Algorithms and Data Structures for Mathematicians

Lecture 2: Divide and Conquer

Peter Kostolányi kostolanyi at fmph and so on Room M-258

5 October 2017

Some topics addressed in the first lecture:

► Algorithms and their description in pseudocode

- ▶ Algorithms and their description in pseudocode
- Worst-case time complexity analysis

- ▶ Algorithms and their description in pseudocode
- ▶ Worst-case time complexity analysis
- Asymptotic notation

- ▶ Algorithms and their description in pseudocode
- Worst-case time complexity analysis
- Asymptotic notation
- ▶ Sorting in $\Theta(n^2)$ worst-case (Insertion sort)

Some topics addressed in the first lecture:

- ▶ Algorithms and their description in pseudocode
- Worst-case time complexity analysis
- Asymptotic notation
- ▶ Sorting in $\Theta(n^2)$ worst-case (Insertion sort)

Questions that we have not dealt with so far:

Some topics addressed in the first lecture:

- ▶ Algorithms and their description in pseudocode
- Worst-case time complexity analysis
- Asymptotic notation
- ▶ Sorting in $\Theta(n^2)$ worst-case (Insertion sort)

Questions that we have not dealt with so far:

▶ Are there any techniques for designing efficient algorithms?

Some topics addressed in the first lecture:

- ▶ Algorithms and their description in pseudocode
- Worst-case time complexity analysis
- Asymptotic notation
- ▶ Sorting in $\Theta(n^2)$ worst-case (Insertion sort)

Questions that we have not dealt with so far:

- ▶ Are there any techniques for designing efficient algorithms?
- ▶ Can we do better than $\Theta(n^2)$ for sorting (in worst-case)?

A paradigm for algorithm design:

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same problem

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same problem

Conquer the subproblems by solving them recursively or directly if they are small enough

A paradigm for algorithm design:

Divide the problem into several smaller instances of the same problem

Conquer the subproblems by solving them recursively or directly if they are small enough

Combine the solutions of the subproblems to obtain a solution of the original problem

▶ Let (S, \preceq) be a totally ordered set

- ▶ Let (S, \leq) be a totally ordered set
- ► Given an array of *n* elements of *S*, we wish to sort them in increasing order

- ▶ Let (S, \preceq) be a totally ordered set
- ► Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

- ▶ Let (S, \preceq) be a totally ordered set
- ▶ Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

Divide the array into two (approximate) halves

- ▶ Let (S, \leq) be a totally ordered set
- ▶ Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

Divide the array into two (approximate) halves

Conquer the subproblems by sorting the respective subarrays

- ▶ Let (S, \preceq) be a totally ordered set
- ▶ Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

Divide the array into two (approximate) halves

Conquer the subproblems by sorting the respective subarrays

 If a subarray contains only one element, it is already sorted

- ▶ Let (S, \leq) be a totally ordered set
- ▶ Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

- Divide the array into two (approximate) halves
- Conquer the subproblems by sorting the respective subarrays
 - If a subarray contains only one element, it is already sorted
 - ► Otherwise divide once again (recursion)

- ▶ Let (S, \leq) be a totally ordered set
- ▶ Given an array of *n* elements of *S*, we wish to sort them in increasing order

The Divide and Conquer Approach:

Divide the array into two (approximate) halves

Conquer the subproblems by sorting the respective subarrays

- If a subarray contains only one element, it is already sorted
- Otherwise divide once again (recursion)

Combine the two sorted subarrays by merging them into a single sorted array

▶ Let (S, \preceq) be a totally ordered set

- ▶ Let (S, \leq) be a totally ordered set
- ▶ Let \top \succ x for all x in S

- ▶ Let (S, \preceq) be a totally ordered set
- ▶ Let \top \succ x for all x in S

