3 Time and Space Complexity

So far, we have only studied decision problems with respect to their computability. In this
section we will look at the problem of how much space and/or time it takes to solve certain
decision problems, and whether there are space and time hierarchies of decision problems.

3.1 Gaps and Speed-ups

First, we show that in certain situations there can be large gaps between complexity classes.

Theorem 3.1 For every computable function f : IN — IN there are monotonically increasing
functions s,t : IN — IN with

DSPACE(s(n)) = DSPACE(f(s(n)) and
DTIME(t(n)) = DTIME(f(¢t(n))) .

The theorem implies that there are functions ¢, s with

DSPACE(s(n)) = DSPACE(2*"™) and
DTIME(¢(n)) = DTIME(2*")

At first glance, this seems to be quite surprising. However, it has been shown, for instance, that
DSPACE(o(loglogn)) = DSPACE(1), which explains why such gaps can occur. We will see
that for “well behaved” functions s and t it is not possible to create such gaps.

Another phenomenon is that it is quite easy to achieve constant improvements in space or
time.

Theorem 3.2 If L can be decided by an s(n) space-bounded Turing machine, then L can be
also decided by an s(n)/2 space-bounded Turing machine.

Proof. Let M be any s(n) space-bounded Turing machine that decides L, and let I" be the
tape alphabet of M. In order to obtain an s(n)/2 space-bounded Turing machine for L, simply
extend the alphabet by I' x I'. This will allow to encode two cells of M in one cell and therefore
to reduce the space requirement by a factor of two. O

Theorem 3.3 If L can be decided by a t(n) time-bounded Turing machine, then L can be also
decided by an n + t(n)/2 time-bounded Turing machine.

Proof. The proof will be an assignment. O

Next we will show that there are hierarchies of complexity classes.

3.2 A space hierarchy

First, we prove the existence of a space hierarchy. For this we will need the following lemma.

Lemma 3.4 For any function s : IN — IN, any O(s(n)) space bounded multi-tape Turing ma-
chine can be simulated by a single-tape Turing machine with O(s(n)) space.

Proof. Let M = (Q,%,T,4,qo, F) be an arbitrary k-tape Turing machine. Our aim will be to
simulate M by a single-tape Turing machine M' = (Q', X', T", ¥, ¢}, F') that uses (asymptoti-
cally) the same amount of space. To achieve this, we choose a tape alphabet of I = (I'U {1})%
(“1” is a symbol that is not in I"). This is possible, because k is a constant. The alphabet allows
us to view the tape of M’ as consisting of 2k tracks. Let these tracks be numbered from 1 to
2k. The purpose of the odd tracks is to store the contents of the tapes of M, and the purpose
of the even tracks is to store the positions of the heads of M:

track 1 contents of tape 1

track 2 1 (position of head 1)
track 3 contents of tape 2

track 4 1 (position of head 2)

Let Q' = Q x I'*. This set of states allows M’ to store the current state of M plus the k
symbols that are read by the heads of M. In this case, a single step of M can be simulated by
M’ in two phases. In the first phase, the head of M’ searches for the positions of the heads of M
and stores the symbols that are read by the heads in its state. In the second phase, M replaces
the symbols and moves the head pointers according to the transition function ¢ and stores in
its state the next state of M. Since the space required by M’ is obviously bounded by the space
required by M, the lemma follows. O

Given a function s : IN — IN, the language L, is defined as
Ly = {{M)w: M is a single-tape TM that started with (M)w uses at most s(|(M)w]) cells} .
The next theorem gives a lower bound on the amount of space necessary to decide L.
Theorem 3.5 For any function s : IN — IN, Ly ¢ DSPACE(o(s(n))).

Proof. Suppose on the contrary that there is a deterministic Turing machine that decides
L with o(s(n)) space. Then, according to Lemma 3.4, there is also a deterministic single-tape
Turing machine that decides L, with o(s(n)) space. Let M be any one of these machines. We
use M to construct a “mean” single-tape Turing machine M that works as follows:

e simulate M on the given input
e if M accepts, then use infinitely many tape cells
e otherwise, halt

What does M when started with (M)w? In order to find out, we distinguish between two cases.

