
Radovan Cervenka

State Machines

Unified Modeling Language

UML.StateMachines | R. Cervenka

2

State Machine Model

 Used for modeling discrete behavior through finite state transition
systems (called also final state machine - FSM).

 Behavioral state machines—used to specify behavior (life cycle) of various
model elements, e.g., classes, instances, subsystems, or components.

 Protocol state machines—used to express usage protocols, i.e., legal usage
scenarios of classifiers, interfaces, or ports.

 The UML’s state machine formalism is an object-based variant of Harel
statecharts.

Consists of:

 State machine diagrams.

 Element descriptions.

Used (mainly) in:

 Analysis and design specification of behavior of various model
elements, or specification of usage protocols.

UML.StateMachines | R. Cervenka

3

State Machine

 Specifies the behavior of part of a system in the form of final state automata.

 Behavior is modeled as a traversal of a graph of state nodes interconnected
by one or more joined transition arcs that are triggered by the dispatching
of series of (event) occurrences.

 During this traversal, the state machine executes a series of activities
associated with various elements of the state machine.

 A state machine owns one or more regions, which in turn own vertices and
transitions. Each region determines an independent state machine which
runs in parallel to the state machines in other regions.

 The behaviored classifier owning a state machine defines which signal and
call triggers are defined for the state machine, and which attributes and
operations are available in activities of the state machine.

 A state machine without a context classifier may use triggers that are
independent of receptions or operations of a classifier.

 A state machine is drawn as a state machine diagram with its contained
nodes and vertices. The content can optionally be placed within a diagram
frame having the label “stm” before name.

UML.StateMachines | R. Cervenka

4

Examples of State Machines (1)

Idle

Heating

Error

Too cold Too hot

OK OK

Error Error

Error

removed

Cooling

stm TemperatureController

UML.StateMachines | R. Cervenka

5

Examples of State Machines (2)

UML.StateMachines | R. Cervenka

6

Examples of State Machines (3)

UML.StateMachines | R. Cervenka

7

(Simple) State

 Represents a situation during which some (usually implicit) invariant
condition holds.

 The invariant may represent a static situation (such as an object waiting for
some external event to occur) or a dynamic condition (such as the process
of performing some behavior).

 A state becomes active when it is entered as a result of some transition, and
becomes inactive if it is exited as a result of a transition.

 Internal behaviors–executed within the state.

 Format: event ‘/’ behavior-expression

 Special events:

— entry: entry to the state; specifies the entry behavior.

— exit: exit from the state; specifies the exit behavior.

— do: as long as the modeled element is in the state or until the
computation specified by the expression is complete; specifies the
do activity (behavior).

UML.StateMachines | R. Cervenka

8

(Simple) State (cont.)

 Internal transitions–executed without exiting or re-entering the state in
which they are defined.

 Format as for transitions.

 Deferrable events–do not trigger any transitions in the current state, but
remain in the event pool ready for processing by another state or transition.

 Format: event ‘/’ ‘defer’.

Name

Name

internal behaviors

internal transitions

Name

UML.StateMachines | R. Cervenka

9

Example of Simple State

TypingPassword

entry / setEchoInvisible

exit / setEchoNormal

keystroke / handleCharacter

help / displayHelp

UML.StateMachines | R. Cervenka

10

Composite State

 A composite state either:

 contains one region (called non-orthogonal composite state), or

 is decomposed into two or more orthogonal regions (called orthogonal
composite state).

 Each region can contain a set of mutually exclusive disjoint substates and a
set of transitions.

 If the composite is active, each of its owned regions can have at most one
immediately contained substate active. Therefore, if a state is active, all its
transitively contained states are also active.

 A transition to the enclosing state represents a transition to the initial
pseudostate in each region.

 A transition going directly to a substate activates it explicitly and all other
orthogonal regions (if any) are activated in their initial pseudostates.

 A transition to a final state of the region represents the completion of
behavior in the enclosing region.

 Completion of behavior in all orthogonal regions represents completion of
behavior by the enclosing composite state.

UML.StateMachines | R. Cervenka

11

Composite State (cont.)

 When exiting from a composite state, the active substates are exited
recursively.

 The exit behaviors are executed in sequence starting with the innermost
active states in the current state configuration.

CompositeState

Substate1

Substate2

Substate3

Substate4

event1

Substate1

Substate2

event2

event3

CompositeState

Orthogonal composite sate:Non-orthogonal
composite sate:

substates regions

Composite sate
with hidden
decomposition:

Composite
State

UML.StateMachines | R. Cervenka

12

Examples of Composite States (1)

Human Life

Single

Married

Unemployed

Employed

Birth

Divorced

marriage

divorcemarriage

taking a jobloosing a job

Death

UML.StateMachines | R. Cervenka

13

Examples of Composite States (2)

UML.StateMachines | R. Cervenka

14

Examples of Composite States (3)

UML.StateMachines | R. Cervenka

15

Submachine State

 Specifies the insertion of the specification of a submachine state machine.

