
Radovan Cervenka

Classes

Unified Modeling Language

UML.Classes | R. Cervenka

2

Class (Structural) Model

 Structure of the system expressed in terms of classes, interfaces, objects
and their relationships.

Consists of:

 Class diagrams.

 Object diagrams.

 Package diagrams.

 Element descriptions.

Supported by:

 State machines.

 Activities.

 Interactions.

Used (mainly) in:

 Requirements  domain/conceptual model.

 Analysis  analytical (logical) model.

 Design  design model.

UML.Classes | R. Cervenka

3

Diagrams

 Structure Diagram

 An abstract diagram type showing the static structure of the objects in a
system.

 Has several specific diagrams: class diagram, object diagram, composite
structure diagram, component diagram, deployment diagram, and
package diagram.

 Class Diagram

 Classes, interfaces and their relationships.

 Object Diagram

 Static structure of instances (objects and links).

 A snapshot of the state of the system at a point in time.

 Possibly compatible with a particular class diagram.

 Package Diagram

 Packages and their relationships.

UML.Classes | R. Cervenka

4

Perspectives

 Conceptual

 Conceptual/domain model.

 No (little) regard for the SW implementation.

 Used in Requirements.

 Specification

 Logical application model.

 Focused on software.

 Concerning on types rather than implementation.

 Used in Analysis.

 Implementation

 Implementation model.

 Used in Design.

UML.Classes | R. Cervenka

5

Example of Class Diagram

Lesson

dayInWeek

since:Time

till:Time

Schedule

Room

Student

Study

Plan

Faculty

Employeeyear

chooses

Department

year

term

defines

department

student

teacher

department

employee

in

*

StudyDuty

type

valuation

trialNb

* *
0..10..1

teaches

*

0..1

*

*

put for

determines

1..* *

1

1

1

UML.Classes | R. Cervenka

6

Class

 An abstraction of set of objects that share a common structure (attributes,
operations and links) and a common behavior/semantics.

 A kind of classifier whose features are attributes and operations.

 Format of attributes (owned properties):

property ::= [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default]
[‘{‘ prop-modifier [‘,’ prop-modifier]* ’}’]

 Visibility: ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

 Derived property, which can be computed from other properties, is
marked by ‘/’.

 Multiplicity:

— positive number (0, 1, 2, …)

— interval: lower-bound ‘..’ upper-bound

— ‘* ’ for infinite upper bound

— examples: 3, 1..4, 1..* , *

name

attribute list

operation list

UML.Classes | R. Cervenka

7

Class (cont.)

 Property modifier:

— ‘readOnly’ means that the property is read only.

— ‘union’ means that the property is a derived union of its subsets.

— ‘subsets’ property-name means that the property is a proper subset
of the property identified by property-name.

— ‘redefines’ property-name means that the property redefines an
inherited property identified by property-name.

— ‘ordered’ means that the property is ordered.

— ‘unique’ means that there are no duplicates in a multi-valued
property.

— prop-constraint is an expression that specifies a constraint that
applies to the property.

UML.Classes | R. Cervenka

8

Class (cont.)

 Format of operations:

[visibility] name ‘(‘ [parameter-list] ‘)’ [‘:’ [return-type]
[‘{‘ oper-property [‘,’ oper-property]* ‘}’]]

 Parameters:

parameter-list ::= parameter [‘,’ parameter]*

parameter ::= [direction] parameter-name ‘:’ type-expression [‘[‘multiplicity’]’] [‘=’
default]
[‘{‘ parm-property [‘,’ parm-property]* ‘}’]

— direction: ‘in’, ‘out’, ‘inout’ (defaults to ‘in’ if omitted)

 Operation properties (modifiers):

— ‘redefines’ oper-name means that the operation redefines an inherited
operation identified by oper-name.

— ‘query’ means that the operation does not change the state of the system.

— ‘ordered’ means that the values of the return parameter are ordered.

— ‘unique’ means that the values returned by parameters have no duplicates.

— oper-constraint is a constraint that applies to the operation.

 Class (static) attributes and operations are underlined.

UML.Classes | R. Cervenka

9

Examples of Classes

Window

UI::Window

Window

size: Area

visibility:Bool

display()

hide()

Window

+size:Area=(100,100)

#visibility:Bool=invisible

+defaultSize:Rectangle

-xptr:*Xwindow

+Window():Window

+display(dpy:Display=‘:0.0’)

+hide()

UML.Classes | R. Cervenka

10

Example of Derived Attribute

Person

birthday

/age

{age = currentDate - birthday}

UML.Classes | R. Cervenka

11

Interface

 A kind of classifier that represents a declaration of a set of coherent public
features and obligations.