2

1. M accepts (M)w. Then M started with (M)w should use at most s(|(M)w|) space.
However, M will use in this case infinitely many tape cells.

2. M does not accept (M)w. Then M started with (M)w should use more than s(|{M)w])
space. However, since M only uses o(s(|(M)w])) space, there must be an ng such that for

all w with |w| > ny, the space used by M is less than s(|(M)w]). In this case, also M will
use less than s(|(M)w]) tape cells.

Since for both cases we arrive at a contradiction, the theorem follows. O

Next we show that, when enough space is available, L, can be decided. We start with an
auxiliary result.

Lemma 3.6 If a single-tape Turing machine M started on input x uses at most s(|x|) tape cells
for more than |Q| - s(|z|) - |T|*U=D time steps, then it uses at most s(|z|) tape cells for all time
steps.

Proof. We count the number of configurations that M started with x can reach. If we restrict
ourselves to configurations (g, w;, wy) with |wyws| < s(]z|), then

e there are at most |(Q| many states,
e there are at most |['|*1*) many ways of choosing w;w,, and

e there are at most s(|x|) many ways of seperating wyws into w; and wy (and thereby
determining the head position).

Therefore, there can be at most N = |Q| - s(|z|) - |T|*(*) different configurations. If M started
with = uses at most s(|z|) many cells for more than N steps, then it must have visited a
configuration at least twice. Since M is deterministic, this means that M will be in an infinite
loop, and thus will never use more than s(|z|) tape cells. O

A function s(n) is said to be space constructible if there is an O(s(n)) space-bounded Turing
machine M that on input x computes the binary representation of s(|z|). It is not difficult to
check that all standard functions such as logn, n*, and 2" are space constructible. Using this
definition, we can prove the following result.

Theorem 3.7 For any space constructible function s : IN — IN with s(n) = Q(n),
Ls; € DSPACE(s(n)).

Proof. The following O(s(n)) space-bounded 2-tape Turing machine M decides Lj.

1. Test whether the input z on tape 1 is of the form (M)w, where M is a single-tape Turing
machine. (This can be done with O(|z|) = O(s(|z|)) space.) If not, reject; otherwise
continue.

2. Compute s(|z]). (Since s is space constructible, this can be done with O(s(|z|)) space.)

3. Compute T = |Q| - s(|z|) - |T|*U=D on tape 1, where @ is the set of states and I' is the tape
alphabet of M. (This can be done with O(s(|z|)) space, because logT = O(s(|x])).)

3

4. Simulate on tape 2 M started with (M)w for T+ 1 steps. Accept if and only if M uses at
most s(|x|) many cells during these steps.

Obviously, the space needed by M is bounded by O(s(|z|)). For the correctness we see that

(MYw € Ly < M started with (M)w uses at most s(|(M)w|) cells
& M started with (M)w uses at most s(|(M)w]) cells during the first
T + 1 steps
& (M)w is accepted by M

Combining Theorem 3.5 and Theorem 3.7 we obtain the following result.

Corollary 3.8 For any space constructible function S : IN — IN with S(n) = Q(n) and any
function s : IN — IN with s(n) = o(S(n)) it holds that

DSPACE(s(n)) € DSPACE(S(n)) .

Hence, we have an infinite space hierarchy of decision problems.

3.3 A time hierarchy

Next we prove the existence of a time hierarchy. For this we need the following lemma.

Lemma 3.9 For any functiont : IN — IN, any O(t(n)) time bounded multi-tape Turing machine
M can be simulated by a 2-tape Turing machine My in O(t(n)logt(n)) time.

Proof. The first storage tape of M, will have two tracks for each storage tape of M;. For
convenience, we focus on two tracks corresponding to a particular tape of M;. The other tapes
of M; are simulated in exactly the same way. The second tape of M, is used only for scratch,
to transport blocks of data on tape 1.

One particular cell of tape 1, known as By, will hold the storage symbols read by each of the
heads of M;. Rather than moving head markers as in the proof of Lemma 3.4, M, will transport
data across By in the direction opposite to that of the motion of the head of M; being simulated.
This enables M, to simulate each move of M; by looking only at By. To the right of By will be
blocks By, By, ... of exponentially increasing length; that is, B; is of length 2¢~!. Likewise, to
the left of By are blocks B_;, B_,,... with B_; having a length of 2°='. The markers between
blocks are assumed to exist, although they will not actually appear until the block is used.

