
Radovan Cervenka

Analysis and Design

Object-Oriented Software Engineering

OOSE.AnalysisAndDesign | R. Cervenka

2

Goals

 To transform the requirements into a design of the system to-be

 To evolve a robust architecture for the system

 To adapt the design to match the implementation environment, designing it
for performance

OOSE.AnalysisAndDesign | R. Cervenka

3

Workflow

OOSE.AnalysisAndDesign | R. Cervenka

4

Architectural Analysis

 Define Modeling Conventions

 to ensure that the representation of the architecture and design are
consistent across teams and iterations; design guidelines

 Define the High-Level Organization of Subsystems

 to create an initial structure for the Design Model

 Identify Analysis Mechanisms

 to define the architectural patterns and services used by designers

 Identify Key Concepts

 to identify the key abstractions (representation of concepts identified during
business modeling and requirement activities) that the system must handle;
initial classes

 Create Use-Case Realizations

 to create the Design Model artifacts used to express the behavior of the use
cases

 Review the Results

 to ensure that the results of architectural analysis is complete and consistent

OOSE.AnalysisAndDesign | R. Cervenka

5

Use-Case Analysis

 Supplement the Descriptions of the Use Case

 to capture additional information needed in order to understand the
required internal behavior of the system that may be missing from the
use-case description written for the customer of the system; ‘white box’
description

For each use case realization

 Find Classes from Use-Case Behavior

 to identify a candidate set of analysis classes capable of performing the
behavior described in use cases

 Distribute Use-Case Behavior to Classes

 to express the use-case behavior in terms of collaborating analysis
classes and to determine the responsibilities of analysis classes

OOSE.AnalysisAndDesign | R. Cervenka

6

Use-Case Analysis (cont.)

For each resulting analysis class

 Describe Responsibilities

 to describe the responsibilities of a class of objects identified from use-case
behavior

 Describe Attributes and Associations

 to define attributes, to establish aggregations and associations between
analysis classes and to describe event dependencies between analysis
classes

 Qualify Analysis Mechanisms

 to identify analysis mechanisms (if any) used by the class and to provide
additional information about how the class applies the analysis mechanism

 Unify Analysis Classes

 to ensure that each analysis class represents a single well-defined concept,
with non-overlapping responsibilities

 Evaluate Your Results

 to verify that the analysis objects are consistent and meet the functional
requirements

OOSE.AnalysisAndDesign | R. Cervenka

7

Architectural Design

 Identify Design Mechanisms

 to categorize clients of analysis mechanisms, to invent the
implementation mechanisms, to map design mechanisms to
implementation mechanisms and to document architectural
mechanisms

 Identify Design Classes and Subsystems

 to refine the analysis classes, categorizing them as design classes or
subsystems

 Identify Interfaces

 to identify the interfaces of the subsystems based on their
responsibilities

 Identify Reuse Opportunities

 to identify where existing subsystems and/or components may be
reused based on their interfaces

OOSE.AnalysisAndDesign | R. Cervenka

8

Architectural Design (cont.)

 Reverse-engineer components and databases

 to incorporate potentially reusable model elements from other projects,
external sources or prior iterations

 Define the Low-level Organization of Subsystems

 to organize the lower layers of the Design Model

 Include Architecturally Significant Model Elements in the Logical View

 to document the results of Architectural Design

OOSE.AnalysisAndDesign | R. Cervenka

9

Describe Concurrency

 Define Concurrency Requirements

 to define the extent to which parallel execution of tasks is required for the
system

