Jeff Edmonds

HOW 10
Think about

Algorithms

http://www.cambridge.org/9780521849319

This page intentionally left blank

HOW TO THINK ABOUT ALGORITHMS

There are many algorithm texts that provide lots of well-polished code and
proofs of correctness. Instead, this one presents insights, notations, and
analogies to help the novice describe and think about algorithms like an
expert. It is a bit like a carpenter studying hammers instead of houses. Jeff
Edmonds provides both the big picture and easy step-by-step methods for
developing algorithms, while avoiding the comon pitfalls. Paradigms such
as loop invariants and recursion help to unify a huge range of algorithms
into a few meta-algorithms. Part of the goal is to teach students to think
abstractly. Without getting bogged down in formal proofs, the book fosters
deeper understanding so that how and why each algorithm works is trans-
parent. These insights are presented in a slow and clear manner accessible
to second- or third-year students of computer science, preparing them to
find on their own innovative ways to solve problems.

Abstraction is when you translate the equations, the rules, and the under-
lying essences of the problem not only into a language that can be commu-
nicated to your friend standing with you on a streetcar, but also into a form
that can percolate down and dwell in your subconscious. Because, remem-
ber, it is your subconscious that makes the miraculous leaps of inspiration,
not your plodding perspiration and not your cocky logic. And remember,
unlike you, your subconscious does not understand Java code.

HOW TO THINK ABOUT
ALGORITHMS

JEFF EDMONDS
York University

51 CAMBRIDGE

%3 UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521849319

© Jeff Edmonds 2008

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2008

ISBN-13 978-0-511-41370-4 eBook (EBL)
ISBN-13 978-0-521-84931-9 hardback

ISBN-13 978-0-521-61410-8 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521849319

Dedicated to my father, Jack, and to my sons, Joshua and Micah.

May the love and the mathematics continue to flow between
the generations.

Problem Solving
Out of the Box Leaping
Deep Thinking
Creative Abstracting
Logical Deducing
with Friends Working
Fun Having

Fumbling and Bumbling

Bravely Persevering

Joyfully Succeeding

CONTENTS

Preface pagexi
Introduction e e e e e e e e 1

PART ONE. ITERATIVE ALGORITHMS AND LOOP INVARIANTS

1 Iterative Algorithms: Measures of Progress and Loop Invariants 5
1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of

Assertions 5

1.2 The Steps to Develop an Iterative Algorithm 8

1.3 More about the Steps 12

1.4 Different Types of Iterative Algorithms 21

1.5 Typical Errors 26

1.6 Exercises 27

2 Examples Using More-of-the-Input Loop Invariants 29

2.1 Coloring the Plane 29

2.2 Deterministic Finite Automaton 31

2.3 More of the Input vs. More of the Output 39

3 AbstractDataTypes o o i it e e e e e e e e e e e e e 43

3.1 Specifications and Hints at Implementations 44

3.2 Link List Implementation 51

3.3 Merging with a Queue 56

3.4 Parsing with a Stack 57

4 Narrowing the Search Space: Binary Search.. 60

4.1 Binary Search Trees 60

4.2 Magic Sevens 62

4.3 VLSI Chip Testing 65

4.4 Exercises 69

5 Iterative Sorting Algorithms, 71

5.1 Bucket Sort by Hand 71

vii

viii

Contents

5.2 Counting Sort (a Stable Sort) 72
5.3 Radix Sort 75
5.4 Radix Counting Sort 76
6 Euclid's GCD Algorithm i ittt 79
7 The Loop Invariant for LowerBounds 85
PART TWO. RECURSION
8 Abstractions, Techniques, andTheory 97
8.1 Thinking about Recursion 97
8.2 Looking Forward vs. Backward 99
8.3 With a Little Help from Your Friends 100
8.4 The Towers of Hanoi 102
8.5 Checklist for Recursive Algorithms 104
8.6 The Stack Frame 110
8.7 Proving Correctness with Strong Induction 112
9 Some Simple Examples of Recursive Algorithms 114
9.1 Sorting and Selecting Algorithms 114
9.2 Operations on Integers 122
9.3 Ackermann’s Function 127
9.4 Exercises 128
10 RecursiononTrees i i ittt v i nn 130
10.1 Tree Traversals 133
10.2 Simple Examples 135
10.3 Generalizing the Problem Solved 138
10.4 Heap Sort and Priority Queues 141
10.5 Representing Expressions with Trees 149
11 Recursivelmages i i ittt i i ine e 153
11.1 Drawing a Recursive Image from a Fixed Recursive and a Base
Case Image 153
11.2 Randomly Generating a Maze 156
12 Parsing with Context-FreeGrammars 159
PART THREE. OPTIMIZATION PROBLEMS
13 Definition of Optimization Problems 171
14 Graph Search Algorithms 173
14.1 A Generic Search Algorithm 174
14.2 Breadth-First Search for Shortest Paths 179
14.3 Dijkstra’s Shortest-Weighted-Path Algorithm 183
14.4 Depth-First Search 188
14.5 Recursive Depth-First Search 192
14.6 Linear Ordering of a Partial Order 194

14.7 Exercise

196

Contents

15 Network Flows and Linear Programming 198
15.1 A Hill-Climbing Algorithm with a Small Local Maximum 200
15.2 The Primal-Dual Hill-Climbing Method 206
15.3 The Steepest-Ascent Hill-Climbing Algorithm 214
15.4 Linear Programming 219
15.5 Exercises 223
16 Greedy Algorithms 0 i i i 225
16.1 Abstractions, Techniques, and Theory 225
16.2 Examples of Greedy Algorithms 236
16.2.1 Example: The Job/Event Scheduling Problem 236
16.2.2 Example: The Interval Cover Problem 240
16.2.3 Example: The Minimum-Spanning-Tree Problem 244
16.3 Exercises 250
17 Recursive Backtracking 251
17.1 Recursive Backtracking Algorithms 251
17.2 The Steps in Developing a Recursive Backtracking 256
17.3 Pruning Branches 260
17.4 Satisfiability 261
17.5 Exercises 265
18 Dynamic Programming Algorithms 267
18.1 Start by Developing a Recursive Backtracking 267
18.2 The Steps in Developing a Dynamic Programming Algorithm 271
18.3 Subtle Points 277
18.3.1 The Question for the Little Bird 278
18.3.2 Subinstances and Subsolutions 281
18.3.3 The Set of Subinstances 284
18.3.4 Decreasing Time and Space 288
18.3.5 Counting the Number of Solutions 291
18.3.6 The New Code 292
19 Examples of Dynamic Programso v v v v v v .. 295
19.1 The Longest-Common-Subsequence Problem 295
19.2 Dynamic Programs as More-of-the-Input Iterative Loop
Invariant Algorithms 300
19.3 A Greedy Dynamic Program: The Weighted Job/Event
Scheduling Problem 303
19.4 The Solution Viewed as a Tree: Chains of Matrix Multiplications 306
19.5 Generalizing the Problem Solved: Best AVL Tree 311
19.6 All Pairs Using Matrix Multiplication 314
19.7 Parsing with Context-Free Grammars 315

19.8 Designing Dynamic Programming Algorithms via Reductions 318

Contents

20 Reductions and NP-Completeness v v v v v v v o 324
20.1 Satisfiability Is at Least as Hard as Any Optimization Problem 326
20.2 Steps to Prove NP-Completeness 330
20.3 Example: 3-Coloring Is NP-Complete 338
20.4 An Algorithm for Bipartite Matching Using the Network
Flow Algorithm 342
21 Randomized Algorithms 346
21.1 Using Randomness to Hide the Worst Cases 347
21.2 Solutions of Optimization Problems with a Random Structure 350

PART FOUR. APPENDIX

22 Existential and Universal Quantifiers 357
23 TimeComplexity 0 i i it 366
23.1 The Time (and Space) Complexity of an Algorithm 366
23.2 The Time Complexity of a Computational Problem 371
24 Logarithms and Exponentials 374
25 AsymptoticGrowth, 377
25.1 Steps to Classify a Function 379
25.2 More about Asymptotic Notation 384
26 Adding-Made-Easy Approximations 388
26.1 The Technique 389
26.2 Some Proofs for the Adding-Made-Easy Technique 393
27 RecurrenceRelations 0000, 398
27.1 The Technique 398
27.2 Some Proofs 401
28 AFormal Proof of Correctness o 408
PART FIVE. EXERCISE SOLUTIONS e e e e e e e e e e s 411
Conclusion e e e e e e 437

Index 439

PREFACE

To the Educator and the Student

This book is designed to be used in a twelve-week, third-year algorithms course. The
goal is to teach students to think abstractly about algorithms and about the key algo-
rithmic techniques used to develop them.

Meta-Algorithms: Students must learn so many algorithms that they are sometimes
overwhelmed. In order to facilitate their understanding, most textbooks cover the
standard themes of iterative algorithms, recursion, greedy algorithms, and dynamic
programming. Generally, however, when it comes to presenting the algorithms them-
selves and their proofs of correctness, the concepts are hidden within optimized
code and slick proofs. One goal of this book is to present a uniform and clean way
of thinking about algorithms. We do this by focusing on the structure and proof of
correctness of iterative and recursive meta-algorithms, and within these the greedy
and dynamic programming meta-algorithms. By learning these and their proofs of
correctness, most actual algorithms can be easily understood. The challenge is that
thinking about meta-algorithms requires a great deal of abstract thinking.

Abstract Thinking: Students are very good at learning
how to apply a concrete code to a concrete input in-
stance. They tend, however, to find it difficult to think
abstractly about the algorithms. I maintain that the
more abstractions a person has from which to view
the problem, the deeper his understanding of it will be,
the more tools he will have at his disposal, and the bet-
ter prepared he will be to design his own innovative
ways to solve new problems. Hence, I present a number
of different notations, analogies, and paradigms within
which to develop and to think about algorithms.

Xi

xii

Preface

Way of Thinking: People who develop algorithms have various ways of thinking and
intuition that tend not to get taught. The assumption, I suppose, is that these cannot
be taught but must be figured out on one’s own. This text attempts to teach students
to think like a designer of algorithms.

Not a Reference Book: My intention is not to teach a specific selection of algorithms
for specific purposes. Hence, the book is not organized according to the application
of the algorithms, but according to the techniques and abstractions used to develop
them.

Developing Algorithms: The goal is not to present completed algorithms in a nice
clean package, but to go slowly through every step of the development. Many false
starts have been added. The hope is that this will help students learn to develop al-
gorithms on their own. The difference is a bit like the difference between studying
carpentry by looking at houses and by looking at hammers.

Proof of Correctness: Our philosophy is not to follow an algorithm with a formal
proof that it is correct. Instead, this text is about learning how to think about, de-
velop, and describe algorithms in such way that their correctness is transparent.

Big Picture vs. Small Steps: For each topic, I attempt both to give the big picture and
to break it down into easily understood steps.

Level of Presentation: This material is difficult. There is no getting around that. I
have tried to figure out where confusion may arise and to cover these points in more
detail. I try to balance the succinct clarity that comes with mathematical formalism
against the personified analogies and metaphors that help to provide both intuition
and humor.

Point Form: The text is organized into blocks, each containing a title and a single
thought. Hopefully, this will make the text easier to lecture and study from.

Prerequisites: The text assumes that the students have completed a first-year
programming course and have a general mathematical maturity. The Appendix
(Part Four) covers much of the mathematics that will be needed.

Homework Questions: A few homework questions are included. I am hoping to de-
velop many more, along with their solutions. Contributions are welcome.

Read Ahead: The student is expected to read the material before the lecture. This will
facilitate productive discussion during class.

Explaining: To be able to prove yourself on a test or on the job, you need to be able
to explain the material well. In addition, explaining it to someone else is the best way
to learn it yourself. Hence, I highly recommend spending a lot of time explaining

Preface

the material over and over again out loud to yourself, to each other, and to your
stuffed bear.

Dreaming: I would like to emphasis the importance of e X 1
thinking, even daydreaming, about the material. This g :
can be done while going through your day — while swim-
ming, showering, cooking, or lying in bed. Ask ques-
tions. Why is it done this way and not that way? In-
vent other algorithms for solving a problem. Then look
for input instances for which your algorithm gives the
wrong answer. Mathematics is not all linear thinking.
If the essence of the material, what the questions are really asking, is allowed to seep
down into your subconscious then with time little thoughts will begin to percolate
up. Pursue these ideas. Sometimes even flashes of inspiration appear.

Acknowledgments

I would like to thank Andy Mirzaian, Franck van Breugel, James Elder, Suprakash
Datta, Eric Ruppert, Russell Impagliazzo, Toniann Pitassi, and Kirk Pruhs, with whom
I co-taught and co-researched algorithms for many years. I would like to thank Jen-
nifer Wolfe and Lauren Cowles for their fantastic editing jobs. All of these people were
a tremendous support for this work.

Xiii

Introduction

From determining the cheapest way to make a hot dog to monitoring the workings
of a factory, there are many complex computational problems to be solved. Before
executable code can be produced, computer scientists need to be able to design the
algorithms that lie behind the code, be able to understand and describe such algo-
rithms abstractly, and be confident that they work correctly and efficiently. These are
the goals of computer scientists.

A Computational Problem: A specification of a computational problem uses pre-
conditions and postconditions to describe for each legal input instance that the com-
putation might receive, what the required output or actions are. This may be a func-
tion mapping each input instance to the required output. It may be an optimization
problem which requires a solution to be outputted that is “optimal” from among a
huge set of possible solutions for the given input instance. It may also be an ongoing
system or data structure that responds appropriately to a constant stream of input.

Example: The sorting problem is defined as follows:
Preconditions: The input is a list of n values, including possible repetitions.

Postconditions: The output is a list consisting of the same 7 values in non-
decreasing order.

An Algorithm: An algorithmis a step-by-step procedure which, starting with an in-
put instance, produces a suitable output. It is described at the level of detail and ab-
straction best suited to the human audience that must understand it. In contrast,
codeis an implementation of an algorithm that can be executed by a computer. Pseu-
docodelies between these two.

An Abstract Data Type: Computers use zeros and ones, ANDs and ORs, IFs and
GOTOs. This does not mean that we have to. The description of an algorithm may
talk of abstract objects such as integers, reals, strings, sets, stacks, graphs, and trees;

Introduction

abstract operations such as “sort the list,” “pop the stack,” or “trace a path”; and ab-
stract relationships such as greater than, prefix, subset, connected, and child. To be
useful, the nature of these objects and the effect of these operations need to be un-
derstood. However, in order to hide details that are tedious or irrelevant, the precise
implementations of these data structure and algorithms do not need to be specified.
For more on this see Chapter 3.

Correctness: An algorithm for the problem is correctif for every legal input instance,
the required output is produced. Though a certain amount of logical thinking is re-
quireds, the goal of this text is to teach how to think about, develop, and describe
algorithms in such way that their correctness is transparent. See Chapter 28 for the
formal steps required to prove correctness, and Chapter 22 for a discussion of forall
and exist statements that are essential for making formal statements.

Running Time: It is not enough for a computation to eventually get the correct
answer. It must also do so using a reasonable amount of time and memory space.
The running time of an algorithm is a function from the size n of the input in-
stance given to a bound on the number of operations the computation must do. (See
Chapter 23.) The algorithm is said to be feasible if this function is a polynomial like
Time(n) = ®(n?), and is said to be infeasible if this function is an exponential like
Time(n) = ©(2"). (See Chapters 24 and 25 for more on the asymptotics of functions.)
To be able to compute the running time, one needs to be able to add up the times
taken in each iteration of a loop and to solve the recurrence relation defining the
time of a recursive program. (See Chapter 26 for an understanding of Z;’zl i=0(m?,
and Chapter 27 for an understanding of T'(n) = 2T(g) +n=0(nlogn).)

Meta-algorithms: Most algorithms are best described as being either iterative or
recursive. An iterative algorithm (Part One) takes one step at a time, ensuring that
each step makes progress while maintaining the loop invariant. A recursive algorithm
(Part Two) breaks its instance into smaller instances, which it gets a friend to solve,
and then combines their solutions into one of its own.

Optimization problems (Part Three) form an important class of computational
problems. The key algorithms for them are the following. Greedy algorithms (Chap-
ter 16) keep grabbing the next object that looks best. Recursive backtracking algo-
rithms (Chapter 17) try things and, if they don't work, backtrack and try something
else. Dynamic programming (Chapter 18) solves a sequence of larger and larger in-
stances, reusing the previously saved solutions for the smaller instances, until a solu-
tion is obtained for the given instance. Reductions (Chapter 20) use an algorithm for
one problem to solve another. Randomized algorithms (Chapter 21) flip coins to help
them decide what actions to take. Finally, lower bounds (Chapter 7) prove that there
are no faster algorithms.

PART ONE

[terative Algorithms and
Loop Invariants

| Iterative Algorithms: Measures of
Progress and Loop Invariants

Using an iterative algorithm to solve a computa-
tional problem is a bit like following a road, possibly
long and difficult, from your start location to your
destination. With each iteration, you have a method
that takes you a single step closer. To ensure that you
move forward, you need to have a measure of progress
telling you how far you are either from your starting
location or from your destination. You cannot expect
to know exactly where the algorithm will go, so you
need to expect some weaving and winding. On the
other hand, you do not want to have to know how
to handle every ditch and dead end in the world.
A compromise between these two is to have a loop
invariant, which defines a road (or region) that you
may not leave. As you travel, worry about one step
at a time. You must know how to get onto the road from any start location. From
every place along the road, you must know what actions you will take in order to
step forward while not leaving the road. Finally, when sufficient progress has been
made along the road, you must know how to exit and reach your destination in a
reasonable amount of time.

KB A Paradigm Shift: A Sequence of Actions vs. a Sequence
of Assertions

Understanding iterative algorithms requires understanding the difference between
a loop invariant, which is an assertion or picture of the computation at a particular
point in time, and the actions that are required to maintain such a loop invariant.
Hence, we will start with trying to understand this difference.

Iterative Algorithms and Loop Invariants

One of the first important paradigm shifts
that programmers struggle to make is from
viewing an algorithm as a sequence of actions to
viewing it as a sequence of snapshots of the state
of the computer. Programmers tend to fixate
on the first view, because code is a sequence of
instructions for action and a computation is a
sequence of actions. Though this is an impor-
tant view, there is another. Imagine stopping
time at key points during the computation and
taking still pictures of the state of the computer.
Then a computation can equally be viewed as
a sequence of such snapshots. Having two ways

Max(a, b, ¢)

PreCond: Input has 3 numbers.
m=a
assert: m is max in {a}.
if(b>m)
m=b
end if
assert: m is max in {a,b}.
if(c > m)
m=c

end if

of viewing the same thing gives one both more
tools to handle it and a deeper understanding of
it. An example of viewing a computation as an
alteration between assertions about the current
state of the computation and blocks of actions
that bring the state of the computation to the
next state is shown here.

assert: m is max in {a,b,c}.
return (1)
PostCond: return max in {a,b,c}.

end algorithm

The Challenge of the Sequence-of-Actions View: Suppose one is designing a
new algorithm or explaining an algorithm to a friend. If one is thinking of it as se-
quence of actions, then one will likely start at the beginning: Do this. Do that. Do
this. Shortly one can get lost and not know where one is. To handle this, one simulta-
neously needs to keep track of how the state of the computer changes with each new
action. In order to know what action to take next, one needs to have a global plan of
where the computation is to go. To make it worse, the computation has many 7rs and
Loops so one has to consider all the various paths that the computation may take.

The Advantages of the Sequence of Snapshots View: This new paradigm is
useful one from which one can think about, explain, or develop an algorithm.

Pre- and Postconditions: Before one can consider an algorithm, one needs to care-
fully define the computational problem being solved by it. This is done with pre- and
postconditions by providing the initial picture, or assertion, about the input instance
and a corresponding picture or assertion about required output.

Start in the Middle: Instead of starting with the first line of code, an alternative way
to design an algorithm is to jump into the middle of the computation and to draw
a static picture, or assertion, about the state we would like the computation to be
in at this time. This picture does not need to state the exact value of each variable.

Measures of Progress and Loop Invariants

Instead, it gives general properties and relationships between the various data struc-
tures that are key to understanding the algorithm. If this assertion is sufficiently gen-
eral, it will capture not just this one point during the computation, but many similar
points. Then it might become a part of a loop.

Sequence of Snapshots: Once one builds up a sequence of assertions in this way;,
one can see the entire path of the computation laid out before one.

Fill in the Actions: These assertions are just static snapshots of the computation
with time stopped. No actions have been considered yet. The final step is to fill in
actions (code) between consecutive assertions.

One Step at a Time: Each such block of actions can be executed completely inde-
pendently of the others. It is much easier to consider them one at a time than to
worry about the entire computation at once. In fact, one can complete these blocks
in any order one wants and modify one block without worrying about the effect on
the others.

Fly In from Mars: This is how you should fill in the code between the ith and the
i + 1st assertions. Suppose you have just flown in from Mars, and absolutely the only
thing you know about the current state of your computation is that the ith assertion
holds. The computation might actually be in a state that is completely impossible to
arrive at, given the algorithm that has been designed so far. It is allowing this that
provides independence between these blocks of actions.

Take One Step: Being in a state in which the ith assertion holds, your task is simply
to write some simple code to do a few simple actions, that change the state of the
computation so that the i 4+ 1st assertion holds.

Proof of Correctness of Each Step: The proof that your algorithm works can also
be done one block at a time. You need to prove that if time is stopped and the state of
the computation is such that the ith assertion holds and you start time again justlong
enough to execute the next block of code, then when you stop time again the state of
the computation will be such that the i + 1st assertion holds. This proof might be
a formal mathematical proof, or it might be informal handwaving. Either way, the
formal statement of what needs to be proved is as follows:

(ith— assertion)& code; = (i + 1st—assertion)

Proof of Correctness of the Algorithm: All of these individual steps can be put
together into a whole working algorithm. We assume that the input instance given
meets the precondition. At some point, we proved that if the precondition holds and
the first block of code is executed, then the state of the computation will be such

Iterative Algorithms and Loop Invariants

that first assertion holds. At some other point, we proved that if the first assertion
holds and the second block of code is executed then the state of the computation
will be such that second assertion holds. This was done for each block. All of these
independently proved statements can be put together to prove that if initially the
input instance meets the precondition and the entire code is executed, then in the
end the state of the computation will be such that the postcondition has been met.
This is what is required to prove that algorithm works.

EEJ The Steps to Develop an Iterative Algorithm

Iterative Algorithms: A good way to structure many computer programs is to store
the key information you currently know in some data structure and then have each
iteration of the main loop take a step towards your destination by making a simple
change to this data.

Loop Invariant: A loop invariant expresses important relationships among the
variables that must be true at the start of every iteration and when the loop termi-
nates. If it is true, then the computation is still on the road. If it is false, then the
algorithm has failed.

The Code Structure: The basic structure of the code is as follows.

begin routine
(pre-cond)
codepre-1p0p % Establish loop invariant
loop
(loop-invariant)
exit when (exit-cond)
codeyye, % Make progress while maintaining the loop invariant
end loop
codeposi-1oop % Clean up loose ends
(post-cond)
end routine

Proof of Correctness: Naturally, you want to be sure your algorithm will work on
all specified inputs and give the correct answer.

Running Time: You also want to be sure that your algorithm completes in a reason-
able amount of time.

The Most Important Steps: If you need to design an algorithm, do not start by typ-
ing in code without really knowing how or why the algorithm works. Instead, I recom-
mend first accomplishing the following tasks. See Figure 1.1. These tasks need to fit

Measures of Progress and Loop Invariants

Define Problem Define Loop Define Measure of
) Invariants Progress
LA) a 179 km
5 - ! ' to school
I

Define Step Define Exit Condition Maintain Loop Inv

Figure 1.1: The requirements of an iterative algorithm.

together in very subtle ways. You may have to cycle through them a number of times,
adjusting what you have done, until they all fit together as required.

1) Specifications: What problem are you solving? What are its pre- and postcon-
ditions—i.e., where are you starting and where is your destination?

2) Basic Steps: What basic steps will head you more or less in the correct direction?

3) Measure of Progress: You must define a measure of progress: where are the mile
markers along the road?

4) The Loop Invariant: You must define a loop invariant that will give a picture of
the state of your computation when it is at the top of the main loop, in other words,
define the road that you will stay on.

5) Main Steps: For every location on the road, you must write the pseudocode
codejyep, to take a single step. You do not need to start with the first location. I rec-
ommend first considering a typical step to be taken during the middle of the compu-
tation.

6) Make Progress: Each iteration of your main step must make progress according
to your measure of progress.

7) Maintain Loop Invariant: Each iteration of your main step must ensure that the
loop invariant is true again when the computation gets back to the top of the loop.
(Induction will then prove that it remains true always.)

8) Establishing the Loop Invariant: Now that you have an idea of where you are go-
ing, you have a better idea about how to begin. You must write the pseudocode

Iterative Algorithms and Loop Invariants

codepre-jo0p to initially establish the loop invariant. How do you get from your house
onto the correct road?

9) Exit Condition: You must write the condition (exit-cond) that causes the compu-
tation to break out of the loop.

10) Ending: How does the exit condition together with the invariant ensure that the
problem is solved? When at the end of the road but still on it, how do you produce the
required output? You must write the pseudocode codey,os-100p t0 clean up loose ends
and to return the required output.

11) Termination and Running Time: How much progress do you need to make be-
fore you know you will reach this exit? This is an estimate of the running time of your
algorithm.

12) Special Cases: When first attempting to design an algorithm, you should only
consider one general type of input instances. Later, you must cycle through the steps
again considering other types of instances and special cases. Similarly, test your al-
gorithm by hand on a number of different examples.

13) Coding and Implementation Details: Now you are ready to put all the pieces to-
gether and produce pseudocode for the algorithm. It may be necessary at this point
to provide extra implementation details.

14) Formal Proof: If the above pieces fit together as required, then your algorithm
works.

The Find-Max Two-Finger Algorithm
to lllustrate These Ideas

EXAMPLE 1.2.1

1) Specifications: An input instance consists of a list L(1..n) of elements. The output
consists of an index i such that L(i) has maximum value. If there are multiple entries
with this same value, then any one of them is returned.

2) Basic Steps: You decide on the two-finger method. Your right finger runs down the
list.

3) Measure of Progress: The measure of progress is how far along the list your right
finger is.

4) The Loop Invariant: The loop invariant states that your left finger points to one of
the largest entries encountered so far by your right finger.

5) Main Steps: Each iteration, you move your right finger down one entry in the list.
If your right finger is now pointing at an entry that is larger then the left finger’s entry,
then move your left finger to be with your right finger.

Measures of Progress and Loop Invariants

6) Make Progress: You make progress because your right finger moves one entry.

7) Maintain Loop Invariant: You know that the loop invariant has been maintained as
follows. For each step, the new left finger element is Max(old left finger element, new
element). By the loop invariant, this is Max(Max(shorter list), new element). Mathe-
matically, this is Max(longer list).

8) Establishing the Loop Invariant: You initially establish the loop invariant by point-
ing both fingers to the first element.

9) Exit Condition: You are done when your right finger has finished traversing the list.

10) Ending: In the end, we know the problem is solved as follows. By the exit condi-
tion, your right finger has encountered all of the entries. By the loop invariant, your left
finger points at the maximum of these. Return this entry.

11) Termination and Running Time: The time required is some constant times the
length of the list.

12) Special Cases: Check what happens when there are multiple entries with the
same value orwhenn =0orn = 1.

13) Coding and Implementation Details:
algorithm Find Max(L)

(pre-cond): L is an array of n values.
(post-cond): Returns an index with maximum value.
begin
i=1j=1
loop
(loop-invariant): L[i] is maxin L[1..j].
exit when (j > n)
% Make progress while maintaining the loop invariant
j=j+1
if(L[il < L[j]) theni=j
end loop
return(i)
end algorithm

14) Formal Proof: The correctness of the algorithm follows from the above steps.

A New Way of Thinking: You may be tempted to believe that measures of progress
and loop invariants are theoretical irrelevancies. But industry, after many expensive
mistakes, has a deeper appreciation for the need for correctness. Our philosophy is
to learn how to think about, develop, and describe algorithms in such a way that
their correctness is transparent. For this, measures of progress and loop invariants are

11

Iterative Algorithms and Loop Invariants

essential. The description of the preceding algorithms and their proofs of correctness
are wrapped up into one.

Keeping Grounded: Loop invariants constitute a life philosophy. They lead to feel-
ing grounded. Most of the code I mark as a teacher makes me feel ungrounded. It
cycles, but I don’'t know what the variables mean, how they fit together, where the
algorithm is going, or how to start thinking about it. Loop invariants mean starting
my day at home, where I know what is true and what things mean. From there, I have
enough confidence to venture out into the unknown. However, loop invariants also
mean returning full circle to my safe home at the end of my day.

EXERCISE 1.2.1 What are the formal mathematical things involving loop invariants
that must be proved, to prove that if your program exits then it obtains the postcondi-
tion?

EEN More about the Steps

In this section I give more details about the steps for developing an iterative algo-
rithm.

1) Specifications: Before we can design an iterative algorithm, we need to know
precisely what it is supposed to do.

Preconditions: What are the legal input instances? Any assertions that are
promised to be true about the input instance are referred to as preconditions.

Postconditions: What is the required output for each legal instance? Any asser-
tions that must be true about the output are referred to as postconditions.

Correctness: An algorithm for the problem is correct if for every legal input in-
stance, the required output is produced. If the input instance does not meet the
preconditions, then all bets are off. Formally, we express this as

(pre-cond) & codeg;; = (post-cond)

This correctness is only with respect to the specifications.
Example: The sorting problem is defined as follows:
Preconditions: The input is a list of n values, including possible repeatations.

Postconditions: The output is a list consisting of the same »n values in non-
decreasing order.

The Contract: Pre- and postconditions are, in a sense, the contract between the
implementer and the user (or invoker) of the coded algorithm.

Measures of Progress and Loop Invariants

Implementer: When you are writing a subroutine, you can assume the input
comes to your program in the correct form, satisfying all the preconditions.
You must write the subroutine so that it ensures that the postconditions hold
after execution.

User: When you are using the subroutine, you must ensure that the input
you provide meets the preconditions of the subroutine. Then you can trust
that the output meets its postconditions.

2) Basic Steps: As a preliminary to designing the algorithm it can be helpful to con-
sider what basic steps or operations might be performed in order to make progress
towards solving this problem. Take a few of these steps on a simple input instance
in order to get some intuition as to where the computation might go. How might the
information gained narrow down the computation problem?

3) Measure of Progress: You need to define a function that, when given the cur-
rent state of the computation, returns an integer value measuring either how much
progress the computation has already made or how much progress still needs to be
made. This is referred to either as a measure of progress or as a potential function. It
must be such that the total progress required to solve the problem is not infinite and
that at each iteration, the computation makes progress. Beyond this, you have com-
plete freedom to define this measure as you like. For example, your measure might
state the amount of the output produced, the amount of the input considered, the
extent to which the search space has been narrowed, some more creative function of
the work done so far, or how many cases have been tried. Section 1.4 outlines how
these different measures lead to different types of iterative algorithms.

4) The Loop Invariant: Often, coming up with the loop invariant is the hardest
part of designing an algorithm. It requires practice, perseverance, creativity, and in-
sight. However, from it the rest of the algorithm often follows easily. Here are a few
helpful pointers.

Definition: A loop invariantis an assertion that is placed at the top of a loop and
that must hold true every time the computation returns to the top of the loop.

Assertions: More generally, an assertion is a statement made at some particular
point during the execution of an algorithm about the current state of the com-
putation’s data structures that is either true or false. If it is false, then something
has gone wrong in the logic of the algorithm. Pre- and postconditions are special
cases of assertions that provide clean boundaries between systems, subsystems,
routines, and subroutines. Within such a part, assertions can also provide check-
points along the path of the computation to allow everyone to know what should
have been accomplished so far. Invariants are the same, except they apply either

13

Iterative Algorithms and Loop Invariants

to aloop that is executed many times or to an object-oriented data structure that
has an ongoing life.

Designing, Understanding, and Proving Correct: Generally, assertions are
not tasks for the algorithm to perform, but are only comments that are added
to assist the designer, the implementer, and the reader in understanding the
algorithm and its correctness.

Debugging: Some languages allow you to insert assertions as lines of code. If
during the execution such an assertion is false, then the program automati-
cally stops with a useful error message. This is helpful both when debugging
and after the code is complete. It is what is occurring when an error box pops
up during the execution of a program telling you to contact the vendor if the
error persists. Not all interesting assertions, however, can be tested feasibly
within the computation itself.

Picture from the Middle: A loop invariant should describe what you would like
the data structure to look like when the computation is at the beginning of an
iteration. Your description should leave your reader with a visual image. Draw a
picture if you like.

Don’t Be Frightened: A loop invariant need not consist of formal mathematical
mumbo jumbo if an informal description gets the idea across better. On the other
hand, English is sometimes misleading, and hence a more mathematical lan-
guage sometimes helps. Say things twice if necessary. I recommend pretending
that you are describing the algorithm to a first-year student.

On the Road: A loop invariant must ensure that the computation is still on the
road towards the destination and has not fallen into a ditch or landed in a tree.

AWide Road: Given a fixed algorithm on a fixed input, the computation will fol-
low one fixed line. When the algorithm designer knows exactly where this line
will go, he can use a very tight loop invariant to define a very narrow road. On the
other hand, because your algorithm must work for an infinite number of input
instances and because you may pass many obstacles along the way, it can be dif-
ficult to predict where the computation might be in the middle of its execution.
In such cases, using a very loose loop invariant to define a very wide road is com-
pletely acceptable. The line actually followed by the computation might weave
and wind, but as long as it stays within the boundaries of the road and continues
to make progress, all is well. An advantage of a wide road is that it gives more
flexibility in how the main loop is implemented. A disadvantage is that there are
then more places where the computation might be, and for each the algorithm
must define how to take a step.

Example: As an example of aloose loop invariant, in the find-max two-finger
algorithm, the loop invariant does not completely dictate which entry your

Measures of Progress and Loop Invariants

left finger should point at when there are a number of entries with the same
maximum value.

Meaningful and Achievable: You want aloop invariant that is meaningful, mean-
ing it is strong enough that, with an appropriate exit condition, it will guarantee
the postcondition. You also want the loop invariant to be achievable, meaning
you can establish and maintain it.

Know What a Loop Invariant Is: Be clear about what a loop invariant is. It is not
code, a precondition, a postcondition, or some other inappropriate piece of in-
formation. For example, stating something that is always true, such as “1 + 1 =
2” or “The root is the max of any heap,” may be useful information for the answer
to the problem, but should not be a part of the loop invariant.

Flow Smoothly: The loop invariant

should flow smoothly from the begin-

ning to the end of the algorithm.

¢ At the beginning, it should follow
easily from the preconditions.

¢ It should progress in small natural
steps.

* Once the exit condition has been
met, the postconditions should
easily follow.

Ask for 100%: A good philosophy in life is to ask for 100% of what you want, but
not to assume that you will get it.

Dream: Do not be shy. What would you like to be true in the middle of your
computation? This may be a reasonable loop invariant, and it may not be.

Pretend: Pretend that a genie has granted your wish. You are now in the mid-
dle of your computation, and your dream loop invariant is true.

Maintain the Loop Invariant: From here, are you able to take some compu-
tational steps that will make progress while maintaining the loop invariant?
If so, great. If not, there are two common reasons.

Too Weak: If your loop invariant is too weak, then the genie has not pro-
vided you with everything you need to move on.

Too Strong: If your loop invariant is too strong, then you will not be able
to establish it initially or maintain it.

No Unstated Assumptions: You don’t want loop invariants that lack detail or are
too weak to proceed to the next step. Don't make assumptions that you don’t

15

Iterative Algorithms and Loop Invariants

state. As a check, pretend that you are a Martian who has jumped into the top of
the loop knowing nothing that is not stated in the loop invariant.

Example: In the find-max two-finger algorithm, the loop in-
variant does make some unstated assumptions. It assumes
that the numbers above your right finger have been en-
countered by your right finger and those below it have not.
Perhaps more importantly for, +1 errors, is whether or not
the number currently being pointed has been encountered
already. The loop invariant also assumes that the numbers in the list have
not changed from their original values.

A Starry Night: How did van Gogh come up with his famous
painting, A Starry Night? There’s no easy answer. In the same way,
coming up with loop invariants and algorithms is an art form.

Use This Process: Don’'t come up with the loop invariant after the
fact. Use it to design your algorithm.

5) Main Steps: The pseudocode codey,,, must be defined so that it can be taken
not just from where you think the computation might be, but from any state of the
data structure for which the loop invariant is true and the exit condition has not yet
been met.

Worry about one step at a time. Don't get pulled into the strong desire to under-
stand the entire computation at once. Generally, this only brings fear and unhap-
piness. I repeat the wisdom taught by both the Buddhists and the twelve-step pro-
grams: Today you may feel like like you were dropped off in a strange city without
knowing how you got there. Do not worry about the past or the future. Be reassured
that you are somewhere along the correct road. Your goal is only to take one step so
that you make progress and stay on the road. Another analogy is to imagine you are
part of a relay race. A teammate hands you the baton. Your job is only to carry it once
around the track and hand it to the next teammate.

6) Make Progress: You must prove that progress of at least one unit of your mea-
sure is made every time the algorithm goes around the loop. Sometimes there are
odd situations in which the algorithm can iterate without making any measurable
progress. This is not acceptable. The danger is that the algorithm will loop forever.
You must either define another measure that better shows how you are making
progress during such iterations or change the step taken in the main loop so that
progress is made. The formal proof of this is similar to that for maintaining the loop
invariant.

7) Maintain the Loop Invariant: You must prove that the loop invariant is main-
tained in each iteration.

Measures of Progress and Loop Invariants

The Formal Statement: Whether or not you want to prove it formally, the formal
statement that must be true is

(loop-invariant') & not{exit-cond) & codejy,p, = (loop-invariant”)

Proof Technique:

Assume that the computation is at the top of the loop.

Assume that the loop invariant is satisfied; otherwise the program would have
already failed. Refer back to the picture that you drew to see what this tells you
about the current state of the data structure.

You can also assume that the exit condition is not satisfied, because otherwise
the loop would exit.

Execute the pseudocode codey,p, in one iteration of the loop. How does this
change the data structure?

Prove that when you get back to the top of the loop again, the requirements set
by the loop invariant are met once more.

Different Situations: Many subtleties can arise from the huge number of differ-
ent input instances and the huge number of different places the computation
might find itself in.

I recommend first designing the pseudocode codey,,, to work for a general
middle iteration when given a large and general input instance. Is the loop in-
variant maintained in this case?

Then try the first and last couple of iterations.

Also try special case input instances. Before writing separate code for these,
check whether the code you already have happens to handle these cases. If
you are forced to change the code, be sure to check that the previously handled
cases still are handled.

To prove that the loop invariant is true in all situations, pretend that you are
at the top of the loop, but you do not know how you got there. You may have
dropped in from Mars. Besides knowing that the loop invariant is true and the
exit condition is not, you know nothing about the state of the data structure.
Make no other assumptions. Then go around the loop and prove that the loop
invariant is maintained.

Differentiating between Iterations: The assignment x = x + 2 is meaningful as a
line of code, but not as a mathematical statement. Define x’ to be the value of
x at the beginning of the iteration and x” that after going around the loop one
more time. The effect of the code x = x + 2 is that x” = x’ + 2.

8) Establishing the Loop Invariant: You must prove that the initial code estab-
lishes the loop invariant.

The Formal Statement: The formal statement that must be true is

(pre-cond) & codepye.100p = (loop-invariant)

17

Iterative Algorithms and Loop Invariants

Proof Technique:

¢ Assume that you are just beginning the computation.

* You can assume that the input instance satisfies the precondition; otherwise
you are not expected to solve the problem.

* Execute the code codeyye.j00p before the loop.

* Prove that when you first get to the top of the loop, the requirements set by the
loop invariant are met.

Easiest Way: Establish the loop invariant in the easiest way possible. For exam-
ple, if you need to construct a set such that all the dragons within it are purple,
the easiest way to do it is to construct the empty set. Note that all the dragons in
this set are purple, because it contains no dragons that are not purple.

Careful: Sometimes it is difficult to know how to set the variables to make the
loop invariant initially true. In such cases, try setting them to ensure that it is true
after the first iteration. For example, what is the maximum value within an empty
list of values? One might think 0 or co. However, a better answer is —oco. When
adding a new value, one uses the code newMax = max(oldMax, newValue). Start-
ing with oldMax = — o0, gives the correct answer when the first value is added.

9) Exit Condition: Generally you exit the loop when you have completed the task.

Stuck: Sometimes, however, though your intuition is that your algorithm de-
signed so far is making progress each iteration, you have no clue whether, head-
ing in this direction, the algorithm will ever solve the problem or how you would
know it if it happens. Because the algorithm cannot make progress forever, there
must be situations in which your algorithm gets stuck. For such situations, you
must either think of other ways for your algorithm to make progress or have it
exit. A good first step is to exit. In step 10, you will have to prove that when your
algorithm exits, you actually are able to solve the problem. If you are unable to
do this, then you will have to go back and redesign your algorithm.

Loop While vs Exit When: The following are equivalent:
while(A and B) loop

... (loop-invariant)
end while exit when (not A or not B)

end loop

The second is more useful here because it focuses on the conditions needed to
exit the loop, while the first focuses on the conditions needed to continue. An-
other advantage of the second is that it also allows you to slip in the loop invariant
between the top of the loop and the exit condition.

Measures of Progress and Loop Invariants

10) Ending: In this step, you must ensure that once the loop has exited you will be
able to solve the problem.

The Formal Statement: The formal statement that must be true is

(loop-invariant) & (exit-cond) & codepos;.100p = (post-cond)

Proof Technique:

¢ Assume that you have just broken out of the loop.

* You can assume that the loop invariant is true, because you have maintained
that it is always true.

* You can also assume that the exit condition is true by the fact that the loop has
exited.

* Execute the code codeys.i00p after the loop to give a few last touches towards
solving the problem and to return the result.

¢ From these facts alone, you must be able to deduce that the problem has been
solved correctly, namely, that the postcondition has been established.

11) Termination and Running Time: You must prove that the algorithm does not
loop forever. This is done by proving that if the measure of progress meets some
stated amount, then the exit condition has definitely been met. (If it exits earlier than
this, all the better.) The number of iterations needed is then bounded by this stated
amount of progress divided by the amount of progress made each iteration. The run-
ning time is estimated by adding up the time required for each of these iterations. For
some applications, space bounds (i.e., the amount of memory used) may also be im-
portant. We discuss important concepts related to running time in Chapters 23-26:
time and space complexity, the useful ideas of logarithms and exponentials, BigOh
(O) and Theta (®) notation and several handy approximations.

12) Special Cases: When designing an algorithm, you do not want to worry about
every possible type of input instance at the same time. Instead, first get the algorithm
to work for one general type, then another and another. Though the next type of in-
put instances may require separate code, start by tracing out what the algorithm that
you have already designed would do given such an input. Often this algorithm will
just happen to handle a lot of these cases automatically without requiring separate
code. When adding code to handle a special case, be sure to check that the previously
handled cases still are handled.

13) Coding and Implementation Details: Even after the basic algorithm is out-
lined, there can be many little details to consider. Many of these implementation
details can be hidden in abstract data types (see Chapter 3). If a detail does not really
make a difference to an algorithm, it is best to keep all possibilities open, giving extra
flexibility to the implementer. For many details, it does not matter which choice you
make, but bugs can be introduced if you are not consistent and clear as to what you

19

20

Iterative Algorithms and Loop Invariants

have chosen. This text does not focus on coding details. This does not mean that they
are not important.

14) Formal Proof: Steps 1-11 are enough to ensure that your iterative algorithm
works, that is, that it gives the correct answer on all specified inputs. Consider some
instance which meets the preconditions. By step 8 we establish the loop invariant the
first time the computation is at the top of the loop, and by step 7 we maintain it each
iteration. Hence by way of induction, we know that the loop invariant is true every
time the computation is at the top of the loop. (See the following discussion.) Hence,
by step 5, the step taken in the main loop is always defined and executes without
crashing until the loop exits. Moreover, by step 6 each such iteration makes progress
of at least one. Hence, by step 11, the exit condition is eventually met. Step 10 then
gives that the postcondition is achieved, so that the algorithm works in this instance.

Mathematical Induction: Induction is an extremely important mathematical
technique for proving universal statements and is the cornerstone of iterative
algorithms. Hence, we will consider it in more detail.

Induction Hypothesis: For each n > 0, let S(n) be the statement “If the loop
has not yet exited, then the loop invariant is true when you are at the top of
the loop after going around » times.”

Goal: The goal is to prove that Vn > 0, S(n), namely, “As long as the loop has
not yet exited, the loop invariant is always true when you are at the top of the
loop.”

Proof Outline: Proof by induction on n.

Base Case: Proving S(0) involves proving that the loop invariant is true
when the algorithm first gets to the top of the loop. This is achieved by
proving the statement (pre-cond) & codepye.jo0p = (loOp-invariant).

Induction Step: Proving S(n—1) = S(n) involves proving that the loop
invariant is maintained. This is achieved by proving the statement
(loop-invariant’) & not (exit-cond) & codey,,, = (loop-invariant”).

Conclusion: By way of induction, we can conclude thatvn > 0, S(n),i.e.,
that the loop invariant is always true when at the top of the loop.

The Process of Induction:

S(0) is true (by base case)

S(0) = S(1) (by induction step, n = 1)
hence, S(1) is true

S1) = S@2) (by induction step, n = 2)
hence, S(2) is true

S22) = S(3) (by induction step, n = 3)
hence, S(3) is true....

Measures of Progress and Loop Invariants

Other Proof Techniques: Other formal steps for proving correctness are de-
scribed in Chapter 28.

Faith in the Method: Convince yourself that these steps are sufficient to define an
algorithm so that you do not have reconvince yourself every time you need to design
an algorithm.

KR Different Types of Iterative Algorithms

To help you design a measure of progress and a loop invariant for your algorithm,
here are a few classic types, followed by examples of each type.

More of the Output: If the solution is a structure composed of many pieces (e.g.,
an array of integers, a set, or a path), a natural thing to try is to construct the solution
one piece at a time.

Measure of Progress: The amount of the output constructed.

Loop Invariant: The output constructed so far is correct.

More of the Input: Suppose the input consists of n objects (e.g., an array of n inte-
gers or a graph with n nodes). It would be reasonable for the algorithm to read them
in one at a time.

Measure of Progress: The amount of the input considered.

Loop Invariant: Pretending that this prefix of the input is the entire input, I have
a complete solution.

Examples: After i iterations of the preceding find-max two-finger algorithm, the
left finger points at the highest score within the prefix of the list seen so far. After
i iterations of one version of insertion sort, the first i elements of the input are
sorted. See Figure 1.2.

Input

|7 [1a] 2] s5[32]23] 8 [12] 3] 16]
T~ Insertion Sort

Figure 1.2: The loop invariants for insertion sort and selection sort are demonstrated.

Selection Sort

\ Y
2[5]s]7 [s]<
\

| 2|3 |5 |7 |8 |12|14|16|23|32|
Output

21

22

Iterative Algorithms and Loop Invariants

Bad Loop Invariant: A common mistake is to give the loop invariant “I have han-
dled and have a solution for each of the first i objects in the input.” This is wrong
because each object in the input does not need a separate solution; the input as
a whole does. For example, in the find-max two-finger algorithm, one cannot
know whether one element is the maximum by considering it in isolation from
the other elements. An element is only the maximum in comparison with the
other elements in the sublist.

Narrowing the Search Space: If you are searching for something, try narrowing
the search space, maybe decreasing it by one or, even better, cutting it in half.

Measure of Progress: The size of the space in which you have narrowed the
search.

Loop Invariant: If the thing being searched for is anywhere, then then it is in this
narrowed sublist.

Example: Binary search.

Work Done: The measure of progress might also be some other more creative func-
tion of the work done so far.

Example: Bubble sort measures its progress by how many pairs of elements are
out of order.

Case Analysis: Try the obvious thing. For which input instances does it work, and
for which does it not work? Now you only need to find an algorithm that works for
those later cases. An measure of progress might include which cases you have tried.

We will now give a simple examples of each of these. Though you likely know these al-
gorithms already, use them to understand these different types of iterative algorithms
and to review the required steps.

EXAMPLE 1.4.1 More of the Output—Selection Sort

1) Specifications: The goal is to rearrange a list of n values in nondecreasing order.
2) Basic Steps: We will repeatedly select the smallest unselected element.

3) Measure of Progress: The measure of progress is the number k of elements se-
lected.

4) The Loop Invariant: The loop invariant states that the selected elements are the k
smallest of the elements and that these have been sorted. The larger elements are in a
set on the side.

Measures of Progress and Loop Invariants

5) Main Steps: The main step is to find the smallest element from among those in the
remaining set of larger elements and to add this newly selected element to the end of
the sorted list of elements.

6) Make Progress: Progress is made because k increases.

7) Maintain Loop Invariant: We must prove that (loop-invariant’) & not (exit—
cond) & codejyop = (loop-invariant”). By the previous loop invariant, the newly
selected element is at least the size of the previously selected elements. By the step, itis
no bigger than the elements on the side. It follows that it must be the k + 1st element in
the list. Hence, moving this element from the set on the side to the end of the sorted list
ensures that the selected elements in the new list are the k + 1 smallest and are sorted.

8) Establishing the Loop Invariant: We must prove that (pre-cond) & codepye.joop =
(loop-invariant). Initially, k = 0 are sorted and all the elements are set aside.

9) Exit Condition: Stop when k = n.

10) Ending: We must prove (loop-invariant) & (exit-cond) & code,osi.joop =
(post-cond). By the exit condition, all the elements have been selected, and by
the loop invariant these selected elements have been sorted.

11) Termination and Running Time: We have not considered how long it takes to
find the next smallest element or to handle the data structures.

23

EXAMPLE 1.4.2 More of the Input—Insertion Sort

1) Specifications: Again the goal is to rearrange a list of n values in nondecreasing
order.

2) Basic Steps: This time we will repeatedly insert some element where it belongs.

3) Measure of Progress: The measure of progress is the number k of elements in-
serted.

4) The Loop Invariant: The loop invariant states that the k inserted elements are
sorted within a list and that, as before, the remaining elements are off to the side some-
where.

5) Main Steps: The main step is to take any of the elements that are off to the side and
insertit into the sorted list where it belongs.

6) Make Progress: Progress is made because k increases.

7) Maintain Loop Invariant: (loop-invariant’y & not (exit-cond) & codejpop =
(loop-invariant"). You know that the loop invariant has been maintained because the
new element is inserted in the correct place in the previously sorted list.

8) Establishing the Loop Invariant: Initially, with k = 1, think of the first element in
the array as a sorted list of length one.

24

Iterative Algorithms and Loop Invariants

9) Exit Condition: Stop when k = n.

10) Ending: (loop-invariant) & (exit-cond) & codepos;-jp0p = (post-cond). By the exit
condition, all the elements have been inserted, and by the loop invariant, these in-
serted elements have been sorted.

11) Termination and Running Time: We have not considered how long it takes to in-
sert the element or to handle the data structures.

Example 1.4.3 Narrowing the Search Space—Binary Search

1) Specifications: An input instance consists of a sorted list A[1..n] of elements and
a key to be searched for. Elements may be repeated. If the key is in the list, then the
output consists of an index i such that A[i] = key. If the key is not in the list, then the
output reports this.

2) Basic Steps: Continue to cut the search space in which the key might be in half.

4) The Loop Invariant: The algorithm maintains a sublist A[i.. j] such that if the key is
contained in the original list A[1..n], then it is contained in this narrowed sublist. (If
the element is repeated, then it might also be outside this sublist.)

3) Measure of Progress: The measure of progress is the number of elements in our
sublist, namely j — i + 1.

5) Main Steps: Each iteration compares the key with the element at the center of the
sublist. This determines which half of the sublist the key is not in and hence which
half to keep. More formally, let mid index the element in the middle of our current
sublist A[i..j]. If key < A[mid], then the sublist is narrowed to A[i..mid]. Otherwise, it
is narrowed to A[mid + 1..j].

6) Make Progress: The size of the sublist decreases by a factor of two.

7) Maintain Loop Invariant: (loop-invariant’y & not (exit-cond) & codejoop =
(loop-invariant”). The previous loop invariant gives that the search has been nar-
rowed down to the sublist A[i..j]. If key > A[mid], then because the list is sorted,
we know that key is not in A[1..mid] and hence these elements can be thrown away,
narrowing the search to A[mid + 1..j]. Similarly if key < A[mid]. If key = Almid],
then we could report that the key has been found. However, the loop invariant is also
maintained by narrowing the search down to A[i..mid].

8) Establishing the Loop Invariant: (pre-cond) & codeye.1o0p = (loop—invariant).
Initially, you obtain the loop invariant by considering the entire list as the sublist. It
trivially follows that if the key is in the entire list, then it is also in this sublist.

9) Exit Condition: We exit when the sublist contains one (or zero) elements.

10) Ending: (loop-invariant) & (exit-cond) & codep,s.joop = (post-cond). By the exit
condition, our sublist contains at most one element, and by the loop invariant, if the

Measures of Progress and Loop Invariants

key is contained in the original list, then the key is contained in this sublist, i.e., must
be this one element. Hence, the final code tests to see if this one element is the key. If
it is, then its index is returned. If it is not, then the algorithm reports that the key is not
in the list.

11) Termination and Running Time: The sizes of the sublists are approximately
n %, 4 % 16 ---» 8 4,2, 1. Hence, only ©(log n) splits are needed. Each split takes O(1)
time. Hence, the total time is ®(log n).

12) Special Cases: A special case to consider is when the key is not contained in the
original list A[1..n]. Note that the loop invariant carefully takes this case into account.
The algorithm will narrow the sublist down to one (or zero) elements. The counter pos-
itive of the loop invariant then gives that if the key is not contained in this narrowed
sublist, then the key is not contained in the original list A[1..n].

13) Coding and Implementation Details: In addition to testing whether key <
A[mid], each iteration could test to see if A[mid] is the key. Though finding the key
in this way would allow you to stop early, extensive testing shows that this extra
comparison slows down the computation.

25

EXAMPLE 1.4.4 Work Done—Bubble Sort

1) Specifications: The goal is to rearrange a list of n values in nondecreasing order.
2) Basic Steps: Swap elements that are out of order.

3) Measure of Progress: An involutionis a pair of elements that are out of order, i.e., a
pairi, j where 1 <i < j < n, Ali] > A[j]. Our measure of progress will be the number
of involutions in our current ordering of the elements. For example, in [1, 2, 5, 4, 3, 6],
there are three involutions.

4) The Loop Invariant: The loop invariant is relatively weak, stating only that we have
a permutation of the original input elements.

5) Main Steps: The main step is to find two adjacent elements that are out of order
and to swap them.

6) Make Progress: Such a step decreases the number of involutions by one.

7) Maintain Loop Invariant: (loop-invariant’y & not (exit-cond) & codejoep =
(loop-invariant”). By the previous loop invariant we had a permutation of the
elements. Swapping a pair of elements does not change this.

8) Establishing the Loop Invariant: (pre-cond) & codepe.joop = (loop—invariant).
Initially, we have a permutation of the elements.

9) Exit Condition: Stop when we have a sorted list of elements.

26

Iterative Algorithms and Loop Invariants

10) Ending: (loop-invariant) & (exit-cond) & codeyoss-jpop = (post-cond). By the loop
invariant, we have a permutation of the original elements, and by the exit condition
these are sorted.

11) Termination and Running Time: Initially, the measure of progress cannot be
higher than n(n — 1)/2 because this is the number of pairs of elements there are. In
each iteration, this measure decreases by one. Hence, after at most n(n — 1)/2 itera-
tions, the measure of progress has decreased to zero. At this point the list has been
sorted and the exit condition has been met. We have not considered how long it takes
to find two adjacent elements that are out of order.

EXERCISE 1.4.1 (See solution in Part Five.) Give the implementation details and the
running times for selection sort.

EXERCISE 1.4.2 (See solution in Part Five.) Give the implementation details and the
running times for insertion sort. Does using binary search to find the smallest element
or to find where to insert help? Does it make a difference whether the elements are
stored in an array or in a linked list?

EXERCISE 1.4.3 (See solution in Part Five.) Give the implementation details and the
running times for bubble sort: Use another loop invariant to prove that the total num-
ber of comparisons needed is O(n?).

K Typical Errors

In a study, a group of experienced programmers was asked to code binary search.
Easy, yes? 80% got it wrong! My guess is that if they had used loop invariants, they all
would have got it correct.

Be Clear: The code specifies the current subinterval A[i.. j] with two integers i and j.
Clearly document whether the sublist includes the end points i and j or not. It does
not matter which, but you must be consistent. Confusion in details like this is the
cause of many bugs.

Math Details: Small math operations like computing the index of the middle ele-
ment of the subinterval A(i..j) are prone to bugs. Check for yourself that the answer
is mid = | 5.

6) Make Progress: Be sure that each iteration progress is made in every special
case. For example, in binary search, when the current sublist has even length, it is rea-
sonable (as done above) to let mid be the element just to the left of center. It is also
reasonable to include the middle element in the right half of the sublist. However,

Measures of Progress and Loop Invariants

together these cause a bug. Given the sublist A[i.. j] = A[3, 4], the middle will be the
element indexed with 3, and the right sublist will be still be A[mid..j] = A[3, 4]. If this
sublist is kept, no progress will be made, and the algorithm will loop forever.

7) Maintain Loop Invariant: Be sure that the loop invariant is maintained in ev-
ery special case. For example, in binary search, it is reasonable to test whether
key < A[lmid] or key > A[mid]. It is also reasonable for it to cut the sublist A[i..j]
into Ali..mid] and A[mid + 1..j]. However, together these cause a bug. When key and
A[mid] are equal, the test key < A[mid] will fail, causing the algorithm to think the
key is bigger and to keep the right half A[mid + 1..j]. However, this skips over the key.

Simple Loop: Code like “i = 1; while(i < n) Ali] = 0;i = i + 1; end while” is surpris-
ingly prone to the error of being off by one. The loop invariant “When at the top of
the loop, i indexes the next element to handle” helps a lot.

EXERCISE 1.5.1 (See solution in Part Five.) You are now the professor. Which of the
steps to develop an iterative algorithm did the student fail to do correctly in the follow-
ing code? How? How would you fix it?

algorithm Eg(I)

(pre-cond): I is an integer.

(post-cond): Outputs Z§=1 j-

begin
s=0
i=1

while(i < 1)

(loop-invariant): Each iteration adds the next

term giving that s = 2321 j-

s=s+1
i=i+1
end loop
return(s)

end algorithm

EF3 Exercises

EXERCISE 1.6.1 You are in the middle of a lake of radius 1. You can swim at a speed of
1 and can run infinitely fast. There is a smart monster on the shore who can'’t go in the
water but can run at a speed of 4. Your goal is to swim to shore, arriving at a spot where
the monster is not, and then run away. If you swim directly to shore, it will take you 1

27

28

Iterative Algorithms and Loop Invariants

time unit. In this time, the monster will run the distance Tl < 4 around to where you
land and eat you. Your better strategy is to maintain the most obvious loop invariant
while increasing the most obvious measure of progress for as long as possible and then
swim for it. Describe how this works.

EXERCISE 1.6.2 Given an undirected graph G such that each node has at mostd + 1
neighbors, color each node with one of d + 1 colors so that for each edge the two nodes
have different colors. Hint: Don't think too hard. Just color the nodes. What loop in-
variant do you need?

/ Examples Using More-of-the-Input
Loop Invariants

We are now ready to look at more examples of iterative algorithms. For each example,
look for the key steps of the loop invariant paradigm. What is the loop invariant? How
is it obtained and maintained? What is the measure of progress? How is the correct
final answer ensured?

In this chapter, we will encounter some of those algorithms that use the more-
of-the-input type of loop invariant. The algorithm reads the n objects making up the
input one at a time. After reading the first i of them, the algorithm temporarily pre-
tends that this prefix of the input is in fact the entire input. The loop invariant is “I
currently have a solution for the input consisting solely of these first i objects (and
maybe some additional information).” In Section 2.3, we also encounter some algo-
rithms that use the more-of-the-output type of loop invariant.

EXM cColoring the Plane
See Figure 2.1.

1) Specifications: An input instance consists of a set of n (infinitely long) lines.
These lines form a subdivision of the plane, that is, they partition the plane into a
finite number of regions (some of them unbounded). The output consists of a color-
ing of each region with either black or white so that any two regions with a common
boundary have different colors. An algorithm for this problem proves the theorem
that such a coloring exists for any such subdivision of the plane.

2) Basic Steps: When an instance consists of a set of objects, a common technique
is to consider them one at a time, incrementally solving the problem for those objects
considered so far.

3) Measure of Progress: The measure of progress is the number of lines, i, that
have been considered.

4) The Loop Invariant: We have considered the first i lines. C is a proper coloring
of the plane subdivided by these lines.

29

Iterative Algorithms and Loop Invariants

30

Figure 2.1: An example of coloring the plane.

5) Main Steps: We have a proper coloring C for the first i lines. Line i + 1 cuts the
plane in half, cutting many regions in half. Each of these halves needs a different
color. Then when we change the color of one region, its neighbors must change color
too. We will accomplish this by keeping all the colors on one side of line i + 1 the same
and flipping those on the other side from white to black and from black to white.

6) Make Progress: Each iteration increases i by one.

7) Maintain Loop Invariant: (loop-invariant’)& not{exit-cond Y&codejyo, = (loop-
invariant”). We need to check each boundary to make sure that the regions on either
side have opposite colors. Boundaries formed by one of the first i lines had opposite
colors before the change. The colors of the regions on either side were either neither
flipped or both flipped. Hence, they still have opposite colors. Boundaries formed by
line i 4+ 1 had the same colors before the change. One of these colors was flipped, the
other not. Hence, they now have opposite colors.

8) Establishing the Loop Invariant: (pre-cond) & codep,.j00p=>(loop-invariant).
With i = 0 lines, the plane is all one region. The coloring that makes the entire plane
white works.

9) Exit Condition: Exit when all n lines have been considered, i.e., i = n.

10) Ending: (loop-invariant)&(exit-cond)&codep,st.jo0p = (post-cond)). If C is a
proper coloring given the first i lines and i = n, then clearly C is a proper coloring
given all of the lines.

11) Termination and Running Time: Clearly, only n iterations are needed.

12) Special Cases: There are no special cases we need to consider.

13) Coding and Implementation Details:
algorithm ColoringPlane(lines)

(pre-cond): lines specifies n (infinitely long) lines.
(post-cond): C is a proper coloring of the plane subdivided by the lines.

Examples Using More-of-the-Input Loop Invariants

begin

C = “the coloring that colors the entire plane white.”

i=0

loop
(loop-invariant): Cis a proper coloring of the plane subdivided
by the first i lines.
exit when (i = n)
% Make progress while maintaining the loop invariant
Linei + 1 cuts the plane in half.
On one half, the new coloring C’ is the same as the old one C.
On the other half, the new coloring C’ is the same as the old one C,

except white is switched to black and black to white.

i=i+1&C=C

end loop

return(C)

end algorithm

EEJ Deterministic Finite Automaton

One large class of problems that can be solved using an iterative algorithm with the
help of a loop invariant is the class of regular languages. You may have learned that
this is the class of languages that can be decided by a deterministic finite automata
(DFA) or described using a regular expression.

Applications: This class is useful for modeling

* simple iterative algorithms

* simple mechanical or electronic devices like elevators and calculators
* simple processes like the job queue of an operating system

* simple patterns within strings of characters.

Features: All of these have the following similar features.

Input Stream: They receive a stream of information to which they must react.
For example, the stream of input for a simple algorithm consists of the characters
read from input; for a calculator, it is the sequence of buttons pushed; for the job
queue, it is the stream of jobs arriving; and for the pattern within a string, one
scans the string once from left to right.

Read-Once Input: Once a token of the information has arrived, it cannot be re-
quested for again.

Bounded Memory: The algorithm, device, process, or pattern matcher has lim-
ited memory with which to remember the information that it has seen so far.

31

Iterative Algorithms and Loop Invariants

Though the amount of memory can be any fixed amount, this amount cannot
grow even if the input instance becomes really big.

32

EXAMPLE 2.2.1 A Simple DFA

1) Specifications: Given a string « as the input instance, determine whether it is con-
tained in the set (language)

L = {«@ € {0, 1}* | « has length at most three and the number of 1’s is odd}

In most, but not all, DFAs, the computation’s task it to either accept or reject the input.

2) Basic Steps: The characters of the input instance are read one at a time. Because
the computation will never be able to read a character again, it must remember what
it needs about what it has read so far.

3) Measure of Progress: The measure of progress is the number of characters read so
far.

4) The Loop Invariant: Let » denote the prefix of the input instance read so far. The
loop invariant states what information is remembered about it. Its length and the num-
ber of 1’s read so far cannot be remembered with a bounded amount of memory, be-
cause these counts would grow arbitrarily large were the input instance to grow arbi-
trarily long. Luckily, the language is only concerned with this length up to three and
whether the number of 1’s is even or odd. This can be accomodated with two vari-
ables: length, [€ {0, 1, 2, 3, more}, and parity, r € {even, odd}. This requires only a fixed
amount of memory.

5) Main Steps: Read a character, and update what we know about the prefix.

6) Make Progress: Progress increases because the number of characters read so far
increases by one.

7) Maintaining the Loop Invariant: After reading another character c, the prefix read
is now wc. We know that the length of wcis one more than that of v and that the number
of 1’s is either one more mod 2 or the same, depending on whether or not the new
character cisal.

8) Establishing the Loop Invariant: At the beginning of the computation, the prefix
that has been read so far is the empty string v = ¢, whose length is [= 0, and the num-
ber of I’sis r = even.

9) Exit Condition: We exit when the entire input instance has been read.

10) Ending: When the input instance has been completely read in, the knowledge that
the loop invariant states what we know is sufficient for us to compute the final answer.
We accept if the instance has length at most three and the number of 1’s is odd.

11) Termination and Running Time: The number of iterations is clearly the length n
of the input instance.

12) Special Cases: There are no special cases we need to consider.

Examples Using More-of-the-Input Loop Invariants

13) Coding and Implementation Details:
algorithm DFA()

(pre-cond): The input instance « will be read in one character at a time.
(post-cond): The instance will be accepted if it has length at most three and the
number of 1’s is odd.
begin
[=0andr = even
loop
(loop-invariant): When the iterative program has read in some pre-
fix w of the input instance «, the bounded memory of the machine
remembers the length [€ {0, 1, 2,3, more} of this prefix and
whether the number of 1’s in it is € {even, odd}.
exit when end of input
get(c) % Reads next character of input
if(l <4)thenl=1+1
if(c=1) thenr = (r + 1) mod 2
end loop
if(l < 4 AND r = odd) then
accept
else
reject
end if
end algorithm

Mechanically Compiling an Iterative Program into a DFA: Any iterative pro-
gram with bounded memory and an input stream can be mechanically compiled
into a DFA that solves the same problem. This provides another model or notation
for understanding the algorithm. A DFA is specified by M = (%, Q, §, s, F).

AlphabetX—Precondition: The precondition of the problem provides an alpha-
bet ¥ of characters and specifies that any string of these characters is a valid
input instance. This may be {a, b}, {a, b, ..., z}, ASCII, or any other finite set of
tokens that the program may input. In Example 2.2.1, which we are continuing,
T = {0, 1}.

Set of States, Q—The Loop Invariant: The loop invariant states what information
is remembered about the prefix w read so far. A discrete way of stating this loop
invariant is by constructing the set Q of different states that this remember-
ing iterative program might be in when at the top of the loop. In this example,
these states are Q = {((1—0,r=even), §(1=0,r=0dd)» - - - » Gii=more,r=odd) }, D€CauUse at each
point in time the computation remembers both the length [€ {0, 1, 2, 3, more}
and parity r € {even, odd) of the prefix read.

Recall that a restriction that we are imposing on DFAs is that the amount
of memory that they use is fixed and cannot grow even if the input instance

33

34

Iterative Algorithms and Loop Invariants

becomes really big. The consequence of this is that the number | Q| of states that
the DFA might be in is fixed to some finite number.

Each state g € Q of the DFA specifies a value for each of the program’s vari-
ables. If the variables are allocated in total r bits of memory, then there are
|Q| = 2" different states that these variable might be in. Conversely, with | Q|
states, a DFA can remember r = log, | Q| bits of information. If the algorithm has
two variables, one with | Q, | different states and one with | Q,|, then the algorithm
canbein | Q| = | Q| x | Q.| different states.

In our example, |Q| =5 x 2 = 10.

Be sure to assign meaningful names to the states, i.e., not qo, q, . .., g, as I
have often seen.

Sometimes, when tightening up the algorithm, some of these states can be
collapsed into one, if there is no need for the algorithm to differentiate between
them. In our example, there are three states that can be collapsed into a dead
state from which the final answer is known to be reject. Also, the state q(—o,r—oda)
should be deleted because it is impossible to be in it.

Graphical Representation: Because the number of states that the computation
might be in is fixed to some finite number, the DFA can be represented graphi-
cally by having one node for each state:

leng 0 leng 1 leng 2 leng 3 leng >3
()o.l
@ Even

Odd

Transition Function —Maintain Loop Invariant: Suppose that the computation
has read the prefix w and is at top of the loop. By the loop invariant, the DFA will
be remembering something about this prefix » and a result will be in some state
g € Q. After reading another character c, the prefix read is now wc. We maintain
the loop invariant by putting the DFA into the state g’ corresponding to what it is
to remember about this new prefix wc. Because the DFA does not know anything
about the present prefix w other than the fact that it is in state g, the next state
that the DFA will be in can depend only on its present state g and on the next
character cread.

The DFA’s transition function § defines how the machine transitions from
state to state. Formally, it is a function § : Q x ¥ — Q. If the DFA’s current state is
g € Qand the nextinput character is ¢ € ¥, then the next state of the DFA is given
byq’ = 3(g, c). Consider some state g € Q and some character ¢ € X. Set the pro-
gram’s variables to the values corresponding to state g, assume the character read
is ¢, and execute the code once around the loop. The new state g’ = §(qg, c) of the

Examples Using More-of-the-Input Loop Invariants

DFA is defined to be the state corresponding to the values of the program’s vari-
ables when the computation has reached the top of the loop again.

In a graph representation of a DFA, for each state g and character c, there is
an edge labeled ¢ from node g to node g’ = §(g, ¢).

The Start State s—Establishing the Loop Invariant: The start state s of the DFA M
is the state in Q corresponding to the initial values that the program assigns to
its variables before reading any input characters. In the graph representation, the
corresponding node has an arrow to it.

Accept States F—Ending: When the input instance has been completely read in,
the DFA might be in any one of the states g € Q. Because the DFA does not know
anything about the input instance other than the fact that it is in state g, the
result of the computation can only depend on this state. If the task of the DFA is
only to either accept or reject the input instance, then the set of states Q, must be
partitioned into accept and reject states. If the DFA is in an accept state when the
instance ends, then the instance is accepted. Otherwise, it is rejected. When the
DFA is specified by M = (%, Q, §, s, F), F denotes the set of these accept states.
In the graph representation these nodes are denoted by double circles.

EXAMPLE 2.2.2 Addition

In the standard elementary school algorithm for addition, the input consists of two in-
tegers x and y represented as strings of digits. The output is the sum z, also represented
as a string of digits. The input can be viewed as a stream if the algorithm is first given
the lowest digits of x and of y, then the second lowest, and so on. The algorithm out-
puts the characters of z as it proceeds. The only memory required is a single bit to store
the carry bit. Because of these features, the algorithm can be modeled as a DFA.

algorithm Adding()

(pre-cond): The digits of two integers x and y are read in backwards in parallel.
(post-cond): The digits of their sum will be outputted backwards.

begin
allocate carry € {0, 1}
carry =10
loop

(loop-invariant): If the low-order i digits of x and of y have been read,
then the low-order i digits of the sum z = x + y have been out-
putted. The bounded memory of the machine remembers the carry.

exit when end of input
get((x;, yi))

s =X+ Y + carry

z; = low order digit of s
carry = high order digit of s
put(z;)

36

Iterative Algorithms and Loop Invariants

end loop

if(carry = 1) then
put(carry)

end if

end algorithm
The DFA is as follows.
Set of States: Q = {qcarry=0)> Gcarry=1)}-
Alphabet: ¥ = {(x;, i) | xi;, ¥ € [0..9]}.
Start State: s = Gcarry=0)-
Transition Function: §(qicarry—c, (Xi» i) = (Gearry=c» Zi)

where ¢’ is the high-order digit and z; is the low order digit of x; + y; + c.

EXAMPLE 2.2.3 Division

Dividing an integer by seven requires a fairly complex algorithm. Surprisingly, it can be
done by a DFA. The input consists of an integer x read in one digit at a time, starting
with the high-order digit. Simultaneously, the digits of the output | | are outputted. In
the end, the remainder is provided. Try computing L@J = 5655. After the prefix w =
395 has been read, the loop invariant states that the answer z = L%J = 56 has been
outputted and its remainder r = 395 mod 7 =3 € {0, 1, ..., 6} has been remembered.
When the next character x; = 9 is read, we must do the same for w9 = 3959. The new
answer is
Je L3959J B Lsgs x 10+9J _ {(P%”J X 7+71) x 10+9J

7 | 7 7

395 1049 3% 1049
=L?JxloJ{%J:leoJ{%J=56x10+5=565.

In general, forr € {0, 1, ...,6}and x; € {0, 1, ..., 9}, the value z; = L%J isasin-
gle digit that is easy to compute. This gives that z' as a string is z concatenated with this
new digit z;. Given that zhas already been outputted, what remains is to output z;. Sim-
ilarly, the new remainder r’ = 3959 mod 7 = (395 x 10 + 9) mod 7 = ((395 mod 7) x
10 + (9 mod 7)) mod 7 = ((3) x 10 + (2)) mod 7 = 32 mod 7 = 4. More generally, ' =
r x 10 + ¢ mod 7. Initially, the prefix read so far is the empty string » representing 0,
giving z= %] = 0 = empty string and r = 0 mod 7 = 0. In the end, z= [%] has been
outputted, and what remains is to output its remainder r. The DFA to compute this

will have seven states ¢, . . ., gs. The transition function is §(g;, ¢) = 9ir104c mod 7)-

EXAMPLE 2.2.4 Calculator

Invariants can be used to understand a computer system that, instead of simply com-
puting one function, continues dynamically to take in inputs and produce outputs. In

Examples Using More-of-the-Input Loop Invariants

our simple calculator, the keys are limited to £ = {0, 1, 2, ..., 9, +, clr}. You can enter
a number. As you do so it appears on the screen. The + key adds the number on the
screen to the accumulated sum and displays the sum on the screen. The clr key re-
sets both the screen and the accumulator to zero. The machine only can store positive
integers from zero to 99999999. Additions are done mod 108.

Set of States: Q = {Giucc,cursery | acc, cur € {0..108 — 1} and scr € {showA, showC}}.
There are 10% x 10% x 2 states in this set, so you would not want to draw the
diagram.

Alphabet: ¥ =1{0,1,2,...,9, +, clr}.
Start State: s = ¢0,0,showc)-

Transition Function:
¢ Forc € {09}; a(q(acc,cur,scr)r C) = q(acc,loxcur+c,sl'wa)-
> S(q(acc,cur,scr)y +) = q(acc+cur,cur,siwwA)~
® a(q(acc,cuf,scr); Clr) = q(0,0,showC)-

37

EXAMPLE 2.2.5 Longest Block of Ones

Suppose that the input consists of a sequence A[l..n] of zeros and ones, and we want
to find a longest contiguous block A[p, g] of ones. For example, on input A[l..n] =
(1,1,00,1,1,1,0,0, 1,1, 1, 0], the block A[5..7] of length 3 is a suitable solution, and
so is the block A[10..12]. Here are some things we must consider when designing the
loop invariant.

Nonfinite Memory: Both the size of the longest block and the indices of its beginning
and end are integers in [1..n]. These require O(logn) bits to remember. Hence, this
algorithm will not be a deterministic finite automaton.

Remember the Solution for the Prefix: After reading the prefix A[1..7], it is clear that
you need to remember the longest block. Is this enough for a loop invariant? How
would you maintain this loop invariant when reading in only the next character
Ali + 1]? For example, if A[1..i] = [0, 1, 1, 0, 0, 1, 1], then the loop invariant may give us
only the block A[2..3] of length 2. Then if weread A[i + 1] = 1, then the longest block of
All.i+11=10,1,1,0,0,1, 1, 1] becomes A[6..8] of length 3. How would your program
know about this block?

Remember the Longest Current Block: You also must keep a pointer to the beginning
of the current block being worked on, i.e., the longest one ending in the value A[i], and
its size. With this the algorithm can know whether the current increasing contiguous
subsequence gets to be longer than the previous one. This needs to be included in the
loop invariant.

Maintaining the Loop Invariant: If you have this information about A[1..i], then you
can learn it about A[1..7 + 1] as follows. If A[i + 1] = 1, then the longest block of ones
ending in the current value increases in length by one. Otherwise, it shrinks to being

38

Iterative Algorithms and Loop Invariants

the empty string. If this block increases to be longer than our previous longest, then it
replaces the previous longest. In the end, we know the longest block of ones.

Empty Blocks: A[3..3] is a block of length 1, and A[4..3] is a block of length zero end-
ing in A[3]. This is why initially, with i = 0, the blocks are set to A[1..0], and when the
current block ending in A[i + 1] becomes empty, it is set to A[i + 2..i + 1].

Dynamic Programming: Dynamic programming, covered in Chapter 18, is a very
powerful technique for solving optimization problems. Many of these amount to
reading the elements of the input instance A[1..n] one at a time and, when at A[i],
saving the optimal solution for the prefix A[1..i] and its cost. This amounts to a de-
terministic nonfinite automaton. The maximum-block-of-ones problem is a trivial
example of this. The solutions to the following two problems and more problems can
be found in Chapter 19.2.

Longest Increasing Contiguous Subsequence: The input consists of a sequence
A[l..n] of integers, and we want to find the longest contiguous subsequence A[k;..k;]
such that the elements are monotonically increasing. For example, the optimal solu-
tionfor (5,3,1,3,7,9,8]is (1, 3,7,9].

Longest Increasing Subsequence: This is a harder problem. Again the input con-
sists of a sequence A of integers of size n. However, now we want to find the longest
(not necessarily contiguous) subsequence S C [1..n] such that the elements, in the
order that they appear in A, are monotonically increasing. For example, an optimal
solution for [5,1,5,7,2,4,9,8]is[1,5,7,9],and sois [1, 2, 4, 8].

EXERCISE 2.2.1 (See solution in Part Five.) Give the code for these examples:
1. Divide

2. Calculator
3. Longest block of ones

EXERCISE 2.2.2 For the longest block of ones, whatare %=, Q, 8, s, and F?

EXERCISE 2.2.3 For each of the following examples, give the code, and either give
the DFA or, if necessary, give a deterministic nonfinite automaton as done in Exam-

ple2.2.5.
1. L={0"1"|n=>0}={«x €{0,1}* | « has zero or more zeros followed by the same
number of ones }.

2. L ={a €{0,1}*| every third character of« isa1}. e.g.,, 1010011110110 € L, ¢ € L,
0c L,and100 ¢ L.

3. Logr = {a € {0, 1}* | « has length at most three or the number of 1’s is odd }.

4. L ={x €{0, 1}* | « contains the substring 0101}. For example, « = 1110101101 €
L, because it contains the substring, namely, « = 111 0101 101.

Examples Using More-of-the-Input Loop Invariants

EEN More of the Input vs. More of the Output

Sometimes it is not clear at first whether to use more-of-the-input or more-of-the-
output loop invariants. This section gives two similar problems, of which the first
works better for one and in which the second works better for the other.

EXAMPLE 2.3.1 Tournament

A tournamentis a directed graph (see Section 3.1) formed by taking the complete undi-
rected graph and assigning arbitrary directions to the edges, i.e., a graph G = (V, E)
such that for each u, v € V, exactly one of (, v) or (v, u) is in E. A Hamiltonian path
is a path through a graph that can start and finish anywhere but must visit every node
exactly once each. Design an algorithm that, given any tournament, finds a Hamil-
tonian path through it. Because it finds a Hamiltonian path for any tournament, this
algorithm, in itself, acts as proof that every tournament has a Hamiltonian path.

More of the Output: Itis natural to want to push forward and find the required path
through a graph. The measure of progress would be the amount of the path outputted
and the loop invariant would say “I have the first i nodes (or edges) in the final path.”
Maintaining this loop invariant would require extending the path constructed so far by
one more node. The problem, however, is that the algorithm might get stuck when the
path constructed so far has no edges from the last node to a node that has not yet been
visited. This makes the loop invariant as stated false.

Recursive Backtracking: One is then tempted to have the algorithm backtrack when
it gets stuck, trying a different direction for the path to go. This results in a fine algo-
rithm. See the recursive backtracking algorithms in Chapter 17. However, unless one is
really careful, such algorithms tend to require exponential time.

More of the Input: Instead, try solving this problem using a more-of-the-input loop
invariant. Assume the nodes are numbered 1 to z in an arbitrary way. The algorithm
temporarily pretends that the subgraph on the first i of the nodes is the entire input
instance. The loop invariant is “I currently have a solution for this subinstance.” Such
a solution is a Hamiltonian path u, ..., u; that visits each of the first i nodes exactly
once and that itself is simply a permutation the first i nodes. Maintaining this loop
invariant requires constructing a path for the first i + 1 nodes. There is no requirement
that this new path resemble the previous path. For this problem, however, it can be
accomplished by finding a place to insert the i + 1st node within the permutation of
the first i nodes. In this way, the algorithm looks a lot like insertion sort.

Case Analysis: When developing an algorithm, a good technique is to see for which
input instances the obvious thing works and then try to design another algorithm for
the remaining cases:

(@) up uy uy u; (d) v uy g u; () up uy Y ULy

40

Iterative Algorithms and Loop Invariants

(a) If (vi;1, p) is an edge, then the extended path is easily v;4, Wy, . . ., U;.
(b) Similarly, if (u;, v;1;) is an edge, then the extended path is easily uy, ..., u;, vi11.

(c) Otherwise, because the graph is a tournament, both (i, v;;;) and (v, u;) are
edges. Color each node u; red if (u;, v;;,) is an edge, and blue if (v, u;) is. Because
u, is red and u; is blue, there must be some place u; to u;,; in the path where it changes
color from red to blue. Because both (u;, v;1) and (v;41, u;.;) are edges, we can form
the extended path w,, ..., uj, Vip1, Wjyis .. ., Ui

EXAMPLE 2.3.2 Euler Cycle

An Eulerian cycle in an undirected graph is a cycle that passes through each edge ex-
actly once. A graph contains an Eulerian cycle iff it is connected and the degree of each
vertex is even. Given such a graph, find such a cycle.

More of the Output: We will again start by attempting to solve the problem using
the more-of-the-output technique, namely, start at any node and build the output path
one edge at a time. Not having any real insight into which edge should be taken next,
we will choose them in a blind or greedy way (see Chapter 16). The loop invariant is
that after i steps you have some path through i different edges from some node s to
some node v.

Getting Stuck: The next step in designing this algorithm is to determine when, if
ever, this simple blind algorithm gets stuck, and either to figure out how to avoid this
situation or to fix it.

Making Progress: If s # v, then the end node v must be adjacent to an odd number
of edges that are in the path. See Figure 2.2.a. This is because there is the last edge
in the path, and for every edge in the path coming into the node there is one leaving.
Hence, because v has even degree, it follows that v is adjacent to at least one edge that
is not in the path. Follow this edge, extending the path by one edge. This maintains the
loop invariant while making progress. This process can get stuck only when the path
happens to cycle back to the starting node, giving s = v. In such a case, join the path
here to form a cycle.

Ending: If the cycle created covers all of the edges, then we are done.

Getting Unstuck: If the cycle we have created from our chosen node s back to s does
not cover all the edges, then we look for a node u within this cycle that is adjacent to
an edge not in the cycle. See Figure 2.2.b. Change s to be this new node u. We break the
cycle at u, giving us a path from uback to u. The difference with this path is that we can
extend it past u along the unvisited edge. Again the loop invariant has been maintained
while making progress.

Figure 2.2: Path constructed thus far by
D4 the Euler algorithm within the undirected

411 =new s graph'

Examples Using More-of-the-Input Loop Invariants

u Exists: The only thing remaining to prove is that when v comes around to meet s
again and we are not done, then there is in fact a node u in the path that is adjacent to
an edge not in the path. Because we are not done, there is an edge e in the graph that
is not in our path. Because the graph is connected, there must be a path in the graph
from e to our constructed path. The node u at which this connecting path meets our
constructed path must be as required, because the last edge {u, w} in the connecting
path is not in our constructed path.

Extended Loop Invariant: To avoid having to find such a node u when it is needed,
we extend the loop invariant to state that in addition to the path, the algorithm remem-
bers some node u other than s and v that is in the path and is adjacent to an edge not
in the path.

EXERCISE 2.3.1 (See solution in Part Five.) Iterative cake cutting: The famous algo-
rithm for fairly cutting a cake in two is for one person to cut the cake in the place that
he believes is half and for the other person to choose which “half” he likes. One player
may value the icing and while the other the cake more, but it does not matter. The sec-
ond player is guaranteed to get a piece that he considers to be worth at least a half,
because he chooses between two pieces whose sum worth for him is at least one. Be-
cause the first person cut it in half according to his own criteria, he is happy which
ever piece is left for him. Our goal is write an iterative algorithm that solves this same
problem for n players.

To make our life easier, we view a cake not as three-dimensional thing, but as the
line from zero to one. Different players value different subintervals of the cake differ-
ently. To express this, each player assigns some numerical value to each subinterval.
For example, if player p;’s name is written on the subinterval ["2‘71, ﬁ] of cake, then he
might allocate a higher value to it, say % The only requirement is that the total value
of the cake is one.

Your algorithm is only allowed the following two operations. In an evaluation
query, v = Eval(p, la, b)), the algorithm asks a player p how much (v) he values a
particular subinterval [a, b] of the whole cake [0, 1]. In a cut query, b = Cut(p, a, v),
the protocol asks the player p to identify the shortest subinterval [a, b, starting at a
given left endpoint a, with a given value v. In the above example, Eval(p;, ["2‘71, ﬁ])
returns % and Cut(p;, iz;nl' %) returns i Using these, the two-player algorithm is as
follows:

algorithm Partition2({p, p2}, la, D)

(pre-cond): p, and p, are players.
la, b] C [0, 1] is a subinterval of the whole cake.
(post-cond): Returns a partitioning of la, b] into two disjoint pieces [a;, b;] and
[az, bo] so that player p; values [a;, b;] at least half as much as he values [a, D).
begin
v, = Eval(p, la, b))
c= Cut(p,a, %)

41

42

Iterative Algorithms and Loop Invariants

© NSO R

if Eval(p,, la, c]) < Eval(p,, [c, b])) then
lar, bl = la, c] and la, b2] = [c, b

else
la1, b1l = [, b] and [az, b2] = |a, c]
end if
return(la,, b,] and [ay, b,])
end algorithm

The problem that you must solve is the following:
algorithm Partition(n, P)

(pre-cond): P is a set of n players.
Each player in P values the whole cake [0, 1] by at least 1.

(post-cond): Returns a partitioning of [0, 1] into n disjoint pieces [a;, b;] so that
foreachi € P, the player p; values [a;, b;] by at least%.

begin

end algorithm

Can you cut off n pieces of cake, each of size strictly bigger than %, and have cake
left over? Is it sometimes possible to have allocated a disjoint piece to each player,
each worth much more than %, to the receiving player, and for there to still be cake
left? Explain.

As a big hint to designing an iterative algorithm, I will tell you what the first itera-
tion accomplishes. (Later iterations may do slightly modified things.) Each player
specifies where he would cut if he were to cut off the first fraction 1 of the |a, b]
cake. The player who wants the smaller amount of this first part of the cake is
given this piece of the cake. The code for this is as follows:

loopie P
¢ = Cut(p;, 0, 1)

end loop

imin = thei € P that minimizes c;
(@iir Di] = 10, Ciyy,]

i)

As your first step in designing the algorithm, what is your loop invariant? It should
include:
(a) how the cake has been cut so far
(b) who has been given cake, and how he feels about it
(c) how the remaining players feel about the remaining cake.
Give the iterative pseudocode.
Formally prove that the loop invariant is established.
Formally prove that the loop invariant is maintained.
Formally prove that the postcondition is established.
What is the running time of this algorithm?
Is this a more-of-the-input or a more-of-the-output loop invariant?

3 Abstract Data Types

Abstract data types (ADTs) provide both a language for talking about and tools for
operating on complex data structures. Each is defined by the types of objects that it
can store and the operations that can be performed. Unlike a function that takes an
input and produces an output, an ADT is more dynamic, periodically receiving infor-
mation and commands to which it must react in a way that reflects its history. In an
object-oriented language, these are implemented with objects, each of which has its
own internal variables and operations. A user of an ADT has no access to its internal
structure except through the operations provided. This is referred to as information
hiding and provides a clean boundary between the user and the ADT. One person
can use the ADT to develop other algorithms without being concerned with how it
is implemented or worrying about accidentally messing up the data structure. An-
other can implement and modify the ADT without knowing how it is used or worry-
ing about unexpected effects on the rest of the code. A general purpose ADT—not just
the code, but also the understanding and the mathematical theory—can be reused in
many applications. Having a limited set of operations guides the implementer to use
techniques that are efficient for these operations yet may be slow for the operations
excluded. Conversely, using an ADT such as a stack in your algorithm automatically
tells someone attempting to understand your algorithm a great deal about the pur-
pose of this data structure. Generally, the running time of an operation is not a part
of the description of an ADT, but is tied to a particular implementation. However, it
is useful for the user to know the relative expense of using operations so that he can
make his own choices about which ADTs and which operations to use.

This chapter will treat the following ADTs: lists, stacks, queues, priority queues,
graphs, trees, and sets. From the user’s perspective, these consist of a data structure
and a set of operations with which to access the data. From the perspective of the
data structure itself, it is a ongoing system that continues to receive a stream of com-
mands to which it must react dynamically. ADTs have a set of invariants or integrity
constraints (both public and hidden) that must be true every time the system is en-
tered or left. Imagining a big loop around the system allows us to regard them as a
kind of loop invariant.

43

44

Iterative Algorithms and Loop Invariants

EXD specifications and Hints at Implementations

The following are examples frequently used ADTs.

Simple Types: Integers, floating point numbers, strings, arrays, and records are ab-
stract data types provided by all programming languages.

The List ADT:

Specification: A list consists of an ordered sequence of elements. Unlike arrays,
they contain no empty positions. Elements can be inserted, deleted, read, modi-
fied, and searched for.

Array Implementations: There are different implementations that have tradeoffs
in the running time, memory requirements, and difficulty of implementing. The
obvious implementation of a list is to put the elements in an array. If the elements
are packed one after the other, then the ith element can be accessed in ©(1)
time, but inserting or deleting an element requires ®(n) time because all the el-
ements need to be shifted. Alternatively, blank spaces could be left between the
elements. This leaves room to insert or delete elements in (1) time, but finding
the ith element might now take ®(n) time.

Linked List Implementations: A problem with the array implementation is that
the array needs to be allocated some fixed size of memory when initialized. An
alternative implementation, which can be expanded or shrunk in size as needed,
uses a linked list. This implementation has the disadvantage of requiring © (n)
time to access a particular element. See Section 3.2.

Tree Implementations: A nice balance between the advantages of array and the
linked list implementations is data structure called a heap. Heaps can do every
operation in ®(logn) time. See Section 10.4. Adelson-Velsky-Landis (AVL) trees
and red-black trees have similar properties.

The Stack ADT:

Specification: A stack ADT is the same as a list ADT, except its operations are
limited. It is analogous to a stack of plates. A push is the operation of adding a
new element to the top of the stack. A pop is the operation of removing the top
element from the stack. The rest of the stack is hidden from view. This order is
referred to as last in, first out (LIFO).

Use: Stacks are the key data structure for recursion and parsing. Having the op-
erations limited means that all operations can implemented easily and be per-
formed in constant time.

Abstract Data Types

Array Implementation: The hidden invariants in an array implementation of a
stack are that the elements in the stack are stored in an array starting with the
bottom of the stack and that a variable top indexes the entry of the array contain-
ing the top element. It is not difficult to implement push and pop so that they
maintain these invariants. The stack grows to the right as elements are pushed
and shrinks to the left as elements are popped. For the code, see Exercise 3.1.1.

top

25 lalsfels]s]/ [/]/]s

Linked List Implementation: As with lists, stacks are often implemented using
linked lists. See Section 3.2.

The Queue ADT:

Specification: The queue ADT is also the same as a list ADT, except with a differ-
ent limited set of operations. A queue is analogous to a line-up for movie tickets.
One is able to insert an element at the rear and remove the element that is at the
front. This order is first in first out (FIFO).

Queue Use: An operating system will have a queue of jobs to run and a network
hub will have a queue of packets to transmit. Again all operations can be imple-
ment easily to run in constant time.

Array Implementation:

Trying Small Steps: If the front element is always stored at index 1 of the
array, then when the current front is removed, all the remaining elements
would need to shift by one to take its place. To save time, once an element is
placed in the array, we do not want to move it until it is removed. The effect
is that the rear moves to the right as elements arrive, and the front moves to
the right as elements are removed. We use two different variables, frontand
rear, to index their locations. As the queue migrates to the right, eventually it
will reach the end of the array. To avoid getting stuck, we will treat the array
as a circle, indexing modulo the size of the array. This allows the queue to
migrate around and around as elements arrive and leave.

Hidden Invariants: The elements are stored in order from the entry indexed
by front to that indexed by rear possibly wrapping around the end of the
array.

rear front

HOnnnnnnanae

Iterative Algorithms and Loop Invariants

Extremes: It turns out that the cases of a completely empty and a com-
pletely full queue are indistinguishable, because with both front will be one
to the left of rear. The easiest solution is not to let the queue get completely
full.

Code: See Exercises 3.1.2 and 3.1.3.

Linked List Implementation: Again see Section 3.2.

The Priority Queue ADT:

Specification: A priority queue is still analogous to a line-up for movie tickets.
However, in these queues the more important elements are allowed to move to
the front of the line. When inserting an element, its priority must be specified.
This priority can later be changed. When removing, the element with the highest
priority in the queue is removed and returned. Ties are broken arbitrarily.

Tree Implementations: Heaps, AVL trees, and red-black trees can do each oper-
ation in ®(log n) time. See Sections 4.1, 10.2, and 10.4.

The Set ADT:

Specification: A setis basically a bag within which you can put any elements that
you like. It is the same as a list, except that the elements cannot be repeated or
ordered.

Indicator Vector Implementation: If the universe of possible elements is suffi-
ciently small, then a good data structure is to have a Boolean array indexed with
each of these possible elements. An entry being true will indicate that the corre-
sponding element is in the set. All set operations can be done in constant time,
i.e., in a time independent of the number of items in the set.

Hash Table Implementation: Surprisingly, even if the universe of possible ele-
ments is infinite, a similar trick can be done, using a data structure called a hash
table. A pseudorandom function H is chosen that maps possible elements of the
set to the entries [1, N] in the table. It is a deterministic function in that it is easy
to compute and always maps an element to the same entry. It is pseudorandom
in that it appears to map each element into a random place. Hopefully, all the
elements that are in your set happen to be placed into different entries in the ta-
ble. In this case, one can determine whether or not an element is contained in
the set, ask for an arbitrary element from the set, determine the number of ele-
ments in the set, iterate through all the elements, and add and delete elements—
all in constant time, i.e., independently of the number of items in the set. If col-
lisions occur, meaning that two of your set elements get mapped to the same
entry, then there are a number of possible methods to rehash them somewhere
else.

Abstract Data Types

The Set System ADT:

Specification: A set system allows you to have a set (or list) of sets. Operations
allow the creation, union, intersection, complementation, and subtraction of sets.
The find operator determines which set a given element is contained in.

List-of-Indicator-Vectors or Hash-Table Implementations: One way to imple-
ment these is to have a list of elements implemented using an array or a linked
list where each of these elements is an implementation of a set. What remains is
to implement operations that operate on multiple sets. Generally, these opera-
tions take ®(n) time.

Union-Find Set System Implementation: Another quite surprising result is that
on disjoint sets, the union and find operations can be done on average in a con-
stant amount of time for all practical purposes. See the end of this section.

The Dictionary ADT: A dictionary associates a meaning with each word. Similarly,
a dictionary ADT associates data with each key.

Graphs:

Specification: A graph is set of nodes with edges between them. They can rep-
resent networks of roads between cities or friendships between people. The key
information stored is which pairs of nodes are connected by an edge. Sometimes
data, such as weight, cost, or length, can be associated with each edge or with
each node. Though a drawing implicitly places each node at some location on
the page, a key abstraction of a graph is that the location of a node is not speci-
fied. The basic operations are to determine whether an edge is in a graph, to add
or delete an edge, and to iterate through the neighbors of a node. There is a huge
literature of more complex operations that one might want to do. For example,
one might want to determine which nodes have paths between them or to find
the shortest path between two nodes. See Chapter 14.

A graph An adjacency matrix An adjacency list

Adjacency Matrix Implementation: This consists of an n x n matrix with
M(u, v) = 1if (i, v) is an edge. It requires ©(n?) space (corresponding to the num-
ber of potential edges) and ®(1) time to access a given edge, but ®(n) time to find
the edges adjacent to a given node, and ©(n?) to iterate through all the nodes.
This is only a problem when the graph is large and sparse.

48

Iterative Algorithms and Loop Invariants

animal
vertebrate invertebrate
mamm 1 bird reptile
// N N
homosapien canine lizard snake
Z N N

/h%‘ll‘in\ /] \\
(dad) (gamekeeper (cheetah]épanda) polar

Figure 3.1: Classification tree of animals and a tree representing the expression f = x x (y + 7).

Adjacency List Implementation: It lists for each node the nodes adjacent to it.
It requires ®(E) space (corresponding to the number of actual edges) and can
iterate quickly through the edges adjacent to a give node, but requires time pro-
portional to the degree of a node to access a specific edge.

Trees:

Specification: Data is often organized into a hierarchy. A person has children,
who have children of their own. The boss has people under her, who have people
under them. The abstract data type for organizing this data is a tree.

Uses: There is a surprisingly large list of applications for trees. For two examples
see Figure 3.1 and Section 10.5.

Pointer Implementation: Trees are generally implemented by having each node
point to each of its children:

Orders: Imposing rules on how the nodes can be ordered speeds up certain op-
erations.

Binary Search Tree: A binary search tree is a data structure used to store keys
along with associated data. The nodes are ordered so that for each node, all
the keys in its left subtree are smaller than its key, and all those in the right
subtree are larger. Elements can be found in such a tree, using binary search,
in O(height) instead of O(n) time. See Sections 4.1 and 10.2.

Abstract Data Types

Heaps: A heap requires that the key of each node be bigger than those of
both its children. This allows one to find the maximum key in O(1) time. All
updates can be done in O(logn) time. Heaps are useful for a sorting algo-
rithm known as heap sort and for the implementation of priority queues.
See Section 10.4.

Balanced Trees: If a binary tree is balanced, it takes less time to traverse down it,
because it has height at most log, n. It is too much work to maintain a perfectly
balanced tree as nodes are added and deleted. There are, however, a number of
data structures that are able to add and delete in O(log, n) time while ensuring
that the tree remains almost balanced. Here are two.

AVL Trees: Every node has a balance factor of —1, 0, or 1, defined as the dif-
ference between the heights of its left and right subtrees. As nodes are added
or deleted, this invariant is maintained using rotations like the following (see
Exercise 3.1.5):

Rotate

Red-Black Trees: Every node is either red or black. If a node is red, then both
its children are black. Every path from the root to a leaf contains the same
number of black nodes. See Exercise 3.1.6.

Balanced Binary Search Tree: By storing the elements in a balanced binary
search tree, insertions, deletions, and searches can be done in ®(log n) time.

Union-Find Set System: This data structure maintains a number of disjoint sets of
elements.

Operations: (1) Makeset(v), which creates a new set containing the specified el-
ement v; (2) Find(v), which determines the name of the set containing a speci-
fied element (each set is given a distinct but arbitrary name); and (3) Union(u, v),
which merges the sets containing the specified elements u and v.

49

50

Iterative Algorithms and Loop Invariants

Use: One application of this is in the minimum-spanning-tree algorithm in
Section 16.2.3.

Running Time: On average, for all practical purposes, each of these operations
can be completed in a constant amount of time. More formally, the total time
to do m of these operations on n elements is © (m«(n)), where « is the inverse
Ackermann’s function. This function is so slow growing that even if n equals the
number of atoms in the universe, then «(72) < 4. See Section 9.3.

Implementation: The data structure used is a rooted tree for each set, containing
a node for each element in the set. The difference is that each node points to
its parent instead of to its children. The name of the set is the contents of the
root node. Find(w) is accomplished by tracing up the tree from w to the root u.
Union(u, v) is accomplished by having node u point to node v. From then on,
Find(w) for a node w in u’s tree will trace up and find v instead. What makes
this fast on average is that whenever a Find operation is done, all nodes that are
encountered during the find are changed to point directly to the root of the tree,
collapsing the tree into a shorter tree.

EXERCISE 3.1.1 Implement the push and pop operations on a stack using an array as
described in Section 3.1.

EXERCISE 3.1.2 Implement the insert and remove operations on a queue using an
array as described in Section 3.1.

EXERCISE 3.1.3 When working with arrays, as in Section 3.1, what is the difference
between “rear = (rear + 1) mod MAX” and “rear = (rear mod MAX) + 1,” and when
should each be used?

Figure: The top row shows three famous
graphs: the complete graph on four nodes, the
cube, and the Peterson graph. The bottom row

shows the same three graphs with their nodes
laid out differently. A

Abstract Data Types

EXERCISE 3.1.4 For each of the three pairs of graphs, number the nodes in such the
way that (i, j) is an edge in one if and only if it is an edge in the other.

EXERCISE 3.1.5 (See solution in Part Five.) Prove that the height of an AVL tree with n
nodes is ©(log n).

EXERCISE 3.1.6 Prove that the height of a red-black tree with n nodes is ®(log n).

EEJ Link List Implementation

As said, a problem with the array implementation of the list ADT is that the array
needs to be allocated some fixed size of memory when it is initialized. A solution to
this is to implement these operations using a linked list, which can be expanded in
size as needed. This implementation is particularly efficient when the operations are
restricted to those of a stack or a queue.

List ADT Specification: A list consists of an ordered sequence of elements. Unlike
arrays, it has no empty positions. Elements can be inserted, deleted, read, modified,
and searched for. There are tradeoffs in the running time. Arrays can access the ith
element in ®(1) time, but require G(n) time to insert an element. A linked list is an
alternative implementation in which the memory allocated can grow and shrink dy-
namically with the needs of the program. Linked lists allow insertions in ®(1) time,
but require ®(n) time to access the ith element. Heaps can do both in ®(log n) time.

first~

Linfo [tink o info [tink «f info [tink «f info [tk o}

Hidden Invariants: In a linked list, each node contains the information for one el-
ement and a pointer to the next. The variable first points to the first node, and last
to the last. The last node has its pointer variable contain the value nil. When the list
contains no nodes, first and last also point to nil.

Notation: A pointer, such as first, is a variable that is used to store the address
of a block of memory. The information stored in the info field of such a block is
denoted by first.info in Java and first—> info in C. We will adopt the first nota-
tion. Similarly, first.link denotes the pointer field of the node. Being a pointer itself,
first.link.info denotes the information stored in the second node of the linked list,
and first.link.link.info in the third.

Adding a Node to the Front: Givenalist ADT and new Infoto store in an element,
this operation is to insert an element with this information into the front the list.

51

Iterative Algorithms and Loop Invariants

last

last la‘st last
first ﬁrst—l ﬁrst—'l item |/-‘l H |_l ﬁrst

last

last — la'st last
ﬁrst—l I’ { I’ h first
1 ﬁrst—‘l item |/‘l |/‘l l_l ﬁrst
P

temp temp
killNodée killNod¢

52 last last _l la'st last
temp lemp—-m—l first I item H H |_l ﬁrst1

killNode/ killNodé¢
last last _l last last
iy T] e g] S
temp temp
killNode™] killNode™]

last
first last
temp— jtem ﬁrstl

Figure 3.2: Adding and removing a node from the front of a linked list.

General Case: We need the following steps (with pseudocode given to the right)
for alarge and general linked list. See Figure 3.2.

¢ Allocate space for the new node. New temp

¢ Store the information for the new element. temp.info = Info
* Point the new node at the rest of the list. temp.link = first
* Point first at the new node. first = temp

Special Case: The main special case is an empty list. Sometimes we are lucky and
the code written for the general case also works for such special cases. Inserting
a node starting with both first and last pointing to nil, everything works except
for last. Add the following to the bottom of the code.

* Point last to the new and only node. if(last = nil) then
last = temp
end if

Whenever adding code to handle a special case, be sure to check that the previ-
ously handled cases still are handled correctly.

Removing Node from Front: Given alist ADT, this operation is to remove the ele-
ment in the front the list and to return the information Info stored within it.

General Case:

* Point a temporary variable kill Node to kill Node = first
point to the node to be removed.

* Move firstto point to the second node. first = first.link

* Save the value to be returned. Info = kill Node.info

* Deallocate the memory for the first node. free kill Node

¢ Return the value. return(item)

Abstract Data Types

Special Cases: If the list is already empty, a node cannot be removed. The only
other special case occurs when there is one node pointed to by both first and
last. At the end of the code, first points to nil, which is correct for an empty list.
However, last still points to the node that has been deleted. This can be solved by
adding the following to the bottom of the code:

¢ The list becomes empty. if(first = nil) then
last = nil
end if

Note that the value of first and last change. If the routine Pop passes these pa-
rameters in by value, the routine needs to be written to allow this to happen.

Testing Whether Empty: A routine that returns whether the list is empty returns
trueif first = nil and false otherwise. It does not look like this routine does much, but
it serves two purposes. It hides these implementation details from the user, and by
calling this routine instead of doing the test directly, the user’s code becomes more
readable. See Exercise 3.2.1.

Adding Node to End: See Exercise 3.2.2.

Removing Node from End: It is easy to access the last node and delete it, because
lastis pointing at it. However, in order to maintain this invariant, lastmust be pointed
at the node that had been the second-to-last node. It takes ©(n) time to walk down
the list from the first node to find this second-to-last node. Luckily, neither stacks nor
queues need this operation. For a faster implementation see Exercise 3.2.3.

Walking Down the Linked List: Now suppose that the elements in the linked lists
are sorted by the field info. When given an info value new Element, our task is to point
the pointer next at the first element in the list with that value. The pointer prev is
to point to the previous element in the list. This needs to be saved, because if it is
needed, there is no back pointer to back up to it. If such an element does not exist,
then prev and next are to sandwich the location where this element would go. For
example, if new Element had either the value 6 or the value 8, the result of the search
would be

last
1

first ——| 3 4 8 9

newElement
prev. =gor 8 mext
* Walk down the list loop
* maintaining the two pointers (loop-inv): prev and next point to

consecutive nodes before or at
our desired location.

53

54

Iterative Algorithms and Loop Invariants

¢ until the desired location is found exit when next = nil
or next.info > newElement
* pointing prevwhere nextis pointing prev = next
* and pointing next to the next node. next = next.link
end loop

Running Time: This can require O(n) time, where n is the length of the list.

