Algorithms and Data Structures
for Mathematicians

Lecture 2: Divide and Conquer

Peter Kostolanyi
kostolanyi at fmph and so on
Room M-258

5 October 2017

Recapitulation

Some topics addressed in the first lecture:

Recapitulation

Some topics addressed in the first lecture:

» Algorithms and their description in pseudocode

Recapitulation

Some topics addressed in the first lecture:
» Algorithms and their description in pseudocode

» Worst-case time complexity analysis

Recapitulation

Some topics addressed in the first lecture:
» Algorithms and their description in pseudocode
» Worst-case time complexity analysis

» Asymptotic notation

Recapitulation

Some topics addressed in the first lecture:
Algorithms and their description in pseudocode
Worst-case time complexity analysis

Asymptotic notation

vV v v v

Sorting in ©(n?) worst-case (Insertion sort)

Recapitulation

Some topics addressed in the first lecture:
Algorithms and their description in pseudocode
Worst-case time complexity analysis

Asymptotic notation

vV v v v

Sorting in ©(n?) worst-case (Insertion sort)

Questions that we have not dealt with so far:

Recapitulation

Some topics addressed in the first lecture:
Algorithms and their description in pseudocode
Worst-case time complexity analysis

Asymptotic notation

vV v v v

Sorting in ©(n?) worst-case (Insertion sort)

Questions that we have not dealt with so far:

» Are there any techniques for designing efficient algorithms?

Recapitulation

Some topics addressed in the first lecture:
Algorithms and their description in pseudocode
Worst-case time complexity analysis

Asymptotic notation

vV v v v

Sorting in ©(n?) worst-case (Insertion sort)

Questions that we have not dealt with so far:
» Are there any techniques for designing efficient algorithms?

» Can we do better than ©(n?) for sorting (in worst-case)?

Divide and Conquer

A paradigm for algorithm design:

Divide and Conquer

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same
problem

Divide and Conquer

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same
problem
Conquer the subproblems by solving them recursively or directly if
they are small enough

Divide and Conquer

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same
problem
Conquer the subproblems by solving them recursively or directly if
they are small enough
Combine the solutions of the subproblems to obtain a solution of
the original problem

Merge Sort

> Let (S, <) be a totally ordered set

Merge Sort

> Let (S, <) be a totally ordered set

» Given an array of n elements of S, we wish to sort them in
increasing order

Merge Sort

> Let (S, <) be a totally ordered set
» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:

Merge Sort

> Let (S, <) be a totally ordered set
» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:
Divide the array into two (approximate) halves

Merge Sort

> Let (S, <) be a totally ordered set
» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:
Divide the array into two (approximate) halves
Conquer the subproblems by sorting the respective subarrays

Merge Sort

> Let (S, <) be a totally ordered set
» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:
Divide the array into two (approximate) halves
Conquer the subproblems by sorting the respective subarrays
» If a subarray contains only one element, it is already
sorted

Merge Sort

> Let (S, <) be a totally ordered set
» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:
Divide the array into two (approximate) halves
Conquer the subproblems by sorting the respective subarrays
» If a subarray contains only one element, it is already

sorted
» Otherwise divide once again (recursion)

Merge Sort

> Let (S, <) be a totally ordered set

» Given an array of n elements of S, we wish to sort them in
increasing order

The Divide and Conquer Approach:
Divide the array into two (approximate) halves
Conquer the subproblems by sorting the respective subarrays
» If a subarray contains only one element, it is already

sorted
» Otherwise divide once again (recursion)

Combine the two sorted subarrays by merging them into a single
sorted array

Merge Procedure

> Let (S, <) be a totally ordered set

Merge Procedure

> Let (S, <) be a totally ordered set
» Let T > x for all x in S

Merge Procedure

> Let (S, <) be a totally ordered set
» Let T > x for all x in S

MERGE(a, f,m,|):

Merge Procedure

> Let (S, <) be a totally ordered set
» Let T > x for all x in S

MERGE(a, f,m,):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,m, | such that 1 <f < m < | < n and such that
(a[f],...,a[m]) and (a[m + 1], ..., a[l]) are already sorted

