
Radovan Cervenka

Use Cases

Unified Modeling Language

UML.UseCases | R. Cervenka

2

Use Case Model

 Functionality of the system and its surroundings.

Consists of:

 Use Case diagrams

 Use Case and Actor descriptions

Supported by:

 UI descriptions (incl. prototypes)

 Specification of non-functional requirements

Used (mainly) in:

 Requirements  functional system requirements

 Analysis and design  analysis and design models

 Testing  test cases

 Management  planning and tracking

UML.UseCases | R. Cervenka

3

Use Case Diagram

 Defines outer behavior/functionality/required usages of a system.

 Actors, use cases, subjects and their relationships.

Customer

Salesperson

Shipping

Clerk

Supervisor

check

status

establish

credit

fill

orders

place

order

Commercial System

UML.UseCases | R. Cervenka

4

Actor

 A role played by an entity that interacts with the subject (system).

 External to the subject.

 Represent roles played by human users, external hardware, or other
subjects.

 A single physical instance may play the role of several different actors

 A given actor may be played by multiple different instances.

 A specialized classifier (behaviored classifier).

Customer

«actor»

Customer

Directory Server

UML.UseCases | R. Cervenka

5

Use Case

 The specification of a set of actions performed by a system, which yields an
observable result that is, typically, of value for one or more actors or other
stakeholders of the system.

 A coherent behavior, possibly including variants (exception of error
handling), that the subject can perform in collaboration with one or more
actors.

 Primary actor initiates the use case.

 Secondary actor is used to complete the use case.

 Can be internally described by interactions, activities, and state machines, or
by pre-conditions and post-conditions as well as by natural language text
where appropriate.

 A specialized classifier (behaviored classifier).

Withdraw

Fill orders Perform ATM

Transaction

extension points

Selection

OrderStationery

extension points

order created: in Created state

order shipped: in Shipped state

UML.UseCases | R. Cervenka

6

Scenario

 A session that an actor instance has with the system.

 Has details of real data and actual expected output.

 Potentially hundreds to thousands in an application.

John enters his account# 404504

John enters his pin# 9342

John requests his average balance from 1/1/97 - 7/31/97

System gives the average balance

1

2
Larry enters his account# 4343443

Larry enters his pin# 84954

Larry requests his average balance from 1/1/95 - 12/31/96

System gives the average balance

3
Mary enters her account# 34334

Mary enters her pin# 4343

System detects non valid pin and repeats the procedure

UML.UseCases | R. Cervenka

7

Use Case vs. Scenario

Use cases are not scenarios!!!

 Use case represents a set of potential scenarios.

 Looking at a family of similar scenarios, you can gather the essence of what
is typically done.

 Similar scenarios will follow similar patterns of work and provide similar
types of results.

 Normally each use case focuses on a specific goal.

 E.g. to obtain the current account balance.

Scenario Use Case

UML.UseCases | R. Cervenka

8

Use Case Description

CHARACTERISTIC

 Name: use case name

 Goal: a longer statement of the
goal

 Scope: subsystem, application, ...

 Pre-conditions: state before
use case execution

 Post-conditions: state after
use case execution

 Trigger: action upon which is
use case started

 Primary actor: a role name

 Secondary actors: list of other
needed roles or systems

ALGHORITHM
(primary scenario, extensions and
variations)

 steps of the algorithm:

 <step#> <action description>

 control expressions:

 if then else, repeat, switch, ...

RELATED INFORMATION

 Priority: how critical

 Time: a performance duration

 Frequency: how often

 Supplementary specifications: other
non-functional requirements

UML.UseCases | R. Cervenka

9

Main success scenario, extensions and variations (Cockburn)

 This is an alternative way how to describe use case algorithm.

 The algorithm is divided to 3 parts:

 Main success scenario

— A sequence of steps (usually linear) leading to a successful
execution of the use case in which nothing goes wrong.

 Extensions

— Description of handling branches of the main success scenario.
Each extension refers to a step of the main success scenario which is
being extended, describes a condition under which it happens, and
lists a number of steps used to handle the extension. Extensions are
used to describe both, success and failure (exceptional) execution.

 (Technology and data) variations

— Description of different ways how the steps of the main success
scenario can be executed; ie., different ways of execution or
different types of data can be used.

UML.UseCases | R. Cervenka

10

Example of main success scenario, extensions and variations

 Use Case: Buy Goods

 MAIN SUCCESS SCENARIO:

1. Buyer calls in with a purchase
request.

2. Company captures buyer’s
name, address, requested
goods, etc.

3. Company gives buyer
information on goods, prices,
delivery dates, etc.

4. Buyer signs for order.

5. Company creates order, ships
order to buyer.

6. Company ships invoice to
buyer.

7. Buyers pays invoice.

 EXTENSIONS:

3a. Company is out of one of the
ordered items:

3a1. Renegotiate order.