Initialize the Walk: To initially establish the loop invariant, prev and next must
sandwich the location before the first node. We do this as follows:

s H e
< 1

prevj next

* Sandwich the location before the first prev = nil
node. next = first

Adding a Node:

Into the Middle: The general case to consider first is adding the node into the
middle of the list.

first -| 3 4 8 9

prev next

* Allocate space for the new node. new temp

¢ Store the information for the new element. temp.info = item
* Point the previous node to the new node. prev.link = temp
* Point the new node to the next node. temp.link = next

At the Beginning: If the new node belongs at the beginning of the list (say
value 2), then prev.link = temp would not work, because previs not pointing at a
node. We will replace this line with the following:

Abstract Data Types

last

S ENS P S N o N
< -

prevj next
¢ If the new node is to be the first node, if prev = nil then
* point first at the new node first = temp
* else else
¢ point the previous node to the new node. prev.link = temp

end if

At the End: Now what if the new node is to be added on the end (e.g. value 12)?
The variable last will no longer point at the last node. Adding the following code
to the bottom will solve the problem:

last

w5 s
L —

prev l—next
¢ If the new node will be the last node, if prev = last then
* point last at the new node. last = temp
end if

To an Empty List: Another case to consider is when the initial list is empty. In this
case, all the variables, first, last, prev, and next, will be nil. The new code works in
this case as is.

Compete Code for Adding a Node: One needs to put all of these pieces together
into one insert routine. See Exercise 3.2.5.
Deleting a Node:

From the Middle: Again the general case to consider first is deleting the node
from the middle of the list. We must maintain the linked list before destroying
the node. Otherwise, we will drop the list.

o RSN S KA
C -

prev next

last

first ﬁ-‘ 3 4 9

prev I next

55

56

Iterative Algorithms and Loop Invariants

* Bypass the node being deleted. prev.link = next.link
* Deallocate the memory pointed to by free next
next.

From the Beginning or the End: As before, you need to consider all the potential
special cases. See Exercise 3.2.6.

(@ last last

i (b) i
w1 H
) N /
erj next prev lfncxt

© la|st la|st

(d)
fiss— 3 {4 s o ist— 3 {4 }{s o
7N - /

prev next prev next

EXERCISE 3.2.1 Implement testing whether a linked list is empty.
EXERCISE 3.2.2 [mplement adding a node to the end of a linked list.

EXERCISE 3.2.3 Double pointers: Describe how this operation can be done in ©(1)
time if there are pointers in each node to both the previous and the next node.

EXERCISE 3.2.4 (See solution in Part Five.) In the code for walking down the linked
list, what effect, if any, would it have if the order of the exit conditions were switched
to “exit when next.info > new Element or next = nil”?

EXERCISE 3.2.5 [mplement the complete code insert that, when given an info value
new Element, inserts a new element where it belongs into a sorted linked list. This in-
volves only putting together the pieces just provided.

EXERCISE 3.2.6 [mplement the complete code Delete that, when given an info value
newElement, finds and deletes the first element with this value, if it exists. This in-
volves also considering the four special cases listed for deleting a node from the begin-
ning or the end of a linked list.

EEN Merging with a Queue

Merging consists of combining two sorted lists, A and B, into one completely sorted
list, C. Here A, B, and C are each implemented as queues. The loop invariant main-
tained is that the k smallest of the elements are sorted in C. (This is a classic more-
of-the-output loop invariant. It is identical to that for selection sort.) The larger ele-
ments are still in their original lists A and B. The next smallest element will be either

Abstract Data Types

first element in A or the first element in B. Progress is made by removing the smaller
of these two first elements and adding it to the back of C. In this way, the algorithm
proceeds like two lanes of traffic merging into one. At each iteration, the first car from
one of the incoming lanes is chosen to move into the merged lane. This increases k
by one. Initially, with k = 0, we simply have the given two lists. We stop when k = n.
At this point, all the elements will be sorted in C. Merging is a key step in the merge
sort algorithm presented in Section 9.1.

algorithm Merge(list : A, B)

(pre-cond): A and B are two sorted lists.
(post-cond): C is the sorted list containing the elements of the other two.
begin
loop
(loop-invariant): The k smallest of the elements are sorted in C.
The larger elements are still in their original lists A and B.
exit when A and B are both empty
if(the first in A is smaller than the first in B or Bis empty) then
next Element = Remove first from A
else
next Element = Remove first from B
end if
Add next Element to C
end loop
return(C)
end algorithm

EX3 Parsing with a Stack

One important use of stack is for parsing.

Specifications:
Preconditions: An input instance consists of a string of brackets.

Postconditions: The output indicates whether the brackets match. Moreover,
each left bracket is allocated an integer 1, 2, 3, ..., and each right bracket is al-
located the integer from its matching left bracket.

Example:
Input: ([{ } C) 1 C) { C) })
OQutput: 1 2 3 3 4 4 2 5 5 6 7 7 6 1

57

58

Iterative Algorithms and Loop Invariants

The Loop Invariant: Some prefix of the input instance has been read, and the cor-
rect integer allocated to each of these brackets. (Thus, it is a more-of-the-input loop
invariant.) The left brackets that have been read and not matched are stored along
with their integers in left-to-right order in a stack, with the rightmost on top. The
variable c indicates the next integer to be allocated to a left bracket.

Maintaining the Loop Invariant: If the next bracket read is a left bracket, then it
is allocated the integer c. Not being matched, it is pushed onto the stack. c is incre-
mented. If the next bracket read is a right bracket, then it must match the rightmost
left bracket that has been read in. This will be on the top of the stack. The top bracket
on the stackis popped. If it matches the right bracket, i.e., we have (), {}, or [], then the
right bracket is allocated the integer for this left bracket. If not, then an error message
is printed.

Initial Conditions: Initially, nothing has been read and the stack is empty.

Ending: If the stack is empty after the last bracket has been read, then the string has
been parsed.

Code:

algorithm Parsing (s)

(pre-cond): s is a string of brackets.
(post-cond): Prints out a string of integers that indicate how the brackets
match.
begin
i=0,c=1
loop
(loop-invariant): Prefix s[1, i] has been allocated integers, and
its left brackets are on the stack.
exitwheni=n
if(s[i + 1] is a left bracket) then
print(c)
push({s[i + 1], ¢))
c=c+1
elseif(s[i + 1] = right bracket) then
if(stackempty()) return(“Cannot parse”)
(left, d) = pop()
if(left matches s[i + 1]) then print(d)
else return(“Cannot parse”)

Abstract Data Types

else
return(“Invalid input character”)
end if
i=i+1
end loop
if(stackempty()) return(“Parsed”) else return(“Cannot parse”)
end algorithm

Parsing only “()”: If you only need to parse one type of brackets and you only want
to know whether or not the brackets match, then you do not need the stack in the
above algorithm, only an integer storing the number of left brackets in the stack.

Parsing with Context-Free Grammars: To parse more complex sentences see
Chapter 12 and Section 19.8.

59

60

4 Narrowing the Search Space:
Binary Search

In this chapter, we will consider more binary search algorithms, which use the
narrowing-the-search-space type of loop invariant. In this case, if the thing being
searched for is anywhere, then it is in the narrowed sublist. We first look at gen-
eral binary search trees, which are often used in recursive algorithms (see Sec-
tion 10.2) and then look at another example of an algorithm that incorporates binary
search.

EX Binary Search Trees

Section 3.1 defines a binary search tree to be a binary tree data
structure in which each node stores an element (and some asso-
ciated data). The nodes are ordered so that for each node all the
elements in its left subtree are smaller than that node’s element
and all those in its right subtree are larger. I will show here how
to search quickly for a element with a given tree.

Binary search tree

1) Specifications: Given a binary search tree and a key, find a node whose element
is this key or report that there is no such node.

2) Basic Steps: The restricted search space will be a subtree. Just as in binary
search, our goal is to cut the size of this search space in half.

3) Measure of Progress: For binary search Example 1.4.3, the measure of progress
was the number of elements in the current sublist. With binary search trees this
number is not as predictable when the tree is not balanced. Hence, the measure of
progress will be the number of edges in the path from the root of the entire subtree
to the root of the current subtree.

4) The Loop Invariant: The loop invariant states that if the key is contained some-
where in the entire binary search tree, then it is contained in our current subtree.

Narrowing the Search Space: Binary Search

5) Main Steps: In binary search, we compared the key with the element in the mid-
dle of the current search space. With an unbalanced binary search tree, we do not
know which node is at the exact middle. Instead, we compare the key with the ele-
ment at the root of the current subtree. If it contains the key, then we are done. If the
key is smaller than it, then we know that if the key is anywhere, then it is in the left
subtree of our current tree, else we know that it is in the right subtree.

6) Make Progress: As the root of our current subtree moves down to either its left
or its right subtree, the measure of progress increases by one.

7) Maintain Loop Invariant: (loop-invariant’y & not {(exit-cond) & codejpop =
(loop-invariant”). The previous loop invariant gives that the search has been nar-
rowed down to the current subtree. The property of binary search trees is that all the
elements within this subtree that are smaller than the root of this subtree are in this
subtree’s left subtree, and all those larger in its right. Hence, the main steps narrow
the search space to the subtree, that would contain the key.

8) Establishing the Loop Invariant: (pre-cond) & codeye jo0p=>(loop-invariant).
Initially, you obtain the loop invariant by considering the entire tree of elements as
the current subtree.

9) Exit Condition: We exit either when the key is found or when the current subtree
becomes empty.

10) Ending: (loop-invariant) & (exit-cond) & codepgs.1p0p = (post-cond). By the
exit condition, either we have found the key, in which case we are done, or we have
narrowed the search space to an empty subtree. The loop invariant says that if the
key is contained in the original list, then the key is contained in this empty subtree,
which it is not, and hence the algorithm can safely report that the key is not in the
original list.

11) Termination and Running Time: The number of iterations of this algorithm
is at most the height of the binary search tree, which (if the tree more or less balanced)
is ©(logn).

12) Special Cases: There are no special cases here: any input is either equal to,
larger than, or smaller than the root of the current subtree.

13) Coding and Implementation Details:

algorithm SearchBST(tree, keyToFind)

(pre-cond): tree is a binary tree whose nodes contain key and data fields.
keyToFind is a key.

61

62

Iterative Algorithms and Loop Invariants

(post-cond): If there is a node with this key in the tree, then the associated data
is returned.

begin
subtree = tree
loop
(loop-invariant): If the key is contained in free, then the key is
contained in subtree.
if(subtree = emptyTree) then
result(“key not in tree”)
else if(keyToFind < rootKey(subtree)) then
subtree = leftSub(subtree)
else if(keyToFind = rootKey(subtree)) then
result(rootData(subtree))
else if(keyToFind > rootKey(subtree)) then
subtree = rightSub(subtree)
end if
end loop
end algorithm

E¥I Magic Sevens

My mom gave my son Joshua a book of magic tricks.
The book says, “This trick really is magic. It comes right
every time you do it, but there is no explanation why.”
As it turns out, there is a bug in the way that they ex-
plain the trick. Our task is to fix the bug and to counter
“there is no explanation why.” The only magic is that
of loop invariants. The algorithm is a variant on binary
search.

1) Specifications:

* Let ¢, an odd integer, be the number of columns. The book uses ¢ = 3.
* Letr, an odd integer, be the number of rows. The book uses r = 7.

* Letn = c-r be the number of cards. The book uses n = 21.

* Lett be the number of iterations. The book uses t = 2.

* Let f be the final index of the selected card. The book uses f = 11.

* Ask someone to select one of the n cards and then shuffle the deck.

Narrowing the Search Space: Binary Search

* Repeat ¢ times:

» Spread the cards out as follows. Put ¢ cards in a row left to right face up. Put a
second row on top, but shifted down slightly so that you can see what both the
first and second row of cards are. Repeat for r rows. This forms ¢ columns of r
cards each.

¢ Ask which column the selected card is in.

¢ Stack the cards in each column. Put the selected column in the middle. (This
is why cis odd.)

¢ QOutput the fth card.

Our task is to determine for which values ¢, r, n, £, and f this trick finds the selected
card.

Easier Version: Analyzing this trick turns out to be harder than I initially thought.
Hence, we'll consider the following easier trick first. Instead of putting the selected
column in the middle of the other columns, we put it in front.

2) Basic Steps: At each iteration we gain some information about which card had
been selected. The trick seems to be similar to binary search. A difference is that bi-
nary search splits the current sublist into two parts, whereas this trick splits the entire
pile into c parts. In both algorithms, at each iteration we learn which of these piles the
sought-after element is in.

4) Loop Invariant: A good first guess for a loop invariant would be that used by
binary search. The loop invariant will state that some subset S; of the cards contains
the selected card. In this easier version, the column containing the card is continually
moved to the front of the stack. Hence, let us guess that S; = {1, 2, .. ., s;} indexes the
first s; cards in the deck. We will later solve a recurrence relation to determine that
s; = [n/c].

7) Maintain Loop Invariant: (loop-invariant’) & not (exit-cond) & codejpop =
(loop-invariant”). By the previous loop invariant, the selected card is one of the first
si1 in the deck. When the cards are laid out, the first s;_; cards will be spread on
the tops of the ¢ columns. Some columns will get [s;_;/c] of these cards, and some
will get |s;_1/c] of them. When we are told which column the selected card is in, we
will know that the selected card is one of the first [s;_1/c] cards in this column. In
conclusion,

63

64

Iterative Algorithms and Loop Invariants

8) Establishing the Loop Invariant: Again, as done in binary search, we initially
obtain the loop invariant by considering the entire stack of cards, giving sy =
n/c® = n.

9) Exit Condition: When sufficient rounds have occurred so that s; = 1, the search
space has narrowed down to containing only the first card. Hence, the algorithm is
able to select card f = 1.

11) Running Time: After ¢t = [log,] rounds, s, = [n/c'] = 1.
For a matching lower bound on the number of iterations needed see Chapter 7.
The book has n =21, c = 3, and t = 2. Because 21 = n £ ¢! = 32 = 9, the trick in
the book does not work. Two rounds is not enough. There must be three.

Original Trick: Consider again the original trick where the selected column is put
into the middle.

4) The Loop Invariant: Because the selected column is put into the middle, let us
guess that S; consists of the middle s; cards. More formally, let d; = (n — s;) /2. Neither
the first nor the last d; cards will be the selected card. Instead it will be one of S; =
{d; +1, ..., d; + s;}. Note that both n and s; need to be odd.

8) Establishing the Loop Invariant: Fori = 0, we have sy = n, dy = 0, and the se-
lected card can be any card in the deck.

7) Maintain Loop Invariant: Suppose that before the ith iteration, the selected
card is not one of the first d;_; cards, but is one of the middle s;_; in the deck. Then
when the cards are laid out, the first d;_; cards will be spread on the tops of the ¢
columns. Some columns will get [d;_;/c] of these cards, and some will get |d;_,/c]
of them. In general, however, we can say that the first |d;_;/c| cards of each col-
umn are not the selected card. We use the floor instead of the ceiling here, because
this is the worst case. By symmetry, we also know that the selected card is not one
of the last |d;_;/c| cards in each column. When the person points at a column,
we learn that the selected card is somewhere in that column. However, from be-
fore we knew that the selected card is not one of the first or last |d;_;/c| cards in
this column. There are only r cards in the column. Hence, the selected card must
be one of the middle r — 2|d;_,/c] cards in the column. Define s; to be this value.
The new deck is formed by stacking the columns together with these cards in the
middle.

9) Exit Condition: When sufficient rounds have occurred so that s; = 1, then the
selected card will be in the middle indexed by f' = [51].

Narrowing the Search Space: Binary Search

Trick in Book: The bookhasn =21, c =3, and r = 7. Thus
Si:r—Zl_dHJ d; = 5 Si={di+1,...,d;+ s}

c

so=n=21 d=22=0 $={,2,...,21}
si=7-2131=7 d=%"1=7 S =189,...,14}
s:=7-2[2]=3 d=23=9 S = {10, 11,12}
ss=7-2[3]=1 d=2"1=10 S=({11}

Again three and not two rounds are needed.

11) Running Time: Temporarily ignoring the floor in the equation for s; makes the

analysis easier. We have
s—r_2 Ldi—IJ N di-y n 2(11 —Si-1)/2 _ i1

~r—2 =—-— .
c c c c c

Again, this recurrence relation gives that s; = n/c'. If we include the floor, challeng-
ing manipulations give that s; = 2|s;_;/2¢c — %J + 1. More calculations give that s; is
always n/c’ rounded up to the next odd integer.

EXERCISE 4.2.1 Give code for the original Magic Sevens trick.

EXERCISE 4.2.2 Suppose S and T are sorted arrays, each containing n elements. Find
the nth smallest of the 2n numbers.

EXEN VLsI Chip Testing

The following is a strange problem with strange rules. However, it is no stranger than
the problems that you will need to solve in the world. We will use this as an example of
how to develop a strange loop invariant with which the algorithm and its correctness
become transparent.

Specification: Our boss has n supposedly identical VLSI chips that are potentially
capable of testing each other. His test jig accommodates two chips at a time. The
result is either that they are the same (that is, both are good or both are bad), or that
they are different (that is at least one is bad). The professor hires us to design an
algorithm to distinguish good chips from bad ones.

Impossible? Some computational problems have exponential-time algorithms, but
no polynomial time algorithms. Because we are limited in what we are able to do, this
problem may not have an algorithm at all. It is often hard to know. A good thing to
do with a new problem is to alternate between author and critic. The author does his
best to design an algorithm for the problem. The critic does his best to prove that the
author’s algorithm does not work or, even better, prove that no algorithm works.

65

66

Iterative Algorithms and Loop Invariants

Suppose that the professor happened to have one good chip and one bad chip.
The single test that he has tells him that these chips are different, but does not tell him
which is which. There is no algorithm using only this single test that accomplishes
the task. The professor may not be happy with our findings, but he will not be able to
blame us.

Though we have shown that there is no algorithm that distinguishes these two
chips, perhaps we can find an algorithm that can be of some use for the professor.

A Data Structure: It is useful to have a good data structure with which to store the
information that has been collected. Here we can have a graph with a node for each
chip. After testing a pair of chips, we put a solid edge between the corresponding
nodes if they are reportedly the same and a dotted edge if they are different.

The Brute Force Algorithm: One way of understanding a problem better is to ini-
tially pretend that you have unbounded time and energy. With this, what tasks can
you accomplish? With ®(r?) tests we can test every pair of chips. We assume that the
test is tensitive, meaning that if chip a tests to be the same as b, which tests to be
the same as ¢, then a will test to be the same as c. Given this, we can conclude that
the tests will partition the chips into sets of chips that are the same. (In graph theory
we call these sets cliques, as in a clique of friends in which everyone in the group is
friends with everyone else in the group.) There is, however, no test available to deter-
mine which of these sets contain the good chips.

Change the Problem: When you get stuck, a useful thing to do is to go back to your
boss or to the application at hand and see if you can change the problem to make it
easier. There are three ways of doing this.

More Tools: One option is to allow the algorithm more powerful tools. A test that
told you whether a chip was good would solve the problem. On the other hand,
if the professor had such a test, you would be out of a job.

Change the Preconditions: You can change the preconditions to require addi-
tional information about the input instance or to disallow particularly difficult
instances. You need some way of distinguishing between the good chips and the
various forms of bad chips. Perhaps you can get the professor to assure you that
more than half of the chips are good. With this, you can solve the problem. Test
all pairs of chips and partition the chips into the sets of equivalent chips. The
largest of these sets will be the good chips.

Change the Postconditions: Another option is to change the postconditions by
not requiring so much in the output. Instead of needing to distinguish com-
pletely between good and bad chips, an easier task would be to find a single good
chip.

Narrowing the Search Space: Binary Search

A Faster Algorithm: Once we have our brute force algorithm, we will want to at-
tempt to find a faster algorithm. Let us attempt to find a single good chip from among
n chips, assuming that more than n/2 of the chips are good, using an iterative algo-
rithm. Hopefully, it will be faster than ©(n?) time.

Designing the Loop Invariant: In designing an iterative algorithm for this prob-
lem, the most creative step is designing the loop invariant.

Start with Small Steps: What basic steps might we follow to make some kind of
progress? Certainly the first step is to test two chips. There are two cases.

Different: Suppose that we determine that the two chips are different. One
way to make progress is to narrow down the input instance while maintain-
ing what we know about it. What we know is that more than half of the chips
are good. Because we know that at least one of the two tested chips is bad,
we can throw both of them away. We know that we do not go wrong by do-
ing this, because we maintain the loop invariant that more than half of the
chips are good. From this we know that there is still at least one good chip
remaining, which we can return as the answer.

Same: If the two chips test the same, we cannot throw them away, be-
cause they might both be good. However, this too seems like we are making
progress, because, as in the brute force algorithm, we are building up a set of
chips that are the same.

Picture from the Middle: From our single step, we saw two forms of progress.
First, we saw that some chips will have been set aside. Let S denote the subset
containing all the chips that we have not set aside. Second, we saw that we were
building up sets of chips that we know to be the same. It may turn out that we
will need to maintain a number of these sets. To begin, however, let’s start with
the simplest picture and build only one such set.

The Loop Invariant: We maintain two sets. The set S contains the chips that we
have not set aside. We maintain that more than half of the chips in S are good.
The set C is a subset of S. We maintain that all of the chips in C are the same,
though we do not know whether they are all good or all bad.

Type of Loop Invariant: This is a strange loop invariant, but it has a number of
familiar aspects.

More of the Input: We do consider the chips one at a time in order.

More of the Output: The set C is our first guess at what the outputted good
chips will be (but this may change).

Narrow the Search Space: The narrowed set S contains at least one good
chip.

67

68

Iterative Algorithms and Loop Invariants

Case Analysis: We check different cases as to whether the chips are the same
or different.

Work Done: The sets Sand C keep track of the work done so that it need not
be redone.

Maintaining the Loop Invariant: (loop-invariant’) & not{exit-cond) &codejgp =
(loop-invariant”). Assume that all we know is that the loop invariant is true. It being
the only thing that we know how to do, we must test two chips. Testing two from C
is not useful, because we already know that they are the same. Testing two that are
not in C is dangerous, because if we learn that they are same, then we will have to
start a second set of alike chips, yet we previously decided to maintain only one. The
remaining possibility is to choose any chip from C and any from S— C and test them.
Let us denote these chips by c and s.

Same: If the conclusion is that the chips are the same, then add chip s to C. We
have not changed S, so its loop invariant still holds. From our test, we know that
s has the same characteristic as c. From the loop invariant, we know that cis that
same as all the other chips in C. Hence, we know that s is the same as all the other
chips in C, and the loop invariant follows.

Different: If the conclusion is that at least one is bad, then delete both c and s
from C and S. Now S has lost two chips, at least one of which is bad. Hence, we
have maintained the fact that more than half of the chips in S are good. Also, C
has only become smaller, and hence we have maintained the fact that its chips
are all the same.

Either way, we maintain the loop invariant while making some (yet undefined)
progress.

Handle All Cases: We can only test one chip from C and one from S—C if both are
nonempty. We need to consider the cases in which they are not.

SIs Empty: If Sis empty, then we are in trouble, because we have no more chips
to return as the answer. We must stop before this.

S—CIs Empty: If S—C is empty, then we know that all the chips in S = C are the
same. Because more than half of them must be good, we know that all of them
are good. Hence, we are done.

CIs Empty: If C is empty, take any chip from S and add it to C. We have not
changed S, so its loop invariant still holds. The single chip in C is the same as
itself.

The Measure of Progress: The measure cannot be |S|, because this does not de-
crease when the chips are the same. Instead, let the measure be |S— C|. In two of our

Narrowing the Search Space: Binary Search

cases, we remove a chip from S— C and add it to C. In another case, we remove a chip
from S— C and one from C. Therefore, in all cases this measure decreases by 1.

Initial Code: (pre-cond) & codeyye.j0p = (loop-invariant). The initial code sets S to
be all the chips and C to be empty. More than half of the chips in Sare good according
to the precondition. Because there are no chips in C, all the chips that are in it are the
same.

Exiting Loop: (loop-invariant)& exit-cond)&cod ey jpop = (post-cond)). |S — C|=
0 is a good halting condition, but not the first. Halt when |C| > |S|/2, and return any
chip from C. According to the loop invariant, the chips in C are either all good or all
bad. The chips in C constitute more than half the chips, so if they were all bad, more
than half of the chips in S would also be bad. This contradicts the loop invariant.
Hence, the chips in C are all good.

Running Time: Initially, the measure of progress | S—C| is n. We showed that it de-
creases by at least 1 each iteration. Hence, there are at most n steps before S—C is
empty. We are guaranteed to exit the loop by this point, because | S—C| = 0 assures
us that the exit condition |C| = |S| > |S|/2 is met. S must contain at least one chip,
because by the loop invariant more than half of them are good.

Additional Observations: C can flip back and forth between being all bad and be-
ing all good many times. Suppose it is all bad. If s from S— C happens to be bad, then
C gets bigger. If s from S— C happens to be good, then C gets smaller. If C ever be-
comes empty during this process, then a new chip is added to C. This chip may be
good or bad. The process repeats.

Extending the Algorithm: The algorithm finds one good chip. This good chip will
tell you which of the other chips are good in O(n) time.

Randomized Algorithm: Chapter 21 provides a much easier randomized algo-
rithm for this problem.

KX Exercises

EXERCISE 4.4.1 (See solution in Part Five.) Search a sorted matrix: The input consists
of a real number x and a matrix A[l..n, 1..m| of nm real numbers such that each row
Ali, 1..m] is sorted and each column A[l..n, jl is sorted. The goal is to find the maxi-
mum array entry Ali, j] that is less than or equal to x, or report that all elements of A
are larger than x. Design and analyze an iterative algorithm for this problem that ex-
amines as few matrix entries as possible. Becareful if you believe that a simple binary
search solves the problem. Exercise 7.0.7 asks for a lower bound, and Exercise 9.1.3 for
a recursive algorithm.

69

70

Iterative Algorithms and Loop Invariants

EXERCISE 4.4.2 Suppose a train was supposed to start at station A, pause at stations
B,C, D, ..., Y, and finish at station Z. However, it did not arrive at Z. Suppose in your
factory the piece of equipment or process labeled A makes part B work, which in turn
makes C, D, ..., and Z work. However, Z is not working. You want to find out why.
What algorithm do you use? Think of other applications of this technique.

EXERCISE 4.4.3 The following question is not about narrowing the search space. If
anything, it is about doubling the size of the search space. But it still has a binary search
feel. This question finds the length D, (1, v) of the shortest path between any pair of
nodes in a directed (or undirected) graph. The input provides the length d(u, v) > 0
of each edge (u, v) in the complete graph. It is not necessary that d(u, v) = d(v, u), and
these lengths may be co. The distance along a path is the sum of the d(u, v) values along
its edges. Let d;(u, v) denote the length of the shortest path from u to v with at most
2! edges. Do steps 7, 8, 10, and 11, proving that the loop invariant is established and
maintained, proving that on exiting the postcondition is established, and bounding
the running time. As a hint, trace the algorithm on a graph consisting of a single path,
namely, for j € (1, n — 1], d(u;, uj+1) = 1 and all other edges have d(u, v) = oco.

algorithm Alg(d)

(pre-cond): d(u, v) € [0,00] is the length of edge (u, v) in the complete graph.
(post-cond): Returned is the length Duin(u, v) of the shortest path from u to v for each
pair of nodes.
begin
for each edge (u, v), D(u, v) = d(u, v)
looplog, (n) times
(loop-invariant): Afteri iterations, Dyin (4, v) < D(u, v) < d;(u, v)
for each edge (u, v) (iteratively or in parallel)
% D;(u, v) = Min(D;_ (u, v), Min,[D;_ (4, w) + Di_1(w, v)])
loop over nodes w
if(D(u, v) > D(u, w) + D(w, v)) then
D(u, v) = D(u, w) + D(w, v)
end if
end loop
end loop
end loop
return (D)
end algorithm

One can find more about this in Exercise 19.6.2.

5 Iterative Sorting Algorithms

Sorting is a classic computational problem. During the first few decades of comput-
ers, almost all computer time was devoted to sorting. Many sorting algorithms have
been developed. It is useful to know a number of them, because sorting needs to be
done in many different situations. Some depend on low time complexity, other on
small memory, others on simplicity. Throughout the book, we consider a number of
sorting algorithms because they are simple yet provide a rich selection of examples
for demonstrating different algorithmic techniques. We have already looked at selec-
tion, insertion, and bubble sort in Section 1.4. In this chapter we start with a simple
version of bucket sort and then look at counting sort. Radix sort, which is another
surprising sort, is considered. Finally, counting and radix sort are combined to give
radix counting sort.

Most sorting algorithms are said to be comparison-based, because the only way
of accessing the input values is by comparing pairs of them, i.e., a; < a;. Radix count-
ing sort manipulates the elements in other ways. Another strange thing about this
algorithm is that its loop invariants are rather unexpected.

In Section 9.1, we consider merge sort and quick sort, which is a recursive and
randomized version of bucket sort. We look at heap sort in Section 10.4.

EXB Bucket Sort by Hand

Specifications: As a professor, I often have to sort a large stack of students’ papers
by last name. The algorithm that I use is an iterative version of quick sort and bucket
sort. See Section 9.1.

Basic Steps:

Partitioning into Five Buckets: Computers are good at using a single comparison
to determine whether an element is greater than the pivot value or not. Humans,
on the other hand, tend to be good at quickly determining which of five buckets
an element belongs in. I first partition the papers based on which of the following

71

72

Iterative Algorithms and Loop Invariants

ranges the first letter of the name is within: [A-E], [F-K], [L-O], [P-T], or [U-Z].
Then I partition the [A-E] bucket into the subbuckets [A], [B], [C], [D], and [E].
Then I partition the [A] bucket based on the second letter of the name. This works
for this application because the list to be sorted consists of names whose first
letters are fairly predictably distributed through the alphabet.

A Stack of Buckets: One difficulty with this algorithm is keeping track of all the
buckets. For example, after the second partition, we will have nine buckets: [A],
[B], [C], [D], [E], [F-K], [L-O], [P-T], and [U-Z]. After the third, we will have 13.
On a computer, the recursion of the algorithm is implemented with a stack of
stack frames. Correspondingly, when I sort the student’s papers, I have a stack of
buckets.

The Loop Invariant: 1 use the following loop invariant to keep track of what I am
doing. The papers are split between a pile of already sorted papers and a stack of
piles of partially sorted papers. The papers in the sorted pile (initially empty) come
before all the partially sorted papers. Within the partially sorted stack of piles, the
papers within each pile are out of order. However, each paper in a pile belongs before
each paper in a later pile. For example, at some point in the algorithm, the papers
starting with [A-C] will be sorted, and the piles in my stack will consist of [D], [E],
[F-XK], [L-O], [P-T], and [U-Z].

Maintain Loop Invariant: [make progress while maintaining thisloop invariant as
follows. I take the top pile off the stack, here the [D]. If it only contains a half dozen
or so papers, I sort them using insertion sort. These are then added to the top of
the sorted pile, [A-C], giving [A-D]. On the other hand, if the pile [D] taken off the
stackislarger then this, I partition it into five piles, [DA-DE], [DF-DK], [DL-DO], [DP-
DT], and [DU-DZ], which I push back onto the stack. Either way, my loop invariant is
maintained.

Exit Condition: When the last bucket has been removed from the stack, the papers
are sorted.

EXERCISE 5.1.1 Try sorting a deck of cards using this algorithm.

EXERCISE 5.1.2 Give code for this algorithm.

X Counting Sort (a Stable Sort)

The counting sort algorithm is only useful in the special case where the elements to
be sorted have very few possible values.

Specifications:

Preconditions: The input is a list of N values ay, ..., ay_1, each within the range
0,...,k—1.

Iterative Sorting Algorithms

Postconditions: The output is a list consisting of the same N values in nonde-
creasing order. The sort is stable, meaning that if two elements have the same
value, then they must appear in the same order in the output as in the input.
(This is important when extra data is carried with each element.)

Basic Steps:

Where an Element Goes: Consider any element of the input. By counting, we will
determine where this element belongs in the output, and then we simply put it
there. Where it belongs is determined by the number of elements that must ap-
pear before it. To simplify the argument, let’s index the locations with [0, N — 1].
This way, the element in the location indexed by 0 has no elements before it, and
the element in location ¢ has C elements before it.

Suppose that the element a; has the value v. Every element that has a strictly
smaller value must go before it. Let’s denote this count with ¢, that is, ¢, =
I{j | a; < v}|. The only other elements that go before a; are elements with exactly
the same value. Because the sort must be stable, the number of these that go be-
fore it is the same as the number that appear before it in the input. If this number
happens to be g,,, then element a; belongs in location ¢, + ¢q,,. In particular, the
first element in the input with value v goes in location ¢, + 0.

Example:

Input: 1010200120
Output: 0000011122
Index: 0123456789

The first element to appear in the input with value 0 goes into location 0, be-
cause there are ¢y = 0 elements with smaller values. The next such element
goes into location 1, the next into 2, and so on.

The first element to appear in the input with value 1 goes into location
5, because there are ¢; = 5 elements with smaller values. The next such ele-
ment goes into location 6, and the next into 7.

Similarly, the first element with value 2 goes into location ¢, = 8.

Computing ¢,: We could compute ¢, by making a pass through the input, count-
ing the number of elements that have values smaller than v. Doing this sepa-
rately for each value v € [0..k — 1], however, would take O(kN) time, which is
too much.

Instead, let’s first count how many times each value occurs in the input. For
each v € [0..k — 1], let ¢, = |{i | a; = v}|. This count can be computed with one
pass through the input. For each element, if the element has value v, increment
the counter c,. This requires only O(N) addition and indexing operations.

Given the ¢, values, we could compute ¢, = Y, _ 10 ¢y Computing one such
©, would require O(k) additions, and computing all of them would take O(k?)
additions, which is too much.

74

Iterative Algorithms and Loop Invariants

Alternatively, note that ¢y = 0 and ¢, = C,_1 + ¢,_1. Of course, we must have
computed the previous values before computing the next. Now computing one
such ¢, takes O(1) additions, and computing all of them takes only O(k) addi-
tions.

Put in Place: The main loop in the algorithm considers the input elements one
at a time in the order ay, . .., ay—; that they appear in the input and places them
in the output array where they belong.

The Loop Invariant:

1. The input elements that have already been considered have been put in their
correct places in the output.

2. For each v € [0..k — 1], T, gives the index in the output array where the next
input element with value v goes.

Establishing the Loop Invariant: Compute the counts ¢, as described above. This
establishes the loop invariant before any input elements are considered, because this
¢, value gives the location where the first element with value v goes.

Main Step: Take the next input element. If it has value v, place it in the output loca-
tion indexed by C,. Then increment C,.

Maintain Loop Invariant: (loop-invariant’y & not (exit-cond) & codejop =
(loop-invariant”). By the loop invariant, we know that if the next input element has
value v, then it belongs in the output location indexed by ¢,. Hence, it is being put
in the correct place. The next input element with value v will then go immediately
after this current one in the output, i.e., into location ¢, + 1. Hence, incrementing ¢,
maintains the second part of the loop invariant.

Exit Condition: Once all the input elements have been considered, the first loop
invariant establishes that the list has been sorted.

Code:
Yvel0.k—1], ¢, =0
loopi=0to N—1
+ =+ Cail
To=0
loopr=1tok -1
a/ = a/—l + Cy—1
loopi=0to N—1
b(Cu] = alil
+ + Caii

Iterative Sorting Algorithms

Running Time: The total time is O(N + k) addition and indexing operations. If the
input can only contain k = O(N) possible values, then this algorithm works in linear
time. It does not work well if the number of possible values is much higher.

EEN Radix Sort

The radix sort is a useful algorithm that dates back to the days of card-sorting ma-
chines, now found only in computer museums.

Specifications:

Preconditions: The input is alist of Nvalues. Each value is an integer with d dig-
its. Each digit is a value from 0 to k — 1, i.e,, the value is viewed as an integer
base k.

Postconditions: The output is a list consisting of the same N values in nonde-
creasing order.

Basic Steps: For some digiti € [1..d], sort the input according to the ith digit, ignor-
ing the other digits. Use a stable sort, such as counting sort.

Examples: Old computer punch cards were organized into d = 80 columns, and
in each column a hole could be punched in one of k = 12 places. A card-sorting
machine could mechanically examine each card in a deck and distribute the card
into one of 12 bins, depending on which hole had been punched in a specified
column.

A “value” might consist of a year, a month, and a day. You could then sort the
elements by the year, by the month, or by the day.

Order in Which to Consider the Digits: It is most natural to sort with respect to
the most significant digit first. The final sort, after all, has all the elements with a
0 as the first digit at the beginning, followed by those with a 1.

If the operator of the card-sorting machine sorted first by the most signifi-
cant digit, he would get 12 piles. Each of these piles would then have to be sorted
separately, according to the remaining digits. Sorting the first pile according to
the second digit would produce 12 more piles. Sorting the first of those piles ac-
cording to the third digit would produce 12 more piles. The whole process would
be a nightmare.

Sorting with respect to the least significant digit seems silly at first. Sorting
(79, 94, 25) gives (94, 25, 79), which is completely wrong. Even so, this is what the
algorithm does.

The Algorithm: Loop through the digits from low to high order. For each, use a
stable sort to sort the elements according to the current digit, ignoring the other
digits.

75

76

Iterative Algorithms and Loop Invariants

Example:

Sorted by first Considering Stably sorted

3 digits 4th digit by 4th digit
184 3184 1195
192 5192 1243
195 1195 1311
243 1243 3184
271 3271 3271
311 1311 5192

The result is sorted by the first four digits.

Loop Invariant: After sorting with respect to (wrt) the first i low-order digits, the
elements are sorted wrt the value formed from these i digits.

Establishing the Loop Invariant: The loop invariant is initially trivially true, be-
cause initially no digits have been considered.

Maintain Loop Invariant: (loop-invariant’) & not (exit-cond) & codejpop =
(loop-invariant”). Suppose that the elements are sorted wrt the value formed from
the lowest i — 1 digits. For the elements to be sorted wrt the value formed from the
lowest i digits, all the elements with a 0 in the ith digit must come first, followed by
those with a 1, and so on. This can be accomplished by sorting the elements wrt the
ith digit while ignoring the other digits. Moreover, the block of elements with a 0 in
the ith digit must be sorted wrt the lowest i — 1 digits. By the loop invariant, they were
in this order, and because the sorting wrt the ith digit was stable, these elements will
remain in the same relative order. The same is true for the block of elements with a
lor2or...in the ith digit.

Ending: (loop-invariant) & (exit-cond) & code,os;-jpop = (post—cond). When i = d,
they are sorted wrt the value formed from all d digits, and hence are sorted.

EX3 Radix Counting Sort

I'will now combine the radix and counting sorts. The resulting algorithm is said to run
in linear ®(n) time, whereas merge, quick, and heap sort are said to run in ®(nlogn)
time. This makes radix counting appear to be faster, but this is confusing and mis-
leading. Radix counting requires ®(n) bit operations, where 7 is the total number
of bits in the input instance. Merge, quick, and heap sort require ®(Nlog N) com-
parisons, where N is the number of numbers in the list. Assuming that the N num-
bers to be sorted are distinct, each needs ©(log N) bits to be represented, for a total
of n = ®(Nlog N) bits. Hence, merge, quick, and heap sort are also linear time in
that they require ©(n) bit operations, where # is the total number of bits in the input
instance.

Iterative Sorting Algorithms

In practice, the radix counting algorithm may be a little faster than the other al-
gorithms. However, quick and heap sort have the advantage of being done “in place”
in memory, while the radix counting sort requires an auxiliary array of memory to
transfer the data to.

Specifications:
Preconditions: The input is a list of Nvalues. Each value is an [/-bit integer.

Postconditions: The output is a list consisting of the same N values in nonde-
creasing order.

The Algorithm: The algorithm is to use radix sort with counting sort to sort each
digit. To do this, we need to view each [-bit value as an integer with d digits, where
each digit is a value from 0 to k — 1. This is done by splitting the / bits into d blocks
of é bits each and treating each such block as a digit between 0 and k — 1, where
k = 2V/4_Here d is a parameter to be set later.

Example: Consider sorting the numbers 30, 41, 28, 40, 31, 26, 47, 45. Here N=8
and [= 6. Let’s set d = 2 and split the [= 6 bits into d = 2 blocks of é = 3 bits each.
Treat each of these blocks as a digit between 0 and k — 1, where k = 23 = 8. For ex-
ample, 30 = 011110, gives the blocks 011, = 3 and 110, = 6.

Stable sorting wrt the Stable sorting wrt the second
first digit: digit:

For all the numbers:

30 =365 = 011110,

77

41 = 513 = 101 001,
28 = 345 = 011 100,
40 = 505 = 101 000,
31 =37, = 011111,
26 = 323 = 011 010,
47 =573 = 101 111,
45 = 554 = 101 101,

40 = 503 = 101 000,
41 =515 = 101 001,
26 = 323 = 011 010,
28 = 345 = 011 100,
45 = 555 = 101 101,
30 = 365 = 011 110,
31 =373 =011111,

26 = 323 = 011 010,
28 = 345 = 011 100,
30 = 365 = 011 110,
31 =373 = 011111,
40 = 503 = 101 000,
41 = 515 = 101 001,
45 = 554 = 101 101,

47 =573 =101111, 47 =575 =101111,

This is sorted.

Running Time: Using the counting sort to sort with respect to one of the d digits
takes ®(N + k) operations. Hence, the entire algorithm takes ©(d - (N + k)) opera-
tions. We have d = @, giving T = @(@ - (N + k)) operations.

The parameter k (like /) is not dictated by the specifications of the problem, but
can be chosen freely by the algorithm. Exercise 23.1.4 sets k = O(N) in order to min-
imize the running time to T = @(@N) operations.

Formally, time complexity measures the number of bit operations performed
as a function of the number of bits to represent the input. When we say that

78

Iterative Algorithms and Loop Invariants

counting sort takes © (NN + k) operations, a single operation must be able to add two
values with magnitude ®(N) or to index into arrays of size N (or k). Each of these
takes ®(log N) bit operations. Hence, the total time to sort is T = @(@N) oper-
ations x log N (bit operations)/operation = ©(I - N) bit operations. The input, con-
sisting of N [-bit values, requires n = [- N bits to represent it. Hence, the running
time ©(/ - N) = ©(n) is linear in the size of the input.

One example is when you are sorting Nvalues in the range 0 to N”. Each value re-
quires / = log N" = r log N bits to represent it, for a total of n = Nlog(N") = r N bits.

Our settings would thenbe k = N, d = 1oglN =r,and T=0(d- N)=0({N) =0(n).

6 Euclid’s GCD Algorithm

More-of-the-input iterative algorithms extend a solution for a smaller input instance
into a larger one. We will see in Chapter 9 that recursive algorithms do this too. The
following is an amazing algorithm that does this. It finds the greatest common divisor
(GCD) of two integers. For example, GCD (18, 12) = 6. It was first done by Euclid, an
ancient Greek. Without the use of loop invariants, you would never be able to under-
stand what the algorithm does; with their help, it is easy.

Specifications: An input instance consists of two positive integers, a and b. The
output is GCD (a, b).

The Loop Invariant: Like many loop invariants, designing this one required cre-
ativity. The algorithm maintains two variables x and y whose values change with each
iteration of the loop under the invariant that their GCD, GCD (x, y), does not change,
but remains equal to the required output GCD (a, b).

Type of Loop Invariant: This is a strange loop invariant. The algorithm is more
like recursion. A solution to a smaller instance of the problem gives the solution
to the original.

Establishing the Loop Invariant: The easiest way of establishing the loop invari-
ant that GCD (x, y) = GCD (a, b) is by setting x to a and y to b.

Measure of Progress: Progress is made by making x or y smaller.

Ending: We will exit when x or y is small enough that we can compute their GCD
easily. By the loop invariant, this will be the required answer.

A Middle Iteration on a General Instance: Let us first consider a general situa-
tion in which x is bigger than y and both are positive.

79

80

Iterative Algorithms and Loop Invariants

Main Steps: Our goal is to make x or y smaller without changing their GCD. A
useful fact is that GCD (x, y) = GCD (x — y, y), e.g., GCD (52, 10) = GCD (42, 10) =
2, because any value that divides x and y also divides x — y, and similarly any
value that divides x — y and y also divides x. Hence, replacing x with x — y would
make progress while maintaining the loop invariant.

Exponential Running Time? A good idea when you are considering a loop in-
variant and iterations is to jump ahead in designing the algorithm and esti-
mate its running time. A loop executing only x = x — y will iterate § times.
However, even if b = 1, this is only a iterations. This looks like it is linear time.
However, you should express the running time of an algorithm as a function
of input size. See Section 23.1. The number of bits needed to represent the in-
stance (a, b) is n = loga + logb. Expressed in these terms, the running time is
Time(n) = ©(a) = ©(2"). This is exponential time. If a = 1,000,000,000,000,000
and b = 1, I would not want to wait for it.

Faster Main Steps: One thing to try when faced with exponential running time is
to look for a way to speed up the main steps. Instead of subtracting one y from
x each iteration, why not speed up the process by subtracting a multiple of y all
at once? We could set X,y = x — d - y for some integer value of d. Our goal is to
make x,., as small as possible without making it negative. Clearly, d should be
L%J. This gives Xy = X — L§J -y = x mod y, which is within the range [0..y — 1]
and is the remainder when dividing y into x. For example, 52 mod 10 = 2.

Maintaining the Loop Invariant: The step X, = X mod y maintains the loop
invariant because GCD (x, y) = GCD (x mod y, y), e.g., GCD (52, 10) = GCD (2,
10) = 2.

Making Progress: The step x,., = x mod y makes progress by making x smaller
only if x mod y is smaller than x. This is only true if x is greater than or equal to
y. Suppose that initially this is true because a is greater than b. After one iteration,
Xnew = X mod y becomes smaller than y. Then the next iteration will do nothing. A
solution is to then swap x and y.

New Main Steps: Combining x,¢, = x mod y with a swap gives the main steps of
Xnew = J/ and ynew =X l’)’IOd y

Maintaining the Loop Invariant: This maintains our original loop invariant be-
cause GCD (x, y) = GCD (y, x mod y), e.g., GCD (52, 10) = GCD(10, 2) = 2.1t also
maintains the new loop invariant that 0 < y < x.

Making Progress: Because Y., = X mod y € [0..y — 1] is smaller than y, we make
progress by making y smaller.

Special Cases: Setting x = a and y = b does not establish the loop invariant, which
says that x is at least y if a is smaller than b. An obvious solution is to initially test

Euclid’'s GCD Algorithm

for this and to swap x and y if necessary. However, as advised in Section 1.2, it is
sometimes fruitful to try tracing out what the algorithm that you have already de-
signed would do given such an input. Suppose a = 10 and b = 52. The first iteration
would set Xpey = 52 and Yy = 10 mod 52. This last value is a number within the
range [0..51] that is the remainder when dividing 10 by 52. Clearly this is 10. Hence,
the code automatically swaps the values by setting X;¢,, = 52 and yye,, = 10. Hence,
no new code is needed. Similarly, if a and b happen to be negative, the initial iteration
will make y positive, and the next will make both x and y positive.

Exit Condition: We are making progress by making y smaller. We should stop when
y is small enough that we can compute the GCD easily. Let’s try small values of y.
Using GCD (x, 1) = 1, the GCD is easy to compute when y = 1; however, we will never
get this unless GCD (a, b) = 1. How about GCD (x, 0)? This turns out to be x, because
x divides evenly into both x, and 0. Let’s try an exit condition of y = 0.

Termination: We know that the program will eventually stop as follows: y,e, =
x mod y € [0..y — 1] ensures that each step y gets strictly smaller and does not go
negative. Hence, eventually y must be zero.

Ending: Formally we prove that (loop-invariant) & (exit-cond) & codepost-joop =
(post-cond). We see that (loop-invariant) gives GCD (x, y) = GCD (a, b) and (exit-
cond) gives y = 0. Hence, GCD (a, b) = GCD (x, 0) = x. The final code will return the
value of x. This establishes the (post-cond) that GCD (a, b) is returned.

Code:
algorithm GCD (a, b)

(pre-cond): a and b are integers.
{ post-cond): Returns GCD (a, b).

begin

int x,y

XxX=a

y=>b

loop
(loop-invariant): GCD(x,y) = GCD(a,b).
if(y = 0) exit
Xnew =V, ynew=xmdy
X = Xnew
Y = Vnew

end loop

return(x)

end algorithm

81

82

Iterative Algorithms and Loop Invariants

Example: The following traces the algorithm given two input instances,(a, b) =
(22, 33) and (a, b) = (1,000,000,005, 999,999,999).

Iteration = Valueof x Valueof y Iteration Value of x Value of y
18t 22 32 18t 1,000,000,005 999,999,999
2nd 32 22 2nd 999,999,999 6
3 22 10 3 6 3
4th 10 2 4th 3 0
5t 2 0

GCD (1,000,000,005, 999,999,999) =3
GCD(22,32) = 2.

Running Time: For the running time to be linear in the size of the input, the num-
ber of bits (log y) to represent y must decrease by at least one in each iteration. This
means that the value of y must decrease by at least a factor of two. Consider the exam-
ple of x = 19 and y = 10. Then ype, becomes 19 mod 10 = 9, which is only a decrease
of one. However, the next value of y will be 10 mod 9 = 1, which is a huge drop.

We will be able to prove that every two iterations, y drops by a factor of 2, namely,
that yxi2 < yx/2. There are two cases. In the first case, Y1 < yx/2. Then we are
done, because, as stated above, V12 < yr+1.- In the second case, yii+1 € [yx/2 + 1,
¥k — 1]. Unwinding the algorithm gives that y» = Xx1 mod yi+1 = yx mod Yi+1. One
algorithm for computing y; mod yi.1 is to continually subtract yi,1 from y; until the
amount is less than yy, ;. Because yj is more than yy., 1, this yi,1 is subtracted at least
once. It follows that y mod yi+1 < Y& — Yk+1- By the case, yx+1 > yk/2. In conclusion,
Ytz = Yk mod Y1 < Yk — Vi1 < Yi/2.

We prove that the number of times that the loop iterates is O(log(min(a, b))) =
O(n), as follows. After the first or second iteration, y is min(a, b). Every iteration y
goes down by at least a factor of 2. Hence, after k iterations, y is at most min(a, b)/ 2k
and after O(log(min(a, b))) iterations it is at most one.

The algorithm iterates a linear number O(n) of times. Each iteration must do a
mod operation. Poor Euclid had to compute these by hand, which must have gotten
very tedious. A computer may be able to do mods in one operation; however, the
number of bit operations needed for two n-bit inputs is O(nlog n). Hence, the time
complexity of this GCD algorithm is O(r? log n).

Lower Bound: We will prove a lower bound, not of the minimum time for any al-
gorithm to find the GCD, but of this particular algorithm, by finding a family of in-
put values (a, b) for which the program loops ®(log(min(a, b))) times. Unwinding
the code gives yii12 = Xk+1 mod Vi1 = Yk mod yi41. As stated, yx mod yi.1 is com-
puted by subtracting yi,; from y; a number of times. We want the y’s to shrink
as slowly as possible. Hence, let us say that it is subtracted only once. This gives
Vi+2 = Yk — Vi+1 OF Vi = Vk+1 + Vit2. This is the definition of Fibonacci numbers,

Euclid’'s GCD Algorithm

only backwards, i.e., Fib(0) =0, Fib(1) =1, and Fib(n) = Fib(n—1) + Fib(n—2).
(See Exercise 27.2.1.) On input a = Fib(n + 1) and b = Fib(n), the program iterates n
times. This is © (log(min(a, b))), because Fib(n) = 2°",

EXERCISE 6.0.1

~

algorithm Converge(X,riginar)

(pre-cond): Xorigina € [0, ..., 1].
(post-cond): This algorithm returns the converged value 2??
or runs forever
begin
X = Xoriginal
loop 038
(loop-invariant): x € [0, ..., 1]
exit when (x = f(x)) :
X = f(x) : 04
end loop 02
return(x) '

end algorithm 02 [Mo 02 o4 06 08 10 12
This is the function f being used.

06 : : ; ; fx)

X

Prove that the algorithm correctly establishes the loop invariant.

Prove that the loop invariant is maintained.

Fill in the rest of the postcondition by giving as specifically as possible which value
is returned by this algorithm when it does converge. Prove that if the algorithm
halts, then this postcondition is met.

Change the algorithm so that also has an integer input N and it halts after N iter-
ations. What is the running time (time complexity) of this algorithm as a function
of the size of the input?

Change the algorithm so that it halts after a billion iterations. What is the running
time (time complexity) of this algorithm as a function of the size of the input?

EXERCISE 6.0.2 (See solution in Part Five.) The ancient Egyptians and Ethiopians had
advanced mathematics. Merely by halving and doubling, they could multiply any two
numbers correctly. Say they wanted to buy 15 sheep at 13 Ethiopian dollars each. Here
is how they figured out the product. Put 13 in a left column, 15 on the right. Halve
the left value; you get 6%. Ignore the % Double the right value. Repeat this (keeping all
intermediate values) until the left value is 1. What you have is

13 15
30

60

1 120

83

84

Iterative Algorithms and Loop Invariants

Even numbers in the left column are evil and, according to the story, must be destroyed,
along with their guilty partners. So scratch out the 6 and its partner 30. Now add the
right column, giving 15 + 60 + 120 = 195, which is the correct answer.

1.

Write pseudocode that, given two positive integers x and y, follows this procedure
and outputs the resulting value. Part of the loop invariant is that the variable ¢
holds the current left value, r the current right value, and s the sum of all previous
right values that will be included in the final answer. Break the algorithm within
the loop into two steps. In the first step, if ¢ is odd, it decreases by one. In the second
step £ (now even) is divided by two. These steps must updater and s as needed.
Give a meaningful loop invariant relating the current values of ¢, r, s, x, and y.
(Hint: Look at the GCD loop invariant.) In addition to this invariant being true
every time the computation is at the top of the loop, it will also be true every time
the computation is between the first and the second step of each iteration. Prove
that your algorithm establishes and maintains the loop invariant as stated.

Draw pictures to give a geometric explanation for the steps.

What is the Ethiopian exit condition? How might you improve on this? How do
the exit condition, the loop invariant, and perhaps some extra code establish the
postcondition?

Suppose that the input instances x and y are each n-bit numbers. How many
bit operations are used by your algorithm, as a function of n? (Adding two n'-bit
numbers requires O(n') time.) Suppose the Ethiopians counted with pebbles. How
many pebble operations did their algorithm require? How do these times compare?
How do these times compare with the high school algorithm for multiplying? How
do they compare with laying out a rectangle of x by y pebbles and then counting
them?

This algorithm seems very strange. Compare it with using the high school algo-
rithm for multiplying in binary.

/ The Loop Invariant for Lower Bounds

Time Complexity: The time complexity of a computational problem P is the mini-
mum time needed by an algorithm to solve it:

3A, VI, [A(I) = P(I) and Time(A, I) < Typper(11])]
VA, 31, [A(I) # P(I) or Time(A, I) > Tiowe(|1])]

Asymptotic Notation: When we want to bound the running time of an algorithm
while ignoring multiplicative constants, we use the following notation.

Name Standard Notation My Notation Meaning
Theta f(n) = ©(gn) f(n) € ©(gM) fm)~c-gn)
BigOh f(n) = 0(g(n) fm) < 0@gm) fln) <c-gn
Omega f(n) = Q(gn) fm>Q@gm) fn)>c-gn
See Chapter 25.

An Upper Bound Is an Algorithm: An upper bound for P is obtained by con-
structing an algorithm A that outputs the correct answer, namely A(I) = P(I), within
the bounded time, i.e., Time(A, I) < Tper(111), on every input instance 1.

A Lower Bound Is an Algorithm: Amusingly enough, a lower bound, proving that
there is no faster algorithm for the problem P, is also obtained by constructing an
algorithm, but it is an algorithm for a different problem. The input to this problem is
an algorithm A claiming to solve P in the required time. The output, as proof that this
is false, is an input instance I on which the given algorithm A either does not give the
correct answer, namely, A(I) # P(I), or uses too much time, namely, Time(A, I) >
EOW@T(' Il) .

Read the Appendix: To understand this better you may have to read two discus-
sions in the appendix (Part Four): Chapter 22 on how to think of statements with

85

86

Iterative Algorithms and Loop Invariants

existential and universal quantifiers as a game between two players, and Section 23.2
on time complexity.

Circular Argument: Proving lower bounds can lead to the following circular argu-
ment. Given an arbitrary algorithm A, we must find an input instance I for which
A gives the wrong answer. The problem is that you do not know for which input in-
stance the algorithm will give the wrong answer until you know what the algorithm
does. But you do not know what the algorithm does until you give it an input instance
and run it. This paradox is avoided by stepping through the computation on A one
time step at a time, at each step narrowing the search space for I. This makes your al-
gorithm for solving the lower bound problem an iterative algorithm. As such, it needs
aloop invariant.

The Loop Invariant Argument:

Knowledge: At each time step, the actions taken by algorithm A depend on the
knowledge that it has collected already. For example, if the input is (x;, ..., x;)
and during the first time step A tests if x5 < xs, then A can base what it does
during the second time step on whether or not x5 < xg, but it does not yet know
anything else about the input instance. We define A’s knowledge, or state, to be
determined by the values of its variables (except for the variables storing the in-
put instance) and which line of code it is on.

The Loop Invariant: The loop invariant will be a classic narrowing-the-search-
space type. It states that we have a set S of input instances on which algorithm
A’s knowledge and actions for its first # time steps are identical.

Establishing the Loop Invariant: Initially the set S is some large set of instances
that we want to focus on. The loop invariant is trivially established for ¢ = 0, be-
cause initially the algorithm knows nothing and has done nothing.

Maintaining the Loop Invariant: The loop invariant is maintained as follows. As-
sume that it is true at time ¢ — 1. Though we do not know which input instance
I from S will ultimately be given to algorithm A, we do know that what A learns
during its first — 1 time steps is independent of this choice. A, knowing what it
has learned during these first t — 1 steps, but unaware that it has not been given
a specific input instance, will then state what action it will do during time step
t. What A learns at time ¢ from this action will depend on which instance I € S
is given to A. We then partition S based on what A learns and narrow S down
to one such part. This maintains the loop invariant, i.e., that we have a set S of
input instances on which the algorithm A’s knowledge and actions for its first ¢
time steps are identical.

Measure of Progress: The measure of progress for our lower bound algorithm is
that S does not get too much smaller.

The Loop Invariant for Lower Bounds

Exit Condition: The exit condition is then = T}y (| I1]).

Ending: From the loop invariant and the exit condition, we obtain the post-
condition by finding two input instances I and I’ in S for which the computa-
tional problem P requires different outputs: P(I) # P(I'). If, on instance I, al-
gorithm A either does not give the correct answer, so that A(I) # P(I), or uses
too much time, so that Time(A, I) > Tjoer(|I]), then the postcondition is met.
Otherwise, we turn our attention to instance I'. By the loop invariant and the
exit condition, the computation of A is identical on the two instances I and I’ for
the first Tjo,-(| I]) time steps, because both I and I’ are in S. Hence, their outputs
must be identical: A(I) = A(I). By our choice of instances, P(I) # P(I'). Because
A(I) = P(1), it follows that A(I') # P(I'). Again we have found an instance on
which A does not give the correct answer, and the postcondition is met.

EXAMPLE 7.1 Sorting

We have seen a number of algorithms that can sort Nnumbers using O(Nlog N) com-
parisons between the elements, such as merge, quick, and heap sort. We will prove that
no algorithm can sort faster.

Information Theory: The lower bounds technique just described does not con-
sider the amount of work that must get done to solve the problem, but the
amount of information that must be transferred from the input to the output.
The problem with these lower bounds is that they are not bigger than linear with
respect to the bit size of the input and the output.

n= O(Nlog N): At first it may appear that this is a superlinear lower bound.
However, Nis the number of elements in the list. Assuming that the N numbers
to be sorted are distinct, each needs ®(log N) bits to be represented, for a total of
n = ©(Nlog N) bits. Hence, the lower bound does not in fact say that more than
®(n) bit operations are required when 7 is the total number of bits in the input
instance.

Definition of Binary Operation: Before we can prove that no algorithm exists
that quickly sorts, we need to first be very clear about what an algorithm is and
what its running time is. This is referred to as a model of computation. For this
sorting lower bound, we will be very generous. We will allow the algorithm to
perform any binary operation. This operation can use any information about
the input or about what has already been computed by the algorithm, but the
result of the operation is restricted to a yes—no answer. For example, as is done in
merge sort, it could ask whether the ith element is less than the jth element. For
a stranger example, it could ask with one operation whether the number of odd
elements is odd.

88

Iterative Algorithms and Loop Invariants

Definition of the Sorting Problem P: The standard sorting problem, given N el-
ements, is to output the same N elements in sorted order. To make our life easier,
we will define the problem P to sort pointers to the elements instead of sorting
the elements themselves. Note this is often done when elements are too large
to move easily. For example, if the input is I = (19, 5, 81) pointers to these ele-
ments are (1, 2, 3), the output will be (2, 1, 3), because the first element in the
sorted order (5, 19, 81) was second in I, the second was the first, and the third el-
ement was the third. Similarly, the output for I’ = (19, 81, 5) will be (3, 1, 2). What
makes our lives easier in this version of the sorting problem is that the instances
I=1(19,5,81) and I’ = (19, 81, 5) have different outputs, while in the standard
problem definition, they would both have the output (5, 19, 81). This change is
reasonable because any sorting algorithm needs to learn the order that the ele-
ments should be in.

The Initial Set of Instances: Because of the way we modified the sorting prob-
lem, the nature of the elements being sorted does not matter, only their initial
order. Hence, we may as well assume that we are sorting the numbers 1 to N. Let
the initial set S of input instances being considered consist of every permutation
of these numbers.

P(I) # P(I'): Note that each pair of instances I, I’ € Shave different outputs for
the sorting problem P, i.e., P(I) # P(I'). This is good because our search is sup-
posed to end by finding two input instances I and I’ in S for which this is the
case.

The Measure of Progress: Our measure of progress, as we search for an instance
I on which algorithm A does not work, will be the number |S| of instances still
being considered. Initially, because S consists of all permutations of N elements,
|S| = N!. We will prove that each iteration, S does not decrease by more than
a factor of 2. Hence, after ¢ iterations, |S| > NI/2'. By setting Tjue (| I]) to be
log, (N!) — 1, we know that in the end we have at least two input instances re-
maining to be our / and I'.

Math: In =1 x 2 x 3 x --- x N, & of the factors are atleast &, and all N of the
factors are at most N. Hence, N!is in the range [N/2N/2, N™]. Hence, log M is in
the range [£'log ¥, Nlog NI.

Maintaining the Loop Invariant: Assume that the loop invariant is true at time
t — 1 and that S is the set of input instances on which algorithm A’s knowledge
and actions for its first £ — 1 time steps are identical. Given this, the action A will
perform during time step ¢ is fixed. The model of computation dictates that the
result of A’s actions is restricted to a yes—no answer. We then partition S into
two sets based on whether this answer on this instance I is yes or no. We simply
narrow S down to the part of S that is larger of the two. Restricting the algorithm
to learning only this one answer maintains the loop invariant. Clearly, the larger
of the two parts has size at least a half.

The Loop Invariant for Lower Bounds

The Lower Bound: This completes the lower bound that any algorithm requires
at least Q(Nlog N) binary operations to correctly solve the sorting problem.

EXAMPLE 7.2 Binary Search Returning Index

Consider the problem of searching a sorted list of NV elements where the output states
the index of the key in the list. Binary search solves the problem with log, (N) compar-
isons. We will now prove a matching lower bound.

The Initial Set of Instances: To follow the same technique that we did for sorting, we
need a set of legal input instances each of which has a unique output. Now, however,
there are now only N possible outputs. Let the initial set of instances be S={I; | j €
[1, N1}, where I; is the input instance searching for the key 5 within the list that has the
first j — 1 elements zero, the jth element 5, and the last n — j elements 10.

The Measure of Progress: Initially, |S| = N. As before, S does not decrease by more
than a factor of 2 at each iteration. Hence, after ¢ iterations, |S| > N/2’. By setting
Tiower(II]) to be log,(N) — 1, we know that in the end we have at least two input in-
stances remaining to be our I and I'.

The Lower Bound: The rest of the lower bound is the same, proving that any algorithm
requires at least Q(log N) binary operations to correctly solve the problem of searching
a sorted list.

You Have to Look at the Data Lower Bounds: The following lower bounds do
not really belong in the iterative algorithms part of this book, because in these cases
we do not find the instances I and I’ iteratively. However, the basic idea is the same.
These lower bounds say that at least N' < N operations are required on an input of
size N, because you must look at at least N’ of the input values.

EXAMPLE 7.3 Parity

The easiest example is for the problem of computing parity. The input consists of n
bits, and the output simply states whether the number of ones is even or odd.

The Information-Theoretic Approach Does Not Work: The information-theoretic
approach given above allows the model of computation to charge only one time step
for any yes—no operation about the input instance, because it counts only the bits of
information learned. However, this does not work for the parity problem. If any yes—no
operation about the input instance is allowed, then the algorithm can simply ask for
the parity. This solves the problem in one time step.

Reading the Input: Suppose, on the other hand, the model of computation charges
one time step for reading a single bit of the input. (We could even give any additional
operations for free.) Clearly, an algorithm cannot know the parity of the input un-
til it has read all of the bits. This proves the lower bound that any algorithm solving
the problem requires at least n time. We will see, however, that there is a bug in this
argument.

90

Iterative Algorithms and Loop Invariants

EXAMPLE 7.4 Multiplexer

The multiplexer computational problem has two inputs: an n-bit string x, and a
log, (n)-bit index i, which has the range 1 to n. The output is simply the ith bit of x.
As we did for parity, we might give a lower bound of n for this problem as follows: If the
algorithm does not read a particular bit of x, then it will give the wrong answer when
this bit is the required output. This argument is clearly wrong, because the following
is a correct algorithm that has running time log, (n) + 1: It reads i and then learns the
answer by reading the ith bit of x.

Dynamic Algorithms: Proving a lower bound based on how many bits need to be
read is a little harder, because an algorithm is allowed to change which bits it reads
based on what it has read before. Given any single instance, the algorithm might read
only n — 1 of the bits, but which bit is not read depends on the input instance.

Fixing One Instance and Flipping a Bit: Before we can know what the algorithm
A does, we must give it a specific input instance I. We must choose one. Then we de-
termine the set J C [1, n] of bits of this instance that are critical, meaning for each
j € 7, if you flip just the jth bit of I but leave the rest of the instance alone, then
the answer to the computation problem on this instance changes. We then obtain a
lower bound of ' = | J | on the time required to solve the problem as follows. We run
the algorithm on I and see which bits of this instance it reads. If it reads n’ = | J | bits,
then we are done. Otherwise, there is some bit j € J that the algorithm does not read
on this instance. Because the algorithm does not read it, we can flip this bit of the in-
stance without affecting the answer the algorithm gives. We are not allowed to change
any of the bits that the algorithm does read, because not only may this change the
answer that it gives, it may also change which bits it reads. We have made sure, how-
ever, that the flipping of this single bit changes the answer to the computation ques-
tion. Hence, on one of the two input instances, the algorithm must give the wrong
answer.

EXAMPLE 7.3’ Parity

We now obtain a formal lower bound of n for the parity problem, as follows. Let I be
the all-zero instance. Let J = [1, n] be the set of all bits of the input. For each j € J,
changing the jth bit of I changes the answer from even parity to odd parity. Hence,
if the algorithm does not read the jth bit when given instance I, it gives the wrong
answer either on instance I or on the instance with this bit flipped.

EXAMPLE 7.4 Multiplexer

We have obtained a log, (1) + 1-time algorithm for solving the multiplexer problem.
Now we obtain a matching lower bound. Let I be the instance with x = 100,000, i.e.,

The Loop Invariant for Lower Bounds

one in its first bit and zero in the rest, and with j = 1. Let J consist of the log, (n) bits of
Jj and the first bit of x. The output of the multiplexer on I is one, because this is the jth
bit of x. But if you flip any bit of j, then a different bit of x is indexed and the answer
changes to zero. If you flip the first bit of x from being a one, then the answer also
changes. Hence, if the algorithm does not read one of these bits when given instance I,
it either gives the wrong answer on instance I or does so on the instance with this bit
flipped.

21

EXAMPLE 7.2’ Binary Search Returning Yes or No:

In Example 7.2 we proved a log, (IN) lower bound for searching a sorted list of N ele-
ments. We are to do the same again. The difference now is that if the key is in the list,
the problem returns only the output yes, and if not then no.

The Approach:

The Information-Theoretic Approach Does Not Work: Again the informat-
ion-theoretic approach does not work, because if any yes—no operation on the
input instance is allowed, then the algorithm can simply ask whether the key is in
the list, solving the problem in one time step.

The Set-] -of-Bits-to-Flip-Approach Does Not Work: The initial instance [
needs to consist of the key being searched for and some sorted list. Given this,
there are not many elements J that can be changed in order to change the output
of the searching problem.

Some Combination: Instead, we will use a combination of the two lower bound
approaches.

The Initial Set of Instances: As we did when we proved the lower bound for this prob-
lem in Example 7.2, we consider the input instance I;, which is to search for the key 5
within the list with the first j — 1 elements zero, the jth element 5, and the last n — j
elements 10. Unlike before, however, these instances all have the same outputs: yes.
As in the set-J -of-bits-to-flip approach, let I; be the same instance, except the jth el-
ement is changed to from 5 to 6 so that I; and I; have opposite answers. Considering
these, let the initial set of instancesbe S= {I; | j € [1, n]} U {I; | j €1,nl}.

The Standard Loop Invariant: As before, the loop invariant states that we have a set
S of input instances on which algorithm A’s knowledge and actions for its first ¢ time
steps are identical.

Another Loop Invariant: We have additional loop invariants stating that the current
structure of Sis S={I; | j € [, j21} UL} | € [j1, Jo1}, where [j1, j.] is a subinterval of
the sorted list of size. Moreover, |[j, j21| > N/2°.

92

Iterative Algorithms and Loop Invariants

Maintaining the Loop Invariant: We maintain the loop invariant as follows. Assume
that the loop invariant is true for time ¢ — 1. Let m be the index of the element read at
time ¢ by the algorithm on all inputs instances in S.

mé [ji, jol: If the algorithm reads an element m before our subrange [j;, j.],
then for all instances in S, this mth element is zero. Similarly, if m is after, then
this element is definitely 10. In either case, the algorithm learns nothing that has
not already been fixed. The loop invariant is maintained trivially without changing
anything.

me [ji, jmial: Let [j1, jmial and [jniq+ 1, j2] split our subrange in half. If m
is in the first half [j;, j,iql, then we set our new subinterval to be the second
half [j,,;q + 1, j.]. This narrows our set of instances down to S={I; | j € [juig+
L j2lYULI | j € Umia + 1, j21}. For all instances in this new S, the mth element is
zero. The algorithm reads and learns the value zero and proceeds. The loop invari-
ant is maintained.

me [jnia + 1, j21: If mis in the second half [j,,;s + 1, j.I, then we set our new
subinterval to be the first half, and for all instances in the new S, the mth element
is 10.

Ending: The exit condition is then t = Tjy,er(|1]) = log,(NN). From the loop invariant,
when we exit our subinterval [, j,], its size is atleast N/2! = 1. Let j = j; = j,. Ourset
S still contains the two instances I; and Ij/-. By the definition of these instances, the first
requires the answer P(I;) = yes and the second P(I}) = no. From the loop invariant,
the computation of A is identical on these instances for the first Tj,,..(|I|) time steps,
and hence their outputs must be identical: A(1;) = A(I}). Hence, the computation must
give a wrong answer on at least one of them.

The Lower Bound: Therest of the lower bound is the same, proving that any algorithm
requires at least 2(log N) binary operations to correctly solve the problem of searching
a sorted list.

Current State of the Art in Proving Lower Bounds: Lower bounds are hard to
prove, because you must consider every algorithm, no matter how strange or com-
plex. After all, there are examples of algorithms that start out doing very strange
things and then in the end magically produce the required output.

Information Theory: The technique used here to prove lower bounds does not
consider the amount of work that must get done to solve the problem, but the
amount of information that must be transferred from the input to the output.
The problem with these lower bounds is that they are not bigger than linear with
respect to the bit size of the input and the output.

The Loop Invariant for Lower Bounds

Restricted Model: A common method of proving lower bounds is to consider
only algorithms that have a restricted structure. My PhD thesis proved lower
bounds on the tradeoffs between the time and space needed to check (s — 1)-
connectivity of a graph in a model that only allows pebbles to slide along edges
and jump between each other.

General Model: The theory community is just now managing to prove the first
nonlinear lower bounds on a general model of computation. This is quite excit-
ing for those of us in the field.

EXERCISE 7.0.1 How would the lower bound change if a single operation, instead of
being only a yes—no question, could be a question with at most r different answers?
Herer is some fixed parameter.

EXERCISE 7.0.2 (See solution in Part Five.) Recall the Magic Sevens card trick intro-
duced in Section 4.2. Someone selects one of n cards, and the magician must determine
what it is by asking questions. Each round, the magician rearranges the cards into rows
and asks which of ther rows the card is in. Give an information-theoretic argument to
prove a lower bound on the number of rounds, t, that are needed.

EXERCISE 7.0.3 (See solution in Part Five.) Suppose that you have n objects that are
completely identical except that one is slightly heavier. The problem P is to find the
heavier object. You have a scale. A single operation consists of placing any two disjoint
sets of the objects the two sides of the scale. If one side is heavier, then the scale tips over.
Give matching upper and lower bounds for this problem.

EXERCISE 7.0.4 Communication complexity: Consider the following problem: Alice
has some object from the M objects {1, . .., I}, and she must communicate which
object she has to Bob by sending a string of bits. The string sent will be an identifier for
the object. The goal is to assign each object a unique identifier so that the longest one
has as few bits as possible.

EXERCISE 7.0.5 State and prove a lower bound when instead of bits Alice can send
Bob letters from some fixed alphabet %.

EXERCISE 7.0.6 (See solution in Part Five.) The AND computational problem given n
bits determines whether at least one of the bits is a one. This is the same as the game
show problem mentioned in Chapter 21, which requires finding which of the n doors
conceals a prize. The way this differs from the parity problem is that the algorithm can
stop as soon as it finds a prize. Give a tight lower bound for this problem. In the lower
bound for the parity problem, which initial instances I work? Which ones work for the
AND problem?

EXERCISE 7.0.7 Search a sorted matrix: The input consists of a real number x and a
matrix A[1..n, 1..m] of nm real numbers such that each row Ali, 1..n] is sorted and each

93

94

Iterative Algorithms and Loop Invariants

column A[l..n, j] is sorted. The goal is to find the maximum array entry Ali, j] that is
less than or equal to x, or report that all elements of A are larger than x.

1. Exercise 4.4.1 gives an iterative algorithm that accesses T(n,n) =m+n—1=
2n — 1 entries when n = m. Prove a matching lower bound of T(n, n) = 2n — 1 for
this case. (Start with a lower bound of n if you like.)

2. Exercise 9.1.3 gives a recursive algorithm that accesses T(n, m) = nlogz(’—r'z) ele-
ments when m > n. Prove a matching lower bound.

EXERCISE 7.0.8 Consider the problem of determining the smallest element in a max
heap. The smallest elements of a max heap must be one of the [n/2] leaves. (Otherwise,
there must be a nonleaf that is smaller than one of its descendants, which means the
tree is not a max heap.) Thus, it is sufficient to search all leaves. Prove a lower bound
that searching all the leaves is necessary.

PART TWO

Recursion

8 Abstractions, Techniques, and Theory

Iterative algorithms start at the beginning and take one step at a time towards the
final destination. Another technique used in many algorithms is to slice the given task
into a number of disjoint pieces, solve each of these separately, and then combine
these answers into an answer for the original task. This is the divide-and-conquer
method. When the subtasks are different, it leads to different subroutines. When they
are instances of the original problem, it leads to recursive algorithms.

People often find recursive algorithms very difficult. To understand them, it is
important to have a good solid understanding of the theory and techniques pre-
sented in this chapter.

EXM Thinking about Recursion

There are a number of ways to view a recursive algorithm. Though the resulting algo-
rithm is the same, having the different paradigms at your disposal can be helpful.

97

98

Recursion

Code: Code is useful for implementing an algorithm on a computer. It is precise and
succinct. However, code is prone to bugs, is language-dependent, and often lacks
higher levels of intuition.

Stack of Stack Frames: Recursive algorithms are executed using a stack of stack
frames. See Section 8.6. Though this should be understood, tracing out such an exe-
cution is painful.

Tree of Stack Frames: This is a useful way of viewing the entire computation at
once. It is particularly useful when computing the running time of the algorithm.
However, the structure of the computation tree may be very complex and difficult to
understand all at once.

Friends, on Strong Induction: The easiest
method is to focus on one step at a time.
Suppose that someone gives you an instance
of the computational problem. You solve it as
follows. If it is sufficiently small, solve it your-
self. Otherwise, you have a number of friends
to help you. You construct for each friend an
instance of the same computational problem
that is smaller then your own. We refer to these
as subinstances. Your friends magically provide you with the solutions to these. You
then combine these subsolutions into a solution for your original instance.

I refer to this as the friends level of abstraction. If you prefer, you can call it the
strong inductionlevel of abstraction and use the word “recursion” instead of “friend.”
Either way, the key is that you concern yourself only about your task. Do not worry
about how your friends solve the subinstances that you assigned them. Similarly, do
not worry about whoever gave you your instance and what he does with your answer.
Leave these things up to him. Trust your friends.

Use It: I strongly recommend using this method when designing, understand-
ing, and describing a recursive algorithm.

Faith in the Method: As with the loop invariant method, you do not want to be
rethinking the issue of whether or not you should steal every time you walk into
a store. It is better to have some general principles with which to work. You do
not want to be rethinking the issue of whether or not you believe in recursion
every time you consider a hard algorithm. Understanding the algorithm itself will
be hard enough. While reading this chapter you should once and for all come
to understand and believe how the following steps are sufficient to describing
a recursive algorithm. Doing this can be difficult. It requires a whole new way of
looking at algorithms. However, at least for now, adopt this as something that you
believe in.

Abstractions, Techniques, and Theory

EXJ Looking Forward vs. Backward

Circular Argument? Recursion involves designing an algorithm by using it as if it
already exists. At first this looks paradoxical. Suppose, for example, the key to the
house that you want to get into is in that same house. If you could get in, you could
get the key. Then you could open the door, so that you could get in. This is a circular
argument. It is not a legal recursive program because the subinstance is not smaller.

One Problem and a Row of Instances:
Consider a row of houses. Each house is bigger

than the next. Your task is to get into the biggest Al o
one. You are locked out of all the houses. The key s gy A' aé&ﬁ,*
to each house is locked in the house of the next - ‘4 a?’_’ o R

smaller size. The recursive problem consists in ' ,
. . . . To get into my house
getting into any specified house. Each house in me 1 must get the key from a smaller house

the row is a separate instance of this problem.

-’
-

The Algorithm: The smallest house is small enough that one can use brute force to
get in. For example, one could simply lift off the roof. Once in this house, we can get
the key to the next house, which is then easily opened. Within this house, we can get
the key to the house after that, and so on. Eventually, we are in the largest house as
required.

Focus on One Step: Though this algorithm is quite simple to understand, more
complex algorithms are harder to understand all at once. Instead we focus on one
step at a time. Here, one step consists in opening house i. We ask a friend to open
house i — 1, out of which we take the key with which we open house i. We do not
worry about how to open house i — 1.

Working Forward vs. Backward: An iterative algorithm works forward. It knows
about house i — 1. It uses a loop invariant to show that this house has been opened.
It searches this house and learns that the key within it is that for house i. Because of
this, it decides that house i would be a good one to go to next.

A recursion algorithm works backward. It knows about house i. It wants to get
it open. It determines that the key for house i is contained in house i — 1. Hence,
opening house i — 1 is a subtask that needs to be accomplished.

There are two advantages of recursive algorithms over iterative ones. The first
is that sometimes it is easier to work backward than forward. The second is that a
recursive algorithm is allowed to have more than one subtask to be solved. This forms
a tree of houses to open instead of a row of houses.

Do Not Trace: When designing a recursive algorithm it is tempting to trace out the
entire computation. “I must open house n, so I must open house n—1,.... The
smallest house I rip the roof off. I get the key for house 1 and open it. I get the key

29

100

Recursion

for house 2 and openit. . . . I get the key for house n and open it.” Such an explanation
is complicated and unnecessary.

Solving Only Your Instance: Animportant quality of any leader is knowing how to
delegate. Your job is to open house i. Delegate to a friend the task of opening house
i — 1. Trust him, and leave the responsibility to him.

EXN With a Little Help from Your Friends

The following are the steps to follow when developing a recursive algorithm within
the friends level of abstraction.

Specifications: Carefully write the specifications for the problem.

Preconditions: The preconditions state any assumptions that must be true about
the input instance for the algorithm to operate correctly.

Postconditions: The postconditions are statements about the output that must
be true when the algorithm returns.

This step is even more important for recursive algorithms than for other algorithms,
because there must be tight agreement between what is expected from you in terms
of pre- and postconditions and what is expected from your friends.

Size: Devise a measure of the size of each instance. This measure can be anything
you like and corresponds to the measure of progress within the loop invariant level
of abstraction.

General Input: Consider alarge and general instance of the problem.

Magic: Assume that by magic a friend is able to provide the solution to any in-
stance of your problem as long as the instance is strictly smaller than the current
instance (according to your measure of size). More specifically, if the instance
that you give the friend meets the stated preconditions, then her solution will
meet the stated postconditions. Do not, however, expect your friend to accom-
plish more than this. (In reality, the friend is simply a mirror image of yourself.)

Subinstances: From the original instance, construct one or more subinstances,
which are smaller instances of the same problem. Be sure that the preconditions
are met for these smaller instances. Do not refer to these as “subproblems.” The
problem does not change, just the input instance to the problem.

Subsolutions: Ask your friend to (recursively) provide solutions for each of these
subinstances. We refer to these as subsolutions even though it is not the solution,
but the instance, that is smaller.

Solution: Combine these subsolutions into a solution for the original instance.

Abstractions, Techniques, and Theory

Generalizing the Problem: Sometimes a subinstance you would like your friend
to solve is not a legal instance according to the preconditions. In such a case, start
over, redefining the preconditions in order to allow such instances. Note, however,
that now you too must be able to handle these extra instances. Similarly, the solution
provided by your friend may not provide enough information about the subinstance
for you to be able to solve the original problem. In such a case, start over, redefining
the postcondition by increasing the amount of information that your friend provides.
Again, you must now also provide this extra information. See Section 10.3.

Natural Pre- and Postconditions: On the other hand, have the more generalized
problem still be a natural problem. Do not attempt to pass it lots of extra infor-
mation about your instance. For the very first call (or stack frame) of the com-
putation to pass a value through the chain of recursive calls is a type of global-
variable “cheat.” It also makes it look like you are micromanaging your friends.
Similarly, a stack frame (friend) should not know what level of recursion it
is on.

Both the Pre- and the Postconditions Act as Loop Invariants: The loop invariant
in an iterative algorithm states what is maintained as the control gets passed
from iteration to iteration. It provides a picture of what you want to be true in
the middle of this computation. With recursion, however, there are two direc-
tions. The precondition states what you want to be true halfway down the recur-
sion tree. The postcondition states what you want to be true halfway back up the
recursion tree.

Minimizing the Number of Cases: You must ensure that the algorithm that you
develop works for everyvalid input instance. To achieve this, the algorithm will often
require many separate pieces of code to handle inputs of different types. Ideally, the
algorithm developed has as few such cases as possible. One way to help you min-
imize the number of cases needed is as follows. Initially, consider an instance that
is as large and as general as possible. If there are a number of different types of in-
stances, choose one whose type is as general as possible. Design an algorithm that
works for this instance. Afterwards, if there is another type of instance that you have
not yet considered, consider a general instance of this type. Before designing a sepa-
rate algorithm for this new instance, try executing your existing algorithm on it. You
may be surprised to find that it works. If, on the other hand, it fails to work for this
instance, then repeat the above steps to develop a separate algorithm for this case.
You may need to repeat this process a number of times.

For example, suppose that the input consists of a binary tree. You may well find
that the algorithm designed for a tree with a full left child and a full right child also
works for a tree with a missing child and even for a child consisting of only a single
node. The only remaining case may be the empty tree.

Base Cases: When all the remaining unsolved instances are sufficiently small, solve
them in a brute force way.

101

Recursion

Running Time: Use a recurrence relation or a tree of stack frames to estimate the
running time.

A Link to the Techniques for Iterative Algorithms: The techniques that often

arise in iterative algorithms also arise in recursive algorithms, though sometimes in

102 a slightly different form.

More of the Input: When the input includes 7 objects, this technique for itera-
tive algorithms extends (fori = 1,..., n — 1) a solution for the first i — 1 objects
into a solution for the first i. This same technique also can be used for recursive
algorithms. Your friend provides you a solution for the first 7 — 1 objects in your
instance, and then you extend this to a solution to your entire instance. This it-
erative algorithm and this recursive algorithm would be two implementations of
the same algorithm. The recursion is more interesting when one friend can pro-
vide you a solution for the first | 7 | objects in your instance, another friend can
provide a solution for the next [4] objects, and you combine them into a solution
for the whole.

More of the Output: This technique for iterative algorithms builds the output
one piece at a time. Again a recursive algorithm could have a friend build all but
the last piece and have you add the last piece. However, it is better to have one
friend build the first half of the output, another the second half, and you combine
them somehow.

Narrowing the Search Space: Some iterative algorithms repeatedly narrow the
search space in which to look for something. Instead, a recursive algorithm may
split the search space in half and have a friend search each half.

Case Analysis: Instead of trying each of the cases oneself, one could give one case
to each friend.

Work Done: Work does not accumulate in recursive algorithms as it does in it-
erative algorithms. We get each friend to do some work, and then we do some
work, ourselves to combine these solution.

EX3 The Towers of Hanoi

The towers of Hanoi is a classic puzzle for which the only possible way of solving it is
to think recursively.

Specification: The puzzle consists of three poles and a stack of N disks of different
sizes.

Precondition: All the disks are on the first of the three poles.

Abstractions, Techniques, and Theory

2 | | e | | e [] |

Figure 8.1: The towers of Hanoi problem.

Postcondition: The goal is to move the stack over to the last pole. See the first and
the last parts of Figure 8.1.

You are only allowed to take one disk from the top of the stack on one pole and place
it on the top of the stack on another pole. Another rule is that no disk can be placed
on top of a smaller disk.

Lost with First Step: The first step must be to move the smallest disk. But it is by
no means clear whether to move it to the middle or to the last pole.

Divide: Jump into the middle of the computation. One thing that is clear is that at
some point, you must move the biggest disk from the first pole to the last. In order to
do this, there can be no other disks on either the first or the last pole. Hence, all the
other disks need to be stacked on the middle pole. See the second and the third parts
of Figure 8.1. This point in the computation splits the problem into two subproblems
that must be solved. The first is how to move all the disks except the largest from the
first pole to the middle. See the first and second parts of Figure 8.1. The second is how
to move these same disks from the middle pole to the last. See the third and fourth
parts of Figure 8.1.

Conquer: Together these steps solve the entire problem. Starting with all disks on
the first pole, somehow move all but the largest to the second pole. Then, in one step,
move the largest from the first to the third pole. Finally, somehow move all but the
largest from the second to the third pole.

Magic: In order to make a clear separation between task of solving the entire prob-
lem and that of solving each of the subproblems, I like to say that we delegate to one
friend the task of solving one of the subproblems and delegate to another friend the
other.

More General Specification: The subproblem of moving all but the largest disk
from the first to the middle pole is very similar to original towers of Hanoi problem.
However, it is an instance of a slightly more general problem, because not all of the
disks are moved. To include this as an instance of our problem, we generalize the
problem as follows.

Precondition: The input specifies the number n of disks to be moved and the
roles of the three poles. These three roles for poles are polesoyrce, POlegestinations
and polespare. The precondition requires that the smallest n disks be currently on
polesource- It does not care where the larger disks are.

103

104

Recursion

Postcondition: The goal is to move these smallest n disks to polegesiinarion- Pole
polespare is available to be used temporarily. The larger disks are not moved.

Subinstance: Our task is to move all the disks from the first to the last pole. This
is specified by giving n = N, polesource = first, polegesiinarion = last, and polespare =
middle. We will get one friend to move all but the largest disk from the first to the
middle pole. This is specified by giving n = N — 1, polesoyrce = first, polegestination =
middle, and polegpare = last. On our own, we move the largest disk from the first to
the last disk. Finally, we will get another friend to move all but the largest disk from
the middle to the last pole. This is specified by giving n = N — 1, polesoyrce = middle,
poleestination = last, and polespare = first.

Code:
algorithm TowersOfHanoi(n, source, destination, spare)

(pre-cond): The n smallest disks are on polesyyce-
(post-cond): They are moved to polegestination-
begin
if(n < 0)
Nothing to do
else
TowersOfHanoi(n — 1, source, spare, destination)
Move the nth disk from polesoyrce t0 polegestination-
TowersOfHanoi(n — 1, spare, destination, source)
end if
end algorithm

Running Time: Let T(n) be the time to move n disks. Clearly, T(1) = 1 and T(n) =
2. T(n— 1)+ 1. Solving this gives T'(n) = 2" — 1.

EX Checkiist for Recursive Algorithms

Writing a recursive algorithm is surprisingly hard when you are first starting out and
surprisingly easy when you get it. This section contains a list of things to think about
to make sure that you do not make any of the common mistakes.

0) The Code Structure: The code does not need to be much more complex than
the following.
algorithm Alg(a, b, c)

(pre-cond): Here a is a tuple, b an integer, and c a binary tree.
(post-cond): Outputs x, y, and z, which are useful objects.

Abstractions, Techniques, and Theory

begin
if((a, b, c) is a sufficiently small instance) return((0, 0, 0))
(Gsub1) Dsup1, Csupm) = a part of (a, b, c)
(Xsub1s Ysubt» Zsub1) = Alg(asup1, Dsuprs Csupr))
(@sub2, Dsubo, Csupp) = a different part of (a, b, c¢)
(xsubZ’ Vsub2, ZsubZ) Alg(<asub2’ bsubZ) Csub2>)
(

X, y, z2) = combine (Xgp1, Vsub1, Zsub1) and (Xsub2, Vsubzs Zsubz)
return((x, y, z))
end algorithm

1) Specifications: You must clearly define what the algorithm is supposed to do.

2) Variables: A great deal is understood about an algorithm by understanding its
variables. As in any algorithm, you want variables to be well documented and to have
meaningful names. It is also important to carefully check that you give variables val-
ues of the correct type, e.g., k is an integer, G is a graph, and so on. Moreover, with
recursive programs there are variables that play specific roles and should be used in
specific ways. This can be a source of many confusions and mistakes. Hence, I outline
these carefully here.

2.1.) Your Input: Your mission, if you are to accept it, is received through your
inputs. The first line of your code, algorithm Alg(a, b, c), specifies both the name
Alg of the routine and the names of its inputs. Here (a, b, c¢) is the input in-
stance that you need to find a solution for. I sometimes use Alg({a, b, c)) be-
cause it emphasizes the viewpoint that we are receiving one instance, even if
that instance might be composed of a tuple of things. Your preconditions must
clearly specify what each of these components a, b, and c are and any restric-
tions on their values. You must be able to handle any instance that meets these
conditions.

2.2.) Your Output: You must return a solution (x, y, z) to your instance {(a, b, c)
through a return statement return((x, y, z)). Your postconditions must clearly
specify what each of the components x, y, and z of your solution are and their
required relation to the input instance (a, b, c).

2.2.1.) Every Path: Given any instance meeting the precondition, you must
return a correct solution. Hence, if your code has if or loop statements, then
every path through the code must end with a return statement.

2.2.2.) Type of Output: Each return statement must return a solution (x, y, z)
of the right type. The one partial exception to this is: if the postcondi-
tion leaves open the possibility that a solution does not exist, then some

105

Recursion

paths through the code may end with the statement return(“no solution
exists”).

2.3.) Your Friend’s Input: To get help from friends, you must create a subin-
stance {(asyup, bsup, Csup) for each friend. You pass this to a friend by recursing with

106 Alg({asup, bsups csup))- To be able to give a subinstance to a friend, it needs to meet

the preconditions of your problem. Do not recurse with Alg(as,p, bsyp)-

2.4.) Your Friend’s Output: You can trust that each friend will give you a correct
solution (Xsyp, Vsub» Zsup) to the subinstance (ag,p, bsup, Csyp) that you give her.
Be sure to save her result in variables of the correct type, using the code (xg,,
Vsub» Zsub) = Alg({@sub, Dsub, Csup))- In contrast, the code Alg((a@sup, Dsup, Csub)) as @
line by itself is insulting to your friend, because you got her to do all of this work
and then you dropped her result in the garbage.

2.5.) Rarely Need New Inputs or Outputs: I did speak of the need to generalize
the problem by adding new inputs and/or outputs. This, however, is needed far
less often than people think. Try hard to solve the problem using the friend anal-
ogy without extra variables. Only add them if absolutely necessary. If you do add
extra inputs or outputs, clearly specify in the pre- and postconditions what they
are for. Do not have inputs or outputs that are not explained.

2.6.) No Global Variables or Global Effects: When you recurse with the line
(Xsub» Vsub» Zsub) = Alg({@sub, bsup» Csup)), the only thing that should happen is that
your friend passes back a correct solution (Xxg,p, ¥sup» 2sup) to the subinstance
(@sub» bsupy csup) that you gave her. If the code has a local variable n, then your
variable n is completely different than your friend’s. (They are stored in different
stack frames. See Section 8.6.) If you set your variable n to 5 and then recurse,
your friend’s variable n will not have this value. If you want him to have a 5, you
must pass it in as part of his subinstance (ag,y, 5, csup). Similarly, if your friend
sets his variable 7 to 6 and then returns, your variable n will not have this value,
but will still have the value 5. If you want him to give you a 6, he must return it as
part of his solution (xg,s, 6, Zgp).

I often suspect that people intend for a parameter in their algorithm’s argu-
ments to both pass a value in and pass a value out. Though I know there are pro-
gramming languages that allow this, I strongly recommend not doing this. The
code (Xsup, Vsub» Zsub) = Alg({@sup, Dsuby Csup)) does not change the values of ag,,
bgyp, OT Csyp.

I have seen lots of code that loops n times recursing Alg({asup, Dsup, Csup)) ON
the exact same subinstance (@, Dsup, Csup)- One definition of insanity is repeat-
ing the same thing over and over and expecting to get a different result. Your
friend on the same subinstance will give you the same solution. Do not waste
her time.

Abstractions, Techniques, and Theory

It is tempting to use a global variable that everyone has access too. However,
this is very bad form, mainly because it is very prone to errors and side effects
that you did not expect.

Similarly, you can have no global returns. For example, suppose your friend’s
friend’s friend’s friend finds something that you are looking for. It needs to be
passed back friend to friend, because things returned by your friends do not get
returned to your boss unless you do the returning.

2.7.) Few Local Variables: An iterative algorithm consists of a big loop with a set
of local variables holding the current state. Each iteration these variables get up-
dated. Because thinking iteratively comes more naturally to people, they want
to do this with recursive algorithms. Don’t. Generally there is no need for a loop
in a recursive algorithm unless you require the immediate help of many friends
and you loop through them, creating subinstances for each and considering
their subsolutions. In fact, despite the name “variable,” rarely is there a need
to change the value of a variable once initially set. For example, the variables
{a, b, ¢) storing your instance are sacred. This is the instance you must solve.
Why ever change it? You must construct a solution (x, y, z). Create it and return
it. Why ever change it? Similarly for what you give (as,p, bsup, Csup) and receive
(Xsub» Vsub» Zsup) from each friend. Other local variables are rarely needed. If you
do need them, be sure to document what they are for.

3) Tasks to Complete: Your mission, given an arbitrary instance (a, b, ¢) meeting
the preconditions, is to construct and return a solution (x, y, z) that meets the post-
condition. The following are the only steps that you should be following towards this
goal.

3.1.) Accept Your Mission: Imagine that you have an (a, b, ¢) meeting the pre-
conditions. Know the range of things that your instance might be. For example,
if the input instance is a binary tree, make sure that your program works for a
general tree with big left and right subtrees, a tree with big left and empty right, a
tree with empty left and big right, and the empty tree. Also know what is require
of your output.

3.2.) Construct Subinstances: For each friend, construct from your instance
(a, b, ¢) a subinstance (ag,p, bsyp, Csup) to give this friend. Sometimes this re-
quires a block of code. Sometimes it happens right in place. For example,
if your instance is ({(ai, az, ..., ax), b, ¢), you might construct the subinstance
({an, a, ..., an-1), b —5, leftSub(c)) for your friend by stripping the last object off
the tuple a, subtracting 5 from the integer b, and taking the left subtree of the
tree c. This subinstance can be constructed and passed to your friend in the one
line

(Xsub» Vsub» Zsub) = Aléﬂ((ﬂh az,...,0an-1), b—>5, leftSUb(C»)

107

108

Recursion

3.2.1.) Valid Subinstance: Be sure that the subinstance (ag,p, Dsup, Csup) that
you give your friend meets the preconditions.

3.2.2.) Smaller Subinstance: Be sure that the subinstance (ag,p, bsup, Csub)
that you give your friend is smaller in some way than your own subinstance
(a, b, c).

3.3.) Trust Your Friend: Focus on only your mission. Trust your friend to give you
a correct solution (Xsup, Ysub> Zsup) to the instance (ag,p, bsup, Csup) that you give
her. Do not worry about how she gets her answer. Do not trace through the entire
computation. Do not talk of your friends’ friends’ friends. I cannot emphasize
this enough. Time and time again, I see students not trusting. It causes them no
end of trouble until they finally see the light and let go.

3.4.) Construct Your Solution: Using the solutions (X, Ysub» Zsup) provided by
your friends for your subinstances (agsp, bsup, Csup), your next task is to con-
struct a solution (x, y, z) for your subinstance (a, b, c). This generally requires
a block of code, but sometimes it can be contained in a single line. For ex-
ample, if the only output is a single integer x, then the one line of code
return(Alg(asup, bsuvr» Csuvm) + Alg(@supo, bsubo, Csupe)) combines the friends’ solu-
tions Xz, and X, to give your solution x = X, + Xsue and returns it.

3.5.) Base Cases: Consider which instance get solved by your program. For those
that don't, either add more cases to solve them recursively or add base cases
to solve them in a brute force way. If your input instance is sufficiently small
according to your definition of size then you must solve it yourself as a base
case.

This is all that you need to do. Do not do more.

EXERCISE 8.5.1 You are now the professor. Which of the above steps to develop a
recursive algorithm did the students fail to do correctly in the following code? How?
How would you fix it? See Exercise 10.3.1 for corrrect code for this problem.

algorithm Smallest(tree, k, num, v)

(pre-cond): treeis a binary search tree and k > 0 is an integer.
(post-cond): Outputs the kth smallest elements.
begin

iftk =0) return(0)

iftv = k) return(element)

n=20

Smallest(leftSub(tree))

++n

Abstractions, Techniques, and Theory

iftn=1"k)
return(root(tree))
end if
Smallest(rightSub(tree))
end if
end algorithm

algorithm Smallest(tree, k, num, v)

(pre-cond): treeis a binary search tree and k > 0 is an integer.
(post-cond): Outputs the kth smallest element s.
begin
n=20
while(n < k)
Smallest(leftSub(tree))
++n
Smallest(rightSub(tree))
end while
return(element)
end algorithm

EXERCISE 8.5.2 (See solution in Part Five.) In the friends level of abstracting recursion,
you can give your friend any legal instance that is smaller than yours according to some
measure as long as you solve in your own any instance that is sufficiently small. For
which of these algorithms has this been done? If so, what is your measure of the size of
the instance? On input instance (n, m), either bound the depth to which the algorithm
recurses as a function of n and m, or prove that there is at least one path down the

recursion tree that is infinite.

algorithm R,(n, m) algorithm Ry(n, m)
(pre-cond): n & mints. (pre-cond): n & mints.
(post-cond): Say Hi (post-cond): Say Hi
begin begin
ifn <0) ifn <0)
Print("Hi") Print("Hi")
else else
R,(n—1,2m) Ry(n—1,m)
end if Ry(n,m—1)
end algorithm end if

end algorithm

109

Recursion

algorithm R.(n, m)

(pre-cond): n & mints.
(post-cond): Say Hi

begin
ifm<0orm=<0) (d) Replace recursive lines with
Print("Hi") Rin—1, m+2)
else R.(n+6, m—3)
R(n—1m
R.(n,m—1) (e) Replace recursive lines with
end if R.(n—4, m+2)
end algorithm R,(n+6, m—3)

EX3 The Stack Frame

Tree of Stack Frames: Tracing out the entire computation of a recursive algorithm,
one line of code at a time, can get incredibly complex. This is why the friends level of
abstraction, which considers one stack frame at a time, is the best way to understand,
explain, and design a recursive algorithm. However, it is also useful to have some pic-
ture of the entire computation. For this, the tree-of-stack-frames level of abstraction
is best.

The key thing to understand is the difference between a particular routine and a
particular execution of a routine on a particular input instance. A single routine can
at one moment in time have many executions going on. Each such execution is re-
ferred to as a stack frame. You can think of each as the task given to a separate friend.
Even though each friend may be executing exactly the same routine, each execution
may currently be on a different line of code and have different values for the local
variables.

If each routine makes a number of subroutine calls (recursive or not), then the
stack frames that get executed form a tree. In the example in Figure 8.2, instance A
is called first. It executes for a while and at some point recursively calls B. When B
returns, A then executes for a while longer before calling H. When H returns, A exe-
cutes for a while before completing. We have skipped over the details of the execution
of B. Let’s go back to when instance A calls B. Then B calls C, which calls D. D com-
pletes; then C calls E. After E, C completes. Then B calls F, which calls G. Then G
completes, F completes, B completes, and A goes on to call H. It does get compli-
cated.

Stack of Stack Frames: The algorithm is actually implemented on a computer by
a stack of stack frames. What is stored in the computer memory at any given point in
time is only a single path down the tree. The tree represents what occurs throughout
time. In Figure 8.2, when instance G is active, A, B, F, and G are in the stack. C, D, and
E have been removed from memory as these have completed. H, I, J, and K have

Abstractions, Techniques, and Theory

(o] [e] [a]

Figure 8.2: Tree of stack frames.

not been started yet. Although we speak of many separate stack frames executing on
the computer, the computer is not a parallel machine. Only the top stack frame G is
actively being executed. The other instances are on hold, waiting for the return of a
subroutine call that it made.

Memory: Here is how memory is managed for the simultaneous execution of many
instances of the same routine. The routine itself is described only once, by a block of
code that appears in static memory. This code declares a set of variables. On the other
hand, each instance of this routine that is currently being executed may be storing
different values in these variables and hence needs to have its own separate copy of
these variables. The memory requirements of each of these instances are stored in
a separate stack frame. These frames are stacked on top of each other within stack
memory.

Using a Stack Frame: Recall that a stack is a data structure in which either a new
element is pushed onto the top or the last element to have been added is popped
off (Section 3.1). Let us denote the top stack frame by A. When the execution of
A makes a subroutine call to a routine with some input values, a stack frame is
created for this new instance. This frame denoted B is pushed onto the stack af-
ter that for A. In addition to a separate copy of the local variables for the routine,
it contains a pointer to the next line of code that A must execute when B returns.
When B returns, its stack frame is popped, and A continues to execute at the line of
code that had been indicated within B. When A completes, it too is popped off the
stack.

Silly Example: This example demonstrates how difficult it is to trace out the full
stack-frame tree, yet how easy it is to determine the output using the friends (strong-
induction) method:

algorithm Fun(n)
(pre-cond): nis an integer.
(post-cond): Outputs a silly string.
begin
if(n > 0) then

Recursion

if(n=1) then
put “X”

elseif(n = 2) then
put “Y”

else
put “‘A”
Fun(n —1)
Put “B”
Fun(n — 2)
Put “C”

end if

end if
end algorithm

EXERCISE 8.6.1 Attempt to trace out the tree of stack frames for the silly example
Fun(5).

EXERCISE 8.6.2 (See solution in Part Five.) Now try the following simpler approach.
What is the output of Fun(1)? What is the output of Fun(2)? Trust the answers to all
previous questions; do not recalculate them. (Assume a trusted friend gave you the an-
swer.) Now, what is the output of Fun(3)? Repeat this approach for n = 4, 5, and 6.

EEA Proving Correctness with Strong Induction

Whether you give your subinstances to friends or you recurse on them, this level of
abstraction considers only the algorithm for the top stack frame. We must now prove
that this suffices to produce an algorithm that successfully solves the problem for
every input instance. When proving this, it is tempting to talk about stack frames.
This stack frame calls this one, which calls that one, until you hit the base case. Then
the solutions bubble back up to the surface. These proofs tend to make little sense.
Instead, we use strong induction to prove formally that the friends level of abstraction
works.

Strong Induction: Strong induction is similar to induction, except that instead of
assuming only S(n — 1) to prove S(n), you must assume all of S(0), S(1), S(2), ...,
S(n—1).

A Statement for Each n: For each value of n > 0, let S(n) represent a Boolean
statement. For some values of n this statement may be true, and for others it
may be false.

Goal: Our goal is to prove that it is true for every value of n, namely that Vn >
0, S(n).

Abstractions, Techniques, and Theory

Proof Outline: Proof by strong induction on n.

Induction Hypothesis: For each n > 0, let S(n) be the statement that (It
is important to state this clearly.)

Base Case: Prove that the statement S(0) is true.
Induction Step: For each n > 0, prove S(0), S(1), S(2), ..., S(n — 1) = S(n).
Conclusion: By way of induction, we can conclude that Vn > 0, S(n).

See Exercises 8.7.1 and 8.7.2.

Proving the Recursive Algorithm Works:

Induction Hypothesis: For each n > 0, let S(n) be the statement “The recursive
algorithm works for every instance of size n.”

Goal: Our goal is to prove that Vn > 0, S(n), i.e. that the recursive algorithm
works for every instance.

Proof Outline: The proof is by strong induction on n.

Base Case: Proving S(0) involves showing that the algorithm works for the
base cases of size n = 0.

Induction Step: The statement S(0), S(1), S(2), ..., S(n — 1) = S(n) is pro-
ved as follows. First assume that the algorithm works for every instance of
size strictly smaller than n, and then prove that it works for every instance
of size n. This mirrors exactly what we do on the friends level of abstrac-
tion. To prove that the algorithm works for every instance of size n, consider
an arbitrary instance of size n. The algorithm constructs subinstances that
are strictly smaller. By our induction hypothesis we know that our algorithm
works for these. Hence, the recursive calls return the correct solutions. On
the friends level of abstraction, we proved that the algorithm constructs the
correct solutions to our instance from the correct solutions to the subin-
stances. Hence, the algorithm works for this arbitrary instance of size n. The
S(n) follows.

Conclusion: By way of strong induction, we can conclude that Vn > 0, S(n),
i.e., the recursive algorithm works for every instance.

EXERCISE 8.7.1 Give the process of strong induction as we did for regular induction.

EXERCISE 8.7.2 (See solution in Part Five.) As a formal statement, the base case can
be eliminated in strong induction because it is included in the formal induction step.
How is this? (In practice, the base cases are still proved separately.)

