
Classes

Princípy tvorby softvéru 3 Jana Kostičová

Class

= a template for creating objects

● It defines the properties (attributes) and behaviors (methods, operations) that objects (instances) of
that class will have

● Classes are fundamental building blocks in software design, enabling modular and organized
development. They help manage complexity and promote reusability across different parts of a system

UML Class diagram:
= a structure diagram (it shows the static structure of the objects in a
system)

Class = a classifier whose features are attributes and operations
○ Only class name is mandatory
○ Abstract class - the name is in italics or the annotation {abstract} is used

after or below its name

Name

Attributes

Operations

UML Class diagram: modeling perspectives

Conceptual / domain model
● Represents the concepts in the

domain
● Software is not yet modeled

Classes, possibly with attributes and
high-level operations
Associations, multiplicities

Implementation
model

● Represents specific
implementation

+ All implementation details

“Specification” (logical
application) model

● Focused on software but still
independent from implementation

● Captures data types (abstract)

+ Data types (abstract)
+ Key operations in more detail

Business
analysis

● A perspective can be anything between the simplest form of conceptual model and the most
detailed form of implementation model

● It is first necessary to determine which perspective will be used and to follow it consistently
when modeling

Requirements Design & architecture Implementation

*Three modeling
perspectives according to
Daniels[2002]

Data types - examples

Derived
property

User-defined types

<<primitive>>
Weight

<<dataType>>
Address

street: String
number: String
city: String
postalCode: String
country: String

Patient

- firstName: String
- middleName: String = “”
- lastName: String
- birthDate: Date
- /age: String
- weight: Weight = 0
- bloodGroup: BloodGroup
- rhBloodGroup: RhBloodGroup
- homeAddress: Address
- diagnosis[1..*]: Diagnosis {unique}

Multiplicity

Default valueVisibility (+, -, #, ~)

“Unique”
modifier

<<dataType>>
Diagnosis

code: Integer
name: String
description: String { age = currentDate - birthDate }

<<enumeration>>
BloodGroup

A
B
AB
0

<<enumeration>>
RhBloodGroup

Rh+
Rh-

<<primitive>>
Date

Data types

UML built-in primitive types: Boolean, Integer, UnlimitedNatural, String, Real
● Their purpose is primarily to define the UML itself (they are used in metamodels)

User-defined data types (<<dataType>> stereotype)
= a classifier (similar to class) whose instances are identified only by their value

● A data type can have internal structure (attributes)
● A data type can have operations

Rule of thumb: If you need to add operations to a data type, it may indicate you
need a class instead.

Specializations:
1. Primitive type (<<primitive>> stereotype)

○ Without any substructure.
○ It may have an algebra and operations defined outside of UML, for example,

mathematically.
2. Enumeration (<<enumeration>> stereotype)

○ List of values

Commonly development teams
have a convention that they can
use standard data types from a
particular programming language
as data types in UML, especially
in implementation models.

So how are structured data
types different from classes?

There cannot exist two instances
of the data type with the same
structure and the same values
(they are considered equal).

Class attributes in UML (1)

 [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default] [‘{‘ prop-modifier [‘,’ prop-modifier]* ’}’]

Visibility
● ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

‘/’ - derived property
● = Property which can be computed from other properties

Type
● UML built-in primitive types or user-defined data types

Multiplicity
● Positive number (0, 1, 2, …),
● Interval: lower-bound ‘..’ upper-bound; ‘*’ for infinite upper bound

Default
● An expression for the default value(s) of the property

In UML, class attributes are represented by
properties.

Class attributes in UML (2)

Property modifier

‘readOnly’: Read-only property
‘ordered’: Ordered property
‘unique’ / ‘nonunique’: Duplicates not allowed / allowed in a multi-valued property.
‘redefines’ property-name

● Property redefines an inherited property identified by property-name

‘subsets’ property-name
● Property is a proper subset of the property identified by property-name

‘union’: Property is a derived union of its subsets
 prop-constraint

● An expression that specifies a constraint that applies to the property.

Static attributes are underlined

 [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default] [‘{‘ prop-modifier [‘,’ prop-modifier]* ’}’]

Language-specific
constraints can be used

Class operations - examples

● #display ()
● -hide ()
● +createWindow (location: Coordinates, container: Container [0..1]): Window
● +toString (): String

Visibility (+, -, #, ~)

Parameters

Return type

Class operations in UML (1)

 [visibility] name ‘(‘ [parameter-list] ‘)’ [':' return-spec]
 parameter-list ::= parameter[‘,’ parameter]*

 parameter ::= [direction] parm-name ‘:’ type-expression[‘[‘multiplicity’]’] [‘=’ default] [‘{‘ parm-property[‘,’ parm-property]* ‘}’]

● Visibility
○ As for attributes:
○ ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

● Parameters
○ Direction: ‘in’, ‘out’, ‘inout’ (default = ‘in’)
○ Type-expression: specifies the data type of the parameter
○ Multiplicity, default, parm-property: as for attributes

Class operations in UML (2)

 [visibility] name ‘(‘ [parameter-list] ‘)’ [':' return-spec]
 return-spec ::= [return-type] [‘[‘ multiplicity ‘]’] [‘{‘ oper-property [‘,’ oper-property]* ‘}’]

● Return type
○ UML built-in primitive type or user-defined DataType / Class / Interface

● Operation properties (modifiers):
‘query’ The operation does not change the state of the system
‘ordered’ The values of the return parameter are ordered
‘unique’ The values returned by parameters have no duplicates

‘redefines’ oper-name:
● The operation redefines an inherited operation identified by oper-name

oper-constraint:
● A constraint that applies to the operation.