 $\operatorname{MERGE}(\textbf{\textit{a}},f,m,l):$

for $i \leftarrow f$ to | do $a[i] \leftarrow c[i - f + 1]$;

```
▶ Let (S, \preceq) be a totally ordered set
   ▶ Let \top > x for all x in S
MERGE(a, f, m, l):
Input
               : Integer n \ge 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
                 Integers f, m, I such that 1 \le f \le m < l \le n and such that
                 \langle a[f], \ldots, a[m] \rangle and \langle a[m+1], \ldots, a[l] \rangle are already sorted
Behaviour: Merges \langle a[f], \ldots, a[m] \rangle and \langle a[m+1], \ldots, a[l] \rangle into a sorted
                 subarrav
i \leftarrow f; j \leftarrow m+1; k \leftarrow 0;
while i < m or i < l do
    k \leftarrow k + 1:
    if i \leq m then r \leftarrow a[i] else r \leftarrow \top;
    if j \le 1 then s \leftarrow a[j] else s \leftarrow \top;
    if r \prec s then c[k] \leftarrow r; i \leftarrow i+1 else c[k] \leftarrow s; j \leftarrow j+1;
end
```

- ▶ Let (S, \leq) be a totally ordered set
- ▶ Let \top > x for all x in S

```
MERGE(a, f, m, l):
```

```
Input : Integer n \geq 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S; Integers f, m, l such that 1 \leq f \leq m < l \leq n and such that \langle a[f], \ldots, a[m] \rangle and \langle a[m+1], \ldots, a[l] \rangle are already sorted
```

Behaviour: Merges $\langle a[f], \ldots, a[m] \rangle$ and $\langle a[m+1], \ldots, a[l] \rangle$ into a sorted subarray

```
\begin{split} i \leftarrow \mathsf{f}; \, j \leftarrow \mathsf{m} + 1; \, k \leftarrow 0; \\ \mathbf{while} \, \, i \leq \mathsf{m} \, \, or \, j \leq \mathsf{I} \, \, \mathbf{do} \\ & \mid \quad k \leftarrow k + 1; \\ & \quad \mathsf{if} \, \, i \leq \mathsf{m} \, \, \mathsf{then} \, \, r \leftarrow a[i] \, \, \mathsf{else} \, \, r \leftarrow \top; \\ & \quad \mathsf{if} \, \, j \leq \mathsf{I} \, \, \mathsf{then} \, \, s \leftarrow a[j] \, \, \mathsf{else} \, \, s \leftarrow \top; \\ & \quad \mathsf{if} \, \, r \leq s \, \, \mathsf{then} \, \, c[k] \leftarrow r; \, i \leftarrow i + 1 \, \, \mathsf{else} \, \, c[k] \leftarrow s; \, j \leftarrow j + 1; \\ & \quad \mathsf{end} \end{split}
```

for $i \leftarrow f$ to $i \leftarrow a[i] \leftarrow c[i - f + 1]$;

▶ Time complexity: $\Theta(I - f)$

MERGESORT(a, f, l):

```
MERGESORT(a, f, l):
           : Integer n \ge 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
             Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
    return
else
    m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

```
MERGESORT(a, f, l):
       : Integer n \ge 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
             Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
   return
else
   m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

▶ Time complexity T(n) of MERGESORT(a, 1, n)?

```
MERGESORT(a, f, l):
       : Integer n \geq 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
             Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
   return
else
   m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

- ▶ Time complexity T(n) of MERGESORT(a, 1, n)?
- ▶ Surely $T(1) = \Theta(1)$

```
MERGESORT(a, f, l):
       : Integer n \geq 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
             Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
   return
else
   m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

