
activity. Its concrete sub-elements are, e.g., Pin and Activity Parameter.

 All edges coming into or going out of object nodes must be object flow
edges.

 Can specify multiplicity, ordering and selection criteria of the represented
values (tokens).

 Multiple tokens containing the same value may reside in the object node at
the same time. This includes data values.

 A token in an object node can traverse only one of the outgoing edges.

name
name:Classifier

[state, state, …]
name

{upperBound=2,

Ordering=FIFO}

name

object node for tokens
with signal as type

object node with
multiplicity and ordering

«selection»
selection specification

object node with possible states
and selection specification

UML.Activities | R. Cervenka

17

Pins

Input Pin

 A specialized pin and object node that holds input values
to be consumed by an action.

 Can specify name, type status and multiplicity.

 An action cannot start execution if an input pin has
fewer values than the lower multiplicity.

 The upper multiplicity determines how many values
are consumed by a single execution of the action.

Output Pin

 A specialized pin and object node that holds output values
produced by an action.

 Can specify name, type and multiplicity.

 An action cannot terminate itself if an output pin has
fewer values than the lower multiplicity.

 An action may not put more values in an output pin in
a single execution than the upper multiplicity of the
pin.

p1 p2:T

[state]

p1

p2:T

[state]

UML.Activities | R. Cervenka

18

Pins (cont.)

 Pins can specify streaming, i.e., tells whether an input pin may accept values
while its behavior is executing, or whether an output pin post values while
the behavior is executing.

x

Standalone pin notation representing
input and output pins together:

x

x
{stream} {stream}

{stream}

p1

{stream}

p2

p1 p2

UML.Activities | R. Cervenka

19

Object Flow

 An activity edge that can have objects or data passing along it.

 Models the flow of values to or from object nodes.

 Object flows add support for multicast/receive, token selection from object
nodes, and transformation of tokens.

 Object flows may not have actions at either end.

 Object nodes connected by an object flow must have compatible types and
upper bounds.

x
Two object flows linking an

object node and actions:

An object flow with selection
linking two pins:

«selection»
selection specification

x x

An object flow with pins elided:

UML.Activities | R. Cervenka

20

Examples of Pins and Object Flows

UML.Activities | R. Cervenka

21

Decision Node

 A control node that chooses between outgoing flows.

 Has one incoming edge and multiple outgoing activity edges.

 Each token arriving at a decision node can traverse only one outgoing edge.

 Guards of the outgoing edges are evaluated to determine which edge
should be traversed.

 The evaluation order is not defined.

 The predefined ‘else’ guard can be used.

 A decision behavior/condition applied for each token before it is offered to
the outgoing edges can also be specified.

«decisionInput»

decision behavior

UML.Activities | R. Cervenka

22

Merge Node

 A control node that brings together multiple alternate flows.

 Has multiple incoming edges and a single outgoing edge.

 All tokens offered on incoming edges are offered to the outgoing edge.

 There is no synchronization of flows or joining of tokens.

merge and decision
nodes together

UML.Activities | R. Cervenka

23

Examples of Decisions and Merges (1)

UML.Activities | R. Cervenka

24

Examples of Decisions and Merges (2)

UML.Activities | R. Cervenka

25

Fork Node

 A control node that splits a flow into multiple concurrent flows.

 Has one incoming edge and multiple outgoing edges.

 Tokens arriving at a fork are duplicated across the outgoing edges.

 If at least one outgoing edge accepts the token, duplicates of the token
are made and one copy traverses each edge that accepts the token.

 The outgoing edges that did not accept the token due to failure of their
targets to accept it, keep its copy in an implicit FIFO queue until it can
be accepted by the target.

 The rest of the outgoing edges do not receive a token (these are the
ones with failing guards).

UML.Activities | R. Cervenka

26

Join Node

 A control node that synchronizes multiple flows.

 Has multiple incoming edges and one outgoing edge.

 Can have a boolean value specification (modeled by the joinSpec tag) using
the names of the incoming edges to specify the conditions under which the
join will emit a token. If the joinSpec is not given, then:

 If all the tokens offered on the incoming edges are control tokens, then one
control token is offered on the outgoing edge.

 If some of the tokens offered on the incoming edges are control tokens and
others are data tokens, then only the data tokens are offered on the
outgoing edge. Tokens are offered on the outgoing edge in the same order
they were offered to the join.

fork and join nodes
together

{joinSpec=…}

UML.Activities | R. Cervenka

27

Examples of Fork and Join Nodes

UML.Activities | R. Cervenka

28

Exception Handler

 Specifies a body to execute in case the specified exception occurs during the
execution of the protected node.

 If an exception occurs (a Raise Exception Action is executed) in the
protected node, all the tokens in the protected node are terminated. Then,
the exception handlers are examined for matching the exception type, and
the handler body of any matching exception handler is used to handle the
exception which arrives via the exception input pin.

