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Some Not Really Formal Definitions

Computational problems:

I Mappings F : I→ O
I I is the set of inputs, O is the set of outputs
I Example 1: Given n in N, find out if n is prime
I Example 2: Given n in N and a1, . . . , an from a totally ordered set

(S ,�), find a permutation ϕ : {1, . . . , n} → {1, . . . , n} such that
aϕ(1) � . . . � aϕ(n) (sorting)

Algorithms:
I Well defined and always halting sequences of elementary operations

solving a given computational problem
I Each I in I is transformed to F (I ) in O
I Might or might not be implemented on a computer
I We shall be particularly interested in efficient algorithms
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Some Not Really Formal Definitions

Data Structures:

I Representations of data in memory (e.g., arrays, linked lists, . . . )
I Aim: to access and/or modify data efficiently

Design and analysis of algorithms (and data structures):
I Can make programming efficient, but is not programming
I Uses some elementary mathematics, but is not mathematics
I A truly mathematical approach: computation theory

I 2-MPG-218 Complexity theory (this summer)
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Course Organisation

Web page for the first half of the semester (or so):

I http://www.dcs.fmph.uniba.sk/~kostolanyi/ads/

Lectures in the second half of the semester:
I Dana Pardubská (Room M-250)
I pardubska@dcs.fmph.uniba.sk

Lectures interleaved with exercises when needed

Grading:
I 100 points in total
I Mid-term exam: 40 points
I Final examination: 60 points
I A: 90+, B: 80 – 89, C: 70 – 79, D: 60 – 69, E: 50 – 59, FX: 0 – 49
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Suggested Textbooks

Principal Sources:

I Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C.:
Introduction to Algorithms, 3rd edition.
Cambridge : MIT Press, 2009.

I Aho, A. V., Hopcroft, J. E., Ullman, J. D.:
The Design and Analysis of Computer Algorithms.
Reading : Addison-Wesley, 1974.

A Book Including Implementations (in Java):
I Sedgewick, R., Wayne, K.:

Algorithms, 4th edition.
Upper Saddle River : Addison-Wesley, 2011.

A More Gentle Introduction:
I Cormen, T. H.:

Algorithms Unlocked.
Cambridge : MIT Press, 2013.
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First Example: Finding the Maximum

I Let (S ,�) be a totally ordered set

I Assume that ⊥ ≺ x for all x in S
I Given n elements of S , we want to find the greatest one

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Output: max{a[i ] | i ∈ {1, . . . , n}}
max← ⊥;
for i ← 1 to n do

if a[i ] � max then
max← a[i ];

end
end
return max;
How fast is the above algorithm?
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Time Complexity of an Algorithm

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Output: max{a[i ] | i ∈ {1, . . . , n}}
max← ⊥;
for i ← 1 to n do

if a[i ] � max then
max← a[i ];

end
end
return max;

I How many elementary operations on an input of a given size?
I Size of the input can be measured by n
I Elementary operations: perhaps x ← y and if y � x then x ← y . . .
I Exactly n + 1 elementary operations on each input of size n
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Time Complexity of an Algorithm

Need not be the same for all inputs of size n

I Worst-case complexity
I Expected complexity (w.r.t. some probability distribution of inputs)
I Best-case complexity

We have seen that there is an algorithm for finding a maximum in linear
worst-case time

I There definitely is an algorithm that is slower in worst case
I And there also might be a substantially faster algorithm. . .
I . . . But there is no such algorithm (proof?)
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Second Example: Insertion Sort

I Let (S ,�) be a totally ordered set

I Given n elements of S , we wish to sort them in increasing order
Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Worst-case time complexity?
I It will get much more complicated later
I Seems that we need some techniques that would help us forget

about unimportant details. . .
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Motivation for Asymptotic Analysis

Consider the following two pieces of information:

I The time complexity of an algorithm is

T (n) = 3n
(
1 +

⌊√
n
⌋

+ 9n
⌈√

n
⌉)

+
1
6
n
(
2n2 + 9n + 7

)
+

+ 11 dlog ne (n + 1)2 − 2 dlog ne+ 42

I The time complexity of an algorithm grows “similarly” to n3 as n
tends to ∞

Which one is more useful?