- ▶ Time complexity T(n) of MERGESORT(a, 1, n)?
- ▶ Surely $T(1) = \Theta(1)$
- ▶ We have $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$ for $n \ge 2$

```
MERGESORT(a, f, l):
Input
       : Integer n \geq 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
              Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
    return
else
    m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

- ▶ Time complexity T(n) of MERGESORT(a, 1, n)?
- ▶ Surely $T(1) = \Theta(1)$
- ▶ We have $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n)$ for $n \ge 2$
- We need to find a solution to the asymptotic recurrence above

We need a technique for solving recurrences of the form

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{d} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$,
 $T(s) = \Theta(1)$ for $s = 1, ..., b - 1$,

where:

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{a} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{d} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

- ▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}
- $ightharpoonup arphi_i(x) = \lfloor x \rfloor$ or $arphi_i(x) = \lceil x \rceil$ for $i = 1, \ldots, a$ and all x in $\mathbb R$

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{d} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

- ▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}
- $ightharpoonup arphi_i(x) = \lfloor x \rfloor$ or $arphi_i(x) = \lceil x \rceil$ for $i = 1, \dots, a$ and all x in $\mathbb R$

It is possible to prove that the (asymptotic) solution does not depend on the particular rounding functions φ_i

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{d} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

- ▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}
- $\varphi_i(x) = \lfloor x \rfloor$ or $\varphi_i(x) = \lceil x \rceil$ for i = 1, ..., a and all x in $\mathbb R$

It is possible to prove that the (asymptotic) solution does not depend on the particular rounding functions φ_i

We shall thus simply write:

$$T(n) = aT(n/b) + \Theta(n^d)$$

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{a} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

- ▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}
- $\varphi_i(x) = \lfloor x \rfloor$ or $\varphi_i(x) = \lceil x \rceil$ for i = 1, ..., a and all x in $\mathbb R$

It is possible to prove that the (asymptotic) solution does not depend on the particular rounding functions φ_i

We shall thus simply write:

$$T(n) = aT(n/b) + \Theta(n^d)$$

▶ We shall find a solution assuming that $n = b^k$, where k is in \mathbb{N}

We need a technique for solving recurrences of the form

$$T(n) = \sum_{i=1}^{a} T(\varphi_i(n/b)) + \Theta(n^d)$$
 for $n \ge b$, $T(s) = \Theta(1)$ for $s = 1, \dots, b-1$,

where:

- ▶ $a \ge 1$ is in \mathbb{N} , $b \ge 2$ is in \mathbb{N} , and d > 0 is in \mathbb{R}
- $\varphi_i(x) = \lfloor x \rfloor$ or $\varphi_i(x) = \lceil x \rceil$ for i = 1, ..., a and all x in $\mathbb R$

It is possible to prove that the (asymptotic) solution does not depend on the particular rounding functions φ_i

We shall thus simply write:

$$T(n) = aT(n/b) + \Theta(n^d)$$

- ▶ We shall find a solution assuming that $n = b^k$, where k is in \mathbb{N}
- It is possible to extend the analysis to deal with non-exact-powers of b as well

Theorem

Let T(n) be a function satisfying

$$T(n) \le aT(n/b) + cn^d$$
 for $n = b^k$, $k = 1, 2, 3, ...$, $T(1) = \Theta(1)$,

where a ≥ 1 and b ≥ 2 are in \mathbb{N} , and c, d > 0 are in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} O\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ O\left(n^d \log n\right) & \text{if } d = \log_b a \\ O\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$

Theorem

Let T(n) be a function satisfying

$$T(n) \ge aT(n/b) + cn^d$$
 for $n = b^k$, $k = 1, 2, 3, ...$, $T(1) = \Theta(1)$,

where a ≥ 1 and b ≥ 2 are in \mathbb{N} , and c, d > 0 are in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} \Omega\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ \Omega\left(n^d \log n\right) & \text{if } d = \log_b a \\ \Omega\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$

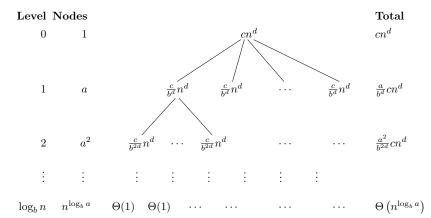
Corollary

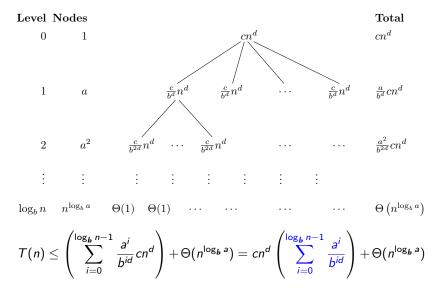
Let T(n) be a function satisfying

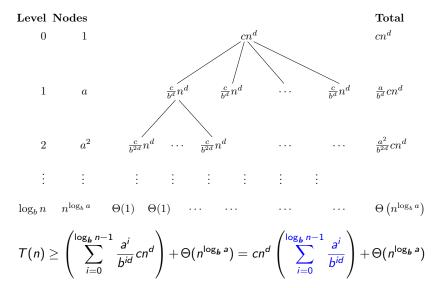
$$T(n) = aT(n/b) + \Theta(n^d)$$
 for $n = b^k$, $k = 1, 2, 3, ..., T(1) = \Theta(1)$,

where $a \ge 1$ and $b \ge 2$ are in \mathbb{N} , and d > 0 is in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} \Theta\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ \Theta\left(n^d \log n\right) & \text{if } d = \log_b a \\ \Theta\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$







Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

1. If $d < \log_b a$, then $a/b^d > 1$ and

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

1. If $d < \log_b a$, then $a/b^d > 1$ and

$$S(n) = \sum_{i=0}^{\log_b n - 1} \left(\frac{a}{b^d}\right)^i = \frac{(a/b^d)^{\log_b n} - 1}{a/b^d - 1} = \frac{n^{\log_b (a/b^d)} - 1}{a/b^d - 1} = \Theta\left(n^{\log_b a - d}\right).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

1. If $d < \log_b a$, then $a/b^d > 1$ and

$$S(n) = \sum_{i=0}^{\log_b n - 1} \left(\frac{a}{b^d}\right)^i = \frac{(a/b^d)^{\log_b n} - 1}{a/b^d - 1} = \frac{n^{\log_b (a/b^d)} - 1}{a/b^d - 1} = \Theta\left(n^{\log_b a - d}\right).$$

As a result,

$$T(n) \le cn^d S(n) + \Theta(n^{\log_b a}) = O(n^{\log_b a}).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

1. If $d < \log_b a$, then $a/b^d > 1$ and

$$S(n) = \sum_{i=0}^{\log_b n - 1} \left(\frac{a}{b^d}\right)^i = \frac{(a/b^d)^{\log_b n} - 1}{a/b^d - 1} = \frac{n^{\log_b (a/b^d)} - 1}{a/b^d - 1} = \Theta\left(n^{\log_b a - d}\right).$$

As a result,

$$T(n) \ge cn^d S(n) + \Theta(n^{\log_b a}) = \Omega(n^{\log_b a}).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

2. If $d = \log_b a$, then $a/b^d = 1$ and

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

2. If $d = \log_b a$, then $a/b^d = 1$ and

$$S(n) = \log_b n = \Theta(\log n).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

2. If $d = \log_b a$, then $a/b^d = 1$ and

$$S(n) = \log_b n = \Theta(\log n).$$

As a result,

$$T(n) \le cn^d S(n) + \Theta(n^{\log_b a}) = O(n^d \log n).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