Recall that we concentrate on a particular head of M;. Let ay be the contents initially
scanned by this head. The initial contents of the cells to the right of this cell are aq, as, ..., and
those to the left are a_q,a_»,.... At the beginning, the upper track of M, is empty, while the
lower tracks holds all the a;. Hence, the two tracks look as follows.

Q_7 | Q_g | O_5 | Q_y4 | A_3 | A_2 a_q ao ay Qo | Q3 | Q4 | Q5 | Qg | Q7

After the simulation of each move of M, the following has to hold:

1. For any i > 0, either B; is full (both tracks) and B_; is empty, or B; is empty and B_; is
full, or the bottom tracks of both B; and B_; are full, while the upper tracks are empty.

2. The contents of any B; or B_; represent consecutive cells on the tape of M;. For ¢ > 0,
the upper track represents cells to the left of those of the lower track, and for : < 0, the
upper track represents cells to the right of those of the lower track.

3. For i < j, B; represents cells to the left of those of B;.

4. By always has only its lower track filled, and its upper track is specially marked.

To see how data is transferred, imagine that the tape head of M; in question moves to the left.
Then M, must shift the corresponding data right. To do so, Ms moves the head of tape 1 from
By and goes to the right until it finds the first block, say B;, that does not have both tracks
full. Then M copies all the data of By, ..., B; 1 onto tape 2 and stores it in the lower track of
By, Bs, ..., B;_1 plus the lower track of B;, assuming that the lower track of B; is not already
filled. If the lower track of B; is already filled, the upper track of B; is used instead. In either
case, there is just enough room to distribute the data. Note that the operations described can
be performed in time proportional to the length of B;.

Next, in time proportional to the length of B;, M, can find B_; (using tape 2 to measure the
distance from B; to By makes this easy). If B_; is completely full, M, picks up the upper track
of B_; and stores it on tape 2. If B_; is half full, the lower track is put on tape 2. In either case,
what has been copied to tape 2 is next copied to the lower tracks of B_;_1), B_(_),..., Bo.
(By rule 1, these tracks have to be empty, since By, ..., B; | were full.) Again, note that there
is just enough room to store the data, and all the above operations can be carried out in time
proportional to the length of B;.

We call all that we have described above a B;-operation. The case in which the head of M,
moves to the right is analogous. Note that for each tape of M;, M, must perform a B;-operation
at most once per 2°! moves of M, since it takes this long for By, B, ..., B;_; (which are
half empty after a B;-operation) to fill. Also, a B;-operation cannot be performed for the first
time until the 2°~'th move of M;. Hence, if M, operates in time ¢(n), M, will perform only
Bi-operations with i < logt(n) + 1.

We have seen that M, needs at most O(2%) steps to perform a Bj-operation. If M; runs for
t(n) steps, My needs at most

log t(n)+1 . t(n)

= O(t(n) - log t(n))

steps for the simulation of one tape of M;. Since the simulation of k£ tapes only increases the
simulation time by a factor of k, the lemma follows. O

Given a function ¢ : IN — IN, the language L; is defined as

L, = {(M)w: M is a 2-tape TM that started with (M)w halts after at most
t(|(M)wl)/[(M)] time steps} .

We again start with a negative result.

Theorem 3.10 For any function t : IN — IN with t(n) = Q(n), Ly ¢ DTIME(o(t(n)/logt(n))).

Proof. Suppose on the contrary that there is a deterministic Turing machine that decides L,
in o(t(n)/logt(n)) time steps. Then, according to Lemma 3.9, there is a deterministic 2-tape
Turing machine that decides L, in o(t(n)) time steps. Let M be any one of these machines. We
use M to construct a “mean” 2-tape Turing machine M that works as follows:

e simulate M on the given input
e if M accepts, then run forever
e otherwise, halt

What does M when started with (M)w? In order to analyze this, we distinguish between two
cases.

1. M accepts (M)w. Then M started with (M)w should halt after at most (|(M)w])/|(M)|
time steps. However, M will run in this case forever.