Behaviour: Merges (a[f],...,a[m]) and (a[m +1],..., a[l]) into a sorted
subarray

i« f;j+ m+1; k<« 0;
while i <m orj <l do
k <+ k+1;
if i <mthen r+ a[i]else r« T;
if j <|then s+ a[j] else s + T;
if r<sthenclk]« r;i«i+1lelseclk]+ s j«j+1,
end
for i < f to |l do a[i] < c[i — f +1];

Merge Procedure

> Let (S, <) be a totally ordered set
» Let T > x for all x in S

MERGE(a, f,m,):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,m, | such that 1 <f < m < | < n and such that
(a[f],...,a[m]) and (a[m + 1], ..., a[l]) are already sorted

Behaviour: Merges (a[f],...,a[m]) and (a[m +1],..., a[l]) into a sorted
subarray

i« f;j+ m+1; k<« 0;

while i <m orj <l do

k <+ k+1;

if i <mthen r+ a[i]else r« T;

if j <|then s+ a[j] else s + T;

if r<sthenclk]« r;i«i+1lelseclk]+ s j«j+1,
end

for i < f to |l do a[i] < c[i — f +1];

» Time complexity: ©(/ — f)

Merge Sort

MERGESORT(a, f,):

Merge Sort

MERGESORT(a, f,1):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1 <n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a, f, m,);

end

Merge Sort

MERGESORT(a, f,1):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1 <n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a, f, m,);

end

» Time complexity T(n) of MERGESORT(a, 1, n)?

Merge Sort

MERGESORT(a, f,1):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1 <n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a, f, m,);

end

» Time complexity T(n) of MERGESORT(a, 1, n)?
> Surely T(1) = ©(1)

Merge Sort

MERGESORT(a, f,1):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1 <n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a, f, m,);

end

» Time complexity T(n) of MERGESORT(a, 1, n)?
> Surely T(1) = ©(1)
» We have T(n) = T ([n/2])+ T ([n/2]) +©(n) for n > 2

Merge Sort

MERGESORT(a, f,1):

Input : Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1 <n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a, f, m,);

end

Time complexity T(n) of MERGESORT(a, 1, n)?

Surely T(1) = ©(1)

We have T(n) = T (|n/2])+ T ([n/2]) + ©(n) for n > 2

We need to find a solution to the asymptotic recurrence above

Asymptotic Recurrences

We need a technique for solving recurrences of the form

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR
> 0i(x)=|x] or pi(x)=[x] fori=1,...,aand all xin R

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR
> 0i(x)=|x] or pi(x)=[x] fori=1,...,aand all xin R

It is possible to prove that the (asymptotic) solution does not depend on
the particular rounding functions ¢;

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR
> 0i(x)=|x] or pi(x)=[x] fori=1,...,aand all xin R

It is possible to prove that the (asymptotic) solution does not depend on
the particular rounding functions ¢;

We shall thus simply write:

T(n) = aT(n/b) + ©(n%)

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR
> 0i(x)=|x] or pi(x)=[x] fori=1,...,aand all xin R

It is possible to prove that the (asymptotic) solution does not depend on
the particular rounding functions ¢;

We shall thus simply write:
T(n) = aT(n/b) + ©(n%)

» We shall find a solution assuming that n = b, where k is in N

Asymptotic Recurrences

We need a technique for solving recurrences of the form

a

T(n) = Z T(pi(n/b)) +©(n?) for n> b,

T(s)=0(1) fors=1,...,b—1,

where:
» a>1lisinN,b>2isinN,andd >0isinR
> 0i(x)=|x] or pi(x)=[x] fori=1,...,aand all xin R

It is possible to prove that the (asymptotic) solution does not depend on
the particular rounding functions ¢;

We shall thus simply write:
T(n) = aT(n/b) + ©(n%)

» We shall find a solution assuming that n = b, where k is in N

» It is possible to extend the analysis to deal with non-exact-powers of
b as well