2. If $d = \log_b a$, then $a/b^d = 1$ and

$$S(n) = \log_b n = \Theta(\log n).$$

As a result,

$$T(n) \ge c n^d S(n) + \Theta(n^{\log_b a}) = \Omega(n^d \log n).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

$$S(n) = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i \le \sum_{i=0}^{\infty} \left(\frac{a}{b^d}\right)^i = O(1).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

$$S(n) = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i \le \sum_{i=0}^{\infty} \left(\frac{a}{b^d}\right)^i = O(1).$$

Moreover,

$$S(n) \geq 1 = \Omega(1).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

$$S(n) = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i \le \sum_{i=0}^{\infty} \left(\frac{a}{b^d}\right)^i = O(1).$$

Moreover,

$$S(n) \geq 1 = \Omega(1)$$
.

Hence,

$$S(n) = \Theta(1).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

$$S(n) = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i \le \sum_{i=0}^{\infty} \left(\frac{a}{b^d}\right)^i = O(1).$$

Moreover,

$$S(n) \ge 1 = \Omega(1)$$
.

Hence,

$$S(n) = \Theta(1)$$
.

As a result,

$$T(n) \le cn^d S(n) + \Theta(n^{\log_b a}) = O(n^d).$$

Let

$$\sum_{i=0}^{\log_b n-1} \frac{a^i}{b^{id}} = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i =: S(n)$$

3. If $d > \log_b a$, then $a/b^d < 1$ and

$$S(n) = \sum_{i=0}^{\log_b n-1} \left(\frac{a}{b^d}\right)^i \le \sum_{i=0}^{\infty} \left(\frac{a}{b^d}\right)^i = O(1).$$

Moreover,

$$S(n) \geq 1 = \Omega(1)$$
.

Hence.

$$S(n) = \Theta(1)$$
.

As a result,

$$T(n) \ge cn^d S(n) + \Theta(n^{\log_b a}) = \Omega(n^d).$$

Corollary

Let T(n) be a function satisfying

$$T(n) = aT(n/b) + \Theta(n^d)$$
 for $n = b^k$, $k = 1, 2, 3, ..., T(1) = \Theta(1)$,

where $a \ge 1$ and $b \ge 2$ are in \mathbb{N} , and d > 0 is in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} \Theta\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ \Theta\left(n^d \log n\right) & \text{if } d = \log_b a \\ \Theta\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$

Corollary

Let T(n) be a function satisfying

$$T(n) = aT(n/b) + \Theta(n^d)$$
 for $n = b^k$, $k = 1, 2, 3, ...$, $T(1) = \Theta(1)$,

where $a \ge 1$ and $b \ge 2$ are in \mathbb{N} , and d > 0 is in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} \Theta\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ \Theta\left(n^d \log n\right) & \text{if } d = \log_b a \\ \Theta\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$

▶ Holds for non-exact-powers of b as well

Corollary

Let T(n) be a function satisfying

$$T(n) = aT(n/b) + \Theta(n^d)$$
 for $n = b^k$, $k = 1, 2, 3, ..., T(1) = \Theta(1)$,

where $a \ge 1$ and $b \ge 2$ are in \mathbb{N} , and d > 0 is in \mathbb{R} . Then

$$T(n) = \left\{ \begin{array}{ll} \Theta\left(n^{\log_b a}\right) & \text{if } d < \log_b a \\ \Theta\left(n^d \log n\right) & \text{if } d = \log_b a \\ \Theta\left(n^d\right) & \text{if } d > \log_b a \end{array} \right\} \text{ for } n = b^k, \ k = 1, 2, 3, \dots$$

- ▶ Holds for non-exact-powers of b as well
- ▶ More general statement: Master theorem (see Cormen et al.)

MERGESORT(a, f, l):