113

114

9 Some Simple Examples of
Recursive Algorithms

I will now give some simple examples of recursive algorithms. Even if you have seen
them before, study them again, keeping the techniques and theory from Chapter 8 in
mind. For each example, look for the key steps of the friend paradigm. What are the
subinstances given to the friend? What is the size of an instance? Does it get smaller?
How are the friend’s solutions combined to give your solution? What does the tree of
stack frames look like? What is the time complexity of the algorithm?

EXBW sorting and Selecting Algorithms

The classic divide-and-conquer algorithms are merge sort and quick sort. They both
have the following basic structure.

General Recursive Sorting Algorithm:
» Take the given list of objects to be sorted (numbers, strings, student records, etc.).
* Split the list into two sublists.
* Recursively have friends sort each of the two sublists.
* Combine the two sorted sublists into one entirely sorted list.
This process leads to four different algorithms, depending on the following factors
(see Exercise 9.1.1):

Sizes: Do you split the list into two sublists each of size 7, or one of size n — 1
and one of size one?

Work: Do you put minimal effort into splitting the list but put lots of effort into
recombining the sublists, or put lots of effort into splitting the list but put mini-
mal effort into recombining the sublists?

Some Simple Examples of Recursive Algorithms

EXAMPLE 9.1.1 Merge Sort (Minimal Work to Split in Half)

This is the classic recursive algorithm.

Friend's Level of Abstraction: Recursively give one friend the first half of the input to
sort and another friend the second half to sort. Then combine these two sorted sublists
into one completely sorted list. This combining process is referred to as merging. A
simple linear-time algorithm for it can be found in Section 3.3.

Size: The size of an instance is the number of elements in the list. If this is at least two,
then the sublists are smaller than the whole list. Hence, it is valid to recurse on them
with the reassurance that your friends will do their parts correctly. On the other hand,
if the list contains only one element, then by default it is already sorted and nothing
needs to be done.

Generalizing the Problem: If the input is assumed to be received in an array indexed
from 1 to n, then the second half of the list is not a valid instance, because it is not
indexed from 1. Hence, we redefine the preconditions of the sorting problem to require
as input both an array A and a subrange [i, j]. The postcondition is that the specified
sublist is to be sorted in place.

Running Time: Let T(n) be the total time required to sort a list of n elements. This
total time consists of the time for two subinstances of half the size to be sorted,
plus ®(n) time for merging the two sublists together. This gives the recurrence re-
lation T'(n) = 2T(n/2) + ©(n). See Chapter 27 to learn how to solve recurrence rela-
tions like these. In this example, i’;% = }2% =1 and f(n) = ©(n'), so ¢ = 1. Because
iggi = ¢, the technique concludes that the time is dominated by all levels and T(n) =

O(f(n)logn) = ©(nlogn).

Tree of Stack Frames: The following is a tree of stack frames for a concrete example:

In: 100 21 40 97 53 9 25 105 99 8 45 10
Out: 8 9 10 21 25 40 45 53 97 99 100 105

In: 100 21 40 97 53 9 In: 25 105 99 8 45 10
Out: 9 21 40 53 97 100 Out: 8 10 25 45 99 105
In: 100 21 40 In: 97 53 9 In: 25 105 99 In: 8 45 10
Out: 21 40 100 Out: 9 53 97 Out: 25 99 105 Out: 8 10 45
In: 100 21 40 97 53 25 105 99 8 45 10
Out: 21 100 40 53 97 25 105 99 8 45 10

In: 100 21 97 BE 25 105 8 45
Out: (100 21 97 53 25 105 8 45

115

Recursion

EXAMPLE 9.1.2 Quick Sort (Minimal Work to Recombine the Halves)

The following is one of the fastest sorting algorithms. Hence the name.

Friend’s Level of Abstraction: The algorithm partitions the list into two sublists where
all the elements that are less than or equal to a chosen pivot element are to the left
of the pivot element and all the elements that are greater than it are to the right of
it. (There are no requirements on the order of the elements in the sublists.) Next, re-
cursively have a friend sort those elements before the pivot and those after it. Finally,
(without effort) put the sublists together, forming one completely sorted list.

The first step in the algorithm is to choose one of the elements to be the pivot
element. How this is to be done is discussed below.

Tree of Stack Frames: The following is a tree of stack frames for a specific input:

In: 100 21 40 97 53 9 25 105 99 8 45 10
Out: 8 9 10 21 25 40 45 53 97 99 100 105

In: 21 9 8 10 25 In: 100 40 97 53 105 99 45
Out: 8 9 10 21 Out: 40 45 53 97 99 100 105
In: 9 8 10 In: 21 In: 40 53 45 97 In: 100 105 99
Out: 8 9 Out: 21 Out: 40 45 53 Out: 99 100 105
In: 8 9 40 45 53 99 100 105
Out: 8 40 45 99 105
In: 40 45
Out: 45

Running Time: The computation time depends on the choice of the pivot element.

Median: If we are lucky and the pivot element is close to having the median value,
then the list will be split into two sublists of size approximately /2. We will see that
partitioning the array according to the pivot element can be done in time ®(n). In
this case, the timing is T(n) = 2T(n/2) + ©(n) = ©(nlogn).

Reasonable Split: The above timing is quite robust with respect to the choice of
the pivot. For example, suppose that the pivot always partitions the list into one
sublist of one-fifth the original size and one of four-fifths the original size. The
total time is then the time to partition plus the time to sort the sublists of these
sizes. This gives T(n) = T(3n) + T(£n) + ©(n). Because ; + 7 = 1, this evaluates
to T(n) = ©(nlogn). (See Chapter 27.)

Worst Case: On the other hand, suppose that the pivot always splits the list into
one of size n — 1 and one of size 1. In this case, T(n) = T(n — 1) + T(1) + ©(n),
which evaluates to T(n) = ®(n?). This is the worst case scenario.

We will return to quick sort after considering the following related problem.

Some Simple Examples of Recursive Algorithms

EXAMPLE 9.1.3 Finding the kth Smallest Element

Given an unsorted list and an integer k, this example finds the kth smallest element
from the list. It is not clear at first that there is an algorithm for doing this that is any
faster than sorting the entire list. However, it can be done in linear time using the sub-
routine Pivot.

Friend's Level of Abstraction: The algorithm is like that for binary search. Ignoring in-
put k, it proceeds just like quick sort. A pivot element is chosen randomly, and the list is
split into two sublists, the first containing all elements that are all less than or equal to
the pivot element and the second those that are greater than it. Let ¢ be the number of
elements in the first sublist. If ¢ > k, then we know that the kth smallest element from
the entire list is also the kth smallest element from the first sublist. Hence, we can give
this first sublist and this k to a friend and ask him to find it. On the other hand, if ¢ < k,
then we know that the kth smallest element from the entire list is the (k — ¢)th smallest
element from the second sublist. Hence, on giving the second sublist and k — ¢ to a
friend, he can find it.

Tree of Stack Frames: The following is a tree of stack frames for our input.

In: 100 21 40 97 53 9 25 105 99 8 45 10
Sorted: 8 9 10 21 25 40 45 53 97 99 100 105)
k =7

Pivot = 25

Left: 21 9 25 8 10

Right: 100 40 97 53 105 99 45
Left Size = 5 < k
Out = 45

In: 100 40 97 53 105 99 45
Sorted: 40 45 53 97 99 100 105)
k=75 =2

Pivot = 97

Left: 40 97 53 45

Right: 100 105 99

Left Size = 4 >= k

Out = 45

In: 40 97 53 45
Sorted: 40 45 53 97)
k=2

Pivot = 45

Left: 40 45
Right: 97 53

Left Size = 2 >= k
Out = 45

In: 40 45
Sorted: 40 45)
k=2

Pivot = 40

Left: 40

Right: 45

Left Size =1 < k
Out = 45

In: 45
Sorted: 45)
k=2-1=1 Out:45

Recursion

EXAMPLE 9.1.3 Finding the kth Smallest Element (cont.)

Running Time: Again, the computation time depends on the choice of the pivot ele-
ment.

Median: If we are lucky and the pivot element is close to the median value, then
the list will be split into two sublists of size approximately /2. Because the routine
recurses on only one of the halves, the timingis T(n) = T(n/2) + G(n) = O(n).

Reasonable Split: If the pivot always partitions the list so that the larger half is at
most %n, then the total time is at most T'(n) = T(%n) + ®(n), which is still linear
time, T'(n) = O©(n).

Worst Case: In the worst case, the pivot splits the list into one of size n — 1 and
one of size 1. In this case, T(n) = T(n — 1) + O(n), which is T(n) = O(n?).

Choosing the Pivot: In Examples 9.1.2 and 9.1.3, the timing depends on choosing
a good pivot element quickly.

Fixed Value: If you know that you are sorting elements that are numbers within
the range [1..100], then it is reasonable to partition these elements based on
whether they are smaller or larger than 50. This is often referred to as bucket sort.
See Section 5.1. However, there are two problems with this technique. The first is
that in general we do not know what range the input elements will lie in. The sec-
ond is that at every level of recursion another pivot value is needed with which to
partition the elements. The solution is to use the input itself to choose the pivot
value.

Use A[1] as the Pivot: The first thing one might try is to let the pivot be the ele-
ment that happens to be first in the input array. The problem with this is that if
the input happens to be sorted (or almost sorted) already, then this first element
will split the list into one of size zero and one of size n — 1. This gives a worst
case time of ©(n?). Given random data, the algorithm will execute quickly. On
the other hand, if you forget that you sorted the data and you run it a second
time, then the second run will take a long time to complete.

Use A[7] as the Pivot: Motivated by the last attempt, one might use the element
that happens to be located in the middle of the input array. For all practical pur-
poses, this would likely work well. It would work exceptionally well when the list
is already sorted. However, there are some strange inputs cooked up for the sole
purpose of being nasty to this particular implementation of the algorithm, on
which the algorithm runs in ©(n?) time. The adversary will provide such an in-
put, giving a worst case time complexity of ©(n?).

A Randomly Chosen Element: In practice, what is often done is to choose the
pivot element randomly from the input elements. See Section 21.1. The advan-
tage of this is that the adversary who is choosing the worst case input instance

Some Simple Examples of Recursive Algorithms

knows the algorithm, but does not know the random coin tosses. Hence, all input
instances are equally good and equally bad.

We will prove that the expected computation time is ®(nlogn). What this
means is that if you ran the algorithm 1,000,000 times on the same input, then
the average running time would be ©(nlogn).

Intuition: One often gains good intuition by assuming that what we expect
to happen happens reasonably often. If the pivot always partitions the list
into one sublist of one-fifth the original size and one of four-fifths the orig-
inal size, then the total time is T(n) = T(3n) + T(:n) + ©(n) = O(nlogn).
When a pivot is chosen randomly, the probability that it partitions the list at
least this well is % When a partition is worse than this, it is not a big problem.
We just say that no significant progress is made, and we try again. After all,
we expect to make progress in approximately three of every five partitions.

More Formal: Formally, we set up and solve a difficult recurrence relation.
Suppose that the randomly chosen pivot element happens to be the ith
smallest element. This splits the list into one of size i and one of size n — i, in
which case the running time is T(i) + T(n — i) + ©(n). Averaging this over all
possible values of i gives the recursive relation T(n) = Avg;_, ,, [T(@) + T(n —
i)+ @(n)]. With a fair bit of work, this evaluates to ®(nlogn).

Randomly Choose Three Elements: Another option is to randomly select three
elements from the input list and use the middle one as the pivot. Doing this
greatly increases the probability that the pivot is close to the middle and hence
decreases the probability of the worst case occurring. However, it so also takes
time. All in all, the expected running time is worse.

A Deterministic Algorithm: Though in practice such a probabilistic algorithm is
easy to code and works well, theoretical computer scientists like to find a deter-
ministic algorithm that is guaranteed to run quickly.

The following is a deterministic method of choosing the pivot that leads to a
worst case running time of ®(n) for finding the kth smallest element. First group
the n elements into £ groups of five elements each. Within each group of five
elements, do ®(1) work to find the median of the group. Let S;;;04i2, be the set of
£ elements containing the median from each group. Recursively ask a friend to
find the median element from the set S;,,04i4n- This element will be used as our
pivot.

I claim that this pivot element has at least 137)” elements that are less than or
equal to it and another %n elements that are greater or equal to it. The proof of
the claim is as follows. Because the pivot is the median within S,,,.4i4,, there are
Tlo” = %|Smedmn| elements within S,,,.44, that are less than or equal to the pivot.
Consider any such element x; € S;;,04ian- Because x; is the median within its group
of five elements, there are three elements within this group (including x; itself)
that are less than or equal to x; and hence in turn less than or equal to the pivot.

120

Recursion

Counting all these gives 3 x 157 elements. A similar argument counts this many
that are greater than or equal to the pivot.

The algorithm to find the kth largest element proceeds as stated originally.
A friend is asked to find either the kth smallest element within all elements that
are less than or equal to the pivot or the (k — ¢)th smallest element from all those
that are greater than it. The claim ensures that the size of the sublist given to the
friend is at most 5 n.

Unlike the first algorithm for the finding kth smallest element, this algo-
rithm recurses twice. Hence, one would naively assume that the running time
is ®(nlogn). However, careful analysis shows that it is only ®(n). Let T(n) de-
note the running time. Finding the median of each of the 1 n groups takes ©(n)
time. Recursively finding the median of Segian takes T(1n) time. Recursing on
the remaining at most 5 n elements takes at most T(;57) time. This gives a to-
tal of T(n) = T(tn) + T(5n) + ©(n) time. Because { + & < 1, this evaluates to
T(n) = ©(n). (See Chapter 27.)

A deterministic quick sort algorithm can use this deterministic ®(n)-time
algorithm for the finding the kth smallest element, to find the median of the list
to be the pivot. Because partitioning the elements according to the pivot already
takes ©(n) time, the timing is still T'(n) = 2T(§) + ©(n) = B(nlogn).

Partitioning According to the Pivot Element: This is an iterative step. The input
consists of a list of elements A[I], ..., A[J] and a pivot element. The output con-
sists of the rearranged elements and an index i, such that the elements A[I], ...,
Ali — 1] are all less than or equal to the pivot element, A[i] is the pivot element, and
the elements A[i + 1], ..., A[J] are all greater than it.

The loop invariant is that there are indices I <i < j < J for which:

1. The valuesin A[I], ..., A[i — 1] are less than or equal to the pivot element.
2. Thevaluesin A[j + 1], ..., A[J] are greater than the pivot element.

3. The pivot element has been removed and is on the side, leaving an empty en-
try either at A[i] or at A[j].

4. The other elements in A[i], ..., A[j] have not been considered.

The loop invariant is established by setting i = I and j = J, making A[i] empty by
putting the element in A[i] where the pivot element is and putting the pivot element
aside.

If the loop invariant is true and i < j, then there are four possible cases (see
Figure 9.1):

Case A. A[i] is empty and A[j] < pivot: A[j] belongs on the left, so move it to the
empty A[i]. Now A[j] is empty. Increase the left side by increasing i by one.

Some Simple Examples of Recursive Algorithms

A: Pre: | Less |O| ? || More | C: Pre: | Less | ? |0 More |
I i] J I i j J

Post: | Less 7 _ ? |O| More | Post: | Less | _ 2 |O| More |

I 1] 7 I 1]]

B: Pre: | Less |O| ? || More | D: Pre: | Less | ? |O More |
1 i] 7 1 i j J

Post: [Less (@] 2 More | Post: | Less (@) 7 N More |

i

i J J i i j J

Figure 9.1: The four cases of how to iterate are shown.

Case B. A[i] is empty and A[j] > pivot: A[j] belongs on the right and is already
there. Increase the right side by decreasing j by one.

Case C. A[j] is empty and A[i] < pivot: A[i] belongs on the left and is already
there. Increase the left side by increasing i by one.

Case D. A[j] is empty and A[i] > pivot: A[i] belongs on the right, so move it to
the empty A[j]. Now A[i] is empty. Increase the right side by decreasing j by one.

In each case, the loop invariant is maintained. Progress is made because j — i de-
creases.

When i = j, the list is split as needed, leaving A[i] empty. Put the pivot there. The
postcondition follows.

EXERCISE 9.1.1 (See solution in Part Five.) Consider the algorithm that puts minimal
effort into splitting the list into one of size n — 1 and one of size one, but puts lots of
effort into recombining the sublists. Also consider the algorithm that puts lots of effort
into splitting the list into one of size n — 1 and one of size one, but puts minimal effort
into recombining the sublists. What are these two algorithms?

EXERCISE 9.1.2 (See solution in Part Five.) One-friend recursion vs iteration.

1. Your task is to accept a tuple (), ay, ..., a,) and return the reversed tuple
(@ny n-1, - .., a1). Being lazy, you will only strip off an element from one end or
add an element back onto one end. But you have recursive friends to help you.
Provide both a paragraph containing the friend’s explanation of the algorithm,
and the recursive code.

2. Now suppose that you have a stack, but no friends. (See Chapter 3). Quickly sketch
an iterative program that solves this same problem. Be sure to include loop invari-
ants and other the key steps required for describing an iterative algorithm.

3. Trace each of these two programs. Step by step, compare and contrast their com-
putations on a computer.

EXERCISE 9.1.3 Exercise 4.4.1 asks for an iterative algorithm for searching within
a matrix A[l..n, 1..m)] in which each row is sorted and each column is sorted. This
requires that T(n, m) = n+ m— 1 of the matrix entries be examined. Exercise 7.0.7

121

122

Recursion

proves that this is tight when n = m. But it is clearly too big when m >> n, given one
can do binary search in each row in timenlogm << n+ m— 1. The goal now is to de-
sign a recursive algorithm that accesses T(n, m) ~ nlog, (%) entries. As a huge hint,
the recurrence relation will be T(n, m) = maXyepy,y T, 5) + T(n—n',) + log, n.
You must look at the recursive tree in order to get some intuition to why the time is
T(n, m) ~ nlog,(%). You can also plug T(n, m) = nlog, (%) 4+ 2n — log(n) — 2 into this
recurrence relation and see that it satisfies it.

EX3I oOperations on Integers

Raising an integer to a power b, multiplying x x y, and matrix multiplication each
have surprising divide-and-conquer algorithms.

EXAMPLE 9.2.1 bN

Suppose that you are given two integers b and N and want to compute b".

The Iterative Algorithm: The obvious iterative algorithm simply multiplies b to-
gether N times. The obvious recursive algorithm recurses with Power (b, N) = b x
Power (b, N — 1). This requires the same N multiplications.

The Straightforward Divide-and-Conquer Algorithm: The obvious divide-and-con-
. . . N N
quer technique cuts the problem into two halves using the property that b'z1 x btz! =
b 1+131 = pN. This leads to the recursive algorithm Power (b, N) = Power (b, [§1) x
Power (b, L%J). Its recurrence relation gives T(N) = 2T(§) + 1 multiplications. The
technique in Chapter 27 notes that % = % =1 and f(N) = ©(N?), so ¢ = 0. Be-
cause igiz > ¢, the technique concludes that time is dominated by the base cases and
T(N) = ©(Nsa/logh)y — @(N). This is no faster than the standard iterative algorithm.

Reducing the Number of Recursions: This algorithm can be improved by noting that
the two recursive calls are almost the same and hence need only to be made once. The

new recurrence relation gives T(N) :1 1T(5N) + 1 multiplications. Here % = }gg; =0

and f(N) = O(N), so ¢ = 0. Because % = ¢, we conclude that the time is dominated

by all levels and T(N) = ©(f(N) log N) = ©(log N) multiplications.

Code:
algorithm Power (b, N)

(pre-cond): N > 0 (N and b not both 0)
(post-cond): Outputs b".
begin
if(N=0) then
return(1)
else
half = |4
p = Power (b, half)

Some Simple Examples of Recursive Algorithms

if(2 - half = N) then
return(p- p) % if Nis even, bN = pV/2 . pLN/2]
else
return(p- p-b) % if Nis odd, bN = b - b\V/2) . pLN/2)

end if
end if 123

end algorithm

Tree of Stack Frames:

In: b=2, N=5
Out: 32 = 4x4x2

In: b=2, N=2
Out: 4 = 2x2

In: b=2, N=1
Out: 2 = 1x1x2

In: b=2, N=0
Out: 1

Running Time:

Input Size: One is tempted to say that the first two © (V) algorithms require a lin-
ear number of multiplications and that the last ®(log V) one requires alogarithmic
number. However, in fact the first two require exponential ©(2") number and the
last a linear ®(n) number in the size of the input, which is typically taken as the
number of bits, 7 = log N, needed to represent the number.

Operation: Is it fair to count the multiplications and not the bit operations in this
case? I say not. The output b" contains ®(Nlogb) = 2°" bits, and hence it will
take this many bit operations to simply output the answer. Given this, it is not
really fair to say that the time complexity is only ©(n).

EXAMPLE 9.2.2 xXxy

The time complexity of Example 9.2.1 was measured in terms of the number of multi-
plications. This ignores the question of how quickly one can multiply.

The input for the next problem consists of two strings of n digits each. These are
viewed as two integers x and y, either in binary or in decimal notation. The problem is
to multiply them.

The Iterative Algorithm: The standard elementary school algorithm considers each
pair of digits, one from x and the other from y, and multiplies them together. These
n? products are shifted appropriately and summed. The total time is ©(n?). It is hard to
believe that one could do it faster.

Recursion

EXAMPLE 9.2.2 x x y (cont.)

124

8 2 7
5 9 6
4 2
1 2
4 8
6 3
1 8
7 2
3 5
1 0
4 0

4 9 2 8 9 2

The Straightforward Divide-and-Conquer Algorithm: Let us see how well the divide-
and-conquer technique can work. Split each sequence of digits in half, and consider
each half as an integer. This gives x = x; x 102 + xg and y = y; x 10"2 + y,. Multiply-
ing these symbolically gives

Xxy= <x1 x 102 +x0> X (y1 x 102 +y0)
=] (x1)/1) x 10" + (x1y0 + xoyl) X 10% =+ (.X,'Oyo) °

The obvious divide-and-conquer algorithm would recursively compute the four sub-
problems x1y1, X1 ¥, Xo)1, and Xy, €ach of % digits. This would take 47'(%) time. Then
these four products are shifted appropriately and summed. Note that additions can be
done in ®(n) time. See Section 2.2. Hence, the total time is T(n) = 4T(3) + ©(n). Here
}g% = :g% =2 and f(n) = ©(n'), so ¢ = 1. Because % > ¢, the technique concludes
that the time is dominated by the base cases and T(n) = ©(n(loga)/(logb)) = @(n?).

This is no improvement in time.

Reducing the Number of Recursions: Suppose that we could find a trick so that we
only needed to recurse three times instead of four. One’s intuition might be that this
would only provide a linear time saving, but in fact the saving is much more. T(n) =
3T(%) + ©(n). Now }zg‘g = }gg; = 1.58..., which is still bigger, than c. Hence, time is
still dominated by the base cases, but now this is T(n) = ©(n™¢?) = 6 (n'%%-). This is
a significant improvement over @ (n?).

The Trick: The first step is to multiply x; y; and x,), recursively as required. This leaves
us only one more recursive multiplication.

If you review the symbolic expansion for x x y, you will see that we do not actually
need to know the values of x; y, and x; ;. We only need to know their sum. Symbolically,
we can observe the following:

X1Yo + Xoy1 = [Xay1 + X1 Yo + XoY1 + XoYo] — X101 — XoYo
= [(xl + Xo) (J/1 + J/o)] —X1)h — %Yo

Hence, the sum x; y, + Xp); that we need can be computed by adding x; to x, and y; to
Yo, multiplying these sums; and subtracting off the values x; y; and x0), that we know

Some Simple Examples of Recursive Algorithms

from before. This requires only one additional recursive multiplication. Again we use
the fact that additions are fast, requiring only ®(n) time.

Code:
algorithm Multiply(x, y)

(pre-cond): x and y are two integers represented as an array of n digits
(post-cond): The output consists of their product represented as an array of n + 1
digits
begin
if(n = 1) then
result(x x y) % product of single digits
else
(x1, Xo) = high- and low-order # digits of x
(¥1, yo) = high- and low-order # digits of y
A = Multiply(x;, y1)
C = Multiply(xy, yo)
B = Multzply()q + Xo,)1 + yo) —A-C
result(A x 10" + B x 102 + C)
end if
end algorithm

It is surprising that this trick reduces the time from @ (n?) to ©(n!-%).

Dividing into More Parts: The next question is whether the same trick can be ex-
tended to improve the time even further. Instead of splitting each of x and y into two
pieces, let’s split them each into d pieces. The straightforward method recursively mul-
tiplies each of the d? pairs of pieces together, one from x and one from y. The total
timeis T(n) = d°T(4) + ©(n). Herea = d*, b=d, c=1, and lﬂ)gg’f =2 > c. This gives
T(n) = ©(n?). Again, we are back where we began.

Reducing the Number of Recursions: The trick now is to do the same with fewer re-
cursive multiplications. It turns out it can be done with only 2d — 1 of them. This
gives time of only T(n) = 2d —1)T(4) + ©(n). Here a =2d -1, b=d, c=1, and
loiizﬁ;) D~ 101%(;2;;1 = 1+ @ ~ ¢ Byincreasing d, the times for the top stack frame and
for the base cases become closer and closer to being equal. Recall that when this hap-
pens, we must add an extra ®(log n) factor to allow for the ©(log n) levels of recursion.

This gives T(n) = ®(nlogn), which is a surprising running time for multiplication.

Fast Fourier Transformation: I will not describe the trick for reducing the number of
recursive multiplications from d? to only 2d — 1. Let it suffice to say that it involves
thinking of the problem as the evaluation and interpolation of polynomials. When d
becomes large, other complications arise. These are solved by using the 2d th roots of
unity over a finite field. Performing operations over this finite field requires © (log log n)
time. This increases the total time from ©(nlog n) to ©(nlog nloglog n). This algorithm
is used often for multiplication and many other applications such as signal processing.
It is referred to as fast Fourier transformation.

125

R

ecursion

EXAMPLE 9.2.3 Strassen’s Matrix Multiplication

126

The next problem is to multiply two n x n matrices.

The Iterative Algorithm: The obvious iterative algorithm computes the (i, j) entry of
the product matrix by multiplying the ith row of the first matrix with the jth column
of the second. This requires © () scalar multiplications. Because there are n? such en-
tries, the total time is ® (r®).

The Straightforward Divide-and-Conquer Algorithm: When designing a divide-and-
conquer algorithm, the first step is to divide these two matrices into four submatrices
each. Multiplying these symbolically gives the following:

a b e g\ (ae+bf ag+bh

c dj\f h) \ce+df cg+dh
Computing the four 5 x 7 submatrices in this product in this way requires recur-
sively multiplying eight pairs of 2 x § matrices. The total computation time is given
by the recurrence relation T(n) = 8 T(n/2) + 0(n?) = O(n(log8)(log2)) = A(n®). This is

no faster than the standard iterative algorithm.

Reducing the Number of Recursions: Strassen found a way of computing the four
3 X 5 submatrices in this product using only seven such recursive calls. This gives
T(n) = 7T(n/2) + ©(n?) = O(n(log7)(log2)) = 6(1*87). T will not include the details
of the algorithm.

EXERCISE 9.2.1 (See solution in Part Five) Recursive GCD.

1.

2.

Write a recursive program to find the GCD of two numbers. The program should
mirror the iterative algorithm found in Chapter 6.

Rewrite this recursive algorithm to solve the following more general problem. The
input still consists of two integers a and b. The output consists of three inte-
gers g, u, and v, such that ua + vb = g = GCD(a, b). For example, ona = 25 and
b = 15 the algorithm outputs (5, 2, —3), because2 x 25 —3 x 15 =50 — 45 =5 =
GCD(25, 15). Provide both a paragraph containing the friend’s explanation of the
algorithm, and the recursive code.

Write an algorithm for the following problem. The input consist of three integersa,
b, and w. Assume that you live in a country that has two types of coins, one worth
a dollars and the other b dollars. Both you and the storekeeper have a pocket full of
each. You must pay him w dollars. You can give him any number of coins, and he
may give you change with any number of coins. Your algorithm must determine
whether or not this is possible and, if so, describe some way of doing it (not neces-
sarily the optimal way). [Hint: Compute GCD(a, b), and use the three values g, u,
andv. Consider the two cases when g divides w and when it does not. (If you want
to find the optimal number of coins, basically you change a solution by using the
fact that(g) -a— (%) -b=0.)]

Designing an algorithm that, when given a prime p and an integer x € [1, p — 1],
outputs aninverse y such thatx - y =moa p 1. [Hint: First show that GCD(p, x) = 1.

Some Simple Examples of Recursive Algorithms

Then compute GCD(p, x) and use the values u, and v. Proving that every x has such
an inverse proves that the integers modulo a prime form a field.]

EXM Ackermann’s Function

If you are wondering just how slowly a program can run, consider the algorithm be-
low. Assume the input parameters n and k are natural numbers.

Algorithm:
algorithm A(k, n)
if(k = 0) then
return(n+1+1)
else
if(n = 0) then
if(k = 1) then
return(0)
else
return(1)
else
return(Ak — 1, A(k, n — 1)))
end if
end if
end algorithm

Recurrence Relation: Let Ti.(n) denote the value returned by A(k, n). This gives
To(n) =2+n, [1(0) =0, T(0) = 1fork > 2,and T} (n) = T;._1(Tx(n — 1)) for k > 0 and
n>0.

Solving:

Tin)=2+n

h(n)=T(hn-1)=2+T(n-1) =4+ T(n-2)
=2i+TT(n—i)=2n+ L(0) =2n

L) =T(Ln-1)=2-GHn-1)=2>Hhn-2)=2"Ln-i=2" L0 =2"

T (n—i) T(0)
Iam=1aﬂm—1n=2m“DZ?Mﬂ:[?z} :[fz} = 2%

—— ~—— S~——
i n n

T(0) = 1. (1) = H(GO) = BA) =22 =2.
1

L) = B(LA) = BR) =22 =22=4.
2

127

128

Recursion

LG3) = B(GE) = B =27 =27 =22 — 216 65 536.
4
Note that

2
2.
22 — 265,536 ~ 1021,706
5

while the number of atoms in the universe is less than 10%°. We have

1L.(4) = B(1.(3)) = T5(65,536) = 2
65,536
Ackermann’s function is defined to be A(n) = T,,(n). We see that A(4) is bigger than
any number in the natural world. A(5) is unimaginable.

Running Time: The only way that the program builds up a big number is by contin-
ually incrementing it by one. Hence, the number of times one is added is at least as
huge as the value T (n) returned.

Crashing: Programs can stop at run time because of (1) overflow in an integer value;
(2) running out of memory; (3) running out of time. Which is likely to happen first?
If the machine’s integers are 32 bits, then they hold a value that is about 10'°. Incre-
menting up to this value will take a long time. However, much worse than this, each
two increments need another recursive call creating a stack of about this many recur-
sive stack frames. The machine is bound to run out of memory first.

EXERCISE 9.3.1 Design the algorithm and compute the running time when d = 3.

EX3 Exercises

EXERCISE 9.4.1 Review the problem of iterative cake cutting (Section 2.3). You are
now to write a recursive algorithm for the same problem. You will, of course, need to
make the pre- and postconditions more general so that when you recurse, your subin-
stances meet the preconditions. As in moving from insertion sort to merge sort, you
need to make the algorithm faster by cutting the problem in half.

1. You will need to generalize the problem so that the subinstance you would like
your friend to solve is a legal instance according to the preconditions and so that
the postconditions state the task you would like him to solve. Make the new prob-
lem, however, natural. Do not, for example, pass the number n of players in the
original problem or the level of recursion. The input should simply be a set of play-
ers and a subinterval of cake. The postcondition should state the requirements on
how this subinterval is to be divided among these players. To make the problem
easier, assume that the number of players is n = 2 for some integeri.

2. Give recursive pseudocode for this algorithm. As a big hint, towards designing a
recursive algorithm, I will tell you the first things that the algorithm does. Each

Some Simple Examples of Recursive Algorithms

>

player specifies where he would cut if he were to cut the cake in half. Then one of
these spots is chosen. You need to decide which one and how to create two subin-
stances from this.

Prove that if your instance meets the preconditions, then your two subinstances
also meet the preconditions.

Prove that if your friend’s solutions meet the postconditions, then your solution
meets the postcondition.

Prove that your solution for the base case meets the postconditions.

Give and solve the recurrence relation for the running time of this algorithm.
Now suppose that n is not 2! for any integeri. How would we change the algorithm
so that it handles the case when n is odd? I have two solutions: one that modifies
the recursive algorithm directly, and one that combines the iterative algorithm and
the recursive algorithm. You only need to do one of the two (as long as it works and
does not increase the BigOh of the running time.)

129

130

] O Recursion on Trees

One key application of recursive algorithms is to perform actions on trees, because
trees themselves have a recursive definition. Terminology for trees is summarized in

the following table:

Term Definition

Root Node at the top

RootInfo(tree) The information stored at the root node
Child of node u One of the nodes just under node u

Parent of node u The unique node immediately above node u
Siblings Nodes with same parent

Ancestors of node u
Descendants of node u
Leaf

Height of tree

Depth of node u

Binary tree

leftSub(tree)
rightSub(tree)

The nodes on the unique path from the root to the node u

All the nodes below node u

A node with no children

The maximum level. Some definitions say that a tree with a
single node has height 0, others say height 1. It depends on
whether you count nodes or edges.

The number of nodes (or edges) on the path from the root
to u.

Each node has at most two children. Each of these is
designated as either the right child or the left child.

Left subtree of root

Right subtree of root

Recursive Definition of Tree: A tree is either:
* an empty tree (zero nodes) or
* aroot node with some subtrees as children.
A binary tree is a special kind of tree where each node has a right and a left

subtree.

Recursion on Trees

Binary Tree Tree representing (x +y) * z

131

EXAMPLE 10.1 Number of Nodes in a Binary Tree

We will now develop a recursive algorithm that will compute the number of nodes in a
binary tree.

Specifications:

Preconditions: The input is any binary tree. Trees with an empty subtree are valid
trees. So are trees consisting of a single node and the empty tree.

Postconditions: The output is the number of nodes in the tree.
Size: The size of an instance is the number of nodes in it.
General Input: Consider a large binary tree with two complete subtrees.

Magic: We assume that by magic a friend is able to count the nodes in any tree
that is strictly smaller than ours.

Subinstances: The subinstances of our instance tree will be the tree’s left and its
right subtree. These are valid instances that are strictly smaller than ours because
the root (and the other subtree) have been removed.

Subsolutions: We ask one friend to recursively count the number of nodes in the
left subtree and another friend to do so in the right subtree.

Solution: The number of nodes in our tree is the number in its left subtree plus
the number in its right subtree plus one for the root.

Other Instances: Suppose the instance is a tree with the right subtree missing. Surpris-
ingly, the algorithm still works. The number of nodes in our tree’s right subtree is zero.
This is the answer that our friend will return. Hence, the algorithm returns the number
in the left subtree plus zero plus one for the root. This is the correct answer. Similarly,
the algorithm works when the left subtree is empty or when the instance consists of a
single leaf node.

The remaining instance is the empty tree. The algorithm does not work in this
case, because it does not have any subtrees. Hence, the algorithm can handle all trees
except the empty tree with one piece of code.

132

Recursion

EXAMPLE 10.1 Number of Nodes in a Binary Tree (cont.)

Base Cases: The empty tree is sufficiently small that we can solve it in a brute force
way. The number of nodes in it is zero.

The Tree of Stack Frames: There is one recursive stack frame for each node in the
tree, and the tree of stack frames directly mirrors the structure of the tree.

Running Time: Because there is one recursive stack frame for each node in the tree
and each stack frame does a constant amount of work, the total time is linear in the
number of nodes in the input tree, i.e., T(n) = ©(n). Proved another way, the recur-
rence relation is T'(n) = T(nyep) + T(Myighy) + ©(D). Plugging the guess T(n) = cn gives
CNL = CNefy + CNyign; + ©(1), which is correct because 1 = e + Nyjgp; + 1.
Code:
algorithm NumberNodes(tree)
(pre-cond): treeis a binary tree.
(post-cond): Returns the number of nodes in the tree.
begin
if(tree = emptyTree) then
result(0)
else
result(NumberNodes(leftSub(tree))
-+NumberNodes(rightSub(tree)) + 1)
end if
end algorithm

We have ensured that the algorithm developed works for every valid input instance.

Problem with the Single-Node Base Case: Many people are tempted to use trees
with a single node as the base case. A minor problem with this is that it means that
the routine no longer works for the empty tree, i.e., the tree with zero nodes. A bigger
problem is that the routine no longer works for trees that contain a node with a left
child but no right child, or vice versa. This tree is not a base case, because it has more
than one node. However, when the routine recurses on the right subtree, the new
subinstance consists of the empty tree. The routine, however, no longer works for
this tree. See Exercise 10.2.1 for more on this.

Answer for the Empty Tree: A common mistake is to provide the wrong answer
for the empty tree. When in doubt as to what answer should be given for the empty
tree, consider an instance with the left or right subtree empty. What answer do you
need to receive from the empty tree to make this tree’s answer correct?

Height: For example, a tree with one node can either be defined to have height
0 or height 1. It is your choice. However, if you say that it has height 0, then be
careful when defining the height of the empty tree.

Recursion on Trees

Definition of Binary Search Tree: Another example is that people often say that
the empty tree is not a binary search tree (Section 3.1). However, it is. A binary
tree fails to be a binary search tree when certain relationships between the nodes
exist. Because the empty tree has no nodes, none of these violating conditions
exist. Hence, by default it is a binary search tree.

Max: What is the maximum value within an empty list of values? One might think
0 or co. However, a better answer is —oco. When adding a new value, one uses the
code newMax = max(oldMax, newValue). Starting with oldMax = —oo gives the
correct answer when the first value is added.

ELXN Tree Traversals

A task one needs to be able to perform on a binary tree is to traverse it, visiting each
node once, in one of three defined orders. Before one becomes familiar with recur-
sive programs, one tends to think about computation iteratively, “I visit this node
first, then this one, then this one, and so on.” Each iteration, the program says “I just
visited this node, so now let me find the next node to visit.” Surprisingly, such a com-
putation is hard to code. The reason is that binary trees by their very nature have a
recursive structure. At the end of this section, I include code that traverses a binary
tree in an iterative way, but only to convince you that this is much harder than doing
it recursively and should be avoided.

Recursion, on the other hand, provides a very easy and slick algorithm for
traversing a binary tree. Such a tree is composed of three parts. There is the root
node, its left subtree, and its right subtree. You, being lazy, get one friend to traverse
the left and another to traverse the right. You, feeling that you need to do some
work yourself, visit the root. The order in which the three of you preform your tasks
dictates the order in which the nodes get visited. The three classic orders to visit the
nodes of a binary tree are prefix, infix, and postfix, in which the root is visited before,
between, or after its left and right subtrees are visited.

algorithm PreFix (tree)) algorithm InFix (tree))
(pre-cond): treeis a binary tree. (pre-cond): treeis a binary tree.
(post-cond): Visits the nodes (post-cond): Visits the nodes
in prefix order. in infix order.
begin begin
if(tree # emptyTree) then if(tree # emptyTree) then
put rootinfo(tree) InFix(leftSub(tree))
PreFix(leftSub(tree)) put rootinfo(tree)
PreFix(rightSub(tree)) InFix(rightSub(tree))
end if end if

end algorithm end algorithm

133

134

Recursion

algorithm PostFix (tree))

(pre-cond): treeis a binary tree.
(post-cond): Visits the nodes
in postfix order.

begin
if(tree # emptyTree) then
PostFix(leftSub(tree))
PostFix(rightSub(tree))
put rootInfo(tree)
end if
end algorithm

The following order is produced if you tracing out these computations on the two
trees displayed below:

PreFix InFix PostFix
531246 123456 214365
3+4*7 3447

L+] R

These three orders have different applications. In math the typical order to put oper-
ators is infix notation as in 3 + 4 x 7. However, printed like this produces the wrong
order of operations. What is required is (3 + 4) * 7. Using pre- and postfix order, the
precedence of the operators is correctly determined even without brackets. For this
reason, Hewlett Packard’s first calculator used postfix notations 34 + 7 *. It was called
reverse Polish notation after Jan Lukasiewicz, who developed it in the 1920s. These
were a bit of a pain, but luckily for me, the technology improved enough by the time
I was starting high school in 1977 so that I did not need to use one. However, such
calculators still have their partisans, and Hewlett Packard still makes them.

PreFix visits the nodes in the same order that a depth-first search finds the nodes.
See Section 14.4 for the iterative algorithm for doing depth-first search of a more gen-
eral graph, and Section 14.5 for the recursive version of the algorithm.

Below is the iterative program for visiting the nodes in infix order. As said, it is
needlessly complex and is included only to show you what to avoid.

algorithm IterativeTraversal(tree)

(pre-cond): treeis a binary tree. As usual, each node has a value and pointers to the
roots of its left and right subtrees. In addition, each node has a pointer to its parent.
(post-cond): Does an infix traversal of tree.

Recursion on Trees

begin
element = root(tree) % Current node in traversal
count = zero % Current count of nodes
loop
(loop-invariant): elementis some node in the tree, and some nodes
have been visited.
if(elementhas a left child and it has not been visited) then
element = leftChild (element)
elseif(element has no left child or its left child have been visited
and elementhas not been visited) then
visit element
elseif(element’s left subtree and element itself has been visited
and element has a right child and it has not been visited) then
element = rightChild(element)
elseif(element’s left subtree, elementitself, and right subtree have been
visited and element has a parent) then
element = parent(element)
elseif(Everything has been visited and element is the root of the global
tree) then
exit
end if
end loop
end algorithm

KX} simple Examples

Here is a list of problems involving binary trees.

1. Return the maximum of data fields of nodes.
2. Return the height of the tree.
3. Return the number of leaves in the tree. (A harder one.)

4. Copy the tree.

Try them first on your own. See Figure 10.1.

Maximum Height The number of leaves

Figure 10.1: The result returned on each subtree is provided.

135

136

Recursion

Maximum: Given a binary tree, your task is to determine its maximum value. The
first step is to decide how to create subinstances for your friends. As said, when the
input instance is a binary trees, the most natural subinstances are its left and right
subtrees. Your friends must solve the same problem that you do. Hence, assume that
they provide you with the maximum value within each of these trees. Luckily, the
maximum value within a tree is either the maximum on the left, the maximum on
the right, or the value at the root. Our only job then is to determine which of these
three is the maximum. As described in the beginning of Chapter 10, the maximum of
the empty list is —oo.

algorithm Max(tree)

(pre-cond): treeis a binary tree.
(post-cond): Returns the maximum of data fields of nodes.
begin
if(tree = emptyTree) then
result(—oo)
else
result(max(Max(leftSub(tree)), Max(rightSub(tree)), rootData(tree)))
end if
end algorithm

Height: In this problem, your task it to find the height of your binary tree. Again,
your friends can easily give you the height of your left and right subtrees. The height
of your tree is determined by the deeper of its subtrees. Given their heights, you de-
termine which is deeper and add one to take the root into account. The height of the
empty tree is discussed in the beginning of this chapter.

algorithm Height(tree)

(pre-cond): treeis a binary tree.
(post-cond): Returns the height of the tree measured in nodes, e.g., a tree with
one node has height 1.
begin
if(tree = emptyTree) then
result(0)
else
result(max(Height(leftSub(tree)), Height(rightSub(tree))) + 1)
end if
end algorithm

Exercise 10.2.3 considers another version of this algorithm.
Number of Leaves: This problem is harder than the previous ones. We start by con-

sidering a tree with both a left an a right subtree. For this, the number of leaves in
the entire tree is the sum of the numbers in the left and right subtrees. If the tree

Recursion on Trees

has one subtree, but the other is empty, then this same algorithm still works. If the
tree is empty, then it has zero leaves. However, if this were all of the code, then
the answer returned would always be zero. The case that still needs to be consid-
ered is the tree consisting of a root with no children. This root is a leaf. We need to
count it.

algorithm NumberLeaves(tree)

(pre-cond): treeis a binary tree.
(post-cond): Returns the number of leaves in the tree.

begin

if(tree = emptyTree) then
result(0)

else if(leftSub(tree) = emptyTree and rightSub(tree) = emptyTree) then
result(1)

else
result(NumberLeaves(leftSub(tree)) + NumberLeaves(rightSub(tree)))

end if

end algorithm

Copy Tree: If you want to make a copy of a tree, you might be tempted to use the
code treeCopy = tree. However, the effect of this will only be that both the variables
treeCopy and tree refer to the same tree data structure that tree originally did. This
would be sufficient if you only want to have read access to the data structure from
both variables. However, if you want to modify one of the copies, then you need a
completely separate copy. To obtain this, the copy routine must allocate memory
for each of the nodes in the tree, copy over the information in each node, and link
the nodes together in the appropriate way. The following simple recursive algorithm,
treeCopy = Copy(tree), accomplishes this.

algorithm Copy(iree)

(pre-cond): treeis a binary tree.
(post-cond): Returns a copy of the tree.
begin
if(tree = emptyTree) then
result(emptyTree)
else
treeCopy = allocate memory for one node
rootInfo(treeCopy) = rootlnfo(tree) % copy overall data in root node
leftSub(treeCopy) = Copy(leftSub(tree)) % copy left subtree
rightSub(treeCopy) = Copy(rightSub(tree)) % copy right subtree
result(treeCopy)
end if
end algorithm

137

138

Recursion

EXERCISE 10.2.1 Many texts that present recursive algorithms for trees do not con-
sider the empty tree to be a valid input instance, but by not considering empty trees the
algorithm requires many more cases. Redesign the algorithm of Example 10.1 to return
the number of nodes in the input tree without considering the empty tree.

EXERCISE 10.2.2 Develop an algorithm that returns the sum of the values within the
nodes of a binary tree.

EXERCISE 10.2.3 We have given a recursive algorithm for finding the height of a
binary tree measured in nodes, e.g., a tree with one node has height 1. Rewrite this
algorithm so that the height is measured in edges, e.g., a tree with one node has
height 0.

EXERCISE 10.2.4 [f the computer system does not have garbage collection, then it is
the responsibility of the programmer to deallocate the memory used by all the nodes of
a tree when the tree is discarded. Develop a recursive algorithm, Deallocate(tree), that
accomplishes this. How much freedom is there in the order of the lines of the code?

EXERCISE 10.2.5 Develop an algorithm that searches for a key within a binary search
tree.

KX} Generalizing the Problem Solved

Sometimes when writing a recursive algorithm for a problem it is easier to solve a
more general version of the problem, providing more information about the original
instance or asking for more information about subinstances. Remember, however,
that anything that you ask your friend to do, you must be able to do yourself.

EXAMPLE 10.3.1 Is the Tree a Binary Search Tree?

The required algorithm returns whether or not the given tree is a binary search tree
(BST).

An Inefficient Algorithm:
algorithm IsBSTtree (tree)

(pre-cond): treeis a binary tree.
(post-cond): The output indicates whether it is a binary search tree.
begin
if(tree = emptyTree) then
return Yes
else if(IsBSTtree(leftSub(tree)) and IsBSTtree(rightSub(tree))
and Max(leftSub(tree)) < rootKey(tree) < Min(rightSub(tree)))then
return Yes

Recursion on Trees

else
return No
end if
end algorithm

Running Time: For each node in the input tree, the above algorithm computes the
minimum or the maximum value in the node’s left and right subtrees. Though these
operations are relatively fast for binary search trees, performing them for each node
increases the time complexity of the algorithm, because each node may be traversed
by either the Min or the Max routine many times. Suppose, for example, that the input
tree is completely unbalanced, i.e., a single path. For node i, computing the max of its
subtree involves traversing to the bottom of the path and takes time n — i. Hence, the
total running time is T(n) = Y_,_, ,,(n — i) = ©(n?). This is far too slow.

Ask for More Information about the Subinstance: It is better to combine the
IsBSTtree and the Min and Max routines into one routine so that the tree only needs
to be traversed once.

In addition to whether or not the tree is a BST, the routine will return the mini-
mum and the maximum value in the tree. If our instance tree is the empty tree, then
we return that it is a BST with minimum value oo and with maximum value —oo. (See
Section 8.5.) Otherwise, we ask one friend about the left subtree and another about
the right. They tell us the minimum and the maximum values of these and whether
they are BST. If both subtrees are BSTs and leftMax < rootKey(tree) < rightMin, then
our tree is a BST. Our minimum value is min(leftMin, rightMin, rootKey(tree)), and
our maximum value is max(leftMax, rightMax, rootKey(tree)).

algorithm IsBSTtree (tree)

(pre-cond): treeis a binary tree.
{ post-cond): The output indicates whether it is a BST. It also gives the minimum
and the maximum values in the tree.
begin
if(tree = emptyTree) then
return (Yes, oo, —o0)
else
(leftls,leftMin,leftMax) = IsBSTtree(leftSub(tree))
(rightls,rightMin,rightMax) = IsBSTtree(rightSub(tree))
min = min(leftMin, rightMin, rootKey(tree))
max = max(leftMax, rightMax, rootKey(tree))
if(leftls and rightls and leftMax < rootKey(tree) < rightMin) then
isBST = Yes
else
isBST= No

139

140

Recursion

end if
return (isBST, min, max)
end if
end algorithm

You might ask why the left friend provides the minimum of the left subtree even
though it is not used. There are two related reasons. First, the postconditions re-
quire her to do so. You can change the postconditions if you like, but whatever con-
tract is made, everyone needs to keep it. Second, the left friend does not know that
she is the left friend. All she knows is that she is given a tree as input. The algo-
rithm designer must not assume that the friend knows anything about the context
in which she is solving her problem other than what she is passed within the input
instance.

Provide More Information about the Original Instance: Another elegant algo-
rithm for the IsBST problem generalizes the problem in order to provide your friend
more information about your subinstance. Here the more general problem, in ad-
dition to the tree, will provide a range of values [min,max] and ask whether the
tree is a BST with values within this range. The original problem is solved using
IsBSTtree(tree, [—oo, oo]).

algorithm IsBSTtree tree, [min,max))

(pre-cond): treeis a binary tree. In addition, [min, max] is a range of values.
(post-cond): The output indicates whether it is a BST with values within this
range.

begin
if(tree = emptyTree) then
return Yes
else if(rootKey(tree) € [min, max] and
IsBSTtree(leftSub(tree), [min,rootKey(tree)]) and
IsBSTtree(rightSub(tree),[rootKey(tree), max]) then
return Yes
else
return No
end if
end algorithm

EXERCISE 10.3.1 (See solution in Part Five.) Write a recursive program that takes a
BST and an integer k as input and returns the kth smallest element in the tree. Recall
that all the nodes in the left subtree are smaller than the root and all those in the right
are larger.

Recursion on Trees

b Contents of this node are

O 2 3 stored in array element A[3].

oilleee!

QO
8 9

1 2 3 4 5 6 7 8 9

Figure 10.2: The mapping between the nodes in a balanced binary tree and the elements of
an array.

KX Heap Sort and Priority Queues

Heap sort is a fast sorting algorithm that is easy to implement. Like quick sort, it has
the advantage of being done in place in memory, whereas merge and radix—counting
sorts require an auxiliary array of memory to transfer the data to. I include heap
sort in this chapter because it is implemented using recursion within a tree data
structure.

Completely Balanced Binary Tree: We will visualize the values being sorted as
stored in a binary tree that is completely balanced, i.e., every level of the tree is com-
pletely full except for the bottom level, which is filled in from the left.

Array Implementation of a Balanced Binary Tree: Because the tree always has
this balanced shape, we do not have to bother with the overhead of having nodes with
pointers. In actuality, the values are stored in a simple array A[1, n]. See Figure 10.2.
The mapping between the visualized tree structure and the actual array structure is
done by indexing the nodes of the tree 1, 2, 3,, n, starting with the root of the tree
and filling each level in from left to right.

¢ The rootis stored in A[1].

* The parent of A[i] is A[[]].

The left child of A[i] is A[2 - i].

e Theright child of A[i] is A[2 - i + 1].

* The node in the far right of the bottom level is stored in A[n].
e If2i + 1 > n, then the node does not have a right child.

Definition of a Heap: A heap imposes a partial order (see Section 14.6) on the set
of values, requiring that the value of each node be greater than or equal to that of each
of the node’s children. There are no rules about whether the left or the right child is
larger. See Figure 10.3.

141

Recursion

Figure 10.3: An example of nodes ordered into a heap.

142

Maximum at Root: An implication of the heap rules is that the root contains the
maximum value. The maximum may appear repeatedly in other places as well.

Exercise 10.4.1 gives you more practice understanding this definition.

The Heapify Problem:
Specifications:

Precondition: The input is a balanced binary tree such that its left and right
subtrees are heaps. (That is, it is a heap except that its root might not be
larger than that of its children.)

Postcondition: Its values are rearranged in place to make it complete heap.

Recursive Algorithm: The first task in making this tree into a heap is to put its
maximum value at the root. See Figure 10.4. Because the left and right subtrees
are heaps, the maxima of these trees are at their roots. Hence, the maximum
of the entire tree is either at the root, at its left child node, or at its right child
node. You find the maximum among these three. If the maximum is at the root,
then you are finished. Otherwise, for the purpose of discussion, assume that the
maximum is in the root’s left child. Swap this maximum value with that of the
root. The root and the right subtree now form a heap, but the left subtree might
not. You will give the subtask of making your left subtree into a heap to a recur-
sive friend. Before you can do this, you need to make sure that this subinstance
meets the preconditions of the problem. By our precondition, our left subtree
was a heap when we received it. We changed its root. After this change, it still has
the property that its left and right subtrees are heaps. Hence, the preconditions
of our problem are met and you can give your left subtree to your friend. By the
postcondition, the friend makes this subtree into a heap. Your entire tree is now a
heap.

— po
—

@@@?@ @@@5@ »@5@

Flgure 10.4: An example computation of Heapzfy.

4

Jo§oRe

Recursion on Trees

Code:
algorithm Heapify(r)

(pre-cond): The balanced binary tree rooted at A[r] is such that its left
and right subtrees are heaps.

(post-cond): Tts values are rearranged in place to make it complete

heap. 143

begin
if(A[rightchild(r)] is max of {A[r], Alrightchild(r)],
Alleftchild(r)]}) then
swap(Alr], Alrightchild(r)])
Heapify(rightchild(r))
elseif(A[leftchild(r)] is max of {A[r], Alrightchild(r)],
Alleftchild(r)]}) then
swap(A[r], Alleftchild(r)])
Heapify(leftchild(r))
else % A[r] is max of {A[r], Alrightchild(r)], Alleftchild(r)]}
exit
end if
end algorithm

Running Time: T(n) = 1 - T(n/2) + ©(1). From Chapter 27 we know that 1282 —

logh —
{g% =0and f(n) = ©(n°), so c = 0. Because iggi = ¢, we conclude that time is

dominated by all levels and T'(n) = O(f(n)logn) = ©(logn).

Because this algorithm recurses only once per call, it can easily be made into an iter-
ative algorithm.

Iterative Algorithm: A good loop invariant would be “The entire tree is a heap
except that node i might not be greater or equal to both of its children. As well, the
value of i’s parent is at least the value of i and of i’s children.” When i is the root,
this is the precondition. The algorithm proceeds as in the recursive algorithm.
Node i follows one path down the tree to a leaf. When i is a leaf, the whole tree is
a heap.

Code:
algorithm Heapify(r)

(pre-cond): The balanced binary tree rooted at A[r] is such that its left
and right subtrees are heaps.
(post-cond): Its values are rearranged in place to make it complete
heap.
begin

i=r

loop

144

Recursion

(loop-invariant): The entire tree rooted at A[r] is a heap except
that node i might not be greater or equal to both of its children.
As well, the value of i’s parent is at least the value of i and of i’s
children.

exit when i is a leaf
if(A[rightchild(i)] is max of {A[i], Alrightchild(i)],)
Alleftchild(i)]} then
swap(Alil, Alrightchild(i)])
i = rightchild(i)
elseif(A[leftchild(i)] is max of {Ali], Al[rightchild(i)],
Alleftchild(i)]}) then
swap(Alil, Alleftchild(i)])
i = leftchild(i)
else % Ali] is max of {A[il, A[rightchild(i)], Alleftchild(i)]}
exit
end if
end loop
end algorithm

Running Time: T(n) = ©(height of tree) = ©(logn).

The MakeHeap Problem:
Specifications:

Precondition: The input is an array of numbers, which can be viewed as a
balanced binary tree of numbers.

Postcondition: Its values are rearranged in place to make it heap.

Recursive Algorithm: The obvious recursive algorithm is to recursively make
[”7‘11 of the numbers into a heap, make another L”%IJ into a heap, and put the
remaining number at the root of a tree with these two heaps as children. This now
meets the precondition for Heapify, which turns the whole thing into a heap.

loga __

Running Time: T(n) = 2T(3) + ©(logn). Again from Chapter 27, Togh =
L‘% = 1and f(n) = ©(nlogn), so ¢ = 0. Because }ggg > ¢, we conclude that

time is dominated the base cases and T(n) = ©(n'°8/1°80) = @ (n).

The structure of the recursive tree for this algorithm is very predictable, so it can eas-
ily be made into an iterative algorithm, which calls Heapify on exactly the same nodes
though in a slightly different order.

Iterative Algorithm: See Figure 10.5. The loop invariant is that all subtrees of
height i are heaps. Initially, the leaves of height i = 1 are already heaps. Sup-
pose that all subtrees of height i are heaps. The subtrees of height i + 1 have the

Recursion on Trees

©)

3 eapify Heapify eapify e ©, eapify O
LI el fedh g
asOONORO, OOROXO, @ ® 0 O @ O @ O
oJe oJe; é% é%)

Figure 10.5: An example of the iterative version of MakeHeap.

145

property that their left and right subtrees are heaps. Hence, we can use Heapify
to make them into heaps. This maintains the loop invariant while increasing i
by one. The postcondition clearly follows from the loop invariant and the exit
condition thati = logn.

Code:
algorithm MakeHeap()

(pre-cond): The input is an array of numbers, which can be viewed as a
balanced binary tree of numbers.
(post-cond): Tts values are rearranged in place to make it a heap.
begin

loop k= [2], 2] —1,12]-2,...,2,1

Heapify(k)

end loop

end algorithm

Running Time: The number of subtrees of height i is 20°8”~7 because each such
tree has its root at level (log n) — i in the tree. Each take ® (i) to heapify. This gives
a total time of T(n) = Y 18" (20°6"~7);. This sum is geometric. Hence, its total is
theta of its maximum term. The first term with i = 1 is (21°8"¥)j = @(21°8") =
O(n). The last term with i = log n is (21°87~%)j = (2°) log nn = log n. The first term
is the biggest, giving a total time of ®(n). See Chapter 26 for more on approxima-
tion summations.

The HeapSort Problem:
Specifications:
Precondition: The input is an array of numbers.
Postcondition: Its values are rearranged in place to be in sorted order.

Algorithm: The loop invariant is that for some i € [0, n], the n — i largest ele-
ments have been removed and are sorted on the side, and the remaining i ele-
ments form a heap. See Figures 10.6 and 10.7. The loop invariant is established
for i = n by forming a heap from the numbers using the MakeHeap algorithm.
When i = 0, the values are sorted.

Suppose that the loop invariant is true for i. The maximum of the remaining
values is at the root of the heap. Remove it and put it in its sorted place on the left

146

Recursion

Ppo
olo!
offoTeleINoN

353 ST

ng Q vt 9
L T T T T[23[31]35]57] 12:8:9:5 2

1 23 45 6 78 9 123 4556 789
Figure 10.6: The left diagram shows the loop invariant with n —i =9 — 5 = 4 of the largest
elements in the array and the remaining i = 5 elements forming a heap. The right diagram
emphasizes the fact that though a heap is viewed as being stored in a tree, it is actually
implemented in an array. When some of the elements are in still in the tree and some are in the
array, these views overlap.

end of the sorted list. Take the bottom right-hand element of the heap, and fill
the newly created hole at the root. This maintains the correct shape of the tree.
The tree now has the property that its left and right subtrees are heaps. Hence,
you can use Heapify to make it into a heap. This maintains the loop invariant
while decreasing i by one.

Array Implementation: The heap sort can occur in place within the array. As the
heap gets smaller, the array entries on the right become empty. These can be
used to store the sorted list that is on the side. Putting the root element where it

9 BuildHeap o@
o P
00@ @oo
® @
®
= ()

9

" iy

Heapify
@ iy @ ® i
9 B 9

Heapify @
O &©
3 B '7:":

s

)

Heapify @{@h

Heapify.

—_—
s N

. ;

3

Figure 10.7: An example computation of HeapSort.

Recursion on Trees

belongs, putting the bottom left element at the root, and decreasing the size of
the heap can be accomplished by swapping the elements at A[1] and at A[i] and
decrementing i.

Code:

algorithm HeapSort() 147

(pre-cond): The input is an array of numbers.
(post-cond): Tts values are rearranged in place to be in sorted order.

begin
MakeHeap()
i=n
loop
(loop-invariant): The n—1i largest elements have been re-
moved and are sorted in A[i + 1, n], and the remaining i ele-
ments form a heap in A[1, i].
exitwheni=1
swap(Al[root], Alil)
i=i—1
Heapify(root) % On a heap of size i.
end loop
end algorithm

Running Time: MakeHeap takes ©(n) time, heapifying a tree of size i takes time
log(i), for a total of T(n) = ©(n) + 3_,_, logi. This sum behaves like an arithmetic
sum. Hence, its total is n times its maximum value, i.e., ®(nlog n).

Common Mistakes When Describing These Algorithms: Statements that are al-
ways true, such as “The root is the max of any heap,” give no information about the
state of the program within the loop. For Heapify, “The left subtree and the right sub-
tree of the current node are heaps” is useful. However, in the end the subtree becomes
aleaf, at which point this loop invariant does not tell you that the whole tree is a heap.
For HeapSort, “The tree is a heap” is good, but how do you get a sorted list from this
in the end? Do not run routines without making sure that their preconditions are
met, such as having HeapSort call Heapify without being sure that the left and right
subtrees of the given node are heaps.

Priority Queues: Like stacks and queues, priority queues are an important ADT.
Definition: A priority queue consists of:

Data: A set of elements, each of which is associated with an integer that is
referred to as the priority of the element.

148

Recursion

Operations:

Insert an Element: An element, along with its priority, is added to the
queue. Coding this is left for Exercise 10.4.2.

Change Priority: The priority of an element already in the queue is
changed. The routine is passed a pointer to the element within the pri-
ority queue and its new priority. Coding this is left for Exercise 10.4.3.

Remove an Element: Removes and returns an element of the highest pri-
ority from the queue.

Implementations:
Implementation Insert Time Change Time Remove Time
Sorted in an array or linked listby ~ O(n) O(n) o)
priority
Unsorted in an array or linked list ~ O(1) o) O(n)
separate queue for each
priority level
(To add, go to correct queue; to o) o(1) O(No. of priorities)
delete, find first nonempty
queue)
Heaps O(log n) O(log n) O(log n)

Heap Implementation: The elements of a priority queue are stored in a heap or-
dered according to the priority of the elements.

Operations:

Remove an Element: The element of the highest priority is at the top of
the heap. It can be removed, and the heap then should be reheapified as
done in HeapSort.

Insert an Element: Place the new element in the lower right corner of the
heap, and then bubble it up the heap until it finds the correct place ac-
cording to its priority.

Change Priority: The routine is passed a pointer to the element whose
priority is changing. After making the change, this element is bubbled
either up or down the heap, depending on whether the priority has in-
creased or decreased.

Recursion on Trees

EXERCISE 10.4.1 (See solution in Part Five.) Consider a heap storing the values
1,2,3,...,15.

Where in the heap can the value 1 go?
Which values can be stored in entry A[2]?
Where in the heap can the value 15 go?
Where in the heap can the value 6 go?

AW~

EXERCISE 10.4.2 Design an algorithm to insert a new element into the heap imple-
mentation of the priority queue.

EXERCISE 10.4.3 Design an algorithm to change the priority of an element in the heap
implementation of the priority queue.

ELXJ Representing Expressions with Trees

We will now consider how to represent multivariate expressions using binary trees.
We will develop the algorithms to evaluate, copy, differentiate, simplify, and print
such an expression. Though these are seemingly complex problems, they have sim-
ple recursive solutions.

Recursive Definition of an Expression:
* Single variables x, y, and z and single real values are themselves expressions.
¢ If fand g are expressions, then f+ g, f — g, f * g and f/g are also expressions.

Tree Data Structure: The recursive definition of an expression directly mirrors that
of a binary tree. Because of this, a binary tree is a natural data structure for storing an
expression. (Conversely, you can use an expression to represent a binary tree.)

EXAMPLE 10.5.1 Evaluate Expression

This routine evaluates an expression that is represented by a tree. For example, it
can evaluate f = x * (y + 7), with xvalue = 2, yvalue = 3, and zvalue = 5, and return
2% (3 +7) =20.

149

Recursion

EXAMPLE 10.5.1 Evaluate Expression (cont.)

150

Code:
algorithm Eval(f, xvalue, yvalue, zvalue)

(pre-cond): f is an expression whose only variables are x, y, and z, and xvalue,
yvalue, and zvalue are the three real values to assign to these variables.
(post-cond): The returned value is the evaluation of the expression at these values
for x, y, and z. The expression is unchanged.
begin
if(f = areal value) then
result(f)
elseif(f = “x") then
result(xvalue)
elseif(f=“y”) then
result(yvalue)
elseif(f=“Z”) then
result(zvalue)
else if(rootOp(f) = “+”) then
result(Eval(leftSub(tree), xvalue, yvalue, zvalue)
+ Eval(rightSub(tree), xvalue,yvalue, zvalue))
else if(rootOp(f) = “—") then
result(Eval(leftSub(tree), xvalue, yvalue, zvalue)
—Eval(rightSub(tree), xvalue, yvalue, zvalue))
else if(rootOp(f) = “*”) then
result(Eval(leftSub(tree), xvalue, yvalue, zvalue)
x Eval(rightSub(tree), xvalue, yvalue, zvalue))
else if(rootOp(f) = “/”) then
result(Eval(leftSub(tree), xvalue, yvalue, zvalue)
/Eval(rightSub(tree), xvalue, yvalue, zvalue))
end if
end algorithm

EXAMPLE 10.5.2 Differentiate Expression

This routine computes the derivative of a given expression with respect to an indicated
variable.

Specification:

Preconditions: The input consists of (f, x), where f is an expression represented
by a tree and x is a string giving the name of a variable.

Postconditions: The output is the derivative f' = df/dx. This derivative should be
an expression represented by a tree whose nodes are separate from those of f. The
data structure f should remain unchanged. See Figure 10.8.

Coding this is left for Exercise 10.5.1, and tracing it for Exercise 10.5.2.

Recursion on Trees

Figure 10.8: Four functions and their derivatives. The fourth derivative has been simplified.

151

EXAMPLE 10.5.3 Simplify Expression

This routine simplifies a given expression. For example, the derivative of x x y with
respect to x will be computed to be 1 * y + x x 0. This should be simplified to y.

Specification:
Preconditions: The input consists of an expression f represented by a tree.

Postconditions: The output is another expression that is a simplification of f. Its
nodes should be separate from those of f, and f should remain unchanged.

Code:

algorithm Simplify (f)

(pre-cond): fis an expression.
(post-cond): The output is a simplification of this expression.
begin
if(f = areal value or a single variable) then
result(Copy(f))
else % f is of the form (g op K)
g = Simplify(leftSub(f))
h = Simplify(rightSub(f))

Recursion

EXAMPLE 10.5.3 Simplify Expression (cont.)

152

if(one of the following forms applies:
lxh=h gxl=g 0xh=0
0O+h=h g+0=g g-0=g
0/h=0 gl=g g0=c0
6x2=12 6/2=3 6+2=8
result(the simplified form)
else
result(gop h)
end if
end if
end algorithm

This is traced out in Exercise 10.5.3.

EXERCISE 10.5.1 (See solution in Part Five.) Describe the algorithm for the derivative.

Do not give the complete code. Only give the key ideas.

EXERCISE 10.5.2 Trace out the execution of the derivative algorithm on the instance
f = (x/x)/x given above. In other words, draw a tree with a box for each time a routine

gx0=0
x—x=0
x/x=1
6—-—2=14

) then

is called. For each box, include only the function f passed and derivative returned.

EXERCISE 10.5.3 (See solution in Part Five.) Trace out the execution of Simplify on the
derivative f' obtained in Exercise 10.5.1, where f = (x/x)/x. In other words, draw a
tree with a box for each time a routine is called. For each box, include only the function

f passed and the simplified expression returned.

I T Recursive Images

Recursion can be used to construct very complex and beautiful pictures. We begin
by combining the same two fixed images recursively over and over again. This pro-
duces fractal-like images whose substructures are identical to the whole. Next we will
generate random mazes by using randomness to slightly modify these two images so
that the substructures are not identical.

EEEN Drawing a Recursive Image from a Fixed Recursive
and a Base Case Image

Drawing an Image: An image is specified by a set of lines, circles, and arcs and by
two points A and B that are referred to as the handles. Before such an image can
be drawn on the screen, its location, size, and orientation on the screen need to be
specified. We will do this by specifying two points A and B on the screen. Then a
simple program can translate, rotate, scale, and draw the image on the screen in such
a way that the two handle points of the image land on these two specified points on
the screen.

Specifying a Recursive Image: A recursive image is specified by the following:

1. a base caseimage

2. a recurseimage

3. a set of places within the recurse image to recurse

4. the two points A and B on the screen at which the recursive image should be
drawn.

5. an integer n.

The Base Case: If n = 1, then the base case image is drawn.

153

154

Recursion

(a) (b)

Figure 11.1: (a) Man recursively framed; (b) rotating square.

Recursing: If n > 1, then the recursive image is drawn on the screen at the location
specified. Included in the recursive image are a number of places to recurse. These are
each depicted by an arrow, —> >—. When the recursive image is translated, rotated,
scaled, and drawn on the screen, these arrows are located somewhere on the screen.
The arrows themselves are not drawn. Instead, the same picture is drawn recursively
at these locations, but with the value n — 1.

Examples:

Man Recursively Framed: See Figure 11.1.a. The base case for this construction
consists of a happy face. When n = 1, this face is drawn. The recursive image
consists of a man holding a frame. There is one place to recurse within the frame.
Hence, when n = 2, this man is drawn with the n = 1 happy face inside it. For
n = 3, the man is holding a frame containing the n = 2 image of a man holding a
framed n = 1 happy face. The recursive image provided is with n = 5. It consists
of a man holding a picture of a man holding a picture of a man holding a picture
of ...a face. In general, the recursive image for n contains R(n) = R(n— 1)+ 1 =
n— 1 menand B(n) = B(n — 1) = 1 happy faces.

Rotating Square: See Figure 11.1.b. This image is constructed similarly to the
previous one. Here, however, the n = 1 base case consists of a circle. The recur-
sive image consists of a single square with the n — 1 image shrunk and rotated
within it. The squares continue to spiral inward until the base case is reached.

Birthday Cake: See Figure 11.2. The birthday cake recursive image is different
in that it recurses in two places. The n = 1 base case consists of a single circle.
The recursive image consists of a single line with two smaller copies of the
n — 1 image drawn above it. In general, the recursive image for n contains R(n) =

Base case figure Recursive figure
Q000 90 0000 9000 920 90 0000 Q0
 r— 0
A B A B

Figure 11.2: Birthday cake.

Recursive Images

Leaf Figure
Base case figure Non-base-case figure P 3_3'::-
[® o—’/
A B A '
B 155

Figure 11.3: Leaf.

2R(n—1) +1=2""! —1lines from the recursive image and B(n) = 2B(n — 1) =
21 circles from the base case image.

Leaf: See Figure 11.3. A leaf consists of a single stem plus eight subleaves along it.
Each subleafis an n — 1 leaf. The base case image is empty, and the recursive im-
age consists of the stem plus the eight places to recurse. Hence, the n = 1 image
is blank. The n = 2 image consists of a lone stem. The n = 3 image is a stem with
eight stems for leaves, and so on. In general, the recursive image for n contains
Rn)=8R(n—1)+1= %(8"‘1 — 1) stems from the recursive image.

Fractal: See Figure 11.4. This recursive image is a classic. The base case is a single
line. The recursive image is empty except for four places to recurse. Hence, n = 1
consists of the line. n = 2 consists of four lines, forming a line with an equilateral
triangle jutting out of it. As n becomes large, the image becomes a snowflake. It
is a fractal in that every piece of it looks like a copy of the whole.

The classic way to construct it is slightly different than done here. In the clas-
sical method, we are allowed the following operation. Given a line, divide it into
three equal parts. Replace the middle part with the two equal-length lines form-
ing an equilateral triangle. Starting with a single line, construct the fractal by re-
peatedly applying this operation to all the lines that appear.

In general, the recursive image for n contains B(n) = 4B(n — 1) = 4! base
case lines. The length of each of these lines is L(n) = 3L(n—1) = (%)"_1. The
total length of all these lines is B(n) - L(n) = (%)n_l. As n approaches infinity, the
fractal becomes a curve of infinite length.

Three—four figure

Base case figure Non-base-case figure S &
AT Wy
[] ‘—)/\—‘ ~ “-_--__ - T B ¢ J L q
A B A B P 6 S K o L % P ¢ LA

Figure 11.4: Fractal.

156

Recursion

Base case figure Recursive figure Base case figure Recursive figure

o
[] [L . Q L3 *r—o
A B A B A B A B

@ ®) ©

Figure 11.5: Three more examples.

EXERCISE 11.1.1 (See solution in Part Five.) See Figure 11.5.a. Construct the recursive
image that arises from the base case and recursive image for some large n. Describe
what is happening.

EXERCISE 11.1.2 (See solution in Part Five.) See Figure 11.5.b. Construct the recursive
image that arises from the base case and recursive image for some large n. Note that
one of the places to recurse is pointing opposite the other. To line the image up with
these arrows, the image must be rotated 180°. The image cannot be flipped.

EXERCISE 11.1.3 See Figure 11.5.c. This construction looks simple enough. The dif-
ficulty is keeping track of at which corners the circle is. Construct the base case and
the recursive image from which the given recursive image arises. Describe what is
happening.

EEEJ Randomly Generating a Maze

We will use similar methods to generate a random maze. The maze M will be rep-
resented by an n x m two-dimensional array with entries from {brick, floor, cheese}.
Walls consist of lines of bricks. A mouse will be able to move along floor squares in
any of the eight directions. The maze generated will not contain corridors as such,
but only many small rectangular rooms. Each room will either have one door in one
corner of the room or two doors in opposite corners. The cheese will be placed in a
room that is chosen randomly from among the rooms that are far enough from the
start location.

Precondition: The routine AddWalls is passed a matrix representing the maze as
constructed so far and the coordinates of a room within it. The room will have a sur-
rounding wall except for one door in one of its corners. The room will be empty of
walls. The routine is also passed a flag indicating whether or not cheese should be
added somewhere in the room.

Postcondition: The output is the same maze with a randomly chosen submaze
added within the indicated room and cheese added as appropriate.

Recursive Images

| | Cheese

Figure 11.6: A maze containing cheese.

Initial Conditions: To meet the preconditions of AddWalls, the main routine first
constructs the four outer walls with the top right corner square left as a floor tile to
act as a door into the maze and as the start square for the mouse. Calling AddWalls
on this single room completes the maze.

Subinstances: If the indicated room has height and width of at least 3, then the rou-
tine AddWalls will choose a single location (i, j) uniformly at random from all those
in the room that are not right next to one of its outer walls. (The (i, j) chosen by the
top stack frame in Figure 11.6 is indicated.) A wall is added within the room all the
way across row i and all the way down column j, subdividing the room into four
smaller rooms. To act as a door connecting these four rooms, the square at location
(i, j) remains a floor tile. See Figure 11.7. Then four friends are asked to fill a maze
into each of these four smaller rooms. If our room is to have cheese, then one of the
three rooms not containing the door to our room is selected to contain the cheese.

157

Friend 1°s Friend 2’s
room room
1,J) Figure 11.7: Partitioning a room of the maze.
Friend 3’s Friend 4’s
room room

158

Recursion

Running Time: The time required to construct an n x n maze is ®(n?). This can be
seen two ways. For the easy way, note that a brick is added at most once to any entry
of the matrix and that there are ®(n?) entries. The hard way solves the recurrence
relation T'(n) = 4T(n/2) + ©(n) = O(n?).

Searching the Maze: One way of representing a maze is by a graph. Chapter 14
presents a number of iterative algorithms for searching a graph. Section 14.5 presents
the recursive version of the depth-first search algorithm. All of these could be used
by a mouse to find the cheese.

EXERCISE 11.2.1 Write the code for generating a maze of rooms.

EXERCISE 11.2.2 Tiling: The precondition to the problem is that you are given three
integers (n, i, j), where i and j are in the range 1 to 2". You have a 2" by 2" square
board of squares. You have a sufficient number of tiles each with the shape-. Your goal
is to place nonoverlapping tiles on the board to cover each of the 2" x 2" tiles except for
the single square at location (i, j). Give a recursive algorithm for this problem in which
you place one tile yourself and then have four friends help you. What is your base case?

1 2 Parsing with Context-Free Grammars

An important computer science problem is parsing a string according a given
context-free grammar. A context-free grammar is a means of describing which strings
of characters are contained within a particular language. It consists of a set of rules
and a start nonterminal symbol. Each rule specifies one way of replacing a nontermi-
nal symbol in the current string with a string of terminal and nonterminal symbols.
When the resulting string consists only of terminal symbols, we stop. We say that any
such resulting string has been generated by the grammar.

Context-free grammars are used to understand both the syntax and the seman-
tics of many very useful languages, such as mathematical expressions, Java, and En-
glish. The syntax of a language indicates which strings of tokens are valid sentences
in that language. The semantics of a language involves the meaning associated with
strings. In order for a compiler or natural-language recognizers to determine what
a string means, it must parse the string. This involves deriving the string from the
grammar and, in doing so, determining which parts of the string are noun phrases,
verb phrases, expressions, and terms.

Some context-free grammars have a property called look ahead one. Strings from
such grammars can be parsed in linear time by what I consider to be one of the most
amazing and magical recursive algorithms. This algorithm is presented in this chap-
ter. It demonstrates very clearly the importance of working within the friends level
of abstraction instead of tracing out the stack frames: Carefully write the specifica-
tions for each program, believe by magic that the programs work, write the programs
calling themselves as if they already work, and make sure that as you recurse, the
instance being input gets smaller.

In Section 19.8 we will analyze an elegant dynamic programming algorithm that
parses a string from any context-free grammar, not just look ahead one, in ®(n®)
time.

The Grammar: We will look at a very simple grammar that considers expressions
over x and +. In this grammar, a factor is either a simple integer or a more complex

159

160

term

fact

fact

Recursion

expression within brackets; a term is one or more factors multiplied together; and an
expression is one or more terms added together. More precisely:

exp = term

= term + term + ... 4+ term

term = fact

= fact « fact % - - - % fact

fact = int
= (exp)

Nonterminals, Terminals, and Rules: More generally, a grammar is defined by a
set of nonterminals, a set of terminals, a start nonterminal, and a set of rules. Here
the nonterminals are ‘exp,” ‘term,” and ‘fact.’ The terminals are integers, the character
‘+,” and the character **. The start nonterminal is ‘exp.” The preceding display gives
the list of rules for this grammar.

A Derivation of a String: A grammar defines a language of strings that can be de-
rived in the following way. A derivation of a string starts with the start symbol (a non-
terminal). Then each rule, like those just given, says that you can replace the nonter-
minal on the left with the string of terminals and nonterminals on the right.

A Parsing of an Expression: Let s be a string consisting of terminals. A parsing of
this string is a tree. Each internal node of the tree is labeled with a nonterminal sym-
bol, and the root with the start nonterminal. Each internal node must correspond to
a rule of the grammar. For example, for rule A = BC, the node is labeled A and its
two children are labeled B and C. The leaves of the tree, read left to right, give the
input string s of terminals. Figure 12.1 is an example.

e
term
fact
e
term term
fact fact fact fact fact fact fact
exp

(| N N 0 S O N .7 | | 3 | | S 2

Figure 12.1: A parse tree for the string s =6*8 4 ((24+42) % 5+ 12) +987 % 7 + 123 +- 15 %
54).

Parsing with Context-Free Grammars

The Parsing Abstract Data Type: The following is an example where it is use-
ful not to give the full implementation details of an abstract data type. If fact, we
will even leave the specification of parsing structure open for the implementer to
decide.

For our purposes, we will only say the following: When p is a variable of type
parsing, we will use “p = 5” to indicate that it is assigned a parsing of the expression
‘5. We will go on to overload the operations * and + as operations that join two pars-
ings into one. For example, if p, is a parsing of the expression ‘2 x 3’ and p, of ‘5% 7/,
then we will use p = p; + p» to denote a parsing of the expression 23’ +5 % 7.

The implementer defines the structure of a parsing by specifying in more detail
what these operations do. For example, if the implementer wants a parsing to be a
binary tree representing the expression, then p; + p» would be the operation of con-
structing a binary tree with the root being a new ‘+’ node, the left subtree being the
binary tree p;, and the right subtree being the binary tree p,. On the other hand, if
the implementer wants a parsing to be simply an integer evaluation of the expres-
sion, then p; + p, would be the integer sum of the integers p; and p..

Specifications for the Parsing Algorithm:

Precondition: The input consists of a string of tokens s. The possible tokens
are the characters *’ and ‘4’ and arbitrary integers. The tokens are indexed as
s(1], s(2], s3], ..., s[nl.

Postcondition: If the input is a valid expression generated by the grammar, then
the output is a parsing of the expression. Otherwise, an error message is output.

The algorithm consists of one routine for each nonterminal of the grammar: GetExp,
GetTerm, and GetFact.

Specifications for GetExp:

Precondition: The input of GetExp consists of a string s of tokens and an index i
that indicates a starting point within s.

Postcondition: The output consists of a parsing of the longest substring s[i], s[i +

1], ..., s[j — 1] of s that starts at index i and is a valid expression. The output
also includes the index j of the token that comes immediately after the parsed
expression.

If there is no valid expression starting at s[i], then an error message is output.

The specifications for GetTerm and GetFact are the same as for GetExp, except that
they return the parsing of the longest term or factor starting at s[i] and ending at
slj—1].

161

Recursion

Examples of GetExp, GetTerm, and GetFact: See Figure 12.2

162 GetExp:

s=|(2*8+42*7)*5+8

s=(]2*8+42*7|)*5+8
s = (2 * 8 + HEIEIII) * 5+ 8
s=(2*8+42*7)*

s=(2%8+42%7) *5+8]

GetTerm:
s=[(2*8+42%7) %58
s=(+42*7)*5+8
s=(2*8+)*5+8
s=(2*8+42*7)*E|+8

s=(2*8+42*7)*5+

GetFact:
s=|(2*8+42*7)|*5+8

s=(*8+42*7)*5+8
s=(2*8+*7)*5+8

o+

s = (2 * 8+ 42 * 7))

+8
5+

Figure 12.2: Example input instances are given for Get Exp, Get Term, and Get Fact. The string
s is the same for all examples. The beginning of the rectangle indicates the input index i at which
the parsing should begin. The contents of the rectangle indicates resulting parsing. The end of
the rectangle indicates the output index j at which the parsing ends.

>+

s = (2 * 8+ 42 * 7))

Parsing with Context-Free Grammars

Reasoning for GetExp: Consider some input string s and some index i. The longest
substring s[i], ..., s[j — 1] thatis a valid expression consists of some number of terms
added together. In all of these cases, it begins with a term. By magic, assume that the
GetTermroutine already works. Calling GetTerm(s, i) will return pyer, and jrerm, where
Prerm is the parsing of this first term and j,,, indexes the token immediately after this
term. Specifically, if the expression has another term then j, indexes the ‘+’ that
is between these terms. Hence, we can determine whether there is another term by
checking s[jierml. If $[jrerm]l = ‘+,” then GetExp will call GetTerm again to get the next
term. If s[jzerm] is not a ‘+’ but some other character, then GetExp is finished reading
in all the terms. GetExp then constructs the parsing consisting of all of these terms
added together.
The reasoning for GetTerm is the same.

GetExp Code:
algorithm GetExp (s, i)

(pre-cond): sis astring of tokens, and i is an index that indicates a starting point

within s.

(post-cond): The output consists of a parsing p of the longest substring s[il, s[i +
11, ..., s[j — 1] of s that starts at index i and is a valid expression. The output
also includes the index j of the token that comes immediately after the parsed
expression.

begin

if (i > |s|) return “Error: Expected characters past end of string.” end if
<p(term,l), j(term,l)> = GetTerm(s, i)

k=1

loop
(loop-invariant): The first k terms of the expression have been
read.

exit when $[jerm,] # ‘+
(Pierm k+1y, Jizerm k1)) = GetTerm(s, jierm,ky + 1)
k=k+1

end loop

Pexp = Piterm1y + Pierm2y + - - . + Pierm,ky

jexp =] (term, k)

return (Pexp, jexp)

end algorithm

GetTerm Code:
algorithm GetTerm (s, i)

(pre-cond): s is a string of tokens, and i is an index that indicates a starting point

within s.
{ post-cond): The output consists of a parsing p of the longest substring s[i], s[i +
1], ..., s[j — 1] of s that starts at index i and is a valid term. The output also in-

cludes the index j of the token that comes immediately after the parsed term.

163

164

Recursion

begin
if (i > |s|) return “Error: Expected characters past end of string.” end if
(Pfact 1), j(fact,l)> = GetFact(s, i)
k=1
loop
(loop-invariant): The first k facts of the term have been read.
exit when SUjifact k)] # o+
(Ptfact, k1), j(fact,k+1)) = GetFact(s, j(fact,k) +1)
k=k+1
end loop
Pterm = P\fact,1) * Pfact,2) * - - * P(fact,k)
j term =] (fact, k)
return (Prerm, jterm)
end algorithm

Reasoning for GetFact: The longest substring s[i], ..., s[j — 1] that is a valid factor
has one of the following two forms:

fact = int
fact = (exp)

Hence, we can determine which form the factor has by testing s[i].

If s[i] is an integer, then we are finished. py,, is a parsing of this single integer s[i],
and jge = i + 1. The +1 moves the index past the integer.

If s[i] = ‘(, then for s to be a valid factor there must be a valid expression start-
ing at jzrm + 1, followed by a closing bracket ‘). We can parse this expression with
GetExp(s, jrerm + 1), which returns peyp and jeyp. The closing bracket after the expres-
sion must be in s jexpl. Our parsed factor will be prae; = (Pexp) and jrzer = Jexp + 1. The
+1 moves the index past the)’.

If s[i] is neither an integer nor a ‘(, then it cannot be a valid factor. Give a mean-
ingful error message.

GetFact Code:
algorithm GetFact (s, i)

(pre-cond): s is a string of tokens and i is an index that indicates a starting point

within s.
(post-cond): The output consists of a parsing p of the longest substring s[il, s[i +
1], ..., s[j — 1] of s that starts at index i and is a valid factor. The output also

includes the index j of the token that comes immediately after the parsed factor.
begin
if (i > |s|) return “Error: Expected characters past end of string.” end if
if (s[i] is an int)
Pfact = slil
jfact =i+1
return Pracs, J fact)

Parsing with Context-Free Grammars

else if (s[i] = ‘()
(Pexps Jexp) = Getbxp(s, i + 1)
if (s[jexp] =)
Ptact = (pexp)
jfact = jexp +1
return { Prace J fact)
else
Output “Error: Expected ‘)’ at index joyp”
end if
else
Output “Error: Expected integer or ‘(" at index i”
end if
end algorithm

Tree of Stack Frames: GetExp calls GetTerm, which calls GetFact, which may call
GetExp, and so on. If one were to draw out the entire tree of stack frames showing
who calls whom, this would exactly mirror the parse tree that it created. See Exer-
cise 12.0.1.

Running Time: We prove that the running time of this entire computation is linear
in the size of the parse tree produced, which in turn is linear in the size ®(n) of the
input string.

To prove the first, it is sufficient to prove that the running time of each stack
frame either is constant or is linear in the number of children of the node in the parse
tree that this stack frame produces. For example, if the stack frame for GetFact finds
an integer, then its node in the parse tree has no children, but GetFact uses only a
constant amount of time. In contrast, if a stack frame for GetExp reads in t terms,
then its running time will be some constant times ¢, and its node in the parse tree will
have ¢ children.

We now prove that the size to the parse tree produced is linear in the size ©(n) of
the input string. If the grammar is such that every nonterminal goes to at least one
terminal or at least two nonterminals, then each node in the parse tree either is a leaf
or has at least two children. It follows that the number of nodes in the parse tree will
be at most some constant times the number of leaves, which is the size of the input
string. In our grammar, however, an expression might go to a single term, which can
go to a single factor. This creates a little path of outdegree one. It cannot, however, be
longer than this, because a factor either is a leaf or has three children: one is ‘(, the
second an expression, and the third)’ Such little paths can only increase the size of
the parse tree by a factor of 3.

In conclusion, the running time is ©(n).

Proof of Correctness: To prove that a recursive program works, we must consider
the size of an instance. The routine need only consider the postfix s[i], s[i + 1], ...,
which contains |s| — i + 1 characters. Hence, we will define the size of the instance

165

166

Recursion

(s, i) to be |(s,i)| = |s| — i+ 1. Let H(n) be the statement “Each of GetFac, Getlerm,
and GetExp works on the instance (s, i) when [({s, i)| = |s| — i + 1 < n.” We prove by
induction thatvVn > 0, H(n).

If |(s,)| = 0, then i > |s|: There is no valid expression, term, or factor starting at
s[il, and all three routines return an error message. It follows that H(0) is true.

If |(s, i)| = 1, then there is one remaining token: For this to be a factor, term, or
expression, it must be a single integer. GetFac is written to give the correct answer in
this situation. GetTerm gives the correct answer, because it calls GetFac. GetExp gives
the correct answer, because it calls GetTerm, which in turn calls GetFac. It follows that
H(1) is true.

Assume H(n — 1) is true, that is, that each of GetFac, GetTerm, and GetExp works
on instances of size at most n — 1.

Consider GetFac(s, i) on an instance of size |s| — i + 1 = n. It makes at most one
subroutine call, GetExp(s, i + 1). The size of this instance is [s| - i+ 1)+ 1=n— 1.
Hence, by assumption, this subroutine call returns the correct answer. Because all
of GetFac(s, i)’s subroutine calls return the correct answer, it follows that GetFac(s, i)
works on all instances of size n.

Now consider GetTerm(s, i) on an instance of size |s| — i + 1 = n. It calls GetFac
some number of times. The input instance for the first call GetFac(s, i) still has size n.
Hence, the induction hypothesis H(n — 1) does not claim that it works. However, the
previous paragraph proves that this routine does in fact work on instances of size n.
The remaining calls are on smaller instances.

Finally, consider GetExp(s, i) on an instance (s, i) of size |s| —i + 1 = n. We use
the previous paragraph to prove that is first subroutine call GetTerm(s, i) works.

In conclusion, all three work on all instances of size n and hence on H(n). This
completes the induction step.

Look Ahead One: A grammar is said to be look ahead onefif, given any two rules for
the same nonterminal, the first place that the rules differ is a difference in a terminal.
(Equivalently, the rules can be viewed as paths down a tree.) This feature allows our
parsing algorithm to look only at the next token in order to decide what to do next.
Thus the algorithm runs in linear time. An example of a good set of rules would be

A
A=BUCWE Et
A=>BUWCXF u/\v
A=BUC (lj Cl}
A=BY GH W/J(\¢ }ll
bt

(Actually, even this grammar could also be problematic if when s = ‘bbbucccweee, B
could either be parsed as ‘bbb’ or as ‘bbbu.’ Having B eatthe ‘v’ would be a problem.)

Parsing with Context-Free Grammars

An example of a bad set of rules would be
A = BC
A = DE

With such a grammar, you would not know whether to start parsing the string as a
B or a D. If you made the wrong choice, you would have to back up and repeat the
process.

EXERCISE 12.0.1 (See solution in Part Five.) Considers = (1) x2+3) *5%x 6+ 7).

1. Give a derivation of the expression s.

2. Draw the tree structure of the expression s.

3. Trace out the execution of your program on GetExp(s, 1). In other words, draw a
tree with a box for each time a routine is called. For each box, include only whether
it is an expression, term, or factor and the stringslil, ..., s[j — 11 that is parsed.

EXERCISE 12.0.2 Consider a grammar G that includes the four lookahead rules for
A. Give the code for GetA (s, i) that is similar to that for GetExp (s, i). We can assume
that it can be parsed, so do not bother with error detection.

EXERCISE 12.0.3 Ifyou are feeling bold, try to write a recursive program for a generic
parsing algorithm. The input is (G, T, s, i), where G is a look-ahead-one grammar, T
is a nonterminal of G, s is a string of terminals, and i is an index. The output consists
of a parsing of the longest substring slil, sli + 11, ..., s[j — 1] of s that starts at index i
and is a valid T according to the grammar G. In other words, the parsing starts with
nonterminal T and ends with the string slil, sli + 11, ..., s[j — 1. The output also in-
cludes the index j of the token that comes immediately after the parsed expression. For
example, GetExp(s, 1) is the same as calling this algorithm on (G, exp, s, i) where G is
the grammar given above.

The loop invariant is that you have parsed a prefix slil, sli + 11, ..., s[j' — 1] of s,
producing a partial parsing, p and the rest of the string, s[j'l, s[j' + 11, ..., s[j — 1],
will be parsed using one of the partial rules in the set R. For example, suppose the
grammar G includes the four lookahead rules for A given above, we are starting
with the non-terminal T = A, and we are parsing the string s = ‘bbbucccweee’. Ini-
tially, we have parsed nothing, and R contains all of each of the four rules, namely
R = {BuCwE, BuCxFE BuC, BvGHj}. After two iterations, we have parsed ‘bbbu’ using a
parsing pg for ‘bbb’ followed by the character u. We must parse the rest of the string
cccweee using one of the rules in R = {CwE, CxE C}. Note that the used-up prefix Bu
from the consistent rules and the inconsistent rules were deleted. Because the gram-
mar islook ahead one, we know that either the first token in each rule of R is the same
nonterminal B, or each rule of R begins with a terminal or is the empty rule. These are
the two cases your iteration needs to deal with.

167

PART THREE

Optimization Problems

| 3 Definition of Optimization Problems

Many important and practical problems can be expressed as optimization problems.
Such problems involve finding the best of an exponentially large set of solutions. It
can be like finding a needle in a haystack. The obvious algorithm, considering each
of the solutions, takes too much time because there are so many solutions. Some
of these problems can be solved in polynomial time using network flow, linear pro-
gramming, greedy algorithms, or dynamic programming. When not, recursive back-
tracking can sometimes find an optimal solution for some instances in some prac-
tical applications. Approximately optimal solutions can sometimes be found more
easily. Random algorithms, which flip coins, sometimes have better luck. However,
for the most optimization problems, the best known algorithm require 2% time
on the worst case input instances. The commonly held belief is that there are no
polynomial-time algorithms for them (though we may be wrong). NP-completeness
helps to justify this belief by showing that some of these problems are universally
hard amongst this class of problems. I now formally define this class of problems.

Ingredients: An optimization problem is specified by defining instances, solutions,
and costs.

Instances: The instances are the possible inputs to the problem.

Solutions for Instance: Each instance has an exponentially large set of solutions.
A solution is valid if it meets a set of criteria determined by the instance at hand.

Measure of Success: Each solution has an easy-to-compute cost, value, or mea-

sure of success that is to be minimized or maximized.

Specification of an Optimization Problem:

Preconditions: The input is one instance.

Postconditions: The output is one of the valid solutions for this instance with
optimal (minimum or maximum as the case may be) measure of success. (The
solution to be outputted need not be unique.)

171

Optimization Problems

Examples:

Longest Common Subsequence: This is an example for which we have a poly-
nomial-time algorithm.

Instances: An instance consists of two sequences, e.g., X = (A, B, C, B,

- D,A,Byand Y = (B, D, C, A, B, A).

Solutions: A subsequence of a sequence is a subset of the elements taken
in the same order. For example, Z = (B, C, A) is a subsequence of X =
(A, B,C, B, D, A, B). Asolution is a sequence Zthatis a subsequence of both
X and Y. For example, Z = (B, C, A) is solution, because it is a subsequence
common to both Xand Y (Y= (B, D, C, A, B, A)).

Measure of Success: The value of a solution is the length of the common
subsequence, e.g., | Z| = 3.

Goal: Given two sequences X and Y, the goal is to find the longest common
subsequence (LCS for short). For the example given above, Z = (B, C, B, A)
is alongest common subsequence.

Course Scheduling: This is an example for which we do not have a polynomial-
time algorithm.

Instances: An instance consists of the set of courses specified by a university,
the set of courses that each student requests, and the set of time slots in that
courses can be offered.

Solutions: A solution for an instance is a schedule that assigns each course
a time slot.

Measure of Success: A conflict occurs when two courses are scheduled at the
same time even though a student requests them both. The cost of a schedule
is the number of conflicts that it has.

Goal: Given the course and student information, the goal is to find the
schedule with the fewest conflicts.

Airplane: The following is an example of a practical problem.

Instances: An instance specifies the requirements of a plane: size, speed,
fuel efficiency; etc.

Solutions: A solution for an instance is a specification of a plane, right down
to every curve and nut and bolt.

Measure of Success: The company has a way of measuring how well the
specification meets the requirements.

Goal: Given plane requirements, the goal is to find a specification that meets
them in an optimal way.

14 Graph Search Algorithms

An optimization problem requires finding the best of a large number of solutions.
This can be compared to a mouse finding cheese in a maze. Graph search algorithms
provide a way of systematically searching through this maze of possible solutions.

Another example of an optimization problem is finding the shortest path be-
tween two nodes in a graph. There may be an exponential number of paths between
these two nodes. It would take too much time to consider each such path. The algo-
rithms used to find a shortest one demonstrate many of the principles that will arise
when solving harder optimization problems.

A surprisingly large number of problems in computer science can be expressed
as graph theory problems. In this chapter, we will first learn a generic search algo-
rithm that finds more and more of the graph by following arbitrary edges from nodes
that have already been found. We also consider the more specific orders of depth-first
and breadth-first search to traverse the graph.

Using these ideas, we are able to solve the optimization problem of discovering
shortest paths between pairs of nodes and to learn about the structure of the graph.

173

174

Optimization Problems

ELXD A Generic Search Algorithm
The Reachability Problem:

Preconditions: The input is a graph G (either directed or undirected) and a
source node s.

Postconditions: The output consists of all the nodes u that are reachable by a

pathin G from s.

Basic Steps: Suppose you know that node uis reachable from s (denoted as s —> 1)
and that there is an edge from u to v. Then you can conclude that v is reachable from
s (i.e., s — u — v). You can use such steps to build up a set of reachable nodes.

* s has an edge to v4 and vy. Hence, v4 and vy are reachable.

* v, has an edge to v; and vs. Hence, v; and v are reachable.

* y; hasanedge to v, and vs. ...

Difficulties:
Data Structure: How do you keep track of all this?
Exit Condition: How do you know that you have found all the nodes?
Halting: How do you avoid cycling, asin s — vy — v; —> v, > vy —> V7 —> Uy —
Uy — U7 = Uy — Uy — ---, forever?
Ingredients of the Loop Invariant:

Found: If you trace a path from s to a node, then we will say that the node has
been found.

Handled: At some point in time after node u has been found, you will want to
follow all the edges from u and find all the nodes v that have edges from . When
you have done that for node u, we say that it has been handled.

Data Structure: You must maintain (1) the set of nodes foundHandled that have
been found and handled and (2) the set of nodes foundNotHandled that have
been found but not handled. See Figure 14.1.

The Loop Invariant:

LI1: For each found node v, we know that v is reachable from s, because we have
traced out a path s —> v from s to it.

LI2: If a node has been handled, then all of its neighbors have been found.

These loop invariants are simple enough that establishing and maintaining them
should be easy. But do they suffice to prove the postcondition? We will see.

Graph Search Algorithms

foundHandled O
foundNotHandled
Node just handled o

Figure 14.1: The generic search algorithm handles one found node at a time by finding its
neighbors.

Body of the Loop: A reasonable step would be:
¢ Choose some node ufrom foundNotHandled, and handle it. This involves follow-
ing all the edges from .
¢ Newly found nodes are now added to the set foundNotHandled (if they have not
been found already).
¢ uis moved from foundNotHandled to foundHandled.

Code:
algorithm GenericSearch (G, s)

(pre-cond): G is a (directed or undirected) graph, and s is one of its nodes.
(post-cond): The output consists of all the nodes u that are reachable by a path
in G from s.

begin
foundHandled = ¢
foundNotHandled = {s}
loop
(loop-invariant): See LI1, LI2.
exit when foundNotHandled = ¢}
let ube some node from foundNotHandled
for each v connected to u
if v has not previously been found then
add v to foundNotHandled
end if
end for

175

176

Optimization Problems

move u from foundNotHandled to foundHandled
end loop
return foundHandled
end algorithm

Maintaining the Loop Invariant ((LI') & not (exit) & code;,,, — (LI")):
Suppose that LI’ (the statement of the loop invariant before the iteration) is
true, the exit condition (exit) is not, and we have executed another iteration of the
algorithm.

Maintaining LI1: After the iteration, the node v is considered found. Hence, in
order to maintain the loop invariant, we must be sure that v is reachable from s.
Because u was in foundNotHandled, the loop invariant assures us that we have
traced out a path s —> u to it. Now that we have traced the edge u — v, we have
traced apaths — u — vtov.

Maintaining LI2: Node u is designated handled only after ensuring that all its
neighbors have been found.

The Measure of Progress: The measure of progress requires the following three
properties:

Progress: We must guarantee that our measure of progress increases by at least
one every time around the loop. Otherwise, we may loop forever, making no
progress.

Bounded: There must be an upper bound on the progress required before the
loop exits. Otherwise, we may loop forever, increasing the measure of progress to
infinity.

Conclusion: When sufficient progress has been made to exit, we must be able to
conclude that the problem is solved.

An obvious measure would be the number of found nodes. The problem is that when
handling a node, you may only find nodes that have already been found. In such a
case, no progress is actually made.

A better measure of progress is the number of nodes that have been handled. We
can make progress simply by handling a node that has not yet been handled. We also
know that if the graph G has only n nodes, then this measure cannot increase past 7.

Exit Condition: Given our measure of progress, when are we finished? We can only
handle nodes that have been found and not handled. Hence, when all the nodes that
have been found have also been handled, we can make no more progress. At this
point, we must stop.

Initial Code ((pre-cond) & codee100p =(loop-invariant)): Initially, we know only
that s is reachable from s. Hence, let’s start by saying that s is found but not handled
and that all other nodes have not yet been found.

Graph Search Algorithms

Exiting Loop ((LI) & {exit) — (post)): Our output will be the set of found nodes.
The postcondition requires the following two claims to be true.

Claim: Found nodes are reachable from s.
This is clearly stated in the loop invariant.

177

Claim: Every reachable node has been found. A logically equivalent statement is
that every node that has not been found is not reachable.

One Proof: Draw a circle around the nodes of the graph G that have been found.
If there are no edges going from the inside of the circle to the outside of the circle,
then there are no paths from s to the nodes outside the circle. Hence, we can
claim we have found all the nodes reachable from s. How do we know that this
circle has no edges leaving it? Consider a node uin the circle. Because uhas been
found and foundNotHandled = ¢, we know that u has also been handled. By the
loop invariant LI2, if (i, v) is an edge, then v has been found and thus is in the
circle as well. Hence, if uis in the circle and (u, v) is an edge, then v is in the circle
as well (i.e., no edges leave the circle).

Closure Property: This is known as a closure property. See Section 18.3.3 for more
information on this property.

Another Proof: Proof by contradiction.

Suppose that w is reachable from s and that w has not been found. Consider
a path from s to w. Because s has been found and w has not, the path starts in
the set of found nodes and at some point leaves it. Let (i, v) be the first edge in
the path for which u but not v has been found. Because u has been found and
foundNotHandled = ¢, it follows that uz has been handled. Because u has been
handled, v must be found. This contradicts the definition of v.

Running Time:

A Simple but False Argument: For every iteration of the loop, one node is han-
dled, and no node is handled more than once. Hence, the measure of progress
(the number of nodes handled) increases by one with every loop. G only has
| V| = n nodes. Hence, the algorithm loops at most n times. Thus, the running
time is O(n).

This argument is false, because while handling © we must consider v for ev-
ery edge coming out of w.

Overestimation: Each node has at most n edges coming out of it. Hence, the run-
ning time is O(n?).

Correct Complexity: Each edge of G is looked at exactly twice, once from each
direction. The algorithm’s time is dominated by this fact. Hence, the running time
is O(| E|), where E is the set of edges in G.

178

Optimization Problems

The Order of Handling Nodes: This algorithm specifically did not indicate which
node u to select from foundNotHandled. It did not need to, because the algorithm
works no matter how this choice is made. We will now consider specific orders in
which to handle the nodes and specific applications of these orders.

Queue (Breadth-First Search): One option is to handle nodes in the order they
are found in. This treats foundNotHandled as a queue: “first in, first out.” The
effect is that the search is breadth first, meaning that all nodes at distance 1 from
s are handled first, then all those at distance 2, and so on. A byproduct of this is
that we find for each node v a shortest path from s to v. See Section 14.2.

Priority Queue (Shortest (Weighted) Paths): Another option calculates for each
node v in foundNotHandled the minimum weighted distance from s to v along
any path seen so far. It then handles the node that is closest to s according
to this approximation. Because these approximations change throughout time,
foundNotHandled is implemented using a priority queue: “highest current prior-
ity out first.” Like breadth-first search, the search handles nodes that are closest
to s first, but now the length of a path is the sum of its edge weights. A byproduct
of this method is that we find for each node v the shortest weighted path from s
to v. See Section 14.3.

Stack (Depth-First Search): Another option is to handle the node that was found
most recently. This method treats foundNotHandled as a stack: “last in, first out.”
The effect is that the search is depth first, meaning that a particular path is fol-
lowed as deeply as possible into the graph until a dead end is reached, forcing
the algorithm to backtrack. See Section 14.4.

EXERCISE 14.1.1 Try searching the following graph using queue (breadth-first
search), priority queue (shortest (weighted) paths), and stack (depth-first search).

Graph Search Algorithms

ELXE] Breadth-First Search for Shortest Paths

We will now develop an algorithm for an optimization problem called the shortest-
path problem. The algorithm uses a breadth-first search. This algorithm is a less
generic version of the algorithm in Section 14.1, because the order in which the nodes
are handled is now specified more precisely. The loop invariants are strengthened in
order to solve the shortest-path problem.

The Shortest-Path Problem (Multiple Sink): Generally, the shortest-path prob-
lem finds a shortest path between a source node s and a sink node ¢ in a graph G.
Here, however, we will consider the case where we simultaneously consider all nodes
v to be the sink.

Precondition: (G, s) consists of a graph G and a source node s. The graph G can
be directed or undirected.

Postconditions: The output consists of a d(v) and a n (v) for each node of G. It
has the following properties:

1. For each node v, d(v) gives the length §(s, v) of the shortest path from s
tov.

2. The shortest-path or breadth-first search treeis defined s =n(rn(r(r(v))))
using a function 7 as follows: s is the root of the tree.
7 (v) is the parent of v in the tree. For each node v,
one of the shortest paths from s to v is given back-
ward, with v, 7 (), 7 (z V), # (7w (x (v))), ..., s. A recur-
sive definition is that this shortest path from s to v is
the given shortest path from s to 7 (v), followed by the
edge (7 (v), v).

An Optimization Problem: The single-source, single-sink version of the shortest-
path problem can be viewed as an optimization problem. See Chapter 13.

