
Build process & build
management

PTS3 / FMFI UK / 24.4.2024 Jana Kostičová

Build process

Building SW = processing source code and its dependencies into a
form that can be executed or used by a computer system.

● Writing / generating sources
● Static checking
● ….

● Preprocessing (C / C++, some Fortran dialects, ..)
● Compilation (compiled languages)
● Linking (C / C++, assembly language, ..)
● Dependency resolution
● Packaging / bundling

● Automated tests
● Deployment
● ….

Broader
build process

Broader
build process

Core
build process

It depends on various factors
what activities are involved
(programming language,
size and type of application,
target environment, ...)

Build tools

● Manual building - may suffice for extremely small projects with minimal
dependencies

● Build tools - highly recommended if we have anything more complex

Key functionalities
● Build automation

○ Scripting tasks for efficient and repeatable builds
● Build configuration

○ Defining different build configurations (e.g., development, testing, production).
● Dependency management

○ Automatically managing external libraries needed by the software
● Running automated tests
● Facilitating Continuous Integration (CI)

Simple projects

Local
build &
tests

Change Main
codebase

push /
pull request + merge

● Build tools might not be needed
● Code quality is only checked locally

Continuous Integration (CI) workflow

Pull
request

Automated
build

Automated
tests

Code review

Main
codebase

Merge
OK

Pull
request Code review

Fail

Local
build &
tests

Automated
build

Automated
tests

CI solution
Change

Local
build &
tests

Change

Local builds vs CI builds

● Local builds
○ Provide a fast feedback loop for developers during their coding process
○ Help to catch errors early on before committing code

● CI builds
○ Offer a “safety net” by ensuring code integrates and functions correctly before merging

into the main codebase
○ Provides feedback to the developer on the success or failure of the build and test
○ Requires automatization of build process

● Together, they help maintain code quality and catch issues early in the
development cycle

● Both of them should use the same build tool and similar configuration
○ Some differences may appear (e.g., omitting some tests in local environment)

Build tools - examples

● Make
● Apache Ant
● Apache Maven
● Gradle
● Npm (Node.js / JavaScript)
●

GNU make

● Emerged in the late 1970s and still used today
● Popular for C/C++, can be used also for other languages
● Configuration file: Makefile

Main features
● Tracks dependencies between target files and their prerequisites efficiently
● Rebuilds only what's necessary based on changes
● Extensible through scripting and external tools

Limitations
● Relies on shell scripting
● Works well with simple to moderately complex projects, but very large projects can become

challenging to maintain
● Does not provide support for managing external dependencies (core requirement for Java

projects)

Apache Ant

● Released in 2000
● Configuration file: build.xml

Main features
● Uses XML
● Specifies build steps and tracks compilation dependencies similarly to “make” tool

(imperative approach)
● Provides limited dependency management
● Cross-platform
● Extensible
● Adapts to existing project layout

Limitations
● Limited dependency management - Ant has no means of downloading external

dependencies from a central repository or resolve version conflicts
● No direct support for running automated tests

Apache Maven

● Released in 2004
● Emerged from within the Java ecosystem to address its specific needs
● Configuration file: pom.xml

Main features
● It uses XML
● Predefined build phases - build process is defined using plugins and goals, build phases are

performed based on this configuration (declarative approach)
● Less verbose than Ant
● Robust dependency management - libraries are downloaded from maven repository, versions are

tracked explicitly allowing version conflict detection

Limitations
● Steeper learning curve
● It works best with standard Maven project structure
● Customization might be complex - it is required to be familiar with Maven plugin development

Apache Maven - default build phases

● validate
● compile
● test
● package (e.g. to JAR / WAR / EAR file)
● integrate-test
● verify (additional checks on the packaged artifact)
● install (installing packaged artifact into local Maven repository)
● deploy (deploying packaged artifact into remote repository)

Gradle

● Released in 2009
● Configuration file: build,gradle

Main features

● Concise syntax - uses Groovy and Kotlin-based DSL
● Flexible approach to determine the execution order of the tasks (DAG)
● Robust dependency management

Limitations

● High flexibility may lead to complex configuration files with hard-to-understand
semantics

References

● GNU make: https://www.gnu.org/software/make/
● Apache Ant: https://ant.apache.org/
● Apache Maven: https://maven.apache.org/
● Gradle: https://gradle.org/

https://www.gnu.org/software/make/
https://ant.apache.org/
https://maven.apache.org/
https://gradle.org/

