
Build process & build
management & docker

PTS3 / FMFI UK / 10.4.2025, 14.4.2025, 24.4.2025 Jana Kostičová

Build process

Building SW = processing source code and its dependencies into a
form that can be executed or used by a computer system.

● Writing / generating sources
● Static checking
● ….

● Preprocessing (C / C++, some Fortran dialects, ..)
● Compilation (compiled languages)
● Linking (C / C++, assembly language, ..)
● Dependency resolution
● Packaging / bundling

● Automated tests
● Deployment
● ….

Broader
build process

Broader
build process

Core
build process

It depends on various factors
what activities are involved
(programming language,
size and type of application,
target environment, ...)

Build tools

● Manual building - may suffice for extremely small projects with minimal dependencies
● Build tools - highly recommended if we have anything more complex

GNU make, Maven, Gradle, Vite, …

Key functionalities

● Build automation
○ Scripting tasks for efficient and repeatable builds

● Build configuration
○ Defining different build configurations (e.g., development, testing, production).

● Dependency management
○ Automatically managing external libraries needed by the software

● Running automated tests
● Facilitating Continuous Integration (CI)

Simple projects

Local
build &
tests

Change Main
codebase

push /
pull request + merge

● Build tools might not be needed
● Code quality is only checked locally

Continuous Integration (CI) workflow

Pull
request

Automated
build

Automated
tests

Code review

Main
codebase

Merge
OK

Pull
request Code review

Fail

Local
build &
tests

Automated
build

Automated
tests

CI solution
Change

Local
build &
tests

Change

Local builds vs CI builds

● Local builds
○ Provide a fast feedback loop for developers during their coding process
○ Help to catch errors early on before committing code

● CI builds
○ Offer a “safety net” by ensuring code integrates and functions correctly before merging

into the main codebase
○ Provides feedback to the developer on the success or failure of the build and test
○ Requires automatization of build process

● Together, they help maintain code quality and catch issues early in the
development cycle

● Both of them should use the same build tool and similar configuration
○ Some differences may appear (e.g., omitting some tests in local environment)

C / C++

C / C++ build process

.c / .cpp
files

Pre-
processor Linker.i

files
.s

files
.o

files
Assembler

Single
executable

Resolves macros and
handle directives:
#include,
#define, #if,
#elif, #endif
 #ifdef, #ifndef

Converts
preprocessed
code to
assembly

Converts
assembly to
machine
code

Combines
object files and
static libraries
into single
executable

Machine-
independent

process*

Machine-
dependent
process

.a / .lib
files

.so / .dylib
files

.lib
files

Static
libraries

Shared (dynamic)
libraries
Linux/macOS

Loader

Import libraries
Win - API / ABI only

.so /
.dylib
files

.dll
files

Execution
(outside the build process)

Win

Linux / macOS

🛈 Operating systems are primarily
written in C/C++ so they natively
support C/C++ applications

.h
files

IR

Compiler

* platform-specific header files can be used

Static vs shared libraries

Static linking (static libraries) Dynamic linking (shared libraries)

Library contents Copied into the executable Referenced

Executable size Larger Smaller

Runtime dependency None Yes

Library updates Requires rebuilding the application No rebuilding (supposing API / ABI does not change)

Portability Portable Fragile

Startup performance Usually faster Usually slower due to runtime linking

Memory usage Generally larger Generally smaller, especially if many application use
the library

Header files

● “Interface” of a library or another source file
○ Declarations - function prototypes, external variables, structures, typedefs, classes (C++)…
○ Definitions (rarely)
○ Macros

● Header file need to be included for each
○ set of functions used from a static library
○ set of functions used from a shared library
○ set of functions used from another source file

→ need by compiler: type checking, separate compilation

System libraries

● Provide system functions such as memory management, process creation,
file handling,..

● C standard library
○ Shared version (.dll / .so) always globally available
○ Static version is mostly available or can be installed
○ Linker mostly finds it automatically, no need to provide the path/name manually
○ Header files: Part of C/C++ specifications, OSs should follow it (OS-specific extensions exist)
○ Implementation: Different, OS-specific

● Other
○ Win - Windows API: kernel32.dll, user32.dll, and gdi32.dll, …
○ Linux - libpthread, libm, libX11 …
○ macOS - libobjc, libpthread.libm, …
○ Available often only as shared libraries

DLL hell
● Windows 95/98/NT
● Applications

crashing because of
incompatible DLL
versions, missing /
conflicting DLLs ,...

C / C++ 3rd party and user-defined libraries

● 3rd party
● Examples: OpenSSL, SQLite, libcurl (network transfer), ..
● Mostly provided in both static and shared version

● When to use your own library
● Common reasons (modularity, reusability, encapsulation, ...)