Instances: An instance (G, s, t) consists of a graph and two nodes s and ¢.
Solutions for Instance: A solution for the instance (G, s, t) is a path = from s to ¢.

Measure of Success: The length (or cost) of a path = is the number of edges in
the path.

Goal: Given an instance (G, s, t), the goal is to find an optimal solution, i.e., a
shortest path from s to ¢ in G.

Brute Force Algorithm: As is often the case with optimization problems, the
number of solutions for an instance may well be exponential. We do not want
to check them all.

179

180

Optimization Problems

Handled
S

Queue of foundNotHandled

Vit

Not found

Figure 14.2: Breadth-first search tree: We cannot assume that the graph is a tree. Here | have
presented only the tree edges given by 7. The figure helps to explain the loop invariant, showing
which nodes have been found, which found but not handled, and which handled.

Prove Path Is Shortest: In order to claim that the shortest path from s to v is of
some length d(v), you must do two things:

Not Further: You must produce a suitable path of this length. We call this path a
witness of the fact that the distance from s to v is at most d(v). In finding a node,
we trace out a path from s to it. If we have already traced out a shortest path from
s to uwith d(u) edges in it and we trace an edge from u to v, then we have traced
a path from s to v with d(v) = d(u) + 1 edges in it. In this path from s to v, the
node preceding vis 7 (v) = w.

Not Closer: You must prove that there are no shorter paths. This is harder. Other
than checking an exponential number of paths, how can you prove that there are
no shorter paths? We will do it using the following trick: Suppose we can ensure
that the order in which we find the nodes is according to the length of the shortest
path from s to them. Then, when we find v, we know that there isn’t a shorter path
to it, or else we would have found it already.

Definition of V;: Let V; denote the set of nodes at distance j from s.

The Loop Invariant: See Figure 14.2.

LI1: For each found node v, the values of d(v) and = (v) are as required, that is,
they give the shortest length and a shortest path from s to the node.

LI2: If a node has been handled, then all of its neighbors have been found.

LI3: So far, the order in which the nodes have been found is according to the
length of the shortest path from s to it, that is, the nodes in V; before those in
V.

j+1-

Order in Which to Handle Nodes: The only way in which we are changing the
generic search algorithm of Section 14.1 is being more careful in our choice of which

Graph Search Algorithms

Handled {Queue}

1 {1}

1,2 {2,3,4,5}
1,2,3 {3,4,5,6,7}
1,2,3,4 {4,5,6,7}
1,2,3,4,5 {5,6,7,8}
1,2,3,4,5,6,7,8,9 {6,7,8,9}

Figure 14.3: Breadth-first search of a graph. The numbers show the order in which the nodes
were found. The contents of the queue are given at each step. The tree edges are darkened.

node from foundNotHandled to handle next. According to LI3, the nodes that were
found earlier are closer to s than those that are found later. The closer a node is to
s, the closer are its neighbors. Hence, in an attempt to find close nodes, the algo-
rithm will next handle the earliest found node. This is accomplished by treating the
set foundNotHandled as a queue, “first in, first out.”

Example: See Figure 14.3.

Body of the Loop: Remove the first node u from the foundNotHandled queue and
handle it as follows. For every neighbor v of u that has not been found,

¢ add the node to the queue,

e letd(v) =du) +1,

e let7(v) = u, and

* consider u to be handled and v to be in foundNotHandled.

Code:
algorithm ShortestPath (G, s)

(pre-cond): G is a (directed or undirected) graph, and s is one of its nodes.
(post-cond): w specifies a shortest path from s to each node of G, and d specifies
their lengths.
begin
foundHandled = ¢
foundNotHandled = {s}
d(s)=0,7(s) =€
loop
(loop-invariant): See above.
exit when foundNotHandled = ¢
let u be the node in the front of the queue foundNotHandled
for each v connected to u
if v has not previously been found then
add v to foundNotHandled

181

182

Optimization Problems

dv)=du) +1

T(V)=u
end if
end for
move u from foundNotHandled to foundHandled
end loop

(for unfound v, d(v) = o0)
return {d,)
end algorithm

Maintaining the Loop Invariant ((LI') & not (exit) & codej,o, — (LI")): Supp-
ose that LI’ (the statement of the loop invariant before the iteration) is true,
the exit condition (exit) is not, and we have executed another iteration of the
algorithm.

Closer Nodes Have Already Been Found: We will need the following claim twice.

Claim: If the first node in the queue foundNotHandled, that is, u, is in Vg,
then

1. all the nodesin Vg, W, V4, ..., Vi_; have already been found and han-
dled, and

2. all the nodes in V; have already been found.

Proof of Part 1 of Claim: Let ' denote any node in V, W, V5, ..., Vi_;. Be-
cause LI3’ ensures that nodes have been found in the order of their distance
and because v’ is closer to s than u, ¥’ must have been found earlier than wu.
Hence, v’ cannot be in the queue foundNotHandled, or else it would be ear-
lier in the queue than u, yet u s first. This proves that ' has been handled.

Proof of Part 2 of Claim: Consider any node v in V; and any path of length k
to it. Let u’ be the previous node in this path. Because the subpath to ' is of
length k — 1, v’ is in V,_;, and hence by claim 1 has already been handled.
Therefore, by LI2/, the neighbors of ©’, of which v is one, must have been
found.

Maintaining LI1: During this iteration, all the neighbors v of node u that had not
been found are now considered found. Hence, their d(v) and 7 (v) must now give
the shortest length and a shortest path from s. The code sets d(v) to d(u) + 1 and
7 (v) to u. Hence, we must prove that the neighbors v are in Vi ;.

Not Further: There is a path from s to v of length k + 1: follow the path of
length k to u, and then take the edge to v. Hence, the shortest path to v can
be no longer then this.

Graph Search Algorithms

Not Closer: We know that there isn’t a shorter path to v, or it would have been
found already. More formally, the claim states that all the nodes in Vj, V4, V4,
..., Vi have already been found. Because v has not already been found, it
cannot be one of these.

Maintaining LI2: Node u is designated handled only after ensuring that all its
neighbors have been found.

Maintaining LI3: By the claim, all the nodes in Vj, W, V4, ..., Vi have already
been found and hence have already been added to the queue. We have also al-
ready proved that the node v being found is in V4. It follows that the order in
which the nodes are found continues to be according to their distance from s.

Initial Code ((pre)— (LI)): The initial code puts the source s into foundNotHandled
and sets d(s) = 0 and = (s) = €. Thisis correct, given that initially s has been found but
not handled. The other nodes have not been found, and hence their d(v) and = (v) are
irrelevant. The loop invariants follow easily.

Exiting Loop ((LI) & {exit) — (post)): The general-search postconditions from
Section 14.1 prove that all reachable nodes have been found. LI1 states that for these
nodes the values of d(v) and 7 (v) are as required.

For the nodes that are unreachable from s, you can set d(v) = oo or you can leave
them undefined. In some applications (such as the World Wide Web), you have no
access to unreachable nodes. An advantage of this algorithm is that it never needs to
know about a node unless it has been found.

EXERCISE 14.2.1 (See solution in Part Five.) Suppose u is being handled, u € Vi, and
v is a neighbor of u. For each of the following cases, explain which Vi, v might be in:
* (u, v) is an undirected edge, and v has been found before.
* (u, v) is an undirected edge, and v has not been found before.
* (u, v) is a directed edge, and v has been found before.
* (u, v) is a directed edge, and v has not been found before.

EXERCISE 14.2.2 (See solution in Part Five.) Estimate the time required to find the
shortest path between two given nodes s and t.

ELXE] Dijkstra’s Shortest-Weighted-Path Algorithm

We will now make the shortest-path problem more general by allowing each edge
to have a different weight (length). The length of a path from s to v will be the sum
of the weights on the edges of the path. This makes the problem harder, because
the shortest path to a node may wind deep into the graph along many short edges
instead of along a few long edges. Despite this, only small changes need to be made
to the algorithm. The new algorithm is called Dijkstra’s algorithm.

183

184

Optimization Problems

s: 1,1

vi24 3,2 Figure 14.4: The shortest paths algorithm handles the nodes
) { in the order of length of the shortest path to them.

u: 43

Node: order found, order handled

Specifications of the Shortest-Weighted-Path Problem:

Preconditions: The input is a graph G (either directed or undirected) and a
source node s. Each edge (u, v) is allocated a nonnegative weight w,,).

Postconditions: The output consists of d and 7, where for each node v of G, d(v)
gives the length §(s, v) of the shortest weighted path from s to v, and = defines a
shortest-weighted-path tree. (See Section 14.2.)

Prove Path Is Shortest: As before, proving that the shortest path from s to v is of
some length d(v) involves producing a suitable path of this length and proving that
there are no shorter paths.

Not Further: As before, a witness that there is such a path is produced by tracing
it out. The only change is that when we find a path s — u — v, we compute its
length to be d(v) = d(u) + wy,,, instead of only d(v) = d(u) + 1.

Not Closer: Unlike the breadth-first search shortest-path algorithm from Sec-
tion 14.2, the algorithm does not find the nodes in the order of length of the
shortest path to them from s. It does, however, handle the nodes in this order.
See Figure 14.4. Because of this, when we handle a node, we know that there is
no shorter path to it, because otherwise we would have handled it already.

The Next Node To Handle: The algorithm must choose which of the unhandled
nodes to handle next. The difficulty is that initially we do not know the length of the
shortest path. Instead, we choose the node closest to s according to our current ap-
proximation. In Figure 14.4, after handling s our best approximation of the distance
to vis 100 and to ¢ is only 1. Hence, we handle ¢ next.

An Adaptive Greedy Criterion: This choice amounts to an adaptive greedy crite-
rion. See Chapter 16 for more on greedy algorithms.

Growing a Tree One Node at a Time: It turns out that the next node to be han-
dled will always be only one edge from a previously handled node. Hence, the
tree of handled nodes expands out, one node at a time.

Graph Search Algorithms

Upo— - — A handled path to u
P ! — Apotentially shorter path to u Handled nodes

’

— - Case I: [P|=d'(v)
— Case 2: |P=d" (u)+w(u,v)

Handled nodes

d(w=d()< [Py < [Pl v

\

U

(@)

Figure 14.5: (a) shows a handled path to node u and is used to maintain LI1. (b) is used to
maintain LI2.

(b)

Approximation of Shortest Distances: For every node v, before getting its short-
est overall distance, we will maintain d(v) and = (v) as the shortest length and path
from s to v from among those paths that we have handled so far.

Updating: This information is continuously updated as we find shorter paths to
v. For example, if we find v when handling u, then we update these values as

follows:
foundPathLength _ d(u) + W) Previous path of lengtrt((i()v)

if d(v) > foundPathLength then
d(v) = foundPathLength s -

() =u e
end if New path of length d(w) + w,)

When handling s in our example, d(v) is set to d(s) + w,, = 0+ 100 = 100.
Later, when handling , it is updated to d(v) + wy,,) =2+ 1 = 3.

Definition of a Handled Path: We say that a path has been handled if it contains
only handled edges. Such paths start at s, visit as any number of handled nodes,
and then follow one last edge to a node that may or may not be handled. (See the
solid path to uin Figure 14.5.a.)

Priority Queue: The next node to be handled is the one with the smallest d(u)
value. Searching the set of unhandled nodes for this node during each iteration
would be too time-consuming. Re-sorting the nodes each iteration as the d(u)
values change would also be too time-consuming. A more efficient implemen-
tation uses a priority queue to hold the unhandled nodes prioritized according
to their current d(u) value. This can be implemented using a heap. (See Sec-
tion 10.4.) We will denote this priority queue by notHandled.

Consider All Nodes “Found”: No path has yet been handled to any node that
has not yet been found, and hence d(v) = oo. If we add these nodes to the queue,
they will be selected last. Therefore, there is no harm in adding them. Hence, we
will distinguish only between those nodes that have been handled and those that
have not.

185

186

Optimization Problems

The Loop Invariant:

LI1: For each handled node v, the values of d(v) and 7 (v) give the shortest length
and a shortest path from s (and this path contains only handled nodes).

LI2: For each of the unhandled nodes v, the values of d(v) and = (v) give the
shortest length and path from among those paths that have been handled.

Body of the Loop: Take the next node u from the priority queue notHandled, and
handle it. This involves handling all edges (u, v) out of u. Handling the edge (u, v)
involves updating the d(v) and = (v) values. The priorities of these nodes are changed
in the priority queue as necessary.

Example: See Figure 14.6.

Code:
algorithm DijkstraShortestWeightedPath(G, s)

(pre-cond): G is a weighted (directed or undirected) graph, and s is one of its
nodes.
(post-cond): w specifies a shortest weighted path from s to each node of G, and
d specifies their lengths.
begin

dis)=0,7(s) =€

for other v, d(v) = oo and 7 (v) = nil

handled = ¢
notHandled = priority queue containing all nodes. Priorities given by d(v).
loop

(loop-invariant): See above.
exit when notHandled =
let ube a node from notHandled with smallest d(u)
for each v connected to u
foundPathLength = d(u) + wiy,)
if d(v) > foundPathLength then
d(v) = foundPathLength
T(v)=u
(update the notHandled priority queue)
end if
end for
move ufrom notHandled to handled
end loop
return (d,)
end algorithm

Maintaining LI1 ((LI1’, LI2') & not (exit) & codei,op — (LI1”)): The loop han-
dles a node u with smallest d(u) from notHandled. Hence to maintain LI1, we must
ensure that its d(u) and = (1) values give an overall shortest path to u. Consider some

Graph Search Algorithms

other path P to u. We will see that it is no shorter. See Figure 14.5.a. Because the
path P starts at the handled node s and ends at the previously unhandled node ,
there has to be some node u’ that is the first previously unhandled node along P.
(Itis possible that ' = u.) By the choice of i, uhas the smallest d(u) from notHandled.
Hence, d(u) < d(u'). Let P, be the part the path that goes from s to «'. This is a pre-
viously handled path. Hence, by LI2, d(u’) < | P,|. Since | P,/| is a subpath and there 187
are no negative weights, | P,/| < | P|. Combining these gives d(u) < | P|. In conclusion,
d(u) is the length of the shortest path to &, and hence LI1 has been maintained.

Maintaining LI2 ((LI1’, LI2') & not (exit) & codejo,, — (LI2")): Setting d”(v) to
min{d'(v), d'(u) + wy,,»} ensures that there is a handled path with this length to v. To
maintain LI2, we must prove that there does not exist a shorter one from among those
paths that now are considered handled. Such paths can now include the newly han-
dled node u. Let P be a shortest one. See Figure 14.5.b. Let u’ be the second last node
in P.Because P is a handled path, u’ must be a handled node. There are two cases:

u# w': If u’ is a previously handled node, then by the second part of LI1’, the
shortest path to it does not need to contain the newly handled node u. It follows
that this path P to v is a previously handed path. Hence, its length is at least the
length of the shortest previously handed path to v, which by LI2/, is d'(v). This in
turn is at least min{d'(v), d' (1) + wu,n} = d’ V).

u= u': If the second last node in P is the newly handled node u, then its length
is the length of the shortest path to &, which we now know is d'(u), plus the
weight of the edge (u, v). It follows that | P| > min{d'(v), d' () + wy,,} = d"(v).

Either way, the shortest path P to v that is now considered to be handled has length
atleast d’(v). Hence, LI2 is maintained.

Initial Code ((pre) — (LI)): The initial code is the same as that for the breadth-first
search shortest-path algorithm from Section 14.2, that is, s is found but not handled
with d(s) = 0, 7 (s) = €. Initially no paths to v have been handled, and hence the

Handled . d values Handled _d values
s a b e de f g h i j a b ¢ d e f g h

@oooooooooooooooooooo 0O 0O 0O 0O OO OO OO
Z 6 5@5)@ l ! a 24 @J 15

) o al 16 21 @ 25

. @ ¢ } 2%

b b 34

: 8D : 218 é)
£ ® ’

€ h

i S ¢

j &

Figure 14.6: Dijkstra’s algorithm. The d value at each step is given for each node. The tree
edges are darkened.

188

Optimization Problems

length of the shortest handled path to v is d(v) = co. This satisfies all three loop
invariants.

Exiting Loop ({(LI) & (exit) — (post)): See the shortest-path algorithm.

EXERCISE 14.3.1 Estimate the running time of Dijkstra’s shortest-weighted-path al-
gorithm.

EXERCISE 14.3.2 (See solution in Part Five.) Given a graph where each edge weight is
one, compare and contrast the computation of the breadth-first search shortest-path
algorithm from Section 14.2 and that of Dijkstra’s shortest-weighted-path algorithm.
How do their choices of the next node to handle and their loop invariants compare?

EXERCISE 14.3.3 Dijkstra’s algorithm:

1. Give the full loop invariant for Dijkstra’s algorithm. Include the definition of any

terms you use.

What is the exit condition for Dijkstra’s algorithm?

Prove that the postcondition is obtained.

4. Consider a computation of Dijkstra’s algorithm on the following graph when the
circled nodes have been handled. The start node is a. On the left, give the current
values of d.

SO

Handled

5. On the right, change the figure to take one step in Dijkstra’s algorithm. Include as
well any 7'’s that change.

EXERCISE 14.3.4 Give a simple graph with an edge with a negative weight, and show
that Dijkstra’s algorithm gives the wrong answer.

ELX3 Depth-First Search

We have considered breadth-first search, which first visits nodes at distance 1 from s,
then those at distance 2, and so on. We will now consider a depth-first search, which

Graph Search Algorithms

Path is stack of tuples
Found—partially Handled

Handled
() (b) (c)

Figure 14.7: If the next node in the stack was completely handled, then the initial order in
which nodes are found is given in (a). If the next node is only partially handled, then this initial
order is given in (b). (c) presents more of the order in which the nodes are found. Though the
input graph may not be a tree, the figure only shows the tree edges given by .

Not found

continues to follow some path as deeply as possible into the graph before it is forced
to backtrack. I give an iterative algorithm in this section and a recursive one in Sec-
tion 14.5.

Changes to the Generic Search Algorithm in Section 14.1: The next node u
we handle is the one most recently found. foundNotHandled will be implemented
as a stack of tuples (v,). At each iteration, we pop the most recently pushed tuple
(u, i) and handle the (i, + 1)st edge from u. Try this out on a graph (or on a tree). The
pattern in which nodes are found consists of a single path with single edges hanging
off it. See Figure 14.7.

In order to prevent the single edges hanging off the path from being searched, we
make a second change to the original searching algorithm: We no longer completely
handle one node before we start handling edges from other nodes. From s, an edge
is followed to one of its neighbors v;. Before visiting the other neighbors of s, the
current path to v; is extended to v», v, (See Figure 14.7.b.) We keep track of what
has been handled by storing an integer i, for each node u. We maintain that for each
u, the first i, edges of u have already been handled.

Loop Invariants:

LI1: The nodes in the stack foundNotHandled are ordered so that they define a
path starting at s.

LI2: foundNotHandled is a stack of tuples (v, i) such that for each v, the first i,
edges of v have been handled. Each node v appears no more than once.

Code:
algorithm DepthFirstSearch (G, s)

(pre-cond): G is a (directed or undirected), graph, and s is one of its nodes.
{ post-cond): The output is a depth-first search tree of G rooted at s.

189

190

Optimization Problems

begin
foundHandled = ¢
foundNotHandled = {(s, 0)}
time = 0 % Used for time stamping. See following discussion.
loop
(loop-invariant): See preceding list.
exit when foundNotHandled = ¢
pop (u, i) off the stack foundNotHandled
if uhas an (i+1)st edge (i, v)
push (i, i + 1) onto foundNotHandled
if v has not previously been found then
(V) =u
(u, v) is a tree edge
push (v, 0) onto foundNotHandled
s(v) = time; time = time + 1
else if v has been found but not completely handled then
(u, v) is a back edge
else (v has been completely handled)
(u, v) is a forward or cross edge
end if
else
move uto foundHandled
fv) = time; time = time + 1
end if
end loop
return foundHandled
end algorithm

Example: See Figure 14.8.

Establishing and Maintaining the Loop Invariant: It is easy to see that with
foundNotHandled = {(s, 0)}, the loop invariant is established. If the stack does con-
tain a path from s to ©# and u has an unhandled edge to v, then u is kept on the stack
and v is pushed on top. This extends the path from u onward to v. If u does not have
an unhandled edge, then uis popped off the stack. This decreases the path from s by

one.

Classification of Edges: The depth-first search algorithm can be used to classify

edges:

Tree Edges: Tree edges are the edges (i, v) in the depth-first search tree. When

such edges are handled, v has not yet been found.

Back Edges: Back edges are the edges (i, v) such that v is an ancestor of u in the
depth-first search tree. When such edges are handled, v is in the stack, that is,

found but not completely handled.

Graph Search Algorithms

Graph
18

Iterative algorithm

Stack Handled
{s=1}

{1,2,3,4,5,6}

{1,2} 6,5,4,3
{1,2,7,8} 6,5,4,3
{1,2} 6,5,4,3,8,7

{1,2,9} 6,5,4,3,8,7
6,5,4,3,8,7,9,2,1

Recursive stack frames

Types of edges

Tree edges -
Back edges —
Forward edges ---=
Cross edges e

Figure 14.8: Depth-first search of a graph. The numbers give the order in which the nodes are
found. The contents of the stack are given at each step.

Cyclic: A graph is cyclic if and only if it has a back edge.

Proof («): The loop invariant of the depth-first search algorithm en-
sures that the contents of the stack form a path from s through v and onward
to u. Adding on the edge (i, v) creates a cycle back to v.

Proof (=): Later we prove that if the graph has no back edges, then there
is a total ordering of the nodes respecting the edges and hence the graph has

no cycles.

Bipartite: A graph is bipartite if and only if there is no back edge between
any two nodes with the same level parity, that is, iff it has no odd-length

cycles.

Forward Edges and Cross Edges: Forward edges are edges (u, v) such that vis a
descendant of uin the depth-first search tree.

Cross edges (u, v) are such that uand v are in different branches of the depth-
first search tree (that is, are neither ancestors nor descendants of each other) and
v's branch is traversed before (to the left of) s branch.

When forward edges and cross edges are handled, v has been completely
handled. The depth-first search algorithm does not distinguish between forward

edges and cross edges.

Time Stamping: Some implementations of depth-first search time-stamp each
node uwith a start time s(u) and a finish time f(u). Here timeis measured by starting
a counter at zero and incrementing it every time a node is found for the first time

191

192

Optimization Problems

or a node is completely handled. s(u) is the time at which node u is first found, and
f(w) is the time at which it is completely handled. The time stamps are useful in the
following way:
* v is a descendant of u if and only if the time interval [s(v), f(v)] is completely
contained in [s(w), f(u)].
¢ If uand v are neither ancestor or descendant of each other, then the time inter-
vals [s(u), f(»)] and [s(v), f(v)] are completely disjoint.
Using the time stamps, this can be determined in constant time.

EXERCISE 14.4.1 Provethat when doing depth-first search on undirected graphs there
are never any forward or cross edges.

ELX] Recursive Depth-First Search

I now present a recursive implementation of a depth-first search algorithm, which
directly mirrors the iterative version. The only difference is that the iterative version
uses a stack to keep track of the route back to the start node, while the recursive
version uses the stack of recursive stack frames. The advantage of the recursive
algorithm is that it is easier to code and easier to understand. The iterative algorithm
might run slightly faster, but a good compiler will convert the recursive algorithm
into an iterative one.

Code:
algorithm DepthFirstSearch (s)

(pre-cond): An input instance consists of a (directed or undirected) graph G
with some of its nodes marked found and a source node s.
(post-cond): The output is the same graph G, except all nodes v reachable from
s without passing through a previously found node are now also marked as being
found. The graph G is a global variable ADT, which is assumed to be both input
and output to the routine.
begin
if s is marked as found then
do nothing
else
mark s as found
for each v connected to s
DepthFirstSearch (v)
end for
end if
end algorithm

Graph Search Algorithms

Our stack frame First friend Second friend Third friend Our stack frame
S=s

Instance

Graph when
routine returns

Unchanged

Figure 14.9: An example instance graph.

Pruning Paths: Consider the instance graph in Figure 14.9. There are two obvi-
ous paths from node S to node v. However, there are actually an infinite num-
ber of such paths. One path of interest is the one that starts at S, and traverses
around past u up to ¢ and then down to v. All of these equally valued paths will be
pruned from consideration, except the one that goes from S through b and u directly
to v.

Three Friends: Given this instance, we first mark our source node S with an x, and
then we recurse three times, once from each of a, b, and c.

Friend a: Our first friend marks all nodes that are reachable from its source
node a = s without passing through a previously marked node. This includes
only the nodes in the leftmost branch, because when we marked our source S,
we blocked his route to the rest of the graph.

Friend b: Our second friend does the same. He finds, for example, the path that
goes from b through u directly to v. He also finds and marks the nodes back
around to c.

Friend c: Our third friend is of particular interest. He finds that his source node,
¢, has already been marked. Hence, he returns without doing anything. This
prunes off this entire branch of the recursion tree. The reason that he can do
this is that for any path to a node that he would consider, another path to the
same node has already been considered.

Achieving the Postcondition: Consider the component of the graph reachable
from our source s without passing through a previously marked nodes. (Because our
instance has no marked nodes, this includes all the nodes.) To mark the nodes within
this component, we do the following. First, we mark our source s. This partitions
our component of reachable nodes into subcomponents that are still reachable from

193

194

Optimization Problems

each other. Each such subcomponent has at least one edge from s into it. When we
traverse the first such edge, the friend marks all the nodes within this subcomponent.

Running Time: Marking a node before it is recursed from ensures that each node
is recursed from at most once. Recursing from a node involves traversing each edge
from it. Hence, each edge is traversed at most twice: once from each direction. Hence,
the running time is linear in the number of edges.

EXERCISE 14.5.1 Trace out the iterative and the recursive algorithm on the same
graph, and see how they compare. Do they have the same running time?

ELXA Linear Ordering of a Partial Order

Finding a linear order consistent with a given partial order is one of many applica-
tions of a depth-first search. (Hint: If a question ever mentions that a graph is directed
acyclic, always start by running this algorithm.)

Definition of Total Order: A total order of a set of objects V specifies for each pair
of objects u, v € V either (1) that u is before v or (2) that v is before u. It must be
transitive, in that if u is before v and v is before w, then u is before w.

Definition of Partial Order: A partial order of a set of objects V supplies only some
of the information of a total order. For each pair of objects u, v € V, it specifies either
that uis before v, that v is before u, or that the order of « and v is undefined. It must
also be transitive.

For example, you must put on your underwear before your pants, and you must
put on your shoes after both your pants and your socks. According to transitivity, this
means you must put your underwear on before your shoes. However, you do have
the freedom to put your underwear and your socks on in either order. My son, Josh,
when six, mistook this partial order for a total order and refused to put on his socks
before his underwear. When he was eight, he explained to me that the reason that he
could get dressed faster than I was that he had a “shortcut,” consisting in putting his
socks on before his pants. I was thrilled that he had at least partially understood the
idea of a partial order:

underwear
\
pants socks
A
shoes

A partial order can be represented by a directed acyclic graph (DAG) G. The ver-
tices consist of the objects V, and the directed edge (1, v) indicates that u is before
v. It follows from transitivity that if there is a directed path in G from u to v, then we

Graph Search Algorithms

know that uis before v. A cycle in G from uto v and back to u presents a contradiction,
because u cannot be both before and after v.

Specifications of the Topological Sort Problem:

Preconditions: The input is a directed acyclic graph G representing a partial
order.

Postconditions: The output is a total order consistent with the partial order given
by G, that is, for all edges (i, v) € G, uappears before v in the total order.

An Easy but Slow Algorithm:

The Algorithm: Start at any node v of G. If v has an outgoing edge, walk along it
to one of its neighbors. Continue walking until you find a node ¢ that has no out-
going edges. Such a node is called a sink. This process cannot continue forever,
because the graph has no cycles.

The sink ¢ can go after every node in G. Hence, you should put ¢ last in the
total order, delete t from G, and recursively repeat the process on G — v.

Running Time: It takes up to n time to find the first sink, n — 1 to find the second,
and so on. The total time is © (2).

Algorithm Using a Depth-First Search: Start at any node s of G. Do a depth-first
search starting at node s. After this search completes, nodes that are considered
found will continue to be considered found, and so should not be considered again.
Let s’ be any unfound node of G. Do a depth-first search starting at node s’. Repeat
the process until all nodes have been found.

Use the time stamp f(u) to keep track of the order in which nodes are completely
handled, that is, removed from the stack. Output the nodes in reverse order.

If you ever find a back edge, then stop and report that the graph has a cycle.

Proof of Correctness:
Lemma: For every edge (i, v) of G, node v is completely handled before w.

Proof of Lemma: Consider some edge (i, v) of G. Before uis completely han-
dled, it must be put onto the stack foundNotHandled. At this point in time,
there are three cases:

Tree Edge: v has not yet been found. Because u has an edge to v, v is
put onto the top of the stack above ubefore © has been completely han-
dled. No more progress will be made towards handling . until v has been
completely handled and removed from the stack.

Back Edge: v has been found, but not completely handled, and hence
is on the stack somewhere below u. Such an edge is a back edge. This
contradicts the fact that G is acyclic.

195

196

Optimization Problems

Stack _Handled
a {d}
{d,e.f,g}
b h (de.f} g
{d,e,f)1} g
¢ i {} glfed
{i} glfed
d i {ij.k} glfed
{3 g l.fe.d ki
e Kk {a} gl fe,dk,j,i
{a,b,c} glfe,dk,j,i
{a} g,Lfe,dk,j,ic,b
¢O 1 {a,h} glfedkj,icb
{} g,lfe.dk,j,ic,b,h,a

(Toplogical sort) = a,h,b,c,i,j.k,d,e.f,l,g

Figure 14.10: A topological sort is found using a depth-first search.

Forward or Cross Edge: v has already been completely handled and re-
moved from the stack. In this case, we are done: v was completely han-
dled before wu.

Topologically Sorted: Exercise 14.6.1 asks to show that this lemma is suffi-
cient to prove that the reverse order in which the nodes were completely
handled is a correct topological sort.

Example: See the example instance in Figure 14.10.

Running Time: As with the depth-first search, no edge is followed more than
once. Hence, the total time is O(| E|).

Shortest-Weighted Path on a DAG: Suppose you want to find the shortest-
weighted path for a directed graph G that you know is acyclic. You could use Dijk-
stra’s algorithm from Section 14.3. However, as hinted above, whenever a question
mentions that a graph is acyclic, it is always fastest to start by finding a linear order
consistent with the edges of the graph. Once this has been completed, you can han-
dle the nodes (as done in Dijkstra’s algorithm) in this linear order. Exercise 14.6.2 asks
you to prove the correctness of this algorithm.

EXERCISE 14.6.1 Show that in order to prove that the reverse order in which the nodes
were completely handled is a correct topological sort, it is sufficient to prove that for
every edge (u, v) of G, node v is completely handled before u.

EXERCISE 14.6.2 (See solution in Part Five.) Prove the correctness and estimate the
running time of this algorithm for shortest weighted paths for DAGs.

Graph Search Algorithms

ELEA Exercise

EXERCISE 14.7.1 Trace breadth-first and depth-first searches on the following two
graphs. For each do the following:

1

2.
3.

Start at node s, and when there is a choice, follow edges from left to right. Number
thenodes 1, 2,3, ... in the order that they are found, starting with node s = 1.
Darken the edges of the tree specified by the predecessor array .

What is the data structure used by each search to store nodes that are found but
not yet handled?

Circle the nodes that are in this data structure when node 8 is first found.

O O

(a) Breadth-first search (b) Depth-first search

197

198

15 Network Flows and
Linear Programming

Network flow is a classic computational problem with a surprisingly large number of
applications, such as routing trucks and matching happy couples. Think of a given
directed graph as a network of pipes starting at a source node s and ending at a sink
node t. Through each pipe water can flow in one direction at some rate up to some
maximum capacity. The goal is to find the maximum total rate at which water can
flow from the source node s to the sink node . If this were a physical system of pipes,
you could determine the answer simply by pushing as much water through as you
could. However, achieving this algorithmically is more difficult than you might at first
think, because the exponentially many paths from s to ¢ overlap, winding forward and
backward in complicated ways.

An Optimization Problem: Network flow is another example of an optimization
problem, which involves searching for a best solution from some large set of solu-
tions. The formal specifications are described in Chapter 13.

Network Flow Specification: Given an instance (G, s, t), the goal is to find a max-
imum rate of flow through graph G from node s to node ¢.

Precondition: We are given one of the following instances.

Instances: An instance (G, s, t) consists of a directed graph G and specific
nodes s and ¢. Each edge (u, v) is associated with a positive capacity ¢,).
For example, see Figure 15.1.a.

Postcondition: The output is a solution with maximum value and the value of
that solution.

Solutions for Instance: A solution for the instance is a flow F, which specifies
the flow F,, ,, through each edge of the graph. The requirements of a flow are
as follows. For example, see Figure 15.1.b.

Unidirectional Flow: For any pair of nodes, it is easiest to assume that
flow does not go in both directions between them. Hence, we will require
that at least one of F,,) and F,,, be zero and that neither be negative.

Network Flows and Linear Programming

(a) Network (b) Max flow (c) Min cut

Figure 15.1: (a) Anetwork with its edge capacities labeled. (b) A maximum flow in this network.
The first value associated with each edge is its flow, and the second is its capacity. The total rate
of the flow is 3 = 1 4+ 2 — 0. Note that no more flow can be pushed along the top path, because
the edge (b, c) is at capacity. Similarly for the edge (e, f). Note also that no flow is pushed along
the bottom path, because this would decrease the total from s to £. (c) A minimum cut in this
network. The capacity of this min cutis 3 = 1 + 2. Note that the capacity of the edge (j, i) is not
included in the capacity of the cut, because it is going in the wrong direction. (b) vs (c): The rate
of the maximum flow is the same as the capacity of the min cut. The edges crossing forward
across the cut are at capacity in the flow, while those crossing backward have zero flow. These
things are not coincidences.

Edge Capacity: The flow through any edge cannot exceed the capacity
of the edge, namely F,,,) < cu,n.

No Leaks: No water can be added at any node other than the source s,
and no water can be drained at any node other than the sink ¢. At each
other node the total flow into the node equals the total flow out, i.e., for
allnodesu & {s, t}, >, Fu,y = >, Fuun-

Measure of Success: The value of a flow F, denoted rate(F), is the total rate
of flow from the source s to the sink . We will define this to be the total that
leaves s without coming back, rate(F) = Y, [Fs,») — Fi,5]. Agreeing with our
intuition, we will later prove that because no flow leaks or is created in be-
tween s and ¢, this flow equals that flowing into ¢ without leaving it, namely

ZU[F(UJ> - F(t,v)]-

Min Cut Specification: Another interesting and perhaps surprisingly related opti-
mization problem is min cut. Given an instance (G, s, t), the goal is to find a cut be-
tween s and ¢ that has the possible minimum capacity crossing it from the s side to
the t side.

Precondition: We are given one of the following instances.

Instances: An instance (G, s, t) consists of a directed graph G and specific
nodes s and t. Each edge (u, v) is associated with a positive capacity c,,,)-
Note that the network flow and min cut Problems have the same instances.
For example, see Figure 15.1.a.

Postcondition: The output is a solution with minimum value and the value of
that solution.

Solutions for the Instance: A solution for the instance is a cur C = (U, V),
which is a partitioning of the nodes of the graph into two sets U and V such
that the source s is in U and the sink ¢ is in V. For example, see Figure 15.1.c.

199

200

Optimization Problems

For example, if G gives the roads, s is Toronto, and ¢ is Berkeley, a cut
could be the Canadian-US border. Because the nodes in a graph do not have
a location as cities do, there is no reason for the partition of the nodes to be
geographically contiguous. Anyone of the exponential number of partitions
will do.

Measure of Success: The capacity of a cut is the sum of the capacities of all
edges from U to V, namely, cap(C) = >, ;> ,cv Cu,v)- Note that this does
not include the capacities ¢, of the edges going back from V to U.

In Section 15.1, we will design an algorithm for the network flow problem. We will
see that this algorithm is an example of a hill-climbing algorithm and that it does not
necessarily work, because it may get stuck in a small local maximum. In Section 15.2,
we will modify the algorithm and use the primal-dual method, which uses a min cut
to guarantee that it has found a global maximum. This algorithm, however, may have
exponential running time. In Section 15.3, we prove that the steepest-ascent version
of this hill climbing algorithm runs in polynomial time. Finally, Section 15.4 relates
these ideas to another, more general problem called linear programming.

EXERCISE 15.0.1 Suppose we ensured that flow goes in only one direction between
any two nodes, not by requiring that the flow in one direction F, , be zero, but by
requiring that F,, ,, = — F,). This is less consistent with intuition and obscures some
subtleties. The change does, however have the advantage of simplifying many of the
equations. For example, the no-leak requirement simplifies to), F,,) = 0. How does
this change all of the other equations in this section?

EEXD A Hill-Climbing Algorithm with a Small Local Maximum

Hiking at the age of seven, my son Josh stated
that the way to find the top of the hill is simply
to keep walking in a direction that takes you up,
and you know you are there when you cannot go
up any more. Little did he know that this is also a
common technique for finding the best solution
for many optimization problems. The algorithm
maintains one solution for the problem and re-
peatedly makes one of a small set of prescribed
changes to this solution in a way that makes it
a better solution. It stops when none of these
changes seems able to make a better solution.
There are two problems with this technique.
First, it is not necessarily clear how long it will
take until the algorithm stops. Second, some-
times it finds a small local maximum, i.e., the

Network Flows and Linear Programming

Network Path Flow

b rate=50

Figure 15.2: A network, with its edge capacities labeled, is given on the left. In the middle are
two paths through which flow can be pushed, with the resulting flow on the right. The first
value associated with each edge is its flow, and the second is its capacity. The total rate of the
flow is 50.

top of a small hill, instead of the overall global maximum. Many hill-climbing al-
gorithms, however, are used extensively even though they are not guaranteed to
work, because in practice they seem to work well. In this section, we describe a hill-
climbing algorithm that is guaranteed to quickly solve its problem.

Basic Ideas: [will start by giving some ideas that do not work.

Push from Source: The first obvious thing to try is to simply start pushing water
out of s. If the capacities of the edges near s are large, then they can take lots of
flow. Further down the network, however, the capacities may be smaller, in which
case the flow that we started will get stuck. To avoid causing capacity violation
or leaks, we will have to back off the flow that we started. Even further down the
network, an edge may fork into edges with larger capacities, in which case we will
need to decide in which direction to route the flow. Keeping track of this could
be a headache.

Plan Path for a Drop of Water: A solution to both the problem of flow getting
stuck and the problem of routing flow along the way is to first find an entire path
from s to ¢ through which flow can take place. In the example in Figure 15.2, wa-
ter can flow along the path (s, b, ¢, f): see the top middle path. We then can push
as much as possible through this path. It is easy to see that the bottleneck is the
edge (b, c) with capacity 30. Hence, we add a flow of 30 to each edge along this
path. That working well, we can try adding more water through another path. Let
us try the path (s, a, ¢, t). The first interesting thing to note is that the edge (c,)
in this path already has flow 30 through it. Because this edge has a capacity of 75,
the maximum flow that can be added to it is 75 — 30 = 45. This, however, turns
out not to be the bottleneck, because the edge (s, a) has capacity 20. Adding a
flow of 20 to each edge along this path gives the flow shown on the right in Fig-
ure 15.2. For each edge, the left value gives its flow and the right gives its capacity.
There being no more paths forward from s to ¢, we are now stuck. Is this the max-
imum flow?

A Winding Path: Water has a funny way of seeping from one place to another. It
does not need to only go forward. Though the path (s, b, a, c, t) winds backward,

201

202

Optimization Problems

(Faulty) augmentation graph Path

No path

b rate=51

Figure 15.3: The top left is the same flow given in Figure 15.2, the first value associated with
each edge being its flow, and the second being its capacity. The top middle is a first attempt at
an augmentation graph for this flow. Each edge is labeled with the amount of more flow that it
can handle, namely ¢,y — Fu,v. The top right is the path in this augmentation graph through
which flow is augmented. The bottom left is the resulting flow. The bottom middie is its (faulty)
augmentation graph. No more flow can be added through it.

more flow can be pushed through it. Another way to see that the concept of “for-
ward” is not relevant to this problem. The bottleneck in adding flow through this
path is the edge (a, c). Already having a flow 20, its flow can only increase by 1.
Adding a flow of 1 along this path gives the flow shown on the bottom left in Fig-
ure 15.3. Though this example reminds us that we need to consider all possible
paths from s to ¢, we know that finding paths through a graph is easy using either
breadth-first or depth-first search (Sections 14.2 and 14.4). However, in addition,
we want to make sure that the path we find is such that we can add a nonzero
amount of flow through it. For this, we introduce the idea of an augmentation
graph.

The (Faulty) Augmentation Graph: Before we can find a path through which
more flow can be added, we need to compute for each edge the amount of flow
that can be added through it. To keep track of this information, we construct from
the current flow F a graph denoted by Gy and called an augmentation graph.
(Augment means to add on. The augmentation is the amount you add on.) This
graph initially will have the same directed edges as our network, G. Each of these
edges is labeled with the amount by which its flow can be increase. We will call
this the edge’s augmentation capacity. Assuming that the current flow through
the edge is F;,, and its capacity is ¢,), this augmentation capacity is given by
Cu,v) — Fu,vy. Any edge for which this capacity is zero is deleted from the augmen-
tation graph. Because of this, nonzero flow can be added along any path found
from s to t within this augmentation graph. The path chosen will be called the
augmentation path. The minimum augmentation capacity of any of its edges is
the amount by which the flow in each of its edges is augmented. For an example,

Network Flows and Linear Programming

see Figure 15.3. In this case, the only path happens to be (s, b, a, ¢, t), which is
the path that we used. Its path is augmented by a flow of 1.

The (Faulty) Algorithm: We have now defined the basic steps and can easily fill in
the remaining detail of the algorithm.

203

The Loop Invariant: The most obvious loop invariant is that at the top of the
main loop we have a legal flow. It is possible that some more complex invariant
will be needed, but for the time being this seems to be enough.

The Measure of Progress: The obvious measure of progress is how much flow the
algorithm has managed to get between s and ¢, that is, the rate rate(F) of the
current flow.

The Main Steps: Given some current legal flow F through the network G, the al-
gorithm improves the flow as follows: It constructs the augmentation graph G
for the flow; finds an augmentation path from s to ¢ through this graph using
breadth-first or depth-first search; finds the edge in the path whose augmenta-
tion capacity is the smallest; and increases the flow by this amount through each
edge in the path.

Maintaining the Loop Invariant: We must prove that the newly created flow is
a legal flow in order to prove that (loop-invariant)& not(exit-cond)&codejy,, =
(loop-invariant”).

Edge Capacity: We are careful never to increase the flow of any edge by more
than the amount ¢, ,, — F,). Hence, its flow never increases beyond its ca-

pacity ¢, y).-

No Leaks: We are careful to add the same amount to every edge along a path
from s to t. Hence, for any node u along the path, there is one edge (v, u) into
the node whose flow changes and one edge (¢, V) out of the node whose flow
changes. Because these change by the same amount, the flow into the node
remains equal to that out, so that for all nodes u ¢ {s, t}, we have Y F,,, =
>, Fuy- In this way, we maintain the fact that the current flow has no leaks.

Making Progress: Because the edges whose flows could not change were deleted
from the augmenting graph, we know that the flow through the path that was
found can be increase by a positive amount. This increases the total flow. Because
the capacities of the edges are integers, we can prove inductively that the flows
are always integers and hence the flow increases by at least one. (Having fractions
as capacities is fine, but having irrationals as capacities can cause the algorithm
to run forever.)

Initial Code: We can start with a flow of zero through each edge. This establishes
the loop invariant, because it is a legal flow.

204

Optimization Problems

Exit Condition: At the moment, it is hard to imagine how we will know whether
or not we have found the maximum flow. However, it is easy to see what will
cause our algorithm to get stuck. If the augmenting graph for our current flow is
such that there is no path in it from s to ¢, then unless we can think of something
better to do, we must exit.

Termination: As usual, we prove that this iterative algorithm eventually termi-
nates because at every iteration the rate of flow increases by at least one and
because the total flow certainly cannot exceed the sum of the capacities of all the
edges.

This completely defines an algorithm.

Getting Stuck at a Local Maximum: Hill-climbing algorithms move up until they
cannot go up any more. The reason that they are not allowed to go down is the same
reason that iterative algorithms need to make progress every iteration, namely, to
ensure that the algorithm eventually stops.

A major problem with this is that sometimes they find a small local maximum,
that is, the top of a small hill, instead of the overall global maximum. Because a
hill-climbing algorithm is not allowed to move down, it gets stuck at such a local
maximum.

This is similar to the class of algorithms known as greedy algorithms, described
in Chapter 16. In these, no decision that is made is revoked. Our network flow algo-
rithm could be considered to be greedy in that once the algorithm decides to put flow
through an edge, it may later add more, but it never removes flow. Given that our goal
is to get as much flow from s to ¢ as possible and that it does not matter how that flow
gets there, it makes sense that such a greedy approach would work. However, we will
see that it does not work.

A Counterexample: Proving that a given algorithm works for every input instance
can be a major challenge. However, in order to prove that it does not work, we only
need to give one input instance in which it fails. Figure 15.4 gives such an example.
It traces out the algorithm on the same instance from Figure 15.2 that we did before.
However, this time the algorithm happens to choose different paths. First it puts a
flow of 2 through the path (s, b, a, c, t), followed by a flow of 19 through (s, a, ¢, t),
followed by a flow of 29 through (s, b, ¢, f). At this point, we are stuck because the
augmenting graph does not contain a path from s to ¢. This is a problem because the
current flow is only 50, whereas we have already seen that the flow for this network
can be 51. In hill-climbing terminology, this flow is a small local maximum, because
we cannot improve it using the steps that we have allowed; but it is not a global max-
imum, because there is a better solution.

Where We Went Wrong: From a hill-climbing perspective, we took a step in an
arbitrary direction that takes us up, but with our first attempt we happened to
head up the big hill and in the second we happened to head up the small hill.

Network Flows and Linear Programming

Network Path
20
75
D 21 Ps P > ° o e
s 3L BNZ a c 10t S b a ¢ t
30
Flow (Faulty) augmentation graph Path
0/20 20-0-20
221 _i”/' /\ 21-2-19 J\S’i . 19
S 231 N2 4 Tt S22 220" % T~ 3 e . e "
0730 rate=2 30-0-30
19/20 20-19=1
21/75 D o 75-21=54
21221 21-21=0
_—) °
s 231 22 a c 00t §31-2=29 2-2=0 a p 7 t s 29 b a c t
0730 rate=21 30-0-30
19/20 20-19=1
D 2121 5075 /\ 21 21-0 7550225

s 3151 (N 22 3131=0pN2-2=0 2 No path

a ¢ om t §° e Tt

:

29/30 rate=50 30-29=1

Figure 15.4: The faulty algorithm is traced on the instance from Figure 15.2. The nodes in this
graph are laid out differently to emphasize the first path chosen. The current flow is given on
the left, the corresponding augmentation graph in the middle, the augmenting path on the
right, and the resulting flow on the next line. The algorithm gets stuck at a suboptimal local
maximum.

The flow of 51 that we obtained first turns out to be the unique maximum so-
lution (often there are more than one possible maximum solutions). Hence, we
can compare it with our present solution to see where we went wrong. In the first
step, we put a flow of 2 through the edge (b, a); however, in the end it turns out
that putting more than 1 through it is a mistake.

Fixing the Algorithm: The following are possible ways of fixing the kind of bugs
we found.

Make Better Decisions: If we start by putting flow through the path (s, b, ¢, t),
then the algorithm works, but if we start with the path (s, b, a, ¢, t), it does not.
One way of fixing the bug is to find some way to choose which path to add flow
to next so that we do not get stuck in this way. From the greedy algorithm’s per-
spective, if we are going to commit to a choice, then we had better make a good
one. I know of no way to fix the network flow algorithm in this way:.

Backtrack: Chapter 17 describes another class of algorithms, known as recursive
backtracking algorithms, that continually notice when they have made a mistake
and that backtrack, trying other options, until a correct sequence of choices is
made. In this example, we need to find a way of decreasing the flow through the
edge (b, a) from 2 to 1. A general danger of backtracking algorithms in compari-
son with greedy algorithms is that the algorithm will have a much longer running
time if it keeps changing its mind.

205

206

Optimization Problems

Take Bigger Steps: One way of avoiding getting stuck at the top of a small hill is
to take a step that is big enough so that you step over the valley onto the slope of
the bigger hill and a little higher up. Doing this requires redefine your definition
of a step. This is the approach that we will take. We need to find a way of de-
creasing the flow through the edge (b, a) from 2 to 1 while maintaining the loop
invariant that we have a legal flow and increasing the overall flow from s to . The
place in the algorithm at which we consider how the flow through an edge is al-
lowed to change is where we define the augmenting graph. In the next section
we reconsider this definition.

EEE] The Primal-Dual Hill-Climbing Method

We will now define a larger step that the hill-climbing algorithm may take in hopes of
avoiding a local maximum.

The (Correct) Algorithm:

The Augmentation Graph: As before, the augmentation graph expresses how the
flow in each edge is able to change.

Forward Edges: As before, when an edge (u, v) has flow F,,, and capacity
cu,v), We put the corresponding edge (i, v) in the augmentation graph with
augmentation capacity ¢,y — F,) to indicate that we are allowed to add
this much flow from u to v.

Reverse Edges: Now we see that there is a possibility that we might want to
decrease the flow from u to v. Given that its current flow is F,,), this is the
amount that it can be decreased by. Effectively, it is the same as increasing
the flow from v to u by this same amount. Moreover, if the reverse edge (v, u)
is also in the graph and has capacity ¢, ., then we are able to increase the
flow from v to u by this second amount ¢, as well. Therefore, when the
edge (u, v) has flow F,, and the reverse edge (v, u) has capacity ¢, ,, we

I can walk I can walk
75 to the right or 75-21=54 to the right or
/QL 10 to the left. 21+10=31 to the left.
| | | | | | |
| | | | | | |
-10 0 75 -10 0 21 75

Figure 15.5: Suppose that from my home, | can walk 75 km to the right or 10 to the left. If |
am already 21 km to the right, then | can walk 75 — 21 = 54 km to the right or 21 4+ 10 = 31 to
the left. More over, walking 31 to the left and —31 to the right are the same. Similarly, suppose
that my bank account can only hold $75 or go into overdraft of up to $10. If | already have $21
in the account, then | am able to add 75 — 21 = $54 or remove 21 + 10 = $31. Removing $31
and adding —$31 are also the same.

Network Flows and Linear Programming

Network Path
20
D 21 = — o o o e
s 31 N2 a c 10t S b ? a ¢ t
30
Flow Augmentation Graph Path

0/20

|
|

21 275 w o 752=73 19
b < s

C
¢ oot 2 W 2+10-12

0/30 rate=2 30

ce
©
o

-

S 2831 pNQ2R2

19/20

)

2121 21/75

i °) o e
s 23 E\/C 010 t c t
0/30 rate=21
19/20
/—\ 50175
21721
§ 3131y a e
S C o0 t c t

29/30 rate=50

20/20

D/

21/21 51/75
C

s 3131y

- @

1

30/30 rate=51

Cut

cap = 5 = rate

Figure 15.6: Atrace of the correct algorithm on the instance from Figure 15.4. The current flow
is given on the left, the corresponding augmentation graph in the middle, the augmentation
path on the right, and the resulting flow on the next line. The optimal flow is obtained. The
bottom diagram shows a minimum cut C = (U, V).

also put the reverse edge (v, u) in the augmentation graph with augmen-
tation capacity Fy,, + ¢w,u. For more intuition see Figure 15.5, and for an
example see edge (c, t) in the second augmentation graph in Figure 15.6.

The Main Steps: Little else changes in the algorithm. Given some current legal
flow F through the network G, the algorithm improves the flow as follows: It
constructs the augmentation graph G for the flow; finds an augmentation path
from s to ¢ through this graph using breadth-first or depth-first search; finds the
edge in the path whose augmentation capacity is the smallest; and increases the
flow by this amount through each edge in the path. If the edge in the augment-
ing graph is in the opposite direction to that in the flow graph, then this involves
decreasing its flow by this amount. This is because increasing flow from v to u is
effectively the same as decreasing it from u to v.

207

Optimization Problems

Does It Work on the Counterexample?: Figure 15.6 traces this new algorithm on
the same example as in Figure 15.4. The new augmenting graphs include edges
in the reverse direction. Each step is the same as that in Figure 15.4, until the last
step, in which these reverse edges provide the path (s, a, b, ¢, t) from s to t. The
bottleneck in this path is 1. Hence, we increase the flow by 1 in each edge in the

208 path. The effect is that the flow through the edge (b, a) decreases from 2 to 1,

giving the optimal flow that we had obtained before.

Bigger Step: The reverse edges that have been added to the augmentation graph
may well not be needed. They do, after all, undo flow that has already been added
through an edge. On the other hand, having more edges in the augmentation
graph can only increase the possibility of there being a path from s to ¢ thro-
ugh it.

Maintaining the Loop Invariant and Making Progress: See Exercise 15.2.1.

Exit Condition: As before the algorithm exits when it gets stuck because the aug-
menting graph for our current flow is such that there is no path in it from s to t.
However, with more edges in our augmenting graph this may not occur as soon.

Code:
algorithm Network Flow (G, s, t)

(pre-cond): G is a network given by a directed graph with capacities on the
edges. s is the source node. f is the sink.

(post-cond): F specifies a maximum flow through G, and C specifies a min-
imum cut.

begin
F = the zero flow
loop
(loop-invariant): F is alegal flow.

Gr = the augmentation graph for F, where
edge (u, v) has augmentation capacity ¢y, — Fu,») and
edge (v, u) has augmentation capacity ¢y, + Fu,p-
exit when s is not connected to t in Gg
P =apathfromstotin Gg
w = the minimum augmentation capacity in P
Add w to the flow F in every edge in P
end loop
U = nodes reachable from s in Gg
V =nodes not reachable from s in Gp
C=(,V)
return(F,C)
end algorithm

Network Flows and Linear Programming

Ending: The next step is to prove that this improved algorithm always finds
a global maximum without getting stuck at a small local maximum. Using the
notation of iterative algorithms, we must prove that (loop-invariant) & (exit-cond)
& codeposi-100p = (pOst-cond). From the loop invariant we know that the algorithm
has a legal flow. Because we have exited, we know that the augmenting graph does
not contain a path from s to ¢ and hence we are at a local maxima. We must prove
that there are no small local maxima and hence we must be at a global maximum
and hence have an optimal flow. The method used is called the primal-dual method.

Primal-Dual Hill Climbing: Suppose that over the hills on which we are climbing
there are an exponential number of roofs, one on top of the other. As before, our
problem is to find a place to stand on the hills that has maximum height. We call
this the primal optimization problem. An equally challenging problem is to find
the lowest roof. We call this the dual optimization problem. The situation is such
that each roof is above each place to stand. It follows trivially that the lowest and
hence optimal roof is above the highest and hence optimal place to stand, but
offhand we do not know how far above it is.

We say that a hill-climbing algorithm gets stuck when it is unable to step
in a way that moves it to a higher place to stand. A primal-dual hill-climbing
algorithm is able to prove that the only reason for getting stuck is that the place
it is standing is pressed up against a roof. This is proved by proving that from
any location, it can either step to a higher location or specify a roof to which
this location is adjacent. We will now see how these conditions are sufficient for
proving what we want.

Lemma: Finds Optimal. A primal-dual hill-climbing algorithm is guaran-
teed to find an optimal solution to both the primal and the dual optimization
problems.

Proof: By the design of the algorithm, it only stops when it has a location
L and a roof R with matching heights height(L) = height(R). This location
must be optimal, because every other location L’ must be below this roof
and hence cannot be higher than this location, that is, VL', height(L) <
height(R) = height(L). We say that this dual solution R witnesses the fact that
the primal solution L is optimal. Similarly, L witnesses the fact that R is op-
timal, that is, VR, height(R') > height(L) = height(R). This is called the du-
ality principle.

Cuts as Upper Bounds: In order to apply these ideas to the network flow prob-
lem, we must find some upper bounds on the flow between s and ¢. Through a
single path, the capacity of each edge acts as an upper bound, because the flow
through the path cannot exceed the capacity of any of its edges. The edge with
the smallest capacity, being the lowest upper bound, is the bottleneck. In a gen-
eral network (see Figure 15.1), a single edge cannot act as a bottleneck, because
the flow might be able to go around this edge via other edges. A similar approach,

209

210

Optimization Problems

however, works. Suppose that we wanted to bound the traffic between Toronto
and Berkeley. We know that any such flow must cross the Canadian-US border.
Hence, there is no need to worry about what the flow might do within Canada
or within the US. We can safely say that the flow from Toronto to Berkeley is
bounded above by the sum of the capacities of all the border crossings. Of course,
this does not mean that that flow can be achieved. Other upper bounds can be
obtained by summing the border crossing for other regions. For example, you
could bound the traffic leaving Toronto, leaving Ontario, entering California, or
entering Berkeley. This brings us to the following definition.

Cut of a Graph: A cut C = (U, V) of a graph is a partitioning of the nodes of
the graph into two sets U and V such that the source s is in U and the sink ¢
isin V. The capacity of a cut is the sum of the capacities of all edges from U
to V, namely, cap(C) = >,y > vev Clu)-

Because the nodes in a graph do not have a location as cities do, there
is no reason for the partition of the nodes to be geographically contiguous.
Any one of the exponential number of partitions will do.

Flow across a Cut: To be able to compare the rate of flow from s to ¢ with the
capacity of a cut, we will first need to define the flow across a cut.

rate(F, C): Define rate(F, C) to be the current flow F across the cut C,
which is the total of all the flow in edges that cross from U to V minus the
total of all the flow that comes back, i.e., rate(F, C) =Y, .y > e v[Fuv —
F(v,u)]-

rate(F) = rate(F, ({s}, G — {s})): We defined the flow from s to ¢ to be
the total flow that leaves s without coming back, namely, rate(F) =
> [Fis,vy — Fu,sl. This is precisely the equation for the flow across the
cut that puts s all by itself, namely, rate(F) = rate(F, ({s}, G — {s})).

Lemma: rate(F, C) = rate(F). Intuitively this makes sense. Because no
water leaks or is created between the source s and the sink ¢, the flow
out of s equals the flow across any cut between s and ¢, which in turn
equals the flow into ¢. It is because these are the same that we simply
call this the flow from s to ¢. Since the flow into a node is the same as
that out of the node, if you move the node from one side of the cut to the
other this does not change the total flow across the cut. Hence we can
change the cut one node at a time from being the one containing only s
to being the cut that we are interested in.

More formally this is done by induction on the size of U. For the
base case, rate(F) = rate(F, {{s}, G — {s})) gives us that our hypothesis
rate(F, C) = rate(F) is true for every cut that has only one node in U.
Now suppose that, by way of induction, we assume that it is true for
every cut that has i nodes in U. We will now prove it for those cuts that
have i + 1 nodes in it. Let C = (U, V) be any such cut. Choose one node

Network Flows and Linear Programming

Figure 15.7:

C C
/4 §§ 4

The edges across the cut that do not cancel in rate(F, C) — rate(F, C').

x (other then s) from U and move it across the border. This gives us a
new cut C' = (U — {x}, VU {x}), where the side U — {x} contains only
i nodes. Our assumption then gives us that the flow across this cut is
equal to the flow of F: rate(F, C') = rate(F). Hence, in order to prove that
rate(F, C) = rate(F), we only need to prove that rate(F, C) = rate(F, C').
We will do this by proving that the difference between these is zero. By
definition,

rate(F, C) — rate(F, C)

= |:ZZ F(u,v) - F(l/,u)i| - Z Z Fu,v - Uu

ueUveV ue U—{x}, ve VU{x}

(Figure 15.7 shows the terms that do not cancel)

= Z F(x,v) - F(v,x) - |:Z F(u,x) - F{x,u>i|

LveV . uelU
= ZFxU— (v,%) +|:2F(x,y)_F(v,x)i|
LveV . veU

= ZE%V)‘F(MX) =0
v

This is the total flow out of the node, x minus the total flow into the
node, which is zero by the requirement that no node leaks. This proves
that rate(F, C) = rate(F) for every cut that has i + 1 nodes in U. By
induction, it then is true for all cuts for every size of U. This formally
proves that the rate of any given flow F is the same across any cut C.

Lemma: rate(F) < cap(C): It is now easy to prove that rate(F) of any flow F
is at most the capacity of any cut C. In the primal-dual analogy, this proves
that each roof is above each place to stand. Given rate(F) = rate(F, C), it is
sufficient to prove that the flow across a cut is at most the capacity of the
cut. This follows easily from the definition rate(F, C) =),y > pev Fun —
Fo,wl <Y ucu 2 vevlFunl, because having positive flow backwards across
the cut from V to U only decreases the flow. Then this sum is at most

212

Optimization Problems

> ueu LvevlCun], because no edge can have flow exceeding its capacity. This
is the definition of the capacity cap(C) of the cut. This proves the required
rate(F) < cap(C).

Take a Step or Find a Cut: The primal-dual method requires that from any loca-
tion, you can either step to a higher location or specify a roof to which this loca-
tion is adjacent. In the network flow problem, this translates to: given any legal
flow F, either find a better flow or find a cut whose capacity is equal to the rate
of the current flow. The augmentation graph G includes those edges through
which the flow rate can be increased. Hence, the nodes reachable from s in this
graph are the nodes to which more flow could be pushed. Let U denote this set
of nodes. In contrast, the remaining set of nodes, which we will denote by V, are
those to which more flow cannot be pushed. See the cut at the bottom of Fig-
ure 15.6. No flow can be pushed across the border between U and V, because all
the edges crossing over are at capacity. If ¢ is in U, then there is a path from s to ¢
through which the flow can be increased. On the other hand, if t is in V, then C =
(U, V) is a cut separating s and ¢. What remains is to formalize the proof that the
capacity of this cut is equal to rate of the current flow. (For another example, see
the cut in Figure 15.1.c. Although cap(C) = rate(F), this cut was not formed as
described here because the node i is not reachable from s in the augmentation
graph.)

Since we know rate(F, C) = rate(F), it remains only to prove rate(F, C) =
cap(C), that is, that the current flow across the cut C is equal to the capacity of
the cut.

Lemma: rate(F, C) = cap(C): To prove this, it is sufficient to prove that every
edge (u, v) crossing from U to V has flow in F at capacity (F,,) = cu,) and
every edge (v, u) crossing back from V to Uhas zero flowin F. These give that
rate(F, C) = ZueU ZveV[F(W/) — Foul = ZueUZueV[C<MU> — 0] = cap(C).

Fu,v = cun: Consider any edge (u, v) crossing from U to V. If F,,, <
cuy), then the edge (u, v) with augmentation capacity ¢, — Fun)
would be added to the augmentation graph. However, having such an
edge in the augmentation graph contradicts the fact that u is reachable
from s in the augmentation graph and v is not.

Fup,y =0: If F,,) > 0, then the edge (1, v) with augmentation capacity
Cu,v) + F,wy would be added to the augmentation graph. Again, having
such an edge is a contradiction.

This proves that rate(F, C) = cap(C).

Lemma: cap(C) = rate(F): cap(C) = rate(F, C) = rate(F), that is, the flow
we have found equals the capacity of the cut, as required.

Ending: This improved network flow algorithm always finds a global maximum
without getting stuck at a small local maximum. In each iteration it either finds a

Network Flows and Linear Programming

path in the augmenting graph through which it can improve the current flow or
finds a cut that witnesses the fact that there are no better flows.

Max-Flow-Min-Cut Duality Principle: The max flow and min cut problems were
defined at the beginning of this chapter, both being interesting problems in their own
right. Now we see that cuts can be used as the ceilings on the flows.

Max Flow = Min Cut: We have proved that, given any network as input, the net-
work flow algorithm finds a maximum flow and—almost as an accident—finds a
minimum cut as well. This proves that the maximum flow through any network
equals its minimum cut.

Dual Problems: We say that the dual of the max flow problem is the min cut
problem, and conversely that the dual of the min cut problem is the max flow
problem.

Credits: This algorithm was developed by Ford and Fulkerson in 1962.

Running Time Exponential? Suppose that the network graph has m edges, each
with a capacity that is represented by an O(¢) bit number. Each capacity could be as
large as O(2%), and the total maximum flow could be as large as O(m - 2¢). Starting out
as zero and increasing by about one each iteration, the algorithm would need O(m -
2%) iterations until the maximum flow is found. This running time is polynomial in
the number of edges, m. However, the size of the input instance, which in this case
is the number of bits (or digits) needed to represent all of the values, is O(m- ¢). If ¢
is large, then the number of iterations, O(m - 2°), is exponential in this size. This is a
common problem with hill-climbing algorithms.

EXERCISE 15.2.1 Prove that the network flow algorithm presented in this section
maintains the loop invariant that it always holds a legal flow. Do this by proving that
the changes to the flow do not violate any edge capacities or create leaks at nodes. Also
prove that progress is made because the total flow increases. You need to be careful with
your plus and minus signs.

EXERCISE 15.2.2 Starting with the flow given below, complete the network flow
algorithm.

213

214

Optimization Problems

EXERCISE 15.2.3 [n hill-climbing algorithms there are steps that make lots of progress
and steps that make very little progress. For example, the first iteration on the input
given in Figure 15.2 might find a path through the augmentation graph through which
a flow of 30 can be added. It might, however, find the path through which only a flow of
2 can be added. How bad might the running time be when the computation is unlucky
enough to always take the worst legal step allowed by the algorithm? Start by taking the
step that increases the flow by 2 for the input given in Figure 15.2. Then continue to take
the worst possible step. You could draw out each and every step, but it is better to use
this opportunity to use loop invariants. What does the flow look like after i iterations?
Repeat this process on the same graph except that the four edges forming the square
now have capacities 1,000,000,000,000,000 and the crossover edge has capacity 1. (Also
movet to c or give that last edge a large capacity.)

1. What is the worst case number of iterations of this network flow algorithm as a
function of the number of edges m in the input network?

2. What is the official “size” of a network?

3. What is the worst case number of iterations of this network flow algorithm as a
function of the size of the input network?

EXERCISE 15.2.4 Ifall the capacities in the given network are integers, prove that the
algorithm always returns a solution in which the flow through each edge is an integer.
For some applications, this fact is crucial.

EXERCISE 15.2.5 (See solution in Part Five.) Give an algorithm for solving the min
cut problem. Given a network (G, s, t) with capacities on the edges, find a minimum
cut C= (U, V) where s € U and t € V. The cost of the cut is its capacity cap(C) =
D uct 2vey Cuv)- (Hint: you have already been told how to do this.)

EEE] The Steepest-Ascent Hill-Climbing Algorithm

We have all experienced that climbing a hill can take a long time if you wind back
and forth, barely increasing your height at all. In contrast, you get there much faster
if you head energetically straight up the hill. This method, which is call the method
of steepest ascent, is to always take the step that increases your height the most. If you
already know that the hill-climbing algorithm in which you take any step up the hill
works, then this new, more specific algorithm also works. However, if you are lucky, it
finds the optimal solution faster.

In our network flow algorithm, the choice of what step to take next involves
choosing which path in the augmentation graph to take. The amount the flow in-
creases is the smallest augmentation capacity of any edge in this path. It follows that
the choice that would give us the biggest improvement is the path whose small-
est edge is the largest for any path from s to f. Our steepest-ascent network flow
algorithm will augment such a best path each iteration. What remains to be done

Network Flows and Linear Programming

is to give an algorithm that finds such a path and to prove that this finds a maximum
flow within a polynomial number of iterations.

Finding the Augmentation Path with the Biggest Smallest Edge: The input
consists of a directed graph with positive edge weights and with special nodes s and ¢.
The output consists of a path from s to ¢ through this graph whose smallest weighted
edge is as big as possible.

Easier Problem: Before attempting to develop an algorithm for this, let us con-
sider an easier but related problem. In addition to the directed graph, the input
to the easier problem provides a weight, denoted wp,;,,. It either outputs a path
from s to whose smallest weighted edge is at least as big as wy,;,, or states that
no such path exists.

Using the Easier Problem: Assuming that we can solve this easier problem, we
solve the original problem by running the first algorithm with w,,;, being every
edge weight in the graph, until we find the weight for which there is a path with
such a smallest weight, but there is no path with a bigger smallest weight. This is
our answer. (See Exercise 15.3.1.)

Solving the Easier Problem: A path whose smallest weighted edge is at least as
big as wp,i, will obviously not contain any edge whose weight is smaller than
Wmin- Hence, the answer to this easier problem will not change if we delete from
the graph all edges whose weight is smaller. Any path from s to ¢ in the remaining
graph will meet our needs. If there is no such path, then we also know there is no
such path in our original graph. This solves the problem.

Implementation Details: In order to find a path from s to ¢ in a graph, the al-
gorithm branches out from s using breadth-first or depth-first search, marking
every node reachable from s with the predecessor of the node in the path to it
from s. If in the process ¢ is marked, then we have our path. (See Section 14.1.)
It seems a waste of time to have to redo this work for each w;;;;, so let’s use an
iterative algorithm. The loop invariant will be that the work for the previous w;,;,
has been done and is stored in a useful way. The main loop will then complete
the work for the current wy,;,, reusing as much of the previous work as possi-
ble. This can be implemented as follows. Sort the edges from biggest to smallest
(breaking ties arbitrarily). Consider them one at a time. When considering w;, we
must construct the graph formed by deleting all the edges with weights smaller
than w;. Denote this by G,,. We must mark every node reachable from s in this
graph. Suppose that we have already done these things in the graph G,, ,. We
form G,, from G,, , by adding the single edge with weight w;. Let (i, v) denote
this edge. Nodes are reachable from s in G,, that were not reachable in G, ,
only if u was reachable and v was not. This new edge then allows v to be reach-
able. Unmarked nodes now reachable from s via v can all be marked reachable
by starting a depth-first search from v. The algorithm will stop at the first edge
that allows ¢ to be reached. The edge with the smallest weight in this path to ¢

215

Optimization Problems

will be the edge with weight w; added during this iteration. There is no path from
s to t in the input graph with a larger smallest weighted edge, because ¢ was not
reachable when only the larger edges were added. Hence, this path is a path to
t in the graph whose smallest weighted edge is the largest. This is the required
output of this subroutine.

Running Time: Even though the algorithm for finding the path with the largest
smallest edge runs depth-first search for each weight w;, because the work done
before is reused, no node in the process is marked reached more than once, and
hence no edge is traversed more than once. It follows that this process requires
only O(m) time, where m is the number of edges. This time, however, is domi-
nated by the time O(mlog m) to sort the edges.

Code:
algorithm LargestShortestWeight (G, s, t)

(pre-cond): G is a weighted directed (augmenting) graph. s is the source
node. t is the sink.
(post-cond): P specifies a path from s to t whose smallest edge weight is as
large as possible. (u, v) is its smallest weighted edge.
begin
Sort the edges by weight from largest to smallest
G’ = graph with no edges
mark s reachable
loop
(loop-invariant): Every node reachable from s in G’ is marked
reachable.

exit when t is reachable
(u, v) = the next largest weighted edge in G
Add (u, v) to G
if(uis marked reachable and v is not) then
Do a depth-first search from v, marking all reachable nodes
not marked before.
end if
end loop
P =pathfromstotin G
return(P, (u, v))
end algorithm

Running Time of Steepest Ascent: How many times must the network flow algo-
rithm augment the flow in a path when the path chosen is that whose augmentation
capacity is the largest possible?

Decreasing the Remaining Distance by a Constant Factor: The flow starts out as
zero and may need to increase to be as large as O(m - 2°) when there are m edges

Network Flows and Linear Programming

with ¢ bit capacities. We would like the number of steps to be not exponential
but linear in ¢. One way to achieve this is to ensure that the current flow dou-
bles each iteration. This, however, is likely not to happen. Another possibility is
to turn the measure of progress around. After the ith iteration, let R; denote the
remaining amount that the flow must increase. More formally, suppose that the
maximum flow is rate;,, and that the rate of the current flow is rate(F). The re-
maining distance is then R; = ratepx — rate(F). We will show that the amount
Wmin by which the flow increases is at least some constant fraction of R;.

Bounding the Remaining Distance: The funny thing about this measure of
progress is that the algorithm does not know what the maximum flow rate,,x
is. It is only needed as part of the analysis. We must bound how big the remain-
ing distance, R; = ratey, — rate(F), is. Recall that the augmentation graph for
the current flow is constructed so that the augmentation capacity of each edge
gives the amount that the flow through this edge can be increased by. Hence, just
as the sum of the capacities of the edges across any cut C = (U, V) in the network
acts as an upper bound to the total flow possible, the sum of the augmentation
capacities of the edges across any cut C = (U, V) in the augmentation graph acts
as an upper bound to the total amount that the current flow can be increased.

Choosing a Cut: We need to choose which cut we will use. (This is not part of
the algorithm.) As before, the natural cut to use comes out of the algorithm that
finds the path from s to ¢. Let wy;;, = w; denote the smallest augmentation ca-
pacity in the path whose smallest augmentation capacity is largest. Let G,,_, be
the graph created from the augmenting graph by deleting all edges whose aug-
mentation capacities are smaller than or equal to w,;,,. This is the last graph that
the algorithm that finds the augmenting path considers before adding the edge
with weight wy,;, that connects s and ¢. We know that there is not a path from
s totin Gy, ,, or else there would be an path in the augmenting graph whose
smallest augmenting capacity was larger then w;,;,. Form the cut C = (U, V) by
letting U be the set of all the nodes reachable from s in G,, , and letting V be
those that are not. Now consider any edge in the augmenting graph that crosses
this cut. This edge cannot be in the graph G,, ,, or else it would be crossing from
anode in U that is reachable from s to a node that is not reachable from s, which
is a contradiction. Because this edge has been deleted in G, ,, we know that its
augmentation capacity is at most w;,;;,. The number of edges across this cut is
at most the number of edges in the network, which has been denoted by m. It
follows that the sum of the augmentation capacities of the edges across this cut
C = (U, V) is at most m - Wyp.

Bounding the Increase, wy,;, > ,inRi: We have determined that the remaining
amount that the flow needs to be increased, R; = rate,,,; — rate(F), is at most the
sum of the augmentation capacities across the cut C, which is at most m - w,p,
thatis, R; < m - wyi,. Rearranging this gives that wy,;; > %Rl-.

217

218

Optimization Problems

The Number of Iterations: If the flow increases each iteration by at least % times
the remaining amount R;, it decreases the remaining amount, giving that R;;; <
R — % R;. You might think that it follows that the maximum flow is obtained in
only m iterations. This would be true if R, < R, — % Ry. However, it is not, be-
cause the smaller R; gets, the smaller the amount it decreases by. One way to
bound the number of iterations needed is to note that R, < (1 — #)iRo and then
either to bound logarithms to base 1 — - or to note that lim,, .o (1 —)" = 1 ~
ﬁ. However, I prefer the following method. As long as R; is big, we know that it
decreases by a lot. After some Ith iteration, say that R; is still big when it is still
at least § R;. As long as this is the case, R; decreases by at least # R; > 5= Ry. Af-
ter m such iterations, R; would decrease from R; to %RI. The only reason that
it would not continue to decrease this fast would be that it already had de-
creased that much. Either way, we know that every m iterations, R; decreases
by a factor of two. This process may make you think of Zeno’s paradoxes. If
you cut the remaining distance in half and then in half again and so on, then
though you get very close very fast, you never actually get there. However, if
all the capacities are integers, then all values will be integers, and hence when
R; decreases to less than one, it must in fact be zero, giving us the maximum
flow.

Initially, the remaining amount R; = ratem,y — rate(F) is at most O(m - 2°).
Hence, if it decreases by at least a factor of 2 each m iterations, then after
mj iterations, this amount is at most O(m - 2¢/27). This reaches one when j =
O(log,(m - 2%) = O + logm), or in O(m¢ + mlogm) iterations. If your capaci-
ties are real numbers, then you will be able to approximate the maximum flow to
within ¢’ bits of accuracy in another m¢’ iterations.

Bounding the Running Time: We have determined that each iteration takes
mlog m time and that only O(m¢ + mlogm) iterations are required. It follows
that this steepest-ascent network flow algorithm runs in time O(m?logm +
m?log® m).

Fully Polynomial Time: A lot of work has been done finding an algorithm that is
what is known as fully polynomial. This requires that the number of iterations be
polynomial in the number of values and not depend at all on the values them-
selves. Hence, if you charge only one time step for addition and subtraction, even
if the capacities are strange things like +/2, then the algorithm gives the exact an-
swer (at least symbolically) in polynomial time. My father, Jack Edmonds, and a
colleague, Richard Karp, developed such an algorithm in 1972. It is a version of
the original Ford-Fulkerson algorithm. In it, however, in each iteration, the path
from s to ¢ in the augmentation graph with the smallest number of edges is aug-
mented. This algorithm iterates at most O(nm) times, where 7 is the number of
nodes and mthe number of edges. In practice, this is slower than the O(m¢)-time
steepest-ascent algorithm.

Network Flows and Linear Programming

EXERCISE 15.3.1 Could we use binary search on the weights wp,,, to find the critical
weight (see Section 1.4), and if so, would that be faster? Why?

EEX3 Linear Programming

When Iwas an undergraduate, I had a summer job with a food company. Our goal was
to make cheap hot dogs. Every morning we got the prices of thousands of ingredients:
pig hearts, sawdust, etc. Each ingredient had an associated variable indicating how
much of it to add to the hot dogs. There are thousands of linear constraints on these
variables: so much meat, so much moisture, and so on. Together these constraints
specify which combinations of ingredients constitute a hot dog. The cost of the hot
dog is a linear function of the quantities you put into it and their prices. The goal is
to determine what to put into the hot dogs that day to minimize the cost. This is an
example of a general class of problems referred to as linear programs.

Formal Specification: A linear program is an optimization problem whose con-
straints and objective functions are linear functions. The goal is to find a setting of
variables that optimizes the objective function, while respecting all of the constraints.

Precondition: We are given one of the following instances.

Instances: An input instance consists of (1) a set of linear constraints on a
set of variables and (2) a linear objective function.

Postcondition: The output is a solution with minimum cost and the cost of that
solution.

Solutions for Instance: A solution for the instance is a setting of all the vari-
ables that satisfies the constraints.

Measure of Success: The cost or value of a solutions is given by the objective
function.

Example 15.4.1: Instance Example
maximize
7X1 — 6X2 + 5X3 + 7x4
subject to
3x1 +7x +2x3 +9x4 < 258
6x1 +3x +9x3 — 6x4 <721
2x1 + 1x, +5x3 +5x4 <524
3x1 +6x +2x3 +3x4 <411
4x; — 8xp — 4x3 +4x4 < 685

219

220

Optimization Problems

%)

Optimal solution

Hill-climbing algorithm
Initial soluti

Objective function
_— / / 5

Figure 15.8: The Euclidean space representation of a linear program with n = 2.

Matrix Representation: A linear program can be expressed very compactly using
matrix algebra. Let n denote the number of variables and m the number of con-
straints. Let a denote the row of n coefficients in the objective function, let M denote
the matrix with mrows and n columns of coefficients on the left-hand side of the con-
straints, let b denote the column of m coefficients on the right-hand side of the con-
straints, and finally let x denote the column of n variables. Then the goal of the linear
program is to maximize a - x subjectto M- x < b.

Network Flows: The network flows problem can be expressed as instances of linear
programming. See Exercise 15.4.1.

The Euclidean Space Interpretation: Each possible solution, giving values to the
variables xi, ..., X, can be viewed as a point in n-dimensional space. This space is
easiest to view when there are only two or three dimensions, but the same ideas hold
for any number of variables.

Constraints: Each constraint specifies a boundary in space, on one side of which
a valid solution must lie. When n = 2, this constraint is a one-dimensional line.
See Figure 15.8. When n = 3, it is a two-dimensional plane, like the side of a box.
In general, it is an (n — 1)-dimensional space. The space bounded by all of the
constraints is called a polyhedral.

Vertices: The boundary of the polyhedral is defined by vertices where a number
of constraints intersect. When n = 2, pairs of line constraints intersect at a vertex.
See Figure 15.8. For n = 3, three sides of a box define a vertex (corner). In general,

Network Flows and Linear Programming

it requires n constraints to intersect to define a single vertex. This is because say-
ing that the solution is on the constraint is saying that the linear equation holds
with equality and not with “less than or equal to.” Then recall that » linear equa-
tions with n unknowns are sufficient to specify a unique solution.

The Objective Function: The objective function gives a direction in Euclidean
space. The goal is to find a point in the bounded polyhedral that is the furthest
in this direction. The best way to visualize this is to rotate the Euclidean space
so that the objective function points straight up. The goal is to find a point in the
bounded polyhedral that is as high as possible.

A Vertex Is an Optimal Solution: As you can imagine from looking at Figure 15.8,
if there is a unique solution, it will be at a vertex where n constraints meet. If there
is a whole region of equivalently optimal solutions, then at least one of them will
be a vertex. Our search for an optimal solution will focus on these vertices.

The Hill-Climbing Algorithm: The obvious algorithm simply climbs the hill
formed by the outside of the bounded polyhedral until the top is reached. In defining
a hill-climbing algorithm for linear programming we just need to devise a way to find
an initial valid solution and to define what constitutes a step to a better solution.

A Step: Suppose, by the loop invariant, we have a solution that, in addition to
being valid, is also a vertex of the bounding polyhedral. More formally, the solu-
tion satisfies all of the constraints and meets n of the constraints with equality.
A step will involve climbing along the edge (one-dimensional line) between two
adjacent vertices. This involves relaxing one of the constraints that is met with
equality, so that it no longer is met with equality, and tightening one of the con-
straints that was not met with equality so that it now is met with equality. This is
called is called pivoting out one equation and in another. The new solution will
be the unique solution that satisfies with equality the 7 presently selected equa-
tions. Of course, at each iteration such a step can be taken only if it continues to
satisfy all of the constraints and improves the objective function. There are fast
ways of finding a good step to take. However, even if you do not know these, there
are only 7 - m choices of steps to try, when there are n variables and m equations.

Finding an Initial Valid Solution: If we are lucky, the origin will be a valid solu-
tion. However, in general finding some valid solution is itself a challenging prob-
lem. Our algorithm to do so will be an iterative algorithm that includes the con-
straints one at a time. Suppose we have a vertex solution that satisfies all of the
constraints in Example 15.4.1 except the last one. We will then treat the negative
of this next constraint as the objective function, namely —4x; + 8x; + 4x3 — 4x4.
We will run our hill-climbing algorithm, starting with the vertex we have, until
we have a vertex solution that maximizes this new objective function subject to
the first i equations. This is equivalent to minimizing the objective 4x; — 8x; —
4x3 + 4x,. If its minimum is less that 685, then we have found a vertex solution

221

222

Optimization Problems

that satisfies the first i + 1 equations. If not, then we have determined that no
such solution exists.

No Small Local Maximum: To prove that the algorithm eventually finds a global
maximum, we must prove that it will not get stuck in a small local maximum.

Convex: Because the bounded polyhedral is the intersection of straight cuts, it
is what we call convex. More formally, this means that the line between any two
points in the polyhedral is also in the polyhedral. This means that there cannot
be two local maximum points, because between these two hills there would need
to be a valley and a line between two points across this valley would be outside
the polyhedral.

The Primal-Dual Method: The primal-dual method formally proves that a
global maximum will be found. Given any linear program, defined by an opti-
mization function and a set of constraints, there is a way of forming its dual min-
imization linear program. Each solution to this dual acts as a roof or upper bound
on how high the primal solution can be. Then each iteration either finds a better
solution for the primal or provides a solution for the dual linear program with a
matching value. This dual solution witnesses the fact that no primal solution is
bigger.

Forming the Dual: If the primal linear program is to maximize a - x sub-
ject to Mx < b, then the dual is to minimize b” - y subject to MT -y > a”,
where b, M”, and a” are the transposes formed by interchanging rows and
columns. The dual of Example 15.4.1 is
minimize
258 + 721y, + 524y; + 411y, + 685y5
subject to
3y +6y2+2ys+3ys+4ys =7
7y1+3y2+ 1y +6ys —8ys > —6
21 +9y2 +5y3 + 2y, —4ys > 5
I — 6y, +3ys+3ya+4ys =7
The dual will have a variable for each constraint in the primal and a con-
straint for each of its variables. The coefficients of the objective function be-
come the numbers on the right-hand sides of the inequalities, and the num-
bers on the right-hand sides of the inequalities become the coefficients of

the objective function. Finally, “maximize” becomes “minimize.” The dual is
the same as the original primal.

Upper Bound: We prove that the value of any solution to the primal linear
program is at most the value of any solution to the dual linear program. The
value of the primal solution x is a - x. The constraints M” - y > a” can be

Network Flows and Linear Programming

turned around to give a < yT - M. This gives thata - x < yT - M- x. Using the
constraints Mx < b, this is at most y” - b. This can be turned around to give
bT . y, which is the value of the dual solution y.

Running Time: The primal-dual hill-climbing algorithm is guaranteed to find the
optimal solution. In practice, it works quickly (though for my summer job, the com-
puters would crank for hours). However, there is no known hill-climbing algorithm
that is guaranteed to run in polynomial time.

There is another algorithm that solves this problem, called the ellipsoid
method. Practically, it is not as fast, but theoretically it provably runs in polynomial
time.

EXERCISE 15.4.1 Express the network flow instance in Figure 15.2 as a linear
program.

EEXJ Exercises

EXERCISE 15.5.1 (See solution in Part Five.) Let G = (LU R, E) be a bipartite graph
with nodes L on the left and R on the right. A matching is a subset of the edges such
that each node appears at most once. For any A C L, let N(A) be the neighborhood set
of A, namely N(A) = {v € R | Ju € A such that (u, v) € E}. Prove Hall’s theorem, which
states that there exists a matching in which every node in L is matched if and only if
VA C L, |A| = NI

1. For each of the following two bipartite graphs, give a short witness either to the
fact that it has a perfect matching or to the fact that it does not. Use Hall's theorem
in your explanation why a graph does not have a matching. No need to mention

flows or cuts.
1 2 3 4 5 1 2 3 4 5
A B C D E A B C D E

2. =:Suppose there exists a matching in which every node in L is matched. Foru € L,
let M(u) € R specify one such matching. Prove thatVA C L, |A| < |N(A)|.

3. Section 20.4 describes a network with nodes {s} U L U RU {t} with a directed edge
from s to each node in L, the edges E from L to R in the bipartite graph directed
from L to R, and a directed edge from each node in R tot. The notes give each edge
capacity 1. However, the edges (u, v) across the bipartite graph could just as well be

given capacity co. Consider some cut (U, V) in this network. Note that U contains
s, some nodes of L, and some nodes of R, whereas V contains the remaining nodes

223

Optimization Problems

of L, the remaining nodes of R, and t. Assume thatVA C L, |A| < |N(A)|. Prove
that the capacity of this cut, i.e., cap(U, V) =", ;> ,cv Cun, 1S at least | L.

4. <«<:Assumethat VA C L, |A| < |N(A)| is true. Prove that there exists a matching in
which every node in L is matched. (Hint: Use everything you know about network
flows.)

224 5. Suppose that there is some integer k > 1 such that every node in L has degree at

least k and every node in R has degree at most k. Prove that there exists a matching
in which every node in L is matched.

1 6 Greedy Algorithms

Every two-year-old knows the greedy algo-
rithm. In order to get what you want, just start
grabbing what looks best.

EIXN Abstractions, Techniques, and Theory

Specifications: A very select number of optimization problems can be solved using
a greedy algorithm. Most of these have the following form.

Precondition: We are given one of the following instances.

Instances: An instance consists of a set of objects and a relationship between
them. Think of the objects as being prizes that you must choose among.

Postcondition: Given an instance, the goal is to find one of the valid solutions for
this instance with optimal (minimum or maximum as the case may be) measure
of success. (The solution to be outputted need not be unique.)

Solutions for Instance: A solution requires the algorithm to make a choice
about each of the objects in the instance. Sometimes, this choice is complex,
but usually it is simply whether or not to keep it. In this case, a solution is the
subset of the objects that you have kept. The catch is that some subsets are
not allowed because these objects conflict somehow with each other.

Measure of Success: Each solution is assigned a cost or measure of success.
Often, when a solution consists of a nonconflicting subset of the objects, this

225

Optimization Problems

measure is the number of objects in the subset or the sum of the costs of its
individual objects. Sometimes the measure is a more complex function.

The Brute Force Algorithm (Exponential
Time): The brute force algorithm for an optimi-

226 zation problem considers each possible solution

for the given instance, computes its cost, and
outputs the cheapest. Because each instance
has an exponential number of solutions, this
algorithm takes exponential time.

The Greedy Choice: The greedy step is the first that would come to mind when de-
signing an algorithm for a problem. Given the set of objects specified in the input
instance, the greedy step chooses and commits to one of these objects because, ac-
cording to some simple criterion, it seems to be the best. When proving that the algo-
rithm works, we must be able to prove that this locally greedy choice does not have
negative global consequences.

EXAMPLE 16.1.1 The Game Show

Suppose the instance specifies a set of prizes and
an integer m and allows you to choose m of the
prizes. The criterion, according to which some
of these prizes appear to be better than others,
may be its dollar price, the amount of joy it would
bring you, how practical it is, or how much it
would impress the neighbors. At first it seems ob-
vious that you should choose your first prize us-
ing the greedy approach. However, some of these
prizes conflict with each other, and (as is often
the case in life) compromises need to be made. For example, if you take the pool, then
your yard is too full to be able to take many of the other prizes. A lion might impress
your neighbors, but it might eat your dog. As is also true in life, it is sometimes hard to
look into the future and predict the ramifications of the choices made today.

EXAMPLE 16.1.2 Making Change

The goal of this optimization problem is to find the minimum number of quarters,
dimes, nickels, and pennies that total to a given amount. An instance consists of
a set of objects and a relationship between them. Here, the set is a huge pile of
coins, and the relationship is that the chosen coins must total to the given amount.
The cost of a solution, which is to be minimized, is the number of coins in the
solution.

Greedy Algorithms

EXAMPLE 16.1.2 Making Change (cont.)

The Greedy Choice: The coin that appears to be best to take is a quarter, because it
makes the most progress towards making our required amount while only incurring a
cost of one.

A Valid Choice: Before committing to a quarter, we must make sure that it does not 227

conflict with the possibility of arriving at a valid solution. If the sum to be obtained
happens to be less than $0.25, then this quarter should be rejected, even though it
appears at first to be best. On the other hand, if the amount is at least $0.25, then we
can commit to the quarter without invalidating the solution we are building.

Leading to an Optimal Solution: A much more difficult and subtle question is
whether or not committing to a quarter leads us towards obtaining an optimal solu-
tion. In this case, it happens that it does, though this not at all obvious.

Going Wrong: Suppose that the problem is generalized to include as part of the input
the set of coin denominations available. Then greedy algorithm does not work. For
example, suppose we have 4-, 3-, and 1-cent coins. If the given amount is 6, than the
optimal solution contains two 3-cent coins. We go wrong by greedily committing to a
4-cent coin.

Proof of Correctness Using Loop Invariants: Committing to the pool, to the
lion, or to the 4-cent coin, though they locally appear to be the best objects, does not
lead to an optimal solution. However, for some problems and for some definitions
of “best,” the greedy algorithm does work. When it does not work, we will prove it
using one simple counterexample as we did above. When it does work, we will prove
it using the same method with which we prove all iterative algorithms correct: loop
invariants.

Main Steps: Each iteration the algorithm chooses the best object from among
those not considered so far and either commits to it or rejects it.

Make Progress: One more object has been considered.
Exit Condition: All objects have been considered.

Loop Invariant: Recall that a loop invariant makes a statement each time the al-
gorithm is at the top of the loop about what it has accomplished. So far the al-
gorithm has made one iteration, during which it has committed to one of the
objects. What statement do we want to make about this action?

Types of Loop Invariants: In order to find a good loop invariants, let us start by
considering the types of loop invariants considered in Section 1.4. It turns out that
our chosen loop invariant will be of the narrowing-the-search-space type.

More of the Output: Recall that the more-of-the-output loop invariant states
that the first i items of the output have been produced and the output

Optimization Problems

constructed so far is correct. In the case of greedy algorithms, the output is a
decision about each object, and the algorithm makes another decision each it-
eration. Hence, the first part of the loop invariant is easily maintained. However,
what does it even mean for the output constructed so far to be correct?

228 No Conflict Yet: If our goal is to obtain a solution that has no conflicts, a

good loop invariant might be that within the commitments made so far,
there are no conflicts. The problem with this is that the commitments made
so far may have backed the algorithm into a corner so that future conflicts
are inevitable. See Exercise 16.1.3.

The Postcondition as a Loop Invariant: The postcondition is that the algo-
rithm has committed to an optimal solution. However, at this point we can-
not talk about the algorithm’s “solution,” because before the algorithm com-
pletes it may have made some commitments already, but this partial work

does not yet constitute a valid solution.

Optimal So Far: The loop invariant might be “What the algorithm has done
so far is optimal.” However, being optimal is a property of full solutions, and
we don’t have one yet.

More of the Input: Recall that the more-of-the-input loop invariant states that if
we pretend that the prefix of the input read so far by the algorithm is the entire in-
put, then the algorithm has an optimal solution. Though this is tempting, it does
not work. That what you have is optimal within this part of the instance is only
a local property. It won't necessarily guarantee global optimality. For example, if
the input of the game show problem consisted of only a lion, then the optimal
solution would be to take the lion. However, when there are also more objects,
the lion is not part of the solution. Similarly, in the make change problem with
4-, 3-, and 1-cent coins, if the input is to make the amount 4, then one should
take a 4; but not if the input is to make the amount 6.

Narrowing the Search Space: Recall the narrowing-the-search-space type of
loop invariant. While searching for something, the algorithm narrows the search
space. The loop invariant is “If the thing being searched for is anywhere, then it
is in this narrowed search space.” Greedy algorithms are in fact searching for an
optimal solution from the search space of all possible solutions. Every time the
algorithm commits to something, the set of possible solutions that it might still
output narrows to those that are consistent with the decisions made so far. A nat-
ural loop invariant would then be “If the optimal solution being searched for is
anywhere, then it is consistent with the decisions made so far.”

“The” Optimal Solution Contains the “Best” Object: Before committing to
the seemingly best object or making the first decision, we need to prove that
we do not go wrong by doing so. As a first attempt, we might try to prove
that for every set of objects that might be given as an instance, the “best” of

Greedy Algorithms

these objects is definitely in its optimal solution. The problem with this is
that there may be more than one optimal solution. It might not be the case
that all of them contain the chosen object.

At Least One Optimal Solution Remaining: Instead of requiring all optimal
solutions to contain the “best” object, what we need to prove is that at least
one does. The effect of this is that though committing to the “best” object
may eliminate the possibility of some of the optimal solutions, it does not
eliminate all of them. There is the saying, “Do not burn your bridges behind
you.” The message here is slightly different. It is o.k. to burn a few of your
bridges as long as you do not burn all of them.

If There Is an Optimal Solution: For most problems, it is clear that an in-
stance has at least one solution (maybe a trivial solution) and hence there
is a best solution. Hence, this first conditional part of the loop invariant is
usually dropped. Be aware, however, that it is sometimes needed. See Exer-
cise 16.1.3.

The Chosen Loop Invariant: To recap, the loop invariant is that we have not gone
wrong. If there is a solution, then there is at least one optimal solution consistent with
the choices made so far.

The Second Step: After the “best” object has been chosen and committed to, the
algorithm must continue and choose the remaining objects for the solution. You can
think about this process within either the iterative or the recursive paradigm. Though
the resulting algorithm is (usually) the same, having the different paradigms at your
disposal can be helpful.

Iterative: In the iterative version, there is a main loop. At each iteration, you
choose the best from amongst the objects that have not yet been considered.
The algorithm then commits to some choice about this object. Usually, this in-
volves deciding whether to commit to putting this chosen object in the solution
or to commit to rejecting it.

AValid Choice: The most common reason is that it conflicts with the objects
committed to previously. Another reason is that the object fills no require-
ments that are not already filled by the objects already committed to.

Cannot Predict the Future: At each step, the choice that is made can depend
on the choices that were made in the past, but it cannot depend on the
choices that will be made in the future. Because of this, no backtracking is
required.

Making Change Example: The greedy algorithm for finding the minimum
number of coins summing to a given amount is as follows. Commit to

229

230

Optimization Problems

quarters until the next quarter increases your current sum above the re-
quired amount. Then reject the remaining quarters. Then do the same with
the dimes, the nickels, and the pennies.

Recursive: A recursive greedy algorithm makes a greedy first choice and then re-
curses once or twice in order to solve the remaining subinstance.

Making Change Example: After committing to a quarter, we could subtract
$0.25 from the required amount and ask a friend to find the minimum num-
ber of coins to make this new amount. Our solution will be his solution plus
our original quarter.

Binary Search Tree Example: The recursive version of a greedy algorithm is
more useful when you need to recurse more than once. For example, sup-
pose you want to construct a binary search tree for a set of keys that mini-
mizes the total height of the tree, i.e., a balanced tree. The greedy algorithm
will commit to the middle key being at the root. Then it will recurse once for
the left subtree and once for the right.

To learn more about how to recurse after the greedy choice has been made, see
the recursive backtracking algorithms in Chapter 17.

Proof of Correctness: Greedy algorithms themselves are very easy to understand
and to code. If your intuition is that they should not work, then your intuition is
correct. For most optimization search problems, no greedy algorithms that are tried
work. By some miracle, however, for some problems there is a greedy algorithm that
works. The proof that they work, however, is very subtle and difficult. As with all iter-
ative algorithms, we prove that they work using loop invariants.

A Formal Proof: Chapter 1 proves that an iterative algorithm works if the loop in-
variant can be established and maintained and from it the postcondition can be
proved. The loop invariant here is that the algorithm has not gone wrong: there is
at least one optimal solution consistent with the choices made so far. This is es-
tablished ({pre) — (LI)) by noting that initially no choices have been made and
hence all optimal solutions are consistent with these choices. The loop invariant
is maintained ((LI') & not (exit) & codejyo, — (LI")) as follows. If it is true when
at the top of the loop, then let optS;; denote one such solution. codejy,, during
the next iteration either commits to or rejects the next best object. The proof
describes a method for modifying optS;; into opitS,,,, and proves that this is a
valid solution, is consistent both with the choices made previously by the algo-
rithm and with this new choice, and is optimal. The existence of such a op1S,,,,,
proves that the loop invariant has been maintained. The last step is to prove that
in the end, the algorithm has a concrete optimal solution ({(LI) & (exit) — (post)).
Progress is made at each step by committing to or rejecting another object. When
each object has been considered, the algorithm exits. These choices specify a

Greedy Algorithms

solution. The loop invariant states there is an optimal solution consistent with
these choices. Hence, the solution obtained must be optimal.

We will now redo the proof in a more intuitive, fun, and detailed way.

The Loop Invariant: The loop invariant maintained is that we have not gone

wrong. There is at least one optimal solution consistent with the choices made 231

so far, that is, containing the objects committed to so far and not containing the
objects rejected so far.

Three Players: To help understand this proof, we will tell a story involving three
characters: the algorithm, the prover, and a fairy godmother.

The Algorithm: At each iteration, the algorithm chooses the best object from
amongst those not considered so far and either commits to it or rejects it.

The Prover: The prover’s task is to prove that the loop invariant is main-
tained. Having a separate prover emphasizes that fact that his actions are
not a part of the algorithm and hence do not need to be coded or executed.

The Fairy Godmother: Instead of the prover pretending that he has and is
manipulating a hypothetical optimal solution optS;;, he can pretend that he
has a fairy godmother who holds and manipulates one for him. We say that
this solution witnesses the fact such a solution exists. Having a separate fairy
godmother emphasizes that neither the algorithm nor the prover actually
knows the solution.

Initially ({ pre) — (LI)): Initially, the algorithm has made no choices, neither
committing to nor rejecting any objects. The prover then establishes the loop
invariant as follows. Assuming that there is at least one legal solution, he knows
that there must be an optimal solution. He goes on to note that this optimal so-
lution by default is consistent with the choices made so far, because no choices
have been made so far. Knowing that such a solution exists, the prover kindly asks
his fairy godmother to find one. She, being all-powerful, has no problem doing

232

Optimization Problems

this. If there are more than one equally good optimal solutions, then she chooses
one arbitrarily.

Maintaining the Loop Invariant ({ LI') & not {exit) & codejy,, — (LI")): Now co-
nsider an arbitrary iteration.

What We Know: At the beginning of this iteration, the algorithm has a set
Commit of objects committed to so far, and a set Reject of objects rejected so
far. The prover knows that the loop invariant is true, that is, that there is at
least one optimal solution consistent with these choices made so far; how-
ever, he does not know one. Witnessing that there is one, the fairy godmother
is holding one such optimal solution. We will use optS;, to denote the solu-
tion that she holds. In addition to containing those objects in Commit and
not those in Reject, this solution may contain objects that the algorithm has
not considered yet.

Taking a Step: During the iteration, the algorithm proceeds to choose the
best object from amongst those not considered so far and either commits to
it or rejects it. In order to prove that the loop invariant has been maintained,
the prover must prove that there is at least one optimal solution consistent
with both the choices made previously and this new choice. He is going to
accomplish this by getting his fairy godmother to witness this fact by switch-
ing to such an optimal solution.

Weakness in Communication: It would be great if the prover could simply
ask the fairy godmother whether such a solution exists. However, he cannot
ask her to find such a solution if he is not already confident that it exists,
because he does not want to ask her to do anything that is impossible.

Modify Instructions: The prover accomplishes his task by giving his fairy
godmother detailed instructions. He starts by saying, “If it happens to be
the case that the optimal solution that you hold is consistent with this new
choice that was made, then we are done, because this will witness the fact
that there is at least one optimal solution consistent with both the choices
made previously and this new choice.” “Otherwise,” he says, “you must mod-
ify the optimal solution that you have in the following ways.” The fairy god-
mother follows the detailed instructions that he gives her, but gives him no
feedback as to how they go. We will use optS,,,. to denote what she con-
structs.

ours

Making Change Example: 1If the remaining amount required is at least
$0.25, then the algorithm commits to another quarter. Excluding the
committed-to coins, the fairy godmother’s optimal solution optS,;; must
be making up the same remaining amount. This amount must contain
either an additional quarter, three dimes, two dimes and a nickel, one
dime and three nickels, five nickels, or combinations with at least five

Greedy Algorithms

pennies. The prover tells her to replace the three dimes with the newly
committed-to quarter and nickel, and the other options with just the
quarter. If the algorithm, on the other hand, rejects the next (and later
all remaining) quarters because the remaining amount required is less
than $0.25, then the prover is confident that optimal solution held by

his fairy godmother cannot contain additional quarters either. 233

Proving That She Has a Witness: It is the job of the prover to prove that the
thing optS,,,,, that his fairy godmother now holds is a valid, consistent, and
optimal solution.

Proving a Valid Solution: Because he knows that what she had been
holding, optS,,, at the beginning of the iteration was a valid solution,
he knows that the objects in it did not conflict in any way. Hence, all he
needs to do is to prove that he did not introduce any conflicts that he did
not fix.

Making Change Example: The prover was careful that the changes he
made did not change the total amount that she was holding.

Proving Consistency: He must also prove that the solution she is now
holding is consistent both with the choices made previously by the al-
gorithm and with this new choice. Because he knows that what she had
been holding was consistent with the previous choices, he only needs to
prove that he modified it to be consistent with the new choices without
messing up earlier ones.

Making Change Example: Though the prover may have removed some
of the coins that the algorithm has not considered yet, he was sure not
to have her remove any of the previously committed-to coins. He also
managed to add the newly committed-to quarter.

Proving Optimal: You might think that proving that the solution optS,,,,
is optimal would be hard, given that we do not even know the cost of
an optimal solution. However, the prover can be assured that it is opti-
mal as long as its cost is the same as the optimal solution, optS,;, from
which it was derived. If there were a case in which the prover managed
to improve the solution, then this would contradict the fact that opzS,; is
optimal. This contradiction only proves that such a case will not occur.
However, the prover does not need to concern himself with this prob-
lem.

Making Change Example: Each change that the prover instructs his fairy
godmother to make either keeps the number of coins the same or de-

creases the number. Hence, because optS,; is optimal, optS,,,,, is as well.

Optimization Problems

This completes the prover’s proof that his fairy godmother now has an op-
timal solution consistent both with the previous choices and with the latest
choice. This witnesses the fact that such a solution exists.

This proves that the loop invariant has been maintained.

234 Continuing: This completes everybody’s requirements for this iteration. The

process is repeated over and over again. Each iteration, the algorithm commits
to more about the solution, and the fairy godmother’s solution is changed to be
consistent with these commitments.

Exiting Loop ((LI) & (exit) — (post)): After the algorithm has considered every
object in the instance and each has either been committed to or rejected, the
algorithm exits. We still know that the loop invariant is true. Hence, the prover
knows that there is an optimal schedule optS;, consistent with all of these
choices. Previously, this optimal solution was only imagined. However, now we
concretely know that this imagined solution consists of those objects committed
to. Hence, the algorithm can return this set as the solution.

Running Time: Greedy algorithms are very fast, because they take only a small
amount of time per object in the instance.

Fixed vs. Adaptive Priority: Iterative greedy algorithms come in two flavors, fixed
priority and adaptive priority.

Fixed Priority: A fixed-priority greedy algorithm begins by sorting the objects in
the input instance from best to worst according to a fixed greedy criterion. For
example, it might sort the objects based on the cost of the object or the arrival
time of the object. The algorithm then considers the objects one at a time in this
order.

Adaptive Priority: In an adaptive priority greedy algorithm, the greedy criterion
is not fixed, but depends on which objects have been committed to so far. At
each step, the next-best object is chosen according to the current greedy crite-
rion. Blindly searching the remaining list of objects each iteration for the next-
best object would be too time-consuming. So would re-sorting the objects each
iteration according to the new greedy criterion. A more efficient implemen-
tation uses a priority queue to hold the remaining objects prioritized accord-
ing to the current greedy criteria. This can be implemented using a heap. (See
Section 10.4.)

Code:
algorithm AdaptiveGreedy(set of objects)

(pre-cond): The input consists of a set of objects.
(post-cond): The output consists of an optimal subset of them.

Greedy Algorithms

begin
Put objects in a priority queue according to the initial greedy
criterion
Commit = () % set of objects previously committed to
loop

(loop-invariant): There is at least one optimal solution
consistent with the choices made so far

exit when the priority queue is empty
Remove “best” object from priority queue
If this object does not conflict with those in Commit and is
needed, then
Add object to Commit
end if
Update the priority queue to reflect the new greedy criterion
This is done by changing the priorities of the objects effected.
end loop
return (Commit)
end algorithm

Example: Dijkstra’s shortest-weighted-path algorithm (Section 14.3) can be
considered to be a greedy algorithm with an adaptive priority criteria. It
chooses the next edge to include in the optimal shortest-weighted-path tree
based on which node currently seems to be the closest to s. Those yet to be
chosen are organized in a priority queue. Even breadth-first and depth-first
search can be considered to be adaptive greedy algorithms. In fact, they very
closely resemble Prim’s minimal-spanning-tree algorithm (Section 16.2.3),
in how a tree is grown from a source node. They are adaptive in that as the
algorithm proceeds, the set from which the next edge is chosen changes.

EXERCISE 16.1.1 We proved that the greedy algorithm does not work for the making
change problem when the denominations of the coins are 4, 3, and 1 cent, but it does
work when the denominations are 25, 10, 5, and 1. Does it work when the denomina-
tions are 25, 10, and 1, with no nickels?

