
Radovan Cervenka

Interactions

Unified Modeling Language

UML.Interactions | R. Cervenka

2

Interaction Model

 Defines the mutual interactions and collaboration of objects in certain
situations.

Diagram types:

 Sequence diagrams.

 Interaction overview diagrams.

 Communication diagrams.

 Timing diagrams.

 Interaction tables.

Used (mainly) in:

 Analysis and Design  use case realization and interaction of objects.

UML.Interactions | R. Cervenka

3

Sequence Diagram

 An interaction diagram which focuses on the message interchange between
a number of lifelines.

UML.Interactions | R. Cervenka

4

Interaction

 A unit of behavior that focuses on the observable exchange of information
between connectable elements.

 Focus on exchanging messages between the connectable elements (of the
classifier owning the interaction).

 An interaction comprises:

 lifelines,

 messages,

 interaction fragments,

 formal gates, and

 actions.

 The semantics expressed by valid and invalid traces.

 A trace is a sequence of event occurrences (such as send
operation/signal event, receive operation/signal event or destruction
event) in a model.

 A specialization of interaction fragment and of behavior.

UML.Interactions | R. Cervenka

5

Example of Interaction

UML.Interactions | R. Cervenka

6

Frame

 A rectangular frame around the diagram with a name in a compartment in
the upper left corner.

 “sd” is used to determine the interaction diagram.

 Is used in all kinds of interaction diagrams.

sd Diagram name

UML.Interactions | R. Cervenka

7

Lifeline

 Represents an individual participant in the interaction.

 A reference to a connectable element.

 Lifelines represent only one interacting entity; have multiplicity 1.

 If the referenced connectable element is multivalued, then the lifeline
may have the selector that specifies which particular part is represented
by this lifeline. If the selector is omitted, an arbitrary representative of
the multivalued connectable element is chosen.

 Can refer to the interaction that represents the decomposition.

 Name format:

lifelineident ::= ([connectable-element-name [‘[‘ selector ‘]’]]
[: class_name] [decomposition]) | ‘self’

selector ::= expression

decomposition ::= ‘ref’ interactionident [‘strict’]
Lifelineident

UML.Interactions | R. Cervenka

8

Part Decomposition

 A description of the internal interaction of one lifeline relative to an
interaction.

 A Lifeline has a class associated as the type of the connectable element that
the lifeline represents. That class may have an internal structure and the part
decomposition is an interaction that describes the behavior of that internal
structure relative to the Interaction where the decomposition is referenced.

 The messages that go into (or go out from) the decomposed lifeline are
interpreted as actual gates that are matched by corresponding formal gates
on the decomposition.

UML.Interactions | R. Cervenka

9

Examples of Part Decompositions (1)

UML.Interactions | R. Cervenka

10

Examples of Part Decompositions (2)

UML.Interactions | R. Cervenka

11

Message

 Defines a particular communication between lifelines of an interaction.

 Specifies the kind of communication, sender and the receiver.

 Sorts of message:

 Synchronous call of an operation.

 Asynchronous call of an operation.

 Asynchronous signal – an asynchronous send action.

 Create message – the creation of another lifeline object.

 Delete message – the termination of another lifeline.

 Reply – a reply message to an operation call.

UML.Interactions | R. Cervenka

12

Message (cont.)

 Message connects send event and receive event.

 Kinds of a message:

 Complete – send event and receive event are present.

 Lost – send event present and receive event absent.

 Found – send event absent and receive event present.

 Unknown – send event and receive event absent (should not appear).

 Format of message name:

messageident ::= ([attribute ‘=’] signal-or-operation-name
[‘(‘ [argument [‘,’argument]* ‘)’] [‘:’ return-value]) | ‘* ’

argument ::= ([parameter-name '='] argument-value) |
(attribute '=' out-parameter-name [':' argument-value]) | ' -'

 ‘* ’ is a shorthand for more complex alternative combined fragment to
represent a message of any type.

 ‘-’ is used for undefined arguments.