 Semantically equivalent to a composite state.

 Regions of the submachine state machine are the regions of the
composite state.

 Transitions in the containing state machine can have entry/exit points of
the inserted state machine as targets/sources.

 The same state machine may be a submachine more than once in the
context of a single containing state machine.

Name:ReferencedStateMachine

UML.StateMachines | R. Cervenka

16

Examples of Submachine States (1)

UML.StateMachines | R. Cervenka

17

Examples of Submachine States (2)

UML.StateMachines | R. Cervenka

18

Examples of Submachine States (3)

Two alternatives of state
machine referable from a

submachine state:

UML.StateMachines | R. Cervenka

19

Transition

 A directed relationship between a source vertex and a target vertex, which
takes the state machine from one state configuration to another,
representing the response to an occurrence of an event of a particular type.

 High-level (group) transition–originating from composite states.

 If triggered, they result in the innermost exiting of all the substates.

 Compound transition–a “semantically complete” an acyclical unbroken
chain of transitions joined via join, junction, choice, or fork pseudostates
(see later) that define path from a set of source states to a set of destination
states.

 A simple transition connecting two states is therefore a special common
case of a compound transition.

 Completion transition–a transition originating from a state or an exit point
which does not have an explicit trigger and is implicitly triggered by a
completion of its source.

transition

Simple transition: Compound transitions:
[…]

[…]

UML.StateMachines | R. Cervenka

20

Transition (cont.)

 Format:

transition ::= [trigger [‘,’ trigger]* [‘[‘ guard ‘]’] [‘/’ behavior-expression]]

 trigger specifies the event which fires the transition

trigger ::= name [‘(‘ [attr-spec [‘,’ attr-spec]*] ‘)’] |
‘all’ | (‘after’ | ‘at’ | ‘when’) expression

attr-spec ::= attr-name [‘:’ type-name]

— attr-spec specifies the event attribute; its name and type

— ‘all’ determines the accepting of all events

— ‘after’, ‘at’ and ‘when’ determine the time event relative to the
specified time

 guard specifies a condition which enables firing the transition

 behavior-expression specifies the behavior which is executed by firing the
transition

 Example:

right-mouse-down(location) [location in window] /

object := pick-object(location);object.highlight()

UML.StateMachines | R. Cervenka

21

Transition–Presentation Options

 Trigger = signal receipt

 Behavior = send signal action

 Behavior = other action

signal signal

signal /signal

/actionaction

UML.StateMachines | R. Cervenka

22

Examples of Transitions

UML.StateMachines | R. Cervenka

23

Initial

 A pseudostate representing a default vertex that is the source for a single
transition to the default state of a region.

 There can be at most one initial vertex in a region.

 Can have at most one outgoing transition.

 The outgoing transition from the initial vertex may have a behavior, but not
a trigger or guard.

UML.StateMachines | R. Cervenka

24

Final State

 A special kind of state signifying that the enclosing region is completed.

 If the enclosing region is directly contained in a state machine and all other
regions in the state machine also are completed, the entire state machine is
completed.

UML.StateMachines | R. Cervenka

25

Shallow History

 A pseudostate representing the most recent active substate of its containing
state, but not the substates of that substate.

 A composite state can have at most one shallow history vertex.

 A transition coming into the shallow history vertex is equivalent to a
transition coming into the most recent active substate of a state.

 At most one transition may originate from the history connector to the
default shallow history state. This transition is taken in case the composite
state had never been active before.

B

B1 B2A C

H

UML.StateMachines | R. Cervenka

26

Deep History

 A pseudostate representing the most recent active configuration (including
recursive substates) of the composite state that directly contains this
pseudostate, i.e., the state configuration that was active when the
composite state was last exited.

 A composite state can have at most one deep history vertex.

 At most one transition may originate from the history connector to the
default deep history state. This transition is taken in case the composite state
had never been active before.

B
B1

B2
A

H*

B11

B12

C

UML.StateMachines | R. Cervenka

27

Entry and Exit Points

Entry Point

 A pseudostate which is an entry point of a state
machine or a composite state.

 In each region of the state machine or composite
state it has a single transition to a vertex within
the same region.

Exit Point

 A pseudostate which is an exit point of a state
machine or composite state.

 Entering an exit point within any region of the
composite state or state machine referenced by a
submachine state implies the exit of this
composite state or submachine state and the
triggering of the transition that has this exit point
as source in the state machine enclosing the
submachine or composite state.

entry point

exit points

UML.StateMachines | R. Cervenka

28

Fork and Join

Fork

 A pseudostate used to split an incoming transition into two or more
transitions terminating on orthogonal target vertices (i.e., vertices in
different regions of a composite state).