EXERCISE 16.1.2 Suppose the coin denominations are ¢; > ¢; > --- > ¢, in the or-
der taken by the greedy algorithm. An interesting problem is determining whether the
greedy algorithm works. A complete answer to this question is too hard. However, what
restrictions on the coin denominations are sufficient to ensure that the greedy algo-
rithm works?

* Suppose, for each i, each coin c; is an integer multiple of the next smaller c;1,, e.g.,
120, 60, 12, 3, 1. If this is true, do we know that the greedy algorithm works? If it is
not true, do we know that the greedy algorithm does not work?

235

236

Optimization Problems

* Suppose, for each i, each coin is more than twice the previous, that is, ¢; > 2¢iy1.

Do we know that the greedy algorithm works? If this is not true, do we know that
the greedy algorithm does not work?

* Other interesting characteristics?

EXERCISE 16.1.3 The 2-coloring problem is as follows: Given any undirected n-
node graph, color the nodes with two colors so that no edge connects two nodes of
the same color (i.e., adjacent nodes always have different colors), or report that it is
impossible.

1.

A tempting loop invariant is “There are no adjacent nodes of the same color in
my partial solution.” In order for this to be a good loop invariant, one needs to be
able to arrive from Mars, knowing nothing about what the algorithm has done
so far except that the loop invariant is true. From here that algorithm must be
able to continue until the postcondition is obtained. Prove that this is a bad loop
invariant as follows:

(a) Provide a graph that has a valid 2-coloring.

(b) Provide a valid partial coloring that a (faulty) algorithm may provide for

which the loop invariant holds.
(c) Prove that the algorithm has gone wrong because there are no valid colorings
consistent with this partial solution.

This is an example in which an instance might not have any valid solution. One
possible algorithmic technique is to check the validity of the solution after all the
nodes have been colored. Another is to check as it proceeds, to make sure that the
coloring being created has no mistakes. (Which technique is used in the binary
search algorithm?) For each of these two techniques, give a loop invariant and
then prove (pre-cond) & codey, = (post-cond).

Briefly describe a greedy algorithm. The algorithm should be able to handle graphs
that are not connected.

Is the greedy criterion used adaptive or nonadaptive? Does it need to be?

Prove that the loop invariant is maintained. ({loop-invariant’) & not{exit-cond)
& codeloop = (loop-invariant”)). Be sure to handle boundary conditions, e.g., the
first iteration, and graphs that are not connected.

What is the running time of your algorithm?

K] Examples of Greedy Algorithms

16.2.1 Example: The Job/Event Scheduling Problem

Suppose that many people want to use your conference room for events and you
must schedule as many of these as possible. (The version in which some events are
given a higher priority is considered in Section 19.3.) We examine a fixed-priority
greedy algorithm.

Greedy Algorithms

Specifications:

Precondition: We are given one of the following instances.

Instances: An instance is ((s1, fi), (S2, f2), ..., (Sn, fu)), where 0 <s; < f; are
the starting and finishing times for the ith event.

Postcondition: The output is a solution with maximum number of events sched-
uled.

Solutions: A solution for an instance is a schedule S. This consists of a subset
S c [1..n] of the events that don’t conflict by overlapping in time.

Measure of Success: The success of a solution S is the number of events
scheduled, that is, | S].

Possible Criteria for Defining “Best”:

The Shortest Event f;—s;: It seems that it would be best to schedule short events
first, because they increase the number of events scheduled without booking the
room for a long period of time. This greedy approach does not work.

Counterexample: Suppose that the following lines indicate the starting and
completing times of three events to schedule.

We would be going wrong to schedule the short event in the middle, because
the only optimal schedule does not include it.

The Earliest Starting Time s; or the Latest Finishing Time f;: First come first ser-
ved, which is a common scheduling algorithm, does not work either.

Counterexample:

The long event is both the earliest and the latest. Committing to scheduling
it would be a mistake.

Event Conflicting with the Fewest Other Events: Scheduling an event that con-
flicts with other events prevents you from scheduling these events. Hence a rea-
sonable criterion would be to first schedule the event with the fewest conflicts.

Counterexample: In the following example, the middle event would be com-
mitted to first. This eliminates the possibility of scheduling four events.

237

238

Optimization Problems
Commit -

Figure 16.1: A set of events and those committed to by the earliest-finishing-time-first Greedy
algorithm.

Earliest Finishing Time f;: This criterion may seem a little odd at first, but it
makes sense. It says to schedule the event that will free up your room for some-
one else as soon as possible. We will see that this criterion works for every set of
events.

Example: You can trace out this algorithm on the example shown in Figure 16.1.
Code: A greedy algorithm for the event scheduling problem.
algorithm Scheduling({(s1, fi), (S2, £2), - -+, {Sn, Ju)))
(pre-cond): The input consists of a set of events.
(post-cond): The output consists of a schedule that maximizes the number of
events scheduled.
begin
Sort the events based on their finishing times f;
Commit=1¢ % The set of events committed to be in the schedule
loopi=1...n % Consider the events in sorted order.
if(event i does not conflict with an event in Commit) then
Commit= CommitU {i}
end loop
return(Commi)
end algorithm

The Loop Invariant: The loop invariant is that we have not gone wrong: There is at
least one optimal solution consistent with the choices made so far, that is, containing

the objects committed to so far and not containing the objects rejected so far.

Initial Code ({ pre) — (LI)): Initially, no choices have been made, and hence triv-
ially all optimal solutions are consistent with these choices.

Commit N

j<i j=i
Figure 16.2: A set of events, those committed to at the current point in time, those rejected,
those in the optimal solution assumed to exist, and the next event to be considered.

Greedy Algorithms

Maintaining the Loop Invariant ((LI') & not (exit) & codei,op — (LI")): We
are at the top of the loop of the algorithm. Consider the example in Figure 16.2.

Hypothetical Optimal Solution: Let optS;; denote one of the hypothetical opti-

mal schedules assumed to exist by the loop invariant.

Algorithm’s Actions: If event i conflicts with an event in Commit, then the al-
gorithm rejects it. optS;; contains all the events in Commit and hence cannot
contain event i either. Hence, the loop invariant is maintained. From here on, let
us assume that i does not conflict with any event in Commit and hence will be

added to it.

Modifying Optimal Solutions: If we are lucky, the schedule optS;; already con-
tains event i. In this case, we are done. Otherwise, we will modify the schedule
by adding i and removing any events that
conflict with it. This modifying is not part of the algorithm, as we do not actually

optS;; into another schedule opzS,,,,

have an optimal schedule yet.

AValid Solution: Our modified set opzS,,,,,
contained none and we were careful to introduce none.

Consistent with Choices Made: optS,; was consistent with the previous choices.
consistent with these choices. We did not re-

We added event i to make optS,,,,,,
move any events from Commit, because these do not conflict with event i.

Optimal: To prove that optS

ours

both be in the schedule optS;;, because it contains conflicts.

Loop Invariant Has Been Maintained: In conclusion, we have constructed a
that contains the events in CommitU {i} and no

valid optimal schedule optS,,,,,
rejected events. This proves that the loop invariant is maintained.

Exiting Loop ((LI) & {exit) — (post)): By LI, there is an optimal schedule optS;;
containing the events in Commit and not containing the previous events not in
Commit. Because all events are previous events, it follows that Commit = optS;; is

in an optimal schedule for our instance.

239

contains no conflicts, because optS,;

has the optimal number of events in it, we need
only to prove that it has at least as many as optS;;. We added one event to the
schedule. Hence, we must prove that we have not removed more than one. Let j
denote a deleted event. Being in optS;, and not in Commit, it must be an event
not yet considered. Because the events are sorted based on their finishing time,
j > iimplies that event j finishes after event i finishes, thatis, f; > f. If event j
conflicts with event i, it follows that it also starts before it finishes, i.e., s; < f. (In
Figure 16.2, there are three future events conflicting with i.) Combining f; > f;
and s; < f; gives that such an event j is running at the finishing time f; of event
i. Hence, any two such events j conflict with each other. Therefore, they cannot

240

Optimization Problems

® o0 o006 & o000 o e o o Figure 16.3: An example instance of the

—_ —————— interval cover problem. The intervals in
one optimal solution are highlighted.

Running Time: The loop is iterated once for each of the n events. The only work is
determining whether event i conflicts with a event within Commit. Because of the
ordering of the events, event i finishes after all the events in Commit. Hence, it con-
flicts with an event in Commit if and only if it starts before the last finishing time of
an event in it. It is easy to remember this last finishing time, because it is simply the
finishing time of the last event to be added to Commit. Hence, the main loop runs in
©(n) time. The total time of the algorithm then is dominated by the time to sort the
events.

16.2.2 Example: The Interval Cover Problem

For this problem, we will develop an adaptive priority greedy algorithm.

Specifications: Given a set of points and intervals, the goal is to find an optimal
cover, that is, a subset of the intervals that covers all the points and that contains the
minimum number of intervals.

Precondition: We are given one of the following instances.

Instances: An instance consists a set P of points and a set I of intervals on
the real line. An interval consists of a starting and a finishing time (s;, f;). See
the example in Figure 16.3.

Postcondition: The output is a solution with minimum cost and the cost of that
solution.

Solutions: A solution for an instance is a subset S of the intervals that covers
all the points. It is fine if the intervals overlap.

Measure of Success: The cost of a solution S is | S|, the number of intervals
required. Having longer or shorter intervals does not matter. Covering the
points more than once does not matter. Covering parts of the line without
points does not matter. Only the number of intervals matters.

The Adaptive Greedy Criterion: The algorithm sorts the points and covers them
in order from left to right. If the intervals committed to so far cover all of the points
in P, then the algorithm stops. Otherwise, let P; denote the leftmost pointin P thatis
not covered by Commit. The next interval committed to must cover this next uncov-
ered point, P,. Of the intervals that start to the left of the point, the algorithm greedily
takes the one that extends as far to the right as possible. The hope in doing so is that
the chosen interval, in addition to covering P, will cover as many other points as pos-
sible. Let I; denote this interval. If there is no such interval I; or it does not extend to

Greedy Algorithms

the right far enough to cover the point, P, then no interval covers this point, and the
algorithm reports that no subset of the intervals covers all of the points. Otherwise,
the algorithm commits to this interval by adding it to Commit. This greedy criterion
with which to select the next interval changes as the point P, to be covered changes.

The Loop Invariant: The loop invariant is that we have not gone wrong: There is at
least one optimal solution consistent with the choices made so far, that is, containing
the objects committed to so far and not containing the objects rejected so far.

Maintaining the Loop Invariant ((LI') & not (exit) & codei,op — (LI")): Assume
that we are at the top of the loop and that the loop invariant is true, so that there
exists an optimal cover that contains all of the intervals in Commit. Let optS;; denote
such a cover that is assumed to exist. If we are lucky and optS,; already contains the
interval I; being committed to in this iteration, then we automatically know that
there exists an optimal cover that contains all of the intervals in CommitrU {I;} and
hence the loop invariant has been maintained. If, on the other hand, the interval I;
being committed to is not in opt i, then we must modify this optimal solution into
another optimal solution that does contain it.

Modifying optS,, into optS,,,,.;: The optimal solution optS;; must cover the point
P.. Let I denote one of the intervals in optS;; that covers P,. Our solution optS,,,,,
is the same as oprS;; except that I; is removed and I; is added. We know that
I; is not in Commit, because the point P; is not covered by Commit. Hence, as

constructed, optS,,,,,, contains all the intervals in CommitU {I;}.

optS,,, Is an Optimal Solution: Because optS,; is an optimal cover, we can prove
that optS,,,, in an optimal cover, by proving that it covers all of the points covered
by optS,; and that it contains the same number of intervals.

The algorithm considered the point P, because it was the leftmost uncovered
point. It follows that the intervals in Commit cover all the points to the left of P.

The interval I/, because it covers P, must start to the left of P,. Hence, the
algorithm must have considered it when it chose I;. Now I}, being the interval
that extends as far to the right as possible of those that start to the left of P, must
extend at least as far to the right as I, and hence I; covers as many points to
the right as I;; covers. It follows that optS,,,,, covers all of the points covered by
optS,;.

Because opiS,,,, is an optimal solution containing CommitU {I;}, we have
proved such a solution exists. Hence, the loop invariant has been maintained.

ours

Maintaining the Greedy Criterion: As the point P, to be covered changes, the
greedy criterion according to which the next interval is chosen changes. Blindly
searching for the interval that is best according to the current greedy criterion would
be too time-consuming. The following data structures help to make the algorithm
more efficient.

241

242

Optimization Problems

An Event Queue: The progress of the algorithm can be viewed as an event marker
moving along the real line. An event in the algorithm occurs when this marker
reaches either the start of an interval or a point to be covered. This is imple-
mented not with an actual marker, but with an event queue. The queue is con-
structed initially by sorting the intervals according to their start time and the
points according to their position, and merging these two lists together. The al-
gorithm removes and processes these events one at a time.

Additional Loop Invariants: The following additional loop invariants relate the
current position event marker with to current greedy criterion.

LI1, Points Covered: All the points to the left of the event marker have been
covered by the intervals in Commit.

LI2, the Priority Queue: A priority queue contains all intervals (except pos-
sibly those in Commiz) that start to the left of the event marker. The priority
according to which they are organized is how far f; to the right the inter-
val extends. This priority queue can be implemented using a heap. (See Sec-
tion 10.4.)

LI3, Last Place Covered: A variable last indicates the rightmost place cov-
ered by an interval in Commit.

Maintaining the Additional Loop Invariants:

A Start Interval Event: When the event marker passes the starting time s; of
an interval I;, this interval from then on will start to the left of the event
marker and hence is added to the priority queue, its priority being its finish-
ing time f;.

An End Interval Event: When the event marker passes the finishing time f;
of an interval I;, we learn that this interval will not be able to cover future
points P,. Though the algorithm no longer wants to consider this interval,
the algorithm will be lazy and leave it in the priority queue. Its priority will
be lower than those actually covering P,. The algorithm does not consider
these events, there being nothing useful to do with them.

A Point Event: When the event marker reaches a point P, in P, the algorithm
uses last > P; to check whether the point is already covered by an interval
in Commit. If it is covered, then nothing needs to be done. If not, then LI1
assures us that this point is the leftmost uncovered point. LI2 ensures that
the priority queue is organizing the intervals according to the current greedy
criterion, namely, it contains all intervals that start to the left of the point B,
sorted according to how far to the right the interval extends. Let I; denote the
highest-priority interval in the priority queue. Assuming that it covers P, the
algorithm commits to it. As well, if it covers P;, then it must extend further to
theright than other intervals in Commit, and hence lastis updated to f;. (The

Greedy Algorithms

algorithm can either remove the interval I; committed to from the priority
queue or not. That interval will not extend far enough to the right to cover
the next uncovered point, and hence its priority will be low in the queue.)

Code: Interval point cover.
algorithm IntervalPointCover (P, I)

(pre-cond): P is aset of points, and I is a set of intervals on a line.
{ post-cond): The output consists of the smallest set of intervals that covers all of
the points.

begin
Sort P ={P, ..., P,} in ascending order of p;’s.
Sort I = {(s1, fi), ..., (Sm» Jm)} in ascending order of s;’s.
Events = Merge(P, I) % sorted in ascending order
consideredl = % the priority queue of intervals being considered
Commit = () % solution set: covering subset of intervals
last = —o0 % rightmost point covered by intervals in Commit

for each event e € Events, in ascending order do
if(e = (s;, fj)) then
Insert interval (s;, f;) into the priority queue consideredl with
priority f;
else (e= P)
if(P; > last) then % P, is not covered by Commit
(sj, fj) = ExtractMax(consideredl) % f; is max in consideredl
if(consideredI was empty or P, > f;) then
return (P, cannot be covered)

else
Commit = CommitU {j}
last = f;
end if
end if
end if
end for

return (Commit)
end algorithm

Running Time: The initial sorting takes O((n + m) log(n + m)) time. The main loop
iterates n + m times, once per event. Since H contains a subset of I, the priority
queue operations Insert and ExtractMax each take O(logm) time. The remaining
operations of the loop take O(1) time per iteration. Hence, the loop takes a total
of O((n + m)log m) time. Therefore, the running time of the algorithm is O((n + m)
log(n + m)).

243

244

Optimization Problems

16.2.3 Example: The Minimum-Spanning-Tree Problem

Suppose that you are building a network of computers. You need to decide which
pairs of computers to run a communication line between. You want all of the com-
puters to be connected via the network. You want to do it in a way that minimizes
your costs. This is an example of the minimum-spanning-tree problem.

Definitions: Consider a subset S of the edges of an undirected graph G.

ATree: Sissaid to be freeif it contains no cycles and is connected.

Spanning Set: S is said to span the graph iff every pair of nodes is connected by
a path through edges in S.

Spanning Tree: S is said to be a spanning tree of G iff it is a tree that spans the
graph. Cycles will cause redundant paths between pairs of nodes.

Minimal Spanning Tree: S is said to be a minimal spanning tree of G iff it is a
spanning tree with minimal total edge weight.

Spanning Forest: If the graph G is not connected, then it cannot have a spanning
tree. S is said to be a spanning forest of G iff it is a collection of trees that spans
each of the connected components of the graph. In other words, pairs of nodes
that are connected by a path in G are still connected by a path if we consider only
the edges in S.

Specification: The goal of the minimum-spanning-tree (-forest) problem s to find a
minimum spanning tree (forest) for a given graph.
Precondition: We are given one of the following instances.

Instances: An instance consists of an undirected graph G. Each edge {u, v} is
labeled with a real-valued (possibly negative) weight wy,, ;.

Postcondition: The output is a solution with minimum cost and the cost of that
solution.

Solutions: A solution for an instance is a spanning tree (forest) S of the
graph G.

Measure of Success: The cost of a solution S is the sum of its edge weights.

Possible Criteria for Defining “Best”:

Cheapest Edge (Kruskal’s Algorithm): The obvious greedy algorithm simply
commits to the cheapest edge that does not create a cycle with the edges com-
mitted to already. See the example in Figure 16.4.

Greedy Algorithms

Checking for a Cycle: One task that this algorithm must be able to do quickly
is to determine whether the new edge i creates a cycle with the edges in
Commiit. As a task in itself, this would take a while. However, if we maintain
an extra data structure, this task can be done very quickly.

Connected Components of Commit: We partition the nodes in the graph
into sets so that between any two nodes in the same set, Commit pro-
vides a path between them, and between any two nodes in different sets,
Commit does not connect them. These sets are referred to as compo-
nents of the subgraph induced by the edges in Commit. The algorithm
can determine whether the new edge i creates a cycle with its edges in
Commit by checking whether the end points of the edge i = {1, v} are
contained in the same component. The required operations on compo-
nents are handled by the following union—find data structure.

Union-Find Set System: This data structure maintains a number of dis-
joint sets of elements and allows three operations: (1) Makeset(v), which
creates a new set containing the specified element v; (2) Find(v), which
determines the name of the set containing a specified element; and (3)
Union(u, v), which merges the sets containing the specified elements u
and v. On average, for all practical purposes, each of these operations
can be competed in a constant amount of time. See Section 3.1.

Code: Kruskal’s algorithm with the union—find data structure incorpo-
rated is as follows.

algorithm KruskalMST (G)

(pre-cond): G is an undirected graph.
(post-cond): The output consists of a minimal spanning tree.

begin
Sort the edges based on their weights wy,, ;.
Commit = ¢ % The set of edges committed to
loop for each v
% With no edges in Commit, each node is in a component
by itself.
MakeSet(v)
end for
loopi=1...m % Consider the edges in sorted order.
uand v are end points of edge i.
if(Find(u) # Find(v)) then
% The end points of edge i are in different components
and hence do not create a cycle with edges in Commit.
Commit= Commit U {i}

245

246

Optimization Problems

Union(u, v) % Edge i connects the two components:
hence they are merged into one

component.
end if

end loop
return(Commit)
end algorithm

Running Time: The initial sorting takes O(mlogm) time when G has m
edges. The main loop iterates m times, once per edge. Checking for a cycle
takes time «(n) < 4 on average. Therefore, the running time of the algorithm
is O(mlog m).

Cheapest Connected Edge (Prim’s Algorithm): The following greedy algorithm
expands out a tree of edges from a source node as done in the generic search
algorithm of Section 14.1. At each iteration it commits to the cheapest edge of
those that expand this tree, that is, the cheapest from amongst those edges that
are connected to the tree Commit and yet do not create a cycle with it. See the
example in Figure 16.4.

Advantage: If you are, for example, trying to find a minimum spanning tree

of the World Wide Web, then you may not know about an edge until you have

expanded out to it.

Prim’s algorithm: priority queue
53 61 @ 81
53 61 07 95 81
53 61 (D) 64 }35 99 95 81
3 61 67 84 64 85 99 95 81
©)-67 84 64 85 99 95 81
5667 84764 85 99 95 81
97 7%4 M85 99 95 81
97 (73.84 85 99 95 81
97 [6.89 84 85 9995 81
97 89 34 3§ 99 93

Input graph:

Kruskal’s algorithm:

D0 O@ X BE MM G X XXX X 9794@%;?5

Figure 16.4: Both Kruskal’s and Prim’s algorithms are run on the given graph. For Kruskal’s
algorithm the sorted order of the edges is shown. For Prim’s algorithm the running content of
the priority queue is shown (edges are in no particular order). Each iteration, the best edge is
considered. If it does not create a cycle, it is added to the minimum spanning tree. This is shown
by circling the edge weight and darkening the graph edge. For Prim’s algorithm, the lines out
of the circles indicate how the priority queue is updated. If the best edge does create a cycle,
then the edge weight is crossed out.

Greedy Algorithms

Adaptive: This is an adaptive greedy algorithm, because which edges are
considered changes as the algorithm proceeds. A priority queue is main-
tained with the allowed edges, with priorities given by their weights wy,, -
Because the allowed edges are those that are connected to the tree Commit,
when a new edge i is added to Commit, the edges connected to i are added
to the queue.

Code: Prim’s MST algorithm.
algorithm PrimMST(G)

(pre-cond): G is an undirected graph.
(post-cond): The output consists of a minimum spanning tree.

begin
Let s be the start node in G.
Commit= 0 % The set of edges committed to

Queue = edges adjacentto s % Priority queue
Loop until Queue = ¢
i = cheapest edge in Queue
if(edge i does not create a cycle with the edges in Commit) then
Commit = CommitV {i}
Add to Queue edges adjacent to edge i that have not been
added before
end if
end loop
return(Commit)
end algorithm

Checking for a Cycle: As in the generic search algorithm of Section 14.1, be-
cause one tree is grown, one end of the edge i will have been found already.
It will create a cycle iff the other end has also been found already.

Running Time: The main loop iterates m times, once per edge. The priority
queue operations Insertand ExtractMax each takes O(log m) time. Therefore,
the running time of the algorithm is O(mlog m).

A More General Algorithm: When designing an algorithm it is best to leave as
many implementation details unspecified as possible. This gives more freedom
to anyone who may want to implement or to modify your algorithm. Also, it pro-
vides better intuition as to why the algorithm works. The following is a greedy
criterion that is quite general.

Cheapest Connected Edge of Some Component: Partition the nodes of the
graph G into connected components of nodes that are reachable from each
other only through the edges in Commit. Nodes with no adjacent edges will
be in a component by themselves. Each iteration, the algorithm is free to

247

248

Optimization Problems

choose one of these components for any reason it likes. Denote this com-
ponent by C. (C can be the union of a number of different components.)
Then the algorithm greedily commits to the cheapest edge of those that ex-
pand this component, that is, the cheapest from amongst those edges that
are connected to the component and yet do not create a cycle with it. When-
ever it likes, the algorithm also has the freedom to throw away uncommitted
edges that create a cycle with the edges in Commit.

Generalizing: This greedy criterion is general enough to include both
Kruskal’s and Prim’s algorithms. Therefore, if we prove that this greedy algo-
rithm works no matter how it is implemented, then we automatically prove
that both Kruskal’s and Prim’s algorithms work.

Cheapest Edge (Kruskal’s Algorithm): This general algorithm may cho-
ose the component that is connected to the cheapest uncommitted edge
that does not create a cycle. Then when it chooses the cheapest edge out
of this component, it gets the overall cheapest edge.

Cheapest Connected Edge (Prim’s Algorithm): This general algorithm
may always choose the component that contains the source node s.
This amounts to Prim’s algorithm.

The Loop Invariant: The loop invariant is that we have not gone wrong. There is at
least one optimal solution consistent with the choices made so far.

Maintaining the Loop Invariant ((LI') & not (exit) & codejo,, — (LI")): Seethe
example in Figure 16.5. If we are unlucky and the optimal minimum spanning tree
optS;, thatis assumed to exist by the loop invariant does not contain the edge i being
committed to this iteration, then we must modify this optimal solution optS,; into
another one optS,,,,, that contains all of the edges in CommitU {i}. This proves that
the loop invariant has been maintained.

Modifying optS; into optS,,,,: To the optimal solution optS;; we add the edge
i = {u, v} being committed to this iteration. Because optS,, spans the graph G,
there is some path P within it from node u to node v. This path along with the
edge i = {u, v} creates a cycle, which must be broken by removing one edge from
P. Let C denote the component of Commit that the general greedy algorithm
chooses the edge i from. Because i expands the component without creating a
cycle with it, one and only one of the edge i’s nodes u and v is within the com-
ponent. Hence, this path P starts within C and ends outside of C. Hence, there
must be some edge j in the path that leaves C. We will delete this edge from our
optimal minimum spanning tree: optS,,,,, = optS;; U {i} — {j}.

Greedy Algorithms

Boundries of components
—— Edges in Commit
Edges from which to choose i
_____ Edges in Opt
not shown Qther edges

Figure 16.5: C is one of the components of the graph induced by the edges in Commit. Edge
i is the cheapest out of C. Edge j is an edge in optS;; that is out of C. Finally, optS,,,,, is formed
by removing j and adding i.

optS,,,,, is an Optimal Solution:

optS,,,. Has No Cycles: Because optS,; has no cycles, we create only one cy-
cle by adding edge i, and we destroy this cycle by deleting edge j.

optS,,,.s Spans G: Because optS,; spans G, optS,,,, spans it as well. Any path
between two nodes that goes through edge j in optS;; will now follow the
remaining edges of path P together with edge i in optS

ours*

optS,,,,. Has Minimum Weight: Because optS;; has minimum weight, it is
sufficient to prove that edge i is at least as cheap as edge j. Note that by
construction edge j leaves component C and does not create a cycle with
it. Because edge i was chosen because it was the cheapest such edges, (or at
least one of the cheapest) it is true that edge i is at least as cheap as edge j.

EXERCISE 16.2.1 Show how the earliest-finishing-time criterion works on the three
counterexamples in Section 16.2.1 and on the example in Figure 16.1.

EXERCISE 16.2.2 (See solution in Part Five.) For the example in Section 16.2.2, con-
sider the greedy criterion that selects the interval that covers the largest number of un-
covered points. Does this work? If not, give a counterexample.

EXERCISE 16.2.3 In Figure 16.4, suppose we decide to change the weight 56 to some
other real number from —oo to +oo. What is the interval of values that it could be
changed to for which the minimum spanning tree remains the same? Explain your
answer. Similarly for the weight 85.

249

250

Optimization Problems

EXERCISE 16.2.4 Give a simple graph with edge weights for which the tree of shortest
weighted paths from node s is not a minimum spanning tree.

K] Exercises

EXERCISE 16.3.1 One aspect of the game called magic (or jugio) is as follows. You
have n defense cards, the ith of which, denoted D;, has worth w; and defense ability
d;. Your opponent has n attack cards, the jth of which, denoted A ;, has attack ability
a;. You can see all of the cards. Your task is to define a one-to-one matching between
the attacking cards and the defending cards, that is, each attack card is allocated to
a unique defense card. If card D; is defending against A; and d; < a;, then d; dies.
Your goal is to maximize the sum of the worths w; of your cards that live. Give your
algorithm. Then prove that it works.

EXERCISE 16.3.2 (See solution in Part Five.) Review the job/event scheduling prob-
lem from Section 16.2.1. This problem is the same except you have r rooms/processors
within which to schedule that the set of jobs/events in two rooms or on two processors.
An instance is (1, (1, fi), (S2, f2), - - -, (Sn, Jn)), Where, as before, 0 < s; < f; are the start-
ing and finishing times for theith event. But now the input also specifies the number of
rooms, r. A solution for an instance is a schedule S = (S,, . . ., S;) for each of the rooms.
Each of these consists of a subset S; C [1..n] of the events that don’t conflict by over-
lapping in time. The success of a solution S is the number of events scheduled, that is,
| Ujerry SI. Consider the following four algorithms:

1. Find the greedy solution for the first room. Then find the greedy solution for the
second room from the remaining events. Then for the third room, and so on.

2. The algorithm starts by sorting the events by their finishing times, just as in the
one-room case. Then, it looks at each event in turn, scheduling it if possible. If it
can be scheduled in more than one room, we assign it in the first room in which
it fits, i.e., first try room 1, then room 2, and so on, until it fits. If it cannot be
scheduled in any room, then it is not scheduled.

3. The same, except that the next event is scheduled in the room with the latest last-
scheduled finishing time. For example, if the last event scheduled in room 5 fin-
ishes at time 10 and the last event scheduled in room 12 finishes at time 15 and the
next event starts at time 17, then the next event could be scheduled into either of
these rooms. This algorithm would schedule it, however, in room 12.

4. The same except that the next event is scheduled in the room with the earliest last-
scheduled finishing time.

Prove that three of these algorithms do not lead to an optimal schedule, and the re-
maining one does.

1 / Recursive Backtracking

The brute force algorithm for an optimization problem is to simply compute the cost
or value of each of the exponential number of possible solutions and return the best.
A key problem with this algorithm is that it takes exponential time. Another (not ob-
viously trivial) problem is how to write code that enumerates over all possible solu-
tions. Often the easiest way to do this is recursive backtracking. The idea is to design
arecurrence relation that says how to find an optimal solution for one instance of the
problem from optimal solutions for some number of smaller instances of the same
problem. The optimal solutions for these smaller instances are found by recursing.
After unwinding the recursion tree, one sees that recursive backtracking effectively
enumerates all options. Though the technique may seem confusing at first, once you
get the hang of recursion, it really is the simplest way of writing code to accomplish
this task. Moreover, with a little insight one can significantly improve the running
time by pruning off entire branches of the recursion tree. In practice, if the instance
that one needs to solve is sufficiently small and has enough structure that a lot of
pruning is possible, then an optimal solution can be found for the instance reason-
ably quickly. For some problems, the set of subinstances that get solved in the recur-
sion tree is sufficiently small and predictable that the recursive backtracking algo-
rithm can be mechanically converted into a quick dynamic programming algorithm.
See Chapter 18. In general, however, for most optimization problems, for large worst
case instances, the running time is still exponential.

EEAD Recursive Backtracking Algorithms

An Algorithm as a Sequence of Decisions: An algorithm for finding an optimal
solution for your instance must make a sequence of small decisions about the solu-
tion: “Do we include the first object in the solution or not?” “Do we include the sec-
ond?” “The third?” ..., or “At the first fork in the road, do we go left or right?” “At the
second fork which direction do we go?” “At the third?”.... As one stack frame in the
recursive algorithm, our task is to deal only with the first of these decisions. A recur-
sive friend will deal with the rest. We saw in Chapter 16 that greedy algorithms make

251

252

Optimization Problems

decisions simply by committing to the option that looks best at the moment. How-
ever, this usually does not work. Often, in fact, we have no inspirational technique to
know how to make each decision in a way that leads to an optimal (or even a suffi-
ciently good) solution. The difficulty is that it is hard to see the global consequences
of the local choices that we make. Sometimes a local initial sacrifice can globally lead
to a better overall solution. Instead, we use perspiration. We try all options.

EXAMPLE 17.1.1 Searching a Maze

When we come to a fork in the road, all possible directions need to be tried. For each,
we get a friend to search exhaustively, backtrack to the fork, and report the highlights.
Our task is to determine which of these answers is best overall. Our friends will have
their own forks to deal with. However, it is best not to worry about this, since their path
is their responsibility, not ours.

High-Level Code: The following is the basic structure that the code will take.
algorithm Alg(I)

(pre-cond): I is an instance of the problem.
(post-cond): optSol is one of the optimal solutions for the instance I, and
optCost is its cost.
begin
if(I is small) then
return(brute force answer)
else
% Deal with the first decision by trying each of the K possibilities.

Recursive Backtracking

fork=1to K
% Temporarily, commit to making the first decision in the kth way:.
(optSol,, optCost;) = Recursively deal with all the remaining deci-
sions, and in doing so find the best solution
optSol, for our instance I from among those

consistent with this kth way of making the 253

first decision. optCost, is its cost.
end for

% Having the best, optSol,, for each possibility k, we keep the best of
these best.
kmin = “a k that minimizes optCost,”
optSol = optSol,,
optCost = optCost,,
return (optSol, optCost)
end if
end algorithm

EXAMPLE 17.1.2 Searching for the Best Animal

Suppose, instead of searching through a structured maze, we are searching through a
large set of objects, say for the best animal at the zoo. See Figure 17.1. Again we break
the search into smaller searches, each of which we delegate to a friend. We might ask
one friend for the best vertebrate and another for the best invertebrate. We will take
the better of these best as our answer. This algorithm is recursive. The friend with the
vertebrate task asks a friend to find the best mammal, another for the best bird, and
another for the best reptile.

A Classification Tree of Solutions: This algorithm unwinds into the tree of stack
frames that directly mirrors the taxonomy tree that classifies animals. Each solution
is identified with a leaf.

Iterating through the Solutions to Find the Optimal One: This algorithm amounts
to using depth-first search (Section 14.4) to traverse this classification tree, iterating
through all the solutions associated with the leaves. Though this algorithm may seem
complex, it is often the easiest way to iterate through all solutions.

Speeding Up the Algorithm: This algorithm is not any faster than the brute force al-
gorithm that simply compares each animal with every other. However, the structure
that the recursive backtracking adds can possibly be exploited to speed up the algo-
rithm. A branch of the tree can be pruned off when we know that this does not elim-
inate all optimal solutions. Greedy algorithms (Chapter 16) prune off all branches ex-
cept one path down the tree. In Section 18.2, we will see how dynamic programming
reuses the optimal solution from one subtree within another subtree.

254

Optimization Problems

I
vertemte/ invertebrate

/] \\\
mammal bird reptile

canine lizard snake
) cat //\\\ bear //\\\ //\\\
H./s/ap\zeﬂs // \\ /\\
((dad) (gamekeeper)(cheetah)(black) (panda) (polar)

Figure 17.1: Classification tree of animals.

NG

The Little Bird Abstraction: [like to use a little bird A“
abstraction to help focus on two of the most difficult and
creative parts of designing a recursive backtracking al-
gorithm.

What Question to Ask: The key difference between
searching a maze and searching for the best ani-
mal is that in the first the forks are fixed by the
problem, but in the second the algorithm designer
is able to choose them. Instead of forking on vertebrates vs invertebrates, we
could fork on brown animals vs green animals. This choice is a difficult and cre-
ative part of the algorithm design process. It dictates the entire structure of the
algorithm, which in turns dictates how well the algorithm can be sped up. I like to
view this process of forking as asking a little bird a question, “Is the best animal
a vertebrate or an invertebrate?” or “Is the best vertebrate, a mammal, a bird,
a reptile, or a fish?” The classification tree becomes a strategy for the game of
twenty questions. Each sequence of possible answers (for example, vertebrate—
mammal-cat—cheetah) uniquely specifies an animal. Worrying only about the
top level of recursion, the algorithm designer must formulate one small question
about the optimal solution that is being searched for. The question should be
such that having a correct answer greatly reduces your search.

Constructing a Subinstance for a Friend: The second creative part of designing a
recursive backtracking algorithm is how to express the problem “Find the best
mammal” as a smaller instance of the same search problem. The little bird helps
again. We pretend that she answered “mammal.” Trusting (at least temporar-
ily) in her answer helps us focus on the fact that we are now only considering
mammals, and this helps us to design a subinstance that asks for the best one. A
solution to this subinstance needs to be translated before it is in the correct form
to be a solution to our instance.

Recursive Backtracking

Given one instance

L]

Classification of solutions

Set of solutions for instance

based on first question

Find best solution in each class

—
o

0
0 0g0q0090,

o

—
o

=]

Tree of questions to learn a solution

First question

ossible answers

bbb &
>~ _ - =

All solutions
Classification of solutions bases on first question

Choose the best of the best

o

Figure 17.2: Classifying solutions and taking the best of the best.

A Flock of Stupid Birds vs. a Wise Little Bird: The following two ways of thinking
about the algorithm are equivalent.

255

A Flock of Stupid Birds: Suppose that our question about whether the opti-
mal solution is a mammal, a bird, or a reptile has K different answers. For
each, we pretend that a bird gave us this answer. Giving her the benefit of
doubt, we ask a friend to give us the optimal solution from among those that
are consistent with this answer. At least one of these birds must have been
telling us the truth. We find it by taking the best of the optimal solutions ob-
tained in this way. See Figure 17.2 for an illustration of these ideas.

A Wise Little Bird: If we had a little bird who would answer our questions
correctly, designing an algorithm would be a lot easier: We ask the little bird
“Is the best animal a bird, a mammal, a reptile, or a fish?” She tells us a
mammal. We ask our friend for the best mammal. Trusting the little bird
and the friend, we give this as the best animal. Just as nondeterministic fi-
nite automata (NFAs) and nondeterministic Turing machines can be viewed
as higher powers that provide help, our little bird can be viewed as a limited
higher power. She is limited in that we can only ask her questions that do
not have too many possible answers, because in reality we must try all these
possible answers.

256

Optimization Problems

EEZ] The Steps in Developing a Recursive Backtracking

This section presents the steps that I recommend using when developing a recursive
backtracking algorithm. To demonstrate them, we will develop an algorithm for the
queens problem.

EXAMPLE 17.2.1 The Queens Problem

Physically get yourself (or make on paper) a chessboard and eight tokens to act as
queens. More generally, you could consider an n x n board and n queens. A queen can
move as far as she pleases, horizontally, vertically, or diagonally. The goal is to place all
the queens on the board in a way such that no queen is able to capture any other.

Try It: Before reading on, try yourself to place the queens on an 8-by-8 board. How
would you do it?

1) Specification: The first step is to be very clear about what problem needs to be
solved. For an optimization problem, we need to be clear about what the set of in-
stances is; for each instance, what its set of solutions is; and for each solution, what
its cost or value is.

Queens: The set of possible solutions is the set of ways placing the queens on
the board. We do not value one solution over another as long as it is valid, i.e.,
no queen is able to capture any other queen. Hence, the value of a solution can
simply be one if it is a valid solution and zero if not. What is not clear is what
an input instance for this problem is, beyond the dimension n. We will need to
generalize the problem to include more instances in order to be able to recurse.
However, we will get back to that later.

2) Design a Question and Its Answers for the Little Bird: Suppose the little bird
knows one of the optimal solutions for our instance. You, the algorithm designer,
must formulate a small question about this solution and the list of its possible
answers.

Question about the Solution: The question should be such that having a cor-
rect answer greatly reduces the search. Generally, we ask for the first part of the
solution.

Queens: We might ask the bird, “Where should I place the first queen?”

The Possible Bird Answers: Together with your question, you provide the little
bird with a list Aj, A,, ..., Ak of possible answers, and she simply returns the
index k € [1..K] of her answer. To be consistent, we will always use the letter k to
index the bird answers. In order for the final algorithm to be efficient, it is impor-
tant that the number K of different answers be small.

Recursive Backtracking

Queens: Given that there are n queens and n rows and that two queens can-
not be placed in the same row, the first observation is that the first queen
must be in the first row. Hence, there are K = n different answers the bird
might give.

3) Constructing Subinstances: Suppose that the bird gives us the kth of her answers.
This giving us some of the solution; we want to ask a recursive friend for the rest of
the solution. The friend must be given a smaller instance of the same search prob-
lem. You must formulate subinstance subl for the friend so that he returns to us the
information that we desire.

Queens: I start by (at least temporarily) trusting the bird, and I place a queen
where she says in the first row. In order to give an instance to the friend, we need
to go back to step 1 and generalize the problem. An input instance will specify
the locations of queens in the first r rows. A solution is a valid way of putting
the queens in the remaining rows. Given such an instance, the question for the
bird is “Where does the queen in the next row go?” Trusting the bird, we place
a queen where she says. The instance, subl, we give the friend is the board with
these r + 1 queens placed.

Trust the Friend: We proved in Section 8.7 that we can trust the friend to pro-
vide an optimal solution to the subinstance subl, because he is really a smaller
recursive version of ourselves.

4) Constructing a Solution for My Instance: Suppose that the friend gives you an
optimal solution opt Sub Sol for his instance subI. How do you produce an optimal
solution opt Sol for your instance I from the bird’s answer k and the friend’s solution
opt Sub Sol?

Queens: The bird tells you where on the r + 1st row the queen should go and
your friend tells you where on the rows r + 2 to n the queens should go. Your solu-
tion combines these to tell where the on the rows r + 1 to n the queens should go.

We can trust the friend to give provide an optimal solution to the subin-
stance subl, because he is really a smaller recursive version of ourselves. Recall,
in Section 8.7, we used strong induction to prove that we can trust our recursive
friends.

5) Costs of Solutions and Subsolutions: We must also return the cost optCost of our
solution optSol.

Queens: The solutions in this case, don’t have costs.

6) Best of the Best: Try all the bird’s answers, and take best of the best.

Queens: If we trust both the bird and the friend, we conclude that this process
finds us a best placement of the queens. If, however, our little bird gave us the
wrong placement of the queen in the r + 1st row, then this might not be the best
placement. However, our work was not wasted, because we did succeed in find-
ing the best placement from amongst those consistent with this bird’s answer.

257

258

Optimization Problems

Not trusting the little bird, we repeat this process, finding a best placement start-
ing with each of the possible bird answers. Because at least one of the bird an-
swers must be correct, one of these placements must be an overall best. We re-
turn the best of these best as the overall best placement.

To find the best of these best placements, let optSol, and optCost, denote the
optimal solution for our instance I and its cost that we formed when tem-
porarily trusting the kth bird’s answer. Search through this list of costs optCost,,
optCost,, . .., optCosty, finding the best one. Denote the index of the chosen one by
kmax- The optimal solution that we will return is then optSol = optSol, and its cost
is optCost = optCost;, .

7) Base Cases: The base case instances are instances of your problem that are small
enough that they cannot be solved using steps 26, but they can be solved easily in a
brute force way. What are these base cases, and what are their solutions?

Queens: If all n queens have been placed, then there is nothing to be done.

8) Code: The following code might be made slightly simpler, but in order to be con-
sistent we will always use this same basic structure.

algorithm Queens (C, n, r)

(pre-cond): C = ({1, 1), (2, &), ..., (1, ¢+)) places the jth queen in the jth row
and the c;th column. The remaining rows have no queen.
(post-cond): Returned if possible is a placement optSol of the n queens consis-
tent with this initial placement of the first r queens. A placement is legal if no two
queens can capture each other. Whether this is possible is flagged with optCost
equal to one or zero.
begin
% Base case: If all the queens have been already been placed, then the
problem is easy to solve.
if(r = n) then
if(Cislegal) then optSol = C & optCost = 1 else optCost = 0
return (optSol, optCost)
else
% General case:
% Try each possible bird answer.
loopk=1...n
% The bird-and-friend algorithm: The bird tells us the column k
in which to put the r + 1st queen. We ask the friend to place the
remaining queens. This will be our best solution optSol, amongst
those consistent with this bird’s answer.
C' =CU(r+1, k) % Place a queen at this location.
(optSoly, optCost,) = Queens (C', n, 1 + 1)
end for

Recursive Backtracking

% Having the best, optSol,, for each bird’s answer k, we keep the

best of these best.
kmax = a k that maximizes optCost,,,

% i.e., if possible k for which optCost, = 1
optSol = optSol;.
optCost = optCost;,
return (optSol, optCost)
end if
end algorithm

9) Recurrence Relations: At the core of every recursive backtracking and dynamic
programming algorithm is a recurrence relation. These define one element of a se-
quence as a function of previous elements in the same sequence. The following are
examples.

The Fibonacci Sequence: If Fib(i) is the ith element in the famous Fibonacci se-
quence, then Fib(n) = Fib(n — 1) + Fib(n — 2). The base cases Fib(0) = 0 and
Fib(1) = 1 are also needed.

Running Time: If T(n) is the running time of merge sort on an input of 7 num-
bers, then we have T(n) = 2T(5) + n. The base case T(1) = 1 is also needed.

Optimal Solution: Suppose Solution[I] is defined to be an optimal solution for
instance I of a problem, and Cost[I] is its cost. This is not a sequence of ele-
ments like the previous examples, because I is not in integer. However, in Chap-
ter 18 the instances will be indexed by integers i so that Solution[i] and Cost|[i] are
sequences. But even when I is an arbitrary input instance, a recurrence relation
can be developed as follows from the bird - friend algorithm.

Solution|my instance]
= Ming¢ k) [An optimal solution to my instance from those that
are consistent with the kth bird’s answer]
= Ming¢ k) [combine bird’s answer and friend’s answer]

= Ming¢ g [combine bird’s answer and Solution|[friend’s instance]]

Cost[my instance]
= Ming¢ g [cost of optimal solution to my instance from those that
are consistent with the kth bird’s answer]
= Ming¢ k) [combine bird’s cost and friend’s cost]

= Ming¢ g [combine bird’s cost and Cost|[friend’s instance]]

Base cases “ Solution[small instance] = solution” are also needed.

259

260

Optimization Problems

Queens: For our queens example this becomes
Queens (C, n, r) = Ming¢, Queens(CU (r + 1, k), n,r + 1)

This is bit of a silly example, because here all the work is done in the base cases.

Running Time: A recursive backtracking algorithm faithfully enumerates all solu-
tions for your instance and hence requires exponential time. We will see that this
time can be reduced by pruning off branches of the recursion tree.

EEZE] Pruning Branches

The following are typical reasons why an entire branch of the solution classification
tree can be pruned off.

Invalid Solutions: Recall that in a recursive backtracking algorithm, the little bird
tells the algorithm something about the solution and then the algorithm recurses by
asking a friend a question. Then this friend gets more information about the solu-
tion from his little bird, and so on. Hence, following a path down the recursive tree
specifies more and more about a solution until a leaf of the tree fully specifies one
particular solution. Sometimes it happens that partway down the tree, the algorithm
has already received enough information about the solution to determine that it con-
tains a conflict or defect making any such solution invalid. The algorithm can stop
recursing at this point and backtrack. This effectively prunes off the entire subtree of
solutions rooted at this node in the tree.

Queens: Before we try placing a queen on the square (r + 1, k), we should check
to make sure that this does not conflict with the locations of any of the queens
on ((1, c1), (2, c2), ..., (1, ¢;)). If it does, we do not need to ask for help from this
friend. Exercise 17.5.4 bounds the resulting running time.

Time Saved: The time savings can be huge. Recall that for Example 9.2.1 in Sec-
tion 9.2, reducing the number of recursive calls from two to one decreased the
running time from ©(N) to G(log N), and how in Example 9.2.2 reducing the
number of recursive calls from four to three decreased the running time from
@(nZ) to @(nLSS...).

No Highly Valued Solutions: Similarly, when the algorithm arrives at the root of a
subtree, it might realize that no solutions within this subtree are rated sufficiently
high to be optimal—perhaps because the algorithm has already found a solution
provably better than all of these. Again, the algorithm can prune this entire subtree
from its search.

Greedy Algorithms: Greedy algorithms are effectively recursive backtracking algo-
rithms with extreme pruning. Whenever the algorithm has a choice as to which little

Recursive Backtracking

bird’s answer to take, i.e., which path down the recursive tree to take, instead of it-
erating through all of the options, it goes only for the one that looks best according
to some greedy criterion. In this way the algorithm follows only one path down the
recursive tree. Greedy algorithms are covered in Chapter 16.

Modifying Solutions: Let us recall why greedy algorithms are able to prune, so that
we can use the same reasoning with recursive backtracking algorithms. In each step
in a greedy algorithm, the algorithm commits to some decision about the solution.
This effectively burns some of its bridges, because it eliminates some solutions from
consideration. However, this is fine as long as it does not burn all its bridges. The
prover proves that there is an optimal solution consistent with the choices made by
modifying any possible solution that is not consistent with the latest choice into one
that has at least as good value and is consistent with this choice. Similarly, a recursive
backtracking algorithm can prune of branches in its tree when it knows that this does
not eliminate all remaining optimal solutions.

Queens: By symmetry, any solution that has the queen in the second half of the
first row can be modified into one that has the this queen in the first half, simply
by flipping the solution left to right. Hence, when placing a queen in the first row,
there is no need to try placing it in the second half of the row.

Depth-First Search: Recursive depth-first search (Section 14.5) is a recursive
backtracking algorithm. A solution to the optimization problem of searching a
maze for cheese is a path in the graph starting from s. The value of a solution
is the weight of the node at the end of the path. The algorithm marks nodes
that it has visited. Then, when the algorithm revisits a node, it knows that it can
prune this subtree in this recursive search, because it knows that any node reach-
able from the current node has already been reached. In Figure 14.9, the path
(s, ¢, u, v) is pruned because it can be modified into the path (s, b, u, v), which is
just as good.

EEX] satisfiability

A famous optimization problem is called satisfiability, or SAT for short. It is one of the
basic problems arising in many fields. The recursive backtracking algorithm given
here is referred to as the Davis—Putnam algorithm. It is an example of an algorithm
whose running time is exponential for worst case inputs, yet in many practical situ-
ations can work well. This algorithm is one of the basic algorithms underlying auto-
mated theorem proving and robot path planning, among other things.

The Satisfiability Problem:

Instances: An instance (input) consists of a set of constraints on the assignment
to the binary variables x;, x», . . ., X,. A typical constraint might be (x; or %3 or x3g),

261

262

Optimization Problems

meaning (x; = 1 or x3 = 0 or x3 = 1) or equivalently that either x; is true, x3 is
false, or xg is true. More generally an instance could be a more general circuit
built with AND, OR, and NOT gates, but we leave this until Section 20.1.

Solutions: Each of the 2" assignments is a possible solution. An assignment is
valid for the given instance if it satisfies all of the constraints.

Measure of Success: An assignment is assigned the value one if it satisfies all of
the constraints, and the value zero otherwise.

Goal: Given the constraints, the goal is to find a satisfying assignment.

Iterating through the Solutions: The brute force algorithm simply tries each of
the 2" assignments of the variables. Before reading on, think about how you would
nonrecursively iterate through all of these solutions. Even this simplest of examples
is surprisingly hard.

Nested Loops: The obvious algorithm is to have n nested loops each going from
0 to 1. However, this requires knowing the value of n before compile time, which
is not likely.

Incrementing Binary Numbers: Another option is to treat the assignment as an
n-bit binary number and then loop through the 2" assignments by incrementing
this binary number each iteration.

Recursive Algorithm: The recursive backtracking technique is able to iterate
through the solutions with much less effort in coding. First the algorithm com-
mits to assigning x; = 0 and recursively iterates through the 2! assignments
of the remaining variables. Then the algorithm backtracks, repeating these steps
with the choice x; = 1. Viewed another way, the first little bird question about the
solutions is whether the first variable x; is set to zero or one, the second question
asks about the second variable x;, and so on. The 2" assignments of the variables
X1, X2, ..., X, are associated with the 2" leaves of the complete binary tree with
depth n. A given path from the root to a leaf commits each variable x; to being
either zero or one by having the path turn to either the left or to the right when
reaching the ith level.

Instances and Subinstances: Given an instance, the recursive algorithm must
construct two subinstances for its friends’ to recurse with. There are two techniques
for doing this.

Narrowing the Class of Solutions: Associated with each node of the classifica-
tion tree is a subinstance defined as follows: The set of constraints remains un-
changed except that the solutions considered must be consistent in the variables
X1, X2, - .., X with the assignment given by the path to the node. Traversing a step
further down the classification tree further narrows the set of solutions.

Recursive Backtracking

Reducing the Instance: Given an instance consisting of a number of constraints
on n variables, we first try assigning x; = 0. The subinstance to be given to the
first friend will be the constraints on remaining variables given that x; = 0. For
example, if one of our original constraints is (x; OR X3 OR xg), then after assign-
ing x; = 0, the reduced constraint will be (33 OR x3). This is because it is no longer
possible for x; to be true, given that one of X3 or xg must be true. On the other
hand, after assigning x; = 1, the original constraint is satisfied independently of
the values of the other variables, and hence this constraint can be removed.

Pruning: This recursive backtracking algorithm for SAT can be sped up. This can ei-
ther be viewed globally as a pruning off of entire branches of the classification tree or
be viewed locally as seeing that some subinstances, after they have been sufficiently
reduced, are trivial to solve.

Pruning Branches Off the Tree: Consider the node of the classification tree ar-
rived at down the subpath x; =0, x, =1, x3 =1, x4 =0, ..., x5 =0. All of the
assignment solutions consistent with this partial assignment fail to satisfy the
constraint (x; OR%3 OR xg). Hence, this entire subtree can be pruned off.

Trivial Subinstances: When the algorithm tries to assign x; = 0, the constraint
(x1 OR X3 OR xg) is reduced to (X3 or xg). Assigning x, = 1 does not change this
particular constraint. Assigning x3 = 1 reduces this constraint further to simply
(xg), stating that xg must be true. Finally, when the algorithm is considering the
value for xg, it sees from this constraint that xg is forced to be one. Hence, the
xg = 1 friend is called, but the xg = 0 friend is not.

Stop When an Assignment is Found: The problem specification only asks for one
satisfying assignment. Hence, the algorithm can stop when one is found.

Davis-Putnam: The above algorithm branches on the values of each variable,
X1, X2, ..., Xy, in order. However, there is no particular reason that this order needs to
be fixed. Each branch of the recursive algorithm can dynamically use some heuristic
to decide which variable to branch on next. For example, if there is a variable, like
xg in the preceding example, whose assignment is forced by some constraint, then
clearly this assignment should be done immediately. Doing so removes this variable
from all the other constraints, simplifying the instance. Moreover, if the algorithm
branched on x4, ..., x7 before the forcing of x3, then this same forcing would need to
be repeated within all 2* of these branches.

If there are no variables to force, a common strategy is to branch on the variable
that appears in the largest number of constraints. The thinking is that the removal of
this variable may lead to the most simplification of the instance.

An example of how different branches may set the variables in a different order
is the following. Suppose that {(x; OR x,) and (X; OR x3) are two of the constraints.

263

264

Optimization Problems

Assigning x; = 0 will simplify the first constraint to (x;) and remove the second con-
straint. The next step would be to force x, = 1. On the other hand, assigning x; = 1
will simplify the second constraint to forcing x3 = 1.

Code:
algorithm DavisPutnam (c)

(pre-cond): cis a set of constraints on the assignment to X.
(post-cond): 1fpossible, optSolis a satisfying assignment and optCost s also one.
Otherwise optCost is zero.

begin
if(¢ has no constraints or no variables) then
% c is trivially satisfiable.
return (4, 1)
else if(¢ has both a constraint forcing a variable x; to 0
and one forcing the same variable to 1) then
% c is trivially not satisfiable.
return (4, 0)
else
for any variable forced by a constraint to some value
substitute this value into c.
let x; be the variable that appears the most often in ¢
% Loop over the possible bird answers.
for k = 0to 1 (unless a satisfying solution has been found)
% Get help from friend.
let ¢’ be the constraints ¢ with k substituted in for x;
(optSubSol, optSubCost) = DavisPutnam (c’)
optSol, = (forced values, x; = k, optSubSol)
optCost,. = optSubCost
end for
% Take the best bird answer.
kmax = a k that maximizes optCost;,
optSol = optSol,.
optCost = optCost;,
return (optSol, optCost)
end if
end algorithm

Running Time: If no pruning is done, then clearly the running time is ©(2"), as
all 2" assignments are tried. Considerable pruning needs to occur to make the al-
gorithm polynomial-time. Certainly in the worst case, the running time is 2. In
practice, however, the algorithm can be quite fast. For example, suppose that the in-
stance is chosen randomly by choosing m constraints, each of which is the OR of

Recursive Backtracking

three variables or their negations, e.g., (x; OR X3 OR xg). If few constraints are cho-
sen (say m is less than about 3n), then with very high probability there are many
satisfying assignments and the algorithm quickly finds one of these assignments. If
a lot of constraints are chosen, (say m is at least 72), then with very high probability
there are many conflicting constraints, preventing there from being any satisfying as-
signments, and the algorithm quickly finds one of these contradictions. On the other
hand, if the number of constraints chosen is between these thresholds, then it has
been proven that the Davis—Putnam algorithm takes exponential time.

EEXD Exercises

EXERCISE 17.5.1 (See solution in Part Five.) In one version of the game Scrabble, an
input instance consists of a set of letters and a board, and the goal is to find a word
that returns the most points. A student described the following recursive backtracking
algorithm for it. The bird provides the best word out of the list of letters. The friend
provides the best place on the board to put the word. Why are these bad questions?

EXERCISE 17.5.2 (See solution in Part Five.) Consider the following Scrabble problem.
An instance consists of a set of letters and a dictionary. A solution consists of a permuta-
tion of a subset of the given letters. A solution is valid if it is in the dictionary. The value
of a solution depends on its placement on the board. The goal is to find a highest-value
word that is in the dictionary.

EXERCISE 17.5.3 (See solution in Part Five.) Trace the queens algorithm (Sec-
tion 17.2.1) on the standard 8-by-8 board. What are the first dozen legal outputs for
the algorithm? To save time note that the first two or three queens do not move so fast.
Hence, it might be worth it to draw a board with all squares conflicting with these
crossed out.

EXERCISE 17.5.4 (See solution in Part Five.) What is the running time of the queens
algorithm (Section 17.2.1) for the n-by-n board when there is no pruning? Give rea-
sonable upper and lower bounds on the running time of this algorithm after all the
pruning occurs.

EXERCISE 17.5.5 (See solution in Part Five.) An instance may have many optimal so-
lutions with exactly the same cost. The postcondition of the problem allows any one of
these to become output. In any recursive backtracking algorithm, which line of code
chooses which of these optimal solutions will be selected?

EXERCISE 17.5.6 Suppose you are solving SAT from Section 17.4. Suppose your in-
stance is x AND y, and the little bird tells you to set x to one. What is the instance that
you give to your friend? Do the same for instances —x AND y, x OR y, and —x OR y.

265

266

Optimization Problems

EXERCISE 17.5.7 Independent set: Given a graph, find a largest subset of the nodes
for which there are no edges between any pair in the set. Give the bird-and-friend
abstraction of a recursive backtracking algorithm for this problem. What do you ask
the bird, and what do give your friend?

EXERCISE 17.5.8 Graph 3-coloring (3-COL): Given a graph, determine whether its
nodes can be colored with three colors so that two nodes do not have the same color if
they have an edge between them. What difficulty arises when attempting to design a
recursive backtracking algorithm for it? Redefine the problem so that the input consists
of a graph and a partial coloring of the nodes. The new goal is to determine whether
there is a coloring of the graph consistent with the partial coloring given. Give the bird-
and-friend abstraction of a recursive backtracking algorithm for this problem. What
do you ask the bird, and what do give your friend?

| 8 Dynamic Programming Algorithms

Dynamic programming is another powerful tool for solving optimization problems.
Just like recursive backtracking, it has as a key component a recurrence relation that
says how to find an optimal solution for one instance of the problem from optimal
solutions for some number of smaller instances of the same problem. Instead of re-
cursing on these subinstances, dynamic programming iteratively fills in a table with
an optimal solution for each, so that each only needs to be solved once. Dynamic
programming provides polynomial-time algorithms for many important and practi-
cal problem.

Personally, I do not like the name “dynamic programming.” It is true that dy-
namic programming algorithms have a program of subinstances to solve. But these
subinstances are chosen in a fixed prescheduled order, not dynamically. In contrast,
in recursive backtracking algorithms, the subinstances are constructed dynamically.

One way to design a dynamic programming algorithm is to start by guessing the
set of subinstances that need to be solved. However, I feel that it is easier to start by
designing the recurrence relation, and the easiest way to do this is to first design a
recursive backtracking algorithm for the problem. Once you have done this, you can
use a technique referred to as memoization to mechanically convert this recursive
backtracking algorithm into a dynamic programming algorithm.

EEXDN start by Developing a Recursive Backtracking

This section reviews the recommended steps for developing a recursive backtracking
algorithm.

EXAMPLE 18.1.1 Shortest Weighted Path within a Directed Leveled Graph

To demonstrate the steps, we will develop an algorithm for a version of the shortest-
weighted-path problem from Chapter 14. We generalize the problem by allowing neg-
ative weights on the edges and simplify it by requiring the input graph to be leveled.

267

268

Optimization Problems

vy 10+3=13
v, 11+2=13
Opt. path Vs 6+7=13
weight = 8 Vv, 8+4=12— opt.
\M-: tht = 6
(@) (b)
Figure 18.1: (a) The directed layered weighted graph G for Example 18.1.1. (b) The recursive

backtracking algorithm.

1) Specification: The first step is to be very clear about what problem needs to be
solved. For an optimization problem, we need to be clear about what the set of in-
stances is, for each instance what its set of solutions is, and for each solution what its
cost is.

Precondition: We are given one of the following instances.

Instances: An instance consists of (G, s, t), where G is a weighted directed
layered graph, s is a specified source node and ¢ is a specified destination
node. See Figure 18.1.a. The graph G has n nodes. Each node has maximum
in- and outdegree d. Each edge (v;, v;) is labeled with a real-valued (possibly
negative) weight wy,, ;. The nodes are partitioned into levels so that each
edge is directed from some node to a node in a lower level to prevent cycles.
It is easiest to assume that the nodes are ordered so that an edge can go from
node v; to node v; only ifi < j.

Postcondition: The output is a solution with minimum cost and the cost of that
solution.

Solutions: A solution for an instance is a path from source node s to desti-
nation node ¢.

Cost of Solution: The cost of a solution is the sum of the weights of the edges
within the path.

Brute Force Algorithm: The problem with simply trying all paths is that there
may be an exponential number of them.

2) Design a Question and Its Answers for the Little Bird: Suppose the little bird
knows one of the optimal solutions for our instance. You, the algorithm designer,

Dynamic Programming Algorithms

must formulate a small question about this solution and the list of its possible an-
swers. The question should be such that having a correct answer greatly reduces the
search.

Question about the End of the Solution: When designing recursive backtracking
algorithms, one generally asks about the first part of the solution. We will later
see that if our ultimate goal is a dynamic programming algorithm, then it is best
to turn this around and ask for the last part of the solution (see Section 18.3.1).

Leveled Graph: Not knowing yet why we ask about the last part of the solution,
we will design this algorithm by asking instead about the first part. Given a graph
and nodes s and ¢, I ask, “Which edge should we take first to form an optimal
path to #?” She assures me that taking edge (s, v;) is good. The specification of
the problem gives that there are at most d edges out of any node. Hence, this is a
bound on the number K of different answers.

To be consistent, we will always use the letter k to index the bird answers. In order
for the final algorithm to be efficient, it is important that the number K of different
answers be small.

3) Constructing Subinstances: Suppose that the bird gives us the kth of her answers.
This gives us some of the solution, and we want to ask a recursive friend for the rest
of the solution. The friend must be given a smaller instance of the same search prob-
lem. You must formulate subinstance subl for the friend so that he returns to us the
information that we desire.

Leveled Graph: I start by (at least temporarily) trusting the bird and take a step
along the edge (s, v1). Standing at v;, the natural question to ask my friend is
“Which is the best path from v, to #?” Expressed as (G, vy, t), this is a subinstance
of the same computational problem.

4) Constructing a Solution for My Instance: Suppose that the friend gives us an op-
timal solution optSubSol for his instance subl. How do we produce an optimal so-
lution optSol for your instance I from the bird’s answer k and the friend’s solution
optSubSol?

Leveled Graph: My friend will faithfully give me the path optSubSol = (v1, vs, t),
this being a best path from v, to . The difficulty is that this is not a solution
for my instance (G, s, t), because it is not, in itself, a path from s to . The
path from s is formed by first taking the step from s to v; and then follow-
ing the best path from there to ¢, namely optSol = (bird answer) + optSubSol =
(8, 11) + (11, Vs, £) = (S, 11, Us, 1).

We proved in Section 8.7 that we can trust the friend to give provide an optimal so-
lution to the subinstance subl, because he is really a smaller recursive version of our-
selves.

269

270

Optimization Problems

5) Costs of Solutions and Subsolutions: We must also return the cost optCost of our
solution optSol. How do we determine it from the bird’s k and the cost optSubCost of
the friend’s optSubSol?

Leveled Graph: The cost of the entire path from s to ¢ is the cost of the edge
(s, 1) plus the cost of the path from v; to t. Luckily, our friend gives the latter:
optCosty, = Ws,y,) + optSubCost =3 + 10 = 13.

6) Best of the Best: Try all the bird’s answers, and take best of the best.

Leveled Graph: If we trust both the bird and the friend, we conclude that this
path from s to ¢ is a best path. It turns out that because our little bird gave us the
wrong first edge, this might not be the best path from s to . However, our work
was not wasted, because we did succeed in finding the best path from among
those that start with the edge (s, v1). Not trusting the little bird, we repeat this
process, finding a best path starting with each of (s, 1v»), (s, v5), and (s, v3). Atleast
one of these four paths must be an overall best path. We give the best of these best
as the overall best path.

7) Base Cases: The base case instances are instances of your problem that are small
enough that they cannot be solved using steps 2-6, but they can be solved easily in a
brute force way. What are these base cases, and what are their solutions?

Leveled Graph: The only base case is finding a best path from s to £ when s and
t are the very same node. In this case, the bird would be unable to give the first
edge in the best path, because it contains no edges. The optimal solution is the
empty path, and its cost is zero.

8) Code: From steps 1-7, the code can always be put together using the same basic
structure.
algorithm LeveledGraph (G, s, 1)

(pre-cond): G is aweighted directed layered graph, and s and ¢ are nodes.
(post-cond): optSolis a path with minimum total weight from s to ¢, and optCost
is its weight.
begin
% Base case: The only base case is for the best path from ¢ to . Its solution
is the empty path with cost zero.
if(s = 1) then
return (¢, 0)
else
% General case:
% Try each possible bird answer.
for each of the d edges (s, vx)

Dynamic Programming Algorithms

% The bird-and-friend algorithm: The bird tells us that the first
edge in an optimal path from s to ¢ is (s, v;). We ask the friend
for an optimal path from vy to ¢. He solves this recursively giving
us optSubSol. To this, we add the bird’s edge, giving us optSol,.
This optSol, is a best path from s to ¢ from amongst those paths
consistent with the bird’s answer.
(optSubSol, optSubCost) = Leveled Graph ((G, v, t))
optSol,. = (s, vx) + optSubSol
optCosty, = Ws,y,) + optSubCost

end for

% Having the best, optSol,, for each bird’s answer k, we keep the

best of these best.

kmin = “a k that minimizes optCost,.”

optSol = optSol,

optCost = optCost,.

return (optSol, optCost)

end if
end algorithm

9) Recurrence Relations: The recurrence relation at the core of this recursive back-
tracking algorithm is the following.

LeveledGraphSolution (G, s, t) = Miny, <) (S, Uk)
+ LeveledGraphSolution ({G, vy, t))
Leveled GraphCost (G, s, t) = Min,.eni) Wiy + LeveledGraphCost ((G, v, t))

where N(s) is the set of nodes vy with edge (s, vy).

Running Time: The recursive backtracking algorithm faithfully enumerates all so-
lutions for your instance and hence requires exponential time.

EXERCISE 18.1.1 Give a directed leveled graph on n nodes that has a small number of
edges and as many paths from s tot as possible.

EEE] The Steps in Developing a Dynamic Programming Algorithm

Though the recursive backtracking algorithm for Example 18.1.1 may seem complex,
how else would you iterate through all paths? We will now use memoization tech-
niques to mechanically convert this algorithm into a dynamic programming algo-
rithm that runs in polynomial time. The word “memoization” comes from “memo.”
This technique speeds up a recursive algorithm by saving the result for each subin-
stance it encounters so that it does not need to be recomputed. Dynamic program-
ming takes the idea of memoization one step further. Instead of traversing the tree of

271

272

Optimization Problems

recursive stack frames, keeping track of which friends are waiting for answers from
which friends, it first determines the complete set of subinstances for which solu-
tions are needed and then computes them in an order such that no friend must wait.
As it goes, it fills out a table containing an optimal solution for each subinstance. The
technique for finding an optimal solution for a given subinstance is identical to the
technique used in the recursive backtracking algorithm. The only difference is that
instead of recursing to solve a sub-subinstance, the algorithm looks up in the table
an optimal solution found earlier. When the entire table has been completed, the last
entry will contain an optimal solution for the original instance.

1) The Set of Subinstances: We obtain the set of subinstances that need to be solved
by the dynamic programming algorithm by tracing the recursive backtracking algo-
rithm through the tree of stack frames starting with the given instance I. The set con-
sists of the initial instance I, its subinstances, their subinstances, and so on. We en-
sure that this set contains all the required subinstances by making sure that is closed
under this sub operation, or equivalently that no subinstance is lonely, because if it’s
included then so are all its friends. See Section 18.3.3. Also ensure that all (or at least
most) of these subinstances are needed.

Leveled Graph:

Include (G, vy, t): On (G, s, t), the little bird, among other things, suggests
taking the edge (s, v;) leading to the subinstance (G, v}, ¢). On this subin-
stance, the little bird, among other things, suggests taking the edge (v;, v4)
leading to the subinstance (G, vy, t). On this subinstance, the little bird,
among other things, suggests taking the edge (v4, v7) leading, as said, to the
subinstance (G, vz, t). Hence, this subinstance must be considered by the
dynamic programming algorithm. See Figure 18.2.a, (G, v7, t).

Exclude (G, vg;, t): Given the same instance I, (G, vg1, t) is not a subin-
stance, because node vg; is not a node in the graph, so it never arises.

Exclude (G, v, vg): Neither is (G, v1, vg) a required subinstance, because
each subinstance that arises is looking for a path that ends in the node ¢.

Guess the Set: Starting with the instance (G, s, t), the complete set of subin-
stances called will be {(G, v;, t) | v; above t}. See Figure 18.2.b.

Redundancy: We can speed up the recursive backtracking algorithm only when it
solves the same subinstance many times.

Leveled Graph: The recursive backtracking algorithm of Section 18.1 traverses
each of the exponentially many paths from s to . Within this exponential amount
of work, there is a great deal of redundancy. Different friends are assigned the

Dynamic Programming Algorithms

(a) (b) (c)

Solve each subinstance ¢ S
t Vgvyes

Repeated work,
exponential time
y

Construct path
from what each

friend stored

(d)

optCost table

(2o e 6714510}

S V] V3 V3 Vy Vs Vg V7 vgt

Figure 18.2: (a) The recursive algorithm. (b) The dynamic programming algorithm: The little
arrow out of node v; indicates the first edge in an optimal path from v; to ¢, and the value
within the circle on the node gives the cost of this path. (c) The optimal path from s to ¢. (d) The
contents of the optCost table. It is filled in backwards.

exact same task. In fact, for each path from s to v;, some friend is asked to solve
the subinstance (G, v;, t). See Figure 18.2.a.

One Friend per Subinstance: To save time, the dynamic programming algorithm
solves each of these subinstances only once. We allocate one friend to each of these
subinstances, whose job it is to find an optimal solution for it and to provide this
solution to any other friend who needs it.

2) Count the Subinstances: The running time of the dynamic programming algo-
rithm is proportional to the number of subinstances. At this point in the design of
the algorithm, you should count how many subinstances an instance I has as a func-
tion of the size n = |I| of the instance. If there are too many of them, then start at the
very beginning, designing a new recursive backtracking algorithm with a different
question for the little bird.

Leveled Graph: The number of subinstances in the set {{G, v;, t) | v; above t}is n,
the number of nodes in the graph G.

3) Construct a Table Indexed by Subinstances: The algorithm designer constructs
a table. It must have one entry for each subinstance. Generally, the table will have
one dimension for each parameter used to specify a particular subinstance. To be
consistent, we will always use the letter i and if necessary j to index the subinstances.
Each entry in the table is used to store an optimal solution for the subinstance along
with its cost. Often we split this table into two tables: one for the solution and one for
the cost.

273

274

Optimization Problems

Leveled Graph: The single parameter used to specify a particular subinstance is
i. Hence, suitable tables would be optSol[0..n] and optCost[0..n], where optSol[i]
will store the best path from node v; to node ¢ and optCost{i] will store its cost.
See Figure 18.2.d.

4) Solution from Subsolutions: The dynamic programming algorithm for finding an
optimal solution to a given instance from an optimal solution to a subinstance is
identical to that within the recursive backtracking algorithm, except that instead
of recursing to solve a subinstance, the algorithm finds its optimal solution in the
table.

Leveled Graph: The task of Friend; in the dynamic programming algorithm is not
to solve (G, s, t) but (G, v;, t), looking for a best path from v; to t. He does this as
follows. He asks the little bird for the first edge in his path and tries each of her
possible answers. When the bird suggests the edge (v;, vk), he asks a friend for a
best path from vy to ¢. This task is the subinstance (G, v, t), which has been allo-
cated to Friend). and whose solution has been stored in optSol[k]. The recursive
backtracking code

(optSubSol, optSubCost) = LeveledGraph ((G, v, t))
optSol,. = (s, vr) + optSubSol
optCost;, = ws,y,) + optSubCost

is changed to simply

optSol,. = (v;, vx) + optSol(k]
optCost, = Wy, v, + optCost(k]

Friend; tacks the bird’s edge (v;, vx) onto this path from vy to ¢, giving a path that is
the best path from v; to t amongst those consistent with the bird’s answer (v;, vi).
After trying each bird’s answer, Friend; saves the best of these best paths in the
table.

5) Base Cases: The base case instances are exactly the same as with the recursive
backtracking algorithm. The dynamic programming algorithm starts its computation
by storing in the table an optimal solution for each of these and their costs.

Leveled Graph: The only base case is finding a best path from s to t when s and
t are the very same node. This only occurs with the subinstance (G, vy, t), where
vy, is another name for 7. The recursive backtracking code

if(s = ¢) then
return (¢, 0)

Dynamic Programming Algorithms

is changed to

% Base Case:
optSolln] =0
optCost(n] =0

6) The Order in Which to Fill the Table: When a friend in the recursive backtrack-
ing algorithm needs help from a friend, the algorithm recurses, and the stack frame
for the first friend waits until the stack frame for the second friend returns. This forms
a tree of recursive stack frames, keeping track of which friends are waiting for answers
from which friends. In contrast, in a dynamic programming algorithm, the friends
solve their subinstances in an order such that nobody has to wait. Every recursive
algorithm must guarantee that it recurses only on smaller instances. Hence, if the
dynamic programming algorithm fills in the table from smaller to larger instances,
then when an instance is being solved, the solution for each of its subinstances is al-
ready available. Alternatively, the algorithm designer can simply choose any order to
fill the table that respects the dependences between the instances and their subin-
stances. The table must be indexed by subinstances. When allocating the table, be
clear what subinstance each entry of the table represents.

Leveled Graph: Friend;, with instance (G, v;, t), depends on Friend; when there
is an edge (v;, V). From the precondition of the problem, we know that each edge
must go from a higher level to a lower one, and hence we know that k > i. Fill-
ing the table in the order t = v, Vp—1, Un—2, ..., V2, U1, Up = S ensures that when
Friend; does his work, Friend; has already stored his answer in the table. The
subinstance (G, vy, t) has been solved already. The following loop is put around
the general case code of the recursive backtracking algorithm:

% General Cases: Loop over subinstances in the table.
fori=n—-1to0
% Solve instance (G, v;, t) and fill in table entry (i).

Viewing the dynamic programming algorithm as an iterative algorithm, the loop in-
variant when working on a particular subinstance is that all smaller subinstances
that will be needed have been solved. Each iteration maintains the loop invariant
while making progress by solving this next subinstance.

7) The Final Solution: The original instance will be the last subinstance to be solved.
When complete the dynamic program simply returns this answer.

Leveled Graph: The original instance (G, s, t) is the same as the subinstance
(G, vy, t), where v is another name for s. The dynamic program ends with the
code

return (optSol[0], optCost[0])

275

Optimization Problems

8) Code: From steps 1-7, the code can always be put together using the same basic
structure:

algorithm LeveledGraph (G, s, 1)

(pre-cond): G is a weighted directed layered graph, and s and ¢ are nodes.

(post-cond): optSolis a path with minimum total weight from s to ¢, and optCost
is its weight.

276

begin
% Table: optSol[i] stores an optimal path from v; to ¢, and
optCostli] its cost.
tablel0..n] optSol, optCost

% Base case: The only base case is for the best path from ¢ to ¢.
Its solution is the empty path with cost zero.

optSol[n] = ¢

optCost[n] =0

% General cases: Loop over subinstances in the table.
fori=n—-1to0
% Solve instance (G, v;, t) and fill in table entry (7).
% Try each possible bird answer.
for each of the d edges (v;, k)
% The bird-and-friend Algorithm: The bird tells us that the first
edge in an optimal path from v; to ¢ is (v;, vi). We ask the friend
for an optimal path from v to . He gives us optSol[k], which he
had stored in the table. To this we add the bird’s edge. This gives
us optSol, which is a best path from v; to ¢ from among those
paths consistent with the bird’s answer.
optSol,. = (v;, vx) + optSol(k]
optCosty, = Wy, v, + optCostlk]
end for
% Having the best, optSol,, for each bird’s answer k, we keep the best
of these best.
Kmin = a k that minimizes optCost,
optSolli] = optSol;,
optCostli] = optCost,.
end for
return (optSol[0], optCost[0])
end algorithm

Consistent Structure: To be consistent, we will always use this same structure for
all dynamic programming code. Even when there are small ways that the code could
be optimized, we stick to this same structure. Even when different variable names

Dynamic Programming Algorithms

would be more meaningful, we stick to i and if necessary j to index the subinstances,
and k to index the bird answers. I believe that this consistency will make it easier for
you (and for the marker) to understand the many dynamic programming algorithms.

9) Running Time: We can see that the code loops over each subinstance and, for
each, loops over each bird answer. From this, the running time seems to be the num-
ber of subinstances in the table times the number K of answers to the bird’s question.
We will see in Section 18.3.4 that actually the running time of this version of the al-
gorithm is a factor of n bigger than this. The same section will tell how to remove this
extra factor of n.

Leveled Graph: The running time of this algorithm is now polynomial. There are
only 7 friends, one for each node in the graph. For the instance (G, v;, t), there is
a bird answer for each edge out of its source node v;. There are at most d of these.
The running time is then only O(n - d) times this extra factor of n.

EEE] subtle Points

Before listing a few of the more subtle points in developing recursive backtracking
and a dynamic programming algorithms, I give another example problem.

EXAMPLE 18.3.1 Printing Neatly

Consider the problem of printing a paragraph neatly on a printer. The input text is a
sequence of n words with lengths [, b, ..., I,, measured in characters. Each printer
line can hold a maximum of M characters. Our criterion for neatness is for there to be
as few spaces on the ends of the lines as possible.

Preconditions: An instance (M1, ..., [,) consists of the line length and the word
lengths. Generally, M will be thought of as a constant, so we will leave it out when it
is clear from the context.

Postconditions: The goal is to split the text into lines in a way that minimizes the cost.

Solutions: A solution for an instances is a list giving the number of words for each
line, (ki, ..., k;).

Cost of Solution: Given the number of words in each line, the cost of this solution
is the sum of the cubes of the numbers of blanks on the end of each line (including
for now the last line).

Example: Suppose that one way of breaking the text into lines gives 10 blanks on
the end of one of the lines, while another way gives 5 blanks on the end of one line
and 5 on the end of another. Our sense of esthetics dictates that the second way
is “neater.” Our cost heavily penalizes having a large number of blanks on a single
line by cubing the number. The cost of the first solution is 10 = 1,000 whereas the
cost of the second is only 5° + 53 = 250.

277

278

Optimization Problems

EXAMPLE 18.3.1 Printing Neatly (cont.)

Example: Consider printing neatly the silly text “This week has seven dates in it ok”
in column with width M = 11. This is represented as the printing neatly instance
(M L, ..., L) = (11;4,4,3,5,5, 2, 2, 2). Three of the possible ways to print this text are
as follows:

(kl’ kZ,-"’kr)=(2’2’2’2) (kb k2’-'-9kr)=(1,2’293) (kb kZ’--'ykr)=(252’153)

This.week.. 23 This....... 7° This.week.. 23
has.seven.. 28 week.has... 33 has.seven.. 23
dates.in... 33 seven.dates 0% dates...... 63
it.ok...... 6° in.it.ok... 33 in.it.ok... 33
Cost =259 Cost =397 Cost =259

Of these three, the first and the last are the cheapest and are likely the cheapest of all
the possible solutions.

18.3.1 The Question for the Little Bird

The designer of a recursive backtracking algorithm, a dynamic programming algo-
rithm, or a greedy algorithm must decide which question to ask the little bird. That is,
the algorithm designer must decide which sequence of decisions will specify the so-
lution constructed by the algorithm: which things will the algorithm try before back-
tracking to try something else? This is one of the main creative steps in designing the
algorithm.

Local vs. Global Considerations: One of the reasons that optimization problems
are difficult is that we are able to make what we call local observations and decisions
but it is hard to see the global consequences of these decisions.

Leveled Graph: Which edge out of s is cheapest is a local question. Which path is
the overall cheapest is a global question. We were tempted to follow the cheapest
edge out of the source s. However, sometimes one can arrive at a better overall
path by starting with a first edge that is not the cheapest.

Printing Neatly: If we follow a greedy algorithm, we will put as many words on
the first line as possible. However, a local sacrifice of putting fewer words on this
line may lead globally to a better overall solution.

Ask about a Local Property: The question that we ask the bird is about some local
property of the solution:

First Object: If the solution is a sequence of objects, a good question would be
“What is the first object in the sequence?”

Dynamic Programming Algorithms

Leveled Graph: If the solution is a path though a graph, we might ask, “What
is the first edge in the path?”

Printing Neatly: If the solution is a sequence of how many words to put on
each line, we ask, “How many words k do we put on the first line?”

Yes or No: If the instance is a sequence of objects and a solution is a subset of
these object, a good question would be “Is the first object of the instance in-
cluded in the optimal solution?”

Event Scheduling: If the solution states which events to schedule, we will
ask, “Do we schedule the first event?”

Which Root: If a solution is a binary tree of objects, a good question would be
“What object is at the root of the tree?”

The Best Binary Search Tree: Note that the first question is not whether to
take the left or right branch of the given binary search tree, but what the root
should be when constructing the binary search tree.

In contrast, asking the bird for the number of edges in the best path in the leveled
graph is a global, not alocal, question.

The Number K of Different Bird Answers: You can only ask the bird a little
question. (It is only a little bird.) In a little question, the number K of different an-
swers Aj, A,, ..., Ak that the bird might give must be small. The smaller K is, the
more efficient the final algorithm will be.

Leveled Graph: When asking for an edge out of s, the number K of answers is the
degree of the node. This gives a bound on K.

Printing Neatly: K is the maximum number of the first words of the text that
would fit on the first line.

Event Scheduling: “Do we schedule the first event?” has K = 2 answers, yes
and no.

Brute Force: The obvious question to ask the little bird is for her to tell you an
entire optimal solution. However, the number of solutions for your instance I is
likely exponential; each solution is a possible answer. Hence, K would be expo-
nential. After getting rid of the bird, the resulting algorithm would be the usual
brute force algorithm.

Repeated Questions: Although you want to avoid thinking about it, each of your
recursive friends will have to ask his little bird a similar question. Hence, you should

279

280

Optimization Problems

@ ®) ©

Next node Weight Solve each subinstance s
— o t o

v, 6+7=13 S WV

, 8+9=17

6+7=13

N& s 745-12 — Opt.

Construct path
from what each

friend stored

A/
Opt.path ¢ Opt. path v
weight=6 weight =7 N

@

optSol table

[oT3]2T4] 86 6o]7 12

SV, V, ViV, Vi VeV, vt

Figure 18.3: (a) The recursive algorithm. (b) The dynamic programming algorithm: The little
arrow out of node v; indicates the last edge in an optimal path from s to v;, and the value within
the circle at a node gives the cost of this path. (c) The optimal path from s to t. (d) The contents
of the optCost table. In contrast with that in Figure 18.2, it is filled in forwards.

choose a question that provides a reasonable follow-up question of a similar form.
For example:

* “What is the second object in the sequence?”
* “Is the second object of the instance included in the optimal solution?”
e “What is the root in the left (the right) subtree?”

In contrast, asking the bird for the number of edges in the best path in the leveled
graph does not have a good follow-up question.

Reversing the Order: This change is purely for aesthetic reasons. The dynamic
program loops backwards through the nodes of the graph, t = v,, vp_1, Vy—2, ..., U2,
V1, Uy = 5. The standard way to do it is to work forward. The recursive backtracking al-
gorithm worked forward from s. The dynamic programming technique reverses the
recursive backtracking algorithm by completing the subinstances from smallest to
largest. In order to have the final algorithm move forward, the recursive backtrack-
ing algorithm needs to go backwards. To do this, the little bird should ask something
about the end of the solution and not about the beginning. Compare Figure 18.2 and
Figure 18.3, and see the final code in Section 18.3.6.

Last Object: “What is the last object in the sequence?” What is the last edge in
the optimal path, and how many words do we put on the last line?

Yes or No: “Is the last object of the instance included in the optimal solution?”
Do we schedule the last event?

Which Root: We still ask about the root. It is not useful to ask about the leaves.

Dynamic Programming Algorithms

EXERCISE 18.3.1 Start over and redevelop the leveled graph dynamic programming
algorithm with this new question for the little bird, so that the work is completed start-
ing at the top of the graph.

18.3.2 Subinstances and Subsolutions

Getting a trustworthy answer from the little bird narrows our search problem down
to the task of finding the best solution from among those solutions consistent with
this answer. It would be great if we could simply ask a friend to find us such a so-
lution; however, we are only allowed to ask our friend to solve subinstances of the
original computational problem. Our task within this subsection is to formulate a
subinstance to our computational problem such that the search for its optimal solu-
tions some how parallels our narrowed search task.

The Recursive Structure of the Problem: In order for us to be able to design a re-
cursive backtracking algorithm for an optimization problem, the problem needs to
have a recursive structure. For a solution of the instance to be optimal, some part
of the solution must itself be optimal. The computational problem has a recursive
structure if the task of finding an optimal way to construct this part of the solution is
a subinstance of the same computational problem.

Leveled Graph: For a path from s to ¢ to be optimal, the subpath from some v;
to some v; along the path must itself be an optimal path between these nodes.
The computational problem has a recursive structure because the task of finding
an optimal way to construct this part of the path is a subinstance of the same
computational problem.

Printing Neatly: In order for all the words to be printed neatly, the words that are
on the last ten lines need to be printed neatly on these ten lines.

Question from Answer: Sometimes it is a challenge to know what subinstance to
ask our friend. It turns out that it is easier to know what answer (subsolution) we want
from him. Knowing the answer we want will be a huge hint as to what the question
should be.

Each Solution as a Sequence of Answers: One task that you as the algorithm de-
signer must do is to organize the information needed to specify a solution into a
sequence of fields, sol = (field,, field,, . .., field,).

Best Animal: In the zoo problem, each solution consists of an animal, which
we will identify with the sequence of answers to the little bird’s questions,
sol = (vertebrate,mammal,cat,cheetah).

281

282

Optimization Problems

Leveled Graph: In the leveled graph problem, a solution consists of a
path, (s, v1, vs, t), which we will identify with the sequence of edges sol =
((S, Ul)) (Uly U6>v (UG! t))

Printing Neatly: A solution for the printing neatly problem gives the number
of words for each line, (ki, ..., k;).

Bird’s Question and Remaining Task: The algorithm asks the little bird for the
last field field,, of one of the instance’s optimal solutions and asks the friend for
the remaining fields (field,, ..., field,,). We will let k denote the answer pro-
vided by the bird, and optSubSol the one provided by the friend. Given both, the
algorithm constructs the final solution by simply concatenating these two parts
together, namely, optSol = (optSubSol, k) = ({field,, . .., field,,_,), field,,).

Leveled Graph: Asking for the last field of an optimal solution optSol =
(s, v1), (v1, Us), (s, t)) amounts to asking for the last edge that the path
should take. The bird answers (v, t). The friend provides optSubSol =
((s, v1), (11, Us)). Concatenating these forms our solution.

Printing Neatly: Asking for the last field of an optimal solution optSol =
(k1, ..., k) amounts to asking how many words should go on the last line.

Formulating the Subinstance: We need to find an instance of the computational
problem whose optimal solution is optSubSol = (field,, ..., field,,_,). The in-
stance is that whose set of valid solutions is setSubSol = {subSol | {(subSol, k)
setSol}.

Leveled Graph: The instance whose solution is optSubSol = ((s, v1), (v1, Us))
is (G, s, vg), asking for the optimal path from s to vs.

Printing Neatly: If the bird told you that an optimal number of words to put
on thelastline is k, then an optimal printing of the words is an optimal print-
ing of the first n — k words followed by the remaining k words on a line by
themselves. Your friend can find an optimal way of printing these first words
by solving the subinstance (M; [y, ..., I,_¢). All you need to do then is to add
the last k words, i.e., optSol = (optSubSol, k).

Costs of Solutions: In addition to finding an optimal solution for the instance
I, the algorithm must also produce the cost of this solution. To be helpful, the
friend provides the cost of his solution, optSubSol. Due to the recursive struc-
ture of the problem, the costs of these solutions optSol = ({field,, ..., field,,_,),
field,)) and optSubSol = (field,, . .., field,,_,) usually differ in some uniform way. For
example, often the cost is the sum of the costs of the fields, that is, cost(optSol) =
Zi”il cost(field;). In this case we have that cost(optSol) = cost(optSubSol) +
cost(field,)).

Dynamic Programming Algorithms

Leveled Graph: The cost of a path from s to ¢ is the cost of the last edge plus the
cost of the rest of the path.

Printing Neatly: The total cost of an optimal solution for the given instance {M;
L, ..., I,) is the cost of the optimal solution for the subinstance (M; , ..., L,_)

plus the cube of the number of blanks on the end of the line that contains the last 283

k words, i.e., optCost = optSubCost + (M — k + 1 — Z;’=n_k+1 3.

Formal Proof of Correctness:

Recursive Structure of Costs: In order for this recursive backtracking method to
solve an optimization problem, the costs that the problem allocates to the solu-
tions must have the following recursive structure. Consider two solutions sol =
(subSol, k) and sol’ = (subSol’, k) both consistent with the same bird’s answer k.
If the given cost function dictates that the solution sol is better than the solu-
tion sol’, then the subsolution subSol of sol will also be better than the subsolu-
tion subSol’ of sol’. This ensures that any optimal subsolution of the subinstance
leads to an optimal solution of the original instance.

Theorem 18.3.1: The solution optSol returned is a best solution for I from
amongst those that are consistent with the information k provided by the bird.

Proof: By way of contradiction, assume not. Then there must be another solu-
tion betterSol consistent with k whose cost is strictly better then that for optSol.
From the way we constructed our friend’s subinstance subl, this better solution
must have the form betterSol = (betterSubSol, k) where betterSubSolis a solution
for subl. We proved in Section 8.7, using strong induction, that we can trust the
friend to provide an optimal solution to the subinstance subl. Because the cost
of betterSol is better than that of optSol, it follows that the cost of betterSubSol is
better than that of optSubSol. This contradicts the statement that optSubSolis an
optimal solution for the subinstance subl.

Size of an Instance: In order to avoid recursing indefinitely, the subinstance that
you give your friend must be smaller than your own instance according to some
measure of size. By the way that we formulated the subinstance, we know that its
valid solutions subSol = (field,, .. ., field,,) are shorter than the valid solutions sol =
(field,, field,, ..., field,,) of the instance. Hence, a reasonable measure of the size of
an instance is the length of its longest valid solution. This measure only fails to work
when an instance has valid solutions that are infinitely long.

Leveled Graph: The size of the instance (G, s, t) is the length of the longest path,
or simply the number of levels, between s and ¢. Given this, the size of the subin-
stance (G, s, vr), which is the number of levels between s and vy, is smaller.

284

Optimization Problems

Each Solution as a Tree of Answers: A few recursive backtracking, dynamic pro-
gramming, and greedy algorithms have the following more complex structure than
in the previous sections. In these, the fields specifying a solution are organized into
a tree instead of a sequence. For example, if the problem is to find the best binary
search tree, then it is quite reasonable that the fields are the nodes of the tree and
these fields should be organized as the tree itself. The algorithm asks the little bird
to tell it the field at the root of one of the instance’s optimal solutions. One friend is
asked to fill in the left subtree, and another the right. See Sections 19.5 and 19.6.

18.3.3 The Set of Subinstances

Can Be Difficult: When using the memoization technique to mechanically convert
arecursive algorithm into an iterative algorithm, the most difficult step is determin-
ing for each input instance the complete set of subinstances that will get called by
the recursive algorithm, starting with this instance.

Leveled Graph: We speculated that a subinstance for the leveled graph problem
consists of {(G, v;, v;) | pair v;, v;}, namely, the task of finding the best path be-
tween each pair of nodes. Later, by tracing the recursive algorithm, we saw that
these subinstances are not all needed, because the subinstances called always
search for a path ending in the same fixed node ¢. After changing the bird ques-
tion to ask about the last edge, all subinstances called always search for a path
beginning with the fixed node s.

Guess and Check: The technique to find the set of subinstances is to first try to
trace out the recursive algorithm on a small example and guess what the set of subin-
stances will be. Then Lemma 18.3.2 can be used to check if this set is big enough and
not too big.

A Set Being Closed under an Operation: We say that the set of even integers is
closed under addition and multiplication because the sum and the product of any
two even numbers is even. In general, we say a set is closed under an operation if
applying the operation to any elements in the set results in an element that is also in
the set.

The Construction Game: Consider the following game: I give you the integer 2. You
are allowed to construct new objects by taking objects you already have and either
adding them or multiplying them. What is the complete set of numbers that you are
able to construct?

Guess a Set: You might guess that you are able to construct the set of positive
even integers. How do you know that this set is big enough and not too big?

Dynamic Programming Algorithms

Big Enough: Because the set of positive even integers is closed under addition
and multiplication, I claim you will never construct an object that is not a positive
even number.

Proof: We prove by induction on ¢ > 0 that after ¢ steps you only have posi-
tive even numbers. This is true for ¢ = 0, because initially you only have the
positive even integer 2. If it is true for ¢, the object constructed in step £ + 1
is either the sum or the product of previously constructed objects, which are
all positive even integers. Because the set of positive even integers is closed
under these operations, the resulting object must also be positive even. This
completes the inductive step.

Not Too Big: Every positive even integer can be generated by this game.

Proof: Consider some positive even number i = 2. Initially, we have only 2.
We construct i by adding2 + 2 + 2 + - - - 4+ 2 a total of j times.

Conclusion: The set of positive even integers accurately characterizes which
numbers can be generated by this game, no less and no more.

Lemma 18.3.2: The set S will be the complete set of subinstances called starting
from our initial instance Iy iff

1. Ismrt cS.

2. S is closed under the sub operator. (S is big enough.) The sub operator is defined
as follows: Given a particular instance of the problem, applying the sub operator pro-
duces all the subinstances constructed from it by a single stack frame of the recursive
algorithm.

3. Every subinstance I € S can be generated from Iy, using the sub operator. (S is
not too big.) This ensures that there are not any instances in S that are not needed.
The dynamic programming algorithm will work fine if your set of subinstances con-
tains subinstances that are not called. However, you do not want the set too much
larger than necessary, because the running time depends on its size.

Examples:

The Wedding Invitation List: One of the nightmares when getting married is de-
ciding upon the invitation list. The goal is to make everyone there happy while
keeping the number of people small. The three rules in the lemma also apply
here.

Istare € S: Clearly the bride and groom need to be invited.

Closure Ensures That Everyone Is Happy: If you invite aunt Hilda, then in
order to keep her happy, you need to invite her obnoxious son. Similarly,

285

Optimization Problems

you need to keep all of your subinstances happy, by being sure that for every
subinstance included, its immediate friends are also included. In the wed-
ding list problem, you will quickly invite the entire world. The six-degrees-
of-separation principle states that the set consisting of your friends’ friends’
friends’ friends’ friends’ friends includes everyone. Similarly, for most opti-

286 mization problems the number of subinstances needed tends to be expo-

nential in the size of the instance. A problem has a good dynamic program-
ming algorithm when the number of subinstances is small.

Everyone Needed: We see that everyone on the list must be invited. Even the
obnoxious son must come. Because the bride must come, her mother must
come. Because her mother must come, aunt Hilda must come, and hence
the son.

Leveled Graph:
Guess a Set: The guessed setis {(G, s, v;) | v; below s}.

Closed: Consider an arbitrary subinstance (G, s, v;) from this set. The sub
operator considers some edge (vk, v;) and forms the subinstance (G, s, v).
This is contained in the stated set of subinstances.

Generating: Consider an arbitrary subinstance (G, s, v;). It will be called by
the recursive algorithm if and only if there is a path (v, vk, Vi, ..., Uk, £)
from v; to the original destination ¢. The initial stack frame on the in-
stance (G, s, t), among other things, recurses on (G, s, v,), which recurses
on (G, s, v,_,), ..., which recurses on (G, s, vy,), which recurses on (G, s, v;).

If the node v; cannot be reached from node s, then the subinstance
(G, s, v;) will never be called by the recursive algorithm. Despite this, we will
include it in our dynamic program, because this is not known about v; until
after the algorithm has run.

Printing Neatly: By tracing the recursive algorithm, we see that the set of subin-
stance used consists only of prefixes of the words, namely, {((M; [;,..., ;) | i e
[0, nl}.

Closed: We know that this set contains all subinstances generated by the re-
cursive algorithm, because it contains the initial instance and is closed under
the sub operator. Consider an arbitrary subinstance (M; [y, ..., ;) from this
set. Applying the sub operator constructs the subinstances (M; [, ..., li_y)
for 1 < w < i, which are contained in the stated set of subinstances.

Generating: Consider the arbitrary subinstance (M; [, ..., ;). We demon-
strate that it is called by the recursive algorithm as follows: The initial stack
frame on the instance (M; [, .. ., I,), among other things, sets w to 1 and re-
curses on (M; 1, ..., I,_1). This stack frame also sets w to 1 and recurses on

Dynamic Programming Algorithms

(M; L, ..., l,_»). This continues n — i times, until the desired (M; [, ..., ;) is
called.

The Number of Subinstances: A dynamic programming algorithm is fast only if
the given instance does not have many subinstances.

287

Subinstance is a Subsequence: A common reason for the number of subin-
stances of a given instance being polynomial is that the instance consists of a
sequence of things rather than a set of things. In such a case, each subinstance can
be a contiguous (continuous) subsequence of the things rather than an arbitrary
subset of them. There are only O(n?) contiguous subsequences of a sequence of
length n, because one can be specified by specifying the two end points. Even
better, there are even fewer subinstances if they are defined to be a prefix of the
sequence. There are only 7 prefixes, because one can be specified by specifying
the one end point. On the other hand, there are 2" subsets of a set, because for
each object you must decide whether or not to include it.

Leveled Graph: As stated in the definition of the problem, it is easiest to as-
sume that the nodes are ordered so that an edge can go from node v; to node
v;onlyifi < j. We initially guessed that three were O(n?) subinstances con-
sisting of subsequences between two nodes v; and v;. We then decreased this
to only the O(n) postfixes from the fixed source s to some node v;. Note that
subinstances cannot be subsequences of the instance if the input graph is
not required to be leveled.

Printing Neatly: Because the subinstance used consists only of prefixes of
the words, namely {(M; I3, ..., [;) | i € [0, n]}, the number of them is O(n). The
single parameter used to specify a particular subinstance is i. Hence, suit-
able tables would be birdAdvice[0..n] and cost[0..n]. The size of subinstance
is simply the number of words, i. Hence, the table is filled in by looping with
i from 0 to n.

Reusing the Table: Sometimes you can solve many related instances of the same
problem using the same table.

Leveled Graph: The algorithm gives you for free the shortest path from s to each
of the nodes.

Printing Neatly: When actually printing text neatly, it does not matter how many
spaces are on the end of the very last line. Hence, the cube of this number
should not be included in the cost. We could use the original algorithm to find
for k=1, 2,3, ... how to print all but the last k words and then put these last
k on the last line. However, this would take a total of O(n - n?) time. Instead,
time can be saved by filling in the table only once. One can get the costs for
these different instances off this single table. After determining which is best,

288

Optimization Problems

call PrintingNeatlyWithAdvice once to construct the solution for this instance.
The total time is reduced to only O(r?).

18.3.4 Decreasing Time and Space

Recap of a Dynamic Programming Algorithm: A dynamic programming algo-
rithm has two nested loops (or sets of loops). The first iterates through all the subin-
stances represented in the table, finding an optimal solution for each. When finding
an optimal solution for the current subinstance, the second loop iterates through the
K possible answers to the little bird’s question, trying each of them. Within this in-
ner loop, the algorithm must find a best solution for the current subinstance from
amongst those consistent with the current bird’s answer. This step seems to require
only a constant amount of work. It involves looking up in the table an optimal solu-
tion for a sub-subinstance of the current subinstance and using this to construct a
solution for the current subinstance.

Running Time? The running time is clearly the number of subinstances in the table
times the number K of answers to the bird’s question times what appears (falsely) to
be constant time.

Friend-to-Friend Information Transfer: In both a recursive backtracking and a
dynamic programming algorithm, information is transferred from subfriend to
friend. In recursive backtracking, this information is transferred by returning it from
asubroutine call. In dynamic programming, this information is transferred by having
the subfriend store the information in the table entry associated with his subinstance
and having the friend look this information up from the table. The information trans-
ferred is an optimal solution and its cost. The cost, being only an integer, is not a big
deal. However, an optimal solution generally requires ©(n) characters to write down.
Hence, transferring this information requires this much time.

Leveled Graph: In the line of code “optSol, = optSollk] + (vk, v;),” Friend; asks
Friend,. for his best path. This path may contain n nodes. Hence, it could take
Friend; O(n) time steps simply to transfer the answer from Friend.

Time and Space Bottleneck: Being within these two nested loops, this informa-
tion transfer is the bottleneck on the running time of the algorithm. In a dynamic
programming algorithm, this information for each subinstance is stored in the table
for the duration of the algorithm. Hence, this is a bottleneck on the memory space
requirements of the algorithm.

Leveled Graph: The total time is O(n - d - n). The total space is ®(n - n), being
O(n) for each of the n table entries.

Dynamic Programming Algorithms

A Faster Dynamic Programming Algorithm: We will now modify the dynamic
programming algorithm to decrease its time and space requirements. The key idea
is to reduce the amount of information transferred.

Cost from Subcost: The subfriends do not need to provide an optimal subsolution
in order to find the cost of an optimal solution to the current subinstance. The sub-
friends need only provide the cost of this optimal subsolution. Transferring only the
costs speeds up the algorithm.

Leveled Graph: In order for Friend; to find the cost of a best path from s to v;, he
need receive only the best subcost from his friends. (See the numbers within the
circles in Figure 18.3.b.) For each of the edges (v, v;) from his destination node
v;, he learns from Friend). the cost of a best path from s to v,. He adds the cost
of the edge (v, v;) to this to determine the cost of a best path from s to v; from
amongst those that take this edge. Then he determines the cost of an overall best
path from s to v; by taking the best of these best costs.

Note that this algorithm requires O(n - d)—not O(n - d - n)—time, because
this best cost can be transferred from Friendy. to Friend; in constant time. How-
ever, this algorithm finds only the cost of the best path; it does not find a best
path.

The Little Bird’'s Advice:

Definition of Advice: A friend trying to find an optimal solution to his subin-
stance asks the little bird a question about this optimal solution. The answer,
usually denoted k, to this question classifies the solutions. If this friend had an
all-powerful little bird, then she could advise him which class of solutions to
search in to find an optimal solution. Given that he does not have such a bird,
he must simply try all K of the possible answers and determine himself which
answer is best. Either way, we will refer to this best answer as the little bird's ad-
vice.

Leveled Graph: The bird’s advice to Friend;, who is trying to find a best path
from s to v;, is which edge to take last. This edge for each friend is indicated
by the little arrows in Figure 18.3.b.

Advice from Cost: Within the algorithm that transfers only the cost of an optimal
solution, each friend is able to determine the little bird’s advice to him.

Leveled Graph: Friend; determines, for each of the edges (v, v;) into his
node, the cost of a best path from s to v; from amongst those that take this
edge, and then determines which of these is best. Hence, though this Friend;
never learns a best path from s to v; in its entirety, he does learn which edge
is taken last. In other words, he does determine, even without help from the
little bird, what the little bird’s advice would be.

289

290

Optimization Problems

Transferring the Bird’s Advice: The bird’s advice does not need to be transferred
from Friend; to Friend;, because Friend; does not need it. However, Friend; will
store this advice in the table so that it can be used at the end of the algorithm.
This advice can usually be stored in constant space. Hence, it can be stored along
with the best cost in constant time without slowing down the algorithm.

Leveled Graph: The advice indicates a single edge. Theoretically, taking
O(log n) bits, this takes more than constant space; practically, however, it can
be stored using two integers.

Information Stored in Table: In order to make the dynamic programming algo-
rithm faster, the information stored in the table will no longer be an optimal solution
and its cost. Instead, only the cost of an optimal solution and the little bird’s advice k
are stored.

Leveled Graph: The dynamic programming code in Section 18.2 for Leveled-
Graph has only two small changes. The line “optSol,. = optSol(k] + (vi, v;)”
within the inner loop and the line “optSol[i] = optSol,, ,” which stores the opti-
mal solution, are commented out (I recommend leaving them in as comments
to add clarity for the reader). The second of these is replaced with the line
“birdAdviceli] = k;n,” which stores the bird’s advice. See Section 18.3.6 for the
new code.

Time and Space Requirements: The running time of the algorithm computing the
costs and the bird’s advice is

Time = (the number of subinstances indexing your table)
x (the number of different answers K to the bird’s question)
The space requirement is

Space = the number of subinstances indexing your table

Leveled Graph: As said, there are n subinstances and a bird answer for each edge
out of his source node v;. Hence, the running time is O(n - d).

Printing Neatly: There are ®(n) subinstances in the table, and the number of
possible answers for the bird is ®(n), because she has the option of telling you
pretty well any number of words to put on the last line. Hence, the total running
time is ©(n) - ©(n) = O(n?), and the space requirement is @ (n).

Constructing an Optimal Solution: With these modifications, the algorithm no
longer constructs an optimal solution. An optimal solution for the original instance
is required, but not for the subinstances. We construct an optimal solution for the in-
stance using a separate algorithm that is run after the faster dynamic programming
algorithm fills the table in with costs and bird’s advice. This new algorithm starts over
from the beginning, solving the optimization problem. However, now we know what

Dynamic Programming Algorithms

answer the little bird would give for every subinstance considered. Hence, we can
simply run the bird—friend algorithm.

A Recursive Bird-Friend Algorithm: The second run of the algorithm will be
identical to the recursive algorithm, except now we only need to follow one path
down the recursion tree. Each stack frame, instead of branching for each of the
K answers that the bird might give, recurses only on the single answer given by
the bird. This algorithm runs very quickly. Its running time is proportional to the
number of fields needed to represent the optimal solution.

