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Class (Structural) Model

 Structure of the system expressed in terms of classes, interfaces, objects 
and their relationships.

Consists of:

 Class diagrams.

 Object diagrams.

 Package diagrams.

 Element descriptions.

Supported by:

 State machines.

 Activities.

 Interactions.

Used (mainly) in:

 Requirements  domain/conceptual model.

 Analysis  analytical (logical) model.

 Design  design model.
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Diagrams

 Structure Diagram

 An abstract diagram type showing the static structure of the objects in a 
system.

 Has several specific diagrams: class diagram, object diagram, composite 
structure diagram, component diagram, deployment diagram, and 
package diagram.

 Class Diagram

 Classes, interfaces and their relationships.

 Object Diagram

 Static structure of instances (objects and links).

 A snapshot of the state of the system at a point in time.

 Possibly compatible with a particular class diagram.

 Package Diagram

 Packages and their relationships.
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Perspectives

 Conceptual

 Conceptual/domain model.

 No (little) regard for the SW implementation.

 Used in Requirements.

 Specification

 Logical application model.

 Focused on software.

 Concerning on types rather than implementation.

 Used in Analysis.

 Implementation

 Implementation model.

 Used in Design.
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Example of Class Diagram
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Class

 An abstraction of set of objects that share a common structure (attributes, 
operations and links) and a common behavior/semantics.

 A kind of classifier whose features are attributes and operations.

 Format of attributes (owned properties):

property ::= [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default]
[‘{‘ prop-modifier [‘,’ prop-modifier]*  ’}’]

 Visibility: ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

 Derived property, which can be computed from other properties, is 
marked by ‘/’.

 Multiplicity:

— positive number (0, 1, 2, …)

— interval: lower-bound ‘..’ upper-bound

— ‘* ’ for infinite upper bound

— examples: 3, 1..4, 1..* , *

name

attribute list

operation list
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Class (cont.)

 Property modifier:

— ‘readOnly’ means that the property is read only.

— ‘union’ means that the property is a derived union of its subsets.

— ‘subsets’ property-name means that the property is a proper subset 
of the property identified by property-name.

— ‘redefines’ property-name means that the property redefines an 
inherited property identified by property-name.

— ‘ordered’ means that the property is ordered.

— ‘unique’ means that there are no duplicates in a multi-valued 
property.

— prop-constraint is an expression that specifies a constraint that 
applies to the property.
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Class (cont.)

 Format of operations:

[visibility] name ‘(‘ [parameter-list] ‘)’ [‘:’ [return-type]
[‘{‘ oper-property [‘,’ oper-property]*  ‘}’]]

 Parameters:

parameter-list ::= parameter [‘,’ parameter]*

parameter ::= [direction] parameter-name ‘:’ type-expression [‘[‘multiplicity’]’] [‘=’ 
default]
[‘{‘ parm-property [‘,’ parm-property]*  ‘}’]

— direction: ‘in’, ‘out’, ‘inout’ (defaults to ‘in’ if omitted)

 Operation properties (modifiers):

— ‘redefines’ oper-name means that the operation redefines an inherited 
operation identified by oper-name.

— ‘query’ means that the operation does not change the state of the system.

— ‘ordered’ means that the values of the return parameter are ordered.

— ‘unique’ means that the values returned by parameters have no duplicates.

— oper-constraint is a constraint that applies to the operation.

 Class (static) attributes and operations are underlined.
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Examples of Classes

Window

UI::Window

Window

size: Area

visibility:Bool

display()

hide()

Window

+size:Area=(100,100)

#visibility:Bool=invisible

+defaultSize:Rectangle

-xptr:*Xwindow

+Window():Window

+display(dpy:Display=‘:0.0’)

+hide()
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Example of Derived Attribute

Person

birthday

/age

{age = currentDate - birthday}
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Interface

 A kind of classifier that represents a declaration of a set of coherent public 
features and obligations.

 Specifies a contract; any instance of a classifier that realizes the interface 
must fulfill that contract.

 An interface is not instantiable; instead, an interface is implemented by an 
instantiable classifier, which means that the instantiable classifier presents a 
public facade that conforms to the interface specification.

HashTable
contents

*

Comparable

Hashable

«uses»

«interface»

Comparable

isEqual(String):Bool

isLess(String):Bool

String

...

isEqual(String):Bool

hash():Integer

...

interface

realization
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Association

 A relationship that can occur between typed instances.

 An association declares that there can be links between instances of the 
associated types.

 A link is a tuple with one value for each end of the association, where 
each value is an instance of the type of the end.

 It has at least two ends represented by properties, each of which is 
connected to the type of the end.

 More than one end of the association may have the same type.

 Association end:

 Association role name.

 Multiplicity.

 Ownership of the end by the association: indicated by a small circle.

 Navigability:

— navigable

— non-navigable

— unspecified
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Association (cont.)

 Association end (cont.):

 Visibility: +, -, #, ~

 Aggregation kind (only for binary associations):

— None.

— Shared (for aggregation):

— A weak relationship between the whole and its parts.

— Parts can exist independently on the whole.

— Also called “ownership by a reference”.

— Composite (for composition):

— A strong relationship between the whole and its parts.

— A part instance must be included in at most one composite 
(whole) at a time. If a composite is deleted, all of its parts are 
normally deleted with it.

— Compositions may be linked in a directed acyclic graph with 
transitive deletion characteristics.
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Association (cont.)

 Association end (cont.):

 Property string (enclosed in curly braces):

— {subsets property-name} to show that the end is a subset of the 
property called property-name.

— {redefines end-name} to show that the end redefines the one 
named end-name.

— {union} to show that the end is derived by being the union of its 
subsets.

— {ordered} to show that the end represents an ordered set.