 Specifies a contract; any instance of a classifier that realizes the interface
must fulfill that contract.

 An interface is not instantiable; instead, an interface is implemented by an
instantiable classifier, which means that the instantiable classifier presents a
public facade that conforms to the interface specification.

HashTable
contents

*

Comparable

Hashable

«uses»

«interface»

Comparable

isEqual(String):Bool

isLess(String):Bool

String

...

isEqual(String):Bool

hash():Integer

...

interface

realization

UML.Classes | R. Cervenka

12

Association

 A relationship that can occur between typed instances.

 An association declares that there can be links between instances of the
associated types.

 A link is a tuple with one value for each end of the association, where
each value is an instance of the type of the end.

 It has at least two ends represented by properties, each of which is
connected to the type of the end.

 More than one end of the association may have the same type.

 Association end:

 Association role name.

 Multiplicity.

 Ownership of the end by the association: indicated by a small circle.

 Navigability:

— navigable

— non-navigable

— unspecified

UML.Classes | R. Cervenka

13

Association (cont.)

 Association end (cont.):

 Visibility: +, -, #, ~

 Aggregation kind (only for binary associations):

— None.

— Shared (for aggregation):

— A weak relationship between the whole and its parts.

— Parts can exist independently on the whole.

— Also called “ownership by a reference”.

— Composite (for composition):

— A strong relationship between the whole and its parts.

— A part instance must be included in at most one composite
(whole) at a time. If a composite is deleted, all of its parts are
normally deleted with it.

— Compositions may be linked in a directed acyclic graph with
transitive deletion characteristics.

UML.Classes | R. Cervenka

14

Association (cont.)

 Association end (cont.):

 Property string (enclosed in curly braces):

— {subsets property-name} to show that the end is a subset of the
property called property-name.

— {redefines end-name} to show that the end redefines the one
named end-name.

— {union} to show that the end is derived by being the union of its
subsets.

— {ordered} to show that the end represents an ordered set.

— {bag} to show that the end represents a collection that permits the
same element to appear more than once.

— {sequence} or {seq} to show that the end represents a sequence (an
ordered bag).

 Qualifier: an attribute or a list of attributes whose values serve to
partition the set of links.

 Association and its ends may be derived; marked by ‘/’ before their names.

UML.Classes | R. Cervenka

15

Association Class

 An association with class-like properties (attributes, operations, relations,
behavior).

 It not only connects a set of classifiers but also defines a set of features that
belong to the relationship itself and not to any of the classifiers.

 An association and its connected association class represent the same model
element.

 Therefore, they must have the same name.

UML.Classes | R. Cervenka

16

Examples of Associations

A
0..1

a

0..*

subset end

derived union

/b{union}
B

A
0..1

a

0..*

{subsets b}

b1
B

A
endA

*

endB

association end

(owned by association)

AssociationAB

end (owned by B)

*
B

association name

UML.Classes | R. Cervenka

17

Examples of Associations and Assoc. Classes

Person Company
employee

1..*

0..1

employer

reading direction

rolenameassociation class
Job

salary

Job

worker

boss

Manages

multiplicity

*

* n-ary

association

Year

Player Team

*

1..

team

Record

goalsFor

goalsAgainst

wins

losses

season

goalkeeper

1

account

Bank

Person

*

qualifier

accountHolder

Account
account

*

property used

for qualifier

UML.Classes | R. Cervenka

18

Examples of Aggregations and Compositions

Aggregation:

PersonCommittee
1..5

member

Window

scrollbar[2]:Slider

title:Header

body:Panel 2

Window

Slider Header Panel

scrollbar title body1 1

11

1

Composition:

Polygon Point

+points

3..*

GC

color

texture

Contains
{ordered}

-gc

1

1

1

navigability

UML.Classes | R. Cervenka

19

Generalization

 The taxonomic relationship between a more general classifier and a more
specific classifier.

 The specific classifier inherits the features of the more general classifier.

 Each instance of the specific classifier is also an indirect instance of the
general classifier.