● When to use your own static library
● You want to avoid surprises at runtime
● You want single executable deployment
● You don’t mind larger executable

● When to use your own shared library
● More applications uses the same functionality and you want to take advantage of memory sharing
● You want to update the library independently of the applications that use it
● You want smaller executable size

Where OSs look for shared libraries at runtime

Linux (ld.so, ld-linux.so)

1. rpath
2. LD_LIBRARY_PATH
3. /lib, /usr/lib, /lib64, usr/lib64
4. /etc/ld.so.conf

MacOS (dyld)

1. rpath
2. DYLD_LIBRARY_PATH
3. /usr/lib, /System/Library/Frameworks, Library/Frameworks
4. dyld cache

Windows (kernel32.dll / ntdll.dl)

1. Directory of the executable
2. Current working directory
3. C:\Windows\System32, C:\Windows\SysWow64, C:\Windows
4. PATH
5. Registry

Building C/C++ libraries

.c / .cpp
files

Pre-
processor

.i
files

.s
files

.o
files

AssemblerCompiler Archiver

.c / .cpp
files

Pre-
processor

.i
files

.s
files

.o
files

AssemblerCompiler Linker

.a / .lib
files

.so / .dylib
files

.lib + .dll
files

Linux / macOS

Win

Linux / macOS / Win

GNU make

● Emerged in the late 1970s and still used today
● Popular for C/C++, can be used also for other languages
● Configuration file: Makefile

Main features
● Tracks dependencies between target files and their prerequisites efficiently
● Rebuilds only what's necessary based on changes
● Extensible through scripting and external tools

Limitations
● Relies on shell scripting
● Works well with small / medium sized projects, large projects can become hard to maintain
● Incremental build does not work well for file collections
● No support for managing external dependencies

Manual: https://www.gnu.org/software/make/manual/

Incremental build - aims to
minimize the amount of work
needed to rebuild a project after
changes have been made

limits make usage for Java projects

https://www.gnu.org/software/make/manual/

CMake

● First release in 2000
● Cross-platform
● Uses compiler-independent instructions for building applications
● Provide generators that translates these instructions to native build tools

○ Makefile, Visual Studio project files, …
○ Generated files are not intended to be edited manually

Java

Java - build process

.java
files

Compiler
(javac)

.class
files

Converts source files to
bytecode

Machine-
Independent

process

Machine-
dependent
process

.jar
files

Interpreter /
JIT compiler

JVM execution
(outside the build process)

.class files +
resource files
+ metadata

Java libraries

JAR files

= standard way to represent Java libraries

● They typically consist of classes, resource files and metadata (manifest file)
● JARs are runtime dependencies, dynamically loaded by JVM’s class loader
● Each Java application typically loads classes from JARs into its own memory space (some

mechanisms for class sharing exist - e.g., Class Data Sharing, Application Servers)

.class
files

JAR tool JAR file

resources

metadata

Java build tools

Make ❓- issues arise:

● Java language-level dependencies during compilation
○ javac handles these dependencies within a given set of source files automatically
○ Makefile is primarily designed to have a single target file per rule - it doesn’t work well at collection

level (everything is recompiled even in case of a single change)
● Java project structure

○ Java projects typically organize source code by package structure that often result in deeply nested
directories such as src/main/java/com/example/myapp/model/

○ Makefile can become cumbersome and difficult to maintain.

● External dependencies, manual JAR creation, classpath handling..

Ant, Maven, Gradle ✅
● Better choice

Apache Ant

● Released in 2000
● Configuration file: build.xml

Main features
● Uses XML
● Specifies build steps and tracks compilation dependencies similarly to “make” tool

(imperative approach)
● <javac>, <jar> and <java> tasks simplify build and run
● Incremental build for collection of source files
● Limited management of external dependencies
● Cross-platform, extensible, adapts to existing project layout

Limitations
● Limited external dependency management - Ant has no means of downloading

external dependencies from a central repository or resolve version conflicts
● No direct support for running automated tests

Apache Maven

● Released in 2004
● Emerged from within the Java ecosystem to address its specific needs
● Configuration file: pom.xml

Main features
● It uses XML
● Predefined build phases - build process is defined using plugins and goals, build phases are

performed based on this configuration (declarative approach)
● Less verbose than Ant
● Robust dependency management - libraries are downloaded from maven repository, versions are

tracked explicitly allowing version conflict detection

Limitations
● Steeper learning curve
● It works best with standard Maven project structure
● Customization might be complex - it is required to be familiar with Maven plugin development