 The segments outgoing from a fork vertex must not have guards or triggers.

 Must have exactly one incoming and at least two outgoing transitions.

Join

 A pseudostate used to merge several transitions emanating from source
vertices in different orthogonal regions.

 The transitions entering a join vertex cannot have guards or triggers.

 Must have at least two incoming transitions and exactly one outgoing
transition.

fork A1 A2

B1 B2

S E

join

UML.StateMachines | R. Cervenka

29

Junction

 A pseudostate used to chain together multiple transitions.

 No semantics impact, can be replaced by multiple transitions.

 Constructs compound transition paths between states used to merge and/or
split transitions.

 Must have at least one incoming and one outgoing transition.

junction

UML.StateMachines | R. Cervenka

30

Choice

 A pseudostate which, when reached, result in the dynamic evaluation of the
guards of the triggers of its outgoing transitions. This realizes a dynamic
conditional branch.

 Allows splitting of transitions into multiple outgoing paths such that the
decision on which path to take.

 The decision may be a function of the results of prior actions performed in
the same execution step.

 If more than one of the guards evaluates to true, an arbitrary one is selected.

 If none of the guards evaluates to true, the model is considered ill-formed.

 Predefined “else” guard can be used for one outgoing transition.

 Must have at least one incoming and one outgoing transition.

[guard1]

[else]

[guard2]

UML.StateMachines | R. Cervenka

31

Terminate

 A pseudostate used to terminate the execution of its state machine by
means of destroying its context object.

 The state machine does not exit any states nor does it perform any exit
actions other than those associated with the transition leading to the
terminate pseudostate.

UML.StateMachines | R. Cervenka

32

Protocol State Machine

 A variant of state machine that specifies which operations of the context
classifier can be called in which state and under which condition, i.e.,
determines the allowed call sequences on the classifier’s operations.

 Presents the possible and permitted transitions on the instances of its
context classifier, together with the operations that carry the transitions.

 In this way an instance usage lifecycle can be created.

 All transitions of a protocol state machine must be protocol transitions.

 Protocol state machines cannot have deep or shallow history pseudostates.

stm Name {protocol}

UML.StateMachines | R. Cervenka

33

Example of Protocol State Machine

UML.StateMachines | R. Cervenka

34

State in Protocol State Machines

 An exposed stable situation of its context classifier.

 The state represents the situation when an instance of the classifier is not
processing any operation.

 Can specify an invariant–condition(s) that is(are) always true when an
instance of the classifier is in the current state.

 State invariants are additional conditions to the preconditions of the
outgoing transitions, and to the postcondition of the incoming
transitions.

 Cannot have entry, exit, or do internal behaviors.

Name
[invariant]

UML.StateMachines | R. Cervenka

35

Protocol Transition

 A specialized transition that specifies a legal transition for an operation.

 Specifies:

 Pre-condition: the condition that must be true at triggering the
transition.

 Operation: a reference to the context’s operation which represents its
call at the given position in the protocol state machine.

 Post-condition: the condition that should be obtained once the
transition is accomplished.

 No behavior (action) is specified for protocol transition.

[precondition] operation / [postcondition]

UML.StateMachines | R. Cervenka

36

Overall Semantics of State Machines

 Event occurrences go into the (FIFO) event pool.

 Event occurrences are processed one at a time, but only if processing of the
previous event completed; except of do activities of states (see later). This is
called run-to-completion mechanism.

 One event occurrence may result in one or more transitions being enabled
for firing (each in one orthogonal region).

 All enabled (non-conflicting) transitions are fired.

 The order in which selected transitions fire is not defined.

 When all orthogonal regions have finished executing the transition, the
current event occurrence is fully consumed.

 If no transition is enabled, the event occurrence is discarded.

 During a transition, a number of actions may be executed. If such an action
is a synchronous operation invocation on an object executing a state
machine, then the transition step is not completed until the invoked object
completes its action.

UML.StateMachines | R. Cervenka

37

Overall Semantics of State Machines (cont.)

 In case of conflicting transitions (for instance, two transitions with the same
event and the guards both satisfied, originating from the same state), only
one of them will fire.
If t1 is a transition whose source state is s1, and t2 has source s2, then:

 If s1 is a direct or transitively nested substate of s2, then t1 has higher
priority than t2 t1 is fired.

 If s1 and s2 are not in the same state configuration (an execution state of
the state machine), then there is no priority difference between t1 and
t2.

UML.StateMachines | R. Cervenka

38

Process of State Machine Modeling

1. Identify possible states.

2. Identify external events which can cause changes of states.

3. To each state attach transitions based on relevant events.

4. Add internal actions and transitions.

5. Identify composite states and specify contents of regions.

6. Repeat until the state machine is complete.

7. Review the state machine by simulation of the owner’s lifecycle. Based on
simulated events, check the appropriate triggering of transitions and
execution of behavior.