— {bag} to show that the end represents a collection that permits the 
same element to appear more than once.

— {sequence} or {seq} to show that the end represents a sequence (an 
ordered bag).

 Qualifier: an attribute or a list of attributes whose values serve to 
partition the set of links.

 Association and its ends may be derived; marked by ‘/’ before their names.
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Association Class

 An association with class-like properties (attributes, operations, relations, 
behavior).

 It not only connects a set of classifiers but also defines a set of features that 
belong to the relationship itself and not to any of the classifiers.

 An association and its connected association class represent the same model 
element.

 Therefore, they must have the same name.
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Examples of Associations

A
0..1

a

0..*

subset end

derived union

/b{union}
B

A
0..1

a

0..*

{subsets b}

b1
B

A
endA

*

endB

association end

(owned by association)

AssociationAB

end (owned by B)

*
B

association name
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Examples of Associations and Assoc. Classes

Person Company
employee

1..*

0..1

employer

reading direction

rolenameassociation class
Job

salary

Job

worker

boss

Manages

multiplicity

*

* n-ary 

association

Year

Player Team

*

*1..*

team

Record

goalsFor

goalsAgainst

wins

losses

season

goalkeeper

1

account

Bank

Person

*

qualifier

accountHolder

Account
account

*

property used 

for qualifier
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Examples of Aggregations and Compositions

Aggregation:

PersonCommittee
1..5

member

Window

scrollbar[2]:Slider

title:Header

body:Panel 2

Window

Slider Header Panel

scrollbar title body1 1

11

1

Composition:

Polygon Point

+points

3..*

GC

color

texture

Contains
{ordered}

-gc

1

1

1

navigability
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Generalization

 The taxonomic relationship between a more general classifier and a more 
specific classifier.

 The specific classifier inherits the features of the more general classifier.

 Each instance of the specific classifier is also an indirect instance of the 
general classifier.

Shape

Polygon Ellipse Spline

Vehicle

Truck

Water

Vehicle

Land

Vehicle

Motor

Vehicle

Wind

Vehicle

Sailboat
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Generalization Set

 Defines a particular set of generalization relationships that describe the way 
in which a general classifier (or superclass) may be divided using specific 
subtypes.

 Usually, a generalization set describes a particular aspect of specialization.

 Covering and disjoint properties of a generalization set:

 {complete, disjoint} - Indicates the generalization set is covering and its 
specific classifiers have no common instances.

 {incomplete, disjoint} - Indicates the generalization set is not covering 
and its specific classifiers have no common instances.

 {complete, overlapping} - Indicates the generalization set is covering 
and its specific classifiers do share common instances.

 {incomplete, overlapping} - Indicates the generalization set is not 
covering and its specific classifiers do share common instances.

 default is {incomplete, disjoint}

 Generalization set may define the powertype - a (meta)class whose 
instances are subclasses of another class.
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Possible Notations of Generalization Sets

the same 

classifier



UML.Classes | R. Cervenka

22

Examples of Generalization Sets (1)
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Examples of Generalization Sets (2)
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Examples of Generalization Sets (3)
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Navigation Expressions (OCL)

 Allow to express navigation in models.

 item.selector

 The selector is the name of an attribute in the item or the role name of 
the target end of a link attached to the item. The result is the value of an 
attribute or related object(s).

 item.selector [ qualifier-value ]

 The selector designates a qualified association that qualifies the item. 
The qualifier-value is a value for the qualifier attribute. The result is 
related object selected by the qualifier. 

 set->select( boolean-expression )

 The boolean-expression is written in terms of objects within the set. The 
result is the subset of objects in the set for which the boolean-expression
is true.
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Examples of Model Navigation (1)

 Name of a person:
Person.name

 Names of person’s employers:
Person.employer.name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String




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Examples of Model Navigation (2)

 A customer of the bank with the account num. 8526:
Bank.customer[8526]

 Employers of an owner of the account 6251:
Bank.customer[6251].employer.name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String




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Examples of Model Navigation (3)

 Employees older than 50:
Company.employee -> select(p|p.age>50)

 Names of employers from Bratislava:
Person.employer -> 

select(c|c.residence=‘Bratislava’).name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String







UML.Classes | R. Cervenka

29

Instance Specification

 Representation of an instance in a modeled system.

 Can specify name and one or more classifiers:

[name] ‘:’ [classifier-name [‘,’ classifier-name]* ]

 Kind of the instance specification is given by its classifier(s). It can be:

 Object

— An instance of a class.

— Can specify values of structural features of the entity–slots:

[[name] [‘:’ type] ‘=‘] value

 Link 

— A tuple (mostly a pair) of object references.

— An instance of an association.

— Association adornments can be shown, except of multiplicity.

 etc.

 Visually, the instance specification shares the shape of its classifier(s).
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Examples of Instance Specifications (1)

triangle:Polygon

center=(0,0)

vertices=((0,0),(4,0),(4,3))

borderColor=black

fillColor=white

triangle

triangle:Polygon

:Polygon

streetName:String

“Baker Street 21b”

holmesAddress:Address

streetName=“Baker Street”

streetNumber=“21b”

Don:Person Josh:Person
father son

:Fathership
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Examples of Instance Specifications (2)

santaFeRFC:RugbyClub

Baca:Person

Podmore:Person

Morris:Person

treasurer

president

member

member

member

officer

officer
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Process of Class Modeling

1. Identify classes

 From glossary.

 From a business model or business-related artifacts.

 From the stored information items and business artifacts.

 From use case realizations.

2. Specify the semantics of classes

 Responsibility.

 Attributes, operations and interfaces.

3. Identify relationship among classes

 Domain-based associations.

 From object interactions.

 Generalization and aggregation relationships.

4. Structure the model into packages

5. Repeat the process and refine the model.