Leveled Graph: A best path from s = vy to t = v, is found as follows. Each
friend knows which edge is the last edge taken to get to his node. What
remains is to put these pieces together by walking backwards through the
graph, following the indicated directions. See Figure 18.3.c. Friend; knows
that the last edge is (vs, t). Friends knows that the previous one is (vs, vg).
Friends knows the edge (vs, vs). Finally, Friend; knows the edge (s, v3). This
completes the path.

algorithm LeveledGraphWithAdvice({G, s, v;), birdAdvice)
(pre- & post-cond): Same as LeveledGraph except with advice.
begin
if(s = v;) then return(9)
kmin = birdAdviceli]
optSubSol = LeveledGraphWithAdvice((G, s, V,,,), birdAdvice)
optSol = optSubSol + (v, v;)
return optSol
end algorithm

EXERCISE 18.3.2 Because the algorithm for leveled graphs with advice only recurses
once per stack frame, it is easy to turn it into an iterative algorithm. The algorithm
is a lot like a greedy algorithm. In that it always knows which greedy choice to make.
Design this iterative algorithm.

18.3.5 Counting the Number of Solutions

The dynamic programming algorithms we have considered so far return one of the
possibly many optimal solutions for the given instance. There may be an exponential
number of solutions. In this section, we see how to change the algorithms so that they
also output the number of possible optimal solutions.

Counting Fruit: If [want to count the number of pieces of fruit in a bowl, I can ask
one friend to count for me the red fruit and another the green fruit and another the
orange. My answer is the sum of these three. If all the orange fruit is rotten, then I
might not include the number of orange fruits in my sum.

291

292

Optimization Problems

Double Counting: To be sure that we do not double-count some optimal solutions,
we need the set of solutions consistent with one bird answer to be disjoint from those
consistent with another bird answer.

Fruit: If some fruits are half red and half green, these might get double counted.
We want to make sure that color disjointly partitions the fruit according to the
answer given.

Leveled Graph: If the bird’s answer tells us the first edge of the optimal path, then
those paths beginning in the first edge are clearly different than the paths ending
in the second.

Computing the Count: In the new dynamic programming algorithm, each friend
stores the number of optimal solutions for the subinstance, in addition to the cost
of the optimal solution for his subinstance and the bird’s advice. This is computed
as follows. A friend with one of these subinstances tries each of the K possible bird’s
answers. When trying k, he finds the best solution to his instance from amongst its
solutions that are consistent with this bird’s answer k by asking a friend of his to
solve some subinstance. This friend tells him the number of optimal solutions to this
subinstance. Let numy be this number. Generally, there is a one-to-one mapping be-
tween our friend’s optimal solutions and solutions to his instance that are consistent
with this bird’s answer k. Hence, he knows that there are num; of these. As before,
let optCost,. be the cost of the best solution to my instance from among its solutions
that are consistent with this bird’s answer k. The friend computes the cost of his opti-
mal solution simply by optCost = maxxe k) optCost,. There may be a number of bird’s
answers that lead to this same optimal cost optCost. Each of these lead to optimal
solutions. We were careful that the set of solutions consistent with one bird answer
is disjoint from that consistent with another bird answer. Hence, the total number
of optimal solutions to my instance is num = 3 (| opicost,—optCosty "UMk- See Sec-
tion 18.3.6 for the new leveled graph code.

Bounding the Number of Solutions: Let Num(n) denote the maximum number
of possible optimal solutions that any dynamic program as described above might
output, given an instance of size n. The number num; of optimal solutions reported
by our friend’s friend is at most Num(n — 1), because his subinstance has size at
most n — 1. There are at most K bird answers. Hence, num =3 x| opicost,—opicost)
numy can be at most Num(n) = Zke[luK] Num((n —1) = K x Num(n — 1) = K". Note
that it would take exponential time to output these optimal solutions. However,
the number of bits to represent this number is only log, (K") = log,(K) x n = 0(n).
Hence, this number can be outputted.

18.3.6 The New Code

Three Changes: The dynamic programming algorithm for the leveled graph prob-
lem developed in Section 18.2 has been changed in three ways.

Dynamic Programming Algorithms

Reversing the Order: As described in Section 18.3.1, the algorithm was redevel-
oped with the little bird being asked for the last edge in the path instead of for the
first edge. This has the aesthetic advantage of having the algorithm now branch
out forward from s instead of backward from ¢.

Storing Bird’s Advice Instead of Solution: As described in Section 18.3.4, the al- 293

gorithm now stores the little bird’s advice instead of the optimal solution. This is
done to decrease the time and space used by the algorithm by a factor of n.

Counting the Number of Solutions: As described in Section 18.3.5, the algo-
rithm, in addition to one of the many optimal solutions for the given instance,
now also outputs the number of possible optimal solutions.

Code:
algorithm LeveledGraph (G, s, 1)

(pre-cond): G is a weighted directed layered graph, and s and ¢ are nodes.
(post-cond): optSolis a path with minimum total weight from s to ¢, and optCost
is its weight, and optNum is the number of possible optimal solutions.

begin
% Table: optSol[i] would store an optimal path from s to v;,
but actually we store only the bird’s advice for the subinstance
and the cost of its solution.
tablel0..n] birdAdvice, optCost, optNum

% Base case: The only base case is for the best path from s to s.

It only has one optimal solution, which is the empty path with cost zero.
% optSol|0] = ¢

optCost[0] =0
birdAdvice[0] = ¢
optNum|0] =1

% General cases: Loop over subinstances in the table.
fori=1ton
% Solve instance (G, s, v;) and fill in table entry (i).
% Try each possible bird answer.
for each of the d edges (v, v;)
% The bird-and-friend algorithm: The bird tells us that the last
edge in an optimal path from s to v; is (vk, v;). We ask the friend
for an optimal path from s to v. He gives us optSol[k], which he
has stored in the table. To this we add the bird’s edge. This gives
us optSol,, which is a best path from s to v; from amongst those
paths consistent with the bird’s answer.
% optSol,. = optSol(k] + (v, v;)
optCost,, = optCost[k] + Wy, v,
end for

294

Optimization Problems

% Having the best, optSol,, for each bird’s answer k, we keep the

best of these best.

kmin = a k that minimizes optCost;,
% optSolli] = optSol;.

optCost[i] = optCost,,
birdAdvicelil = kyin

optNumli] = Zke{k | optCost,=optCost;, . | OptNum[k]'

end for

optSol = LeveledGraphWithAdvice ((G, s, v,), birdAdvice)

return (optSol, optCost(n], optNumi(n])
end algorithm

EXERCISE 18.3.3 (See solution in Part Five.) Give the code for printing neatly.

EXERCISE 18.3.4 Consider printing neatly the silly text “This week has seven dates
in it ok” in a column with width M = 11. This is represented as the printing neatly
1) =(11;4,4,3,5,5,2,2,2). (a) Fill in the birdAdvicel0..n] and
cost[0..n] tables for this example. The original instance, its solution, and its cost are
in the bottom row. (b) When filling in this last row, give solutions and costs associated

instance (M; 1, . ..

with each of the possible bird answers.

EXERCISE 18.3.5 [saw this puzzle on a Toronto
subway. The question is how many times the
word “TRAINS” appears in the accompanying
diagram. Each occurence of the word must fol-
low a connected path so that each of its letters are
adjacent to its previous letter. In order to learn
the number of such occurences, we could count
them, but this might be exponential in the num-
ber of squares. Instead, for each box do a con-
stant amount of work and write one integer. In
the end, the answer should appear in the box
with a “T” You should give a few sentences ex-
plaining the order in which you fill the boxes,
how you do it, and how much work it is.

This completes the presentation of the general techniques and the theory behind
dynamic programming algorithms. We will now develop algorithms for other opti-

mization problems.

s/
s,[N['s,
s|IN|1[NTS
sIN[1|al1[N]s
Nlr[a[r[a]1]N

s t{alr|T[R[A]I
Nlr[a[r[a]1]N
sIN[1|al1[N]s
sIN[1[N|S

s|NTs
S

19 Examples of Dynamic Programs 295

EEXN The Longest-Common-Subsequence Problem

There is a big demand for algorithms that find patterns in strings, for example, DNA.
The following optimization problem is called the longest common subsequence (LCS).

Longest Common Subsequence:

Instances: An instance consists of two sequences X = (xj,..., Xx,) and Y =
(y1, ..., ym) Forexample, X= (B, D, C,A, B,A)and Y= (A, B,C, B, D, A, B).

Solutions: A subsequence of a sequence is a subset of the elements taken in the
same order. A solution is a subsequence Z = (z,, ..., z;) that is common to both
XandY.

Measure of Success: The cost (or success) of a solution is the length of the com-
mon subsequence.

Goal: Given two sequences X and Y, the goal is to find the LCS.

Example: Z = (B, C, A) is a solution because it is a subsequence of X =
(B, D,C,A, BbA) and Y (Y= (A, B, C, B, D, A, B)). The cost (success) of this
subsequence is | Z| = 3. Here Z = (B, C, B, A) would be a longer common sub-
sequence with cost 4.

Greedy Algorithm: Suppose X = (A, B, C, D) and Y = (B, C, D, A). A greedy algo-
rithm might commit to matching the two A’s. However, this would be a mistake, be-
cause the optimal answer is Z = (B, C, D).

Possible Little Bird Answers: Typically, the question asked of the little bird is for
some detail about the end of an optimal solution.

Case x,, # z;: Suppose that the bird assures us that the last character of X is
not the last character of at least one LCS Z of X and Y. We could then simply

296

Optimization Problems

ignore this last character of X. We could ask a friend to give us a LCS of X' =
(x1, ..., X,—1) and Y, and this would be a LCS of X and Y.

Case y,, # z;: Similarly, if we are told that the last character of Y is not used, then
we can ignore it.

Case x, = Y = z1: Suppose that the little bird tells us that the last character of
both X and Y is the last character of an optimal Z. This, of course, implies that
the last characters of X and Y are the same. In this case, we could simply ignore
this last character of both X and Y. We could ask a friend to give us a longest
common subsequence of X' = (x;, ..., x,-1)and Y = (y1, ..., Ym-1). ALCS of X
and Y would be the same, except with the character x, = y,, tacked on to the
end, that is, Z = Z’'x,. On the other hand, if the little bird answers this case with
Xn = Ym = 2; and we on our own observe that x, # y,, then we know that the
little bird is wrong.

Case z; =2: Even more extreme, suppose that the little bird goes as far as to tell
us the last character of a LCS Z. We could then delete the last characters of X and
Y up to and including the last occurrence of this character. A friend could give us
a LCS of the remaining X and Y, and then we could add on the known character
to give us Z.

Case x, = z; # ym: Suppose that the bird assures us that the last character of X
is the last character of an optimal Z. This will tell us the last character of Z, and
hence the last case will apply.

The Question for the Little Bird: We have a number of different answers that the
little bird might give, each of which would help us find an optimal Z. We could add
even more possible answers to the list. However, the larger the number K of possible
answers is, the more work our algorithm will have to do. Hence, we want to narrow
this list of possibilities down as far as possible. We will consider only the first three
bird answers. This is sufficient because for every possible solution at least one of
these is true, namely, either (1) x, # z;, (2) ¥Ym # 21, or (3) X = ¥m = z;. Of course,
it may be the case that x, # z; and y,, # z;, but if this is true, than the bird has a
choice whether to answer (1) or (2).

The Set of Subinstances: We guess that the set of subinstances of the instance
(X1, ooy Xy Y1 o Y IS {0, - Xa)y (Y1, Y 1B S0, j < m).

Closed: We know that this set contains all subinstances generated by the re-
cursive algorithm, because it contains the initial instance and is closed under
the sub operation. Consider an arbitrary subinstance, ((x1, ..., %), (y1, ..., ;).
Applying the sub operator constructs the subinstances {(x, ..., Xi_1), (}1,---,
Vi-1)) (X1, oo Xic), (V1 -- - Y, and (X, ..., %), (M1, -+ -5 Yj-1)), which are all
contained in the stated set of subinstances.

Examples of Dynamic Programs

Generating: We know that the specified set of subinstances does not contain
subinstances not called by the recursive program, because we can construct
any arbitrary subinstance from the set with the sub operator. Consider an
arbitrary subinstance ((xi, ..., %), (31, ..., ¥;)). The recursive program on the
instance ({(x1, ..., Xn), (J1,--., Ym)) can recurse on the first option n — i times
and then on the second option m — j times. This results in the subinstance

<<x1r -~~yxi>) (yl)).V]))

Constructing a Table Indexed by Subinstances: We now construct a table hav-
ing one entry for each subinstance. It will have a dimension for each of the parame-
ters i and j used to specify a particular subinstance. The tables will be cos#[0..n, 0..m]
and birdAdvicel0..n, 0..m].

Base Cases: The subinstance represented by cost[0, jlis (4, (y1, ..., ym)) and has no
characters in X. Hence, it is not reasonable to ask the bird about the last character of
X. Besides, this is an easy case to handle as a base case. The only subsequence of the
empty string is the empty string. Hence, the LCS is the empty string. The cost of this
solution is cost[0, j] = 0.

Order in Which to Fill the Table: The official order in which to fill the table
with subinstances is from smaller to larger. Here the size of the subinstance
({x1, ..., %), (y1, ..., ¥j)) is i+ j. Thus, you would fill in the table along the diago-
nals. However, the obvious order of looping, for i = 0 to n and from j = 0 to m, also
respects the dependences between the instances and thus could be used instead.

Code:
algorithm LCS(((-xlr ey er)! <y1v ey J’m)))

{ pre-cond): An instance consists of two sequences.

(post-cond): optSolis a LCS, and optCost is its length.

begin
% Table: optSolli, jl would store an optimal LCS for ((x,..., x;),
(31, ..., ¥;)), but actually we store only the bird’s advice for the
subinstance and the cost of its solution.
tablel0..n, 0..m] birdAdvice, cost

% Base cases: The base cases consist of when one string or the other is
empty, i.e., wheni = 0 or when j = 0.
For each, the solution is the empty string with cost zero.
forj=0tom
% optSol[0, jl =@
cost[0, j1 =0
birdAdvicel0, jl = ¢

297

298

Optimization Problems

end for
fori=0ton
% optSolli, 0] = &

cost[i,0] =0
birdAdviceli, 0] = ¢
end for

% General cases: Loop over subinstances in the table.
fori=1ton
forj=1tom
% Solve instance ((xi, ..., X;), ()1, ..., ¥j)), and fill in table entry
(i, j).
% The bird-and-friend algorithm: The bird tells us either (1) x; # z,
(2) yj # a1, or (3) x; = y; = zy. We remove this last letter (1) x;, (2)
¥j» or (3) both and ask the friend for an optimal LCS for the re-
maining words. He gives us (1) optSolli — 1, jl, (2) optSolli, j — 1],
or (3) optSol[i — 1, j — 1], which he has stored in the table. For cases
1 and 2, we leave this the same. For case 3, we add on the bird’s
letter, assuming that x; = y;. This gives us optSol, which is a LCS
for (i, j) from amongst those printings consistent with the bird’s
answer.
% Try each possible bird answers.
% Case k = 1): x; # 2y
% optSol, = optSol[i — 1, j]
cost; = costli — 1, j]
% Casek =2):y; # z1
% optSol, = optSol[i, j — 1]
costy = costli, j — 1]
% Casek=3):x=y;=2
if x; = y; then
% optSol, = optSolli — 1, j — 1] + x;
costz =costli —1,j —1]1+1
else
% Bird was wrong.
% optSol, =?
costy = —00
end if
% end cases
% Having the best, optSol,, for each bird’s answer k,
we keep the best of these best.
kmax = a k € [1, 2, 3] that maximizes cost;
% optSolli, j] = optSolkmax

Examples of Dynamic Programs

costli, j1 = costx,,,,
birdAdviceli, j]1 = kmax
end for
end for
optSol = LCSWithAdvice({{x1, ..., X3), (J1, - - -, ¥m)), birdAdvice)
return (optSol, costin, m])
end algorithm

Using Information about the Subinstance: This algorithm only has three differ-
ent bird answers. Surely, this is good enough. However, the number of the possi-
ble answers can be narrowed even further. We know the instance is ((xi, ..., X;),
(31, ..., ¥;)); hence, without asking the bird, we know whether or not the last char-
acters are the same, that is, whether or not x; = y;. If x; # y;, the third case with
X; = y; = zv is clearly not possible. Conversely, when x; = y;, one might also wonder
whether the case x; # zy could ever lead to an optimal solution. Exercise 19.1.1 shows
that in this case we only need to consider x; = y; = zy. As in a greedy algorithm, we
know the answer even before asking the question.

Constructing an Optimal Solution:
algorithm LCSWithAdvice (((xl, s XYL LY birdAdvice)
(pre- & post-cond): Same as LCS except with advice.
begin
if { =0or j =0) then
optSol= 0
return optSol
end if
kmax = birdAdviceli, j]
if kyax = 1 then
optSubSol = LCSWithAdvice(((x1, ..., Xi—1), (y1, ..., ¥j)), birdAdvice)
optSol = optSubSol
else if k00 = 2 then
optSubSol = LCSWithAdvice(((x1, ..., X;), (Y1, - .., ¥j-1)), birdAdvice)
optSol = optSubSol
else if k0 = 3 then
optSubSol = LCSWithAdvice({(x1, ..., Xi—1), ()1, ..., Yj-1)), birdAdvice)
optSol = (optSubSol, x;)
end if
return optSol
end algorithm

Time and Space Requirements: See Exercise 19.1.2.

299

300

Optimization Problems

0 0

™

— 2

- 00
7

L /L O

\?

—(2)
3 0 1 TI\Z QL 2T 3 \3
4@ 0 Tl\z 21\3\€ 3T —
5@ 0\1 2T\3 T3 3T 4 \
6@ T\ i\4\4 4T 5T
oL IS N

Figure 19.1: The tables generated for the instance X = 1001010 and Y = 01011010. Each
number is costli, j], which is the length of the longest common subsequence of the first i
characters of X and the first j characters of Y. The arrow indicates whether the bird’s advice is
to include x; = y;, to exclude Xx;, or to exclude y;. The circled digits of X and Y give an optimal
solution.

Example: See Figure 19.1.

EXERCISE 19.1.1 (See solution in Part Five.) (a) Prove that if x; = y;, then we only
need to consider the third case, and if x; # y;, then we only need to consider the first
two cases. (b) Show how this changes the code.

EXERCISE 19.1.2 (See solution in Part Five.) Calculate the running time of this
algorithm.

EEX] Dynamic Programs as More-of-the-Input Iterative
Loop Invariant Algorithms

A dynamic program can be thought of from two very different perspectives: as an op-
timized recursive backtracking algorithm and as an iterative loop invariant algorithm
that fills in a table. From the perspective of an iterative algorithm, the loop invariant
maintained is that the previous table entries have been filled in correctly. Progress is
made while maintaining this loop invariant by filling in the next entry. This is accom-
plished using the solutions stored in the previous entries.

Examples of Dynamic Programs

In more-of-the-input iterative algorithms (see Section 1.2), the subinstances are
prefixes of the instance, and hence the algorithm iterates through the subinstances
by iterating in some way through the elements of the instance.

SIMPLE EXAMPLE 19.2.1 Longest Increasing Contiguous Subsequence

301

Suppose that the input consists of a sequence A[1..n] of integers and we want to find

the longest contiguous subsequence A[k;, k,] such that the elements are monotoni-
cally increasing. For example, the optimal solution for [5, 3, 1, 3,7, 9, 8] is [1, 3, 7, 9].

Longest Block of Ones: The problem is very similar to the longest-block-of-ones
problem given in Section 2.2.

Deterministic Nonfinite Automation: The algorithm will read the input characters
one at a time. Let A[1..i] denote the subsequence read so far. The loop invariant will be
that some information about this prefix A[1..i] is stored. From this information about
A[l..i] and the element A[i + 1], the algorithm must be able to determine the required
information about the prefix A[1..i 4+ 1]. In the end, the algorithm must be able to de-
termine the solution from this information about the entire sequence A[1..n]. Such an
algorithm is a deterministic finite automaton (DFA) if only a constant amount of infor-
mation is stored at each point in time. (See Section 2.2.) However, in this chapter more
memory will be required.

The Algorithm: After reading A[l..i], remember the longest increasing contiguous
subsequence A[k;..k,] read so far and its size. In addition, so that you know whether the
current increasing contiguous subsequence gets to be longer than the previous one,
save the longest one ending in the value A[i], and its size.

If you have this information about A[1..i — 1], then you can learn it about A[1..7] as
follows. If A[i — 1] < A[i], then the longest increasing contiguous subsequence ending
in the current value increases in length by one. Otherwise, it shrinks to being only the
one element A[i]. If this subsequence increases to be longer than our previous longest,
then it replaces the previous longest. In the end, we know the longest increasing con-
tiguous subsequence.

The running time is ®(n). This is not a DFA, because the amount of space to re-
member an index and a count (amounting to ®(n) values) is ©(log n) bits.

HARDER EXAMPLE 19.2.2 Longest Increasing Subsequence

Again the input consists of a sequence A of integers of size n. However, now we want to
find the longest (not necessarily contiguous) subsequence S C [1..77] such that the ele-
ments, in the order that they appear in A, are monotonically increasing. For example,
an optimal solution for [5, 1, 5, 7, 2, 4,9, 8] is [1, 5, 7, 9], and so is [1, 2, 4, 8].

Dynamic Programming Deterministic Nonfinite Automation: Again the algorithm
will read the input characters one at a time. But now the algorithm will store suitable

Optimization Problems

HARDER EXAMPLE 19.2.2 Longest Increasing Subsequence (cont.)

302

information, not only about the current subsequence A[1..i], but also about each pre-
vious subsequence Vj < i, A[l..j]. Each of these subsequences A[1..j] will be referred
to as a subinstance of the original instance A[1..n].

The Algorithm: As before, we will store both the longest increasing sequence seen so
far and the longest one(s) that we are currently growing.

The Loop Invariant: Suppose that the subsequence read so far is 10,20, 1,
30, 40, 2, 50. Then 10, 20, 30, 40, 50 is the longest increasing subsequence so far. A
shorter oneis 1, 2, 50. The problem is that these end in a relatively large number, so
we may not be able to extend them further. If the rest of the stringis 3, 4, 5, 6, 7, 8,
we will have to have remembered that 1, 2 is the longest increasing subsequence
that ends in the value 2. In fact, for many values v, we need to remember the
longest increasing subsequence ending in this value v (or a smaller one), because
in the end, it may be that many of the remaining elements increase starting from
this value. We only need to do this for values v that have been seen so far in the
array. Hence, one possibility is to store, for each j < i, the longest increasing sub-
sequence in A[1..j] that ends with the value A[j].

Maintaining the Loop Invariant: If we have this information for each j <i—1,
then we learn it about A[i] as follows. For each j <i— 1, if A[j] < Ali], then A[i]
can extend the subsequence ending with A[j]. Given this construction, the maxi-
mum length for i will then be one more than that for j. We get the longest one for
i by taking the best of these overall such j. If there is no such j, then the count for
i will be 1, namely, simply A[i] itself.

Final Solution: In the end, the solution is the increasing subsequence ending in
Al[jl, where j € [1..n] is that for which this count is the largest.

Running Time: The time for finding this best subsequence ending in A[j] from
which to extend to A[i] would be ©() if each j € [1..i — 1] needed to be checked.
However, by storing this information in a heap, the best j can be found in ©(logi)
time. This gives a total time of ©(3_" , logi) = ©(nlog n) for this algorithm.

Recursive Backtracking: We can also understand this same algorithm from the recur-
sive backtracking perspective. Given the goal of finding the longest increasing sub-
sequence of A[l..i], we might ask the little bird whether or not the last element A[i]
should be included. Both options need to be tried. If A[i] is not to be included, then
the remaining subtask is to find the longest increasing subsequence of A[1..i — 1]. This
is clearly a subinstance of the same problem. However, if A[] is to be included, then
the remaining subtask is to find the longest increasing subsequence of A[1..i — 1] that
ends in a value that is smaller than or equal to this last value A[i]. This is another way of
seeing that we need to learn both the longest increasing sequence of the prefix A[1..]
and the longest one ending in A[i].

Examples of Dynamic Programs

EEX] A Greedy Dynamic Program: The Weighted Job/Event
Scheduling Problem

We revisit the event scheduling problem from Section 16.2.1, now prioritizing the
events. Our original greedy algorithm won'’t work, but dynamic programming will.

The Weighted Event Scheduling Problem: Suppose that many events want to
use your conference room. Some of these events are given a higher priority than oth-
ers. Your goal is to schedule the room in the optimal way.

Instances: An instance is ((s1, fi, W), (S2, f2, Wa), ..., {Sn, fu, Wy)), Wwhere 0 < s; <
f; are the starting and finishing times and w; the priority weight for n events.

Solutions: A solution for an instance is a schedule S. This consists of a subset
S c [1..n] of the events that don’t conflict by overlapping in time.

Measure of Success: The cost (or success) C(S) of a solution S is the sum of the
weights of the events scheduled, i.e.,), ; w;.

Goal: The goal of the algorithm is to find the optimal solution, that is, that maxi-
mizes the total scheduled weight.
Failed Algorithms:

Greedy Earliest Finishing Time: The greedy algorithm used in Section 16.2.1 for
the unweighted version greedily selects the event with the earliest finishing time
f;- This algorithm fails when the events have weights. The following is a coun-
terexample:

1
1000

The specified algorithm schedules the top event for a total weight of 1. The opti-
mal schedule schedules the bottom event for a total weight of 1000.

Greedy Largest Weight: Another greedy algorithm selects the first event using
the criterion of the largest weight w;. The following is a counterexample for this:

The top event has weight 2 and the bottom ones each have weight 1. The speci-
fied algorithm schedules the top event for a total weight of 2. The optimal sched-
ule schedules the bottom events for a total weight of 9.

Dynamic Programming: The obvious dynamic programming algorithm is for the
little bird to tell you whether or not to schedule event J,.

303

304

Optimization Problems

Bird-and-Friend Algorithm: Consider an instance J = ({s1, fi, w1), (S2, f2,
Ws), .-+, {Sn, fu» wy)). The little bird considers an optimal schedule. We ask
the little bird whether or not to schedule event J,. If she says yes, then the
remaining possible events to schedule are those in J, excluding event J,, and
excluding all events that conflict with event J,. We ask a friend to schedule
these. Our schedule is his with event J, added. If instead the bird tells us
not to schedule event J,, then the remaining possible events to schedule are
those in J excluding event J,,.

The Set of Subinstances: When tracing the recursive algorithm on small ex-
amples, we see that the set of subinstance used can be exponentially large.
See the left side of Figure 19.2 for an example. The events in the instance are
paired so that for i € [1..3], job J; conflicts with job Joi, but jobs between
pairs do not conflict. After the little bird tells you whether or not to schedule
jobs Juz; fori € [1..7], job J; will remain in the subinstance if and only if job
J»1; was not scheduled. This results in at least 2"/ 2 different paths down the
tree of stack frames in the recursive backtracking algorithm, each leading to
a different subinstance.

In contrast, look at the instance on the right in Figure 19.2. It only has
a linear number of subinstances, because each subinstance is a prefix of
the events. The only difference between these examples is the order of the
events.

Greedy Dynamic Programming: First sort the events in increasing order of their
finishing times f; (a greedy thing to do). Then run the same dynamic programming
algorithm in which the little bird tells you whether or not to schedule event J,,.

The Set of Subinstances: When tracing the recursive algorithm on small ex-
amples, it looks hopeful that the set of subinstance used is {((s1, fi, w1),
(S2, fo, o), ..., (i, fi, w;)) | i € [0..n]}. If so, the algorithm is polynomial time. The
danger is that when excluding those events that conflict with event J,,, the subin-
stance created will no longer have a contiguous prefix of the events. For example,
if event J, conflicts with J, but event J3 does not, then the new subinstance will
needtobe ((s, fi, w1), (s3, f5, ws), ..., 2?), which is not included. Needing to solve
this subinstance as well may make the running time exponential.

Closed: For this algorithm, more than those previous, we must be care-
ful to show that this set contains all subinstances generated by the recur-
sive algorithm by showing that it is closed under the sub operation. Con-
sider an arbitrary subinstance ({s}, fi, w1), (S2, f2, W2), ..., (s, fi, w;)) in the
set. If we delete from this event J; and all events that conflict with it, we
must show that this new subinstance is again in our set. Let i’ € [0..i — 1] be
the largest index such that f; < s;. Because the events have been sorted by

Examples of Dynamic Programs

Job numbers

Subinstance after committing to keeping 14
1 2 3 4 6 8

0 11 12 13

Subinstance after committing to keeping 13
1 2 3 6 8

10 11 12

and so on

Figure 19.2: Two examples of the subinstances formed from the recursive backtracking

algorithm.

their finishing time, we know that all events Ji in ((s1, fi, w1), (S2, fo, un), ...,
(s#, fr, wy)) also have fi. < s; and hence do not conflict with J;. All events
Je in ((Sp1, fiv1, Wig1), -+, (Si, fi, wi)) have s; < fi < f; and hence conflict
with J;. It follows that the resulting subinstanceis ({(s;, fi, w1), (S2, fo, w2), ...,
(s#, fr, wy)), which is our set of subinstances. If, on the other hand,
only event J; is deleted, then the resulting subinstance is ({s, fi, w1), ...,
(Si—1, fi-1, wi—1)), which is obviously in our set of subinstances. It is because

1 3 5 7 9 11 13 15

1 3 5 7 9 1 13 15

1 3 5 7 9 11 13

305

this works out that the algorithm is polynomial-time.

Generating: Consider the arbitrary subinstance ((s1, fi, w1), (S2, fz, un), ...,
(si, fi, wi)). It is generated by the recursive algorithm when the little bird

states that none of the later events are included in the solution.

The Table: The dynamic programming table is a one-dimensional array indexed
by i € [0..n]. The order to fill it in is with increasing i. As in the greedy algorithm,
the events are considered to be ordered by earliest finishing time first. The i entry

is filled in by trying each of the two answers the bird might give.

306

Optimization Problems

Time and Space Requirements: Generally, the running time is the number of
subinstances times the number of possible bird answers, and the space is the
number of subinstances. This would give T = ©(n x 2) and S = ©(n). In this
case, however, the running time is larger than that. The reason is that when the
event J; is to be included, it takes O(logn) time to do a binary search to find
which earlier events conflict with it and hence need to be deleted. This gives a
running time of O(nlogn), apart from the initial O(nlogn) time for sorting of
the activities by finishing time.

EXERCISE 19.3.1 Write out the pseudocode for this algorithm.

EEXA The Solution Viewed as a Tree: Chains of Matrix Multiplications

We now look at an example in which the fields of information specifying a solution
are organized into a tree instead of into a sequence (see Section 18.3.2). The algo-
rithm asks the little bird to tell it the field at the root of one of the instance’s optimal
solutions, and then a separate friend will be asked for each of the solution’s subtrees.

The optimization problem determines how to optimally multiply together a
chain of matrices. Multiplying an a, x a, matrix by a a, x as matrix requires a, - a, -
as scalar multiplications. Matrix multiplication is associative, meaning that (M, -
M) - Mg = M - (Ms - Ms). Sometimes different bracketing of a sequence of matrix
multiplications can lead to the total number of scalar multiplications being very dif-
ferent. For example,

({5 x 1,000) - (1,000 x 2)) - (2 x 2,000) = (5 x 2) - (2 x 2,000) = (5 x 2,000)

requires 5 x 1,000 x 2 + 5 x 2 x 2,000 = 10,000 + 20,000 = 30,000 scalar multiplica-
tions. However,

(5 x 1,000) - ({1,000 x 2) - (2 x 2,000)) = (5 x 1,000) - (1,000 x 2,000)
= (5 x 2,000)

requires 1,000 x 2 x 2,000 + 5 x 1,000 x 2,000 = 4,000,000 + 10,000,000 = 14,000,000.
The problem considered here is to find how to bracket a sequence of matrix mul-
tiplications in order to minimize the number of scalar multiplications.

Chains of Matrix Multiplications:

Instances: An instance is a sequence of n matrices (A1, Az, ..., A,). (A precondi-
tion is that for each k € [1..n — 1], width(Ay) = height(Ak1).)

Solutions: A solution is a way of bracketing the matrices, e.g., ((4;A>)
(A3(A4A5))). A solution can equivalently be viewed as a binary tree with the ma-
trices Ay, ..., A, at the leaves. The binary tree would give the order in which to
multiply the matrices:

Examples of Dynamic Programs

Ay A, Ay A, Ag

Measure of Success: The cost of a solution is the number of scalar multiplica-
tions needed to multiply the matrices according to the bracketing.

Goal: Given a sequence of matrices, the goal is to find a bracketing that requires
the fewest multiplications.

A Failed Greedy Algorithm: An obvious greedy algorithm selects where the last
multiplication will occur according to which is cheapest. We can prove that any such
simple greedy algorithm will fail, even when the instance contains only three ma-
trices. Let the matrices A;, A,, and As have height and width (a, a1), (a1, a2), and
(az, az). There are two orders in which these can be multiplied. Their costs are as
follows:

cost((Ay - Az) - A3) = apara, + apazas

cost(A - (Az - A3)) = avaras + aparas

Consider the algorithm that chooses so that the last multiplication is the cheapest.
Let us assume that the algorithm uses the first order. This gives that apa,a; < apa;as,
that is, a, < a;. However, the second order will be cheaper if apa;a, + apazas >
a1a,a3 + apaas, thatis, if ay >> as. Let us now assign simple values meeting a, < a;
and ay >> as. Say ap = 1000, a; = 2, a, = 1, and as = 1. Plugging these in gives

cost((A; - Ap) - Az) = 1000 x 2 x 141000 x 1 x 1 = 2000 4+ 1000 = 3000
cost(A1 - (A2-A3)) =2x1x1+1000x 2 x1=2+ 2000 = 2002

This is an instance in which the algorithm gives the wrong answer. Because 1000 <
2000, it uses the first order. However, the second order is cheaper.

A Failed Dynamic Programming Algorithm: An obvious question to ask the little
bird would be which pair of consecutive matrices to multiply together last. Though
this algorithm works, it has exponential running time. The problem is that there are
an exponential number of different subinstances. Consider paths down the tree of
stack frames in which for each pair A,; and Ay;,;, the bird either gets us to mul-
tiply them together or does not. This results in 22 different paths down the tree
of stack frames in the recursive backtracking algorithm, each leading to a different
subinstance.

The Question to Ask the Little Bird: A better question is to ask the little bird
to give us the splitting k so that the last multiplication multiplies the product

307

308

Optimization Problems

of (A1, Ay, ..., Ax) and of (Agy1, ..., Ap). This is equivalent to asking for the root
of the binary tree. For each of the possible answers, the best solution is found
that is consistent with this answer, and then the best of these best solutions is
returned.

Reduced to Subinstance: With this advice, our search for an optimal bracketing is
simplified. We need only solve two subinstances: finding an optimal bracketing of
(A1, Az, ..., Ag) and of (Aks1, ..., Ay). In the example with (A, Az, ..., As) above,
the bird splits the problem into subinstances (A, A») and (A3, Ay, As).

Recursive Structure: An optimal bracketing of the matrices (A, Az, ..., A,) multi-
plies the sequence (Aj, ..., A;) with its optimal bracketing, and (A1, ..., A,) with
its optimal bracketing, and then multiplies these two resulting matrices together, that
is, optSol = (optLeft) (optRight).

The Cost of the Optimal Solution Derived from the Cost for Subinstances:
The total number of scalar multiplications used in this optimal bracketing is the
number used to multiply (A,, ..., Ax), plus the number for (Aki1,..., An), plus
the number to multiply the final two matrices. (4,, ..., Ax) evaluates to a matrix
whose height is the same as that of A; and whose width is that of Aj. Similarly,
(Aks+1, ..., Ay) becomes a height(Ari1) x width(A,) matrix. Multiplying these re-
quires a number height(A,) x width(Ay) x width(A,) scalar multiplications. Hence,
in total, cost = costLeft + costRight + height(A1) x width(A) x width(A,).

The Set of Subinstances Called: The set of subinstances of the instance
(A1, A, ..., Ap)is (A, Ay, ..., Aj) for every choice of end points 1 < i < j < n. This
set of subinstances contains all the subinstances called, because it is closed
under the sub operation. Applying the sub operator to an arbitrary subin-
stance (A;, Aiy1,...,Aj) from this set constructs subinstances (A;, ..., Ax) and
(Aks1, ..., Aj) for i < k < j, which are contained in the stated set of subinstances.
Similarly, the set does not contain subinstances not called by the recursive program,
because we easily can construct any arbitrary subinstance in the set with the sub
operator. For example, (Ay, ..., Ay) sets k= j and calls (A;,..., A;), which sets
k=i+1landcalls(A; ..., Aj).

Constructing a Table Indexed by Subinstances: The table indexed by the set of
subinstances will have a dimension for each of the parameters i and j used to specify
a particular subinstance. The tables will be cos#[1..n, 1..n] and birdAdvice[l..n, 1..n].
See Figure 19.3.

Order in Which to Fill the Table: The size of a subinstance is the number of ma-
trices in it. We will fill the table in this order.

Examples of Dynamic Programs

(Lk)=(

Figure 19.3: The table produced by the dynamic programming solution for Matrix Multiplica-
tion. When searching for the optimal bracketing of A,, ..., A;, one of the methods to consider
is [Az, ..., A4llAs, ..., A7l

algorithm MatrixMultiplication ((Ay, Aa, ..., Ay))

(pre-cond): An instance is a sequence of n matrices.
(post-cond): optSolis a bracketing that requires the fewest multiplications, and
optCost is the resulting number of multiplications.
begin
% Table: optSol[i, j] would store an optimal way of bracketing the matrices
(Aiy Ai1, .., Aj),
but actually we store only the bird’s advice for the subinstance
and the cost of its solution.
table[l..n, 1..n] birdAdvice, cost

% Base cases: The base cases are when there is only one matrix, i.e., (4;).
For each, the solution is the empty bracketing with cost zero.
fori=1ton

% optSolli, i] = A;

costli, il =0
birdAdviceli, i) = 0
end for

% General cases: Loop over subinstances in the table.
for size=2ton
fori=1ton— size+1
j=1i+size—1
% Solve instance (i, j) and fill in the table.

309

310

Optimization Problems

% Try each possible bird answers.
fork=itoj—1
% The bird-and-friend algorithm: The bird gives us the split-
ting k, so that the last multiplication multiplies the prod-
uct of (A;, Aiy1, ..., Ax) and that of (Agi, ..., Aj). One friend
gives us optSol[i, k], an optimal bracketing (A;, ..., Ax), and
another gives us optSollk + 1, j], an optimal bracketing of
(Ak+1, ..., Aj). We combine these friends’ and the bird’s infor-
mation, obtaining optSol,, which is a best bracketing for (i, j)
from amongst those consistent with the bird’s answer.
% Get help from friend
% optSol,. = (opt Left) (optRighi)
costy. = costli, k] + costlk + 1, j1 + height(A;)
x width(Ay) x width(A))
end for
% Having the best, optSol,, for each bird’s answer k,
we keep the best of these best.
kmin = a k that minimizes cost;
% optSolli, j] = optSol,
costli, j] = costy,,,
birdAdviceli, j1 = kmin
end for
end for
optSol = MatrixMultiplicationWithAdvice({(A1, A,, ..., A,), birdAdvice)
return (optSol, cost[1, n])
end algorithm

min

Constructing an Optimal Solution:

algorithm MatrixMultiplicationWithAdvice((A;, Az, ..., A}), birdAdvice)

(pre- & post-cond): Same as MatrixMultiplication except with advice.

begin
if (i = j) then
optSol = A;
return optSol
end if
kmin = birdAdviceli, j]
optLeft = MatrixMultiplicationWithAdvice((A,, . . ., Ak,,,), birdAdvice)
optRight = MatrixMultiplicationWithAdvice(Ax,,,+1, - - ., A}), birdAdvice)
optSol = (optLeft)(optRight)
return optSol
end algorithm

Examples of Dynamic Programs

Time and Space Requirements: The running time is the number of subinstances
times the number of possible bird answers, and the space is the number of subin-
stances. The number of subinstances is ®(n?), and the bird chooses one of ©(n)
places to split the sequence of matrices. Hence, the running time is ®(n®), and the
space requirements are @ (rn?).

EXERCISE 19.4.1 Give the steps to find a counterexample for the greedy algorithm that
multiplies the cheapest pair together first.

EXERCISE 19.4.2 (See solution in Part Five.) Use a picture to make sure that when (i, j)
is filled, (i, k) and (k + 1, j) are already filled for alli < k < j. Give two other orders
that work.

EEX] Generalizing the Problem Solved: Best AVL Tree

As discussed in Section 8.3, it is sometimes useful to generalize the problem solved
so that you can either give or receive more information from your friend in a recur-
sive algorithm. This was demonstrated in Chapter 10 with a recursive algorithm for
determining whether or not a tree is an AVL tree. This same idea is useful for dy-
namic programming. I will now demonstrate this by giving an algorithm for finding
the best AVL tree. To begin, we will develop an algorithm for the best binary search
tree.

The Best Binary Search Tree:

Instances: Aninstance consists of n probabilities py, ..., p, to be associated with
the n keys a; < a, < --- < a,. The values of the keys themselves do not matter.
Hence, we can assume that a; = i.

Solutions: A solution for an instance is a binary search tree containing the keys.
A binary search tree is a binary tree such that the nodes are labeled with the keys
and for each node all the keys in its left subtree are smaller and all those in the
right are larger.

Measure of Success: The cost of a solution is the expected depth of a key
when choosing a key according to the given probabilities, namely)
[p; - depth of g; in tree].

iel..n]

Goal: Given the keys and the probabilities, the goal is to find a binary search tree
with minimum expected depth.

Expected Depth: The time required to search for a key is proportional to the depth
of the key in the binary search tree. Finding the root is fast. Finding a deep leaf takes
much longer. The goal is to design the search tree so that the keys that are searched
for often are closer to the root. The probabilities py, ..., py, given as part of the input,

311

312

Optimization Problems

1

s means thatkey

specify the frequency with which each key is searched for; e.g., p; =
as is search for on average one out of every eight times.

One minimizes the depth of a binary search tree by making it completely bal-
anced. Having it balanced, however, dictates the location of each key. Although hav-
ing the tree partially unbalanced increases its overall height, it may allow for the keys
that are searched for often to be placed closer to the top.

We will manage to put some of the nodes close to the root, and others we will
not. The standard mathematical way of measuring the overall success of putting
more likely keys closer to the top is the expected depth of a key when the key is
chosen randomly according to the given probability distribution. It is calculated by
> ici.m Pi - di, where d; is the depth of g; in the search tree.

One way to understand this is to suppose that we needed to search for a
billion keys. If p3 = é, then a3 is searched for on average one out of every eight times.
Because we are searching for so many keys, it is almost certain that the number
of times we search for this key is very close to % billion. In general, the number
of times we search for a; is p; billion. To compute the average depth of these bil-
lion searches, we sum their depths and divide by a billion, namely w5 > .1 10
[depth of kth search] = 15 Yicy_y (P x 10%) - di = Yicy_y Pi - .

Bird-and-Friend Algorithm: | am given an instance consisting of n probabilities
p1, - - ., pn- L ask the bird which key to put at the root. She answers ay. I ask one friend
for the best binary search tree for the keys a;, ..., ai—; and its expected depth. I ask
another friend for the best tree of the specified height for a1, . . ., a, and its expected
depth. I build the tree with ay. at the root and these as the left and right subtrees.

Generalizing the Problem Solved: A set of probabilities py, ..., p, defining a
probability distribution should have the property that } ;.,, ., pi = 1. However, we
will generalize the problem by removing this restriction. This will allow us to ask our
friend to solve subinstances that are not officially legal. Note that the probabilities
given to the friends in the above algorithm do not sum to 1.

The Cost of an Optimal Solution Derived from the Costs for the Subinstances:
The expected depth of my tree is computed from that given by my friend as follows.

Cost =) iy pi - depth of @; in tree] (19.1)
= Y ien.k—ylpi - (depth of a; inleft subtree) +1] + [py - 1] (19.2)

+ > ictks1.mPi - (depth of g; in right subtree) + 1] (19.3)
= Costies + [Licr k-1 Pi] + P + CoStrigne + [Licpepr.mpi] — (194)
= Costief + [Yicpym Pi] + COStrignt (19.5)

= Costiefy + COoSlyigns + 1 (19.6)

Examples of Dynamic Programs

The Complete Set of Subinstances That Will Get Called: The complete set of
subinstances is S={{(a;,...,a;;pi,..., pj) | 1<i<j<mn}. The table is two-
dimensional with size ®(n x n).

Running Time: The table has size ®(n x n). The bird can give n different answers.
Hence, the time is ©(n3).

We now change the problem so that it is looking for the best AVL search tree.

The Best-AVL-Tree Problem:

Instances: An instance consists of n probabilities py, ..., p, to be associated with
thenkeysa, <a, < --- < ay.

Solutions: A solution for an instance is an AVL tree containing the keys. An AVL
tree is a binary search tree with the property that every node has a balance factor
of —1, 0, or 1. Its balance factor is the difference between the heights of its left
and its right subtrees.

Measure of Success: The cost of a solution is the expected depth of a key,
> icinmpi - depthofa; in T].

Goal: Given the keys and the probabilities, the goal is to find an AVL tree with
minimum expected depth.

Cannot Coordinate Friends: We could simply ask friends to build the left and
right sub-AVL-trees, but then what would we do if the difference in their heights
were greater than one? We cannot expect friends to coordinate their answers.

The New Generalized Problem: An instance consists of the keys, the probabili-
ties, and a required height. The goal is to find the best AVL tree with the given
height.

EXERCISE 19.5.1 (See solution in Part Five.)

1.

2.

S

What are the possible heights for the left and the right subtrees of an AVL tree of
height h?

What question would you ask the bird? It is O.K. to ask two questions. What subin-
stance would you give your friend?

How would you ensure the balance between the heights of the left and right sub-
trees?

What is the complete set of subinstances that will get called?

What is the running time of your algorithm?

In the original problem, the height was not fixed. How would you use the table to
solve this problem?

313

314

Optimization Problems

EEXA Al Pairs Using Matrix Multiplication

There is another dynamic programming algorithm that also finds the shortest path
between every pair of nodes. It is similar in some ways to the Floyd-Warshall-Johnson
algorithm, but it is fun because it can be viewed as matrix multiplication.

EXERCISE 19.6.1 Let G = (V, E) be a (directed or undirected) graph, and k < n some
integer. Let M* be a matrix with a both a row and a column for each node in the graph,
such that for each pair of nodes u, v € Vithe element M*[u, v] gives the number of dis-
tinct paths from u to v that contain exactly k edges. Here a path may visit a node more
than once. M* [u, v) is one if there is an edge (u, v) and zero otherwise, and M*[u, u] = 1
because there is a path of length zero from u to u. Prove that M'+i = M M/, where x is
standard matrix multiplication, i.e., M+ [u, v] =3, [M'[u, w] - M/ [w, v]].

EXERCISE 19.6.2 Now let the graph G = (V, E) have weights w,,, (positive or neg-
ative) on each edge. Redefine M*[u, v] to give the weight of the shortest path from u
to v with the smallest total weight from amongst these paths that contains exactly k
edges. Note that M [u, v] is the weight of the edge w,,, (or infinity), and M (u,ul =0
because there is a path of length zero from u to u. Prove that Mi+i = M x M/, where x
is standard matrix multiplication except that scalar multiplication is changed to +
and that + is changed to Min, i.e., M'*J[u, v] = Min,[M![u, w] + M [w, v]]. Compare
this exercise with Exercise 4.4.3.

EXERCISE 19.6.3 If all the edge weights are positive, then the shortest weighted path
contains at most n — 1 edges. Hence, MN [u, v] for N> n — 1 gives the overall shortest
weighted path from u tov. Given M*, what is the fastest way of computing MY for some
N> n?

EXERCISE 19.6.4 If there is a path from u to v containing a negative weighted cycle,
then this cycle can be repeated infinitely often, giving a path with negative infinite
weight and infinitely many edges. To detect this, compute MY [u, v] and M?2N [u, v] for
some large N and see if they are different. The questions is how large N needs to be. You
would think that N = n — 1 would be sufficient, but it is not. Give a graph with n edges,
each with positive or negative £-bit integer weights, for which JVI"[u, V] = M [u, v] for
k € [1, N] for some very large N, but MN+1 [w, v] is smaller.

EXERCISE 19.6.5 The standard algorithm for standard matrix multiplication takes
O(n3) time. Strassen’s algorithm (Section 9.2) is able to do it in ®(n>%°73) time. Does
this same algorithm work for this strange multiplication? The equations x - (y + z) =
X-y+x-zand(x — y) + y = x are true for all real numbers. Are they true on replacing
- with + and replacing + with Min?

Examples of Dynamic Programs

EEXA Parsing with Context-Free Grammars

In Chapter 12 we developed an elegant recursive algorithm for parsing a string
according to a given context-free grammar that works only for look-ahead-one
grammars. We now develop a dynamic programming algorithm that works for any
context-free grammar.

Given a grammar G and a string s, the first step in parsing is to convert the gram-
mar into one in Chomsky normal form, which is defined below. Although a dynamic
program could be written to work directly for any context-free grammar, it runs much
faster if the grammar is converted first.

The Parsing Problem:

Instance: An instance consists of (G, Ty, S), where G is a grammar in Chom-

sky normal form, Ty, is the nonterminal of G designated as the start symbol,

and s is the string (ay, . . ., a,) of terminal symbols to be generated. The grammar

G consists of a set of nonterminal symbols V = (Tj, ..., Tjy) and a set of rules

(r1, ..., rm). The definition of Chomsky normal form is that each rule r; has one

of the following three forms:

* A; = B,;C;, where A, By, and C,; are nonterminal symbols.

* A; = by, where b, is a terminal symbol.

* Titart = €, where Tyt is the start symbol and € is the empty string. This rule
may only be used to parse the string s = . It may not be used within the pars-
ing of a larger string.

Solution: A solution is a partial parsing P, consisting of a tree. Each internal node
of the tree is labeled with a nonterminal symbol; the root is labeled with the spec-
ified symbol Ty. Each internal node must correspond to a rule of the grammar
G. For example, for the rule A = BC, the node is labeled A and its two children
are labeled B and C. In a complete parsing, each leaf of the tree is labeled with a
terminal symbol. In a partial parsing, some leaves may still be labeled with non-
terminals.

Measure of Success: A parsing P is said to generate the string s if the leaves of the
parsing in order form s. The cost of P will be one if it generates the string s, and
will be zero otherwise.

Goal: The goal of the problem is, given an instance (G, Ty, S), to find a parsing
P that generates s.

Not Look Ahead One: The grammar G might not be look-ahead-one. For exam-
ple, in

A =BC

A =DE

315

316

Optimization Problems

you do not know whether to start parsing the string as a B or a D. If you make the
wrong choice, you have to back up and repeat the process. However, this problem is
a perfect candidate for a dynamic programming algorithm.

The Parsing Abstract Data Type: We will use the following abstract data type to
represent parsings. Suppose that there is a rule r, = “A; = B;C,;” that generates
B; and C; from A,. Suppose as well that the string s; = (ay, ..., ax) is generated
starting with the symbol B, using the parsing P, (B, is the root of P) and that
S2 = (Ak41, - .., Ap) is generated from C; using P,. Then we say that the string s =
s108 = (ay, ..., a,) is generated from A, using the parsing P = (A,, P, B).

The Number of Parsings: Usually, the first algorithmic attempts at parsing are
some form of brute force algorithm. The problem is that there are an exponential
number of parsings to try. This number can be estimated roughly as follows. When
parsing, the string of symbols needs to increase from being of size 1 (consisting only
of the start symbols) to being of size n (consisting of s). Applying a rule adds only one
more symbol to this string. Hence, rules need to be applied 7 — 1 times. Each time
you apply a rule, you have to choose which of the m rules to apply. Hence, the total
number of choices may be ®(m").

The Question to Ask the Little Bird: Given an instance (G, Ty S), we will ask
the little bird a question that contains two subquestions about a parsing P that gen-
erates s from Tyqy.

The first subquestion is the index g of the rule ry = “ Ty = B;C,;” thatis applied
first to our start symbol T,:. Although this is useful information, I don't see how it
alone could lead to a subinstance.

We don’t know P, but we do know that P generates s = (ay, ..., a,). It follows
that, for some k € [1..n], after P applies its first rule r; = “ Tyure = B,;C,”, it then gen-
erates the string s; = (ay, ..., ax) from B, and the string s, = (@i41, - .., an) from G,
so that overall it generates s = s; 0 S, = {(ay, .. ., a,). Our second subquestion asked
of the bird is to tell us this k that splits the string s.

Help from Friend: What we do not know about the parsing tree P is how B, gen-
erates s; = (ay, . .., ax) and how C; generates s, = (dr41, ..., a). Hence, we ask our
friends for optimal parsings for the subinstances (G, By, s1) and (G, Cg, s2). They
respond with the parsings P, and P.. We conclude that P = (Tyuy, Pi, P») gener-
ates s = sy 08, = (ay, - .., Ap) from Ty, If either friend gives us a parsing with zero
cost, then we know that no parsing consistent with the information provided by
the bird is possible. The cost of our parsings in this case is zero as well. This can
be achieved by setting the cost of the new parsing to be the minimum of those
for P, and for P,. The line of code will be costy i, = min(cost[By, 1, kl, cost[Cy,
k+1,nl.

Examples of Dynamic Programs

The Set of Subinstances: The set of subinstances that get called by the recursive
program consisting of you, your friends, and their friends is {(G, Tj, a;, ..., a;) | he
V,1<i<j<n}

Closed: We know that this set contains all subinstances generated by the recur-
sive algorithm because it contains the initial instance and is closed under the

sub operation. Consider an arbitrary subinstance (G, Tp, a;, ..., a;) in the set. Its
subinstances are (G, By, a;, ..., ax) and (G, Cy, Ai41, - .., aj), which are both in
the set.

Generating: Some of these subinstances will not be generated. However, most of
our instances will.

Constructing a Table Indexed by Subinstances: The table will be three-dimen-
sional. The solution for the subinstance (G, Tj, a;, . . ., a;) will be stored in the entry
Tablelh, i, jlfor he Vand 1 <i < j < n. See Figure 19.4.

The Order in Which to Fill the Table: The size of the subinstance (G, Tj, a;, .. .,
a;) is the length of the string to be generated, i.e., j — i + 1. We will start with smaller
strings and then move to longer and longer strings.

Base Cases: One base case is the subinstance (G, Ty, €). This empty string € is
parsed with the rule Ty,+ = €, assuming that this is a legal rule. The other base cases
are the subinstances (G, Ay, b,). This string, consisting of the single character b, is
parsed with the rule A; = b;, assuming that this is a legal rule.

Constructing an Optimal Solution:
algorithm ParsingWithAdvice((G, Ty, a;, . . ., a;), birdAdvice)
(pre- & post-cond): Same as Parsing except with advice.
begin
(q, k) = birdAdvicelh, i, j]
if(i = j) then
Rule r; must have the form “A; = b;”, where A, is T, and b, is a;
Parsing P = (Tj, a;)
else
Rule r; must have the form “A; = C,; B,”, where A, is Tj,.
P, = ParsingWithAdvice((G, By, a;, . .., ax), birdAdvice)
P, = ParsingWithAdvice({G, Cy, axs1, ..., aj), birdAdvice)
Parsing P = (Tj, P1, P»)
end if
return(P)
end algorithm

317

318

Optimization Problems

; | (vin

. 1k, 7.k
(Lij) (. j) (. j)

(Liofol. v .

>
Ordef to fill
/ -

(LL1) i (LL1) i

Q :our instance

® : subinstances
(kY| o A

(1,11 i

Figure 19.4: The dynamic programming table for parsing. The table entry corresponding to

the instance (G, T, a;, . .., a;) is represented by the little circle. Using the rule T = T Ti, the
subinstances (G, T, a;, ..., ai) and (G, Ty, a4, . . ., a;j) are formed. Using the rule Ty = T3 T,
the subinstances (G, Ts, a;, ..., ax) and (G, T7, a1, . . ., aj) are formed. The table entries corre-

sponding to these subinstances are represented by the dots within the ovals.

EXERCISE 19.7.1 (See solution in Part Five.) (a) Give the code for the parsing algo-
rithm. (b) Give the running time for this algorithm.

EEX) Designing Dynamic Programming Algorithms via Reductions

Sometimes, when trying to develop an algorithm for a new problem, it is easier to
look for the similarities between your new problem and a problem that you already
have an algorithm for. With these insights you can make the new algorithm similar to
the old. When done formally, this is called doing a reduction from the one problem
to the another. Chapter 20 covers these ideas in depth. Here we will be looking for
similarities between problems more informally. We will start by using this technique
to developing a dynamic programming algorithm for a harder version of the event
scheduling problem.

Examples of Dynamic Programs

Event Scheduling Problem: The problem is to schedule a tour trying to attend the
greatest worth of events possible. Unlike the version from Section 19.3, the events
occur at different locations. An instance is (E, d). Here E = {E}, E,, ..., E,} is a set
of n events. For j € [n], event E; is specified by (s;, f;, w;), where s; its start time,
f; its finishing time, and w; its worth in dollars. The events occur at different lo-
cations. For each pair of events E; and Ej, d; . is the time required to travel be-
tween the locations of these events. Note that the second parameter d is an n-by-n
matrix.

A solution is a schedule of events to attend. This includes which events you at-
tend and the order that you attend them, (e.g., S = (Es, Es2, Els, - - ., E21). The restric-
tion is that to attend an event, you must get to the location of the event before it
starts and you must stay until it completes. More formally, suppose after you attend
event E}, you next attend event E;. Now E; finishes at time f}, and Ej: starts at time
sj. Hence, you have s; — f; time to travel the distance d; j between them. This re-
quires d;, j < sj — f;. (Note that we assume that the distances d;, ; meet the triangle
inequality, so that if from event E; you canreach E; and from event E; you can reach
E;, then by transitivity from event E; you can reach E;.)

The worth of a solution is the total of the worths w; of the events attended. The
goal is to maximize the worth of the schedule.

Dynamic Programming: Start by attempting to design a dynamic programming al-
gorithm for this problem. Do not be surprised if you find it hard. This is why we are
going to compare this problem with a previously known problem.

Similarity to Best Path: The solution to this problem is a schedule of events, which
effectively is a path through a subset of the events. We have looked at many algo-
rithms for finding a best path within graphs, so let us try to model this problem with
a graph.

Reduction: Given an instance of (E, d) of the scheduling problem, we solve it as
follows. We first map it to an instance of the graph problem. Our graph algorithm
finds the best path with in this graph.Then we map this best path to a solution of the
scheduling problem.

Forming a Graph Instance: We now consider how to form a graph representing a
given set of events.

Nodes: A solution to the scheduling problem is a path of events, and to the graph
problem is a path of nodes. This indicates a link between events and nodes.
Hence, in the graph, we construct a node for each event e;.

319

Optimization Problems

Edges: In the graph problem, whether or not there is an edge between two nodes
indicates whether or not the path can travel from the one node to the other.
Hence, for each pair of events e; and e;,, we add the directed edge (e;, e;') if e;
can proceed e; in the schedule. More formally, (e;, e;/) is an edge if and only if
dj i < sj — f;. So far the correspondence between these problems is good, be-

320 cause every path through this graph corresponds to a legal schedule of events

and vice versa.

Nodes sand #: The standard problems for finding paths in a graph assume that
the input specifies a start node s and a finishing node ¢, whereas the scheduling
algorithm does not specify a first or last event to attend. The standard way to get
around this problem is to simply add an extra start event e; and final event e;.
Giving event e, finishing time f; = —oo means that imposing the constraint that
the schedule starts with e; does not affect which schedules are legal, because
one can get from event e; to any other event. Giving event e; worth w; = 0 means
that including event s does not change the worth of the final solution. Similarly,
let s; = oo and w; = 0. From the graph perspective, we add two new nodes s and
t and a directed edge from s to every other node and from every node to ¢.

Costs and Weights: The worth or cost of a path is also different in the two prob-
lems. The worth of a schedule is the sum of the worths of the events, which be-
comes the sum of the weights of the nodes, while the worth or cost of a path
through a graph tends to be defined as the sum of the weights of the edges. This
difference, however, should not be too significant. One option is to go back to the
graph path algorithms and try to get them to work where the nodes and not the
edges have weights. Another option is to simply shift the weight of each event
onto the outgoing edges. The edges (e;, e;) and (g;, t) will have the value v; of the
first event e;. The edges (s, e;) will have the value zero.

Minimize or Maximize: Another difference between these problems is that the
scheduling problem is looking for the schedule of maximum value, whereas the
graph problem is looking for the path of minimum value. It turns out that finding
the maximum weighted path in a general directed graph is a hard problem. This
motivates looking at other structures related to the graph that we know.

The Longest Weighted Path within a Directed Level Graph: Recall the dynamic
programming algorithm for finding the shortest weighted path within a directed
level graph that is given in Sections 18.1 and 18.2. Here the nodes can be leveled
so that all the edges go forward. In turns out that minimal changes are needed to
this algorithm so that it instead finds the longest weighted path within a directed
level graph, i.e., solves the same problem but finds a path from s to ¢ with the
largest weight. When taking the best of the best, we simply take the max and not
the min path. Because there are no cycles, we don't have to worry about paths
that cycle in order to have longer weight. Hence, the proof of correctness goes
through just as it did before.

Examples of Dynamic Programs

Leveled: In order to use this leveled graph algorithm, we need to make sure that
the graph that arises from the scheduling problem is in fact leveled. The level of
anode e; can be the start time s; of the corresponding event. The rules for when
edges are added ensure that each edge is directed from some node to a node in a
lower level.

Mapping Back the Algorithm: Given this similarity between these two problems,
let us recall the dynamic programming algorithm given in Section 18.2 for finding
the shortest weighted path within a directed level graph, and let us use it to find a
dynamic programming algorithm for the event scheduling problem.

Set of Instances: A key part of a dynamic programming algorithm is the set of
subinstances solved. Starting with the instance (G, s, t) and looking for the short-
est path from s to ¢, the algorithm finds the shortest path from s to each node v;,
so that the complete set of subinstances solved by the dynamic programming
algorithm will be {(G, s, v;)|v;}. Similarly, for the scheduling problem, given the
instance (E, d), the set of subinstances will be {{E, d, i) | ¢;}, where the instance
(E, d, i) asks for the best schedule of events S = {(es, e3», €16, - . ., €1, €) that ends
in event ¢;. Note that there may be events that occur after event ¢;, but the solu-
tion schedule is not allowed to attend them.

The Bird-Friend Algorithm: Given an instance (E, d, i), we know that the second
to last event before ¢; in the optimal solution must be an event e, for which d.; <
si — fr- We ask the bird to tell us this k. We get the friend to solve the instance
(E, d, k). Our solution is the same with ¢; added on the end. The value of our
solution is the same with v, added in.

The Code: The final code to solve the event scheduling problem is almost iden-
tical to that for finding the shortest weighted path within a directed level
graph.

algorithm Schedule (E, d)

(pre-cond): An instance consists of a set of events E = {e;}, with start time
sj, finishing time f;, worth w;, and distances d;, j between them.

(post-cond): optSol is an optimal valid schedule of events that ends with
event e,.

begin
Add an imaginary start event s = ¢y with 5o = fy = —oc.
Add an imaginary finishing event s = e,,;; with 5,11 = f41 = o0.
Sort the events by starting time.
% Table: optSol[i] stores an optimal schedule of events ending with e;
and costSol[i] its cost.
tablel0..n + 1] optCost, birdAdvice

321

Optimization Problems

% Base case: The only base case is for the optimal set ending in .
Its solution consists of the empty set with cost zero.

% optSol[0] = ¢

optCost[0] =0

birdAdvice[0] = 0

322

% General cases: Loop over subinstances in the table.
fori=1ton+1
% Solve instance (E, d, i), and fill in table entry (i).
% Try each possible bird answer.
for each k for which di.; < s; — fi
% The bird-friend algorithm: The last event must be ¢;. The bird
tells us that the second to last event is e;. We ask the friend for
an optimal set ending in e. He gives us optSol[k], which he has
stored in the table. To this we add e;. This gives us optSol, which
is a best solution ending in ¢; from amongst those paths consis-
tent with the bird’s answer.
% optSol,. = optSol[k] + e;
optCost,. = optCost[k] + v;
end for
% Having the best, optSol,, for each bird’s answer k, we keep the
best of these best.
kmin = a k that maximizes optCost;
% optSoli] = optSolkmax
optCostli] = optCostkmax
birdAdvicelil = kmax
end for
optSol = SchedulingWithAdvice({E, d), birdAdvice)
return (optSol, optCostn + 1])
end algorithm

Running Time: The number of subinstances is # + 1, and the number of bird an-
swers is at most n + 1. Hence, the running time is O(n?).

Bigger-Is-Smarter Elephant Problem: We will now consider another problem.

Instances: A set of elephants E = {e}, e, ..., &,}, where ¢; = (wj, s;, V;) represents
the ith elephant, w; its weight, s; its intelligence, and v; its value. (To make life
easier, assume that the weights and intelligences are unique values, i.e., w; # w;
and s; # s;.)

Solutions: A subset of elephants S C E for which bigger is smarter.
Formally, Vi, j € S, [[w; < w;] iff [si < s;11. An equivalent way of looking at it
is that if you were to sort the elephants in S in increasing order of their weight,

Examples of Dynamic Programs

then this same order would sort them with respect to intelligence. (Hint: It is
useful to assume that the elephants in the solution are sorted in this way:.)

Measure of Success: The cost of the solution is the sum of the values of the ele-
phants, >, s v;.

Goal: We should find a maximum-valued solution.

EXERCISE 19.8.1 Design a dynamic programming algorithm for the bigger-is-smarter
elephant problem by comparing it, as done previously, with the problem of finding the
longest weighted path within a directed level graph problem.

EXERCISE 19.8.2 (See solution in Part Five.) Design a dynamic programming algo-
rithm for the bigger-is-smarter elephant problem by comparing it with the longest-
common-subsequence problem given in Section 19.1. To do this the LCS problem needs
to be generalized to have weights on the letters.

323

324

70 Reductions and NP-Completeness

A giraffe with its long neck is a very different beast than a mouse, which is differ-
ent than a snake. However, Darwin and gang observed that the first two have some
key similarities, both being social, nursing their young, and having hair. The third
is completely different in these ways. Studying similarities and differences between
things can reveal subtle and deep understandings of their underlining nature that
would not have been noticed by studying them one at a time. Sometimes things
that at first appear to be completely different, when viewed in another way, turn out
to be the same except for superficial, cosmetic differences. This section will teach
how to use reductions to discover these similarities between different optimization
problems.

Reduction P; <poiy P.: We say that we can reduce problem P, to problem P if we
can write a polynomial-time (r®") algorithm for P; using a supposed algorithm for
P, as a subroutine. (Note we may or may not actually have an algorithm for P,.) The
standard notation for thisis P <oy Ps.

Why Reduce? A reduction lets us compare the time complexities and underlying
structures of the two problems. Reduction is useful in providing algorithms for new
problems (upper bounds), for giving evidence that there are no fast algorithms for
certain problems (lower bounds), and for classifying problems according to their dif-
ficulty.

Upper Bounds: From the reduction P, <, P> alone, we cannot conclude that
there is a polynomial-time algorithm for P;. But it does tell us that if there is a
polynomial-time algorithm for P, then there is one for P,. This is useful in two ways.
First, it allows us to construct algorithms for new problems from known algorithms
for other problems. Moreover, it tells us that P, is at least as easy as P,.

Hot Dogs <, Linear Programming: Section 15.4 describes how to solve the
problem of making a cheap hot dog using an algorithm for linear programming.

Reductions and NP-Completeness

Bipartite Matching <,;, Network Flows: We will develop an algorithm for bipar-
tite matching in Section 20.4 that uses the network flow algorithm.

Lower Bounds: The contrapositive of the last statement is that if there is not a
polynomial-time algorithm for P, then there cannot be one for P, (otherwise there
would be one for P,.) This tells us that P is at least as hard as P,.

(Any Optimization Problem) <o, CIR-SAT: This small-looking statement, pro-
ved by Steve Cook in 1971, has become one of the foundations of theoreti-
cal computer science. There are many interesting optimization problems. Some
people have worked hard on discovering fast algorithms for this one and others
have done the same for that one. Cook’s theorem shows that it is sufficient to
focus on the optimization problem CIR-SAT, because if you can solve it quickly,
then you can solve them all quickly. However, after many years of working hard,
people have given up and strongly suspect that at least one optimization prob-
lem is hard. This gives strong evidence that CIR-SAT is hard. Cook’s theorem is
proved (and the problems defined) in Section 20.1.

CIR-SAT =<,y 3-COL: See Section 20.3. This states that the optimization prob-
lem 3-COL is as hard as CIR-SAT, already known to be hard problem. This gives
evidence that 3-COL is also hard. Moreover, reductions are transitive, meaning
that Py <po P> and P> <, P; automatically gives that P; <., P;. Hence, to-
gether these last two statements give that (any optimization problem) <, 3-
COL.

3-COL =<y, Course Scheduling, 3-COL <4, Independent Set, 3-COL <4y,
3-SAT: These give evidence that course scheduling, independent set, and 3-SAT
are hard. See Sections 20.2 and 20.3.

(Halting Problem) <o, (What Does This Turing Machine Do): It can be proved
that the halting problem (given a Turing machine M and an input I, does
the M halt on I?) is undecidable (no algorithm can always answer it correctly
in finite time). Given this, reductions can be used to prove that almost any
problem asking what the computation of a given Turing machine does is also
undecidable.

Reverse Reductions: Knowing P, <,,;, P» and knowing that there is not a
polynomial-time algorithm for P, does not tell us anything about the whether there
is a polynomial-time algorithm for P,. Though it does tell us that the algorithm for
P, given in the reduction does not work, there well may be another, completely dif-
ferent algorithm for P;. Similarly, knowing that there is a polynomial-time algorithm
for P, does not tell us anything about whether there is one for P. To reach these two
conclusions, you must prove the reverse reduction P, < poly Pl

325

326

Optimization Problems
Classifying Problems: Reductions are used to classify problems.

The Same Problem Except for Superficial Differences: More than just being able
to compare their time complexities, knowing Pi <, P> and P, <, P reveals
that the two problems are somehow fundamentally the same problem, asking the
same types of questions. Sometimes this similarity is quite superficial. They sim-
ply use different vocabulary. However, at other times this connection between
the problems is quite surprising, providing a deeper understanding of each of
the problems. One way in which we can make a reduction even more striking is
by restricting the algorithm for the one to call the algorithm for the other only
once. Then the mapping between them is even more direct.

NP-Completeness: We have shown that the optimization problems CIR-SAT, 3-
COL, course scheduling, independent set, and 3-SAT are all reducible to each
other and in that sense are all fundamentally the same problem. In fact, there are
thousands of very different problems that are equivalent to these. These prob-
lems are said to be NP-complete. We discuss this more in Section 20.2.

Halting-Problem Completeness: Another important class defined in this way
consists of all problems that are equivalent to the halting problem.

EIXN satisfiability Is at Least as Hard as Any Optimization Problem

In Chapter 13 we saw that optimization problems involve searching through the ex-
ponential set of solutions for an instance to find one with optimal cost. Though there
are quick (i.e., polynomial) algorithms for some of these problems, for most of them
the best known algorithms require 2°™ time on the worst case input instances, and
it is strongly believed that there are no polynomial-time algorithms for them. The
main reason for this belief is that many smart people have devoted many years of
research to looking for fast algorithms and have not found them. This section uses
reductions to prove that some of these optimization problems are universally hard,
or complete, among the class of optimization problems, because if you could design
an algorithm to solve such a problem quickly, then you could translate this algorithm
into one that solves any optimization problem quickly. Conversely (and more likely),
if there is even one optimization problem that cannot be solved quickly, then none of
these complete problems can be either. Proving in this way that a problem that your
boss wants you to solve is hard is useful, because you will know not to spend much
time trying to design an all-purpose algorithm for it.

(Any Optimization Problem) <,,;, CIR-SAT: This reduction will prove the satisfi-
ability problem is complete for the class of optimization problems, meaning that it is
universally hard for this class.

Reductions and NP-Completeness

The Circuit Satisfiability Problem: This famous computational problem, CIR-
SAT, requires one to find a satisfying assignment for a given circuit. Section 17.4 gives
arecursive backtracking algorithm for the satisfiability problem, but in the worst case
its running time is 29",

Circuit: A circuit can be either a useful notation for describing an algorithm in
detail or a practical thing built in silicon in your computer.

Construction: It is built with AND, OR, and NOT gates. .

At the top are n wires labeled with the binary variables
X1, X2, - .., X,. To specify the circuit’s input, each of these ¥ y
will take on either 1 or 0, true or false, 5 volts or 0 volts. W
Each AND gate has two wires coming into it, either from

an input x; or from the output of another gate. An AND W
gate outputs frue if both of its inputs are true. Similarly,
each OR gate outputs frue if at least one of its inputs is A circuit forx @ y

true, and each NOT gate outputs trueif its single input is

false. We will only consider circuits that have no cycles, so these frue and
falsevalues percolate down to the output wires. There will be a single output
wire if the circuit computes a true—false function of its input xi, xp, ..., X,
and will have m output wires if it outputs an m-bit string, which can be used
to encode some required information.

Binary Endoding: The function fthat you want to compute may take as in-
put some abstract object like a graph G and return another abstract object,
like a path through this graph; however, whether the computation of fis done
by a Java program, a Turing machine, or a circuit, these abstract objects first
need to be encoded into strings of zeros and ones.

Compute Any Function: Given any function f: {0, 1} — {0, 1}’*, a circuit
can compute it with a most O(nm-2") gates as follows. For any fixed
input instance (xi, X2, ..., X;) = (1,0,..., 1), a circuit can say “the input
is this fixed instance” simply by computing [(x; = 1) AND NOT(x, = 1)
AND. .. AND (x;, = 1)]. Then the circuit computes the ith bit of the function’s
output by outputting 1 if [“the input is this fixed instance” OR “this instance”
OR. .. OR “this instance”], where each instance is listed for which the ith bit
of the function’s outputis 1.

Polynomial Size for Polynomial Time: More importantly, given any algo-
rithm whose Turing machine’s running time is T'(n) and given any fixed inte-
ger n, there is an easily constructed circuit with at most ©(T(n)?) gates that
computes the output of the algorithm given any n-bit input instance. Change
the definition of a Turing machine slightly so that each cell is big enough so
that the cell currently being pointed to by the head can store not only its
contents but also the current state of the machine. This cell’s contents can

327

328

Optimization Problems

be encoded with ®(1) bits. Because the Turing machine uses only T'(n) time,
it can use at most the first T(n) cells of memory. For each of the T(n) steps
of the algorithm, the circuit will have a row of ®(1) - T(n) wires whose values
encode the contents of memory of these T'(n) cells during this time step. The
gates of the circuit between these rows of wires compute the next contents
of memory from the current contents. Because the contents of cell i at time ¢
depend only on the contents of cellsi — 1, i, and i + 1 at time ¢ — 1 and each
of these is only a ©(1) number of bits, this dependence can computed us-
ing a circuit with ®(1) gates. This is repeated in a matrix of T(n) time steps
and T(n) cells, for a total of ®(T(n)?) gates. At the bottom, the circuit com-
putes the output of the function from the contents of memory of the Turing
machine at time T'(n).

Circuit Satisfiability Specification: The CIR-SAT problem takes as input a
circuit with a single true—false output and returns an assignment to the vari-
ables xj, X2, ..., x, for which the circuit gives true, if such an assignment
exists.

Optimization Problems: This reduction will select a generic optimization problem
and show that CIR-SAT is at least as hard as it is. To do this, we need to have a clear
definition of what a generic optimization problem looks like.

Definition: Each such problem has a set of instances that might be given as in-
put; each instance has a set of potential solutions, some of which are valid; and
each solution has a cost. The goal, given an instance, is to find one of its valid
solutions with optimal cost. An important feature of an optimization problem is
that there are polynomial-time algorithms for the following:

Valid(1, S): Given an instance I and a potential solution S, there is an algo-
rithm Valid(I, S) running in time | I|°0 that determines if I is a valid instance
for the optimization problem and that Sis a valid solution for I.

Cost(S): Given a valid solution S, there is an algorithm Cost(S) running in
time | 1|9 that computes the cost of the solution S.

Example: Course Scheduling: Given the set of courses requested by each student
and the set of time slots available, find a schedule that minimizes the number of
conflicts.

I: The set of courses requested by each student and the set of time slots
available

S: A schedule specifies at which time start each course will be taught.

Valid(1, S): An algorithm that returns whether the schedule S allocates each
course requested in [to exactly one time slot provided in L.

Reductions and NP-Completeness

Cost(8): A conflict occurs in the schedule when two courses requested by the
same student are scheduled at the same time. Cost (S) is an algorithm that
returns the number of conflicts in the schedule S.

Alg for the Optimization Problem: Given a fast algorithm Alg . ., for CIR-SAT
and the descriptions Valid(I, S) and Cost(S) of an optimization problem P we will
now design a fast algorithm Algp for the optimization problem and use it to prove
that the problem CIR-SAT is at least as hard as the optimization problem, i.e. that
P <poyy CIR-SAT.

Binary Search for Cost: Given some instance Ip of the optimization problem,
Algp’s first task is to determine the cost ¢, of the optimal solution for I. Algp
starts by determining whether or not there is a valid solution for I that has cost
at least ¢ = 1. If it does, Algp repeats this with ¢ = 2, 4, 8, 16, If it does not,
Algp tries c =0, —1, =2, —4, ..., until it finds ¢; and ¢, between which it knows
the cost of an optimal solution lies. Then it does binary search to find cyp:. The
last step is to find a solution for I that has this optimal cost.

Finding a Solution with Given Cost: Algp determines whether I has a solution S
with cost at least ¢ or finds a solution with cost ¢y, as follows. Algp will con-
struct a circuit C and calls the algorithm Alg, ., which provides a satisfying
assignment to C. Algp wants the satisfying assignment that Alg .., provides
to be the solution S that it needs. Hence, Algp designs C to be satisfied by the
assignment S only if S is a solution S for I with a cost as required, i.e., C(S) =
[Valid(1, S) and Cost(S) > c]. Because there are polynomial-time algorithms for
Valid(I, S), for Cost(S), and for >, the algorithm Algp can easily construct such a
circuit C(S). If such a solution S satisfying C exists, then Alg,,, .., kindly provides
one.

This completes the reduction P <,,; CIR-SAT of any Optimization problem to CIR-
SAT.

EXERCISE 20.1.1 For each of the following problems, define I, S, Valid(1, S), and
Cost(S).

1. Graph coloring: Given a graph, color its nodes so that two nodes do not have the
same color if they have an edge between them. Use as few colors as possible.

2. Independent set: Given a graph, find a largest subset of the nodes for which there
are no edges between any pair in the set.

3. Airplane: Given the requirements of an airplane, design it, optimizing its perfor-
mance.

4. Business: Given a description of a business, make a business plan to maximize its
profits.

5. Factoring: Given an integer, factor it, e.g., 6 = 2 x 3.

6. Cryptography: Given an encrypted message, decode it.

329

330

Optimization Problems

EIX¥] steps to Prove NP-Completeness

In this section we define the class NP and give steps for proving that a computational
problem is NP-complete.

Completeness for Nondeterministic Polynomial-Time Decision Problems:
The set of computational problems that are complete (universally hard) for op-
timization problems is extremely rich and varied. Studying them has become a
fascinating field of research.

NP Decision Problems: Theoretical computer scientists generally only consider
a subclass of the optimization problems, referred to as the class of nondetermin-
istic polynomial time problems (NP).

One Level of Cost: Instead of worrying about whether one solution has a bet-
ter cost than another, we will completely drop the notion of the cost of a so-
lution. S will only be considered to be a valid solution for the instance I if
it is a solution with a sufficiently good cost. This is not a big restriction, be-
cause if you want to consider solutions with different costs, you can always
do binary search, as already done for the cost of the optimal solution.

Decision Problem: Given an instance to the problem, the goal is to deter-
mine either yesI does have a valid solution or no it does not.

Witness: A solution for an instance is often referred to as a witness, because,
though it may take exponential time to find it, if it were provided by a (non-
deterministic) fairy godmother, then it could be used in polynomial time to
witness the fact that the answer for this instance is yes. In this respect, NP
problems are asymmetrical in that there does not seem to be a witness that
quickly proves that an instance does not have a solution.

Formal Definition: We say that such a computational problem P is in the
class of nondeterministic polynomial-time problems (NP) if there is a
polynomial-time algorithm Valid(1, S) that specifies Yes when S is a (suffi-
ciently good) solution for the instance I, and No if not. More formally, P can
be defined as follows:

P(I) = (3S, Valid(1, 9)]
Examples:

Circuit Satisfiability (CIR-SAT): Circuit satisfiability could be defined as
a decision problem: Given a circuit, determine whether there is an as-
signment that satisfies it.

Graph 3-Coloring (3-COL): Given a graph, determine whether its nodes
can be colored with three colors so that two nodes do not have the same
color if they have an edge between them.

Reductions and NP-Completeness

Course Scheduling: Given the set of courses requested by each student,
the set of time slots available, and an integer K, determine whether there
is schedule with at most K conflicts.

Cook vs. Karp Reductions: Stephen Cook first proved that CIR-SAT is complete
for the class of NP problems. His definition of a reduction P, <, P is that one
can write an algorithm Alg; for the problem P, using an algorithm Alg, for the
problem P, as a subroutine. In general, this algorithm Alg; may call Alg, as many
times as it likes and do anything it likes with the answers that it receives. Richard
Karp later observed that when the problems P, and P, are sufficiently similar, the
algorithm Alg; used in the reduction need only call Alg; once and answers Yes if
and only if Alg, answers Yes. These two definitions of reductions are referred to
as Cook and Karp reductions. Though we have defined Cook reductions because
they are more natural, we will consider only Karp reductions from here on.

NP-Completeness: For the problem P to be NP-complete, it has to be hard,
but not too hard. We say that a computational problem P is NP-complete if

Sufficiently Hard, P’ <p,;, P: We say a problem P is NP-Hard if it is as
hard as every other problem P’ in the class NP. Intuitively, this means
that if one did find a quick algorithm for P then this algorithm could be
translated into quick algorithms for each NP problem P’. More formally,
it means that every language in NP can be polynomially reduced to it
using a Karp reduction.

Y optimization problems P, P’ <, P.

To prove this, it is sufficient to prove that our computational problem
is at least as hard as some problem already known to be NP-complete.
For example, because we now know that CIR-SAT is NP-complete, it is
sufficient to prove that CIR-SAT <, P.

Not Too Hard, P € NP: On the other hand, for the problem P to be com-
plete for the class NP, it has to be sufficiently easy that it is itself in the
class. For example, the Halting problem is sufficiently hard to be NP-
hard, but is far to hard to be in NP.

The Steps to Prove NP-Completeness: Proving that a problem P is NP-complete
can be a bit of an art, but once you get the hang of it, it can be fun. I will now care-
fully lay out the steps needed. (After step 3, we will use P, to denote the prob-
lem instead of P, because at that point we will be assuming that we have an oracle
forit.)

Running Example: Course Scheduling is NP-Complete: The problem P that we
will prove is NP-complete will be the course scheduling problem.

331

332

Optimization Problems

(0) P € NP: As said, in order for the problem P to be NP-complete, it needs to be
sufficiently easy to be in NP. To prove this we effectively need to provide a non-
deterministic polynomial time for it. This is accomplished by by providing
polynomial-time algorithm Valid(I, H) that specifies whether Sis a valid solution for
instance I.

Course Scheduling: It is not hard to determine in polynomial time whether the
instance I and the solution S are properly defined and to check that within this
schedule S, the number of times that a student wants to take two courses that are
offered at the same time is at most K.

1) What to Reduce to It: An important and challenging step in proving that a prob-
lem is NP-complete is deciding which NP-complete problem to reduce to it. We
will denote this problem with P, because later we will be designing an algorithm
for it.

3-COL =1y Course Scheduling: We will reduce 3-COL to course scheduling,
that is, we will prove the reduction 3-COL <, course scheduling. I will save the
proofthat 3-COL is NP-complete for our next example, because it is much harder.

Hint: You want to choose a problem that is “similar” in nature to yours. In order
to have more to choose from, it helps to know a large collection of problems that
are NP-complete. There are entire books devoted to this. When in doubt, 3-SAT
and 3-COL are good problems to use.

2) What is What: It is important to remember what everything is.

3-COL =gy Course Scheduling:

* P, =3COLis the graph 3-coloring problem.

* I, = ILyqpp, an instance of it, is an undirected graph.

* Sulg = Scoloring: @ potential solution, is a coloring of each of its nodes with
either red, blue, or green. It is a valid solution if no edge has two nodes with
the same color.

* Alg,, is an algorithm that takes the graph I, as input and determines
whether it has a valid coloring.

* P,racie = course scheduling.

* Ipracte = Lourses, an instance of it, is the set of courses requested by each stu-
dent, the set of time slots available, and the integer K.

* Soracle = Sschedule» @ potential solution, is a schedule assigning courses to time
slots. It is a valid solution if it has at most K conflicts.

* Alg,, 4010 18 an algorithm that takes Icoues as input and determines whether it
has a valid schedule.

Such instances may or may not be satisfiable and such potential solutions may
or may not be valid.

Reductions and NP-Completeness

Warning: Be especially careful about what is an instance and what is a solution
for each of the two problems.

3) Direction of Reduction and Code: Another common source of mistakes is doing
the reduction in the wrong direction. I recommend not memorizing this direction,
but working it out each time. Our goal is to prove that the problem P sufficiently
hard to be NP-complete. Hence, you must put P on the hard side of the inequal-
ity 3-COL <,y P with the problem, say 3-COL, chosen in step 1 on the easy side.
At this point, turn your thinking around. Instead of proving P is relatively hard, we
will prove that the problem 3-COL is relatively easy. To do this, we must designing
a fast algorithm Alg,, for it. Because this is are goal from here on, we will denote
the problem 3-COL with Pgg. Our belief is that there is not a fast algorithm for this
problem. Hence, to help us we will use a supposed fast algorithm Alg,, ., for P as a
subroutine. Typically for reductions people assume that Alg,,.,. is an oracle mean-
ing that it solves its problem in one time step. Hence, from here on we will use Py,
to denote the problem instead of P. The code for our algorithm for P, will be as
follows.

algorithm Algq(I4)

(pre-cond): I, is an instance of Pyg.
(post-cond): Determine whether I, has a solution Sy, and if so, return it.
begin
Loracte = InstanceMap(1yg)
% Ioracle is an instance of P,
(ansoracier Soracte) = Algoracie(Loracte)
% If there is one, S, 4 is solution for I,
if(ansyrgcie = Yes) then
ansgg = Yes
Saig = SolutionMap(Syracte)
else
ansgg = No
Salg = nil
end if
return({ansqig, Saig))
end algorithm

4) Look for Similarities: Though the problems P, and P, may appear to be very
different, the goal in this step is to look for underlying similarities. Compare how their
solutions, Syigand Syl are formed out of their instances, Iz and Ipaee- Generally,
the instances can be thought of as sets of elements with a set of constraints between
them. Can you view their solutions as subsets of these elements or as labelings of
them? What allows a solution to form, and what constrains how it is formed? Can

333

334

Optimization Problems

you talk about the two problems using the same language? For example, a subset of
elements can be viewed as a labeling of the elements with zero and one. Similarly,
a labeling of each element e with ¢, € [1..L] can be viewed as a subset of the pairs
(er ge)

3-COL =y Course Scheduling: A solution

Ieasier lharder

Scoloring 18 @ coloring that assigns a color to R /% .

each node. A solution Sg.4u1. is a sched- English Math
ule that assigns a time slot to each course. J .%

This similarity makes it clear that there Science

is a similarity between the roles of the Seasier S harder
nodes of Igq,, and of the courses of Ieoyrses e Cueen oy omTue.3pm
and between the colors of Scyjpring and the

time slots of Sypequie- Each coloring conflict blue Mon. 2 pm

arises from an edge between nodes, and

each scheduling conflict arises from a student wanting two courses. This similar-
ity makes it clear that there is a similarity between the roles of the edges of Iy
and of the course requests of I.oyses-

5) InstanceMap: You must define a polynomial-time algorithm InstanceMap(1,)
that, given an instance I, of Py constructs an instance Ipyee Of Poracle that has
similar sorts of solutions. The main issue is that the constructed instance I,,,.. has a
solution if and only if the given instance I, has a solution, that is, Yes instances, get
mapped to Yes, instances and No to No.

3-COL <5y Course Scheduling: Given a graph I, to be colored, we design an
instance Iourses = InstanceMap(lgrqpn) to be scheduled. Using the similarities
observed in step 4, our mapping we will have one course for each node of the
graph, and one time slot for each of the three colors green, red, and blue. For each
edge between nodes 1 and v in the graph, we will have a student who requests
both course u and course v. The coloring problem does not allow any conflicts.
Hence, we set K = 0.

Not Onto or 1-1: It is important that each instance I, be mapped to some in-
stance Iy, but it is not important whether an instance P, is mapped to
more than one or none at all. In our example, we never mention instances to be
scheduled that have more than three time slots or that allow K > 0 conflicts.

Warning: Be sure to do this mapping in the correct direction. The first step in
designing an algorithm Alg, is to suppose that you have been given an input
I Tor it. Before your algorithm can call the algorithm Alg,,,,.,. as a subroutine,
your must construct an instance I, to give to it.

Warning: Do not define the mapping only for the Yes instances or use a solution
Saig for I for determining the instance I, mapped to. The algorithm Algy,
that you are designing is given an instance I, but it does not know whether

Reductions and NP-Completeness

or not the instance has a solution. The whole point is to give an argument that
finding a solution may take exponential time. It is safer, when defining the map-
ping InstanceMap(1l,g), not to even mention whether the instance I, has a so-
lution or what that solution might be.

6) SolutionMap: You must also define a polynomial-time algorithm SolutionMap
(Soracle) mapping each valid solution S for the instance Iyyuce = InstanceMap(1)
you just constructed to a valid solution S, for the instance I, that was given as in-
put. Valid solutions can be subtle, and the instance I, may have some solutions
that you had not intended when you constructed it. One way to help avoid missing
some is to throw a much wider net by considering all potential solutions. In this step,
for each potential solution Sycje fOT 151407, YOU must either give a reason why it is not
a valid solution or map it to a solution Sy = SolutionMap(Syracie) for Iyg. It is fine if
some of the solutions that you map happen not to be valid.

3-COL <1y Course Scheduling: Given a schedule Sypequie assigning course u to
time slots ¢, we define Scojoring = SolutionMap(Scpeaute) to be the coloring that
colors node u with color c.

Warning: When the instance I, you constructed has solutions that you did
not expect, there are two problems. First, the unknown algorithm Alg, ;. may
give you one of these unexpected solutions. Second, there is a danger that I
has solutions but your given instance I, does not. For example, if, in step 5, our
I,;acte allowed more than three time slots or more than K = 0 conflicts, then the
instance might have many unexpected solutions. In such cases, you may have to
redo step 5, adding extra constraints to the instance I, S0 that it no longer has
these solutions.

7) Valid to Valid: In order to prove that the algorithm Algye(Is) works, you must
prove that if S,yuce is a valid solution for Iy = InstanceMap(lyg), then Sy =
SolutionMap(Syrqcie) is a valid solution for I,

3-COL <y Course Scheduling: Supposing that the schedule is valid, we prove
that the coloring is valid as follows. The instance to be scheduled is constructed
so that, for each edge of the given graph, there is a student who requests the
courses u and v associated with the nodes of this edge. Because the schedule is
valid, there are K = 0 course conflicts, and hence these courses are all scheduled
at different time slots. The constructed coloring therefore allocates different col-
ors to these nodes.

8) ReverseSolutionMap: Though we do not need it for the code, for the proof you
must define an algorithm ReverseSolutionMap(S{’llg) mapping in the reverse direction
from each potential solution S;lg for the instance I to a potential solution S/ . for
the instance 4.

335

Optimization Problems

3-COL =1y Course Scheduling: Given a coloring S’mloring coloring node u with
color ¢, we define S chedule = ReverseSolutionMap(Sé) to be the schedule as-

oloring’
signing course u to time slots c.

Warning: ReverseSolutionMap(S;lg) does not need to be the inverse map of

336 SolutionMap(S,yqcie)- You must define the mapping ReverseSolutionMap(Syg) for

every possible solution S;lg, not just those mapped to by SolutionMap(S,racie)-
Otherwise, there is the danger is that I, has solutions but your constructed in-
stance I, does not.

9) Reverse Valid to Valid: You must also prove the reverse direction: that if S;lg isa
valid solution for I, then S, . = ReverseSolutionMap(S;lg) is a valid solution for
Ioracte = InstanceMap(lyg).

3-COL =5y Course Scheduling: Supposing that the coloring is valid, we prove
that the schedule is valid as follows. The instance to be scheduled is constructed
so that each student requests the courses u and v associated with nodes of some
edge. Because the coloring is valid, these nodes have been allocated different col-
ors and hence the courses are all scheduled in different time slots. Hence, there
will be K = 0 course conflicts.

10) Working Algorithm: Given the above steps, it is now possible to prove that if the
supposed algorithm Alg,,. ., correctly solves Py, then our algorithm Algg, cor-
rectly solves Pyg.

Yes to Yes: We start by proving that Alg,, answers Yes when given an instance
for which the answer is Yes. If I, is a Yes instance, then by the definition of
the problem P, it must have a valid solution. Let us denote by S;lg one such
valid solution. Then by step 9, it follows that S . = ReverseSolutionMap(S;lg)
is a valid solution for I,y = InstanceMap(l,y). This witnesses the fact that
I,acle has a valid solution and hence I, is an instance for which the answer
is Yes. If Alg, ... works correctly as supposed, then it returns Yes and a valid
solution Sy/gcie. Our code for Alg,, will then return the correct answer Yes and

Satg = SolutionMap(S,acie), which by step 7 is a valid solution for .

No to No: We must now prove the reverse, that if the instance I, given to Alg,
is a No instance, then Alg,, answers No. The problem with No instances is
that they have no witness to prove that they are No instances. Luckily, to prove
something, it is sufficient to prove the contrapositive. Instead of proving A = B,
where A = “I,¢ is a No instance” and B = “Alg,; answers No”, we will prove that
—B = —A, where =B =“Alg,; answers Yes” and —A = “I,, is a Yesinstance”. Con-
vince yourself that this is equivalent.

If Algug is given the instance I, and answers Yes, our code is such that
Alg,, ... must have returned Yes. If Alg,, ... works correctly as supposed, the in-
stance Ipracre = InstanceMap(1,g) that it was given must be a Yesinstance. Hence,

Reductions and NP-Completeness

Iyracie must have a valid solution. Let us denote by S, 0ne such valid solution.
Then by step 7, Sy = SolutionMap(Syracie) is a valid solution for I, witnessing
I4g being a Yes instance. This is the required conclusion —A.

This completes the proof that if the supposed algorithm Alg,,,.,. correctly solves
Pyracies then our algorithm Alg,, correctly solves Pyg.

11) Running Time: The remaining step is to prove that the constructed algo-
rithm Alg,e runs in polynomial-time (| I,/®"). Steps 5 and 6 require that both
InstanceMap(1,1g) and SolutionMap(S,acie) Work in polynomial-time. Hence, if Pyqce
can be solved quickly, then Alg, runs in polynomial-time. Typically, for reductions
people assume that Alg,,,.. is an oracle, meaning that it solves its problem in one
time step. Exercise 20.2.5 explores the issue of running time further.

This concludes the proof that Py, = course scheduling is NP-complete (as-
suming, of course, that Py =3-COL has already been proven to be NP-complete).

EXERCISE 20.2.1 We began this section by proving (any optimization problem) <.y,
CIR-SAT. To make this proof more concrete, redo it, completing each of the above steps
specifically for 3-COL <oy, CIR-SAT. (Hint: The circuit Iyyce = InstanceMap(lyg)
should have a variable x,,, ., for each pair (u, c).)

EXERCISE 20.2.2 3-SAT is a subset of the CIR-SAT problem in which the input circuit
must be a big AND of clauses, each clause must be the OR of at most three literals,
and each literal is either a variable or its negation. Prove that 3-SAT is NP-compete
by proving that 3-COL <py, 3-SAT. (Hint: The answer is almost identical to that for
Exercise 20.2.1.)

EXERCISE 20.2.3 Let CIR-SAT be the complement of the CIR-SAT problem, namely,
the answer is Yes if and only if the input circuit is not satisfiable. Can you prove
CIR-SAT <pp CIR-SAT using Cook reductions? Can you prove it using Karp reduc-
tions?

EXERCISE 20.2.4 (Seesolution in Part Five.) Suppose problem P, is a restricted version
of P, in that they are the same except P, is defined on a subsetZ; C I, of the instances
that P, is defined on. For example, 3-SAT is a restricted version of CIR-SAT, because
both determine whether a given circuit has a satisfying assignment; however, 3-SAT
only considers special types of circuits with clauses of three literals. How hard is it to
prove Py <,y P>? How hard is it to prove Py <,y P1?

EXERCISE 20.2.5 (See solution in Part Five.) Suppose that when proving Pug <poly
Poractes the routines InstanceMap(1,) and SolutionMap(Syracle) each run in O(|Ialg|3)
time, and that the mapping InstanceMap(l,g) constructs from the instance I, an

337

338

Optimization Problems

instance Iy, that is much bigger, namely, | Lyracie| = |Iulg|2. Given the following two
running times of the algorithm Alg,,...., determine the running time of the algorithm
Algag. (Careful!)

1. Time(Algoracte) = e2")
2. Time(Algyracle) = ©(n°) for some constant c.

EIXE] Example: 3-Coloring Is NP-Complete

We will now use the steps again to prove that 3-coloring is NP-complete.

0) In NP: The problem 3-COL is in NP because, given an instance graph Iy, and a
solution coloring Scoiring it is easy to have an algorithm Valid(Igapn, Scotoring) check
that each node is colored with one of three colors and that the nodes of each edge
have different colors.

1) What to Reduce to It: We will reduce CIR-SAT to 3-COL by proving CIR-SAT
<poly 3-COL. In Section 20.1 we proved that (any optimization problem) <, CIR-
SAT and that 3-COL <, course scheduling. By transitivity, this gives us that CIR-
SAT, 3-COL, and course scheduling are each NP-complete problems.

2) What is What:

* Pygis the circuit satisfiability problem (CIR-SAT).

e I.ircuit, an instance of it, is a circuit.

* Sassignment, @ potential solution, is an assignment to the circuit variables xi,
X2y ouey Xpo

* Py acle is the graph 3-coloring problem (3-COL).

* Igapn, an instance to it, is a graph.

* Scoloring: @ potential solution, is an coloring of the nodes of the graph with three
colors.

3) Direction of Reduction and Code: To prove 3-COL is at least as hard, we must
prove that CIR-SAT is at least as easy, i.e., CIR-SAT < poly 3-COL. To do this, we must
design an algorithm for CIR-SAT given an algorithm for 3-COL. The code will be iden-
tical to that in Section 20.2.

4) Look for Similarities: An assignment allocates true or falsevalues to each variable,
which in turn induces true or false values to the output of each gate. A coloring allo-
cates one of three colors to each node. This similarity hints at mapping the variables
and outputs of each gate to nodes in the graph and mapping true to one color and
false to another. With these ideas in mind, Steven Rudich made a computer search
for the smallest graph that behaves like an OR gate when colored with three colors.
The graph found is shown in Figure 20.1. He calls it an OR gadget.

Reductions and NP-Completeness

vr Vi Vie—pWE

VR
Vx Vy
Vi Vs
V2 Vo

Vs
Vout Vout
OR gadget NOT gadget

Coloring T Circuit

Figure 20.1: On the top, the first diagram is the OR gadget. The next two are colorings of this
gadget demonstrating (false or true) = true and (false or false) = false. The top right diagram
is the NOT gadget. On the bottom, the first diagram is the circuit given as an instance to SAT.
The next is the graph that it is translated into. The next is a 3-coloring of this graph. The last is
the assignment for the circuit obtained from the coloring.

Translating between Colors and True/False: The three nodes vr, vg, and vg in
the OR gadget are referred to as the pallet. Because of the edges between them,
when the gadget is properly colored, these nodes need to be assigned different
colors. We will call whatever color is assigned to the node vr the color indicating
true; that assigned to v, the color indicating false; and that assigned to vg, the
remaining color. For example, in all the colorings in Figure 20.1, green (g) indi-
cates true, red (r) indicates false, and blue (b) is the remaining color.

Input and Output Values: The nodes v, and v, in the OR gadget act as the gad-
get’s inputs, and the node v,,; as its output. Because each of these nodes has an
edge to node vg, they cannot be colored with the remaining color. The node will
be said to have the value true, if it is assigned the same color as vy, and false if
the same as vr. The coloring in the second figure in Figure 20.1 sets x = false,
y = true, and the output = true. The coloring in the third figure sets x = false,
y = false, and the output = false.

Theorem 20.3.1: Rudich’s OR gadget acts like an OR gate, in that it always can be
and always must be colored so that the value of its output node v,,; is the OR of
the values of its two input nodes v, and v,. Similarly for the NOT gate.

Proof: There are four input instances to the gate to consider.

(false OR true) = true: If node vy is colored false and v, is colored true, then
because v5 has an edge to each, it must be colored the remaining color. v,
with edges to vr and vs, must be colored true. vy, with edges to vg and v,

339

340

Optimization Problems

must be colored false. v,,;, with edges to vy and v, must be colored true. The
coloring in the second diagram in Figure 20.1 proves that such a coloring is
possible.

(false OR false) = false: If nodes v, and v, are both colored false, then nei-
ther nodes v; nor v; can be colored false. Because of the edge between them,
one of them must be true and the other the remaining color. Because v, has
an edge to each of them, it must be colored false. v4, with edges to vg and
v, must be colored true. vy,;, with edges to vg and v, must be colored false.
The coloring in the third diagram in Figure 20.1 proves that such a coloring
is possible.

(true OR true) = true, and (true OR false) = true: See Exercise 20.3.1 for
these cases and for the NOT gate.

5) InstanceMap, Translating the Circuit into a Graph: Our algorithm for CIR-SAT
takes as input a circuit I ;i to be satisfied and, in order to receive help from the
3-COL algorithm, constructs from it a graph Ig,,, = InstanceMap(;jrcuir) to be col-
ored. See the first two diagrams on the bottom of Figure 20.1. The graph will have
one pallet of nodes vy, vp, and vg with which to define the true and the false color.
For each variable x; of the circuit, it will have one node labeled x;. It will also have one
node labeled x,,;. For each OR gate and NOT gate in the circuit, the graph will have
one copy of the OR gadget or the NOT gadget. The AND gates could be translated into
a similar AND gadget or translated to [x AND y] = [NOT(NOT(x) OR NOT(y))]. All of
these gadgets share the same three pallet nodes. If in the circuit the output of one
gate is the input of another, then the corresponding nodes in the graph are the same.
Finally, one extra edge is added to the graph from the vr node to the v,,; node.

6) SolutionMap, Translating a Coloring into an Assignment: When the supposed
algorithm finds a coloring Scojoring for the graph Igq,, = InstanceMap(1ircyir), our al-
gorithm must translate this coloring into an assignment Sgssignmens = SolutionMap
(Scoloring) Of the variables x1, x, . . ., x, for the circuit. See the last two diagrams on the
bottom of Figure 20.1. The translation is accomplished by setting x; to trueif node vy,
is colored the same color as node vr, and false if the same as vr. If node vy, has the
same color as node vg, then this is not a valid coloring (because there is an edge in
the graph from node v,, to node vy) and hence need not be considered.

Warning: Suppose that the graph constructed had a separate node for each time
that the circuit used the variable x;. The statement “set x; to true when the node
vy, has some color” would then be ambiguous, because the different nodes rep-
resenting x; might be given different colors.

7) Valid to Valid: Here we must prove that if the supposed algorithm gives us a
valid coloring Sgyjoring for the graph gy, = InstanceMap(Ieircuir), then Sussignment =
SolutionMap(S;oi0ring) is an assignment that satisfies the circuit. By the gadget

Reductions and NP-Completeness

theorem, each gadget in the graph must be colored in a way that acts like the cor-
responding gate. Hence, when we apply the assignment to the circuit, the output of
each gate will have the value corresponding to the color of corresponding node. It
is as if the coloring of the graph were performing the computation of the circuit. It
follows that the output of the circuit will have the value corresponding to the color
of node v,,;. Because node v,,; has an edge to vy and an extra edge to vg, vy, must
be colored true. Hence, the assignment is one for which the output of the circuit is
true.

8) ReverseSolutionMap: For the proof we must also define the reverse map-
ping from each assignment Sgssignmen: t0 @ coloring Seyjoring = ReverseSolutionMap
(Sassignment)- Start by coloring the pallet nodes frue, false, and the remaining color.
Color each node vy, true or false according to the assignment. Then Theorem 20.3.1
states that no matter how the input nodes to a gadget are colored, the entire gadget
can be colored with the output node having the color indicated by the output of the
corresponding gate.

9) Reverse Valid to Valid: Now we prove that if the assignment Sussignmen: satisfies
the circuit, then the coloring Sjoring = ReverseSolution Map(Sassignment) is valid. The-
orem 20.3.1 ensured that each edge in each gadget has two different colors. The only
edge remaining to consider is the extra edge. As the colors percolate down the graph,
node v,,; must have color corresponding to the output of the circuit, which must be
the true color, because the assignment satisfies the circuit. This ensures that even the
extra edge from vr to v,y is colored with two different colors.

10) and 11): These steps are always the same. InstanceMap(1cyi;) maps Yes circuit
instances to Yes 3-COL instances and No to No. Hence, if the supposed algorithm
3-COL works correctly in polynomial-time, then our designed algorithm correctly
solves CIR-SAT in polynomial-time. It follows that CIR-SAT <, 3-COL. In conclu-
sion, 3-coloring is NP-complete.

EXERCISE 20.3.1 (a) Complete the proof of Theorem 20.3.1 by proving the cases
(true OR true) = true and (true OR false) = true. (b) Prove a similar theorem for the
NOT gadget. See the top right diagram in Figure 20.1.

EXERCISE 20.3.2 Verify that each edge in the graph lg,, = InstanceMap(Icircyir) is
needed, by showing that if it were not there, then it would be possible for the graph to
have a valid coloring even when the circuit is not satisfied.

EXERCISE 20.3.3 (See solution in Part Five.) Prove that independent set is NP-compete
by proving that3-COL < poly Independent set. (Hint: A 3-coloring for the graph Gs_cor,
can be thought of as a subset of the pairs (u, c) where u is a node of Gs.cor and c is
a color. An independent set of the graph Gy, selects a subset of its nodes. Hence, a

341

342

Optimization Problems

way to construct the graph G4 in the instance (G4, Nja) = InstanceMap(Gs_-cor)
would be to have a node for each pair (u, c). Be careful when defining the edges for
the graph G,q = InstanceMap(Gs.cor) so that each valid independent set of size n in
the constructed graph corresponds to a valid 3-coloring of the original graph. If the
constructed graph has unexpected independent sets, you may need to add more edges
toit.)

EIX3 An Algorithm for Bipartite Matching Using the Network
Flow Algorithm

Up to now we have been justifying our belief that certain computational problems
are difficult by reducing them to other problems believed to be difficult. Here, we will
give an example of the reverse, by proving that the problem of bipartite matching can
be solved easily by reducing it to the network flow problem, which we already know
is easy because we gave an polynomial-time algorithm for it in Chapter 15.