Asymptotic Recurrences

Theorem
Let T(n) be a function satisfying

T(n)§aT(n/b)+cnd forn=b" k=1,2,3,...,
T(1)=0(1),

wherea>1and b>2areinN, and c,d > 0 are in R. Then
O (n'oes2) ifd < log, a

T(n) = O(ndlogn) if d =log, a forn=b" k=1,2,3,...
O (n9) ifd > logy a

Asymptotic Recurrences

Theorem
Let T(n) be a function satisfying

T(n)zaT(n/b)Jrcnd forn=b" k=1,2,3,...,
T(1)=0(1),

wherea>1and b>2areinN, and c,d > 0 are in R. Then
Q (n'oes2) ifd < log, a

T(n) = Q(ndlogn) if d =log, a forn=b" k=1,2,3,...
Q (n9) ifd > logy a

Asymptotic Recurrences

Corollary

Let T(n) be a function satisfying

T(n) = aT(n/b) 4+ ©(n9) forn=b* k=1,2,3,..

wherea>1and b>2areinN, and d > 0 is in R. Then

© (n'oes) ifd < logya
@Endlogn) if d = logy a forn=b* k=1,2,3,...
©

T(n) =
n9) ifd > log, a

Asymptotic Recurrences

Proof

Asymptotic Recurrences

Proof
Level Nodes Total
| | //Cnd\\ :
1 a pan b%nd e b%nd b%cnd
/ \ |
2 a b%dnd bz%”d %md

logyn nlog e o() e() -) (nlogba)

Asymptotic Recurrences

Proof
Level Nodes Total
| | //Cnd\\ Cnd
1 a b%nd b%nd e B n? b%cnd
2 a? b%dnd R nd %cnd
logyn nlog e o() e() -) (nlogba)
logy n—1 i logy, n—1 i

Tmy<| %cnd +o(emy = [3 % +O(nloss)
i=0

i=0

Asymptotic Recurrences

Proof
Level Nodes Total
| | //Cnd\\ Cnd
1 a b%nd b%nd e B n? b%cnd
2 a? b%dnd R nd %cnd
logyn nlog e o() oe() -) (nlogba)
logy n—1 i logy n—1 i

HOENEY %cnd +o(em) = [3 % +O(nloss)
i=0

i=0

Asymptotic Recurrences

Let
logy, n—1 i

> o= 2 () =5

i=0 i=0

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1
> @ X
i=0 i=0

1. If d < logy, a, then a/b? > 1 and

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1 a N
> pa= 2 () =50
i=0 i=0
1. If d < logy, a, then a/b? > 1 and
logp n—1 i d\logy n
B a\’ (a/b%)se" —1
S(n) = ; (ﬁ) T a1
logy, (a/b?
:ngb(/)—1:e(n|0gbaid).

a/bd —1

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1 a N
> pa= 2 () =50
i=0 i=0
1. If d < logy, a, then a/b? > 1 and
logp n—1 i d\logy n
B a\’ (a/b%)se" —1
S(n) = ; (ﬁ) T a1
logy, (a/b?
:ngb(/)—1:e(n|0gbaid).

a/bd —1
As a result,

T(n) < cn?S(n) + ©(n'°862) = O(n'°8s2).

Asymptotic Recurrences

et logyn—1 ; logyn—1
X o= () =50
i=0 i=0
1. If d < log, a, then a/b? > 1 and
logp, n—1) S
sn= 3 () = -
_ nlogs (a/b%) _ 1 Epy—

a/bd —1
As a result,

T(n) > cn?S(n) + ©(n'°ek?) = Q(n'°es?).

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1 2N
> pa= 2 (ga) =0
i=0 i=0

2. If d = log, a, then a/b¥ =1 and

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1 2N
> pa= 2 (ga) =0
i=0 i=0

2. If d = log, a, then a/b¥ =1 and

S(n) = log, n = O(log n).

Asymptotic Recurrences

Let
logy, n—1 ai logy n—1 2N
> pa= 2 (ga) =0
i=0 i=0

2. If d = log, a, then a/b¥ =1 and
S(n) = log, n = O(log n).
As a result,

T(n) < cn?S(n) + ©(n'862) = O(n log n).