Exact time complexity is not only hard to compute, but may also be hard
to comprehend:

I Solution: asymptotic analysis
I We shall be primarily interested in time complexity for large inputs
I That is, when n→∞
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How Large is This Number? (Think of Money)

4280851899489560848691



And How Large is This Number? (Think of Money)

847955518187334829283589897040119655235863919601693531238414
992751617165416141302480796865188930627435280282706613547980
294932630735849850955629756390189988065670926936776080112344
478419587070503835005599718728588150686533243684009181797426
171883222991245962132902198193449147350817134122866534527139
324266014275038885469315531344270843365472877851040028341343
446812975361588038115962323696276213633010227723117346742793
809486832344936918539522695019005474402586729448774658329488
313043282804390925188410810300110289559989160868665250433758
583040150144399344168406565330785174160961264728256705619645
503580555958532651067869506317081480329379589924149250096656
021238118034770836265089287436131069459108907243619617600703
335393461805670822333994164179926751412897021280473168238505
249057658869931528787705337703014030771056967154328101426613
199719676876144322924501319536021077133567603615839764872627
762350534910009155649512153176581308880648714210251982144207
662692294855573895970855089312576731955964946046833813864004
631753962686876000391297519828520284626088552126304691777575
316106827163895406324359401238410333876306989075934741951911



Asymptotic Analysis

I Number of digits  error up to 10×

I Number of slides  error 106 makes little difference
I Each constant factor c > 0 seems to be a reasonable error for large

enough n
I We shall say that f : N→ N grows “similarly” to g : N→ N if there

is such constant factor c
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Asymptotic Analysis

Definition
Let f , g : N→ N be functions. Then we shall write:

(i) f (n) = O(g(n)) if ∃c > 0 ∃n0 ∈ N ∀n ≥ n0 : f (n) ≤ c · g(n).
(ii) f (n) = Ω(g(n)) if g(n) = O(f (n)).
(iii) f (n) = Θ(g(n)) if f (n) = O(g(n)) and g(n) = O(f (n)).
Some stronger notation:

(iv) f (n) = o(g(n)) if limn→∞
f (n)
g(n) = 0.

(v) f (n) = ω(g(n)) if g(n) = o(f (n)).

(vi) f (n) ∼ g(n) if limn→∞
f (n)
g(n) = 1.
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(iii) f (n) = Θ(g(n)) if f (n) = O(g(n)) and g(n) = O(f (n)).
Some stronger notation:

(iv) f (n) = o(g(n)) if limn→∞
f (n)
g(n) = 0.

(v) f (n) = ω(g(n)) if g(n) = o(f (n)).

(vi) f (n) ∼ g(n) if limn→∞
f (n)
g(n) = 1.
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Asymptotic Analysis

Example

I If f (n) = 2n3 + n2 + 10, then f (n) = O(n3) and f (n) = Θ(n3)

I If f (n) = 2n3 + n2 + 10, then f (n) = O(n4), but not f (n) = Θ(n4)

In calculus, you used to write:
I f (x) = 1 + x + x2 + O(x3), or so
I Thus x3 is negligible compared to x2, we have x4 = O(x3), etc.

For us:
I n2 is negligible compared to n3, we have n3 = O(n4), etc.
I Reason: n→∞ instead of x → 0

Two important properties of Θ-notation:
I If f1(n) = Θ(f2(n)) and g1(n) = Θ(g2(n)), then

f1(n) + g1(n) = Θ(f2(n) + g2(n))

I If f1(n) = Θ(f2(n)) and g1(n) = Θ(g2(n)), then
f1(n) · g1(n) = Θ(f2(n) · g2(n))
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Insertion Sort: Worst-Case Time Complexity

Algorithm:

Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort

I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input

I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i

I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)

I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)

I T (n) = Θ(n2)



Insertion Sort: Worst-Case Time Complexity

Algorithm:
Input : Integer n ≥ 0, array a = 〈a[1] . . . , a[n]〉 of elements of (S ,�)
Behaviour: Sorts a in increasing order

for i ← 2 to n do
key← a[i ];
j ← i ;
while j ≥ 2 and a[j − 1] � key do

A[j ]← A[j − 1];
j ← j − 1;

end
A[j ]← key

end

I Let T (n) be the worst-case time complexity of insertion sort
I The for loop executes ≤ n times on each input
I The while loop executes ≤ n times for each i
I Hence, T (n) = O(n2)
I Considering inputs sorted in decreasing order: T (n) = Ω(n2)
I T (n) = Θ(n2)



When Model Matters. . .

Algorithm:

Input : Integer n ≥ 0
Output: nn

k ← 1;
for i ← 1 to n do

k ← k · n;
end
return k ;

I Worst-case time complexity: Θ(n)?
I nn = 2n log n – we need at least n log n bits to store nn

I At least n log n bit operations, and this is not Θ(n)

I Even worse if we take log n as the size of the input
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