UML.Interactions | R. Cervenka

13

Examples of Message Names

mymessage(14, - , 3.14, “hello”) // second argument is undefined

v=mymsg(16, variab):96 // a reply message assigning the return value 96 to v

mymsg(myint=16) // the input parameter ‘myint’ is given the value 16

UML.Interactions | R. Cervenka

14

Combined Fragment

 Defines an “expression” of interaction fragments.

 A combined fragment is defined by an interaction operator and
corresponding interaction operands.

 A compact and concise manner to define a number of traces.

 An interaction operand is an interaction fragment with an optional guard
expression.

 Only the interaction operands with a guard evaluated to true at this
point in the interaction will be considered for the production of the
traces for the enclosing combined fragment.

 The order of the interaction operands is given by their vertical positions.

 Alternatives (alt)

 A choice of behavior. At most one of the operands will be chosen.

 The chosen operand must have an explicit or implicit guard expression
that evaluates to true. (An implicit true guard is implied if the operand
has no guard.)

 An operand guarded by else is applied if no other operand is chosen.

UML.Interactions | R. Cervenka

15

Combined Fragment (cont.)

 Option (opt)

 A choice of behavior where either the (sole) operand happens or not.

 Semantically equivalent to an alternative combined fragment where
there is one operand.

 Break (break)

 The operand is a scenario that is performed instead of the remainder of
the enclosing interaction fragment.

 When the guard of the break operand is false, the break operand is
ignored and the rest of the enclosing interaction fragment is chosen.

 Should cover all lifelines of the enclosing interaction fragment.

 Parallel (par)

 A parallel merge between the behaviors of the operands.

 The occurrence specifications of the different operands can be
interleaved in any way as long as the ordering imposed by each
operand as such is preserved.

 Coregion is used as a simplified form of the parallel fragment.

UML.Interactions | R. Cervenka

16

Combined Fragment (cont.)

 Weak sequencing (seq)

 The ordering of occurrence specifications within each of the operands
are maintained in the result.

 Occurrence specifications on different lifelines from different operands
may come in any order.

 Occurrence specifications on the same lifeline from different operands
are ordered such that an occurrence specification of the first operand
comes before that of the second operand.

 Strict sequencing (strict)

 A strict ordering of the operands on the first level.

 Therefore occurrence specifications within contained combined
fragments will not directly be compared with other occurrence
specifications of the enclosing combined fragment.

 Negative (neg)

 The combined fragment represents traces that are defined to be invalid.

UML.Interactions | R. Cervenka

17

Combined Fragment (cont.)

 Critical region (critical)

 The traces of the region cannot be interleaved by other occurrence
specifications (on those lifelines covered by the region).

 Therefore, the enclosed occurrence specifications must be continuous.

 Used mainly within parallel combined fragments.

 Ignore / Consider (ignore / consider)

 Combined with other interaction operators.

 Ignore = there are some message types that are not shown within this
combined fragment. These message types can be considered
insignificant and are implicitly ignored if they appear in a corresponding
execution.

 Consider = designates which messages should be considered within this
combined fragment. This is equivalent to defining every other message
to be ignored.

 Format: (‘ignore’ | ‘consider’) ‘{‘ message-name [‘,’ message-name]* ‘}’

UML.Interactions | R. Cervenka

18

Combined Fragment (cont.)

 Assertion (assert)

 The sequences of the operand of the assertion are the only valid
continuations.

 All other continuations result in an invalid trace.

 Often combined with Ignore or Consider.

 Loop (loop)

 The loop operand will be repeated a number of times.

 The guard may include a lower and an upper number of iterations of
the loop as well as a boolean expression.

 Format: ‘loop’ [‘(‘ min [‘,’ max] ‘)’]

operator

UML.Interactions | R. Cervenka

19

Examples of Combined Fragments (1)

UML.Interactions | R. Cervenka

20

Examples of Combined Fragments (2)

UML.Interactions | R. Cervenka

21

Interaction Use

 A reference to an interaction.

 The interaction use is a shorthand for copying the contents of the referred
interaction at the place where the interaction use occurs.

 The copying must take into account substituting parameters with arguments
and connect the formal gates with the actual ones.