Apache Maven - default build phases

● validate
● compile
● test
● package (e.g. to JAR / WAR / EAR file)
● integrate-test
● verify (additional checks on the packaged artifact)
● install (installing packaged artifact into local Maven repository)
● deploy (deploying packaged artifact into remote repository)

Gradle

● Released in 2009
● Configuration file: build,gradle

Main features

● Concise syntax - uses Groovy and Kotlin-based DSL
● Flexible approach to determine the execution order of the tasks (DAG)
● Robust dependency management

Limitations

● High flexibility may lead to complex configuration files with hard-to-understand
semantics

Python

Python - build process

requirements.
txt

Package
installer

Machine-
Independent

process

Machine-
dependent
process

Compiler

.py files

Python interpreter
(outside the build process)

Packaging/
Bundling

metadata
sdist/

wheel file

Python standard
library

Python Virtual
Machine

.pyc files
(bytecode)

Mostly platform-
independent, but
might contain
platform-specific
parts

.py files

.py files
(“libraries”)

pip, conda, poetry, ..
Virtual environment is
highly recommended

Package
distribution
formats.

Package management ecosystem

🛈 Bundling is also used to create
standalone platform-specific executables
(.exe, .app) and for other purposes.

setuptools, poetry, ..

Pre-
process-
ing

Compilation Static
linking

Build tools /
package managers
(PM) - examples

(External) dependency
management

Packaging /
bundling

C / C++ Yes Yes Yes make, CMake
PMs: vcpkg, Conan
System PMs: apt,
yum

Generally not needed
(static linking &
pre-installed standard
libraries). Some package
managers are available.

Generally not
needed
(static linking
results in single
executable).

Java No Yes (to
bytecode)

No Ant, Maven, Gradle Recommended (Maven,
Gradle)

Recommended
(jar / war / ear)

C# No Yes (to CIL /
bytecode)

No MSBuild
PM: NuGet

Optional (pre-installed
standard libraries vs.
NuGet)

Recommended
(MSBuild)

Python No No No pip + venv +
setuptools
Poetry, Hatch

Recommended (for
example PyPI repository
& pip)

Recommended

JavaScript No Optional /
transpiling to
older JS

No Webpack, Parcel,
Vite, esbuild
PMs: npm, yarn

Recommended (npm,
yarn)

Recommended

References

● Wikipedia: Software build
● ISO/IEC 9899:2024 (en) — N3220 working draft (PDF), open-std.org.

2024-02-22 (almost identical to official C23 standard)
● GNU make: https://www.gnu.org/software/make/
● CMake: https://cmake.org/
● Apache Ant: https://ant.apache.org/
● Apache Maven: https://maven.apache.org/
● Gradle: https://gradle.org/

https://en.wikipedia.org/wiki/Software_build
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3220.pdf
https://www.gnu.org/software/make/
https://cmake.org/
https://ant.apache.org/
https://maven.apache.org/
https://gradle.org/

Docker

Docker

● First released in 2013
● OS-level virtualization
● Docker container packages an application and its dependencies that can run as an isolated process

on the host system
○ Self-contained
○ Isolated
○ Independent
○ Portable

● Docker container vs virtual machine

More info:

● https://en.wikipedia.org/wiki/OS-level_virtualization
● https://en.wikipedia.org/wiki/Docker_(software)
● https://www.youtube.com/watch?v=8fi7uSYlOdc (insights into how the containers work)

https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Docker_(software)
https://www.youtube.com/watch?v=8fi7uSYlOdc

Docker concepts
We mostly use 101 course from https://www.docker.com/101-tutorial

SW:
● Docker daemon
● Docker client program

Objects:
● Docker container
● Docker image
● Docker service (we will not speak about this today)

Registries:
● Docker registry (default one Docker Hub)

Tools:
● Docker Dashboard
● Docker Compose
● Docker Swarm (we will not speak about this today)

https://www.docker.com/101-tutorial

Container

Container

Container

ImageDockerfile

docker
build

docker
run

docker
exec

Terminal

docker
stop

docker
rm

Base
image

OS layer
and tooling
(“scratch”
option)

References

● https://en.wikipedia.org/wiki/OS-level_virtualization
● https://en.wikipedia.org/wiki/Docker_(software)
● https://docs.docker.com/engine/reference/commandline/docker/ - CLI

reference
● https://www.youtube.com/watch?v=8fi7uSYlOdc (insights into how the

containers work)
● R. Lukoťka: Docker

https://en.wikipedia.org/wiki/OS-level_virtualization
https://en.wikipedia.org/wiki/Docker_(software)
https://docs.docker.com/engine/reference/commandline/docker/
https://www.youtube.com/watch?v=8fi7uSYlOdc
http://www.dcs.fmph.uniba.sk/~kosticova/202324/pts3_materialy/docker.txt