Bipartite Matching: Bipartite matching is a classic optimization problem. As al-
ways, we define the problem by giving a set of instances, a set of solutions for each
instance, and a cost for each solution.

Instances: An input instance to the problem is a bipartite graph. A bipartite
graph is a graph whose nodes are partitioned into two sets U and V and all edges
in the graph go between U and V. See the first diagram in Figure 20.2.

Solutions for an Instance: Given an instance, a solution is a matching. A match-
ing is a subset M of the edges such that no node appears more than once in M.
See the last diagram in Figure 20.2.

Cost of a Solution: The cost (or success) of a matching is the number of pairs
matched. It is said to be a perfect matching if every node is matched.

Goal: Given a bipartite graph, the goal of the problem is to find a matching that
matches as many pairs as possible.

Network Flow: Network flow is another example of an optimization problem that
involves searching for a best solution from some large set of solutions.

Instances: An instance (G, s, t) consists of a directed graph G and specific nodes
s and t. Each edge (1, v) is associated with a positive capacity ¢y, .

Solutions for the Instance: A solution for the instance is a flow F, which specifies
a flow F,,,) < ¢y, through each edges of the network with no leaking or addi-
tional flow at any node.

Measure of Success: The cost (or success) of a flow is the amount of flow out of
node s.

Reductions and NP-Completeness

— flow=1
—cap= 1 — flow =0
g 222:: s% § %t sé %t g §
Bipartite .
graph Network Flow Matching

Figure 20.2: The first diagram is the bipartite graph given as an instance to bipartite matching.
The next is the network that it is translated into. The next is a flow through this network. The
last is the matching obtained from the flow.

Goal: Given an instance (G, s, t), the goal is to find an optimal solution, that is, a
maximum flow.

Bipartite Matching <,,, Network Flows: We go through the same steps as
before.

3) Direction of Reduction and Code: We will now design an algorithm for bipar-
tite matching given an algorithm for network flows.

4) Look for Similarities: A matching decides which edges to keep, and a flow de-
cides which edges to put flow though. This similarity suggests keeping the edges
that have flow through them.

5) InstanceMap, Translating the Bipartite Graphs into a Network: Our algorithm
for bipartite matching takes as input a bipartite graph Gp;parsire- The first step is
to translate this into a network Genpork = InstanceMap(Gpiparsire)- See€ the first
two diagrams in Figure 20.2. The network will have the nodes U and V from the
bipartite graph, and for each edge (i, v) in the bipartite graph, the network has
a directed edge (u, v). In addition, the network will have a source node s with
a directed edge from s to each node u € U. It will also have a sink node ¢ with
a directed edge from each node v € V to t. Every edge out of s and every edge
into ¢ will have capacity one. The edges (, v) across the bipartite graph could be
given capacity one as well, but they could just as well be given capacity occ.

6) SolutionMap, Translating a Flow into a Matching: When the network flow al-
gorithm finds a flow Sgq,, through the network, our algorithm must translate this
flow into a matching S;aiching = SolutionMap(Sqey). See the last two diagrams in
Figure 20.2.

SolutionMap: The translation puts the edge (u, v) in the matching if there is
a flow of one through the corresponding edge in the network, and not if there
is no flow in the edge.

343

344

Optimization Problems

Warning: Be careful to map every possible flow to a matching. The above
mapping is ill defined when there is a flow of % through an edge. This needs
to be fixed and could be quite problematic.

Integer Flow: Luckily, Exercise 15.2.4 proves that if all the capacities in the
given network are integers, then the algorithm always returns a solution in
which the flow through each edge is an integer. Given that our capacities are
all one, each edge will have a flow either of zero or of one. Hence, in our trans-
lation, it is well defined whether to include the edge (i, v) in the matching or
not.

7) Valid to Valid: Here we must prove that if the flow Sfiow 18 valid, than the
matching Sp,arcning is also valid.

Each u Matched at Most Once: Consider a node u € U. The flow into u can
be at most one, because there is only one edge into it and it has capacity
one. For the flow to be valid, the flow out of this node must equal that into
it. Hence, it too can be at most one. Because each edge out of u either has
flow zero or one, it follows that at most one edge out of u has flow. We can
conclude that uis matched to at most one node v € V.

Each vMatched at Most Once: See Exercise 20.4.1.

Cost to Cost: To be sure that the matching we obtain contains the maximum
number of edges, it is important that the cost of the matching S;arching =
SolutionMap(Spow) equal the cost of the flow. The cost of the flow is the
amount of flow out of node s, which equals the flow across the cut (U, V),
which equals the number of edges (i, v) with flow of one, which equals the
number of edges in the matching, which equals the cost of the matching.

8) ReverseSolutionMap: The reverse mapping from each matching Syazching to
a valid flow Sy = ReverseSolutionMap(Spaiching) is straightforward. If the edge
(1, v) is in the matching, then put a flow of one from the source s, along the edge
(s, u) to node u, across the corresponding edge (u, v), and then on through the
edge (v, t) tot.

9) Reverse Valid to Valid: We must also prove that if the matching Syucning is
valid, then the flow Spo, = ReverseSolutionMap(Sparching) s also valid.

Flow in Equals Flow Out: Because the flow is a sum of paths, we can be as-
sured that the flow in equals the flow out of every node except for the source
and the sink. Because the matching is valid, each © and each v is matched at
most once. Hence the flows through the edges (s, u), (i, v), and (v, t) will be
at most their capacity one.

Reductions and NP-Completeness

Cost to Cost: Again, we need to prove that the cost of the flow Sgg =
ReverseSolutionMap(Sparching) is the same as the cost of the matching. See
Exercise 20.4.2.

10) and 11): These steps are always the same. InstanceMap(Gypiparsire) maps bi-
partite graph instances to network flow instances Gpq, with the same cost.
Hence, because algorithm Algy,,, correctly solves network flows quickly, our de-
signed algorithm correctly solves bipartite matching quickly.

In conclusion, bipartite matching can be solved in the same time that network flow
is solved.

EXERCISE 20.4.1 Give a proof for the case where each v is matched at most once.

EXERCISE 20.4.2 Give a proof that the cost of the flow Sp,, = ReverseSolutionMap
(Smatching) 1S the same as the cost of the matching

EXERCISE 20.4.3 Section 19.9 constructs three dynamic programming algorithms
using reductions. For each of these, carry out the formal steps required for a reduction.

EXERCISE 20.4.4 There is a collection of software packages Si, ..., S, that you are
considering buying. These are partitioned into two groups. For thosei € N C [n], the
costs of buying it out ways the benefits and hence it effectively costs you a given
amount b; > 0 to buy it. For those j € P C [nl], the benefits out way the costs of buy-
ing it and hence it effectively costs you a given amount b; > 0 to not buy it. Some of
these packages rely on each other; if §; relies on S;, then you will incur an additional
cost of a;, jy > 0 if you buy S but not S;. Provide a polynomial-time algorithm to de-
cide the subset S C [n] of Sy, ..., Sy that you should buy. The cost of your solution is
cost(8) = Y icsanbi + X jesnp bi + Xies, jes A jy- (Hint: Do not design a new algorithm
but do a reduction to min cut similar to that done for matching the boys and girls.)

345

346

721 Randomized Algorithms

For some computational problems, allowing the algorithm to flip coins (i.e., use a
random number generator) makes for a simpler, faster, easier-to-analyze algorithm.
The following are the three main reasons.

Hiding the Worst Cases from the Adversary: The running time of a randomized
algorithms is analyzed in a different way than that of a deterministic algorithm. At
times, this way is fairer and more in line with how the algorithm actually performs
in practice. Suppose, for example, that a deterministic algorithm quickly gives the
correct answer on most input instances, yet is very slow or gives the wrong answer
on a few instances. Its running time and its correctness are generally measured to be
those on these worst case instances. A randomized algorithm might also sometimes
be very slow or give the wrong answer. (See the discussion of quick sort, Section 9.1).
However, we accept this, as long as on every input instance, the probability of doing
so (over the choice of random coins) is small.

Probabilistic Tools: The field of probabilistic analysis offers many useful tech-
niques and lemmas that can make the analysis of the algorithm simple and elegant.

Solution Has a Random Structure: When the solution that we are attempting to
construct has a random structure, a good way to construct it is to simply flip coins to
decide how to build each part. Sometimes we are then able to prove that with high
probability the solution obtained this way has better properties than any solution
we know how to construct deterministically. Moreover, if we can prove that the solu-
tion constructed randomly has extremely good properties with some very small but
nonzero probability (for example, prob = 1071%), then this proves the existence of
such a solution even though we have no reasonably quick way of finding one. An-
other interesting situation is when the randomly constructed solution very likely has
the desired properties, for example with probability 0.999999, but, there is no quick
way of testing whether what we have produced has the desired properties.

This chapter considers these ideas further.

Randomized Algorithms

EIEN Using Randomness to Hide the Worst Cases

The standard way of measuring the running time and correctness of a deterministic
algorithm is based on the worst case input instance chosen by some nasty adversary
who has studied the algorithm in detail. This is not fair if the algorithm does very well
on all but a small number of very strange and unlikely input instances. On the other
hand, knowing that the algorithm works well on most instances is not always satis-
factory, because for some applications it is just those hard instances that you want to
solve. In such cases, it might be more comforting to use a randomized algorithm that
guarantees that on every input instance, the correct answer will be obtained quickly
with high probability.

A randomized algorithm is able to flip coins as it proceeds to decide what ac-
tions to take next. Equivalently, a randomized algorithm A can be thought of as a set
of deterministic algorithms A, A, As, ... where A, is what algorithm A does when
the outcome of the coin flips is r = (heads, tails, heads, heads, .. ., tails). Each such
deterministic algorithm A, will have a small set of worst case input instances on
which it either gives the wrong answer or runs too slow. The idea is that these al-
gorithms Aj, A, As, ... have different sets of worst case instances. This randomized
algorithm is good if for each input instance, the fraction of the deterministic algo-
rithms A;, A, As, ... for which it is not a worst case instance is at least p. Then when
one of these A, is chosen randomly; it solves this instance quickly with probability at
least p.

I sometimes find it useful to consider the analysis of randomized algorithms as a
game between an algorithm designer and an adversary who tries to construct input
instances that will be bad for the algorithm. In the game, it is not always fair for the
adversarial input chooser to know the algorithm first, because then she can choose
the instance that is the worst case for this algorithm. Similarly, it is not always fair
for the algorithm designer to know the input instance first or even which instances
are likely, because then he can design the algorithm to work well on these. The way
we analyze the running time of randomized algorithms compromises between these
two. In this game, the algorithm designer, without knowing the input instance, must
first fix what his algorithm will do given the outcome of the coins. Knowing this, but
not knowing the outcomes of the coins, the instance chooser chooses the worst case
instance. We then flip coins, run the algorithm, and see how well it does.

Three Models: The following are formal definitions of three models.

Deterministic Worst Case: In a worst case analysis, a deterministic algorithm A
for a computational problem P must always give the correct answer quickly:

VI, [A(I) = P(I) and Time(A, I) < Typper(|1])]

Las Vegas: The algorithm is said to be Las Vegas if it is always guaranteed to give
the correct answer, but its running time depends on the outcomes of the random

347

348

Optimization Problems

coin flips. The goal is to prove that on every input instance, the expected running
time is small:

VI, [Vr, A;(I) = P(I) and Exp, [Time(A;, D] < Tupper(1])]

Monte Carlo: The algorithm is said to be Monte Carlo if the algorithm is guar-
anteed to stop quickly, but it can sometimes, depending on the outcomes of the
random coin flips, give the wrong answer. The goal is to prove that on every in-
put, the probability of it giving the wrong answer is small:

VI, [Pr[Ar(]) # P(D)] < ppisand Vr, Time(Ar, I) < Tupper(|1])]

The following examples demonstrate these ideas.

Quick Sort: Recall the quick sort algorithm from Section 9.1. The algorithm chooses
a pivot element and partitions the list of numbers to be sorted into those that are
smaller than the pivot and those that are larger than it. Then it recurses on each of
these two parts. The running time varies from ®(nlogn) to ©(n?), depending on the
choices of pivots.

Deterministic Worst Case: A reasonable choice for the pivot is to always use the
element that happens to be located in the middle of the array to be sorted. For all
practical purposes, this would likely work well. It would work exceptionally well
when the list is already sorted. However, there are some strange inputs, cooked
up for the sole purpose of being nasty to this particular implementation of the
algorithm, on which the algorithm runs in ®(n?) time. The adversary will provide
such an input, giving a worst case time complexity of © (r?).

Las Vegas: In practice, what is often done is to choose the pivot element ran-
domly from the input elements. This makes it irrelevant in which order the ad-
versary puts the elements in the input instance. The expected computation time
is ©(nlog n).

The Game Show Problem: The input I to the game show problem specifies which
of N doors have prizes behind them. At least half the doors are promised to have
prizes. An algorithm A is able to look behind the doors in any order that it likes, but
nothing else. It solves the problem correctly when it finds a prize. The running time
is the number of doors opened.

Deterministic Worst Case: Any deterministic algorithm fixes the order in which
it looks behind the doors. Knowing this order, the adversary places no prizes be-
hind the first & doors looked behind.

Las Vegas: In contrast, a random algorithm will look behind doors in random
order. It does not matter where the adversary puts the prizes; the probability that
one is not found after ¢ doors is 1/27, and the expected time until a prize is found
isExp[T] =) ,Pr[T=t]-t=2.

Randomized Algorithms

Monte Carlo: If the promise is that either at least half the doors have prizes or
none of them do and if the algorithm stops after 10 empty doors and claims that
there are no prizes, then this algorithm is always fast, but gives the wrong answer
with probability 1,21,

Randomized Primality Testing: An integer x is said to be compositeif it has factors
other than one and itself. Otherwise, it is said to be prime. For example, 6 = 2 x 3 is
composite and 2, 3, 5,7, 11, 13, 17, ... are prime. See Chapter 23.1, Example 23.2, for
explanations of why it takes 2° time to factor an n-bit number.! Here I give an easy
randomized algorithm, due to Rabin and Miller, for this problem.

Fermat’s Little Theorem: Don’t worry about the math, but Fermat’s little
theorem says that if x is prime, then for every a € [1, x — 1], it is the case that
a*! =(mod x) 1.

If we want to test if x is prime, then we can pick random a’s in the interval
and see if the equality holds. If the equality does not hold for a value of @, then x
is composite. If the equality does hold for many values of a, then we can say that
X is probably prime, or a what we call a pseudoprime.

The Game Show Problem: Finding an a for which a* ™! %04 y 1 is like finding a
prize behind door a. See Exercise 21.1.1.

Randomized Counting: In many applications, one wants to count the number of
occurrences of something. This problem can often be expressed as follows: Given
the input instance x, count the number of y for which f(x, y) = 1. It is likely very
difficult to determine the exact number. However, a good way to approximate this
number is to randomly choose some large number of values y. For each, test
whether f(x, y) = 1. Then the fraction of y for which f(x, y) =1 can be approxi-
mated by [the number you found]/[the number you tried]. The number of y for which
f(x, y) =1 can be approximated by [the fraction you found] x[the total number
of yl.

For example, suppose you had some strange shape and oy Tor which fixg)-0
you wanted to find its area. Then x would specify the shape,
y would specify some point within a surrounding box, and
f(x, y) = 1 if the point is within the shape. Then the number
of y for which f(x, y) = 1 gives you the area of your shape.

EXERCISE 21.1.1 Given an integer x, suppose that you have one door for each a €
[1, x — 1]. We will say that there is a prize behind this door if a*~' #mod v 1. Fermat’s
little theorem says that if x is pseudoprime, then none of the doors have prizes behind

! A major breakthrough by Agrawal et al. in 2002 was to find a polynomial-time deterministic algo-
rithm for determining whether an n-bit number is prime.

349

350

Optimization Problems

them, and if it is composite, then at least half the doors have prizes. The algorithm
attempts to determine which is the case by openingt randomly chosen doors for some
integert.

1. Ifthe algorithm finds a prize, what do you know about the integer? If it does not
find a prize, what do you know?

2. If the algorithm must always give the correct answer, how many doors need to be
opened, as a function of the number n of digits in the instance x?

3. If t doors are open and the input instance x is a pseudoprime, what is the prob-
ability that the algorithm gives the correct answer? If the instance is composite,
what is this probability?

EXERCISE 21.1.2 Section 4.3 designed an iterative algorithm for separating n VLSI
chips into those that are good and those that are bad by testing two chips at a time and
learning either that they are the same or that they are different. To help, at least half of
the chips are promised to be good. Now design (much easier) a randomized algorithm
for this problem. Here are some hints.

* Randomly select one of the chips. What is the probability that the chip is good?

* How can you learn whether or not the selected chip is good?

» Ifitis good, how can you easily partition the chips into good and bad chips?

* Ifthe chip is not good, what should your algorithm do?

* When should the algorithm stop?

* What is the expected running time of this algorithm?

EZE] solutions of Optimization Problems with a Random Structure

Optimization problems involve looking for the best solution for an instance. Some-
times good solutions have a random structure. In such cases, a good way to construct
one is to simply flip coins to decide how to build each part. I give two examples.
The first one, max cut, being NP-complete, likely requires exponential time to find
the best solution. However, in O(n) time, we can find a solution which is likely to
be at least half as good as optimal. The second example, expander graphs, is even
more extreme. Though there are deterministic algorithms for constructing graphs
with fairly good expansion properties, a random graph almost for sure has much bet-
ter expansion properties (with probability p > 0.999999). A complication, however,
is that there is no polynomial-time algorithm that tests whether this randomly con-
structed graph has the desired properties. Pushing the limits further, it can be proved
that the same random graph has extremely good properties with some very small
but nonzero probability (e.g., p > 10719%). Though we have no quick way to construct
such a graph, this does proves that such a graph exists.

The Max Cut Problem: The input to the max cut problem is an undirected graph.
The output is a partition of the nodes into two sets U and V such that the number of

Randomized Algorithms

edges that cross over from one side to the other is as large as possible. This problem
is NP-complete, and hence the best known algorithm for finding an optimal solution
requires 2°" time. The following randomized algorithm runs in time ©(n) and is
expected to obtain a solution for which half the edges cross over. This algorithm is
incredibly simple. It simply flips a coin for each node to decide whether to put it into
U orinto V. Each edge will cross over with probability % Hence, the expected number
of edges to cross over is @ The optimal solution cannot have more than all the edges
cross over, so the randomized algorithm is expected to perform at least half as well as
the optimal solution can do.

Expander Graphs: An n-node degree-d graph is said to be an expander graph if
moving from a set of its nodes across its edges expands us out to an even larger set
of nodes. More formally, for0 <o < land1 < 8 < d,agraph G = (V, E)isan (o, B)-
expander if for every subset S C V of its nodes, if |S| < an then | N(S)| > B|S|. Here
N(S) is the neighborhood of S, that is, the set of all nodes with an edge from some
nodein S.

Nonoverlapping Sets of d Neighbors: Because each node v € V has d neighbors
N(v), a set S has d|S| edges leaving these nodes. However, if these sets N(v) of
neighbors overlap a lot, then the total number of neighbors N(S) = (J,.s N(v) of
S might be very small. We can’t expect N(S) to be bigger than d|S|, but we do
want it to have size at least 8|S| where 1 < 8 < d. If Sis too big, we can't expect
it to expand further. Hence, we only require this expansion property for sets S of
size at most an. Because we do expect sets of size «n to expand to a neighborhood
of size Ban, we require that o < 1.

Connected with Short Paths: If o8 > %, then every pair of nodes in G is con-
2log(n/2)

nected with a path of length at most Togp

Proof: Consider two nodes uand v. The node uhas d neighbors, N(u). These
neighbors N(x) must have at least 8| N(u)| = Bd neighbors N(N(u)). These
neighbors N(N(u)) must have at least f2d neighbors. It follows that there
are at least 8i~'d nodes with distance i from u. The last time we are allowed
to do this expands the neighbor set of size |S| = an to | N(S)| > B|S| = Ban.
By the requirement that o > % this new neighbor set has size greater than
7 nodes. The distance of these nodes from u is at most i = log, 5. This set
might not contain v. However, starting from v there is another set of more
than half the nodes that are distant i = log, 5 from v. These two sets must

over lap at some node w. Hence, there is a path from u to w to v of length at

2log(n/2)
most Tog B

Uses: Expander graphs are very useful both in practice and for proving
theorems.

351

352

Optimization Problems

Fault-Tolerant Networks: As we have seen, every pair of nodes in an ex-
pander graph are connected. This is still true if a large number of nodes
or edges fail. Hence, this is a good pattern for wiring a communications
network.

Pseudorandom Generators: Taking a short random walk in an expander
graph quickly gets you to a random node. This is useful for generating long
random looking strings from a short seed string.

Concentrating and Recycling Random Bits: If we have a source that has
some randomness in it (say n coin tosses with an unknown probability
and with unknown dependences between the coins), we can use expander
graphs to produce a string of m bits appearing to be the result of m fair and
independent coins.

Error-Correcting Codes: Expander graphs are also useful in designing ways
of encoding a message into a longer code so that if any reasonable fraction
of the longer code is corrupted, the original message can still be recovered.
The faulty bits are connected by short paths to correct bits.

If «f < 1, Then Expander Graphs Exist: We will now prove that for any constants
« and B for which ¢ < 1 there exists an («, 8)-expander graph with n nodes and
degree d for some sufficiently big constant d. For example, if o = %, B = %, thend =5
is sufficient. To make the analysis easier, we will consider directed graphs where each
node u is connected to d nodes chosen independently at random. (If we ignore the
directions of the edges, then each node has average degree 2d and neighborhood sets
are only bigger.) We prove that the probability we do not get such an expander graph
is strictly less than one. Hence, one must exist.

Event Eg r: The graph G will not be a («, 8)-expander if there is some set S
for which |S| < an and N(S) < B|S|. Hence, for each pair of sets S and T, with
|S| <an and |T| < B|S|, let Esr denote the bad event that N(S) € T. Let us
bound the probability of Es r when we choose G randomly. Each node in Sneeds
d neighbors, for a total of d| S| randomly chosen neighbors. The probability of a
particular one of these landing in T is | T|/n. Because these edges are chosen in-
dependently, the probability of them all landing in T'is (| T|/ n)d‘sl.

Probability of Some Bad Event: The probability that G is not an expander is the
probability that at least one of these bad events Egr happens, which is at most
the sum of the probabilities of these individual events:

Pr[G not an expander] = Pr[At least one of the events Eg r occurs]

<) PriEsrl= Y > > PriEsql
ST

(s=an) (S||S|=s) (T||T|=ps)

"% (:) <,3ns> (T)ds

Randomized Algorithms

We now use the result that () < (2)“:

Pr[G not an expander] < Z (%)S (Z)ﬂs (é;)ds = Z [(?) (ZZ)IS (ﬂns)d}s

s<an s<an

sl 6] -l e]

The requirement is that «f <1. Hence, if d is sufficiently big (d >
log (2ef*1/a) /log (1/aB) + B), then the bracketed summand is at most 3:

Pr[G not an expander| < Z [%] <1

s<an

It follows that Pr[G is an expander] > 0, meaning that there exists at least one
such G that is an expander.

353

PART FOUR

Appendix

// Existential and Universal Quantifiers

WHICH oNE SHoulp HE Pick?

How MANY

WISEMEN

pots (T
TAKE To

Existential and universal quantifiers provide an extremely useful language for mak-
ing formal statements. You must understand them. A game between a prover and a
verifier is a level of abstraction within which it is easy to understand and prove such
statements.

357

358

Appendix

The Loves Example: Suppose the relation (predicate) Loves(p;, p.) means that per-
son p; loves person p,. Then we have

Expression Meaning

3p, Loves(Sam, p,) “Sam loves somebody.”

V' p, Loves(Sam, p,) “Sam loves everybody.”

Ap1V p2 Loves(py, p2) “Somebody loves everybody.”

Vp13p, Loves(pr, p2) “Everybody loves somebody.”

Ap.Vp1 Loves(p;, p2) “Theres one person who is loved
by everybody.”

Ip13p, (Loves(p, p2) and —Loves(pz, p1)) “Somebody loves in vain.”

Definition of Relation: A relation like
Loves(p, p2) states for every pair of objects
(say pr = Sam and p, = Mary) that the re-
lation either holds between them or does
not. Though we will use the word relation,
Loves(pi, p2) is also considered to be a pred-
icate. The difference is that a predicate takes
only one argument and hence focuses on
whether the property is true or false about the
given tuple (pi, p2) = (Sam, Mary).

Representations: Relations (predicates) can be represented in a number of ways.

Functions: A relation can be viewed as a function mapping tuples of ob-
jects either to frue or to false, for example, Loves: {p;|p1 is a person } x {p2|p2
is a person } = {true, false}.

Set of Tuples: Alternatively, it can be viewed as a set containing the tuples for
which it is true, for example Loves = {(Sam, Mary), (Sam, Ann), (Bob, Ann), . . .}.
(Sam, Mary) € Lovesiff Loves(Sam, Mary) is true.

Directed Graph Representation: If the relation only has two arguments, it can be
represented by a directed graph. The nodes consist of the objects in the domain.
We place a directed edge (p;, p2) between pairs for which the relation is true. If
the domains for the first and second objects are disjoint, then the graph is bi-
partite. Of course, the Lovesrelation could be defined to include Loves(Bob, Bob).
See Figure 22.1.

Quantifiers: You will be using the following quantifiers and properties.

The Existential Quantifier: The quantifier 3 means that there is at least one ob-
ject in the domain with the property. This quantifier relates to the Boolean

Existential and Universal Quantifiers

Sam Mary Sam =—==Mary
Figure 22.1: A directed graph representa- ~ Bob Ann Bob/ Ann
tion of the Loves relation. /
Ron Jone
Ron Jone

operator OR. For example, Ip; Loves(Sam, p1) = [Loves(Sam, Mary) OR
Loves(Sam, Ann) OR Loves(Sam, Bob) OR. . .].

The Universal Quantifier: The quantifier V means that all of the objects in
the domain have the property. It relates to the Boolean operator AND. For
example, Vp, Loves(Sam, p,) = [Loves(Sam, Mary) AND Loves(Sam, Ann) AND
Loves(Sam, Bob) AND. . .].

Combining Quantifiers: Quantifiers can be combined. The order of opera-
tions is such that Vp3p, Loves(p, p2) is understood to be bracketed as
Vpi[3p1 Loves(py, p2)l, i.e., “Every person has the property ‘he loves some other

’»

person’.” It relates to the following Boolean formula:

Sam AND.
/b ‘ :
R R R,
Mary 0 Mary Mary a

Annl M /Annl M Annl Jone

Loves(Sam,Mary) Loves(Sam,Ann) Loves(Sam,Jone) Loves(Bob,Mary) Loves(Bob,Ann) Loves(Bob,Jone) Loves(Ron,Mary) Loves(Ron,Ann) Loves(Ron,Jone)

Order of Quantifiers: The order of the quantifiers matters. For example, if b is the
class of boys and g is the class of girls, Vb3g Loves(b, g) and 3gVb Loves(b, g mean
different things. The second one states that the same girl is loved by every boy. For
it to be true, there needs to be a Marilyn Monroe sort of girl that all the boys love.
The first statement says that every boy loves some girl. A Marilyn Monroe sort of girl
will make this statement true. However, it is also true in a monogamous situation in
which every boy loves a different girl. Hence, the first statement can be true in more
different ways than the second one. In fact, the second statement implies the first
one, but not vice versa.

Definition of Free and Bound Variables: The statement 3p, Loves(Sam, p,)
means “Sam loves someone.” This is a statement about Sam. Similarly, the state-
ment 3p, Loves(p;, p.) means “p; loves someone.” This is a statement about
person p;. Whether the statement is true depends on who p, is referring to. The
statement is not about p,. The variable p, is used as a local variable (similar to
for(i =1;i <= 10;i + +)) to express “someone.” It could be a brother or a friend or a
dog. In this expression, we say that the variable p, is bound, while p; is free, because
p2 has a quantifier and p; does not.

359

360

Appendix

Mary
S Sam Mar
Figure 22.2: Vg3b3p (Loves(b, g and Loves(b, p) am Y
and g # p). On the left is an example of a situation Ann
in which the statement is true, and on the right is Bob Bob Ann
one in which it is false. Jone
True False

Defining Other Relations: You can define other relations by giving an expression
with free variables. For example, you can define the unary relation LovesSomeone
(p1) = 3p2 Loves(pi, p2).

Building Expressions: Suppose you wanted to state that every girl has been cheated
on, using the Loves relation. It may be helpful to break the problem into three steps.

Step 1. Assuming Other Relations: Suppose you have the relation Cheats(Sam,
Mary), indicating that Sam cheats on Mary. How would you express the state-
ment that every girl has been cheated on? The advantage of using this function
is that we can focus on this one part of the statement. We are not claiming that
every boy cheats. One boy may have broken every girl’s heart.

Given this, the answer is Vg3b Cheats(b, g).

Step 2. Constructing the Other Predicate: Here we do not have a Cheatsfunction.
Hence, we must construct a sentence from the loves function stating that Sam
cheats on Mary.

Clearly, there must be someone else involved besides Mary, so let’s start
with 3p. Now, in order for cheating to occur, who needs to love whom? (For
simplicity’s sake, let’s assume that cheating means loving more than one per-
son at the same time.) Certainly, Sam must love p. He must also love Mary.
If he did not love her, then he would not be cheating on her. Must Mary love
Sam? No. If Sam tells Mary he loves her dearly and then a moment later he
tells Sue he loves her dearly, then he has cheated on Mary regardless of how
Mary feels about him. Therefore, Mary does not have to love Sam. In conclusion,
we might define Cheats(Sam, Mary) = 3p (Loves(Sam, Mary) and Loves(Sam, p)).
However, we have made a mistake here. In our example, the other person
and Mary cannot be the same person. Hence, we must define the relation as
Cheats(Sam, Mary) = 3p (Loves(Sam, Mary) and Loves(Sam, p) and p # Mary).

Step 3. Combining the Parts: Combining the two relations together gives you
Vg3b3p (Loves(b, g) and Loves(b, p) and p # g). This statement expresses that ev-
ery girl has been cheated on. See Figure 22.2.

The Domain of a Variable: Whenever you state 3g or Vg, there must be an under-
stood set of values that the variable g might take on. This set is called the domain of
the variable. It may be explicitly given or implied, but it must be understood. Here

Existential and Universal Quantifiers

the domain is “the” set of girls. You must make clear whether this means all girls in
the room, all the girls currently in the world, or all girls that have ever existed. For
example,

Vxdyxxy=1

states that every value has a reciprocal. It is certainly not true of the domain of in-
tegers, because two does not have an integer reciprocal. It seems to be true of the
domain of reals. Be careful, however: zero does not have a reciprocal. It would be
better to write

Vx#0, Jyxxy=1
or equivalently

Vxdy (x x y=10Rx =0).

The Negation of a Statement: The negation of a statement is formed by putting a
negation sign on the left-hand side. (Brackets sometimes help.) A negated statement,
however, is best understood by moving the negation as deep (as far right) into the
statement as possible. This is done as follows.

Negating AND and OR: A negation on the outside of an AND or an OR statement
can be moved deeper into the statement using De Morgan’s law. Recall that the
AND s replaced by an OR and the OR is replaced with an AND.

—(Loves(S, M) AND Loves(S, A)) iff —Loves(S, M) OR —Loves(S, A): The negat-
ion of “Sam loves Mary and Ann” is “Either Sam does not love Mary or he
does not love Ann.” He can love one of the girls, but not both.

A common mistake is to make the negation —Loves(Sam, Mary) AND
—Loves(Sam, Ann). However, this says that Sam loves neither Mary nor Ann.

—(Loves(S, M) OR Loves(S,A)) iff —Loves(S, M) AND —Loves(S, A): The negation
of “Sam either loves Mary or he loves Ann” is “Sam does not love Mary and
he does not love Ann.”

Negating Quantifiers: Similarly, a negation can be moved past one or more
quantifiers either to the right or to the left. However, you must then change these
quantifiers from existential to universal and vice versa. Suppose d is the set of
dogs. Then we have:

—(3d Loves(Sam, d)) ifftVd—-Loves(Sam, d): The negation of “There is a dog
that Sam loves” is “There is no dog that Sam loves” or “All dogs are unloved
by Sam.” A common mistake is to state the negation as 3d —Loves(Sam, d).
However, this says that “There is a dog that is not loved by Sam.”

—(Vd Loves(Sam, d)) iff 3d —~Loves(Sam, d): The negation of “Sam loves ev-
ery dog” is “There is a dog that Sam does not love.”

361

362

Appendix

—(@AbVd Loves(b, d)) iff Vb—(Vd Loves(b, d)) iff Vbad—Loves(b, d): The nega-
tion of “There is a boy who loves every dog” is “There are no boys who love
every dog” or “For every boy, it is not the case that he loves every dog” or “For
every boy, there is some dog that he does not love.”

—(3d,3d, Loves(Sam, d,) AND Loves(Sam, d,) AND d, # d,) iff

vd\Vd, —(Loves(Sam, dy) AND Loves(Sam, d,) AND d, # d,) iff

vd\Vd, —=Loves(Sam, d,) OR —=Loves(Sam, d,) OR d; = d,: The negation of
“There are two (distinct) dogs that Sam loves” is “Given any pair of (distinct)
dogs, Sam does not love both” or “Given any pair of dogs, either Sam does
not love the first or he does not love the second, or you gave me the same
dog twice.”

The Domain Does Not Change: The negation of 3x > 5, x+2 =4isVx > 5, x +
2 # 4. The negation does notbegin 3x < 5 Both the statement and its nega-
tion are about numbers greater than 5. Is there or is there not a number with the
property such that x + 2 = 42

Proving a Statement True: There are a number of seemingly different techniques
for proving that an existential or universal statement is true. The core of all these
techniques, however, is the same. Personally, I like to view the proof as a strategy for
winning a game against an adversary.

Techniques for Proving 3d Loves(Sam, d):

Proof by Example or by Construction: The classic technique to prove that
something with a given property exists is by example. You either directly pro-
vide an example, or you describe how to construct such an object. Then you
prove that your example has the property. For the above statement, the proof
would state “Let d be Fido” and then would prove that Sam loves Fido.

Proof by Adversarial Game: Suppose you claim to an adversary that there is
adog that Sam loves. What will the adversary say? Clearly, he challenges, “Oh,
yeah? What dog?” You then meet the challenge by producing a specific dog
d and proving that Loves(Sam, d), that is, that Sam loves d. The statement is
true if you have a strategy guaranteed to beat any adversary in this game.

¢ If the statement is true, then you can produce some dog d.

¢ If the statement is false, then you will not be able to.

Techniques for Proving Vd Loves(Sam, d):

Proof by Example Does Not Work: Proving that Sam loves Fido is interesting,
but it does not prove that he loves all dogs.

Existential and Universal Quantifiers

Proof by Case Analysis: The laborious way of proving that Sam loves all dogs
is to consider each dog, one at a time, and prove that Sam loves it.
This method is impossible if the domain of dogs is infinite.

Proof by Arbitrary Example: The classic technique to prove that every ob-

ject from some domain has a given property is to let some symbol repre- 363

sent an arbitrary object from the domain and then to prove that that object
has the property. Here the proof would begin “Let d be any arbitrary dog.”
Because we don't actually know which dog d is, we must either (1) prove
Loves(Sam, d) simply from the properties that d has because d is a dog or
(2) go back to doing a case analysis, considering each dog d separately.

Proof by Adversarial Game: Suppose you claim to an adversary that Sam
loves every dog. What will the adversary say? Clearly he challenges, “Oh,
yeah? What about Fido?” You meet the challenge by proving that Sam loves
Fido. In other words, the adversary provides a dog d’. You win if you can
prove that Loves(Sam, d').

The only difference between this game and the one for existential quan-
tifiers is who provides the example. Interestingly, the game only has one
round. The adversary is only given one opportunity to challenge you.

A proof of the statement Vd Loves(Sam, d) consists of a strategy for win-
ning the game. Such a strategy takes an arbitrary dog d’, provided by the
adversary, and proves that “Sam loves d’.” Again, because we don't actually
know which dog d’ is, we must either (1) prove that Loves(Sam, d') simply
from the properties that d’ has because he is a dog or (2) go back to doing a
case analysis, considering each dog d’ separately.

* If the statement Vd Loves(Sam, d) is true, then you have a strategy.
No matter how the adversary plays, no matter which dog d’ he gives
you, Sam loves it. Hence, you can win the game by proving that
Loves(Sam, d').

¢ If the statement is false, then there is a dog d’ that Sam does not love.
Any true adversary (not just a friend) will produce this dog, and you will
lose the game. Hence, you cannot have a winning strategy.

Proof by Contradiction: A classic technique for proving the statement
Vd Loves(Sam, d) is proof by contradiction. Except in the way that it is ex-
pressed, it is exactly the same as the proof by an adversary game.

By way of contradiction assume that the statement is false, that is,
3d —Loves(Sam, d) is true. Let d’ be some such dog that Sam does not love.
Then you must prove that in fact Sam does love d'. This contradicts the state-
ment that Sam does not love d’. Hence, the initial assumption is false, and
VYd Loves(Sam, d) is true.

Proof by Adversarial Game for More Complex Statements: The advantage to this
technique is that it generalizes into a nice game for arbitrarily long statements.

364

Appendix

The Steps of the Game:

Left to Right: The game moves from left to right, providing an object for
each quantifier.

Prover Provides 3b: You, as the prover, must provide any existential ob-
jects.

Adpversary ProvidesVd: The adversary provides any universal objects.

To Win, Prove the Relation Loves(b’, d’): Once all the objects have been
provided, you (the prover) must prove that the innermost relation is in
fact true. If you can, then you win. Otherwise, you lose.

A ProofIs a Strategy: A proof of the statement consists of a strategy such that
you win the game no matter how the adversary plays. For each possible move
that the adversary takes, such a strategy must specify what move you will
counter with.

Negations in Front: To prove a statement with a negation in the front of it,
first put the statement into standard form with the negation moved to the
right. Then prove the statement in the same way.

Examples:

3bVd Loves(b,d): To prove “There is a boy that loves every dog,” you
must produce a specific boy b'. Then the adversary, knowing your boy
b, tries to prove that Vd Loves(V/', d) is false. He does this by providing
an arbitrary dog d’ that he hopes ' does not love. You must prove “b’
loves d'.”

—(@bVdLoves(b,d)) iff Ybad—Loves(b, d): With the negation moved to
the right, the first quantifier is universal. Hence, the adversary first pro-
duces a boy b'. Then, knowing the adversary’s boy, you produce a dog d'.
Finally, you prove that —Loves(V', d').

Your proof of the statement could be viewed as a function G that
takes as input the boy b’ given by the adversary and outputs the dog
d’ = D(b') countered by you. Here, d' = D(b’) is an example of a dog that
boy b’ does not love. The proof must prove that Vb—Loves(b, D(b)).

EXERCISE 22.0.1 Let Loves(b, g) denote that boy b loves girl g. If Sam loves Mary and
Mary does not love Sam back, then we say that Sam loves in vain.

1. Express the following statements using universal and existential quantifiers. Move
any negations to the right.
(@) “Sam has loved in vain.”
(b) “There is a boy who has loved in vain.”

Existential and Universal Quantifiers

(c) “Every boy has loved in vain.”
(d) “No boy has loved in vain.”

2. For each of the above statements and each of the two relations below, prove either
that the statement is true for the relation or that it is false:

Sam

Sam ——— > Mary / Mary

Bob

EXERCISE 22.0.2 (See solution in Part Five.) For each, prove whether true or not when
each variable is a real value. Be sure to play the correct game as to who is providing
what value:

1. Vx3dyx+y=5.

2. dyVxx+y=5.

3. Vx3dyx-y=>5.

4. JyVxx-y=>5.

5 Vx3yx-y=0.

6. dyvxx-y=0.

7. [Vx3y P(x, y)] = [Fy Vx P(x, y)].
8. [Vx3y P(x, y)] & [FyVx P(x, y)l.
9. VYa3dyVvVxx-(y+a)=0.

10. Javx3Iy[x=0o0rx-y=>5].

EXERCISE 22.0.3 The game ping has two rounds. Player A goes first. Let m{' denote
his first move. Player B goes next. Let m? denote his move. Then player A goes m}, and
player B goes m8. The relation AWins(m, m8, mi}, m®) is true iff player A wins with
these moves.

1. Use universal and existential quantifiers to express the fact that player A has a
strategy with which he wins no matter what player B does. Use m}', m8, m{}, m? as
variables.

2. What steps are required in the prover—-adversary technique to prove this statement?

What is the negation of the above statement in standard form?

4. What steps are required in the prover—-adversary technique to prove this negated
statement?

@

EXERCISE 22.0.4 Why does [Vny, 3n > ny, P(n)] imply that there are an infinite
number of values n for which the property P(n) is true?

365

x| 23 Time Complexity

It is important to classify algorithms based whether they solve a
given computational problem and, if so, how quickly. Similarly, it
is important to classify computational problems based whether
they can be solved and, if so, how quickly.

EEED The Time (and Space) Complexity of an Algorithm

Purpose:
Estimate Duration: To estimate how long an algorithm or program will run.

Estimate Input Size: To estimate the largest input that can reasonably be given
to the program.

Compare Algorithms: To compare the efficiency of different algorithms for solv-
ing the same problem.

Parts of Code: To help you focus your attention on the parts of the code that are
executed the largest number of times. This is the code you need to improve to
reduce the running time.

Choose Algorithm: To choose an algorithm for an application:
* If the input size won't be larger than six, don’t waste your time writing an
extremely efficient algorithm.
* If the input size is a thousand, then be sure the program runs in polynomial,
not exponential, time.
* If you are working on the Gnome project and the input size is a billion, then
be sure the program runs in linear time.

Time Complexity

Time and Space Complexities Are Functions, T(n) and S(n): The time com-
plexity of an algorithm is not a single number, but is a function indicating how
the running time depends on the size of the input. We often denote this by T'(n),
giving the number of operations executed on the worst case input instance of size
n. An example would be T(n) = 3n? + 7n + 23. Similarly, S(n) gives the size of the
rewritable memory the algorithm requires.

Ignoring Details, ©(T(n)) and O(T(n)): Generally, we ignore the low-order terms
in the function T'(n) and the multiplicative constant in front. We also ignore the func-
tion for small values of n and focus on the asymptotic behavior as n becomes very
large. Some of the reasons are the following.

Model-Dependent: The multiplicative constant in front of the time depends on
how fast the computer is and on the precise definition of “size” and “operation.”

Too Much Work: Counting every operation that the algorithm executes in pre-
cise detail is more work than it is worth.

Not Significant: It is much more significant whether the time complexity is
T(n) = n? or T(n) = n® than whether itis T(n) = n or T(n) = 3n?.

Only Large n Matter: One might say that we only consider large input instances
in our analysis, because the running time of an algorithm only becomes an issue
when the input is large. However, the running time of some algorithms on small
input instances is quite critical. In fact, the size n of a realistic input instance
depends both on the problem and on the application. The choice was made to
consider only large n in order to provide a clean and consistent mathematical
definition.

See Chapter 25 on the Theta and BigOh notations.

Definition of Size: The formal definition of the size of an instance is the number
of binary digits (bits) required to encode it. More practically, the size could be con-
sidered to be the number of digits or characters required to encode it. Intuitively, the
size of an instance could be defined to be the area of paper needed to write down
the instance, or the number of seconds it takes to communicate the instance along
a narrow channel. These definitions are all within a multiplicative constant of each
other.

An Integer: Suppose that the input is the value N = 8,398,346,386,236,876. The
number of bits required to encode it is Size(N) = log,(N) = log, (8,398,346,
386,236,876) = 53, and the number of decimal digits is Size(\N) = log,,(8,398,
346,386,236,876) = 16. Chapter 24 explains why these are within a multiplica-
tive constant of each other. The one definition that you must not use is the value

367

368

Appendix

of the integer, Size(N) = N = 8,398,346,386,236,876, because it is exponentially
different than Size(N) = log, (N) = 53.

A Tuple: Suppose that the input is the tuple of b integers I = (x3, X, ..., Xp).
The number of bits required to encode it is Size(I) = log,(x1) + log, (%) +--- +
log, (xp) ~ log, (x;) - b. A natural definition of the size of this tuple is the number
of integers in it, Size(I) = b. With this definition, it is a much stronger statement
to say that an algorithm requires only Time(b) integer operations independent of
how big the integers are.

A Graph: Suppose that the input is the graph G = (V, E) with |V| nodes and | E|
edges. The number of bits required to encode it is Size(G) = 2 Size(node) - | E| =
2log,(|V]) - | E|. Another reasonable definition of the size of G is the number of
edges, G(n) = | E|. Often the time is given as a function of both |V| and | E|. This
is within a log factor of the other definitions, which for most applications is
fine.

Definition of an Operation: The definition of an operation can be any reasonable
operation on two bits, characters, nodes, or integers, depending on whether time is
measured in bits, characters, nodes, or integers. An operation could also be defined
to be any reasonable line of code or the number of seconds that the computation
takes on your favorite computer.

Which Input: T(n) is the number of operations required to execute the given algo-
rithm on an input of size n. However, there are 2" input instances with n bits. Here
are three possibilities:

A Typical Input: The problem with considering a typical input instance this is
that different applications will have very different typical inputs.

Average or Expected Case: The problem with taking the average over all input
instances of size n is that it assumes that all instances are equally likely to
occur.

Worst Case: The usual measure is to consider the instance of size n on which the
given algorithm is the slowest, namely, T(n) = max;e(; | 1=n Time(I). This mea-
sure provides a nice clean mathematical definition and is the easiest to analyze.
The only problem is that sometimes the algorithm does much better than the
worst case, because the worst case is not a reasonable input. One such algorithm
is quick sort (see Section 9.1).

Time Complexity of a Problem: The time complexity of a problem is the running
time of the fastest algorithm that solves the problem.

Time Complexity

EXAMPLE 23.1 Polynomial Time vs Exponential Time

Suppose program P, requires T; (n) = n* operations and P, requires T(n) = 2". Sup-
pose that your machine executes 10° operations per second. If n = 1,000, what is the
running time of these programs?

Answer:

1. T,(n) = (1,000)* = 10'2 operations, requiring 10° seconds, or 11.6 days.

3
_ 5103 . 5 2(10%) oa 8 ;
2. T;(n) = 2" operations. The number of years is 155555031365 - LS 18 too big

for my calculator. The log of this number is 10® x log,,(2) — log,, 10® — log,,(60 x
60 x 24 x 365) = 301.03 — 6 — 7.50 = 287.53. Therefore, the number of years is
10%8733 = 3.40 x 10%7. Don’t wait for it.

369

EXAMPLE 23.2 Instance Size N vs Instance Value N

Two simple algorithms, summation and factoring.
The Problems and Algorithms:

Summation: The task is to sum the N entries of an array, that is, A(1) + A(2) +
AQB)+---+AN).

Factoring: The task is to find divisors of an integer N. For example, on input N =
5917 we output that N = 97 x 61. (This problem is central to cryptography.) The
algorithm checks whether Nis divisible by 2, by 3, by 4, ... by N.

Time: Both algorithms require T = N operations (additions or divisions).

How Hard? The summation algorithm is considered to be very fast, while the factoring
algorithm is considered to be very time-consuming. However, both algorithms take
T = Ntime to complete. The time complexity of these algorithms will explain why.

Typical Values of N: In practice, the N for factoring is much larger than that for sum-
mation. Even if you sum all the entries on the entire 8-G byte hard drive, then N is
still only N ~ 10'°. On the other hand, the military wants to factor integers N ~ 10,
However, the measure of complexity of an algorithm should not be based on how it
happens to be used in practice.

Size of the Input: The input for summation contains is n ~ 32N bits. The input for
factoring contains is n = log, N bits. Therefore, with a few hundred bits you can write
down a difficult factoring instance that is seemingly impossible to solve.

Time Complexity: The running time of summation is T(n) = N = én, which is linear
in its input size. The running time of factoring is T(N) = N = 2", which is exponential
inits input size. This is why the summation algorithm is considered to be feasible, while
the factoring algorithm is considered to be infeasible.

370

Appendix

EXERCISE 23.1.1 (See solution in Part Five.) For each of the two programs considered
in Example 23.1, if you want it to complete in 24 hours, how big can your input be?

EXERCISE 23.1.2 [n Example 23.1, for which input size, approximately, do the pro-
grams have the same running times?

EXERCISE 23.1.3 This problem compares the running times of the following two al-
gorithms for multiplying:

algorithm KindergartenAdd(a, b)

(pre-cond): a and b are integers.
(post-cond): Outputsa x b.
begin

c=0

loopi=1...a

c=c+b

end loop

return(c)
end algorithm

algorithm GradeSchoolAdd(a, b)

(pre-cond): a and b are integers.
(post-cond): Outputsa x b.

begin
Letas_, . ..aszaxaag be the decimal digits of a, so thata = f;(} a; x 10%.
Letb;_; ... bsbab1 by be the decimal digits of b, so that b = ZE;}) b; x 10/.
c=0
loopi=1...s
loopj=1...t
c=c+abj x 10",
end loop
end loop
return(c)
end algorithm

For each of these algorithms, answer the following questions.

1. Suppose that each addition to c requires time 10 seconds and every other operation

(for example, multiplying two single digits such as 9 x 8 and shifting by zero) is
free. What is the running time of each of these algorithms, either as a function of
a and b or as a function of s and t? Give everything for this entire question exactly,
i.e., not BigOh.

Time Complexity

2. Leta =9,168,391 and b = 502. (Without handing it in, trace the algorithm.) With
10 seconds per addition, how much time (seconds, minutes, etc.) does the compu-
tation require?

3. Theformalsize of an input instance is the number n of bits needed to write it down.
What is n as a function of our instance (a, b)?

4. Suppose your job is to choose the worst case instance (a, b) (i.e., the one that max-
imizes the running time), but you are limited in that you can only use n bits to
represent your instance. Do you set a big and b small, a small and b big, or a and
b the same size? Give the worst casea and b, or s and t, as a function of n.

5. The running time of an algorithm is formally defined to be a function T(n) from n
to the time required for the computation on the worst case instance of size n. Give
T(n) for each of these algorithms. Is this polynomial time?

EXERCISE 23.1.4 (See solution in Part Five.) Suppose that someone has developed an
algorithm to solve a certain problem, which runs in time T(n, k) € ©(f(n, k)), where
n is the size of the input, and k is a parameter we are free to choose (we can choose it
to depend on n). In each case determine the value of the parameter k(n) to achieve the
(asymptotically) best running time. Justify your answer. I recommend not trying much
fancy math. Think of n as being some big fixed number. Try some value of k, say k = 1,
k = n%, or k = 2%" for some constant a. Then note whether increasing or decreasing
k increases or decreases f. Recall that ‘asymptotically” means that we only need the
minimum to within a multiplicative constant.

You might want to first prove that g + h = ©(max(g, h)).

fln, k) = lr(‘;grﬁ This is needed for the radix—counting sort in Section 5.4.
fnk)="%+k n
3 n
fn, k) =log’ k+ %.
fn k) =88 4 k. 2n 4 k2.

kb~

EEE] The Time Complexity of a Computational Problem

The Formal Definition of the Time Complexity of a Problem: As said, the time
complexity of a problem is the running time of the fastest algorithm that solves the
problem. We will now define this more carefully, using the existential and universal
quantifiers that were defined in Chapter 22.

The Time Complexity of a Problem: The time complexity of a computational
problem P is the minimum time needed by an algorithm to solve it.

Upper Bound: Problem P is said to be computable in time T, (1) if there is
an algorithm A that outputs the correct answer, namely A(I) = P(I), within

371

372

Appendix

the bounded time, namely Time(A, I) < Tpper(|1]), on every input instance
I. The formal statement is

3A, VI, [A() = P(]) and Time(A, I) < Tupper(I1])]

Tupper(n) is said to be only an upper bound on the complexity of the problem
P, because there may be another algorithm that runs faster. For example,
P = Sorting is computable in T,;pper(n) = O(n?) time. It is also computable
in Typper(n) = O(nlogn).

Lower Bound of a Problem: A lower bound on the time needed to solve a
problem states that no matter how smart you are, you cannot solve the prob-
lem faster than the stated time Tj,,,,(17), because such algorithm simply does
not exist. There may be algorithms that give the correct answer or run suffi-
ciently quickly on some input instances. But for every algorithm, there is at
least one instance I for which either the algorithm gives the wrong answer,
i.e.,, A(I) # P(I), or it takes too much time, i.e., Time(A, I) > Tjower(|1]). The
formal statement is the negation (except for > vs >) of that for the upper
bound:

VA, 31, [A(]) # P(I) or Time(A, I) = Tiower(|11)]

For example, it should be clear that no algorithm can sort n values in only
Tiower = ~/1 time, because in that much time the algorithm could not even
look at all the values.

Proofs Using the Prover—Adversary Game: Recall the technique described in
Chapter 22 for proving statements with existential and universal quantifiers.

Upper Bound: We can use the prover-adversary game to prove the upper
bound statement 3A, VI, [A(I) = P(I) and Time(A, I) < Typper(11))] as fol-
lows: You, the prover, provide the algorithm A. Then the adversary provides
an input I. Then you must prove that your A on input I gives the correct out-
put in the allotted time. Note this is what we have been doing throughout the
book: providing algorithms and proving that they work.

Lower Bound: A proof of the lower bound VA, 3I, [A(I) # P(I)or Time
(A, I) > Tjouer(11])] consists of a strategy that, when given an algorithm A by
an adversary, you, the prover, study his algorithm and provide an input I.
Then you prove either that his A on input I gives the wrong output or that it
runs in more than the allotted time.

EXERCISE 23.2.1 (See solution in Part Five.) Let Works(P, A, I) to true if algorithm
A halts and correctly solves problem P on input instance 1. Let P = Halting be the
halting problem that takes a Java program I as input and tells you whether or not it
halts on the empty string. Let P = Sorting be the sorting problem that takes a list of

Time Complexity

numbers I as input and sorts them. For each part, explain the meaning of what you
are doing and why you don’t do it another way.

1.

]

Recall that a problem is computable if and only if there is an algorithm that halts
and returns the correct solution on every valid input. Express in first-order logic
that Sorting is computable.

Express in first-order logic that Halting is not computable.

Express in first-order logic that there are uncomputable problems.

Explain what the following means (not simply by saying the same in words), and
either prove or disprove it: VI, A, Works(Halting, A, I).

Explain what the following means, and either prove or disprove it: VA, 3P, V1,
Works(P, A, I). (Hint: An algorithm A on an input I can either halt and give the
correct answer, halt and give the wrong answer, or run forever.)

373

374

24 Logarithms and Exponentials

Logarithms log, (1) and exponentials 2" arise often when analyzing algorithms.

Uses: These are some of the places that you will see them.

Divide a Logarithmic Number of Times: Many algorithms repeatedly cut the in-
put instance in half. A classic example is binary search (Section 1.4): You take
something of size n and you cut it in half, then you cut one of these halves in
half, and one of these in half, and so on. Even for a very large initial object, it
does not take very long until you get a piece of size below 1. The number of divi-
sions required is about log, (n). Here the base 2 is because you are cutting them
in half. If you were to cut them into thirds, then the number of times to cut would
be about log,(n).

A Logarithmic Number of Digits: Logarithms are also useful because writing
down a given integer value n requires [log,,(n + 1)1 decimal digits. For example,
suppose that z = 1,000,000 = 10°. You would have to divide this number by 10 six
times to get to 1. Hence, by definition, log;,(n) = 6. This, however, is the num-
ber of zeros, not the number of digits. We forgot the leading digit 1. The formula
[log,,(n+ 1)] = 7 does the trick. For the value n = 6,372,845, the number of dig-
its is given by log,,(6,372,846) = 6.804333, rounded up to 7. Being in computer
science, we store our values using bits. Similar arguments give that [log, (7 + 1)
is the number of bits needed.

Height and Size of Binary Tree: A complete balanced binary tree of height % has
2" leaves and n = 2"! — 1 nodes. Conversely, if it has n nodes, then its height is
h ~ log, n.

Exponential Search: Suppose a solution to your problem is represented by » dig-
its. There are 10" such strings of n digits. Doing a blind search through them all
would take too much time.

Logarithms and Exponentials

Rules: There are lots of rules about logs and exponentials that one might learn. Per-
sonally, I like to confine them to the following:

n

b"=bx bx bx --- x b: This is the definition of exponentiation. b" is n b’s mul-

tiplied together.
375

b" x b™ = b™™: This is proved simply by counting the number of b’s being
multiplied:

n m n+m

bxbxbx ---xb)xbxbxbx---xb)=bxbxbx---xb.

b° = 1: One might guess that zero b’s multiplied together is zero, but it needs to
be one. One argument for this is as follows. b" = b*** = b° x b". For this to be
true, b° must be one.

bz = /n: By definition, /7 is the positive number that when multiplied by itself
gives n. bz meets this definition because bz x bz = b2tz = b! = b.

b~" =1/b": The fact that this needs to be true can be argued in a similar way.
1 = b= = p" x b~". For this to be true, b~ must be 1/b".

(b™™ = b™™: Again we count the number of b’s:
m

n n n

bxbxbx ---xb)xbxbxbx---xb)x---xbxbxbx---xb)

nxm

=bxbxbx---xb.

If x = log,(n) then n= b*: This is the definition of logarithms.
log,(1) = 0: This follows from b° = 1.

log,(b*) = x and p'°&:™ = n: Substituting n = b* into x = log, (n) gives the first,
and substituting x = log,(n) into n = b* gives the second.

log,(n x m) = log,(n) + log,(m): The number of digits to write down the prod-
uct of two integers is the number to write down each of them separately (up
to rounding errors). We prove it by applying the definition of logarithms and
the above rules: b8 —= 5 x m = b8 x plos,(m) — plog,()+log,(m) Tt follows
thatlog, (n x m) =log,(n) + log,(m).

log,(n%) = d x log,(n): This is an extension of the above rule.

log,(n) — log,(m) = log,(n) +log,(L) = log,(2): This is another extension of the
above rule.

dclos:(m = pelog:(d: This rule states that you can move things between the base
and the exponent as long as you insert or remove a log. The proof is as follows.

376

Appendix

dclog,(n) — (Zlogz(d))clogz(n] — 2log,(d)xclog,(n) _ glog,(n)xclog,(d) — (Zlogz(n))clogz[d) —
log, (d)
neosld,

log,(n) = 3.32... x log,,(n): The number of bits needed to express the integer n
is 3.32...times the number of decimal digits needed. This can be seen as follows.
Suppose x = log, n. Then n = 2%, giving log,, n = log,,(2*) = x - log,, 2. Finally,

1
x= log, 2 log,,(n) =3.32...log;, n

Which Base: We will write ®(log(n)) without giving an explicit base. A high school
student might use base 10 as the default, a scientist base e = 2.718..., and a com-
puter scientist base 2. My policy is to exclude the base when it does not matter. As
seen above, log,,(n), log,(n), and log,(n) differ only by multiplicative constants. In
general, we ignore multiplicative constants, and hence the base used is irrelevant. I
only include the base when the base matters. For example, 2" and 10" differ by much
more than a multiplicative constant.

The Ratio i‘;%z: When computing the ratio between two logarithms, the base used
does not matter, because changing the base will introduce the same constant on both
the top and the bottom, which will cancel. Hence, when computing such a ratio, you
can choose whichever base makes the calculation the easiest. For example, to comp-

. . log, 16
ute lfogglge, the obvious base to use is 2, because looggz s = 3. On the other hand, to com-
2
log9 . . log3 9 2
pute 3>, the obvious base to use is 3, because % = 3.

EXERCISE 24.0.1 (See solution in Part Five.) Simplify the following exponentials: a® x
615, 39 x 57,30 4 54, 26log, n+7’ n3/logyn

25 Asymptotic Growth

Classes of Growth Rates: Itis important to be able to classify functions f(n) based
on how quickly they grow: The following table outlines the few easy rules with which

to classify functions with the basic form f(n) = ©(b** - n¢ - log

en).

377

c b d e Class e Examples
>0 | >1 | Any | Any || Exponentials 200 2n, 3(:1(1]3;"
=1 | >0 | Any || Polynomials: n®w 4 12;?;,?,0([:)
=2 | Any ¢ Quadratic O(n?) 5n%,2n° +7n+8
=1| =1 ¢ Sorting time O(nlogn) | 5nlogn+3n
=1 =0 ¢ Linear O(n) 5n+3
=0 | >0 || Polylogarithms: log®P(n) | 5log’(n)
=1 * Logarithms O(logn) 5log(n)
=0 Constants O(1) 5 5+sinn
<0 | Any | Decreasing polynomials | — 4, 51;?_1,?;(1")
<1 | Any | Any || Decreasing exponentials |) 30”:]%

Asymptotic Notation: When we want to bound the growth of a function while
ignoring multiplicative constants, we use the following notation:

Name Standard Notation

My Notation

Meaning

Theta f(n) = ©(gn)

BigOh f(n) = O(g(n))

Omega f(n) = Q(g(n))

f(n) € ©(gn))
f(n) < O(gn)
fn) > Q(gn))

fn)=~c-gn)
fn) <c-gn)
fn)=c-gn)

378

Appendix

Purpose:

Time Complexity: Generally, the functions that we will be classifying will be the
time or space complexities of programs. On the other hand, these ideas can also
be used to classify any function.

Function Growth: The purpose of classifying a function is to give an idea of how
fast it grows without going into too much detail.

Asymptotic Growth Rate: When classifying animals, Darwin decided not to con-
sider whether the animal sleeps during the day, but to consider whether it has hair.
When classifying functions, complexity theorists decided to not consider its behav-
ior for small values of n or even whether it is monotone increasing, but how quickly
it grows when its input n grows really big. This is referred to as the asymptotics of the
function. Here are some examples of different growth rates:

Approximate value of T(n) for n=

Function

T(n) 10 100 1,000 10,000 Animal

5 5 5 5 5 Virus

log, n 3 6 9 13 Amoeba

Jn 3 10 31 100 Bird

n 10 100 1,000 10,000 Human
nlogn 30 600 9,000 130,000 Giant

n® 100 10,000 108 108 Elephant

n’ 1,000 108 10° 10'? Dinosaur

n 1,024 1030 10300 10390 The universe

Note: The universe contains approximately 108 particles.

Exponential vs Polynomial: The table shows that an exponential function like
f(n) = 2" grows extremely quickly. In fact, for sufficiently big #, this exponential
2" grows much faster than any polynomial, even n!%0%%%0 Tg take this to an ex-
treme, the function f(n) = 2°%1!" js also an exponential. It too grows much faster
than n!/%00.00 for sufficiently large n.

Polynomial vs Logarithmic: The table also shows that a logarithmic function like
f(n) =log, n grows, but very slowly. Hence, for sufficiently large n, it is bigger
than any constant, but smaller than any polynomial.

EXERCISE 25.0.1 Give a value of n for which n*-°0%%° < 107,
Give a value of n for which n»%%° < 10°-0017,

EXERCISE 25.0.2 Give a value of n for which (log,, n)"%%%° < p.
Give a value of n for which (log,, n)%%° < p0001,

Asymptotic Growth

EIXD steps to Classify a Function

Given a function f(n), we will classify it according to its growth using the following
steps.

1) Put f(n) into Basic Form: Though there are strange functions out there, most
functions f(n) can be put into a basic form consisting of the sum of a number of
terms, where each term has the basic form ¢ - b - n¢ . (logn)¢, where a, b, ¢, d, and e
are real constants.

Examples:

e If f(n)=3-2*".n".(logn)’, thena=4,b=2,c=3,d="7,ande=>5.

* Suppose f(n) = n?. This has no exponential part b*, but can be viewed as
havinga =0, or b =1, or a? =1. (Recall x° = 1 and 1* = 1.) The exponent
on the polynomial nis d = 2. There is no logarithmic factor, so we have e = 0.
Finally, the constant in frontis ¢ = 1.

e In f(n) = 1/n® = n=%, itis also useful to see that d = —6.

e If f(n) = n?/log n + 5, then the function has two terms. In the first, a” = 1,
c=1,d=2,ande= —1.Inthesecond,a’ =1,c=5,d =0,and e = 0.

2) Get the Big-Picture Growth: We classify the set of all vertebrate animals into
mammals, birds, reptiles, and so on. Similarly, we will classify functions into the ma-
jor groups exponentials 2, polynomials n°®, polylogarithms log®" (n), and con-
stants ©(1).

Exponentials 2°; If the function f(n) is the sum of a bunch of things, one of
which is ¢- b® . n4 . (logn)¢, where b* > 1, then f(n) is considered to be an ex-
ponential.

Examples Included:
e f(n) =2"and f(n) = 3"
* f(n)=2"-ntlog,n—7nand f(n) = %

Examples Not Included:
® f(n) = ln = 20"1 = 1, f(]’l) = 2_1'n = (%)n, and f(n) — nl,OO0,000 (tOO
small)

o f(n) =n!~ n"=2"%"and f(n) = 2" (too big)

Definition of an Infeasible Algorithm: An algorithm is considered to be in-
feasible if it runs in exponential time. This is because such functions grow
extremely quickly as n gets larger.

(b%™: We require b* > 1 because b™ = (b*)", which grows as long as the
base b? is at least one.

The Notation 29™: We will see later that ®(1) denotes any constant greater
than zero. The notation 20" =29M" jg ysed to represent the class of

379

380

Appendix

exponentials, because b = 2(@1°8: D) and the constant a log, b = log, (b*) is
greater than zero as long as b“ is greater than 1. Recall log, 1 = 0.

Bounded Between: By these rules, f(n) = c- b™ - n? - (log n)¢ is exponential
if b* > 1, no matter what the constants ¢, d, e, and f are. Consider f(n) =
2"/ 1% The rule states that it is an exponential because b* = 2! > landd =
—100. We might question this, thinking that dividing by n'°° would not let it
grow faster enough to be considered to be an exponential. We see that it does
grow fast enough by proving that it is bounded between the two exponential
functions 295" and 2",

Polynomial n®®: If f(n) = c- b™ - n¢ . (logn)® is such that b* = 1, then we can
ignore b™, giving f(n) = c- n? - (logn)®. If d > 0, then the function f(n) is con-
sidered to be a polynomial.

Examples Included:
e f(n) =3n?and f(n) = 7n? — 8nlogn +2n — 17
e f(n)=.n=n"?and f(n) = n*!
* f(n) = n*log, nand f(n) = %

e f(n) =7n3log’ n—8n?logn+2n—17

Examples Not Included:
e fin)=n"=1, f(n) =n"' =1 and f(n) = logn (too small)
* f(n) = n'°¢" and f(n) = 2" (too big)

Definition of a Feasible Algorithm: An algorithm is considered to be feasible
if it runs in polynomial time. (This is not actually true if f(n) = n!000:000)

The Notation n®V: @(1) denotes any constant greater than zero, and hence
n®W represents any function f(n) = n¢ where d > 0.

Bounded Between: Though it would not be considered one in a mathemat-
ical study of polynomials, we also consider f(n) = 3n?logn to be a poly-
nomial, because it is bounded between n? and n®, which clearly are poly-
nomials.

Polylogarithms log®" (n): Powers of logs like (logn)® are referred to as poly-
logarithms. These are often written as log® n = (logn)3. This is different than
log(n®) = 3logn.

Example Included:
* f(n) =7(og, n)°, f(n) =7log, n,and f(n) = 7,/log, n
* f(n) =7(log, n)° + 6(log, n)* — 19 + 7(log, n)?/n

Asymptotic Growth

Example Not Included:
* f(n) = n (too big)

Constants @(1): A constant function is one whose output does not depend on
its input, for example, f(n) = 7. One algorithm for which this function arises is
popping an element off a stack that is stored as a linked list. This takes maybe
seven operations, independent of the number 7 of elements in the stack.

The Notation n®": We use the notation ®(1) to replace any constant when
we do not care what the actual constant is because determining whether it
is 7, 9, or 8.829 may be more work and more detail than we need. On the
other hand, in most applications being negative [f(n) = —1] or zero [f(n) =
0] would be quite a different matter. Hence, these are excluded.

Bounded Between: A function like f(n) =8 + sinn changes continuously
between 7 and 9, and f(n) =8+ % changes continuously on approaching
8. However, if we don’t care whether it is 7, 9, or 8.829, why should we care if
it is changing between them? Hence, both of these functions are included in
©(1). On the other hand, the function f(n) = % is not included, because the
only constant that it is bounded below by is zero and the zero function is not
included.

Examples Included:
* f(n) =7and f(n) = 8.829
* f(n) =8+sinn, f(n) =8+ 1

Examples Not Included:
e f(n) = —1and f(n) =0 (fails c > 0)
* f(n) = sinn (fails ¢ > 0)
* f(n) = 1 (too small)
* f(n) =log, n (too big)

3) Determine O(f(n)): We further classify mammals into humans, cats, dogs, and so
on. Similarly, we further classify the polynomials 7n°" into linear functions ©(n), the
time for sorting ®(nlog n), quadratics ©(n?), and so on. These are classes that ignore
the multiplicative constant.

Steps: One “takes the Theta” of a function f(n) by dropping the low-order terms
and then dropping the multiplicative constant c in front of the largest term.

Dropping Low-Order Terms: If f(n) is a set of things added or subtracted to-
gether, then each of these things is called a term. We determine which of the
terms grows fastest as n gets large. The slower-growing terms are referred to
as low-order terms. We drop them because they are not significant.

381

382

Appendix

Ordering Terms: The fastest-growing term is determined by first taking
the term ¢- b - n? . (log n)® with the largest b” value. If the b’s of terms
are equal, then we take the term with the largest d value. If the d’s are
also equal, then we take the term with the largest e value.

Dropping the Multiplicative Constant: The running time of an algorithm
might be f(n) =3n? or f(n) = 100n?. We say it is ®(n?) when we do not
care what the multiplicative constant c is. The function f(n) = c-b® - n¢.
(log n)° is in the class of functions denoted © (b - n? - (log n)®).

Examples of Functions:
e f(n) =3n®logn — 1000n? + n — 29 is in the class ©(n° log n).
e f(n)=7-4"-n%/log®n+8-2"+17-n? + 1000 - n is in the class (4" - n?/
log3 n.
. % + 18isinthe class ®(1). Since % is alower-order term than 18, it is dropped.

* L+ lisin the class ©(4), because - is a smaller term.

Examples of Classes:

Linear Functions ®(n): The classic linear function is f(n) = c-n+ b. The
notation ©(n) excludes any with ¢ < 0 but includes any function that is
bounded between two such functions.

What Can Be Done in ©(n) Time: Given an input of nitems, it takes ©(n)
time simply to look at the input. Looping over the items and doing a
constant amount of work for each takes another ®(n) time. Say we take
t1(n) = 2n and 5, (n) = 4n for a total of 6n time. Now if you do not want
to do more than linear time, are you allowed to do any more work? Sure.
You can do something that takes #3(n) = 3n time and something else that
takes t4(n) = 5n time. You are even allowed to do a few things that take
a constant amount of time, totaling say #(n) = 13. The entire algorithm
then takes the sum of these, t(n) = 14n + 13 time. This is still considered
to be linear time.

Examples Included:
e f(n) =7nand f(n) = 8.829n
* f(n) = 8+sinn)nand f(n) = 8n+1log' n+ 1 — 1,000,000

Examples Not Included:
* f(n) = —nand f(n) = On (fails ¢ > 0)
e f(n)= @ (too small)
* f(n) = nlog, n (too big)

Quadratic Functions © (72): Two nested loops from 1 to n take @ (n?) time if
each inner iteration takes a constant amount of time. An n x n matrix re-
quires ©(n?) space if each element takes constant space.

Asymptotic Growth

Time for Sorting, ®(n log n): Another running time that arises often in algo-
rithms is ®(nlog n). For example, this is the number of comparisons needed
to sort n elements.

Not Linear: The function f(n) = nlogn grows slightly too quickly to be
in the linear class of functions ®(n). This is because nlog n is log n times
n, and log n is not constant.

A Polynomial: The classes ©(n), ®(nlogn), and ®(n?) are subclasses of
the class of polynomial functions n®V. For example, though the func-
tion f(n) = nlogn is too big for ®(n) and too small @(#?), it is in P®W
because it is bounded between n! and 72, both of which are in n®W.

Logarithms ©(log(n)): See Chapter 24 for how logarithmic functions like
log, (n) arise and for some of their rules.

Which Base: We write ©(log(n)) without giving an explicit base. As
shown in the list of rules about logarithms, log,,(n), log, (n), and log,(n)
differ only by a multiplicative constant. Because we are ignoring mul-
tiplicative constants anyway, which base is used is irrelevant. The rules
also indicate that 8 log, (n°) also differs only by a multiplicative constant.
All of these functions are include in ©(log(n)).

EXERCISE 25.1.1 Which grows faster, 3*" or 432

EXERCISE 25.1.2 Does the notation (©(1))" mean the same thing as 2°™ ?

EXERCISE 25.1.3 Prove that 2°5" < 2"/n'% < 2" for sufficiently big n.

EXERCISE 25.1.4 (See solution in Part Five.) Prove that n* < 3n?logn < n® for suffi-
ciently big n.

EXERCISE 25.1.5 (See solution in Part Five.) Sort the terms in f(n) = 100n'%° + 347 +
logl,OOO n+ 43n + 20A001n/ nlOO'

EXERCISE 25.1.6 For each of the following functions, sort its terms by growth rate.
Get the big picture growth by classifying it into 2°™, p®W, log(")m (n), ®(1) or into a
similar and appropriate class. Also give its Theta approximation.

1

oS Gk N

fin) =5n° —17n% + 4

f(n) = 5n°logn+ 8n®

f(n) — 22571

f(n) — 7310g2n

fn) ={ 1lifnisodd, 2ifn is even}
fn)=2-2"-n*log,n—7n® +7%;

383

384

Appendix

10.
11.
12.
13.

f(n) =100 + 3% + 10g"*® (n) + 4%
f(n) = 6L 4 8n1002-5" 4 17

log’n
fln) = L 4 Sloan
fn) =7n+6¥n
fin) = St

f(n) =-2n
f(l’l) — 5nlog3n

EXERCISE 25.1.7 For each pair of classes of functions, how are they similar? How are
they different? If possible, give a function that is included in the first of these but not
included in the second. If possible, do the reverse, giving a function that is included in
the second but not in the first.

1
2.

O2%2") and ® (23"
O®2") and 3°™

EI¥X] More about Asymptotic Notation

Other Useful Notations:

Name Standard Notation My Notation Meaning

Theta f(n) =0(gh) f(n) € ©(gn)) fn) = c- g(n)
BigOh f(n) = O(g(n)) f(n) < O(g(n)) fn) <c-gn
Omega f(n) = Q(gn) fn) = Qgn) fn)>c-gn)
Little Oh f(n) = o(g(n)) f(n) <<o(gn)) f(n) << gn)
Little Omega f(n) = w(gn)) fn) >> w(gn)) f(n) >> gn)
Tilde fn) = (gn) fn) e B(gn) fln) ~log”" -g(n)

Same: 7 - n® is within a constant of n®. Hence, it is in ®(n®), O(n®), and Q(n®).
However, because it is not much smaller than 73, it is not in o(n), and because it
is not much bigger, it not in w(n®).

Smaller: 7 - n® is asymptotically much smaller than n*. Hence, it is in O(n*) and
in o(n*), but it is not in ®(n%), Q(n%), or w(n?).

Bigger: 7 - n® is asymptotically much bigger than n?. Hence, it is in Q(n?) and in
o(n?), but it is not in ®(n?), O(n?), or o(n?).

Log Factors: 7713 log” n = O (1) ignores the logarithmic factors.

Notation Considerations:

“, "

€”vs “=": I consider ®(n) to be a class of functions, so I ought to use the set
notation, f(n) € ©(g(n)), to denote membership.

Asymptotic Growth

On the other hand, ignoring constant multiplicative factors, f(n) has the
same asymptotic growth as g(n). Because of this, the notation 7n = ©(n) makes
sense. This notation is standard.

Even the statements 372 4+ 5n — 7 = n®W and 23" = 29" make better sense
when you think of the symbol ® to mean “some constant.” However, be sure to
remember that 4" - n? = 29" js also true.

“__»

vs “<”: 7n = O(n?) is also standard notation. This makes less sense to me.
Because it means that 77 is at most some constant times 72, a better notation
would be 7n < O(n?). The standard notation is even more awkward, because
O(n) = O(n?) should be true, but O(72) = O(n) should be false. What sense does
that make?

More Details: You can decide how much information about a function you want to
reveal. If f(n) = 51 + 3n, you could say

e f(n) € n°W, i.e., a polynomial

* f(n) € ®(n?), i.e., a quadratic

e f(n) € 5+ o0(1))n? = 5n% + o(n?), i.e., 5n? plus some low-order terms.

* f(n) € 51 + O(n), i.e., 5% plus at most some linear terms.

The Formal Definitions of Theta and BigOh:

fn) e ©(gn)) iff 3Jei, >0 3Ing V> no, ¢1-8n) < f(n) <c,-gn)

f(n) € O(g(n)) iff Ic>0 dng Vn>ng, 0< f(n) <c- gln)

f(n) € Q(gn)) iff c>0 dng Vn > ny, c- gn) < f(n)

f(n) e n®M iff 3¢, >0 3Any Yn>ny, n° < f(n) <n®

f(n) € 26 iff 3¢, >0 3Iny Yn> ng, 297 < f(n) < 20"

f(n) ¢ ©(g(n)) iff Ve, ¢ >0 Vng 3n > ng, [c - gn) > f(n) or f(n) > ¢, - gn)]

Bounded Between: The statement f(n) € ©(g(n)) means that the function f(n) is
bounded between ¢, - g(n) and c; - g(n). See Figure 25.1.

Requirements on ¢; and ¢;: The only requirements on the constants are that ¢;
be sufficiently small (e.g., 0.001) but positive and ¢, be sufficiently large (e.g.,
1,000) to work, and that they be fixed (that is, do not depend on n). We allow un-
reasonably extreme values like ¢, = 10'%°, to make the definition mathematically
clean and not geared to a specific application.

Sufficiently Large n: Given fixed c¢; and ¢, the statement ¢, g(n) < f(n) < c,g(n)
should be true for all sufficiently large values of n, (i.e., Vi > ny).

Definition of Sufficiently Large ny: Again to make the mathematics clean and
not geared to a specific application, we will simply require that there exist some
definition of sufficiently large n, that works. Exercise 25.0.2 gives an example in
which ny needs to be unreasonably large.

385

386

Appendix

c8 (n)
f(n)
cyg(n)

VASaSa=e
L\

f
Figure 25.1: f(n) € ©(1) and f(n) € ©(g(n)).

Proving f(n) € ©(g(n)): Use the prover—adversary game.
* You as the prover provide cj, ¢,, and .
e Some adversary gives you an n that is at least your ny.
* You then prove that ¢;g(n) < f(n) < c,g(n).

Example: For example, 2n? 4 100n = @(n?). Let ¢; = 2, ¢; =3, and ny = 100.
Then, for all n > 100, we have c¢;g(n) = 2n? <2n? 4+ 100n = f(n) and f(n) =
2n? 4+ 100n < 2 + n-n=3n? = c;g(n). The values of ¢, ¢;, and ny are not
unique. For example, ny = 1, ¢, = 102, and ny = 1 also work, because foralln > 1
we have f(n) = 2n? 4+ 100n < 2n? 4+ 100n? = 102n? = c,g(n).

The Formal Definitions of Little Oh and Little Omega:

Class lim,,, o, % = Apractically equivalent definition

f(n) = ©(g(n)) Some constant f(n) = O(g(n)) and f(n) = Q(gn))

f(n) =o0(gn)) Zero f(n) = O(g(n)), but f(n) # Q(gn))
f(n) =w(gn)) oo f(n) # O(g(n)), but f(n) = Q(gh))
Examples:

e 212 +100n = ©(n?) and lim,,. o, 221001 _ 5
* 2n+ 100 = o(n?) and lim,,_, » 2”;& -0
¢ 2% +100n = w(n?) and lim,,_ o, 2751000 — oo
EXERCISE 25.2.1 As in Exercise 25.1.7, compare the classes (5 + o(1))n? and 5n* +
O(n).

EXERCISE 25.2.2 (See solution in Part Five.) Formally prove or disprove the following:

1. 14n% 4 5,000n" + 23n%logn € O(n%)
2. 2n?—100n € ©(n?)
3. 14n® —100m% € O(n")

Asymptotic Growth

4. 14n® +100n° € ©(n°)
5. 2mtl e O@2M)
6. 22" e O(2M)

EXERCISE 25.2.3 Prove that if fi(n) € ©(g1(n)) and f,(n) € ©(g(n)), then fi(n) +
f(n) € max(©(g1(n)), ©(g(n))).

EXERCISE 25.2.4 Prove that if fi(n), f2(n) € n®Y, then fi(n) - (n) e n°W,

EXERCISE 25.2.5 Let f(n) be a function. As you know, ®(f(n)) drops low-order terms
and the leading coefficient. Explain what each of the following does: 2°1°8: /") qnd
log, (©(2/")). For each, explain to what extent the function is approximated.

EXERCISE 25.2.6 Let x be a real value. As you know, | x| rounds it down to the next
integer. Explain what each of the following does: 2 - | 5 |, % 12 x], and 2108 %]

EXERCISE 25.2.7 Suppose that y = ©(log x). Which of the following are true: x =
©(2Y) and x = 2°0 2 Why?

EXERCISE 25.2.8 (See solution in Part Five.) It is impossible to algebraically solve the

equation x = 7y3(log, y)!® for y.

1. Approximate 7y (log, y)'® and then solve for y. This approximates the value of y.

2. Get a better approximation as follows. Plug in your above approximation for y to
express (log, y)'® in terms of x. Plug this into x = 7y3(log, y)'®. Now solve for y
again. (You could repeat this step for better and better approximations.)

3. Observe how a similar technique was used in Exercises 25.0.1 and 25.0.2 to ap-
proximate a solution for (log,, n)+%%%0 = p

387

388

/6 Adding-Made-Easy Approximations

algorithm Eg(n)
loopi=1..n
loop j=1..i
loopk=1.j The inner loop requires time Y1 _, 1 = ;.
put “Hi” The next requires 23:1 Y 1= Zi-:l j=00.
end loop The total is Y0, 3, Y, 1= Y0, ©6%) = ().
end loop
end loop

end algorithm

Sums arise often in the study of computer algorithms.
For example, if the ith iteration of a loop takes time
f(@) and it loops n times, then the total time is f(1) +
f@) + f(3) +---+ f(m). This we denote as Y i, f(}). It
can be approximated by the integral fx":I f(x) 8x, be-
cause the first is the area under the stairs of height f(i)
and the second under the curve f(x). (In fact, both >
(from the Greek letter sigma) and f (from the old long
S) are S for sum.) Note that, even though the individual
terms are indexed by i (or x), the total is a function of
n. The goal now is to approximate Y ;" ; f(i) for various
functions f(i).

f(x),

—11f(n)

Beyond learning the classic techniques for computing Yi', 2, > i, and
> %, we do not study how to evaluate sums exactly, but only how to approximate
them to within a constant factor. We develop easy rules that most computer scien-
tists use but for some reason are not usually taught, partly because they are not al-
ways true. We have formally proven when they are true and when not. We call them

collectively the adding-made-easy technique.

Adding-Made-Easy Approximations

EIXN The Technique

The following table outlines the few easy rules with which you will be able to compute
@(Zle f@) for functions with the basic form f(n) = ©(®*" - nd . log® n). (We consider
more general functions at the end of this section.)

389

b* | d e Type of Sum > b, f() | Examples
> 1|Any |Any || Geometric Increase | O(f(n)) Yre2? ~1.2%
(dominated by S, b D)
last t L
ast term) Y2 =erY
=1/[> —1 | Any || Arithmetic-like Omn-fm) | Yr, i =0On-n?) = 0m*)
(halfofterms Z(l_l l'2 — @(n . n2) — @(n3)
approximately S _Om.n) = e
equal)
YLl =em D=em
Z;;l 10% =0M0n- ﬁ) = 0n*M)
=—1|=0 || Harmonic O(nn) Yt =log,(m) + ©(1)
< —1 | Any || Bounded tail e) Y mor =00)
(dominated by n1 _
first term) Y@ =0
<1|Any |Any Y3 =0
Yiob' =em

Four Different Classes of Solutions: All of the sums that we will consider have
one of four different classes of solutions. The intuition for each is quite straightfor-
ward.

Geometrically Increasing: If the terms grow very quickly, the total is dominated
by the last and biggest term f(n). Hence, one can approximate the sum by only
considering the last term: Z;’:I f@) = 6(f(n).

Examples: Consider the classic sum in which each of the n terms is twice
the previous, 1 +2 +4 + 8 4+ 16 + - - - 4+ 2", Either by examining areas within
Figure 26.1.a or 26.1.b or using simple induction, one can prove that the total
is always one less than twice the biggest term: Y " (2/ =2 x 2" — 1 = ©(2").
More generally, >, b’ ~ bfhl - b", which can be approximated by ©(f(n)) =
®(b™). (Similarly, /", b* §x = 1;b".) The same is true for even fastergrowing
functions like)", 2% ~ 1 x 22",

Basic-Form Exponentials: The same technique, > ;. , f(i) = ©(f(n)), works
for all basic-form exponentials, i.e., for f(n) = ©(®H*" - ne . log® n) with b* >
1, we have that Y"1 | f(i) = @(b*" - n? - 1og’® n).

3920

Appendix

o4
1/4
16 1 12 172
64 32 32 n+1 18 1/16|
N 4 1/44
El'_l' Lk 1/4
16 1H1/2+1/4+1/8+1/16+1/32+1/64 1/8
142+4+8+16+32+64 = 264 -1 84\ =2-1/64 16,5,
1 n=10 1/64

(2) (®) (© (d) (e)

Figure 26.1: Examples of geometrically increasing, arithmetic-like, and bounded-tail function.

Arithmetic-like: If half of the terms are roughly the same size, then the total is
roughly the number of terms times the last term, namely Y "I, f(i) = O(n - f(n)).

Examples:

Constant: Clearly the sum of n ones is 7, i.e., Z?:l 1=n.Thisis ®(n-

f(m).

Linear: The classic example is the sum in which each of the n terms
is only one bigger than the previous, Y I i=14+2+3+4+5+---+
n = "2 This can be approximated using ©(n - f(n)) = ©(n?). See Fig-
ure 26.1.

Polynomials: Both Y ! ?=1n*+1n*+ln and more gen-
erally Y7 ,i?=_4n?'+0Mm?) can be approximated with
On- f(n) = O(n - n?) = (). (Similarly, [x? sx = F;nt!)

Above Harmonic: Y ;| -5 ~ 1,000 n®%! can be approximated with
@(n . f(n)) — @(I’l . n70.999) — @(n0.00I)‘

Basic-Form Polynomials: The same technique, > [, f() = ©(n- f(n)),
works for all basic-form polynomials, constants, and slowly decreasing
functions, i.e., for f(n) = ©(n? -log’n) with d > 1 we have that }_I' | f(i) =
O(n! . log’ n).

Bounded Tail: If the terms shrink quickly, the total is dominated by the first and
biggest term f(1), which is assumed here to be ©(1), i.e., Y i, f(i) = O(1).

Examples: The classic sum here is when each term is half of the previ-
ous,1+ 3+ 1+ %+ L +... 4 . SeeFigure 26.1.d and 26.1.e. The total ap-
proaches but never reaches 2, so that Z?:O(%)i =2 (%)" = ©(1). Similarly,
S e 21,000 = 0(1) and Y1, & ~ I~ 1.5497 = ©(1).

Basic-Form with Bounded Tail: The same technique, Z?:l f@) =06,
works for all basic-form polynomially or exponentially decreasing func-
tions, i.e., for f(n) = @(b‘m~nd-loge n) with b4 =1 and d <1 or with
b* < 1.

Adding-Made-Easy Approximations

The Harmonic Sum: The sum }_}, is referred to as the harmonic sumbecause
of its connection to music. It arises surprisingly often and it has an unexpected

Tl L

391

fi)= 1 fi) = 14" (i) = 1/i fiy=1/;
Si-n S = @mdn) = O0™) Sli=lhn+O() T3 = e

On the Boundary: The boundary between those sums for which }"" | f(i) =
O(n- f(n)) and those for which }";_, f(i) = ©(1) occurs when these approx-
imations meet, i e., when @(n- f(n)) = ©(1). This occurs at the harmonic
function f(n) = 1. Given that both approximations say the total is) "
O(),itis reasonable to think that this is the answer, but it is not.

lll_

The Total It turns out that the total is within 1 of the natural logarithm,
Y7, 1 =log,n+ Q). Similarly, /"] 1 sx = log, n+ ©(1).) See Figure 26.2.

More Examples:

Geometric Increasing:
« Y 8%+ = 02w
° Z 3llogz+51+ll()0 @(3nlogn)
o Y 28 +i2logi = ©@2")
. Z?:l 22/—i* _ @(22”—112)

Arithmetic (Increasing):

o YL N+ TP+ =0m)

o Y7 i*3og’ i+ Blog’ i = ©(n*3log® n)
Arithmetic (Decreasing):

o>, %gi = O (i)

o >, lf(?el = 0n"*log’ n)

Bounded Tail:
1
° Z, 1 ll%%_él = 6(1)
5 =0

* Ty =0

Stranger Examples:

* A useful factis > 1, f) =Y1", f() — ;’:11 f(@). Hence, Zl”:m% = 0O(ogn) —
O(logm) = O(log %).

Appendix

f(n)
n
(1.0001)

Geometric: 110,000
f(n) is an exponential,

Zf(n) = (f(n))®

392
Arithmetic:

f(n) is a polynomial or slowly decreasing,
2 f(n) = O (nf(n))

Harmonic:
_.n! f(n)=1/m,
¥ f(n) =O©(logn)

109999

Bounded tall n—1.000T

f(n) is quickly decreasing,
Y fin)=0()

Figure 26.2: Boundaries between geometric, arithmetic, harmonic, and bounded tail.

¢ If the sum is arithmetic, then the sum is the number of terms times the largest
term. This gives YRR =@ - (m+ n)?).

* To solve ZS" " i3logi, let N = 5n? 4+ n denote the number of terms. Then Z, 1
i’logi = O(N- f(N)) = ©(N*log N). Substituting back in for N gives 25" Hn
logi = O((5n% + n) log(5n% + n)) = B(ndlogn).

* Between terms, i changes, but n does not. Hence, n can be treated like a constant.
For example, Y ' 1 i-n-m=nm-Y | i=nm-0(n?) = 0nm).

e In Z?:g 1.12, the terms are decreasing fast enough to be bounded by the first term.
Here, however, the first term is not ®(1), but is

°(ar) = ()

* When in doubt, start by determining the first term, the last term, and the num-
ber of terms. In 318" 2108 1-i . 2 the first term is f(1) = 21671 . 12 = @(n), and
the last term is f(log n) = 2!°87~ log” (log n)? = ©(log” n). The terms decrease ge-
ometrically in i. The total is then @(f(1)) = ©(n).

> Z] o PjP =30 iz[Z] 1= Pem) =em) L, ¥l =
emhHen?) = en").

EXERCISE 26.1.1 Give the ® approximation of the following sums. Indicate which
rule you use, and show your work.

1. YL, 7% — 3008 + 16

2. T+

3. Zl =0 %

Adding-Made-Easy Approximations

Zn
i=0 ;09
372

Yo T — 300i2log” i
log®i
Yl

AN
Yo Z;'n:o i
i 23:1 J

10. Y, Y5 ijlogl)

© © N S G K

EI¥] some Proofs for the Adding-Made-Easy Technique

This section presents a few of the classic techniques for summing and sketches the
proof of the adding-made-easy technique.

Simple Geometric Sums:
Theorem: Whenb > 1, > ", b’ = ©(f(n)) andwhen b < 1, Y"1 | f(i) = ©(1).

Proof:
S=1+b+ b + - b"

b-S=b+ b+ b+ ... b
Subtracting those two equations gives

1-b)-S=1-bp"

1-p" p—1

$= 15 " po1
= O(max(f(0), f(m))

Ratio between Terms: To prove that a geometric sum is not more than a constant
times the biggest term, we must compare each term f(i) with this biggest term. One
way to do this is to first compare each consecutive pairs of terms f(i) and f(i + 1).

Theorem: If for all sufficiently large i, the ratio between terms is bounded away
from one, i.e., 3b > 1, Iny, Vi > ng, f(i+ 1)/f@) > b, then Zle f@) = 6(f(n).

Conversely, if 3b < 1, 3ny, Vi > ny, % < b, then Y !, f(i) = ©(1).

Examples:

Typical: With f(i) = 27/i, the ratio between consecutive terms is
favn 2 i, F 5 1
fo i1 2 i+1 1+;
which is at least 1.99 for sufficiently large i. Similarly for any f(n) = ©(b*" -
n“ . log® n) with b* > 1.

393

Appendix

394

%) = Ongfing) |
=0(1)

i-ng

b f(ng)

Ny

=_n
%, %) = Onyfing))

o fi) = O(1)
=0()

Figure 26.3: In both pictures, the total before n gets sufficiently large is some constant. On
the left, the total for large n is bounded by an growing exponential, and on the right by a
decreasing exponential.

Not Bounded Away: On the other hand, the arithmetic function f(i) = i has
a ratio between the terms of % =1+ % Though this is always bigger than
one, it is not bounded away from one by any constant b > 1.

Proof: If Vi > ng, f(i+ 1)/f(@i) > b > 1, then it follows either by unwinding or in-
duction that

1 1 1 2 1 3 1 n—i
f(ﬂs(E) f(i+1)§<5> f(i+2)5<5> f(i+3)s-~-§(5> fn)

See Figure 26.3. This gives that
n) Ny] n . n 1 n—i n 1]
; fi) = ; £ + :Z fi) <o) + :Z (5) fm) <00 + fn) - ; (5)

which we have already proved is ®(f(n)).

A Simple Arithmetic Sum: We prove as follows that Y/ ;i = ®(n - f(n)) = O(n?):

S§S=1 + 2 + 3 +--+n-2+n-1+ n
N n +n-14n-2+---4+ 3 + 2 + 1
2S=n+1+n+1+n+1+---+n+l+n+l+n+1
n-n+1)
S=in-m+1)

Arithmetic Sums: We will now justify the intuition that if half of the terms are
roughly the same size, then the total is roughly the number of terms times the last
term, namely ", f(i)) = O(n- f(n)).

Theorem: If for sufficiently large n, the function f(n) is nondecreasing, and

f(&) = O(fm), then Y, £G) = O(n - f(m).

Adding-Made-Easy Approximations

Examples:

Typical: The function f(n) = n“ ford > 0is non-
decreasing and f(}) = (g)d = 57 f(n). Similarly
for f(n) = ©(n?-log®n). We consider —1 < d <

0 later. 395

Without the Property: The function f(n) =2" £
does not have this property, because f(3) =
2n/2 = 2}/2 f(n)

Proof: Because f(i) is nondecreasing, half of the
terms are at least the middle term f(g), and all —
of the terms are at most the biggest term f (7). Hence, "

2. f(3) <>, fi) < n- f(n).Because f(3) = ©(f(n)), these bounds match, giv-
ing Z;’zl f@) =06m- f(n).

f(n/2)

The Harmonic Sum: The harmonic sum is a famous sum that arises surprisingly
often. The total Y | 1 is within 1 of log, n. However, we will not bound it quite so
closely.

Theorem: } | 1 = ©(logn).

Proof: One way of approximating the harmonic sum is to break it into log, n
blocks with 2% terms in the kth block, and then to prove that the total for each
block is between § and 1:

zly=; =224=; z45=3 2835=3
n —~ = ——
Zl LI R I L I P
1 2 3 4 5 6 7 8 15
i=1 ~——— ——
<11=1 <21 <4.1=1 <8-i=1

Close to Harmonic: We will now use a similar technique to prove the remaining two
cases of the adding-made-easy technique.

Theorem: Y 1/i% is ©(1) if d' > 1 and is O(n- f(n) if d’ < 1. (Similarly for
f(n) =00 - log°n) withd < —1or> —1.)

Proof: As we did with the harmonic sum, we break the sum Y}’ f(n) into blocks
where the kth block has the 2% terms Zgl[l f(@). Because the terms are decreas-
ing, the total for the block is at most F(k) = 2k . f(2k). The total overall is then at
most

log, n log, n log, n k N

2 1
> Flh) = g 26 feh =) 20d > Sk@—1 "

k=0 k=0 k=0

396

Appendix

If d’ > 1, then this sum is exponentially decreasing and converges to ©(1). If d’ <
1, then this sum is exponentially increasing and diverges to ®(F(N)) = e(2lsn .

fm) =0n- f(n).

Functions without the Basic Form: (Warning: This topic may be a little hard.)
Until now we have only considered functions with the basic form f(n) = ©(b*" - ne .
log® n). We would like to generalize the adding-made-easy technique as follows:

Geometric
Increasing Arithmetic Harmonic Bounded Tail
If flm) >29% fn) = n®®-1 fm) =0@) f(n) < n1-20

then Y!, f() = O(fm) I, fi) =Om- fm) Yr, f)=0dogn) Y, fi) =6

Example: Consider f(n) = n*+ i or fn) = no They are bounded between n®
and n® for constants d» > d; > 0 — 1, and hence for both we have f(n) € n®V-1,
Adding made easy then gives that Y, f(i) = ©(n- f(n)), so that " ¥+ =
On*) and Y1 it = ©(n').

Counterexample: The goal here is to predict the sum Y}, f(i) from the value
of the last term f(n). We are unable to do this if the terms oscillate like those
created with sines, cosines, floors, and ceilings. Exercise 26.2.4 proves that f(n) =
222" and f(n) = 21z costrlog, W+151n are counterexamples for the geometric case
and that f(n) = 221898 3¢ one for the arithmetic case.

A
n
2
20
n n
f(n) 2 £

n/2 n Vi =

(Not to scale) (Not to scale)

Simple Analytical Functions: We can prove that the adding-made-easy technique
works for all functions f(n) that can be expressed with n, real constants, plus, minus,
times, divide, exponentiation, and logarithms. Such functions are said to be simple
analytical.

Proof Sketch: I will only give a sketch of the proof here. For the geometric case,
we must prove that if f(n) is simple analytical and f(n) > 29 then 3b > 1,

Adding-Made-Easy Approximations

3ng, Yn>ny, f(n+1)/f(n) > b. From this, the ratio-between-terms theorem
above gives that) ' | f(i) = O(f(n)).

Because the function is growing exponentially, we know that generally
it grows at least as fast as fast as b" for some constant b > 1 and hence
ftn+1)/f(n) > b, or equivalently h(n) =log f(n+ 1) — log f(n) —logb > 0 for
an infinite number of values for n.

A deep theorem about simple analytical functions is that they cannot os-
cillate forever and hence can change sign at most a finite number of places. It
follows that there must be a last place n, at which the sign changes. We can con-
clude that Vn > ny, h(n) > 0 and hence f(n+ 1)/f(n) > b.

The geometrically decreasing case is the same except f(n + 1)/f(n) < b. The
arithmetic case is similar except that it proves that if f(n) is simple analytical and
f(n) = n®®~1 then f(3) = ©(f(n).

EXERCISE 26.2.1 (See solution in Part Five.) Zeno’s classic paradox is that Achilles is
traveling1 km/hr and has 1 km to travel. First he must cover half his distance, then half
of his remaining distance, then half of this remaining distance, He never arrives. By
Bryan Magee states, “People have found it terribly disconcerting. There must be a fault
in the logic, they have said. But no one has yet been fully successful in demonstrating
what it is.” Resolve this ancient paradox by adding up the time required for all steps.

EXERCISE 26.2.2 Prove that if 3b <1, 3ny, Vi=ny, fi+1/fG@) <b, then
Yin,) = O(f(n0) = ©D).

EXERCISE 26.2.3 A seeming paradox is how one could have a vessel that has finite
volume and infinite surface area. This (theoretical) vessel could be filled with a small
amount of paint but require an infinite amount of paint to paint. For h € [1, 00), its
cross section at h units from its top is a circle with radiusr = ﬁ for some constant c.
Integrate (or add up) its cross-sectional circumference to compute its surface area, and
integrate (or add up) its cross-sectional area to compute its volume. Give a value for c
such that its surface area is infinite and its volume is finite.

EXERCISE 26.2.4 (See solution in Part Five.)

1. For f(n) = 22"®", prove that f(n) > 2%

2. andthaty], f(i) # O(f(n).

3. Forf(n) = 22 prove that f(n) = n®M-1

4. andthaty ! | f(i) # O(n- f(n).

5. Plot f(n) = 2z costrlog, 1511 and prove that it is also a counterexample for the
geomelric case.

397

398

// Recurrence Relations

A wise man told the king to give him one grain of rice one for the first square of a
chessboard and for the each remaining square to give him twice the number for the
previous square. Thirty-two days later, the king realized that there is not enough rice
in all of world to reward him. The number of grains on the nth square is given by the
recurrence relation 7(1) = 1 and T(n) =2T(n — 1).

The algebraic equation x* = x + 2 specifies the value of an unknown real that
must be found. The differential equation 5’;% = f(x) specifies functions from reals
to reals that must be found. Similarly, a recurrence relations like T(n) =2 x T(n — 1)
specifies functions from integers to reals. One way to solve each of these is to guess a
solution and check to see if it works. Here T(n) = 2" works, i.e., 2" = 2 x 2", How-
ever, T(n) = c- 2" also works for each value of c. Making the further requirement that

T(1) = 1 narrows the solution set to only T(n) = § - 2" = 2"~

EZIAD The Technique

Timing of Recursive Programs: Recursive relations are used to determine the
running time of recursive programs. (See Chapter 8.) For example, if a routine, when
given an instance of size n, does f(n) work itself and then recurses a times on subin-
stances of size 7, then the running timeis T(n) = a - T (%) + f(n).

See Section 8.6 to learn more about the tree of stack frames. Each stack frame
consists of one execution of the routine on a single instance, ignoring subroutine
calls. The top-level stack frame is called by the user on the required input instance.
It recurses on a number of subinstances, creating the next level of stack frames.
These in turn recurse again until the instance is sufficiently small that the stack
frame returns without recursing. These final stack frames are referred to as base
cases.

Let T(n) denote the number of “Hi”s that the entire tree of stack frames, given the
following code, prints on an instance of size n. The top level stack frame prints “Hi”
f(n) times. It then recurses a times on subinstances of size . If T(n) is the number of

Recurrence Relations

“Hi”s for instances of size n, then it follows that T (%) is the number for instances of
size 7. Repeating this a times will take time a - T (). It follows that the total number
satisfies the recursive relation T(n) = a - T (}) + f(n). The goal of this section is to
determine which function T(n) satisfies this relation.

If instead the routine recurses a times on instances of size n — b, then the related
recurrence relation willbe T(n) =a - T (n — b) + f(n).

algorithm Eg(I,)

(pre-cond): I, is an instance of size n.
(post-cond): Prints T(n) “Hi’s.

begin
n=|Il
if(n < 1) then
put “Hi”
else
loopi =1..f(n)
put “Hi”
end loop
loopi=1..a
I» = an input of size }
Eg(I»)
end loop
end if

end algorithm

When the input has size zero or one, only one “Hi” is printed. In general, we
will assume that recursive programs spend ©(1) time for instances of size ©(1). We
express this as T(1) = 1, or more generally as T(©(1)) = 6(1).

Solving Recurrence Relations: Consider T(n) =a - T(%) + f(n), where f(n)=
On¢ - logd n)or f(n) =0.

399

i‘;—gz vsc | d Dominated by | T(n) Example (}ggzg = 2) Solution
< Any Top level O(f(n) T(n)=9-T(%)+n emh)
= > —1 || Alllevels O(f(n)logn) | T(n) =9- T (%) + n? ®n?logn)
g 3 g
loga B
< —1 || Base cases €] <n1°g”> T(n)=9-T(%)+ T 0(n?)
> Any tn)=9-T(%)

400

Appendix

Consider T(n) =a - T (n— b) + f(n), where f(n) = O(n° - logd n)or f(n) = 0.

a f(n) Dominatedby | T(n) Example Solution

>1 | Any Base cases Oab) Tn)=9-T(n—3)+n* | ©93)

=11|>1 All levels Omn-fn) | Tm)=Tn-3)+nt On®)
=0 Base cases () Tn)=Tm-3) O()

A Growing Number of Subinstances of Shrinking Size: Each instance havinga
subinstances means that the number of subinstances grows exponentially by a factor
of a. On the other hand, the sizes of the subinstances shrink exponentially by a factor
of b. The amount of work that the instance must do is the function f of this instance
size. Whether the growing or the shrinking dominates this process depends upon the
relationship between a, b, and f(n).

Dominated By: When total work T'(n) done in the tree of stack frames is dominated
by the work f(n) done by the top stack frame, we say that the work is dominated by the
top level of the recursion. The solution in this case will be T'(n) = @(f(n)). Conversely,
we say that it is dominated by the base cases when the total is dominated by the sum
of the work done by the base cases. Because each base case does only a constant
amount of work, the solution willbe T(n) = ©(# of base cases), which is © (n'°84/108b),
O(a?), or ©(1) in the above examples. Finally, if the amounts of work at the different
levels of recursion are sufficiently close to each other, then we say that the total work
is dominated by all the levels and the total is the number of levels times this amount
of work, namely T(n) = ®(ogn - f(n)) or ®(n- f(n)).

The Ratio }‘;gg See Chapter 24 for a discussion about logarithms. One trick that it
gives us is that when computing the ratio between two logarithms, the base used
does not matter, because changing the base will introduce the same constant both
on the top and the bottom, which will cancel. Hence, when computing such a ratio,
you can choose whichever base makes the calculation the easiest. For example, to
compute lﬁ)g 2, the obvious base to use is 2, because 1ﬁ)gg22186 = 3. This is useful in giving
that T(n) = 16 - T(%) + f(n) = ©(n!°81%/1088) = @ (n'/3). On the other hand, to com-

pute 11)°ggzg7, the obvious base to use is 3, because 1100&27 3, and hence we have T(n) =
9- T($) + f(n) = ©(n*/*). Another interesting fact given is thatlog 1 = 0, which gives

that T(n) = 1- T(g) + f(n), T(n) = ©(H°s1/1082) — ©(n°) = O(1).

EXERCISE 27.1.1 (See solution in Part Five.) Give solutions for the following examples:
1. T(n)=2T(3)+n

2. Tn)=2TE) +1
3. T(n) =4T(3) + O(57)

Recurrence Relations

N SR

T(n) = 32T(§) + O(logn)
T(n) = 27T(%) + ©(n® log" n)
T(n) = 8T(}) + O((2)")
T(n) = 4T(3) + O(&3)

EXERCISE 27.1.2 Give solutions for the following stranger examples:

BN~

T(n) =4T(%) + ©(n*loglogn)
T(n)=4T(3)+ 012")

T(n) =4T(3) + ©(loglogn)

T(n) =4T(5 — yn+logn—5)+ 01

ELZ] some Proofs

I now present a few of the classic techniques for computing recurrence relations. As
our example we will solve T(n) = GT(n/0) + f(n), for f(n) = n°.

Guess and Verify: To begin consider the example T(n) = 4T (3) + nand T(1) = 1.

Plugging In: If we can guess T(n) = 2n? — n, the first way to verify that this is the
solution is to simply plug it into the two equations and make sure that they are
satisfied:

Left Side Right Side
T(n) =2n%—n AT +n=4[2(3)° - (4)] -n=2n>-n
T()=2n?—n=1 1

Proof by Induction: Similarly, we can use induction to prove that this is the solu-
tion for all n (at least for n = 2).