2. M does not accept (M)w. Then, according to Ly, M started with (M)w should run for
more than #(|(M)w])/|(M)| time steps. However, since M only uses o(t(|(M)w])) time

steps, there must be an ny such that for all w with |w| > ny, the time used by M is less
than ¢(|(M)w|)/|(M)|. In this case, M will use at most t(|(M)w|)/|(M)| time steps.

Since for both cases we arrive at a contradiction, the theorem follows. O

Next we prove an upper bound on the time necessary to decide L. A function ¢ : IN — IN
is called time constructible if there is a t(n) time-bounded Turing machine that for an input x
computes the binary representation of ¢(|z|). With this definition we can show the following
result.

Theorem 3.11 For any time constructible function t : IN — IN with t = Q(n),
L, € DTIME(t(n)).

Proof. The following O(t(n)) time-bounded multi-tape Turing machine M decides L.

1. Test whether the input = on tape 1 is of the form (M)w. (This can be done in O(|z|) =
O(t(|x|)) time steps.) If not, reject. Otherwise continue.

2. Compute t(|z])/[{M)| on tape 1. (Since t is time constructible, this can be done in O(t(|z]))
time steps.)

3. Simulate on tapes 2 and 3 M started with (M)w for ¢(|z|)/|(M)| time steps. Accept if
and only if M halts at one of these time steps. (Since the lookup of the next transition in
(M) takes O((M)) steps and therefore the simulation of a single step of M takes O({M))
steps, the simulation of ¢(|z|)/|(M)| time steps of M takes O(t(|z|)) steps.)

From the comments above it follows that the time needed by M is bounded by O(t(|z|)). The
correctness is straightforward. O

Combining Theorem 3.10 and Theorem 3.11 we obtain the following result.

6

Corollary 3.12 For any time constructible function T : IN — IN with T'(n) = Q(n) and any
function t : IN — IN with t(n) = o(T(n)) it holds that

DTIME(t(n)/logt(n)) C DTIME(T (n)) .

Hence, there is also an infinite time hierarchy of decision problems. Using involved methods,
one can even prove the following result.

Theorem 3.13 For any time constructible function T : IN — IN with T(n) = Q(n) and any
function t : IN — IN with t(n) = o(T(n)) it holds that

DTIME(t(n)) € DTIME(T(n)) .

3.4 Relations among complexity measures

We start with a definition of one more complexity class. The class EXP is defined as

EXP = | J DTIME(2"") .

k>1

The following theorem gives some easy relationships.

Theorem 3.14 For any function f : IN — IN it holds:
1. If L € DTIME(f(n)), then L € DSPACE(f(n)).
2. If L € NTIME(f(n)), then L € DSPACE(f(n)).

3. If L € DSPACE(f(n)) and f(n) > logn, then there is a constant ¢ (depending on L) such
that L € DTIME(c/™).

Proof. Proof of 1): If a Turing machine M runs for no more than f(n) time steps, then it
cannot scan more than f(n) + 1 cells on any tape.

Proof of 2): Given a non-deterministic Turing machine M that decides L in time O(f(n)),
we construct a deterministic Turing machine M’ that decides L in the following way: go in a
depth-first-search manner through all the computational paths of M. If an accepting path is
found, then accept. Otherwise reject. The space necessary to store the directions taken at any
of the O(f(n)) time steps is at most O(f(n)), since M only has a constant number of choices
for each time step. Furthermore, since M only runs for O(f(n)) steps, it follows from 1) that
it only uses O(f(n)) space. Hence, the total amount of space needed by M’ to simulate M is
O(f(n)).

Proof of 3): From Lemma 3.6 we know that if an f(n) space-bounded Turing machine M
that decides L can run for at most |@Q|- f(n)-|T'|/(™ time steps on any input of size n (otherwise,
it would run in an infinite loop). Since f(n) > logn, there is some constant ¢ such that for all
n>1,c™ > Q|- f(n) - |T|/™. Thus, the runtime of M can be bounded by /(™. O

Theorem 3.14 and Assignment 1 together yield the following relationships.

Corollary 3.15
P C RP C BPP C PSPACE

and
RP C NP C PSPACE C EXP .