```
MERGESORT(a, f, l):
           : Integer n \ge 1; Array a = \langle a[1], \dots, a[n] \rangle of elements of S;
Input
              Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
    return
else
    m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

```
MERGESORT(a, f, l):
           : Integer n \ge 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
              Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
    return
else
    m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

▶ Time complexity T(n) of MERGESORT(a, 1, n):

end

▶ Time complexity T(n) of MERGESORT(a, 1, n):

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(1) = \Theta(1)$$

```
MERGESORT(a, f, l):
       : Integer n \ge 1; Array a = \langle a[1], \ldots, a[n] \rangle of elements of S;
Input
             Integers f, I such that 1 < f < I < n
Behaviour: Sorts the subarray \langle a[f], \ldots, a[l] \rangle in increasing order
if f = 1 then
   return
else
   m \leftarrow |(f+I)/2|;
   MERGESORT(a, f, m);
   MERGESORT(a, m + 1, l);
   MERGE(a, f, m, l);
end
```

▶ Time complexity T(n) of MERGESORT(a, 1, n):

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(1) = \Theta(1)$$

▶ Solution: $T(n) = \Theta(n \log n)$

```
\underset{\cdot}{\operatorname{MERGESORT}(a,f,l)}:
```

Input : Integer $n \ge 1$; Array $a = \langle a[1], \dots, a[n] \rangle$ of elements of S; Integers f, I such that 1 < f < l < n

Behaviour: Sorts the subarray $\langle a[f], \ldots, a[l] \rangle$ in increasing order

if f = | then | return

```
else
```

```
m \leftarrow \lfloor (f+I)/2 \rfloor;
MERGESORT(a, f, m);
```

MERGESORT(a, m, m); MERGE(a, f, m, l);

end

▶ Time complexity T(n) of MERGESORT(a, 1, n):

$$T(n) = 2T(n/2) + \Theta(n)$$
$$T(1) = \Theta(1)$$

- ▶ Solution: $T(n) = \Theta(n \log n)$
- ▶ Better than Insertion sort...

Multiplication of Square Matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \dots & b_{n,n} \end{pmatrix} = \\ = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ c_{2,1} & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \dots & c_{n,n} \end{pmatrix}$$

Multiplication of Square Matrices

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix} \cdot \begin{pmatrix} b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \dots & b_{n,n} \end{pmatrix} = \\ = \begin{pmatrix} c_{1,1} & c_{1,2} & \dots & c_{1,n} \\ c_{2,1} & c_{2,2} & \dots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \dots & c_{n,n} \end{pmatrix} \\ c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}, \qquad i, j = 1, \dots, n$$

Naive Matrix Multiplication

```
Input : Integer n \geq 1; Matrices A = (a[i,j] \mid 1 \leq i,j \leq n), B = (b[i,j] \mid 1 \leq i,j \leq n) over some semiring

Output: The matrix A \cdot B = (c[i,j] \mid 1 \leq i,j \leq n)

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

c[i,j] \leftarrow 0;

for k \leftarrow 1 to n do

c[i,j] \leftarrow c[i,j] + a[i,k] * b[k,j];

end

end
```

Naive Matrix Multiplication

```
Input : Integer n \geq 1; Matrices A = (a[i,j] \mid 1 \leq i,j \leq n), B = (b[i,j] \mid 1 \leq i,j \leq n) over some semiring

Output: The matrix A \cdot B = (c[i,j] \mid 1 \leq i,j \leq n)

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

c[i,j] \leftarrow 0;

for k \leftarrow 1 to n do

c[i,j] \leftarrow c[i,j] + a[i,k] * b[k,j];

end

end

end
```

 \triangleright $\Theta(n^3)$ arithmetic operations

Naive Matrix Multiplication

```
Input : Integer n \geq 1; Matrices A = (a[i,j] \mid 1 \leq i,j \leq n), B = (b[i,j] \mid 1 \leq i,j \leq n) over some semiring

Output: The matrix A \cdot B = (c[i,j] \mid 1 \leq i,j \leq n)

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

c[i,j] \leftarrow 0;

for k \leftarrow 1 to n do

c[i,j] \leftarrow c[i,j] + a[i,k] * b[k,j];