Asymptotic Recurrences

Let
logy, n—1 a’- logy, n—1 N
> pa= 2 (ga) =0
i=0 i=0

2. If d =log, a, then a/b? =1 and
S(n) = log, n = O(log n).
As a result,

T(n) > cn?S(n) + ©(n'et?) = Q(n? log n).

Asymptotic Recurrences

Let
logy, n—1 a,- logy n—1 N
> e X () =50
i=0 i=0

3. If d > log a, then a/b? < 1 and

Asymptotic Recurrences

Let
logp, n—1 ; logy n—1
a

2o X () = st

i=0
3. If d > log a, then a/b? < 1 and
logy, n—1

s= > () =X (3) =0

i=0 i=0

Asymptotic Recurrences

Let
logy, n—1 a,- logy n—1 N
> e X () =50
i=0 i=0

3. If d > log a, then a/b? < 1 and

logy, n—1

sm= 3 () <X (5) =0

i=0 i=

Moreover,

Asymptotic Recurrences

Let
logp, n—1 ; logy n—1

2 S () s

i=0
3. If d > log a, then a/b? < 1 and

logy, n—1 . oo

Sm= > (4)sz(id)

i=0 i=

Moreover,

Hence,

Asymptotic Recurrences

Let
logy, n—1 a,- logy n—1 N
)BTRS (bd) = 5(n)
i=0 i=0

3. If d > log a, then a/b? < 1 and

logy, n—1 . oo

i=0 i=

Moreover,
S(n) > 1=0(1)
Hence,
S(n) =0©(1)
As a result,

T(n) < cn?S(n) + ©(n'et?) = O(n?).

Asymptotic Recurrences

Let
logy, n—1 a’ logy, n—1 3N\
> = 2 (ge) =50
i=0 i=0
3. If d > log, a, then a/b9 < 1 and
logy, n—1 . fore) 3
-3 (2) <55 -
i=0 i=0
Moreover,
S(n)>1=Q(1)
Hence,
S(n) =©(1)
As a result,

T(n) > cn?S(n) + ©(n'e:?) = Q(n9).

Asymptotic Recurrences

Corollary

Let T(n) be a function satisfying
T(n) = aT(n/b) 4+ ©(n9) forn=b* k=1,2,3,...,
(1) =e(1),

wherea>1and b>2areinN, andd >0 isin R. Then

© (n'oes) ifd <loga
© (n?logn) ifd=log,a p forn=>b" k=1,23,...
© (n9) if d > logy a

T(n) =

Asymptotic Recurrences

Corollary

Let T(n) be a function satisfying
T(n) = aT(n/b) 4+ ©(n9) forn=b* k=1,2,3,...,
(1) =e(1),

wherea>1and b>2areinN, andd >0 isin R. Then

© (n'oes) ifd <loga
© (n?logn) ifd=log,a p forn=>b" k=1,23,...
© (n9) if d > logy a

T(n) =

» Holds for non-exact-powers of b as well

Asymptotic Recurrences

Corollary

Let T(n) be a function satisfying
T(n) = aT(n/b) 4+ ©(n9) forn=b* k=1,2,3,...,
(1) =e(1),

wherea>1and b>2areinN, andd >0 isin R. Then

© (n'oes) ifd <loga
© (n?logn) ifd=log,a p forn=>b" k=1,23,...
© (n9) if d > logy a

T(n) =

» Holds for non-exact-powers of b as well

» More general statement: Master theorem (see Cormen et al.)

Analysis of Merge Sort

MERGESORT(a, f,1):

Analysis of Merge Sort

MERGESORT(a, f,):

Input . Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1< n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a,f, m,I);

end

Analysis of Merge Sort

MERGESORT(a, f,):

Input . Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1< n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a,f, m,I);

end

» Time complexity T(n) of MERGESORT(a, 1, n):

Analysis of Merge Sort

MERGESORT(a, f,):

Input . Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1< n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a,f, m,I);

end

» Time complexity T(n) of MERGESORT(a, 1, n):

T(n) =2T(n/2) + ©(n)
T(1)=0(1)

Analysis of Merge Sort

MERGESORT(a, f,):

Input . Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1< n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a,f, m,I);

end

» Time complexity T(n) of MERGESORT(a, 1, n):

T(n) =2T(n/2) + ©(n)
T(1)=0(1)

