
Classes

Princípy tvorby softvéru 3 Jana Kostičová

Class

= a template for creating objects

● It defines the properties (attributes) and behaviors (methods, operations) that
objects (instances) of that class will have

● Classes are fundamental building blocks in software design, enabling modular and
organized development. They help manage complexity and promote reusability across
different parts of a system

Name

Attributes

Operations

Class in UML:
● A classifier whose features are attributes and operations
● Only class name is mandatory

○ Abstract class - the name is in italics or the textual annotation
{abstract} is used after or below its name

UML Class diagram: modeling perspectives

Conceptual / domain model
● Represents the concepts in the

domain
● Software is not yet modeled

Classes, possibly with attributes and
high-level operations
Associations, multiplicities

Implementation
model

● Represents specific
implementation

+ All implementation details

“Specification” (logical
application) model

● Focused on software but still
independent from implementation

● Captures data types (abstract)

+ Data types (abstract)
+ Key operations in more detail

Business
analysis

● A perspective can be anything between the simplest form of conceptual model and the most
detailed form of implementation model

● It is first necessary to determine which perspective will be used and to follow it consistently
when modeling

Requirements Design & architecture Implementation

*Three modeling
perspectives according to
Daniels[2002]

Class attributes in UML (1)

 [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default] [‘{‘ prop-modifier [‘,’ prop-modifier]* ’}’]

● Visibility
○ ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

● ‘/’ marks derived property
○ = Property which can be computed from other properties

● Type
○ UML built-in primitive types: Boolean, Integer, UnlimitedNatural, String, Real

● Their purpose is primarily to define the UML itself (they are used in metamodels)
○ User-defined data types (DataType)

● Primitive types, structured types and enumerations

● Multiplicity
○ Positive number (0, 1, 2, …),
○ Interval: lower-bound ‘..’ upper-bound; ‘*’ for infinite upper bound

● Default
○ An expression for the default value(s) of the property

Commonly development teams have a
convention that they can use standard data
types from a particular programming
language as data types in UML.

In UML, class attributes are represented by
properties.

Class attributes in UML (2)

● Property modifier

‘readOnly’: Read-only property
‘union’: Property is a derived union of its subsets
‘ordered’: Ordered property
‘unique’ / ‘nonunique’: Duplicates not allowed / allowed in a multi-valued property.

‘subsets’ property-name
● Property is a proper subset of the property identified by property-name

‘redefines’ property-name
● Property redefines an inherited property identified by property-name

 prop-constraint
● An expression that specifies a constraint that applies to the property.

● Static attributes are underlined

 [visibility] [‘/’] name [‘:’ type] [‘[‘ multiplicity ‘]’] [‘=’default] [‘{‘ prop-modifier [‘,’ prop-modifier]* ’}’]

Examples

Derived property

User-defined type

<<primitive>>
Weight

<<dataType>>
Address

street: String
number: String
city: String
postalCode: String
country: String

Patient

- firstName: String
- middleName: String = “”
- lastName: String
- /fullName: String
- weight: Weight = 0
- homeAddress: Address
- diagnosis[1..*]: Diagnosis {unique}

Multiplicity

Default value
Visibility

“Unique”
modifier

<<dataType>>
Diagnosis

code: Integer
name: String
description: String

Class operations in UML (1)

 [visibility] name ‘(‘ [parameter-list] ‘)’ [':' return-spec]
 parameter-list ::= parameter[‘,’ parameter]*

 parameter ::= [direction] parm-name ‘:’ type-expression[‘[‘multiplicity’]’] [‘=’ default] [‘{‘ parm-property[‘,’ parm-property]* ‘}’]

● Visibility
○ As for attributes:
○ ‘+’ public, ‘-’ private, ‘#’ protected, ‘~’ package

● Parameters
○ Direction: ‘in’, ‘out’, ‘inout’ (default = ‘in’)
○ Type-expression: specifies the type of the parameter
○ Multiplicity, default, parm-property: as for attributes

Class operations in UML (2)

 [visibility] name ‘(‘ [parameter-list] ‘)’ [':' return-spec]
 return-spec ::= [return-type] [‘[‘ multiplicity ‘]’] [‘{‘ oper-property [‘,’ oper-property]* ‘}’]

● Return type
○ UML built-in primitive type or user-defined DataType / Class / Interface

● Operation properties (modifiers):
‘query’ The operation does not change the state of the system
‘ordered’ The values of the return parameter are ordered
‘unique’ The values returned by parameters have no duplicates

‘redefines’ oper-name:
● The operation redefines an inherited operation identified by oper-name

oper-constraint:
● A constraint that applies to the operation.