Next we will study the relationship between PSPACE and NPSPACE.
Theorem 3.16 (Savitch) Let s : IN — IN be space constructible. Then
NSPACE(s(n)) C DSPACE(s(n)?) .

Proof. Let M be an s(n) space-bounded nondeterministic Turing machine. W.l.o.g. M has
only one accepting configuration C; and one rejecting configuration Cy. We first describe a
recursive algorithm that does the following: given an input (Cy, Cs, ¢, t) with £,¢ € IN and C
and C5 being configurations of length at most ¢, the algorithm TEST checks, whether C} = o,
using at most ¢ tape cells. (W.l.o.g. we will a assume that ¢ is a power of 2.)

Function TEST(C,, Cs, £, t):boolean

if t =1 then
Test = (Ol — 02) \Y (Cl = 02)
else
C3 = (qo,€,B...B) ({ many B’s)
Test = false
repeat

Test = TEST(C4,Cs,¢0,t/2) N TEST(Cs,Cy, ¢, t/2)
C5 = lexicographically next configuration of Cj
until T'est is true or no more configurations possible for C’s
return 7T'est

It is not difficult to check that the algorithm above computes the truth value of C =t C,.

Lemma 3.17 If C; and Cy have a length of at most £, then TEST(C4,Cy, ¢, t) can be computed
by a deterministic Turing machine using at most (3¢ + logt)(logt + 1) tape cells.

Proof. The trick to keep the space low is to save space by processing the recursive calls on the
same part of the tape. We prove the space bound by induction on t.

t = 1: we have to test whether 'y — (5. This can obviously be done with at most
30 < (30 +logt)(logt + 1) cells.

t > 1: the tape is used in the following way:

‘ C, ‘ Cy ‘ Cs ‘ bin(t) ‘ place R for recursive calls ‘

The Turing machine for TEST works as follows:

1. Copy C, C3, and t/2 to the begin of R.

2. Process TEST(Cy,Cs,¢,t/2) on R.

3. Also process TEST(C3, Cy, ¢, t/2) on R.

4. If both Tests return “true”, then return “true”.

5. Otherwise, replace C3 by the lexicographically next configuration and go to 1).
This results in a space requirement for TEST(C, Cs, ¢, t) of at most

30 +logt+ (3¢ + log(t/2))(log(t/2) +1) = 3¢ +1logt+ (3¢ +1logt —1)((logt — 1)+ 1)

~ v

hypo‘t'hesis
= 3l +logt+ (30 +1logt —1)logt
< (3l+1logt)(1+ logt) .

The algorithm uses recursive operations. However, it is also possible to construct an iterative
algorithm with essentially the same space requirement. O

In order to prove the theorem, we use the result of Lemma 3.6, adapted to non-deterministic
Turing machines: if on input x there is an accepting computation of M with space ¢, then there
is an accepting computation with space ¢ and a length of at most |Q| - £ - |T'|* = 2°(). Hence,
only 29 steps have to be checked by TEST to find an accepting computation.

Besides searching for accepting computations, we also have to check whether for some given
¢ all possible computations are rejecting, because otherwise it is not possible to give a decision
in finite time. (Note that we cannot assume that s(n) is known in advance!) Let the procedure
that checks whether M rejects be called TEST’(). It will be an assignment to specify TEST”.

The deterministic Turing machine M’ for M now works as follows. Suppose the input is x.
Start with ¢ = |z|. Repeat TEST((qo,€,), C,¢,t) and TEST’() for t = |Q| - ¢ - |I'|* until either
TEST or TEST’ is true. If TEST is true, then accept, and otherwise reject. Since we know that
the repeat loop will end for some ¢ = O(s(|z|)), the space required by M’ for TEST is at most

(3¢ +1logt)(1+1logt) = O(*) = O(s(|z])?) .
A similar bound can be shown for TEST". O
The theorem has the following important consequence.
Corollary 3.18
PSPACE = NPSPACE .

3.5 References

e J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading, 1979.

e W.J. Savitch. Relationships between nondeterministic and deterministic tape complexi-
ties. Journal of Computers and System Sciences 4:177-192, 1970.