» Solution: T(n) = ©(nlog n)

Analysis of Merge Sort

MERGESORT(a, f,):

Input . Integer n > 1; Array a = (a[1], ..., a[n]) of elements of S;
Integers f,l such that 1 <f <1< n
Behaviour: Sorts the subarray (alf], ..., a[l]) in increasing order
if f =1 then
| return
else

m <« [(f+1)/2];
MERGESORT(a, f, m);
MERGESORT(a, m + 1,1);
MERGE(a,f, m,I);

end

» Time complexity T(n) of MERGESORT(a, 1, n):

T(n) =2T(n/2) + ©(n)
T(1)=0(1)

» Solution: T(n) = ©(nlog n)
» Better than Insertion sort. . .

Multiplication of Square Matrices

a1l
an

an,1

ai2
az o

C1,2

)

C22

ai.n
azn

an,n

Ci,n

)

C.n

Cnh,n

s

b21

)

bn,l

b12
b22

)

bln
b2n

)

Multiplication of Square Matrices

a1l
an

an,1

ai2 ai.n b1,1
az o azn b2,1
an,2 an,n bn,l

1,1 G2 Ci,n

1 Q2 C2.n

Cn,1 Cn,2 Cn,n

))

n
C,'J: E a,'7kbk7j, I.,_/.:].,.‘.
k=1

b12
b22

)

Naive Matrix Multiplication

Input : Integer n > 1; Matrices A= (a[i,j] | 1 < i,j < n),
B = (b[i,j] | 1 <i,j < n) over some semiring
Output: The matrix A- B = (c[i,j] | 1 <i,j < n)

for i < 1 to ndo
for j «+ 1to ndo
cli,j] < 0;
for k< 1to ndo
| cli,j] < cli,j] + ali, k] * blk, j];
end
end
end

Naive Matrix Multiplication

Input : Integer n > 1; Matrices A= (a[i,j] | 1 < i,j < n),
B = (b[i,j] | 1 <i,j < n) over some semiring
Output: The matrix A- B = (c[i,j] | 1 <i,j < n)

for i < 1 to ndo
for j «+ 1to ndo
cli,j] < 0;
for k< 1 to ndo
| cli,j] < cli,j] + ali, k] * blk, j];
end
end
end

» O(n3) arithmetic operations

Naive Matrix Multiplication

Input : Integer n > 1; Matrices A= (a[i,j] | 1 < i,j < n),
B = (b[i,j] | 1 <i,j < n) over some semiring
Output: The matrix A- B = (c[i,j] | 1 <i,j < n)

for i < 1 to ndo
for j «+ 1to ndo
cli,j] < 0;
for k< 1 to ndo
| cli,j] < cli,j] + ali, k] * blk, j];
end
end
end

» O(n3) arithmetic operations
» Can we do better?

Matrix Multiplication: Divide and Conquer?

Aix A\ Bix B1,2)_<C1,1 C1,2>
Ar1 Az B1 Bp G Gp

Matrix Multiplication: Divide and Conquer?

Aix A\ Bix B1,2)_<C1,1 C1,2>
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
CGo=A11-Bio+ A2 B
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

Matrix Multiplication: Divide and Conquer?

(A1 A2 >< Bii Bip) _ < Gi1 Gp)
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
Go=A11-Bia+ A2 B>
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

» Suppose that the blocks are square matrices of sizes [n/2| x |n/2]

or [n/2] x [n/2]

Matrix Multiplication: Divide and Conquer?

(A1 A2 >< Bii Bip) _ (Gi1 Gp)
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
Go=A11-Bia+ A2 B>
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

» Suppose that the blocks are square matrices of sizes |n/2] x |n/2]
or [n/2] x [n/2]

» (If not, we can simply forget about at most one row or column,
which we may compute separately in ©(n?) operations)

Matrix Multiplication: Divide and Conquer?

(A1 A2 >< Bii Bip) _ (Gi1 Gp)
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
Go=A11-Bia+ A2 B>
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

» Suppose that the blocks are square matrices of sizes |n/2] x |n/2]
or [n/2] x [n/2]

» (If not, we can simply forget about at most one row or column,
which we may compute separately in ©(n?) operations)

» T(n)=8T(n/2)+ ©(n?), T(1) =O(1)

Matrix Multiplication: Divide and Conquer?