● Static operations are underlined

Language-specific
constraints can be used

UML association - examples

Student Course
enrolls in ►

Person

parent

child

1..2

0..*

class

Room

CourseTeacher

Time

Association name with “►” symbol
indicating the order of association ends
and reading

Self-association

4-ary
association

Association ends

UML association

= a relationship between classes that indicates that there can be
links between objects of given classes

● Association name (optional)
○ A solid triangle next to the association name indicates the order of association

ends as well as the order of reading (used especially in conceptual modeling)
● Association ends

○ Association has at least two ends
○ Self-associations are allowed
○ Each association end is represented by a property - I.e., properties represent

both class attributes and association ends
● Association and its ends may be derived; marked by ‘/’ before their names.

Attribute vs association

Patient

- firstName: String
- middleName: String = “”
- lastName: String
- weight: Weight = 0
- homeAddress: Address
- diagnosis[1..*]: Diagnosis {unique}
- doctor[0..*]: Doctor

Doctor

0..*0..*

● String, Weight, Address and Diagnosis are dataTypes → attributes
● Doctor is a class → association

“A useful convention for general modeling scenarios is that a Property whose type is a kind
of Class is an Association end, while a property whose type is a kind of DataType is not.
This convention is not enforced by UML.” (UML Specification 2.5.1)

Association end

● Association role name
○ It indicates what role the object of the given class plays within the

relationship

● Multiplicity, visibility
○ As for attributes

● Aggregation kind
○ Aggregation vs composition, see later

● Property string (in curly braces)
○ As property-modifier for attributes

Person

parent

Child
{ordered}

1..2

0..*

Self-association

Association ends with role
names, multiplicities and a
property-modifier {ordered}

● Ownership
○ Association end can be owned by one of the connected classes or by the association itself
○ Indicated by a small circle (“dot” notation)
○ If not shown, the end is owned by the association itself

● Navigability

Association end - ownership and navigability

Navigable
Non-navigable
Unspecified

○ At runtime, objects of class B can be accessed efficiently from objects of class A
○ Association ends owned by classes are always navigable
○ Association ends owned by associations may be navigable or not

A B
AssociationAB

endA endB

association end owned by B association end owned by association

association name

* *

A B

UML aggregation and composition

● Special types of associations
● They have an “aggregation kind” set:

○ Shared → aggregation
○ Composite → composition

Aggregation
● Weak relationship between the whole and its parts - part can exist without the whole

Composition
● Strong relationship between the whole and its parts - part cannot exist without the whole
● If a composite is deleted, its parts are typically deleted as well

Examples

Team

Person

1..*team member

Order

OrderItem

1..*

quantity

Product
1..*

Ski set

1

Skis Ski
boots

0..*

Ski
poles Helmet

Association class

● A class representing an association, allows adding attributes and operations
to the association

● It has the same name as the association

Student Course
Enrollment ►

Enrollment

enrollmentDate
semester

UML generalization

= the taxonomic relationship between a more general class and a more specific
class

● The specific class inherits the features of the more general class
● A class can inherit from multiple general classes

Examples:
Vehicle

Truck Van Bus Car

= a declaration of a coherent service (features and obligations)

● Not instantiable
● Can be implemented by an instantiable classifier
● <<interface>> stereotype

UML interface

isEqual(other:Comparable):
bool
isLess(other:Comparable):
bool

Comparable
<<interface>>

isEqual …
isLess …

Weight

isEqual …
isLess …

String

Implemented by

Dependency relationship

= a relationship where one class (the client) relies on another class (the
supplier) because it uses its services or functionality

● Can be used in multiple UML diagram (class, component, deployment,
use-case)

● Notation:

● Examples
○ Client class uses a supplier class that has global scope
○ Client class uses a supplier class as a parameter for some of its operations
○ Client class uses a supplier class as a local variable for some of its operations
○ …

SupplierClient

Further reading
● R. Lukoťka: Domain analysis, modeling (PTS1)
● S. Ambler: UML Class Diagrams: An Agile Introduction
● M. Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling

Language 3rd Edition, 2003

References
● OMG. OMG Unified Modeling Language. Version 2.5.1, December 2017
● K. Fakhroutdinov: UML Class and Object Diagrams Overview
● R. Červenka, UML Classes
● J. Daniels: Modeling with a Sense of Purpose, 2002
● B. Selic: Getting It Right on the Dot, 2013

http://www.dcs.fmph.uniba.sk/~lukotka/PTS1/2023/05ModelingDomain.pdf
https://agilemodeling.com/artifacts/classDiagram.htm
https://www.omg.org/spec/UML/
https://www.uml-diagrams.org/class-diagrams-overview.html
http://www.dcs.fmph.uniba.sk/~cervenka/ooam/UML.Classes.pdf
https://martinfowler.com/ieeeSoftware/purpose.pdf
https://www.omg.org/ocup-2/documents/getting_it_right_on_the_dot.pdf