end

end
```

- $ightharpoonup \Theta(n^3)$ arithmetic operations
- Can we do better?

$$\left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right) = \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right)$$

$$\left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right) = \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right)$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

▶ Suppose that the blocks are square matrices of sizes $\lfloor n/2 \rfloor \times \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil \times \lceil n/2 \rceil$

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,2}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

- ▶ Suppose that the blocks are square matrices of sizes $\lfloor n/2 \rfloor \times \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil \times \lceil n/2 \rceil$
- ▶ (If not, we can simply forget about at most one row or column, which we may compute separately in $\Theta(n^2)$ operations)

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

- ▶ Suppose that the blocks are square matrices of sizes $\lfloor n/2 \rfloor \times \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil \times \lceil n/2 \rceil$
- (If not, we can simply forget about at most one row or column, which we may compute separately in $\Theta(n^2)$ operations)
- ► $T(n) = 8T(n/2) + \Theta(n^2)$, $T(1) = \Theta(1)$

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

- ▶ Suppose that the blocks are square matrices of sizes $\lfloor n/2 \rfloor \times \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil \times \lceil n/2 \rceil$
- (If not, we can simply forget about at most one row or column, which we may compute separately in $\Theta(n^2)$ operations)
- ► $T(n) = 8T(n/2) + \Theta(n^2)$, $T(1) = \Theta(1)$
- ▶ Solution: $T(n) = \Theta(n^3)$

$$\left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right) = \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right)$$

$$C_{1,1} = A_{1,1} \cdot B_{1,1} + A_{1,2} \cdot B_{2,1}$$

$$C_{1,2} = A_{1,1} \cdot B_{1,2} + A_{1,2} \cdot B_{2,2}$$

$$C_{2,1} = A_{2,1} \cdot B_{1,1} + A_{2,2} \cdot B_{2,1}$$

$$C_{2,2} = A_{2,1} \cdot B_{1,2} + A_{2,2} \cdot B_{2,2}$$

- ▶ Suppose that the blocks are square matrices of sizes $\lfloor n/2 \rfloor \times \lfloor n/2 \rfloor$ or $\lceil n/2 \rceil \times \lceil n/2 \rceil$
- ▶ (If not, we can simply forget about at most one row or column, which we may compute separately in $\Theta(n^2)$ operations)
- $T(n) = 8T(n/2) + \Theta(n^2), T(1) = \Theta(1)$
- ▶ Solution: $T(n) = \Theta(n^3)$
- ▶ This is no better than the naive approach

► Works for matrices over rings

► Works for matrices over rings

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

► Works for matrices over rings

$$\left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right) \cdot \left(\begin{array}{cc} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{array}\right) = \left(\begin{array}{cc} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{array}\right)$$

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

Works for matrices over rings

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

$$C_{1,1} = M_1 + M_2 - M_4 + M_6$$

$$C_{1,2} = M_4 + M_5$$

$$C_{2,1} = M_6 + M_7$$

$$C_{2,2} = M_2 - M_3 + M_5 - M_7$$

where

$$M_{1} = (A_{1,2} - A_{2,2}) \cdot (B_{2,1} + B_{2,2})$$

$$M_{2} = (A_{1,1} + A_{2,2}) \cdot (B_{1,1} + B_{2,2})$$

$$M_{3} = (A_{1,1} - A_{2,1}) \cdot (B_{1,1} + B_{1,2})$$

$$M_{4} = (A_{1,1} + A_{1,2}) \cdot B_{2,2}$$

$$M_{5} = A_{1,1} \cdot (B_{1,2} - B_{2,2})$$

$$M_{6} = A_{2,2} \cdot (B_{2,1} - B_{1,1})$$

$$M_{7} = (A_{2,1} + A_{2,2}) \cdot B_{1,1}$$

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$T(1) = \Theta(1)$$

▶ Time complexity (in arithmetic operations):

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$T(1) = \Theta(1)$$

▶ Solution: $T(n) = \Theta(n^{\log_2 7})$, where $\log_2 7$ is approximately 2.807

$$T(n) = 7T(n/2) + \Theta(n^2)$$

$$T(1) = \Theta(1)$$

- ▶ Solution: $T(n) = \Theta(n^{\log_2 7})$, where $\log_2 7$ is approximately 2.807
- ▶ The constant factor is pretty large (not ideal for small matrices)

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$T(1) = \Theta(1)$$

- ▶ Solution: $T(n) = \Theta(n^{\log_2 7})$, where $\log_2 7$ is approximately 2.807
- ▶ The constant factor is pretty large (not ideal for small matrices)
- ► There are some asymptotically faster algorithms, but with extremely large constants (limited practical value)

$$T(n) = 7T(n/2) + \Theta(n^2)$$
$$T(1) = \Theta(1)$$

- ▶ Solution: $T(n) = \Theta(n^{\log_2 7})$, where $\log_2 7$ is approximately 2.807
- ▶ The constant factor is pretty large (not ideal for small matrices)
- ► There are some asymptotically faster algorithms, but with extremely large constants (limited practical value)
- ▶ Current record of Le Gall (2014): $\Theta(n^{2.373...})$