 If the exception is not caught at the level of the protected node, the
exception handling process repeats at the level of the enclosing structured
node or activity.

 If the exception is not caught at the top-most level of asynchronously
invoked activity, the exception is lost.

 If the action that invoked the activity is synchronous, the exception
propagates up to that action. The process of exception propagation recurs
until the exception is caught, or reaches the topmost level of the system,
where the behavior for the uncaught exceptions is unspecified.

 The result tokens of the handler body become the result tokens of the
protected node.

UML.Activities | R. Cervenka

29

Exception Handler (cont.)

 An alternative notation for exception flows and exception object nodes
(activity parameters and pins) with a small triangle icon:

Protected
Node

ExceptionType

Handler
Body Node

Protected
Node

Handler
Body Node

Activity

Protected
Node

Handler
Body Node

UML.Activities | R. Cervenka

30

Example of Exception Handler

UML.Activities | R. Cervenka

31

Interruptible Activity Region

 An activity group that supports termination of tokens flowing in the portions
of an activity.

 Contains other activity nodes.

 When a token leaves an interruptible region via edges designated by the
region as interrupting edges, all tokens and behaviors in the region are
terminated.

 Interrupting edges of a region must have their source node in the region
and their target node outside the region in the same activity containing the
region.

interruptible
activity region

interrupting edges

UML.Activities | R. Cervenka

32

Example of Interrupting Activity Region

UML.Activities | R. Cervenka

33

Central Buffer Node

 An object node for managing flows from multiple sources and destinations.

 Accepts tokens from upstream object nodes and passes them along to
downstream object nodes.

«centralBuffer»

Name

[state, state, …]

UML.Activities | R. Cervenka

34

Example of Central Buffer Node

UML.Activities | R. Cervenka

35

Data Store Node

 A central buffer node for non-transient information.

 Keeps all tokens that enter it and copies them when they are chosen to move
downstream.

 Selection and transformation behavior on outgoing edges can be designed
to get information out of the data store, as if a query were being performed.

 Incoming tokens containing a particular object replace any tokens in the
object node containing that object.

«datastore»

Name

[state, state, …]

UML.Activities | R. Cervenka

36

Example of Data Store Node

UML.Activities | R. Cervenka

37

Expansion Region

Expansion Region

 A structured activity region that executes multiple times corresponding to
elements of an input collection.

 Each input is a collection of values modeled as an expansion node.

 If there are multiple inputs to one expansion node, each of them must
hold the same kind of collection.

 Each input flow edge produces elements of the input collection.

 The expansion region is executed once for each element (or position) in the
input collection.

 On each execution of the region, an output value from the region is inserted
into an output collection, modeled also as an expansion node, at the same
position as the input elements.

 If the region execution ends with no output, then nothing is added to
the output collection.

 From the inside of the region, expansion nodes are visible as individual
values.

UML.Activities | R. Cervenka

38

Expansion Region (cont.)

 Any object flow edges that cross the boundary of the region, without
passing through expansion nodes, provide values that are fixed within the
different executions of the region input pins.

 The expansion kind specifies the way in which the executions interact:

 parallel–all interactions are independent

 iterative (default)–the interactions occur in order of the elements

 stream–a stream of values flows into a single execution

input expansion
node

output
expansion

node

expansion kind

Shorthand notation for
expansion region containing
a single action:

action

expansion kind
*

Shorthand notation for
parallel expansion region
containing a single action:

UML.Activities | R. Cervenka

39

Examples of Expansion Regions (1)

UML.Activities | R. Cervenka

40

Examples of Expansion Regions (2)

UML.Activities | R. Cervenka

41

Activity Partition

 A kind of activity group for identifying actions that have some characteristic
in common.

 A partition can represent a classifier, instance, part, attribute or value which
is responsible for execution of the contained activity part.

 An external partition (marked by «external») represents an entity to which
the partitioning structure does not apply.

 Partitions can share contents.

 Partitions can be hierarchical and multi-dimensional.

 Partitions do not affect the token flow of the model.

UML.Activities | R. Cervenka

42

Activity Partition (cont.)

P
a
r
t
i
t
i
o
n

N
a
m
e Partition Name

Sub-partition

Name-1

Sub-partition

Name-2

Partition Name

Horizontal partition: Vertical partition: Hierarchical partitions:

Partition

Name-3

Partition

Name-4

P
a
r
t
i
t
i
o
n

N
a
m
e
-
3

P
a
r
t
i
t
i
o
n

N
a
m
e
-
4

Multi-dimensional partitions:

Partition(s) notated on a specific activity:

(Partition Name)
Name

(Name1, Name2,…)
Name

(Name:Sub-name)
Name

«external»
(Partition Name)

Name

UML.Activities | R. Cervenka

43

Examples of Activity Partitions (1)

UML.Activities | R. Cervenka

44

Examples of Activity Partitions (2)

UML.Activities | R. Cervenka

45

Examples of Activity Partitions (3)