Base Case: Because T(1) = 2(1)2 — 1 = 1, it is correct for n = 2°.

Induction Step: Let n = 2. Assume that it is correct for 2i~! = 5. Because
T(n)=4T(5)+n=4 [2 (2)? - (g)] + n=2n? — n, itis also true for n.

Calculate Coefficients: Suppose that instead we are only able to guess that the
formula has the form T(n) = an? + bn + ¢ for some constants a, b, and c:

Left Side Right Side

T(n) =an?+bn+c 4T(§)+n=4[a(§)2+b(§)+c]—n=an2+(2b+1)n+4c
Tl =a+b+c 1

401

Appendix

These left and right sides must be equal for all n. Both have a as the coefficient
of n?, which is good. To make the coefficient in front 7 be the same, we need that
b = 2b + 1, which gives b = —1. To make the constant coefficient be the same, we
need that ¢ = 4c, which gives ¢ = 0. To make T(1) = a(1)?> 4+ b(1) + ¢ = a(1)? —
(1) + 0 = 1, we need that a = 2. This gives us the solution T(n) = 2n? — n that

402 we had before.

Calculate Exponent: If we were to guess that a - T (}) is much bigger than f(n),
then T(n) =a-T(%)+ f(n) ~a- T(}). Further we guess that T(n) = n* for
some constant «. Plugging this into T(n) = a - T (}) gives n* = a - (g)a, or b* =

__ loga
— logh*

a. Taking the log gives « - logb = loga, and solving gives « In conclusion,

T(}’l) — @(nloga/logb) — @(nlog4/log2) — ®(n2)‘

Unwinding: A useful technique is to unwind a recursive relation for a few steps and
to look for a pattern:

= i 7(3) = s <[() <732

- (3) o () = g0 sar () [(G5) w7 (3)

n 2
p)*a
= f(n)+af(g) +a2f(b£2) +a’- T(%) =
~Sa () et rw=o (X ()
i=0 i=0

Filling the Table: My recommended way to evaluate recursive relations is to fill out
a table like that in Figure 27.1.

(a) Number of Stack Frames at the ith Level: Level 0 contains the one initial
stack frame at the top of the tree of stack frame. It recursively calls a times. Hence,
level 1 has a stack frames. Each of these recursively calls a times, giving a? stack
frames at level 2. Each successive level, the number of stack frames goes up by a
factor of a, giving a’ at level i.

(b) Size of Instance at the ith Level: The top stack frame at level 0 is given an in-
stance of size n. It recurses on a subinstances of size g. Stack frames at level 1,
given instances of size %, recurse on subinstance of size n/b?. Each successive
level decreases the instance size by a factor of b, giving size n/b' at level i.

(c) Time within One Stack Frame: On an instance of size n, a single stack frame
requires f(n) time. Hence, a stack frame at the ith level, with an instance of size
n/b, requires f(n/b’) time.

(d) Number of Levels: The recursive program stops recursing when the instance
becomes sufficiently small, say of size 0 or 1. Let h denote the level at which this

403

"ajqer ayr ul buy Aq (u)e + (£).1 - » = (u)[bunos :1°£z 2inbi4

(u)o=
(w))e =L

(u8oy,u)@ =
(uBor(w)f)® = (W)L

(;u)o= A@:v e=

¥30[

A&wo_\umo_:v O =U)r

(Wre @

[PAs1 doy

:9SBIIIIP J1I19W03)

S[oA9] [T

WIS dNAWIITY

$9SeJ aseq

:9SBAIOUI JLIIAWI0DL)

3Aq pareurwio(q (3)

%mv Ewo_”“unm ’ NQ =
NQWV Y ﬁ:moﬁwvﬂww =

(yora oum) - (joad] 18 #)°7 <

0=1 —

L Ewé@w U=

€ 0=1"7 —
NANV "16 ﬁ:mosmvw -

(yoeo own) - (joad] e #)°71 K

0=177 .
2 wsope< U

() s =

(yoeo awm) - (joad) e #)°7 <

wmns e se (U)] (J)

U=y = U = gl = Pl = gt =
¢s01 630] 801
10 Z = 4T 5016 = 46 ol =,F SOUIRIJ OIS ISR aseq JO 'ON (9)
ugop ugop u oy
3 _ v8o _ g — 8o _ g — 280 _
(u OE@ — ugop =Y (u OC@ — u3o[=Y (u OO@ ~ u38og =Y

=% =% =4 519491 JO ‘N[(P)

NAM_IJ =%/ NA%V =(£)/ (£)=(%£)J ourer yorIS OUO UPIM W], (9)
14 £ z [9AS] Y7 1® 97Is douelsy] (q)

K 6 ¥ [9A9])7 9Y) 1B SAWIRI] JO 'ON (B)

M+ Fu)Le=)L

M+ (/)6 =)L

u+(gu) Ly = W)L

ordurexg

404

Appendix

occurs. We have seen that the instances at level / have size n/b". Setting n/b" = 1

: : _ logn
and solving for h gives h = {°7.

(e) Number of Base Case Stack Frames: The number of stack frames at level i
is a’. Hence, the number of base case stack frames is a” = a'°8"/1°¢%, Though
this looks ugly, Chapter 24 gives q'°8"/10gb — (2loga)logn/logh _ ploga-logn/logh _
(2lognyloga/logh — ploga/logh Giyen that iggz is simply some constant, 7'°8%/1°8? is a
simple polynomial in 7.

(f) T(n) as a Sum: There are a’ stack frames at level i, and each requires f(rn/b’)
time, for a total of a’ - f(n/b’) at the level. We obtain the total time T(n) for the
recursion by summing the times at all of these levels. This gives

T(n) = [ga" : f(g)} +a" T() = © (ia" : f(Z)) :
i=0 i=0

Plugging in f(n) = n° gives

o - 6 (éai . (Z>) _e <n : i@ (Z))

=l

(g) Dominated By: The key things to remember about this sum are that it has
O(logn) terms, the top term being a® f(n/b°) = f(n) and the base case term being
af(n/b") = a'°8"/1°8b f(n) = plosa/logb @ (plosa/loghy According to the adding-
made-easy approximations given in Chapter 26, if either the top term or the base
case term is sufficiently bigger then the other, then the total is dominated by this
term. On the other hand, if they are roughly the same, then the total is approxi-
mately the number of terms times a typical term.

(h) Evaluating the Sum: If {ggi
e(n° - Zl-h:o(%)i) decrease exponentially, giving T(n) = ©(top term) = O(f(n)).

Similarly, if }zgz > ¢, then the terms increase exponentially, giving T(n) =
©(base case term) = @ (nloga/logb)y [f }Zgz =c¢, then £ =1, giving T(n)=

O - Yy =0m - Yr,1) =0n - h =06(f(n)logn).

< ¢, then a/b° <1, giving that the terms in

EXERCISE 27.2.1 (See solution in Part Five.) Solve the famous Fibonacci recurrence
relation Fib(0) = 0, Fib(1) = 1, and Fib(n) = Fib(n — 1) + Fib(n — 2) by plugging in
Fib(n) = o™ and solving for «.

EXERCISE 27.2.2 (See solution in Part Five.) Solve the following by unwinding them:

1. Tm)=Tln—-1)+n
2. Tm)=2-Tn-1+1

405

"ajqe1r ayr Ul buny Aq (u)® + (q —u) I - v = (u)[Buinjos :z* £z 2inbi4

:‘Tq:v@ =

(Do =W (u-%)e= @l (qu?) ©® = (W) (WDe W

sosed aseq S[oAd] [[® S9sed aseq
:9SBAI09P JLIIOW0L) “WINS ONAWYILIY :9SBAIOUI JL1)AUI0AE) Aq pareurwo((8)

Mo =
1

me-1+ (01, 52X) = Aq-1—w 10X = 2q1—w - pYI =
(yoea oum) - (paa] e)05/ X (yoea owm) - (;ad1 18) K (yoes awm) - (Pad]1e #) K ums e se (u) [(J)
I WD =D SIUIRI}OB)S 3SEI 9sBq JO ON (9)

*JSOUEBI[D 9} IBUI S} SI[BUW 0I3Z JZIS JO ISBD 3seq & Suire

u=Y4‘0=q-Yy—u S[9A3] JO "ON (P)
(D@ >Hom sey yorygm
‘9sed aseq ay) 10J 1deoxa
0=@q-1-uJf (q1-w=@q-1-u/ OUIBI) YIBIS DUO UIYIIM ST, (9)
q-1—u [9AS] Y11 1B 971s dourlsy] (q)
I 0 [9A9)7 9] Tk Saurel) Jo "ON (B)

0+@q—-uwr=mg M+ @q—-u) L = u)] M+ (@q—-u)p = W)L a[durexy

406

Appendix

EXERCISE 27.2.3 Does setting the size of the base case to 5 have any practical effect?
How about setting the size to zero, i.e., n/ b"=0?

Why does this happen? If instead instances at theith level had size n — itshape AB,
would an instance size of 0, 1, or 2 be better? How many levels h are there?

EXERCISE 27.2.4 (See solution in Part Five.) Section 27.2 solves T(n) = aT(n/b) +
f(n) for f(n) = n°. If f(n) = n° logd n and % = ¢, then the math is harder. Compute
the sum ford > —1,d = —1, d < —1. (Hint: Reverse the order of the terms.)

EXERCISE 27.2.5 Use the method in Figure 27.2 to compute each of the following
recursive relations.

1. Tm)y=nTn-1)+1
2. Tn)=2T(/n)+n
3. Tm)=Tw-n)+Tw-n)+6Mn) whereu+v = 1.

EXERCISE 27.2.6 Running time:

algorithm Careful(n)

(pre-cond): n is an integer.
(post-cond): Q(n) “Hi’s are printed for some odd function Q

begin
ifln<1)
PrintHi(1)
else
loopi=1...n
PrintHi(i)
end loop
loopi=1...8
Careful(3)
end loop
end if
end algorithm

algorithm PrintHi(n)

(pre-cond): n is an integer.
(post-cond): n? “Hi’s are printed

begin
loopi=1...n%
Print(“Hi”)
end loop

end algorithm

Recurrence Relations

1. Give and solve the recurrence relation for the number of “Hi”s, Q(n). Show your
work. Give a sentence or two giving the intuition.

2. What is the running time (time complexity) of this algorithm as a function of the
size of the input?

407

408

/8 A Formal Proof of Correctness

Though I mean is not to be too formal, it is useful to at least understand the required
steps in a formal proof of correctness.

Specifications: Before we prove that an algorithm is correct, we need to know pre-
cisely what it is supposed to do.

Preconditions: Assertions that are promised be true about the input instance.
Postconditions: Assertions that must be true about the output.

Correctness: Consider some instance. If this instance meets the preconditions, then
after the code has been run, the output must meet the postconditions:

(pre-cond) & codeglg = (post-cond)

The correctness of an algorithm is only with respect to the stated specifications. It
does not guarantee that it will work in situations that are not taken into account by
this specification.

Breaking the Computation Path into Fragments: The method to prove that an
algorithm is correct is as follows. Assertions are inserted into the code to act as check-
points. Each assertion is a statement about the current state of the computation’s
data structures that is either true or false. If it is false, then something has gone wrong
in the logic of the algorithm. These assertions break the path of the computation into
fragments. For each such fragment, we prove that if the assertion at the beginning
of the fragment is true and the fragment gets executed, then the assertion at the end
of the fragment will be true. Combining all these fragments back together gives that
if the first assertion is true and the entire computation is executed, then the last as-
sertion will be true.

A Huge Number of Paths: There are likely an exponential number or even an in-
finite number of different paths that the computation might take, depending on the
input instance and the tests that occur along the way. In contrast, there are not many

A Formal Proof of Correctness

different computation path fragments. Hence, it is much easier to prove the correct-
ness of each fragment than of each path.

The following table outlines the computational path fragments that need to be
tested for different code structures.

Single Line of Code:

(pre-assignment-cond): The variables x and y have meaningful values.

Z=XxX+Yy

(post-assignment-cond): The variable z takes on the sum of the value of x and

the value of y. The previous value of z is lost.

Blocks of Code:

(assertiony)
code,
(assertion,)
code,
(assertion,)

(
(

= [(assertiony) & codeg, = (assertion,)]

assertiong) & code, = (assertion,)]
assertion,) & code, = (assertion,)]

If Statements:

(pre-if-cond)
if((test)) then
codeyrye

else

codeggjse

end if
(post-if-cond)

[{pre-if-cond) & (test) & codesye = (post-if-cond)]
[{pre-if-cond) & —(test) & codegye = (post-if-cond)]
= [(pre-if-cond) & code = (post-if-cond)]

Loops:

(pre-loop-cond)

loop

(loop-invar)

exit when (exit-cond)
codejoep

end loop
(post-loop-cond)

[(pre-loop-cond) = (loop-invar)]
[(loop-invar') & —(exit-cond) & code;y,, = (loop-invar”)]
[(loop-invar) & (exit-cond) = (post-loop-cond)]
Termination

= [(pre-loop-cond) & code = (post-loop-cond)]

Function Call:

(pre-call-cond)
output = Func(input)
(post-call-cond)

[{pre-call-cond) = (pre-cond)puncl
[(post-cond) pync = (post-call-cond)]
= [(pre-call-cond) & code = (post-call-cond)]

409

PART FIVE

Exercise Solutions

Chapter 1. Iterative Algorithms: Measures of Progress and Loop Invariants

1.4.1 Selection Sort: If the input for selection sort is presented as an array of values, then
sorting can happen in place. The first k entries of the array store the sorted sublist,
while the remaining entries store the set of values that are on the side. Finding the
smallest value from A[k + 1]...A[n] simply involves scanning the list for it. Once it
is found, moving it to the end of the sorted list involves only swapping it with the
value at A[k + 1]. The fact that the value A[k + 1] is moved to an arbitrary place in
the right-hand side of the array is not a problem, because these values are considered
to be an unsorted set anyway. The running time is computed as follows. We must se-
lect n times. Selecting from a sublist of size i takes ©(i) time. Hence, the total time is

On+ (n—1) +---+2+1) = ©(n?) (see Chapter 26).

1.4.2 Insertion Sort: There are two steps involved in inserting an element into a sorted list.
The most obvious step is to locate where it belongs. The second step to shift all the el-
ements that are bigger than the new element one to the right to make room for it. You
can find the location for the new element quickly using a binary search. However, it is

easier to search and shift the larger elements simultaneously.

Linked List: Having the sorted elements stored in a linked list allows one to insert the
new element in constant time. However, it then takes ®(k) time to find where the new

element goes.

Running Time: We must insert n times. Inserting into a sublist of size i takes @ (7) time.

Hence, the total timeis ©(1 +2 + 3+ --- + n) = O1?).

Heap Sort: We will see in Section 10.4 that each of these steps can be done in ©(log n)

time when the elements are stored in a data structure called a heap.

1.4.3 The algorithm repeatedly passes through the array, swapping adjacent pairs if needed.
After k such passes, the largest k elements have bubbled up to where they belong.
Hence, it requires at most n passes until all elements are in place. Each pass requires

n comparisons.

411

412

Exercise Solutions

1.5.1 There are a number of problems.

1.

Aloop invariant shall to be a picture of the current state and not say what the itera-
tion does. The loop invariant should simply be s = 23:1 j.

The loop invariant is not established correctly. With i = 1, the loop invariant requires
s= Z}:l Jj = 1,nots = 0. The choice s = 0 and i = 0 would be better.

. The loop invariant is not maintained correctly. Let s’ and i’ be the values of s and i

when at the top of the loop. Let s” and i” be the values after going around again. The

loop invariant gives that s’ = Z?:l j. The code gives that s” = s’ + i and i" =7 + 1.

Together these give that s” = (Z§:1 j) +1i'. This is not > %!

'Z1 J as required, because

i’ is being added in twice. i + 1 should be added in order to maintain the loop

invariant.

The exit condition is not very well stated. An equivalent and easier-to-see exit condi-

tion would be “exit when i > I.”

The exit condition, i > I, and the loop invariant, s = 23:1 J, together do not give the
I+1

postcondition. Instead, they give thats =)

21 J is returned.

. The algorithm as a whole happens to work. A quick fix is to change the loop invariant

tos= Zj'_:ll J.

Chapter 2. Examples Using More-of-the-Input Loop Invariant

2.2.1

Divide: Sorry, not provided.

Calculator:
algorithm Calcularor()

(pre-cond): A stream of commands are entered.
(post-cond): The results are displayed on a screen.

begin

allocate accum,current € {0..108 — 1}
allocate screen € {showA, showC}
accum = current =0
screen = showC
loop
(loop-invariant): The bounded memory of the machine remembers the
current value of the accumulator and the current value being entered. It also
has a Boolean variable that indicates whether the screen should display the
current or the accumulator value.
get(c)
if(c € {0..9}) then
current = 10 x current + ¢ mod 10%
screen = showC
else if(c =" +') then
accum = accum + current mod 108
current=0
screen = showA
else if(¢ =’ clf) then
accum =0

Exercise Solutions

2.3.1

current=0
screen = showC
end if
if(screen = showC) then
display(current)
else
display(accum)
end if
end loop
end algorithm

Longest Block of Ones:

algorithm LongestBlockOfOnes(A, n)

(pre-cond): The inputis A, a0, 1 array of length n.
(post-cond): The output is the location A[k;..k»] of the longest block of ones and its
length leng.
begin
i =0; pmax = 1; Gmax = 0; lengax = 0; Peurrent = 1 lengeyrrens = 0 € (0.1}
loop
(loop-invariant): Alpmax, Gmax] is alongest block of ones in A[1..i] and
leng,,ax = Gmax — Pmax+1is its length.
AlPpcurrent il is the longest block of ones in A[1..i] ending in A[i] and
leng ., rrent = i — Peurrent+1 is its length.
exitwheni=n
if(Ali+1] = 1) then
leng yrrent = lengeyrrens + 1
else
Pcurrent = i+2
lengthyprens = 0
end if
if(leng,qx < lengcyrren:) then
Pmax = Pcurrent
Gmax =1 +1
lengthyy gy = lengthey rent
end if
i=i+1
end loop
return Al pmax, Gmax)
end algorithm

(2): The loop invariant is:

a. The beginning [0, a] of the cake has been partitioned into | Q| disjoint pieces.

b. Each player p; € Qhas been allocated a piece [a;, b;] worth at least 1 to him.

C. The remaining [a, 1] interval of the cake is worth at least (n — | Q|)/n to each of the
remaining players, i.e., to thosein P — Q.

413

414

Exercise Solutions

3):
algorithm Partition(P)

(pre-cond): As above
(post-cond): As above

begin
a=0and Q=¢
loop
(loop-invariant): As above.
exitwhen |Q| = n
loopie P—Q
¢ = Cut(p;, a, 1)
end loop
imin =the i € P — Qthat minimizes ;
[aimin’ bimin] = la, C"min]
a= Cimin
Q= Q+imin
end loop
return all parts [a;, b;] for each i € P

end algorithm

(1), (4)-(7): Sorry, the remaining solutions are not provided.

Chapter 3. Abstract Data Types

3.1.5

3.2.4

Instead of bounding the height given the number of nodes, it is easier to compute the
reverse relation. Let N(h) be the minimal number of nodes in an AVL tree of height h.
In order for a tree to be of height £, it must have at least one subtree of height h — 1. In
order for it to be an AVL tree, the other subtree can differ by at most one, so it must have
height at least i — 2. It follows that the number of nodes in this tree is at least N(h) =
N(h—1) + N(h—2) + 1. Except for the +1 of the root, this is that same as the famous
Fibonacci numbers defined by Fib(n) = Fib(n—1) + Fib(n—2). Exercise 27.2.1 goes on
to prove that Fib(n) = ©(a"), where o = ”Tﬁ If N(h) = ©(«¢"), then H(n) = ©(logn).

The tests will be executed in the order that they are listed. If next = nilis tested first and
passes, then because there is an OR between the conditions, there is no need to test the
second. However, if next.info > keyis the first test and nextis nil, then using next.info to
retrieve the information in the node pointed to by next will cause a run-time error.

Chapter 4. Narrowing the Search Space: Binary Search

4.4.1

Doing binary search in O(log(n x m)) time is impossible. See the lower bound in ques-
tion (Exercise 7.0.7). If you take O(nlogm) time doing binary search in each row, then
you are taking too much time. It can be done by examining n+ m — 1 entries. Ob-
serve that the values in the matrix increase from A[1, 1] to A[n, m]. Hence, the bound-
ary between values that are less than or equal to x and those that are greater follows
some monotonic path from A[l, m] to A[n, 1]. The algorithm traces this path starting
at A[1, m]. When it is at the point A[i, j], the loop invariant is that we have stored the

Exercise Solutions

best answer from those outside the subrectangle Ali..n, 1..j]. Initially, this is true for
[i, j1 = [1, m], because none of the matrix is excluded. Now suppose it is true for an arbi-
trary [7, j]. The algorithm then compares A[i, j] with x. Ifitis better than our current best
answer, then our current best is replaced. If A[i, j] < x, then because the values in the
row A[i, 1..j] are all smaller than or equal to A[i, j], these are worse answers, and hence
we can conclude that we now have the best answer from those outside the subrectan-
gle Ali + 1..n, 1..j]. We maintain the loop invariant by increasing i by one. On the other
hand, if A[i, j] > x, then it is too big and so are all the elements in the column A[i..n, j]
which are even bigger. We can conclude that we have the best answer from those outside
of the subrectangle Ali..n, 1..j — 1]. We maintain the loop invariant by decreasing j by
one. The exit conditionis |i..n| = 0or|1..j| = 0 (i.e.,i > nor j < 1. When this occurs, the
subrectangle A[i..n, 1..j] is empty. Hence, our best answer, which by the loop invariant is
the best from those outside this subrectangle, must be the best overall. The measure of
progress, |i.n|+|1..jl— 1= m—i+1) + (j) — 1, is initially n 4+ m — 1 and decrease by
one each iteration. After n + m — 1 iterations, either the algorithm has already halted or
the measure has reached zero, at which point the exit condition is definitely met.

Chapter 6. Euclid’s GCD Algorithm

6.0.2

(2): The loop invariant ¢ x r + s = x x y is established trivially by setting £ = x, r = y,
and s = 0. Let ¢, 1/, s’ be the values when at the top of the loop, and assume that ¢’ x
r+s =xxy.

In the first step, if £’ is odd, then ¢” = ¢’ — 1 and s” = s’ + r’. This gives that £ x r” +
=W -1 xr 4+ (" +r1r)=4¢ xr +s',which by the loop invariant is x x y.

In the second step, ¢ = ¢”/2 and r"” = 2r”. This gives that ¢ x r”" + " = (£"/2) x
(2r") +s” = ¢" x r" + s”, which by the loop invariant is x x y.

"

N

(4): The Ethiopians exit when ¢ = 1. But this being odd, they must add r to s. We will
iterate one more time and exit when ¢ = 0. This exit condition gives s = ¢ x r + s, and
the loop invariant gives ¢ x r +s = x x y. Hence, intheend s = x x y.

(1), (3), (5), and (6): Sorry, not provided.

Chapter 7. The Loop Invariant for Lower Bounds

7.0.2

The bound is n < r’.

Each round, he selects one row; hence, there are r possible answers. After ¢ rounds,
there are r’ possible combinations of answers.

The only information that you know is which of these combinations he gave you.
Which card you produce depends deterministically (no magic) on the combination of
answers given to you. Hence, depending on his answers, there are at most r* cards that
you might output.

However, there are n cards, any of which may be the selected card. In conclusion,
n<r’.

The book has n =21, r = 3, and ¢ = 2. Because 21 = n £ r’ = 3% = 9, the trick in the
book does norwork.

Two rounds is not enough. There need to be three rounds.

415

416

Exercise Solutions

7.0.3 It is a trick question, because with a balance there are three, not two, outcomes and
hence only log, n operations are needed. Divide the objects into three piles, two of equal
size and the third as close as possible. Put the first two piles on the scale. If one is heavier,
then it contains the heavier object; otherwise the third pile does. Recurse on this one
pile.

7.0.6 Inthelower bound for parity, any starting input I would have worked equally well. Here,
however, there is only one input that will work, and that is I being the all-zero string.
This ensures that, as before, changing the jth bit of I, for any j € J = [1, n], changes the

answer from the AND being zero to the AND being one. This proves that any algorithm

solving the problem requires time of at least n.

Chapter 8. Abstractions, Techniques, and Theory

8.5.2R;:

Rbi

One might complain that if my instance is (n, m), then my friend’s instance cannot
be (n — 1, 2m), because 2m is not smaller then m. However, we can define the size
of instance (n, m) to be simply n. According to this measure, my friend’s instance
is indeed smaller. Moreover, when the instance becomes of size zero or smaller, then
n < 0 and the recursion stops. We prove that the depth of recursion is at most » as fol-
lows. On instance (n, m), the size starts at n and decreases by at least one every level
of recursion, so after n levels the size is at most zero and the algorithm stops recurs-
ing further. For example, starting with (5, 2), it recurses on (4, 4), (3, 8), ..., (0, 64),
and then halts.

One might claim that all is well because both friends get instances ({(n — 1, m) and
(n, m — 1)) that are smaller. However, for this to be true for both friends, the size must
be something like n + m. However, according to this definition, the instance (5, —5)
is small, but the algorithm does not halt. There is a path down this recursive tree that
is infinite, namely (n, m), (n, m— 1), (n, m—2),...(n, 1), (n, 0), (n, —1), (n, —2)....

: Here the size of the instance (n, m) can be defined to be n + m. According to this

measure, each friend is given a smaller instance. Moreover, if the size on the instance
is zero, then either n < 0 or m < 0. Either way the program halts. The depth of recur-
sion can be at most n + m because this is the initial size and the size decreases by
one each iteration.

Let the size of the instance (n, m) be 5n+ 2m. Then the first friend’s instance
(n—1, m+ 2) has size 5(n — 1) + 2(m+ 2) = 5n+ 2m — 1, which is one smaller. The
second friend’s instance (n+ 1, m — 3) has size 5(n+1) +2(m—-3) =5n+2m-—1,
which is also one smaller. Moreover, if the size on the instance is zero, then either
n < 0 or m < 0. Either way the program halts. The depth of recursion can be at most
5n + 2mbecause this is the initial size and the size decreases by one each iteration.

: I claim that there is a path down this recursion tree that is infinite. If my instance is

(n, m), then my first friend has (n — 4, m+ 2), his first friend has (n — 8, m + 4), his
first friend has (n — 12, m + 6), his second friend has (n — 6, m + 3), and his second
friend has (n, m) which is the same as my instance. This can be repeated infinitely
often.

Itis interesting that the last two examples can be generalized to the friend’s instances

of size (n —a, m+ b) and (n+ ¢, m—d). If ad > bc then the program halts, else it
does not.

Exercise Solutions

8.6.2

8.7.2

Fun(1) =X

Fun2)=Y

Fun(3) = AYBXC

Fun(4) =AAYBXCBYC

Fun(5) = A AAYBXCBYC B AYBX C

Fun(6) = A AAAYBXCBYCBAYBXC B AAYBXCBYC C

To prove S(0), let n = 0 in the inductive step. There are no values k where 0 < k < n.
Hence, no assumptions are being made. Hence, your proof proves S(0) on its own.

Chapter 9. Some Simple Examples of Recursive Algorithms

9.1.1 Insertion sort and selection sort.

9.1.2 1. Given (a;, ay, ..., an), I remove the last character a,. I give (a1, gz, ..., a,—1) to my

friend, and he returns the reversed tuple (a,_1, ..., @;) to me. I add a, to the front
of the tuple, producing (a,, a,-1, ..., a1) as required. If my initial tuple has only zero
(or one) element, then there is nothing to do.

algorithm Reverse((ai, ay, ..., an))

(pre-cond): An instance is a tuple.
(post-cond): The output is the reverse tuple (a,, a,_1, ..., a1).

begin
if(n = 0 or n = 1) then
return(instance unchanged)
else
return((a,, Reverse({(a,, a, ..., ay_1))))
end if
end algorithm

. The iterative program has two (nonnested) loops. The first pushes each element

on the stack, one at a time, starting with a,. The loop invariant is that after i
iterations what remains in the tupleis (a;, az, . .., a,—i—1, a,—;) and the stack contains
(@n—it1) An-it2, - - -, An) With a,_;,; at the top. At the i = 0 iteration, the loop invariant
is trivially true. The next iteration removes the last element a,_; from the tuple and
pushes it on the stack. This maintains the loop invariant while making progress. In
the end, withi = n, (a;, ay, ..., a,) is on the stack with a, at the top. The second loop
pops each element off the stack and puts it at the beginning of the tuple. The loop in-
variant is that after i iterations, the stack again contains (a1, aiy2, .. ., a,) with a;,
at the top, but now the tupleis (a;, a;_1, .. ., a2, a;). With i = n, the stack is empty and
the tuple is (an, an-1, - . ., az, a).

. Recursion is implemented on a computer, using a stack of stack frames. The first

stack frame is given (a;, ay, ..., a,), and it removes and remembers the last char-
acter a,. Its friend is the second stack frame, which is given (a;, ay, ..., a,_1). It re-
moves and remembers its last character a,,_;. As we recurse deeper, the stack frames
that have not yet completed are pushed on a stack. After i such stack frames, the
loop invariant is that the the friend’s friend’s friend’s ... friend is given the tuple

417

418

Exercise Solutions

9.2.1

(m, az, ..., an—i—1, ap—;) and the stack contains stack frames, each remembering one
of the elements a,_;:1, an—it2, - .., an, with a,_;;1 at the top. Note this is the same
loop invariant as the iterative program. The recursive base case is reached when
i = n and the stack frame is given the empty tuple. Then, one at a time, in reverse
order the stack frames complete their computations by each adding its element to
the beginning of the tuple. The loop invariant is that after i such returns, the stack
of stack frames is remembering a;,1, giy2, . . ., a, with a;;, at the top, and the cur-
rent stack frame is returning the tuple (a;, a;_1, . . ., az, a1). Again, note that this is the
same loop invariant as the iterative algorithm. With i = n, the stack is empty and the
first stack frame returns the tuple (a,, a,-1, ..., az, a1).

1). Given the integers a and b, the iterative algorithm creates two numbers x = b and
y =a mod b. It notes that GCD(a, b) = GCD(x, y), and hence it can return GCD(x, y)
instead of GCD(a, b). This algorithm is even easier when you have a friend. We sim-
ply give the subinstance (x, y) to the friend, and he computes GCD(x, y) for us. For
the iterative algorithm, we need to make sure we are making progress, and for the re-
cursive algorithm, we need to make sure that we give the friend a smaller instance.
Either way, we make sure that in some way (x, y) is smaller than (a, b). For the it-
erative algorithm, we need an exit condition that we are sure to eventually meet,
and for the recursive algorithm, we need base cases such that every possible in-
stance is handled. Either way, we consider the case when y or b is zero. The resulting
code is

algorithm GCD(a, b)

(pre-cond): a and b are integers.
(post-cond): Returns GCD(a, b).

begin
if(b = 0) then
return(a)
else

return(GCD(b, a mod b))
end if
end algorithm

2). We will need to understand this relationship y = a mod b better. Here y is the re-
mainder when you divide a by b. Ifweletr = | ¢], thena=r-b+yory=a—r-b.

When we generalize the problem, the friend, in addition to g, also gives us ug,,
and v, such that ug,, - x + vg,;, - ¥ = § = GCD(x, y) = GCD(a, b). Plugging in x = b
andy=a—r-bgives ug, b+ vgy-(@—71-b) =g or vgy-a+ (Ugp— Vsyp 1) - b=
g. Hence, if we set u = vg,;, and v = ug,, — v, - 1, thenwe getu-a+v-b = g= GCD
(a, b) as required. I simply provide these answers. For the base case with b = 0, we have
g= GCD(a, b) =a.Hence,u=1and v=0gives thatu-a +v-b = g= GCD(a, b). The
resulting code is

algorithm GCD(a, b)

(pre-cond): a and b are integers.
(post-cond): Returns integers g, u, and vsuch thatu-a +v-b = g= GCD(a, b).

Exercise Solutions

begin
if(b = 0) then
return((a, 1, 0))

else
x=b
r=%J
y=a-r-b
(& Usub Vsup) = GCD(x, y)
U= Ugyp

V= Usyb — Vsub " T
return((g, u, v))
end if

end algorithm

3). Our goal is to find two integers U and V such that U-a + V-t = w. Then you give
the storekeeper U of the a coins and V of the b coins for a total worth of w dollars. If U
or Vis negative, this amounts to the storekeeper giving you coins as change.

To find U and V, let’s start by calling the GCD algorithm on a and b. This returns
integers g, u, and vsuch thatu-a + v- b = g= GCD(a, b).

If g divides evenly into w, then multiplying through by % gives (”?ﬁ“) -a+ (%) -b=
g(%) = w, and we are done.

By the definition of g = GCD(a, b), we know g divides a and b, and hence it divides
U-a+ V- bevenly. It follows that if g does not divide w evenly, then there is no integer
solutiontoU-a+ V-b = w.

4). Solution not provided.

Chapter 10. Recursion on Trees

10.3.1

algorithm Smallest(tree, k)

(pre-cond): treeis a binary search tree, and k > 0 is an integer.
(post-cond): Outputs the kth smallest element s and the number 7 of elements.
If it this index is out of range, we output s = NotPossible.
begin
if(tree = emptyTree) then
result((NotPossible, 0))
else
(s1, ;) = Smallest(leftSub(tree), k)
% There are n; + 1 nodes before the right subtree
(s, ny) = Smallest(rightSub(tree), k — (n; + 1))

n=n+1+n,
if(k € [1..n;])then
NI

elseif(k = n; + 1)then
s = root(tree)

elseif(k € [n; + 2..n])then
s=5

419

420

Exercise Solutions

10.4.1

10.5.1

else then
s = OutOfRange
endif
result((s, n))
end if
end algorithm

1. Where in the heap can the value 1 go? It must be in one of the leaves. If 1 were not at a
leaf, then the nodes below it would need a smaller number, of which there are none.

2. Which values can be stored in entry A[2]? It can contain any value in the range 7-14.

It can't contain 15, because 15 must go in A[1]. We already know that A[2] must be
greater than each of the seven nodes in its subtree. Hence, it can’t contain a value less
than 7. For each of the other values, a heap can be constructed such that A[2] has that
value.

3. Where in the heap can the value 15 go? 15 must go in A[1] (as we have mentioned).
4. Where in the heap can the value 6 go? 6 can go anywhere except A[1], A[2], or A[3].

A[1] must contain 15, and A[2] and A[3] must be at least 7.

algorithm Derivative(f, x)

(pre-cond): fisan equation and x is a variable
(post-cond): The derivative of f with respect to x is returned.

begin
if(f=“x") then
result(1)
else if(f = a real value or a single variable other than “x”) then
result(0)
end if

% if f is of the form (goph)

g = Copy(leftSub(f)) % Copy needed for “*” and “/”.
h = Copy(rightSub(f)) % Three copies needed for “/”.
g = Derivative(leftSub(f), x)

W = Derivative(rightSub(f), x)

if(f=g+ h) then
% See Figure 10.5.3.a
result(g' + 1)
elseif(f = g— h) then
result(g’' — ')
else if(f = g* h) then
% See Figure 10.5.3.b
result(g’' « h+ g H)
elseif(f = g/ h) then
% See Figure 10.5.3.c
result(g’' « h— g« h)/(h* h))
end if
end algorithm

Exercise Solutions

10.5.3 | Simplify (£7) = s/v = 1/ (x*x) |
|S=N—I=O—K=1| |V=D*D=x*x|
[e-»p-om-of Lmp-ia-1][ox] [o]
[wa-og-o] [prx] (w11
ST | P

Chapter 11. Recursive Images

11.1.1 Falling Line: This construction consists of a single line with image n — 1 raised, tilted,

11.1.2 Binary Tilt: This image is the same as the birthday cake. The only differences are that
the two places to recurse are tilted and one of them has be flipped upside down:

il

Chapter 12. Parsing with Context-Free Grammars

12.0.1

s=(((1) *2+3)*5%64+7)
[-exp-------mmm oo
SLeYM-- - - - - mmmmmmm—m——oooo - |
|-fact------cmmmm e |
(|-exXp-------mmmmmmmm o [)

|-term------------------ | +t

|-fact---------- | » £ £ £

(|-exp------- |) 5 6 7

[-t----- | +t

s=(((1)*2+3)*5%*6+7)

Sorry, the solution for 2 and 3 are not included.

421

422

Exercise Solutions

Chapter 14. Graph Search Algorithms

14.2.1

14.2.2

14.3.2

14.6.2

The node v can't be in Vi for k' > k + 1, because there is a path of length k + 1 to it,
namely the path to ufollowed by the edge (1, v,). If v has not been found before, then we
are justfindingit. Its d(v) isbeing set to d(u) + 1 = k + 1. By LI1, this must be its distance
from s. Hence, v must be in Vi, ;. If v has been found before, it is because a shortest path
has already been found to it. If the edge (i, v,) is directed, then this previous path could
have any length k' < k + 1. However, if this edge is undirected, then there is a catch.
Suppose vis in Vi.. Then a possible path to uis that of length k' + 1 from s to v followed
by the edge {, v, } backwards to u. because the shortest path to uis of length k, we have
kK+1>kork'e{k—1,k k+1}.

The shortest-path algorithm given in this section is identical to the generic search algo-
rithm in Section 14.1 except that a queue is used. Hence, the running time is ©(| E|). The
time is not less if you are searching for a path to a specific node t.

Despite differences in the algorithms, on a graph with edge weights one, breadth-first
search and Dijkstra’s algorithm are identical. Breadth-first search handles the first node
in its queue, whereas Dijkstra’s algorithm handles the node with the next smallest d(v).
However, breadth-first search’s third loop invariant ensures that the nodes are found
and added to the queue in the order of distance d(v). Hence, handling the next in the
queue amounts to handling the next smallest d(v). Breadth-first search’s first loop in-
variant states that the correct minimal distance d(v) to v is obtained when the node v is
first found, whereas with Dijkstra’s algorithm we are not sure to have it until the node is
handled. However, with edge weights one, when v is first found in Dijkstra’s algorithm,
d(v) is set to the length of the overall shortest path and never changed again.

The shortest path to node v will not contain any nodes u that appear after it in the total
order, because by the requirements of the total order there is no path from uto v. Hence,
it is fine to handle v, committing to a shortest path to v, before considering u. Hence, it
is fine to handle the nodes in the order given by the total order. The advantage of this
algorithm is that you do not need to maintain a priority queue, as done in Dijkstra’s
algorithm. This decreases the time from (| E|log | V) to O(| E|).

Chapter 15. Network Flows and Linear Programming

15.2.5

15.5.1

Given a network (G, s, t), run the max flow algorithm on it. In addition to returning a
maximum flow, it also returns a minimum cut, which is used to witness the fact that
there is no better flow.

1. Thefirst does not have a matching. A witness is the fact thatnodes 1, 3, and 5 are only
connected to B and D. Hence, the three can’'t be matched to the two. In the language
of Hall’s theorem, let A = {1, 3, 5}; then N(A) = {B, D}. Because |A| > |N(A)|, Hall’s
theorem gives that there is no matching. The second does have a matching. A witness
is the following matching:

Exercise Solutions

2. Consider an arbitrary A C L. Note thatthe set B = {M(u) | u € A} contains |A| distinct
nodes and that B € N(A). Hence, |A| < | N(A)|.

3. Let A = Un L be the set of nodes that are both on the left side of the bipartite graph
and on the left side of the cut. Consider any node v € N(A). Because v € N(A), there
isanode u e A C U such that (i, v) is an edge. If v € V, then this edge (1, v) crosses

the cut. But this edge has capacity co. In this case, the capacity of the cut is well over 423

|L|. On the other hand, if v € U, then the edge from v to ¢ is across the cut. Now

consider any node u € L — A C V. The edge from s to u crosses the cut. This proves
that the number of edges across the cut is at least N(A) + (|L| — |A|), which by our
assumption is at least |A| + (| L| — |A]) = |L|.

4. We have seen that there is a matching with |L| edges iff the max flow in this graph
has value | L| iff the min cut in this graph has capacity | L|. The cut with s on one side
by itself has |L| edges going across the cut, namely those edges from s to L. By the
last question, if VA € L, |A| < |N(A)|, then every cut has at least | L| edges across it.
Hence, the min cut must be | L|. Hence, the max flow has value | L|. Hence, there is a
matching with | L| edges. All the nodes in L must be matched.

5. By the last question, it is sufficient to prove that VA € L, |A| < |N(A)| is true. Con-
sider some set A C L. Because each every node in A C L has degree at least k, we
know that at least k- |A| edges leave A. All of the edges that leave A must enter
its neighborhood set N(A). Hence, the number that leave A is at most the num-
ber that enter N(A). Because every node in N(A) C R has degree at most k, we
know that at most k - |IN(A)| enter N(A). It follows that k - |A| < # leave A < # enter
N(A) < k-|N(A)|. Hence, |A| < |N(A)|, as is needed.

Chapter 16: Greedy Algorithms

16.2.2 In the following instance of the interval cover problem, the greedy criterion that selects
the interval that covers the largest number of uncovered points would commit to the
top interval. However, the optimal solution does not contain this interval, but contains
the bottom two intervals.

16.3.2 Algorithms 1, 2, and 4 are suboptimal for the following counterexample instance:

Rooml
(a) Room2 (b)

Diagram (a) gives the events in the instance and the optimal schedule in two rooms.
Diagram (b) gives the suboptimal schedule produced by these three algorithms. Note
that the third algorithm, which schedules the next event in the room with the latest last-
scheduled finishing time, gives the optimal schedule. We will now prove that it always
gives an optimal solution.

As with all greedy algorithms, the loop invariant is that there is at least one opti-
mal solution optS, ; consistent with the choices made so far, that is, scheduling in the
same rooms the same events whose schedule have been committed to so far and not
scheduling the events rejected so far. Initially, no choices have been made, and hence
trivially all optimal solutions are consistent with these choices. We prove that the loop

Exercise Solutions

invariant is maintained by modifying the schedule optS,; into another schedule
optS,,,rs and prove that this new schedule is valid, consistent with all previous and cur-
rent choices, and optimal. There are three cases.

If our greedy algorithm did not schedule the next event i, then this event must conflict
in each room with a previously scheduled event. Hence, optS;; cannot have this next

424 event i scheduled either, because it too has scheduled these previous events. Hence,

optS, , itself is already consistent with the most recent choice.

If our greedy algorithm did schedule the next event i in room j and optS, ; does not
schedule this event at all, then we modify the schedule optS; ; into optS,,,,s by adding
i to room j and removing any events from j that conflict with it. Just as done with the
one-room scheduling algorithm in Section 16.2.1, we can prove that only one event is
removed and hence optS,,,,, is valid, consistent, and optimal.

The remaining case occurs when our greedy algorithm scheduled the next event i in
room j and optS,;; schedules it in room j'. (See diagram (a).) We modify the schedule
optS, ; into optS,,,;, as follows. (See diagram (b).) We cannot move the events whose
schedule has already been committed to by the algorithm, because optS,,,;; needs to
remain consistent with these choices. (See the events in the Commit circle.) We need to
move event i from room j’ to room j so that it too is consistent with what the algorithm
has done. But making this change may create conflicts. To fix these, we swap every event
scheduled by optS, ; in room j’ with the finishing time of event i or later with every such
job scheduled in room j. (See the events in the rectangle.)

We now prove that the resulting solution optS,,,,, is valid, consistent, and optimal.

A Valid Solution: Our modified solution optS,,,,;; contains no conflicts, because optS; ;
contained none and we will prove now that no new conflicts were introduced. There are
no new conflicts between the previously committed events (circle), because they did
not change. There are no new conflicts between the later-committed events (rectangle),
because they flipped rooms all together. Event i does not conflict with the previously
committed events in room j, because the algorithm scheduled it there. The even later
events that were in room j’ don't either, because they are even later. The later events that
were in room j won't conflict with the previously scheduled events in room j’, because
they did not conflict with those in room j and we know by the algorithm’s choice of room
Jj that the last-scheduled finishing time for j is later than that for room j’.

Consistent with Choices Made: optS;; was consistent with the previous choices. We
moved event i from room j’ to room j to make optS,,,;, consistent with this most recent
choice. We did not move any events in Commit.

Optimal: Schedule optS,,,,; has the optimal number of events in it, because it has the
same number of events as optS; ;.

Loop Invariant Has Been Maintained: In conclusion, we have constructed a valid op-
timal schedule optS,,,,, that is consistent with the choices made by the algorithm. This
proves that the loop invariant has been maintained.

The rest of the proof of correctness of this greedy algorithm is the same as that of all the
others.

Exercise Solutions

Chapter 17. Recursive Backtracking

17.5.1

17.5.2

17.5.3

17.5.4

Asking to provide the best word is not a “little question” for the bird. She would be doing
most of the work for you. Asking the friend to provide the best place on the board to put
the word is not a subinstance of the same problem as that of the given instance.

The simple brute force algorithm searches the dictionary for each permutation of each
subset of the letters. The backtracking algorithm tries all of the possibilities for the first
letter and then recurses. Each of these stack frames tries all of the remaining possibil-
ities for the second letter, and so on. This can be pruned by observing that if the word
constructed so far, e.g., xq, does not match the first letters of any word in the dictionary,
then there is no need for this stack frame to recurse any further. (Another improvement
on the running time ensures that the words are searched for in the dictionary in alpha-
betical order.)

(1,5,8,6,3,7,2,4)
(1,6,8,3,7,4,2,5)
(1,7,4,6,8,2,5,3)
(1,7,5,8,2,4,6, 3)
2,4,6,8,3,1,7,5)
(2,5,7,1,3,8,6,4)
(2,5,7,4,1,8,6,3)
2,6,1,7,4,8,3,5)
2,6,8,3,1,4,7,5)
2,7,3,6,8,5,1,4)
2,7,5,8,1,4,6, 3)
(2,8,6,1,3,5,7,4)

—
e Y ONSOR e

—
N

We will prove that the running time is bounded between (g)% and n" and hence is
n®0) = 20logn Without any pruning, there are n choices on each of n rows as to where
to place the row’s queen. This gives n” different placements of the queens. Each of these
solutions would correspond to a leaf of the tree of stack frames. This is clearly an upper
bound on the number when there is pruning.

I will now give a lower bound on how many stack frames will be executed by this
algorithm. Let j be one of the first § rows. I claim that each time that a stack frame
is placing a queen on this row, it has at least § choices as to where to place it. The
stack frame can place the queen on any of the n squares in the row as long as this
square cannot be captured by one of the queens placed above it. If row i is above our
row j, then the queen placed on row i can capture at most three squares of row j: one
by moving on a diagonal to the left, one by moving straight down, and one by mov-
ing on a diagonal to the right. Because j is one of the first § rows, there are at most

this number of rows i above it, and hence at most 3 x g of row j’s squares can be

captured. This leaves, as claimed, 5 squares on which the stack frame can place the
queen.

From the above claim, it follows that within the tree of stack frames, each stack
frame within the tree’s first g levels branches out to at least g children. Hence, at the

(%) th level of the tree there are at least (5)° different stack frames. Many of these

n
6

425

426

Exercise Solutions

will terminate without finding a complete valid placement. However, this is a lower
bound on the running time of the algorithm, because the algorithm recurses to each
of them.

17.5.5 Theline “k,,;, = a k that maximizes cost.”

Chapter 18. Dynamic Programming Algorithms

18.3.3

algorithm PrintingNeatly (M; 1, ..., I,))

(pre-cond): (I, ..., I,) are the lengths of the words, and M is the length of each line.
(post-cond): opt Sol splits the text into lines in an optimal way, and cost is its cost.

begin

% Table: optSol[i] would store an optimal way to print the first i words of the input,
but actually we store only the bird’s advice for the subinstance and the cost of its
solution.

table[0..n] birdAdvice, cost

% Base case: The only base case is for the best printing of the first zero words.
Its solution is the empty printing with cost zero.

% optSol[0] = ¢

cost[0] =0

birdAdvicel0] = ¢

% General cases: Loop over subinstances in the table.
fori=1ton
% Solve instance (M; I, ..., I;) and fill in table entry (7).
K = maximum number k such that the words of length [;_;,, ..., [; fit
on a single line.
% Try each possible bird answers.
fork=1to K
% The bird-and-friend algorithm: The bird tells us to put k words on the
last line. We ask the friend for an optimal printing of the first i — k words.
He gives us optSol[i — k], which he had stored in the table. To this we add
the bird’s k words on a new last line. This gives us optSol,, which is a best
printing of the first i words from amongst those printings consistent with
the bird’s answer.
% optSol, = (optSubli — kI, k)
costi = costli — k] + (M —k+1— Z;’:i—k-u I3
end for
% Having the best, optSol,, for each bird’s answer k, we keep the best of these

best.
kmin = a k that minimizes cost;

birdAdvicelil = ki,

Exercise Solutions

% optSolli] = optSol,,

% cost[i] = cost;.

end for

min

optSol = PrintingNeatlyWithAdvice ((M; 1, . . .,), birdAdvice)
return {optSol, cost{n])

end algorithm

Chapter 19. Examples of Dynamic Programs

19.1.1 (a): If x, = ym, then we must prove that there is at least one optimal solution that con-
tains both of these last characters. Consider an optimal solution. It must end in this

last character; otherwise it could be extended to contain it. It might not contain both
of them, as in the case of X = (4, B, B), Y = (A, B), with optimal solution Z = (A, B).
However, as in this case, we can just as well assume that the optimal solution takes
both. If x, # ym, then the optimal solution cannot take both. Hence, it either does
not take the last of X or does not take the last of Y. It might not take the last of
either, but this is included in both the other two cases. See Section 17.3 for a further

answer.

(b) The loop over subinstances is then changed as follows.

% Solve instance ({(xi, ..., X;), (1, ..., ¥;)) and fill in table entry (i, j).

if Xi

else

= y;j then

birdAdviceli, j1 =3
% optSolli, j1 = optSolli — 1, j — 1] + x;
costli, jl=costli — 1, j — 11 + 1

% Try possible bird answers.
% casesk=1,2
% optSol, = optSolli — 1, j]
cost; = costli — 1, jl
% optSol, = optSolli, j — 1]
costy = costli, j — 1]
% end cases
% Having the best, optSol,, for each bird’s answer k,
we keep the best of these best.
kmax = a k € [1, 2] that maximizes cost;
% optSolli, j1 = optSoly,
costli, j] = cOStiu,
birdAdviceli, j1 = Kuax

end if

19.1.2 The running time is the number of subinstances times the number of possible bird an-

swers, and the space is the number of subinstances. The number of subinstances is

®(n?), and the bird has K = 3 possible answers for you. Hence, the time and space re-
quirements are both ©(rn?).

427

428

Exercise Solutions

19.4.2

According to
size

19.5.1 1.

19.7.1

forj=lupton fori=ndown to 1
fori=j down to I forj=iupton
Slove instance (A,..., A;) % Slove instance (A..., Aj)

An AVL tree of height h has left and right subtrees of heights either (h—2, h —1),
(h—1,h—1),or(h—1,h—2).

The bird tells me whether the subtree heightsare (h— 2, h— 1), (h—1, h— 1), or (h —
1, h — 2). She also tells me which value a; will be at the root. I can then ask the friends
for the best left and right subtrees of the specified height.

In each of these three cases, the heights are within 1.

The complete set of subinstances is as following. Recall that in Chapter 10 we proved
that the minimum height of an AVL tree with n nodes is h =log, n and that its
maximum height is i = 1.455log, n. Hence, the complete set of subinstances is S =
{{ai,...,a;;p,...,pj)) |1 1<i<j<n, hellog,(j—i+1).1.455log,(j —i+ 1]}.
The table is a three-dimensional ®(n x n x logn) box.

. The table has size ©(n x n x logn). The bird can give 3 - n different answers. Hence,

the running time is ®(n® log n).

. In the original problem, the height was not fixed. To solve this problem, we could

simply run the previous algorithm for each / and take the best of the resulting AVL
trees. However, after running the previous algorithm once, the table already contains
the cost of the best AVL for each of the possible heights . To find the best overall AVL
tree, we need only compare those listed in the table.

algorithm Parsing (G, Tstart, 1, - - -, Gn))

(pre-cond): G is a Chomsky normal form grammar, Tz4;¢ is @ nonterminal, and s is the
string (ay, . .., a,) of terminal symbols.

(post-cond): P, if possible, is a parsing that generates s starting from Ty using G.

begin
% Table: optSollh, i, j1 would store an optimal solution for (G, Tj, a;, ..., a;),
namely a parsing for a;, .. ., a; starting with nonterminal T;,. Instead, we store only

the bird’s advice for the subinstance and the cost of its solution.
tablel| V|, n, n] birdAdvice, cost

Exercise Solutions

% The case s = ¢ is handled separately
if n = 0then
if Tstarr = € is arule then
P = the parsing applies this one rule.
else
P=y
end if
return(P)
end if

% Base cases: The base cases are when the string to parse consists of only one

character q;.
Fori=1ton

For each nonterminal T},
If there is a rule ry = “A; = b,;”, where A, is T and by, is a;, then
birdAdvicelh, i,i] = (g, ?)
costlh, i,i] =1
else
birdAdvicelh, i, i] = (2, ?)
costlh, i,i] =0
end if
end loop
end loop

% General cases: Loop over subinstances in the table.
for size = 2 to n % length of substring (a;, . . ., a;)
fori=1ton—size+1
Jj=i+size—1
For each nonterminal Ty, i.e., h € [1..|V]]

% Solve instance (G, Tj, a;, . . ., a;), and fill in table entry (A, i, j).

% Loop over possible bird answers.
foreachruler, = “A; = B,;C,” forwhich A, is T;,
for each splitin the stringk =ito j —1

% Ask friend if you can generate (a;, ..., ax) from B,.
% Ask another friend if you can generate (a1, ..., a;).
from C,
oSty k) = min(cost] By, i, kl, cost|Cy, k + 1, j1)

end for

end for

% Take the best bird answer, i.e., one of cost one if s can be generated.

(dmin> kmax) = a (q, k) that maximizes costg i,
birdAdvicelh, i, j1 = (Gmin» kmax)
costlh, i, j1 = costigmax.kmax)
end for
end for
end for

429

430

Exercise Solutions

19.8.2

% Constructing the solution P

if(cost(1, 1, n] = 1) then % i.e., if s can be generated from Tzqrt
pP= PursingWithAdvice((G, Tstars, @y, .. ., Ay), birdAdvice)

else
P=y

end if

return(P)

end algorithm

Time and space requirements: The running time is the number of subinstance times
the number of possible bird answers, and the space is the number of subinstances. The
number of subinstances indexing your table is ®(| V|n?), namely, Tablelh, i, j] forhe V
and 1 < i < j < n. The number of answers that the bird might give you is at most O(mn),
namely, (g, k) for each of the m rules r; and the split k € [1..n — 1]. This gives time =
O(|V|n? - mn). If the grammar G is fixed, then the time is ®(#3).

A tighter analysis would note that the bird would only answer ¢ for rules r; = “A; =
B, C,”, for which the left-hand side A, is the nonterminal 7}, specified in the instance.
Let my, be the number of such rules. Then the loop over nonterminals 7j, and the loop
over rules r; would not require | V|m time, but 4, ., mz, = m. This gives a total time of
em*m).

Given an instance E = {ej, e,, ..., e,} of the elephant problem, we map this to an instance
(X, Y) of the LCS problem as follows. Each elephant will be distinct. Let X = (x, .. ., Xp)
be the elephants sorted by weight w;, and let Y = (y, ..., ym) be the same sorted by
smartness s;. A solution to LCS is a subsequence Z = (z, ..., z;) that is common to both
X and Y. Note that Z is a subset of elephants S C E for which bigger is smarter. This
is because Z is sorted both with respect to weight and with respect to intelligence. The
only difference between these problems is that the cost (or success) of a LCS solution
is simply the length of Z, while for the elephant problem it is the sum of the values of
the elephants. Hence, for this to work, the LCS problem needs to be generalized to have
weights on the letters. But this would not change the dynamic programming algorithm
atall.

Chapter 20. Reductions and NP-Completeness

20.2.4

20.2.5

The first is easy. InstanceMap(1,) simply maps each instance I; € S; € S, of P, to itself,
I, which is a valid instance of P,. The second is much harder, because InstanceMap(L)
must map each instance L € S, of P, to some instance I, within the restricted
set §;.

The running time Time(Alg,) is measured as a function of its own 1nput size, namely
0(2”0mCl€|§) But because |Iqczel = |46/, this same time is o2 "alg B), in terms of
Alggg's input size. The extra O(] Ialgl) time for the mappings is not substantial. Hence,
Alggg's total running time is e@e™").

Exercise Solutions

Similarly, if Alg,,,¢1. runs in polynomial time, namely Time(Alg,,4c1e) = © (Ipraciel®),
then so does Alg,j,, namely Time(Alg,;e) = O (| 4g|* + | I6°), but note that the poly-
nomal is a different one.

20.3.3

Step 5: Given a graph Ggpp that we want to color, we construct an instance 31

(Gnd» Ning) = InstanceMap(Gcoy) to give to the independent set oracle as follows. As

said, Gy,q will have a node for each pair (i, ¢) where u is a node of Gy and cis one
of the three colors. For each node u € Gy, we put a triangle of edges around (u, red),
(u, blue), and (u, green). For each edge (u, v) € Gopr, we put three parallel edges be-
tween (u, ¢) and (v, c), for each color c. The size of the required independent set will be
the number of nodes, Ny, = |Voy /|, in the graph G¢oy.

Step 6: Given an independent-set solution Sp,; to Gp,4 of size |Vcor|, we construct a
coloring Sy, for G by coloring u with color c if node (1, ¢) is in the independent
set.

Step 7: We now show that if Sy, is a valid independent set of size | Voy |, then Sgor is a
valid 3-coloring. First we show that it is impossible for a node to be given more than one
color, because the edge between (, ¢) and (u, ¢’) prevents both of these nodes being
in the independent set. Because the independent set is of size | Vo | and no node u
appears more than once, it follows that every node uappears exactly once. Hence, every
node uis given a color. Finally, we show that the nodes in the edge (i, v) € Gy, cannot
both have the color ¢, because the edge between (i, ¢) and (v, ¢) prevents both of these
nodes from being in the independent set.

Step 8: Given a coloring Scoy for G¢or, we construct an independent set Sy, ; for G4
of size | Vgpr | by putting node (u, c) in the independent set if u is colored c.

Step 9: We now show that if S¢qy is a valid 3-coloring, then Sy, is a valid independent
set. We need to show that for each edge in G, both nodes are not in Sp,;. There is an
edge between (1, ¢) and (u, ¢'), but u cannot have both colors ¢ and ¢'. There is an edge
between (u, ¢) and (v, c), but uand v cannot both have color c.

Chapter 22. Existential and Universal Quantifiers

22.0.2 1. Vx 3y x+ y =5 is true. Let x have an arbitrary real value, and let y =5 — x. Then

X+y=>5.

2. 3y Vx x+ y =5 is false. Let y have an arbitrary real value, and let x = 6 — y. Then
X+y#5.

3. Vx3y x -y =>5isfalse. Let x = 0. Then y must be %, which is impossible.

4. Jy Vx x - y =5 is false. Let y have an arbitrary real value, and let x = % if y # 0 and
x=0ify=0.Thenx-y #5.

5. Vx 3y x-y =0 is true. Let x have an arbitrary real value, and let y = 0. Then

x-y=0.
6. 3y Vx x-y =0 is true. Let y =0, and let x have an arbitrary real value. Then
x-y=0.

7. [Vx3y P(x, y)] = [3y Vx P(x, y)] is false. Let P(x, y) = [x + y = 5]. Then, as already
seen, the first is true and the second is false.

432

Exercise Solutions

. [Vx3y P(x, y)] < [Ty Vx P(x, y)] is true. Assume the right side is true. Let y, be the y

for which [Vx P(x, y)] is true. We prove the left side as follows. Let x have an arbitrary
real value, and let y = y,. Then P(x, y) is true.

. Sorry, not provided.

Chapter 23. Time Complexity

23.1.1 The number of operationsis T = 24 x 60 x 60 x 10° = 8.64 x 10'°. We have n, = T"/* =

542, 1, =log, T = %61 — 36,

log2

23.1.4 1. We first prove that g+ h = ©(max(g, h)) as follows. max(g, h) < g+ h, assuming that

23.2.1

both gand h are positive and g+ h < 2max(g, h).

. One can set k to absolutely minimize f(n, k) by setting f’s derivative wrt k equal to

zero and solving for k. Sometimes this is hard. Because f(n, k) = G)(max(@, @))
and we do not care about the multiplicative constant, let us instead set k in order
to minimize max(ﬁ, @). Observe that if k is very small, then the first term, be-
ing very big, dominates. Hence, we can make the whole expression smaller by in-
creasing k. Similarly, if k is big, the second term dominates the expression, and we
can decrease it by decreasing k. So for the optimal solution the two terms should be

roughly the same. In this case @ = @ gives n = k and f(n, k) = I'Z)gi = 10’;". This

is (asymptotically) the best result, because decreasing k increases the first term and
increasing k increases the second.

. Sorry, not included.

. 3A, VI, Works(Sorting, A, I). We know that there at least one algorithm, e.g., A =

merge sort, that works for every input instance 1.

. VA, 31, -Works(Halting, A, I) We know that contrary statement is true. Every algo-

rithm fails to work for at least one input instance I.

. 3P, VA, I, =Works(P, A, I)
. It says that every input has some algorithm that happens to output the right answer.

It is true. Consider an arbitrary instance I. If on instance I, Halting happens to say
yes, then let A be the algorithm that simply halts and says yes. Otherwise, let A be the
algorithm that simply halts and says no. Either way, A works for this instance I.

. It says that every algorithm correctly solves some problem. This is not true, because

some algorithms do not halt on some input instances. We prove the complement
JA, VP, 31, -Works(P, A, I) as follows. Let A be an algorithm that runs forever on
some instance I'. Let P be an arbitrary problem. Let I be an instance I’ on which A
does not halt. Note that Works(P, A, I) is not true.

Chapter 24. Logarithms and Exponentials

24.0.1 a3 X (l5 — a8, 34 « 54 — 15a' 34 + 54 :?y 2510g4n+7 — [40,5]610g4n x 27 — [4log4n]3 . 128 =

128”3, nS/loggn — [210g2 n]3/log2n —23_g8g.

Chapter 25. Asymptotic Growth

25.1.4 Exercise 25.0.2 proves that 3logn << n for sufficiently big n. Hence, n? < 3n?logn <

n-n?=nd.

20.001”

25.1.5 3% > 4% > > L > > 1007190 > > logl’000 n.

Exercise Solutions

25.2.2

25.2.8

1. 14n° +5,000n" 4+ 23n?logn € O(n°): Let ¢=15 and ny = 100. For all n > 100,
We have f(n) = 14n° 4 5,000n" + 23n? < 14n° + %2n7 + ”;nz logn <14n® +n® =
c-gn.

2. 2n?> —100n € ®(n?): Let¢c; = 1, ¢, = 2, and ny = 100. For all n > 100, ¢c;g(n) = 1n? =
2n? —n-n<2n® —100n = f(n) < 2n? = cg(n).

3. 14n® — 1001 ¢ O(n"): Let c and ny be arbitrary values given to us by some adversary.
We then let n = max(10, ¢, ny). Then we demonstrate that f(n) is too big. Because
n > 10, we have 100n°® < r8. This gives f(n) = 14n® — 100n°® > 14n® — 11 > n-n’ >
c-n'.

4. 14n® +1001° ¢ ®(n°): Let ¢, ¢, and ny be arbitrary values given to us by some
adversary. Let us make n = max(15/cy, 11, ny). Then we demonstrate that f(n) is
too small: c,g(n) = cyn® = n-cn® > L - cin® =14n° + n® = 14n® + n* - n® > 14n° +
(11)2 - n® > 14n® + 10018 = f(n).

5. 21l e O(2"):Letc=2and ny =0.Foralln > 0, f(n) = 2" <2 x 2" = ¢ x g(n).

6. 22" ¢ O(2™): Let ¢ and ny be arbitrary values. Let n = max(1 + log, ¢, np). Then we
have that f(n) = 22" =2".2" > ¢- g(n).

L. x=7)3(og, »'® € y*+°0 = [3®, y**<]. Solving this gives y = x!/G+o1),
2. Substituting in y=x!3tW gives x=7y%(og, y)'® = 7y3(log, x1/CroM))18 -
0(y*(log, x)'8). Solving this gives y = © (x%/(log x)6>.

Chapter 26. Adding-Made-Easy Approximations

26.2.1

26.2.4

His first such step takes him half an hour, his second a quarter, his third an eighth, . . . for
atotalofonly %%, 5 = 3 + 3 + & + 3 + - - = 1 hour. Given that he travels one kilome-
ter at one kilometer an hour, this is reasonable.

1. The function f(n) = 22"*" is 220 because it is bounded between 2" and 22", Let
n =2k Then flog, n] = k and f(n) = 22" — 2", but for ' = n+ 1 we have [logn'] =
k+1and f() = 22" =221,

2. Weshow Y"1, f(i) # ©(f(n) as follows. With n = 2¥, both functions are more or less
constant from f(7) to f(n). Because they behave like arithmetic functions within this
range, the adding-made-easy techniques give that Y ;" | f(i) = ®(n - f(n)) and not
a(f(m).

3. We show that f(n) = 22"*"*" ¢ p®®-1 by bounding it between /7 and n. Let n = 22°.
Then |loglogn] = kand f(n) = 22 = n, butfor ’ = n — 1 we have |loglogn’] = k —
land f(n) = 22" = /n.

4. We show that Y| (i) ¢ ©(n - f(n)) as follows. Again let n = 22", so that f(n) = n, yet
every previous term is most /z. The total of } 1" | f(i) thenis at most (n—1) - /n + n.
Because the last term f(n) is so much bigger than the previous ones, the total is not
@(n - f(n)), which is ©(n?).

433

434

Exercise

Solutions

5. The function f(n) = 212 costrlog, W+151n js 3 geometric counterexample squeezed be-

tween 2" and 22", just as f(n) =

flogy n]
227" g

0
0 2 6 10

Chapter 27. Recurrence Relations

27.1.1 Examples:

T(n) % ¢ dvs—1 Dom. Rule Solution
2T(5)+n igg—ig = 1 0> Al O(f(n) logn) O(nlogn)
2T(%) +1 }ggﬁ =1 0 Base ©(nlosa/logh) e(n)
4T(2) + 01/ log’ n) iﬁiﬁi = 3 Top O(fm) en*/log’ n)
327(2) + ©(logn) =5 0 Base ~ O(ul°s/18b) @ (n>%)
27T(1) + 01 log' n) 1;’5;3237 = 3 4> Al O(fmlogn) ©m3log’ n)
8T(H) +0(n/logn'*) P =3 § -15< Base 0%V om')
4T(2) + ©(n?/logn) }ggz; =2 2 —1= Exercise 27.2.4 gives

®(n° -loglogn) = ©(n?loglogn)

27.2.1 Plugging Fib(n) = o into Fib(n) = Fib(n — 1) + Fib(n — 2) gives that o”* = ¢"~! 4 "2,

Dividing through by o2 gives «? = « + 1. Solving this gives that either o =

145

TOI'O[Z

% .Any linear combination of these two solutions will also be a valid solution, namely
Fib(n) = ¢ - (01)" + ¢ - (x2)". Using the fact that Fib(0) = 0 and Fib(1) = 1 and solving

for ¢; and ¢, gives that

Fib(n) = %

15

I

=)

Exercise Solutions

27.2.2 Unwinding:

1.

T(n)=T(n—1)+mn: Because a=1 and c>1, the table give T(n)=0M-
f(n) =0®?). Unwinding gives Tm) =n+Tn—-1)=n+ n-1)+ T(n-2)=
n+m-1)+n-2)+Th-3)=n+n-D+n-2)+---+(n—i+ 1)+ Tn-i) =
n+m-1)+mn-2)+---+1=0("n?.

. T(m)=2-T(n—1)+1: Because a =2, the table gives T(n) = BOat) = O2".

Unwinding gives T(n) =1+2T(n—1) =1+4+2+4+4T(n-2) = 142444 4214
2Tn—i) =142 444421 427 = 2",

27.2.4 Suppose f(n)=n°-log’n and c= loga. then T(n) = 9(2?:0 alf(n/b)) = @(Zlh:o at

logb’

(n/b)° log? (n/b")) = ©(n° - Y1, (1)ilog(n/b))]4). The expression n/b' takes on the val-
ues n,n/b,n/b?, ..., 1. Reversing this order gives T(n) = @ - Z?:o [log(bf)]d) =
emne - Z;’:o [jlog b]d). Here [log b]d is a constant that we can hide in the Theta. This
gives T(n) = O(n°- 27:0 j%. The adding-made-easy approximations state that this
sum is arithmetic as long as d > —1. In this case, the total is T(n) = ©(n- h- h¢) =
Omn° - logd+1 n) = O(f(n) logn). If d = —1, then we get the harmonic sum T(n) = ©(n° -
Z;;O %) = 0(n°-logh) = ©(n‘loglogn). If d < —1, then the sum has a bounded tail,
giving T(n) = O(n° - ©(1)) = O(n'o8@/logh),

435

CONCLUSION 437

The overall goal of this entire text has been to teach skills in abstract thinking. I hope
that it has been fruitful for you. Good luck at applying these skills to new problems
that arise in other courses and in the workplace.

We say goodbye to our friends.

INDEX

abstract data type (ADT), 1, 43
exercise solutions, 414
functions vs., 43
merging with queue, 56
specifications/implementations, 44
dictionary, 47
graphs, 47
link list implementation, 51
list, 44
orders, 48
priority queue, 46
queue, 45
set, 46
set system, 47
simple types, 44
stack, 44; parsing with stack, 57
trees, 48
AVL tree, 49
binary search tree, 48
recursive definition of tree, 130
union-find set system, 49
Ackermann’s function, 127
algorithm, 127
crashing, 128
recurrence relation, 127
running time, 128
solving, 127
adding-made-easy approximations,
388
examples, 391
exercise solutions, 433
proofs, 393
analytical functions, simple, 396
arithmetic sums, 394
close to harmonic, 395
functions, without basic form,
396
geometric sums, simple, 393

harmonic sum, 395

ratio between terms, 393
solution classes, 389
technique, 389

ADT. See abstract data type
algorithms. See also recursive algorithms

Ackermann’s function, 127

best AVL tree bird-and-friend algorithm, 312

bipartite matching using network flow, 342
brute force algorithm, 66, 226
defined, 1

Dijkstra’s shortest-weighted path algorithm,

183
dynamic programming algorithms and

examples, 267

all pairs, matrix multiplication, 314

best AVL tree, 311

chains of matrix multiplications, 306

context-free grammar parsing, 315

dynamic programming algorithms. via
reductions, 318

longest-common-sequence problem,
295

longest increasing contiguous
subsequence example, 301

longest increasing subsequence example,

301
shortest weight path, directed leveled
graph example, 267

weighted job/event scheduling problem,

303
Euclid’s greatest common divisor (GCD)
algorithm, 79
graph algorithms
expander graphs, 351
max cut problem, 350
minimum spanning tree, 244
network flows, 198

439

440

Index

algorithms (cont.)

shortest weight path, directed leveled
graph example, 267
3-Colouring, 330, 338

graph search algorithms, 173

breadth-first search, shortest path, 179, 181

depth-first search, 188

generic search algorithm, 174

partial order linear ordering, 194; depth-
first search algorithm, 195; easy but slow
algorithm, 195

coding/implementation details, 61
ending, 61

establishing loop invariant, 61

exit condition, 61

is tree a binary tree example, 138
loop invariant, 60

main steps, 61

maintain loop invariant, 61

make progress, 61

measure of progress, 60

nodes in binary search tree example, 131

recursive depth-first search, 192
greedy algorithms, 225, 260, 295, 307
hill-climbing algorithm, 221
iterative algorithms, 8, 12, 21
iterative sorting algorithms, 71, 72, 75, 76
looking forward vs backward, recursive

algorithms, 99 breadth-first search, 178
meta-algorithms, xiii, 2 shortest path, 179, 181
parsing algorithm specifications, 161 code, 181
randomized algorithms, 346 exiting loop, 183
sorting and selection algorithms, 114 initial code, 183
steepest-ascent hill-climbing algorithm, 214 loop body, 180
Strassen’s matrix multiplication, 126 loop invariant, 180
time/space complexity, 82, 85, 324, 347, 366, maintaining loop invariant, 181

378, 406, 432 optimization problem, 179

analytical functions, simple, 396 shortest path problem, 179
arithmetic sums, 394. See also shortest path proof, 180
adding-made-easy approximations bucket sort by hand, 71
asymptotic growth, 377 basic steps, 71
asymptotic growth rate, 378 exit condition, 72
asymptotic notation, 85, 377, 384 loop invariant, 72

BigOh definition, 85, 385 maintain loop invariant, 72

Little Oh definition, 85, 386 specifications, 71

Little Omega definition, 85, 386

loop invariant for lower bounds, 85 chains of matrix multiplications, 306

Theta definition, 85, 385 failed dynamic programming algorithm,
exercise solutions, 432 307

function classification, 379
growth rates classes, 377

purpose, 378 optimal solution construction, 310

AVL tree, 49 optimal solution cost, cost for subinstances,
best AVL tree, 311 308

best AVL tree problem, 313

running time, 61
specifications, 60
typical errors, 26
BigOh definition, 385
bipartite edges, 191
bipartite matching using network flow, 342

failed greedy algorithm, 307
little bird question, 307

recursive structure, 308

reduced to subinstance, 308

set of subinstances called, 308

table fill order, 308

table indexed by subinstances construction,

binary search 24
for cost in optimization problems, 329
narrowing the search space example, 24

balanced, 49
best binary search tree problem, 311
basic steps, 60

returning index example, 89 308
returning yes/no, 91 time/space requirements, 311
trees, 48, 60 coloring the plane, 29

ADT, 48 basic steps, 29

coding/implementation details, 30
ending, 30
establishing loop invariant, 30

Index

exit condition, 30

loop invariant, 29

main steps, 30

maintain loop invariant, 30
measure of progress, 29
running time, 30

special cases, 30
specifications, 29.

computational complexity, 1

asymptotic notations, 85, 377, 384

formal proof of correctness, 408

nondeterministic polynomial-time decision
problems (NP), 330

time/space complexity, 82, 85, 324, 347, 366,
378, 406, 432

context-free grammar parsing, 159

abstract data type parsing, 161
correctness proof, 165
dynamic programming example, 315
abstract data type parsing, 316
base cases, 317
help from friend, 316
little bird question, 316
not look ahead one, 315
number of parsings, 316
optimal solution construction, 317
parsing problem, 315
set of subinstances, 317
table fill order, 317
table indexed by subinstances
construction, 317
exercise solutions, 421
expression parsing, 160
GetExp code, 163
GetExp expressions, 161
GetExp, Get Term, GetFact examples, 162
GetFact code, 164
GetTerm code, 163
grammar, 159
look ahead one, 159, 165
nonterminals, 160
parsing algorithm specifications, 161
rules, 160
running time, 165
semantics and, 159
string derivation, 160
syntax and, 159
terminals, 160
tree of stack frames, 165

correctness, 2

formal proof of correctness, 408
for context- free grammar parsing, 165
for depth-first search, 196
for dynamic programming, 283
for greedy algorithms, 230

for recursive algorithms, by strong
induction, 113
counting sort, 72
basic steps, 73
code, 74
establishing loop invariant, 74
exit condition, 74
loop invariant, 74
main step, 74
maintain loop invariant, 74
running time, 75
specifications, 72
cyclic edges, 191

Davis-Putnam, 263
depth-first search, 178, 188
code, 189
edges classification, 190
establish/maintain loop invariant, 190
generic search algorithm changes, 189
loop invariants, 189
recursive, 192
time stamping, 191
deterministic finite automation (DFA), 31
addition example, 35
applications, 31
calculator example, 36
compiling iterative program into DFA, 33
division example, 36
dynamic programming, 38
longest block of ones example, 37
longest increasing contiguous subsequence,
38
longest increasing subsequence, 38
Dijkstra’s shortest-weighted-path algorithm, 183
code, 186
exiting loop, 188
initial code, 187
loop body, 186
loop invariant, 185
maintaining LI1, 186
maintaining LI2, 187
problem specifications, 183
shortest distance approximation, 184
shortest path proof, 184
dynamic programming, 267
exercise solutions, 426, 427
steps in developing, 267
base cases, 274
code, 275
count subinstances, 273
final solution, 275
redundancy, 272
running time, 277
set of subinstances, 272

441

442

Index

dynamic programming (cont.)

solution from subsolutions, 274
table fill order, 275
table indexed by subinstances
construction, 273
recursive backtracking, 267
running time, 271
subtle points, 277

dynamic programming algorithms and

examples
all pairs, matrix multiplication, 314
best AVL tree, 311
best AVL tree problem, 313
best binary search tree, 311
chains of matrix multiplications, 306
context-free grammar parsing, 315
dynamic programming algorithms via
reductions, 318
best path similarity, 319
bigger-is-smarter elephant problem,
322
event scheduling problem, 319
graph instance formation, 319
mapping back algorithm, 321
longest-common-sequence problem, 295
base cases, 297
code, 297
greedy algorithm, 295
information about subinstance, 299
little bird possible answers, 295
little bird question, 296
longest common sequence, 295
optimal solution construction, 299
set of subinstances, 296
table fill order, 297
table indexed by subindexes construction,
297
time/space requirements, 299
longest increasing contiguous subsequence
example, 301
longest increasing subsequence example, 301
time/space requirements, 300
shortest weight path, directed leveled graph
example, 267
weighted job/event scheduling problem, 303
failed algorithms, 303
greedy dynamic programming, 304

edges classification, 190

back edges, 190
bipartite edges, 191
cross edges, 191
cyclic edges, 191
forward edges, 191
tree edges, 190

Euclid’s GCD algorithm. See greatest common
divisor algorithm
Euler cycle, 40
event scheduling 236, 319
weighted job/event scheduling problem,
303
existential/universal quantifiers, 357, 358, 372
bound variables definition, 359
combining quantifiers, 359
exercise solutions, 431
expressions building, 360
free variables definition, 359
Loves example, 358
negation, 361
quantifiers order, 359
relation definition, 358
representations, 358
variable domain, 360
exponentials, 374
base, 376
exercise solutions, 432
ratio, 376
rules, 375
uses, 374

fast Fourier transformation, 125
find-max two-finger algorithm example, 10
forward/cross edges, 191
friends level of abstraction, recursive
algorithms, 100
base cases, 101
general input, 100
generalizing problem, 101
link to techniques, iterative algorithms, 102
minimizing number of cases, 101
running time, 102
size, 100
specifications, 100
functions. See also Ackermann’s function
abstract data types vs., 43
analytical functions, simple, 396
linear function, 382
quadratic function, 382
time/space complexity as, 367

GCD algorithm. See greatest common divisor
(GCD) algorithm

geometric sums, simple, 393

GetExp code, 163

GetExp expressions, 161

GetExp, Get Term, GetFact examples, 162

GetExp reasoning, 163

GetFact code, 164

GetFactreasoning, 164

GetTerm code, 163

Index

global vs. local considerations, 200, 204, 222,
226, 228, 252,278
graph algorithms
expander graphs, 351
max cut problem, 350
minimum spanning tree, 244
network flows, 198
shortest weight path, directed leveled graph
example, 267
3-Colouring, 330, 338
graph search algorithms, 173
breadth-first search, shortest path, 179, 181
depth-first search, 188
Dijkstra’s shortest-weighted-path algorithm,
183
exercise solutions, 422
generic search algorithm, 174
basic steps, 174
code, 175
exit condition, 176
exiting loop, 177
handling nodes order, 178
initial code, 176
loop body, 175
loop invariant, 174
maintaining loop invariant, 176
measure of progress, 176
reachability problem, 174
running time, 177
partial order linear ordering, 194
recursive depth-first search, 192
graph theory problems, 173
greatest common divisor (GCD) algorithm, 79
code, 81
ending, 79, 81
establishing loop invariant, 79
example, 82
exercise solutions, 415
exit condition, 81
iteration on general instance, 79
loop invariant, 79
lower bound, 82
making progress, 80, 80
recursive, 126
running time, 82
special cases, 80
specifications, 79
termination, 81
greedy algorithms, 225
brute force algorithm, 226
correctness proof, 230
using loop invariants, 227
examples
game show, 226
interval cover problem, 240

job/event scheduling problem, 236
minimum spanning tree problem, 244

exercise solutions, 423

fixity vs. adaptive priority, 234

greedy choice, 226

loop invariants, types, 227
specifications, 225

harmonic sum, 395
close to harmonic, 395
heap sort/priority queues, 141
array implementation, balanced binary tree,
141
common mistakes, 147
completely balanced binary tree, 141
heap definition, 141
heapify problem, 142
code, 143
iterative algorithm, 143
recursive algorithm, 142
running time, 143, 144
specifications, 142
heapsort problem, 145
algorithm, 145
array implementation, 146
code, 147
specification, 145
makeheap problem, 144
iterative algorithm, 144
recursive algorithms, 144
running time, 145
specifications, 144
priority queues, 147
hill-climbing algorithm, 221. See also
primal-dual hill climbing method;
steepest-ascent hill-climbing algorithm
small local maximum, 200
algorithm, faulty, 203
algorithm fixing, 205
augmentation graph, faulty, 202
basic ideas, 201
counterexample, 204
local maximum, 204

image drawing see recursive image drawing
information hiding, 43
information theoretic lower bounds, 87, 92
iterative algorithms, 8, 12
basic steps, 13
code structure, 8
coding/implementation details, 19
correctness proof, 8
ending, 19
establishing loop invariant, 17
exit condition, 18

443

444

Index

iterative algorithms (cont.)

find-max two fingeralgorithm example, 10
formal proof, 20
loop invariants for, 8, 13, 15
main steps, 16
maintain loop invariant, 16
make progress, 16
measure of progress, 13
running time, 8, 19
special cases, 19
specification, 12
types of iterative algorithms, 21
case analysis, 22
more of input, 21; insertion sort example,
23

more of output, 21; selection sort example,

22
search space narrowing, 22
binary search narrowing example, 24
work done, 22
bubble sort example, 25

iterative sorting algorithms

bucket sort by hand, 71
counting sort, 72

logarithms, 374
base, 376
exercise solutions, 432
ratio, 376
rules, 375
uses, 374
longest block of ones example, 37
longest-common-sequence problem, 169, 295
base cases, 297
code, 297
greedy algorithm, 295
little bird possible answers, 295
little bird question, 296
longest common sequence, 295
optimal solution construction, 299
set of subinstances, 296
table fill order, 297
table indexed by subindexes construction,
297
time/space requirements, 299
longest increasing contiguous subsequence
example, 301
longest increasing subsequence example, 301
looking forward vs. backward, recursive

radix counting sort, 76
radix sort, 75

job/event scheduling see event scheduling
kth smallest element example, 117

Las Vegas model, 347
linear function, 382
linear programming, 219 see also network flow
Euclidean space interpretation, 220
example, 219
formal specification, 219
hill-climbing algorithm, 221
matrix representation, 220
network flows, 220
running time, 223
small local maximum, 222
link list implementation, 51
adding node to end, 53
adding node to front, 51
deleting node, 55
hidden invariants, 51
initialize walk, 54
notation, 51
removing node from end, 53
removing node from front, 52
testing whether empty, 53
walking down linked list, 53
Little Oh definition, 85, 386
Little Omega definition, 85, 386

algorithms, 99
algorithm, 99

loop invariant for lower bounds, 85

asymptotic notation, 85

binary search returning index example, 89
binary search returning yes/no, 91
dynamic algorithms, 90

exercise solutions, 415

flipping a bit, 90

loop invariant argument, 86

lower bounds proof, state of art, 92
multiplexer example, 90

parity example, 89, 90

sorting example, 87

time complexity, 85

upper bound, algorithm, 85

loop invariants for iterative algorithms, 8, 13,

15

lower bounds, 82, 85, 92, 264, 325, 415, 425 See

alsoloop invariant for lower bounds
for GCD, 82
loop invariant for lower bounds, 85
lower bounds proof, state of art, 92
reductions, 324

magic sevens, 62

basic steps, 63

establishing loop invariant, 64
exit condition, 64

loop invariant, 63

maintain loop invariant, 63

Index

running time, 64
specifications, 62
matrix multiplication
all pairs, 314
chains of, solution as tree, 306
Strassen’s matrix multiplication example, 126
measures of progress, loop invariants
merge sort example, 114
merging with queue, 56
meta-algorithms, xiii, 2
min cut specification, 199
Monte Carlo model, 348
more of input
more-of-the-input iterative loop invariant
algorithms, 21, 29, 67, 102, 227, 300, 412
coloring the plane example, 29
deterministic finite automation, 31
exercise solutions, 412
in dynamic programming
longest increasing contiguous
subsequence example, 301
longest increasing subsequence example,
301
in greedy algorithms, 228
more-of-the-input vs. more-of-the-output, 39
tournament example, 39
recursive algorithms, link to, 102
in VLSI chip testing example, 67
more-of the-output loop invariant algorithms,
21
selection sort example, 22
Euler cycle example, 40
multiplexer example, 90, 90

narrowing the search space, 22, 24, 60, 86, 102,
228,414
binary search example, 24
binary search trees, 60
exercise solutions, 414
magic sevens, 62
VLSI chip testing, 65
network flows/linear programming, 198
bipartite matching using network flow, 342
exercise solutions, 422
hill-climbing algorithm, small local
maximum, 200
linear programming, 219
min cut specification, 199

classifying problems, 326

exercise solutions, 430

lower bounds, 325

NP completeness proof steps, 330, 331
nondeterministic polynomial-time

decision problems (NP), 330

reduction Pypqy P2, 324

reverse reductions, 325

satisfiability vs. optimization
Alg for optimization problem, 329
CIR-SAT, 326
optimization problems, 328

3 coloring example, 324

upper bounds, 324

why reduce, 324

operations on integers, 122

bY example, 122
Strassen’s matrix multiplication example, 126
xyz example, 123

optimization problems, 171

examples, 172

airplane, 172

course scheduling, 172

longest common sequence, 172
network flow, 198
problem specification, 171

parity example, 89, 90
parsing with stack, 57. See also context-free

parsing
code, 58
ending, 58
example, 57
initial conditions, 58
loop invariant, 58
maintaining loop invariant, 58
parsing only, 59
parsing with context-free grammar, 59
specifications, 57

partial order linear ordering, 194

depth-first search algorithm, 195

easy but slow algorithm, 195

partial order definition, 194

shortest weight path, DAG, 196

topological sort problem specifications,
195

total order definition, 194

445

primal-dual hill climbing method, 206
specification, 198
steepest-ascent hill-climbing algorithm, 214

nondeterministic polynomial-time decision

problems (NP) completeness, 324
bipartite matching, network flow algorithm,
342, 343

postconditions, 1

preconditions, 1

primal-dual hill climbing method, 206
algorithm, 206
ending, 209
max-flow-min-cut duality principle, 213
running time, 213

446

Index

primality testing, randomized, 349
printing neatly example, 277

quantifiers. See existential/universal quantifiers
quadratic function, 382
quick sort

example, 116

randomized, 348

radix counting sort, 76
algorithm, 77
example, 77
running time, 78
specifications, 77
radix sort, 75
basic steps, 75
ending, 76
establishing loop invariant, 76
loop invariant, 76
maintain loop invariant, 76
specification, 75
randomized algorithms, 346
hiding worst cases from adversary, 346, 347
deterministic worst case model, 347
game show problem, 348
Las Vegas model, 34
Monte Carlo model, 348
quick sort, 348
randomized counting, 349
randomized primality testing, 349
optimization problems with random
structure, 350
expander graphs, 351
max cut problem, 350
VLSI chip testing, 69
randomly generating maze, 156
initial conditions, 157
postcondition, 156
precondition, 156
running time, 158
searching maze, 158
subinstances, 157
recurrence relations, 398
exercise solutions, 433
proofs, 401
in recursive backtracking algorithms, 259
recursive programs timing, 398
solving recursive relations, 399
recursion 97
friends level of abstration, 100
on trees
exercise solutions, 419
generalizing problem solved, 138
heap sort/priority queues, 141

recursive definition of tree, 130
representing expressions with trees, 149
simple examples, 135
recursive algorithms see also recursive
backtracking
checklist for, 104
code structure, 104
specifications, 105
tasks to complete, 107
variables, 105
correctness proof, with strong induction, 113
examples
Ackermann’s function, 127
exercise solutions, 417
operations on integers, 122
bN example, 122
Strassen’s matrix multiplication example,
126
xyzexample, 123
exercise solutions, 416
base cases, 101
general input, 100
generalizing the problem, 101
link to techniques, iterative algorithms, 102
minimizing number of cases, 101
running time, 102
size, 100
specifications, 100
looking forward vs. backward, 99
solving, 127
sorting/selecting algorithms, 114
choosing the pivot, 118
finding the kth smallest example, 117
general recursive sorting algorithm, 114
merge sort example, 114
partitioning according to pivot element,
120
quick sort example, 116
stack frame, 110
strong induction, 112, 112
tower of Hanoi, 102
recursive backtracking algorithms, 251, 425
as sequence of decisions, 251
best animal searching example, 253
maze searching example, 252
developing steps, 256
exercise solutions, 425
pruning branches, 260
greedy algorithms, 260
queens problem example, 256
satisfiability, 261
code, 264
Davis-Putnam, 263
instances/subinstances, 262
pruning, 263

Index

running time, 264
satisfiability problem, 261
solutions iterating, 262
recursive depth-first search, 192
achieving postcondition, 193
code, 192
example, 193
running time, 194
recursive images, 153
exercise solutions, 421
fixed recursive/base case image, 153
base case, 153
birthday cake, 154
examples, 154
fractal, 155
image drawing, 153
man recursively framed, 154
recursing, 154
rotating square, 154
randomly generating maze, 156
recursive image specification, 153
reduction, 324
dynamic programming algorithms via,
318
best path similarity, 319
bigger-is-smarter elephant problem,
322
event scheduling problem, 319
graph instance formation, 319
mapping back algorithm, 321
lower bound, 325
optimization problems reduction, 326
reverse reduction, 325
upper bound, 324
use in classifying problems, 326
running time, 2. See also time/space complexity
Ackermann’s function,128
best binary search tree, 313
binary search, 24
binary search trees, 61
coloring the plane, 30
context-free grammar parsing, 165
counting sort, 75
dynamic programming, 277
GCD algorithm, 82
generic search algorithm, 177
heapsort, 147
heapify, 143
interval cover, 243
iterative algorithms, 8, 19
job/event scheduling, 240
linear programming, 223
makeheap, 145
magic sevens, 62
merge sort, 115

minimum spanning tree, 247

nodes in binary tree, 132

queens problem, 260

quick sort, 116

primal-dual hill climbing method, 213

radix counting sort, 78

randomly generating maze, 158

recursive algorithms, 102

recursive backtracking, 271

satisfiability, 264

steepest-ascent hill-climbing algorithm,
216

towers of Hanoi, 104

union find set system, 50

VLSI chip testing, 69

shortest weight path, directed leveled graph

example, 267

sorting and selection algorithms, 114

bubble sort example, 25
finding the kth smallest example, 117
choosing the pivot, 118
iterative sorting algorithms
bucket sort by hand, 71
counting sort, 72
radix counting sort, 76
radix sort, 75
merge sort, 115
quick sort, 116
randomized quick sort, 348
recursive sorting algorithm, general, 114

stack frame, 110

memory, 111

stack of stack frames, 110

tree of stack frames, 98, 110, 132, 165
using, 111

steepest-ascent hill-climbing algorithm, 214

augmentation path, 215
running time, 216

Strassen’s matrix multiplication example, 126

time/space complexity, 82, 82, 85, 324, 347, 366,

378, 406, 432
examples, 369, 369
exercise solutions, 432
formal definition, 371
as functions, 367
operation definition, 368
purpose, 366
size definition, 367
time complexity of problem, 368

tournament example, 39
towers of Hanoi, 102

code, 104

447

448

Index

towers of Hanoi (cont.)
divide and conquer, 103
running time, 104
specification, 102, 103
subinstance, 104
tree edges, 190
trees, 48. See also binary search trees; recursion
on trees
AVL tree, 49
best AVL tree problem, 313
best binary search tree, 311
binary search tree, 48
chains of matrix multiplications, solution as
tree example, 306
is a tree a binary search tree example, 138
nodes in binary tree example, 131
representing expressions with
differentiate expression example, 150
evaluate expression example, 149
recursive definition of expression, 149
simplify expression example, 151
tree data structure, 149
recursive definition of, 130
of stack frames, 98, 110, 132, 165
traversals, 133

universal quantifiers. See existential/universal
quantifiers
upper bound, 82
cuts as upper bound, 209
for hill-climbing, 222

VLSI chip testing, 65
brute force algorithm, 66
data structure, 66
exiting loop, 69
extending the algorithm, 69
faster algorithm, 67
initial code, 69
loop invariant design, 67
maintaining loop invariant, 68
measure of progress, 68
randomized algorithm, 69
running time, 69
specification, 65

weighted job/event scheduling problem, 303
failed algorithms, 303
greedy dynamic programming, 304
weighted event scheduling problem, 303
work done-bubble sort example, 25

	Cover
	Half-title
	Title
	Copyright
	CONTENTS
	PREFACE
	Introduction
	PART ONE: Iterative Algorithms and Loop Invariants
	1 Iterative Algorithms: Measures of Progress and Loop Invariants
	1.1 A Paradigm Shift: A Sequence of Actions vs. a Sequence of Assertions
	1.2 The Steps to Develop an Iterative Algorithm
	1.3 More about the Steps
	1.4 Different Types of Iterative Algorithms
	1.5 Typical Errors
	1.6 Exercises

	2 Examples Using More-of-the-Input Loop Invariants
	2.1 Coloring the Plane
	2.2 Deterministic Finite Automaton
	2.3 More of the Input vs. More of the Output

	3 Abstract Data Types
	3.1 Specifications and Hints at Implementations
	3.2 Link List Implementation
	3.3 Merging with a Queue
	3.4 Parsing with a Stack

	4 Narrowing the Search Space: Binary Search
	4.1 Binary Search Trees
	4.2 Magic Sevens
	4.3 VLSI Chip Testing
	4.4 Exercises

	5 Iterative Sorting Algorithms
	5.1 Bucket Sort by Hand
	5.2 Counting Sort (a Stable Sort)
	5.3 Radix Sort
	5.4 Radix Counting Sort

	6 Euclid’s GCD Algorithm
	7 The Loop Invariant for Lower Bounds

	PART TWO: Recursion
	8 Abstractions, Techniques, and Theory
	8.1 Thinking about Recursion
	8.2 Looking Forward vs. Backward
	8.3 With a Little Help from Your Friends
	8.4 The Towers of Hanoi
	8.5 Checklist for Recursive Algorithms
	8.6 The Stack Frame
	8.7 Proving Correctness with Strong Induction

	9 Some Simple Examples of Recursive Algorithms
	9.1 Sorting and Selecting Algorithms
	9.2 Operations on Integers
	9.3 Ackermann's Function
	9.4 Exercises

	10 Recursion on Trees
	10.1 Tree Traversals
	10.2 Simple Examples
	10.3 Generalizing the Problem Solved
	10.4 Heap Sort and Priority Queues
	10.5 Representing Expressions with Trees

	11 Recursive Images
	11.1 Drawing a Recursive Image from a Fixed Recursive and a Base Case Image
	11.2 Randomly Generating a Maze

	12 Parsing with Context-Free Grammars

	PART THREE: Optimization Problems
	13 Definition of Optimization Problems
	14 Graph Search Algorithms
	14.1 A Generic Search Algorithm
	14.2 Breadth-First Search for Shortest Paths
	14.3 Dijkstra's Shortest-Weighted-Path Algorithm
	14.4 Depth-First Search
	14.5 Recursive Depth-First Search
	14.6 Linear Ordering of a Partial Order
	14.7 Exercise

	15 Network Flows and Linear Programming
	15.1 A Hill-Climbing Algorithm with a Small Local Maximum
	15.2 The Primal…Dual Hill-Climbing Method
	15.3 The Steepest-Ascent Hill-Climbing Algorithm
	15.4 Linear Programming
	15.5 Exercises

	16 Greedy Algorithms
	16.1 Abstractions, Techniques, and Theory
	16.2 Examples of Greedy Algorithms 16.2.1 Example: The Job/Event Scheduling Problem
	16.2.2 Example: The Interval Cover Problem
	16.2.3 Example: The Minimum-Spanning-Tree Problem
	16.3 Exercises

	17 Recursive Backtracking
	17.1 Recursive Backtracking Algorithms
	17.2 The Steps in Developing a Recursive Backtracking
	17.3 Pruning Branches
	17.4 Satisfiability
	17.5 Exercises

	18 Dynamic Programming Algorithms
	18.1 Start by Developing a Recursive Backtracking
	18.2 The Steps in Developing a Dynamic Programming Algorithm
	18.3 Subtle Points
	18.3.1 The Question for the Little Bird
	18.3.2 Subinstances and Subsolutions
	18.3.3 The Set of Subinstances
	18.3.4 Decreasing Time and Space
	18.3.5 Counting the Number of Solutions
	18.3.6 The New Code

	19 Examples of Dynamic Programs
	19.1 The Longest-Common-Subsequence Problem
	19.2 Dynamic Programs as More-of-the-Input Iterative Loop Invariant Algorithms
	19.3 A Greedy Dynamic Program: The Weighted Job/Event Scheduling Problem
	19.4 The Solution Viewed as a Tree: Chains of Matrix Multiplications
	19.5 Generalizing the Problem Solved: Best AVL Tree
	19.6 All Pairs Using Matrix Multiplication
	19.7 Parsing with Context-Free Grammars
	19.8 Designing Dynamic Programming Algorithms via Reductions

	20 Reductions and NP-Completeness
	20.1 Satisfiability Is at Least as Hard as Any Optimization Problem
	20.2 Steps to Prove NP-Completeness
	20.3 Example: 3-Coloring Is NP-Complete
	20.4 An Algorithm for Bipartite Matching Using the Network Flow Algorithm

	21 Randomized Algorithms
	21.1 Using Randomness to Hide the Worst Cases
	21.2 Solutions of Optimization Problems with a Random Structure

	PART FOUR: Appendix
	22 Existential and Universal Quantifiers
	23 Time Complexity
	23.1 The Time (and Space) Complexity of an Algorithm
	23.2 The Time Complexity of a Computational Problem

	24 Logarithms and Exponentials
	25 Asymptotic Growth
	25.1 Steps to Classify a Function
	25.2 More about Asymptotic Notation

	26 Adding-Made-Easy Approximations
	26.1 The Technique
	26.2 Some Proofs for the Adding-Made-Easy Technique

	27 Recurrence Relations
	27.1 The Technique
	27.2 Some Proofs

	28 A Formal Proof of Correctness

	PART FIVE: Exercise Solutions
	Chapter 1. Iterative Algorithms: Measures of Progress and Loop Invariants
	Chapter 2. Examples UsingMore-of-the-Input Loop Invariant
	Chapter 3. Abstract Data Types
	Chapter 4. Narrowing the Search Space: Binary Search
	Chapter 6. Euclid’s GCD Algorithm
	Chapter 7. The Loop Invariant for Lower Bounds
	Chapter 8. Abstractions, Techniques, and Theory
	Chapter 9. Some Simple Examples of Recursive Algorithms
	Chapter 10. Recursion on Trees
	Chapter 11. Recursive Images
	Chapter 12. Parsingwith Context-Free Grammars
	Chapter 14. Graph Search Algorithms
	Chapter 15. Network Flows and Linear Programming
	Chapter 16: Greedy Algorithms
	Chapter 17. Recursive Backtracking
	Chapter 18. Dynamic Programming Algorithms
	Chapter 19. Examples of Dynamic Programs
	Chapter 20. Reductions and NP-Completeness
	Chapter 22. Existential and Universal Quantifiers
	Chapter 23. Time Complexity
	Chapter 24. Logarithms and Exponentials
	Chapter 25. Asymptotic Growth
	Chapter 26. Adding-Made-Easy Approximations
	Chapter 27. Recurrence Relations

	CONCLUSION
	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 15%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.30000
 0.30000
 0.30000
 0.30000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d002000650069006e0065006e00200042006500720069006300680074002000fc00620065007200200064006900650020005000440046002f0058002d00310061002d004b006f006d007000610074006900620069006c0069007400e4007400200065007200680061006c00740065006e00200075006e00640020005000440046002d0044006f006b0075006d0065006e007400650020006e00750072002000640061006e006e0020007a0075002000650072007300740065006c006c0065006e002c002000770065006e006e0020007300690065002000fc0062006500720020006400690065007300650020004b006f006d007000610074006900620069006c0069007400e400740020007600650072006600fc00670065006e002e0020005000440046002f00580020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020007a0075006d002000410075007300740061007500730063006800200076006f006e0020006400690067006900740061006c0065006e00200044007200750063006b0076006f0072006c006100670065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200034002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064002700e900760061006c0075006500720020006c006100200063006f006e0066006f0072006d0069007400e9002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d0031006100200065007400200064006500200063006f006e0064006900740069006f006e006e006500720020006c0061002000700072006f00640075006300740069006f006e00200064006500200064006f00630075006d0065006e007400730020005000440046002000e000200063006500740074006500200063006f006e0066006f0072006d0069007400e9002e0020005000440046002f0058002000650073007400200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200065006e0020007300610076006f0069007200200070006c0075007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740065007a0020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e00200034002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF005000440046002f0058002d0031006100206e9662e0306e30ec30dd30fc30c87528304a30883073658766f84f5c62107528306b4f7f75283057307e30593002005000440046002f00580020306f30b030e930d530a330c330af002030b330f330c630f330c4590963db306b304a3051308b002000490053004f00206a196e96306730593002005000440046002f0058002d0031006100206e9662e0306e658766f84f5c6210306b306430443066306f0020004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430024f5c62103057305f00200050004400460020306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200034002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f007300200050004400460020006500200065006d0069007400690072002000720065006c0061007400f300720069006f007300200073006f00620072006500200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002e0020005000440046002f0058002000e900200075006d0020007000610064007200e3006f002000640061002000490053004f00200070006100720061002000740072006f0063006100200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000550073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200034002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c00200061007400200072006100700070006f007200740065007200650020006f006d0020006f0076006500720068006f006c00640065006c007300650020006100660020005000440046002f0058002d003100610020006f00670020006b0075006e002000700072006f0064007500630065007200650020005000440046002d0064006f006b0075006d0065006e007400650072002c002000680076006900730020006400650020006f0076006500720068006f006c0064006500720020007300740061006e00640061007200640065006e002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e0067002000610066002000670072006100660069006b0069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006f0076006500720068006f006c0064006500720020005000440046002f0058002d00310061002c002000660069006e00640065007200200064007500200069002000620072007500670065007200760065006a006c00650064006e0069006e00670065006e002000740069006c0020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d00200064006500200063006f006d007000610074006900620069006c006900740065006900740020006d006500740020005000440046002f0058002d0031006100200074006500200063006f006e00740072006f006c006500720065006e00200065006e00200061006c006c00650065006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000740065002000700072006f006400750063006500720065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e002e0020005000440046002f0058002000690073002000650065006e002000490053004f002d007300740061006e0064006100610072006400200076006f006f00720020006800650074002000750069007400770069007300730065006c0065006e002000760061006e002000670072006100660069007300630068006500200069006e0068006f00750064002e002000520061006100640070006c0065006500670020006400650020006700650062007200750069006b00650072007300680061006e0064006c0065006900640069006e0067002000760061006e0020004100630072006f00620061007400200076006f006f00720020006d00650065007200200069006e0066006f0072006d00610074006900650020006f00760065007200200068006500740020006d0061006b0065006e002000760061006e0020005000440046002d0064006f00630075006d0065006e00740065006e002000640069006500200063006f006d007000610074006900620065006c0020007a0069006a006e0020006d006500740020005000440046002f0058002d00310061002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200034002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e00650073002000700061007200610020007200650061006c0069007a0061007200200075006e00200069006e0066006f0072006d006500200073006f0062007200650020006c006100200063006f006d007000610074006900620069006c006900640061006400200063006f006e0020005000440046002f0058002d0031006100200079002000670065006e006500720061007200200064006f00630075006d0065006e0074006f007300200050004400460020007300f3006c006f00200073006900200073006f006e00200063006f006d00700061007400690062006c00650073002e0020005000440046002f005800200065007300200075006e002000650073007400e1006e006400610072002000490053004f0020007000610072006100200065006c00200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200061006300650072006300610020006400650020006300f3006d006f00200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006d00e400e4007200690074007400e400e40020005000440046002f0058002d00310061002d00790068007400650065006e0073006f0070006900760075007500640065006e0020006a00610020006c0075006f00640061002000730065006e0020006d0075006b006100690073006900610020005000440046002d0061007300690061006b00690072006a006f006a0061002e0020005000440046002f00580020006f006e002000490053004f002d007300740061006e006400610072006400690073006f006900740075002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e0020006500730069007400790073006d0075006f0074006f002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0061007300690061006b00690072006a006f006a0065006e0020006c0075006f006e006e00690073007400610020006f006e002000410064006f006200650020004100630072006f0062006100740020002d006b00e400790074007400f6006f0070007000610061007300730061002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200034002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000760065007200690066006900630061007200650020006c006100200063006f006e0066006f0072006d0069007400e0002000610020005000440046002f0058002d0031006100200065002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200073006f006c006f00200069006e0020006300610073006f00200064006900200063006f006e0066006f0072006d0069007400e0002e0020005000440046002f0058002000e800200075006e006f0020007300740061006e0064006100720064002000490053004f00200070006500720020006c006f0020007300630061006d00620069006f00200064006900200063006f006e00740065006e00750074006f0020006700720061006600690063006f002e002000500065007200200075006c0074006500720069006f0072006900200069006e0066006f0072006d0061007a0069006f006e0069002000730075006c006c006100200063007200650061007a0069006f006e006500200064006900200064006f00630075006d0065006e00740069002000500044004600200063006f006e0066006f0072006d0069002000610020005000440046002f0058002d00310061002c00200063006f006e00730075006c00740061007200650020006c0061002000470075006900640061002000640065006c006c0027007500740065006e007400650020006400690020004100630072006f006200610074002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200034002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e500200072006100700070006f007200740065007200650020006f006d0020005000440046002f0058002d00310061002d006b006f006d007000610074006900620069006c00690074006500740020006f00670020006c0061006700650020005000440046002d0064006f006b0075006d0065006e00740065007200200062006100720065002000680076006900730020006b006f006d007000610074006900620065006c002e0020005000440046002f005800200065007200200065006e002000490053004f002d007300740061006e006400610072006400200066006f00720020006700720061006600690073006b00200069006e006e0068006f006c006400730075007400760065006b0073006c0069006e0067002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006b0061006e002000640075002000730065002000690020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200034002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e006400200065006e00640061007300740020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200072006100700070006f007200740065007200610020006f006d0020005000440046002f0058002d00310061002d007300740061006e00640061007200640020006f0063006800200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a00650072002000640065006e006e00610020007300740061006e0064006100720064002e0020005000440046002f0058002000e4007200200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e0020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d002000680075007200200064007500200073006b00610070006100720020005000440046002d0064006f006b0075006d0065006e007400200073006f006d0020006600f6006c006a006500720020005000440046002f0058002d0031006100200068006900740074006100720020006400750020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e0020006600f600720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Cambridge University Press - Distiller version 6 job options for Press quality - 16-Feb-05)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