4a. Buyer pays directly with credit
card:

4a1. Take payment by credit
card

7a. Buyer returns goods:

7a1. Handle returned goods

 VARIATIONS:

1’. Buyer may use phone, fax, or
web order form

2’. With or without company info.

2’’. With or without discount
request.

UML.UseCases | R. Cervenka

11

System (UML 1.*)

 The functional boundary of the system.

 Described by a finite set of use cases.

 Actors are drawn outside of the system, use cases inside.

Customer

Salesperson

Shipping

Clerk

Supervisor

Commercial System

UML.UseCases | R. Cervenka

12

Classifier as a Subject (UML 2.*)

 A classifier with the capability to own use cases.

 Typically represents the subject to which the owned use cases apply.

MakePurchase

DepartmentStore

UML.UseCases | R. Cervenka

13

Association (in Use Case Diagrams)

 A (binary) relationship between an actor and a use case meaning interaction
of the actor with the use case’s subject.

 Multiplicity

 The range of allowable instances at the association end.

 A list of values and intervals expressed as: lower limit .. upper limit

 Possible values : number or * (many)

‘1’, ‘* ’, ‘0..* ’, ‘1..* ’, ‘2, 4, 6..10, 20..* ’

 Navigability

 Indicates that navigation is supported toward attached classifier.

Customer

check

status

establish

credit

place

order

*1

1

1

1

1

UML.UseCases | R. Cervenka

14

Include

 Indicates that an including use case contains the behavior defined in
another, included (base), use case.

 Included use case obviously implements a behavior shared by a number of
use cases (“subroutine”).

 The included use case is always required for the including use case to
execute correctly.

«include»«include»

Withdraw

Identification

Deposit
Get Account

Info

«include»

UML.UseCases | R. Cervenka

15

Extend

 A relationship from an extending use case to an extended use case that
specifies how and when the behavior defined in the extending use case can
be inserted into the behavior defined in the extended use case.

 The extension takes place at one or more specific extension points defined in
the extended use case.

 The extended use case is defined independently of the extending use case.

 The extending use case usually depends on the extended use case.

 Extension often represents unusual behavior, such as an exception or error
handling.

«extend»

Perform ATM

Transaction

extension points

Selection

Online Help

Condition: {customer selected HELP}

extension point: Selection

UML.UseCases | R. Cervenka

16

Example of Extension

1. Enter employee information

2. Enter salary information

3. Enter job title

4. Save entry

5. Validation: System validates

6. If no problems, systems setups
new employee record

Create New Employee - extended use case

• System checks employee

police record

Create Body Guard - extending use case

«extend»

Create New Employee

extension points

Validation

Create Body Guard

extension point: Validation

UML.UseCases | R. Cervenka

17

Generalization of Actors

 The specific (child) actor gets all capabilities of the general (parent) actor.

 Simplifies the diagram, without losing semantics.

 Abstract actors can also be used.

Account

Holder

Check

Balance

Deposit

Cash

Withdraw

Cash

Another Bank

Charge Back

Bank

UML.UseCases | R. Cervenka

18

Generalization of Use Cases

 The specific use case represents a more specific behavior than the behavior
of the general use case.

 Abstract use cases can also be used.

Modify

Order

Manage

Order

Create

Order

Delete

Order

Order Manager

*1

UML.UseCases | R. Cervenka

19

Process of Use Case Modeling

1. Capture a common vocabulary (glossary) / create domain model.

2. Name the system scope and boundaries.

3. Find and briefly describe actors; first primary then secondary.

4. For each actor determine a set of its use cases – “candidate use case list”.

5. Reconsider and revise use cases - add, subtract, merge use cases.

6. Briefly describe use cases.

7. Package use cases and actors.

8. Present the use case model in use case diagrams.

9. Describe use cases in details; brainstorm scenarios and analyze all attributes.

10. Structure the use case model.

11. Repeat the process until the model is complete and consistent.

12. Review the use case model.

UML.UseCases | R. Cervenka

20

Rules for Use Case Diagrams

 Differentiate primary and secondary actors.

 Use case must provide a real service to user.

 Keep drawings clear and neat.

 Do not put too many use cases in one diagram.

 Simpler diagrams are easier to understand.

 Split up the use case model into use case packages.

 Package related use cases.

 Functional decomposition of the system.

