
Radovan Cervenka

Implementation

Object-Oriented Software Engineering

OOAM.Implementation | R. Cervenka

2

Goals

 To define the organization of the code, in terms of implementation
subsystems organized in layers

 To implement classes and objects in terms of components (source files,
binaries, executables, and others)

 To test the developed components as units

 To integrate the results produced by individual implementers (or teams),
into an executable system

OOAM.Implementation | R. Cervenka

3

Workflow

OOAM.Implementation | R. Cervenka

4

Structure the Implementation Model

 Create the Initial Implementation Model Structure

 to establish an initial structure for the Implementation Model - component
diagrams

 Adjust Subsystems

 to adapt the structure of the model to reflect team organization or
implementation language constraints

 Decide Placement of Executables

 to add main executables to the Implementation Model structure

 Define Imports for Each Subsystems

 to define dependencies between subsystems

 Decide Placement of Test Subsystems and Test Components

 to add test artifacts (automated test procedures) to the Implementation
Model

 Update the Implementation View

 to update the Implementation View of the Software Architecture Document

 Evaluate the Implementation View

OOAM.Implementation | R. Cervenka

5

Plan System Integration

 Identify Subsystems 1

 to identify which implementation subsystems participate in the use
cases and scenarios for the current iteration

 Define "Builds Sets” 2

 to define meaningful sets of subsystems (build sets or towers), that
belong together from an integration point of view

 Define a Series of Builds 3

 to define a series of builds (subsystems implemented/integrated at
once) to incrementally integrate the system; bottom-up in the layered
structure of subsystems

 Evaluate the Integration Build Plan

1, 3

2

OOAM.Implementation | R. Cervenka

6

Plan Subsystem Integration

 Define the Builds

 to select one, or several scenarios, that will be the goal for each
increment of the integration

 Identify the Classes*

 to identify the classes that participate in the selected scenarios

 Update the Subsystem's Imports

 to identify which other implementation subsystems (which versions)
are needed for this build

*

OOAM.Implementation | R. Cervenka

7

Implement Component

 Implement Operations

 to choose an algorithm and data structures, define new classes and
operations as necessary and code the operation

 Implement States

 to implement an object's states, if needed

 Use Delegation to Reuse Implementation

 to use delegation for classes that can be implemented by reusing of
existing classes

 Implement Associations

 to implement associations as pointers, collection of pointers (possibly
ordered or sorted), attributes in both directions, special classes, etc.

OOAM.Implementation | R. Cervenka

8

Implement Component (cont.)

 Implement Attributes

 to implement attributes either as a variable of a built-in primitive, a
reusable component class, or a new class

 Provide Feedback to Design

 to provide the rework feedback to the design if a design error is
discovered in any of the steps

 Evaluate the Code

 to check the code before unit testing; setting the compiler's warning
level to the most detailed level, mental checking the operations, using
of tools (e.g. a static code rule checker)

OOAM.Implementation | R. Cervenka

9

Fix a Defect

 Stabilize the Defect

 to stabilize the defect, to make it occur reliably and identify which of
the factors in the test case, make the defect occur

 Locate the Fault

 to execute the test cases that cause the defect to occur and try to
identify where in the code the source of the fault is

 Fix the Fault

 to fix the fault and add a special test case that verifies this particular
fault

OOAM.Implementation | R. Cervenka

10

Perform Unit Tests

 Identify the Required Types of Tests

 to identify the appropriate types of tests necessary to test the unit

 Identify and Describe the Test Cases

 to identify and describe the test conditions to be used for testing, to
identify the specific data necessary for testing, and to identify the
expected results of test

 Structure Test Procedures

 to identify and describe the setup, execution steps, and evaluation
methods for implementing and executing unit test

 Review and Assess Test Coverage

 to identify and describe the measures of test that will be used to identify
the completeness of testing

OOAM.Implementation | R. Cervenka

11

Perform Unit Tests (cont.)

 Implement Unit Tests

 to create appropriate test scripts (for automated testing) which
implement (and execute) the test cases as desired

 Execute Unit Tests

 to execute the test procedures (or test scripts if testing is automated)

1 set-up the test environment to ensure that all the needed components

2 initialize the test environment to ensure all components are in the
correct initial state for the start of testing

3 execute the test procedures

 Evaluate Execution of Test

 to determine whether the tests completed successfully, as desired and
to determine if corrective action is required

OOAM.Implementation | R. Cervenka

12

Review Code

Techniques

 Inspection

 a formal evaluation technique in which the code is examined in detail
by a person or group other than the author to detect errors, violations
of development standards, and other problems.

 Walkthrough

 the author of the code, leads one or more reviewers through the code.
The reviewers ask questions, and make comments regarding technique,
style, possible error, violation of coding standards, and so on.

 Code reading

 one or two persons read the code. When the reviewers are ready, they
can meet and present their comments and questions. The meeting can
be omitted, however, and reviewers can give their comments and
questions to the author in written form instead. Code reading is
recommended to verify small modifications, and as a "sanity check”.

OOAM.Implementation | R. Cervenka

13

Integrate Subsystem and Integrate System

 Integrate Components

 to integrate the implemented classes (components); incrementally
bottom-up in the compilation-dependency hierarchy; care about more
implementers working in parallel

 Release the Subsystem

 to notify the system integrators that a new version of the subsystem is
ready for integration after the final component is integrated

 Incrementally Add Subsystems

 to integrate the subsystems one-by-one, into an integration area;
bottom-up approach is recommended in the layered structure

 Release a Build Internally

 to release the system internally after it has passed the System Test, that
make the build available to the implementers

OOAM.Implementation | R. Cervenka

14

Artifacts

OOAM.Implementation | R. Cervenka

15

Workflow Details

Structure the Implementation Model

Plan the Integration within an Iteration

Implement Classes Within an Iteration

OOAM.Implementation | R. Cervenka

16

Workflow Details (cont.)

Integrate Each Subsystem Within an Iteration

Integrate the System Within an Iteration