Shape

Polygon Ellipse Spline

Vehicle

Truck

Water

Vehicle

Land

Vehicle

Motor

Vehicle

Wind

Vehicle

Sailboat

UML.Classes | R. Cervenka

20

Generalization Set

 Defines a particular set of generalization relationships that describe the way
in which a general classifier (or superclass) may be divided using specific
subtypes.

 Usually, a generalization set describes a particular aspect of specialization.

 Covering and disjoint properties of a generalization set:

 {complete, disjoint} - Indicates the generalization set is covering and its
specific classifiers have no common instances.

 {incomplete, disjoint} - Indicates the generalization set is not covering
and its specific classifiers have no common instances.

 {complete, overlapping} - Indicates the generalization set is covering
and its specific classifiers do share common instances.

 {incomplete, overlapping} - Indicates the generalization set is not
covering and its specific classifiers do share common instances.

 default is {incomplete, disjoint}

 Generalization set may define the powertype - a (meta)class whose
instances are subclasses of another class.

UML.Classes | R. Cervenka

21

Possible Notations of Generalization Sets

the same

classifier

UML.Classes | R. Cervenka

22

Examples of Generalization Sets (1)

UML.Classes | R. Cervenka

23

Examples of Generalization Sets (2)

UML.Classes | R. Cervenka

24

Examples of Generalization Sets (3)

UML.Classes | R. Cervenka

25

Navigation Expressions (OCL)

 Allow to express navigation in models.

 item.selector

 The selector is the name of an attribute in the item or the role name of
the target end of a link attached to the item. The result is the value of an
attribute or related object(s).

 item.selector [qualifier-value]

 The selector designates a qualified association that qualifies the item.
The qualifier-value is a value for the qualifier attribute. The result is
related object selected by the qualifier.

 set->select(boolean-expression)

 The boolean-expression is written in terms of objects within the set. The
result is the subset of objects in the set for which the boolean-expression
is true.

UML.Classes | R. Cervenka

26

Examples of Model Navigation (1)

 Name of a person:
Person.name

 Names of person’s employers:
Person.employer.name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String





UML.Classes | R. Cervenka

27

Examples of Model Navigation (2)

 A customer of the bank with the account num. 8526:
Bank.customer[8526]

 Employers of an owner of the account 6251:
Bank.customer[6251].employer.name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String





UML.Classes | R. Cervenka

28

Examples of Model Navigation (3)

 Employees older than 50:
Company.employee -> select(p|p.age>50)

 Names of employers from Bratislava:
Person.employer ->

select(c|c.residence=‘Bratislava’).name

employee

0..*

employer

0..1

customer

account: Integer

Bank

Person

name:String

age:Integer
0..*

Company

name:String

residence:String





UML.Classes | R. Cervenka

29

Instance Specification

 Representation of an instance in a modeled system.

 Can specify name and one or more classifiers:

[name] ‘:’ [classifier-name [‘,’ classifier-name]*]

 Kind of the instance specification is given by its classifier(s). It can be:

 Object

— An instance of a class.

— Can specify values of structural features of the entity–slots:

[[name] [‘:’ type] ‘=‘] value

 Link

— A tuple (mostly a pair) of object references.

— An instance of an association.

— Association adornments can be shown, except of multiplicity.

 etc.

 Visually, the instance specification shares the shape of its classifier(s).

UML.Classes | R. Cervenka

30

Examples of Instance Specifications (1)

triangle:Polygon

center=(0,0)

vertices=((0,0),(4,0),(4,3))

borderColor=black

fillColor=white

triangle

triangle:Polygon

:Polygon

streetName:String

“Baker Street 21b”

holmesAddress:Address

streetName=“Baker Street”

streetNumber=“21b”

Don:Person Josh:Person
father son

:Fathership

UML.Classes | R. Cervenka

31

Examples of Instance Specifications (2)

santaFeRFC:RugbyClub

Baca:Person

Podmore:Person

Morris:Person

treasurer

president

member

member

member

officer

officer

UML.Classes | R. Cervenka

32

Process of Class Modeling

1. Identify classes

 From glossary.

 From a business model or business-related artifacts.

 From the stored information items and business artifacts.

 From use case realizations.

2. Specify the semantics of classes

 Responsibility.

 Attributes, operations and interfaces.

3. Identify relationship among classes

 Domain-based associations.

 From object interactions.

 Generalization and aggregation relationships.

4. Structure the model into packages

5. Repeat the process and refine the model.

