
Radovan Cervenka

Auxiliary Constructs

Unified Modeling Language

UML.Auxiliary | R. Cervenka

2

Auxiliary Constructs

 Various auxiliary modeling mechanisms.

Comprise:

 Information flows.

 Models.

 Primitive types.

 Templates.

UML.Auxiliary | R. Cervenka

3

Information Flows

 Provides mechanisms for specifying the exchange of information between
entities of a system at a high level of abstraction.

 Do not specify the nature of the information (type, initial value), the
mechanisms by which this information is conveyed (message passing,
signal, common data store, parameter of operation, etc.), nor sequences or
any control conditions.

UML.Auxiliary | R. Cervenka

4

Information Flow

 Specifies that one or more information items circulates from its sources to its
targets.

 It is used to abstract the communication.

 Requires some kind of “information channel” for transmitting information
items.

 Connectors, links, associations, or even dependencies.

 When a source or a target is:

 A classifier, the information flow represents all the potential instances of
the classifier.

 A part, the information flow represents all instances that can play the
role specified by the part.

 A package, the information flow represents all potential instances of the
directly or indirectly owned classifiers of the package.

«flow»

Source
information item

Target

UML.Auxiliary | R. Cervenka

5

Information Item

 An abstraction of all kinds of information that can be exchanged between
objects.

 A kind of classifier intended for representing information at a very abstract
way, one which cannot be instantiated.

 Used to define preliminary models, before having made detailed modeling
decisions on types or structures.

 Encompasses all sorts of data, events, facts that are exploited inside the
modeled system.

 An information item does not specify the structure (properties or
associations), the type, or the nature of the represented information.

 Information items can be decomposed into more specific information items
using representation links between them.

<<information>>

Name Name

UML.Auxiliary | R. Cervenka

6

Examples of Information Flows

Definition of information items:

Information flows attached to a connector:

Information flows attached to an association:

UML.Auxiliary | R. Cervenka

7

Models

 Allows to explicitly represent models.

«model»

TradingSystem

Business

Tier

GUI Tier Data Tier

UML.Auxiliary | R. Cervenka

8

Model

 Used to capture a view of a physical system.

 It is an abstraction of the physical system, with a certain purpose.

 This purpose determines what is to be included in the model and what
is irrelevant. It also determines the readers of the model.

 Thus the model completely describes those aspects of the physical
system that are relevant to the purpose of the model, at the appropriate
level of detail.

 Examples of usages: logical model, behavioral model, deployment model, …

 Models are “self-contained”.

 A specialized package.

Name
<<model>>

Name

UML.Auxiliary | R. Cervenka

9

Primitive Types

 A set of primitive data types used in the UML metamodel.

 These types are reused by both MOF and UML, and may potentially be
reused also in user models.

 Tool vendors, however, typically provide their own libraries of data types to
be used when modeling with UML.

«primitive»

UnlimitedNatural

«primitive»

String

«primitive»

Boolean

«primitive»

Integer

UML.Auxiliary | R. Cervenka

10

Primitive Types (cont.)

 Integer

 A primitive type representing integer values.

 Boolean

 Used for logical expressions. It has the predefined literals true and false.

 String

 A sequence of characters in some character set. Defines a piece of text.

 Unlimited natural

 An instance of unlimited natural is an element in the (infinite) set of
naturals (0, 1, 2…). The value of infinity is shown using an asterisk (‘* ’).

 Appears as the type of upper bounds of multiplicities in the metamodel.

UML.Auxiliary | R. Cervenka

11

Templates

 The mechanism for defining reusable “model patterns” (based on classifiers
and packages) and binding them to concrete parts of the model.

UML.Auxiliary | R. Cervenka

12

Template Definition

 Definition of a template signature for a templateable elemement.

 Templateable element

 An element which can contain a template signature; therefore is often
referred to as a template.

 It can be either Class, Package or Operation.

 Template signature

 Specifies a set of formal template parameters for a templated element.

 Is owned by a templateable element and has one or more template
parameters.

 Template parameter

 References a parameterable element that is exposed as a formal
template parameter in the containing template.

 Format:

template-parameter ::= template-param-name [‘:’ parameter-kind]
[‘=’ default]

UML.Auxiliary | R. Cervenka

13

Template Definition (cont.)

 Parameterable element

 An element that can be exposed as a formal template parameter for a
template, or specified as an actual parameter in a binding of a template.

 Informally speaking, it can be any sub-element of templatable element.

 Named element (from Templates)

 A named element is extended to support using a string expression to
specify its name.

 Used to allow names of model elements to involve template parameters.

 When a template is bound, the sub expressions are substituted with the
actual values substituted for the template parameters to obtain the
actual bound element name.

 Format:

— The string expression appears between “$” signs.

— Template parameters in are enclosed in ‘<‘ and ‘>’ signs.

UML.Auxiliary | R. Cervenka

14

Examples of Templates

UML.Auxiliary | R. Cervenka

15

Template Binding

 Represents a relationship between a templateable element and a template.
A template binding specifies the substitutions of actual parameters for the
formal parameters of the template.

 Format :

element-name ‘:’ binding-expression [‘,’ binding-expression]*

binding-expression ::= template-element-name ‘<‘
template-parameter-substitution [‘,’ template-parameter-substitution]* ‘>’

template-param-substitition ::= template-param-name ‘->’ actual-template-
parameter

BoundElement:Template

<substitution>
«bind» <substitition>

Template

BoundElement

UML.Auxiliary | R. Cervenka

16

Examples of Template Bindings (1)

UML.Auxiliary | R. Cervenka

17

Examples of Template Bindings (2)

UML.Auxiliary | R. Cervenka

18

Examples of Template Bindings (3)