 Identify Processes

 to define the processes and threads which will exist in the system

 Identify Process Lifecycles

 to identify when processes and threads are created and destroyed

 Identify Inter-Process Communication Mechanisms

 to identify the mean by which processes and threads will communicate

 Allocate Inter-Process Coordination Resources

 to allocate scarce resources and to manage potential performance
bottlenecks

 Map Processes onto the Implementation Environment

 to map processes onto the concepts supported by the implementation
environment

 Distribute Model Elements Among Processes

 to determine which processes classes and subsystems should execute within

OOSE.AnalysisAndDesign | R. Cervenka

10

Describe Distribution

 Define the network configuration

 to understand the configuration and topology of the network

 Allocate processes to nodes

 to distribute the workload of the system

 Evaluate Your Results

OOSE.AnalysisAndDesign | R. Cervenka

11

Subsystem Design

 Distribute Subsystem Behavior to Subsystem Elements

 to specify the internal behaviors of the subsystem and to identify new
classes or subsystems needed to satisfy subsystem behavioral
requirements

 Document Subsystem Elements

 to document the internal structure of the subsystem

 Describe Subsystem Dependencies

 to document the interfaces upon which the subsystem is dependent

OOSE.AnalysisAndDesign | R. Cervenka

12

Class Design

 Create Initial Design Classes

 to design boundary, entity and control classes

 Identify Persistent Classes

 to identify classes that need to be persistently stored, e.g. treated by
database

 Define Class Visibility

 for each class to determine the class visibility within the package in which it
resides

 Define Operations

 to identify, name and describe the operations, define operation visibility
and define class operations

 Define Methods

 to decide how operations are to be implemented (e.g. how parameters are
to be implemented and how any special algorithms to be used, etc.)

 Define States

 to describe the object states for some classes and operations

OOSE.AnalysisAndDesign | R. Cervenka

13

Class Design (cont.)

 Define Attributes

 to identify attributes needed by the class to carry out its operations

 Define Dependencies

 to define dependencies between communicating

 Define Associations

 to specify the relationships between classes those of which instances
communicate

 Define Generalizations

 to organize classes into a generalization hierarchy to reflect common
behavior and common structure

 Handle Non-Functional Requirements in General

 to refine the design classes in order to handle non-functional
requirements (e.g. performance, re-usability of existing components,
programming language constraints, security, distribution, etc.)

 Evaluate Your Results

OOSE.AnalysisAndDesign | R. Cervenka

14

Use-Case Design

 Describe Interactions Between Design Objects

 for each use-case realization to illustrate the interactions between its
participating design objects

 Simplify Sequence Diagrams using Subsystems (optional)

 to simplify the sequence diagrams by replacing their large subsections with
a single message to the subsystem

 Describe Persistence-related Behavior

 to specify treating of persistent objects, e.g. writing, reading, deleting,
modeling of transactions, handling of errors, handling of concurrency
control, etc.

 Refine the Flow of Events Description

 to add further description into sequence diagrams, e.g. textual descriptions,
algorithm, extension points, etc.

 Unify Classes and Subsystems

 to unify the identified classes and subsystems in taking into account
naming, behavior, consistency, etc.

 Evaluate Your Results

OOSE.AnalysisAndDesign | R. Cervenka

15

Database Design

 Map Persistent Design Classes to the Data Model

 to create define/refine the data model to support storage and retrieval
of persistent classes

 Optimize the Data Model for Performance

 to optimize the database data structures for performance

 Optimize Data Access

 to provide for efficient data access using indexing

 Define Storage Characteristics

 to define the space requirements and disk page organization of the
database

OOSE.AnalysisAndDesign | R. Cervenka

16

Database Design (cont.)

 Define Reference Tables

 to define standard reference tables used across the project and to define
default values for data attributes

 Define Data and Referential Integrity Enforcement Rules

 to ensure the integrity of the database

 Distribute Class Behavior to the Database

 to determine the behavior of the class which can be distributed to, and
implemented by, the database

 Review the Results

OOSE.AnalysisAndDesign | R. Cervenka

17

Workers and Artifacts

OOSE.AnalysisAndDesign | R. Cervenka

18

Workflow Detail: Define the Architecture

OOSE.AnalysisAndDesign | R. Cervenka

19

Workflow Detail: Elaborate the Design