 Sharing an interaction as a portion of several other interactions.

 Name format:

name ::=[attribute-name ‘=’] [collaboration-use ‘.’] interaction-name
[‘(‘ io-argument [‘,’ io-oargument]* ‘)’] [‘:’ return-value

io-argument ::= in-argument | ‘out’ out-argument]

ref
Name

UML.Interactions | R. Cervenka

22

Examples of Interaction Uses (1)

UML.Interactions | R. Cervenka

23

Examples of Interaction Uses (2)

UML.Interactions | R. Cervenka

24

State Invariant

 A runtime constraint on the participants of the interaction.

 It may be used to specify a variety of different kinds of constraints, such as
values of attributes or variables, internal or external states, and so on.

 If the constraint is true, the trace is a valid trace; if the constraint is false, the
trace is an invalid trace.

{ constraint }

State of

the lifeline

UML.Interactions | R. Cervenka

25

Example of State Invariant

UML.Interactions | R. Cervenka

26

Execution Specification

 A specification of the execution of a unit of behavior or action within the
lifeline.

 The duration of an execution specification is represented by the start
execution occurrence specification and the finish execution occurrence
specification.

 An execution occurrence specification represents a moment in time at
which actions or behaviors start or finish.

UML.Interactions | R. Cervenka

27

Examples of Execution Specification

Executed action

UML.Interactions | R. Cervenka

28

Continuations

 A syntactic way to define continuations of different branches of an
alternative or weak sequencing combined fragment.

 Continuation is intuitively similar to labels representing intermediate points
in a flow of control.

 If an interaction operand of an alternative combined fragment ends in a
continuation with name (say) X, only interaction fragments starting with the
continuation X (or no continuation at all) can be appended.

UML.Interactions | R. Cervenka

29

Examples of Continuations

UML.Interactions | R. Cervenka

30

Destruction Event

 Represents the destruction of the instance described by the lifeline.

UML.Interactions | R. Cervenka

31

Gate

 A connection point for relating a message outside an interaction fragment
with a message inside the interaction fragment.

 Gates are connected through messages.

 Gates may be identified either by name (if specified), or by a constructed
identifier formed by concatenating the direction of the message and the
message name (e.g., “out_CardOut”).

 Different roles:

 Formal gates on interactions.

 Actual gates on interaction uses.

 Expression gates on combined fragments.

UML.Interactions | R. Cervenka

32

General Ordering

 Represents a binary relation between two occurrence specifications, to
describe that one occurrence specification must occur before the other in a
valid trace.

 This mechanism provides the ability to define partial orders of occurrence
specifications that may otherwise not have a specified order.

before after

UML.Interactions | R. Cervenka

33

Time Observation and Time Constraint

Time Observation

 A reference to a time instant during an execution.

 It points out the element in the model to observe and whether the
observation is when this model element is entered or when it is exited.

 They are usually named.

Time Constraint

 Defines a constraint that refers to a time interval.

 A time interval defines the range between two time expressions; in
interactions they usually refer to the time observations.

UML.Interactions | R. Cervenka

34

Duration, Observation and Duration Constraint

Duration

 Defines a value specification that specifies the duration in time, i.e.,
temporal distance between two time instants–starting point in time and
ending point in time.

Duration Observation

 A reference to a duration during an execution.

Duration Constraint

 Defines a constraint that refers to a duration interval.

 A duration interval defines the range between two durations.

UML.Interactions | R. Cervenka

35

Example of Timing Concepts

UML.Interactions | R. Cervenka

36

Additional Examples of Sequence Diagrams (1)

UML.Interactions | R. Cervenka

37

Additional Examples of Sequence Diagrams (2)

UML.Interactions | R. Cervenka

38

Additional Examples of Sequence Diagrams (3)

UML.Interactions | R. Cervenka

39

Communication Diagram

 An interaction diagram which focuses on the interaction between lifelines
where the architecture of the internal structure and how this corresponds
with the message passing is central.

 Semantically corresponds to a simple sequence diagram.