● Static operations are underlined

Examples

● display ()
● -hide ()
● +createWindow (location: Coordinates, container: Container [0..1]): Window
● +toString (): String

UML association

= a relationship between classes that indicates that there can be links between objects of given
classes

● Association name (optional)
○ A solid triangle next to the association name indicates the order of association ends as well as the order of

reading (used especially in conceptual modeling)

● Association ends
○ Association has at least two ends
○ Self-associations are allowed
○ Each association end is represented by a property - I.e., properties represent both class attributes and

association ends

● Association vs. attribute
○ “A useful convention for general modeling scenarios is that a Property whose type is a kind of Class is an

Association end, while a property whose type is a kind of DataType is not. This convention is not enforced by
UML.” (UML Specification 2.5.1)

● Association and its ends may be derived; marked by ‘/’ before their names.

Examples

Student Course
enrolls in ►

Person

parent

child

1..2

0..*

class

Room

CourseTeacher

Time

Association name with “►” symbol
indicating the order of association ends
and reading

Self-association

4-ary
association

Example - attribute vs association

Patient

- firstName: String
- middleName: String = “”
- lastName: String
- /fullName: String
- weight: Weight = 0
- homeAddress: Address
- diagnosis[1..*]: Diagnosis {unique}
- doctor[0..*]: Doctor

Doctor

0..*0..*

● String, Weight, Address and Diagnosis are dataTypes → attributes
● Doctor is class → association

Association end

● Association role name
○ It indicates what role the object of the given class plays within the relationship

● Multiplicity, visibility
○ As for attributes

● Aggregation kind
○ Aggregation vs composition, see later

● Property string (in curly braces)

○ As property-modifier for attributes

● Ownership
○ Association end can be owned by one of the connected classes or by the association itself
○ Indicated by a small circle (“dot” notation)
○ If not shown, the end is owned by the association itself

● Navigability

Association end - ownership and navigability

Navigable
Non-navigable
Unspecified

○ At runtime, objects of class B can be accessed efficiently from objects of class A
○ Association ends owned by classes are always navigable
○ Association ends owned by associations may be navigable or not

A B
AssociationAB

endA endB

association end owned by B association end owned by association

association name

* *

A B

UML aggregation and composition

● Special types of associations
● They have an “aggregation kind” set:

○ Shared → aggregation
○ Composite → composition

Aggregation
● Weak relationship between the whole and its parts - part can exist without the whole

Composition
● Strong relationship between the whole and its parts - part cannot exist without the whole
● If a composite is deleted, its parts are typically deleted as well

Examples

Team

Person

1..*team member

Order

OrderItem

1..*

quantity

Product
1..*

Ski set

1

Skis Ski
boots

0..*

Ski
poles Helmet

Association class

● A class representing an association, allows adding attributes and operations
to the association

● It has the same name as the association

Student Course
Enrollment ►

Enrollment

enrollmentDate
semester

UML generalization

= the taxonomic relationship between a more general class and a more specific
class

● The specific class inherits the features of the more general class
● A class can inherit from multiple general classes

Example:
Vehicle

Truck Van Bus Car

Further reading
● R. Lukoťka: Domain analysis, modeling (PTS1)
● S. Ambler: UML Class Diagrams: An Agile Introduction
● M. Fowler: UML Distilled: A Brief Guide to the Standard Object Modeling

Language 3rd Edition, 2003

References
● OMG. OMG Unified Modeling Language. Version 2.5.1, December 2017
● K. Fakhroutdinov: UML Class and Object Diagrams Overview
● R. Červenka, UML Classes
● J. Daniels: Modeling with a Sense of Purpose, 2002
● B. Selic: Getting It Right on the Dot, 2013

http://www.dcs.fmph.uniba.sk/~lukotka/PTS1/2023/05ModelingDomain.pdf
https://agilemodeling.com/artifacts/classDiagram.htm
https://www.omg.org/spec/UML/
https://www.uml-diagrams.org/class-diagrams-overview.html
http://www.dcs.fmph.uniba.sk/~cervenka/ooam/UML.Classes.pdf
https://martinfowler.com/ieeeSoftware/purpose.pdf
https://www.omg.org/ocup-2/documents/getting_it_right_on_the_dot.pdf