(A1 A2 >< Bii Bip) _ (Gi1 Gp)
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
Go=A11-Bia+ A2 B>
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

v

Suppose that the blocks are square matrices of sizes |n/2] x [n/2]
or [n/2] x [n/2]

(If not, we can simply forget about at most one row or column,
which we may compute separately in ©(n?) operations)

T(n)=8T(n/2) +©(n?), T(1) =06(1)
Solution: T(n) = ©(n%)

v

v

v

Matrix Multiplication: Divide and Conquer?

(A1 A2 >< Bii Bip) _ (Gi1 Gp)
Ar1 Az B1 Bp G Gp

Gi1=A11-Bi1+Ai2 B
Go=A11-Bia+ A2 B>
Gi1=A1-Bii1+ A -B21
Gor=As1-Bio+ Ao B

» Suppose that the blocks are square matrices of sizes |n/2] x |n/2]
or [n/2] x [n/2]

» (If not, we can simply forget about at most one row or column,
which we may compute separately in ©(n?) operations)

» T(n)=8T(n/2)+©(n?), T(1) =06(1)
» Solution: T(n) = ©(n%)
» This is no better than the naive approach

Strassen’s Algorithm

» Works for matrices over rings

Strassen’s Algorithm

» Works for matrices over rings

Ain A\ (Bix Bz _ [Gai G
Ar1 Az Bi1 Bpo Gi1 Gp

Strassen’s Algorithm

» Works for matrices over rings
Ain A\ (Bix Bz \ _ (Ga
Ar1 Az Bi1 Bpo G
Gi1=M + My — My + Me
Co=Ms+ Ms

G =M+ M
Gy =My — Ms+ Ms — My

G2
G

)

Strassen’s Algorithm

» Works for matrices over rings

where

Ain A\ (Bix Bz \ _ (Ga

Ar1 Az Bi1 Bpo G
Gi1=M + My — My + Me
Co=Ms+ Ms

G =M+ M
Gy =My — Ms+ Ms — My

My = (A2 — A22) - (B21 + Bz2)
My = (A1 + Az2) - (Bi1 + Bz2)
Mz = (A1 — A21) - (Bi1+ Bi2)
My = (A11+ A12) Bro
Ms = A11 - (B12 — B2)
Me = Az - (B2g — B11)
Mz = (A21 + Az2) - Bia

G2
G

)

Strassen’s Algorithm

» Time complexity (in arithmetic operations):

Strassen’s Algorithm

» Time complexity (in arithmetic operations):

T(n) =7T(n/2) + ©(n?)
T(1)=0(1)

Strassen’s Algorithm

» Time complexity (in arithmetic operations):

T(n) =7T(n/2) + ©(n?)
T(1)=0(1)

» Solution: T(n) = ©(n'°%27), where log, 7 is approximately 2.807

Strassen’s Algorithm

» Time complexity (in arithmetic operations):
T(n)=7T(n/2) +©(n?)
T(1)=0e(1)

» Solution: T(n) = ©(n'°%27), where log, 7 is approximately 2.807

> The constant factor is pretty large (not ideal for small matrices)

Strassen’s Algorithm

v

Time complexity (in arithmetic operations):

T(n) =7T(n/2) + ©(n?)
T(1)=0(1)

v

Solution: T(n) = ©(n'°827), where log, 7 is approximately 2.807

v

The constant factor is pretty large (not ideal for small matrices)

v

There are some asymptotically faster algorithms, but with extremely
large constants (limited practical value)

Strassen’s Algorithm

v

Time complexity (in arithmetic operations):

T(n) =7T(n/2) + ©(n?)
T(1)=0(1)

v

Solution: T(n) = ©(n'°827), where log, 7 is approximately 2.807

v

The constant factor is pretty large (not ideal for small matrices)

v

There are some asymptotically faster algorithms, but with extremely
large constants (limited practical value)

Current record of Le Gall (2014): ©(n?373-)

v