UML.Interactions | R. Cervenka

40

Lifeline

 Semantically identical to the lifeline from sequence diagrams.

 The format of the lifeline name (“lifelineident”) identical to the lifeline from
sequence diagrams.

 Communicating lifelines are linked by connectors.

Lifeline1

Lifeline2 Lifeline3

UML.Interactions | R. Cervenka

41

Message

 Semantically identical to the message from sequence diagrams.

 Arrow determines the communication direction.

 The message name is given by the following format:

message-name ::= sequence-expression ‘:’ messageident

sequence-expression ::= sequence-term [sequence-term]*

sequence-term ::= [‘.’ integer | name] [recurrence]

recurrence ::= ‘* ’ [‘| | ’] ‘[’ iteration-clause ‘]’ | ‘[’ guard ‘]’

 The integer represents the sequential order of the message within the
next higher level of procedural calling.

3.1.3 before 3.1.4 in 3.1

 The name represents a concurrent thread of control.

3.1a is concurrent with 3.1b within activation 3.1

 The recurrence represents conditional or iterative execution.

1.2*[i := 1..n] 3.5a[x > y] 4.3* | | [1..3]

UML.Interactions | R. Cervenka

42

Interaction Overview Diagram

 An interaction diagram which
defines interactions through a
variant of activity diagrams in a
way that promotes overview of
the control flow.

 Interaction overview diagrams
focus on the overview of the flow
of control where the nodes are
interactions or interaction uses.

 The lifelines and the messages do
not appear at this overview level.

UML.Interactions | R. Cervenka

43

Differences from Activity Diagrams

1. In place of object nodes of activity diagrams, interaction overview diagrams
can only have either (inline) interactions or interaction uses. Inline
interaction diagrams and interaction uses are considered special forms of
call behavior action.

2. Alternative combined fragments are represented by a decision node and a
corresponding merge node.

3. Parallel combined fragments are represented by a fork node and a
corresponding join node.

4. Loop combined fragments are represented by simple cycles.

5. Branching and joining of branches must in interaction overview diagrams be
properly nested. This is more restrictive than in activity diagrams.

6. Interaction overview diagrams are framed by the same kind of frame that
encloses other forms of interaction diagrams. The heading text may also
include a list of the contained lifelines (that do not appear graphically).

UML.Interactions | R. Cervenka

44

Timing Diagram

 An interaction diagram which is used to show interactions when a primary
purpose of the diagram is to reason about time, focusing attention on time
of occurrence of events causing changes in the modeled conditions of the
lifelines.

UML.Interactions | R. Cervenka

45

Lifeline

 Semantically identical to the lifeline from sequence diagrams.

 The format of the lifeline name (“lifelineident”) is identical to the lifeline
from sequence diagrams.

Lifeline1

Lifeline2

Lifeline3

UML.Interactions | R. Cervenka

46

Message

 Semantically identical to the message from sequence diagrams.

 The format of the message name (“messageident”) is identical to the
message from sequence diagrams.

 The message labels can be used to denote that a message may be disrupted
by introducing labels with the same name.

 Message labels are the notational shorthands used to prevent cluttering
of the diagrams with a number of messages crisscrossing the diagram
between lifelines that are far apart.

c
a
l
l
(
)

d
o
(
“
i
t
”
)

mymsglab

mymsglab

UML.Interactions | R. Cervenka

47

State or Condition Timeline

 Representation of changing the state of the classifier or attribute, or some
testable condition in time.

 It is also permissible to let the state-dimension be continuous as well as
discrete. This is illustrative for scenarios where certain entities undergo
continuous state changes, such as temperature or density.

Initializing

Acquiring

Reporting

Idle

{level = 100}

{level = 0}

UML.Interactions | R. Cervenka

48

General Value Lifeline

 Shows the value of the connectable element as a function of time.

 Value is explicitly denoted as text.

 Crossing reflects the event where the value changed.

x”FFFF” x”00FF”

UML.Interactions | R. Cervenka

49

Additional Examples of Timing Diagrams (1)

UML.Interactions | R. Cervenka

50

Additional Examples of Timing Diagrams (2)

