
Algorithms and Data Structures
for Mathematicians

Lecture 3: Basic Data Structures

Peter Kostolányi
kostolanyi at fmph and so on

Room M-258

12 October 2017



Dynamic Sets and Data Structures

I Many algorithms need to keep record of sets of certain “objects”
I These sets usually have to be modified in time by operations such as

insertion, deletion, etc.
I Requirements for supported operations may vary
I Dynamic sets: sets that can be modified in time by one of several

operations specified
I Data structures: “realisations” (or “almost-implementations”) of

dynamic sets usually aiming at efficiency

Elements of dynamic sets:

I We shall think of them as of objects in a programming language
I Elements can have attributes; we shall usually assume that each

element x has an attribute x .key
I This allows us to realise multisets
I Elements might not be implemented as objects, but we shall always

think of them as pointers (not values)



Typical Operations on Dynamic Sets

Modifying operations:

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I . . .

Queries:

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I EMPTY(X ): returns true if X is empty
I MIN(X ): returns some element x of X with minimal x .key

(only if keys are taken from a totally ordered set)
I SUCC(X , x): returns a successor y of x in some total ordering of

keys
I . . .



Dynamic Sets and Data Structures

By a type of a dynamic set, we shall understand:

I The collection of supported operations
I Programming terminology: abstract data types
I Most frequent ones have their own names (e.g., dictionaries, . . . )

Data structures are “realisations” of dynamic sets:

I Aim is to realise the supported operations efficiently
I There is no optimal data structure for all operations
I The choice of a data structure thus depends on the type of the

dynamic set realised
I Examples: arrays, linked lists, heaps, trees, . . .



Dictionaries

Dynamic sets supporting the following operations:

I SEARCH(D, k): returns some element x of D such that x .key = k
(if there is at least one such element)

I INSERT(D, x): inserts x into D
I DELETE(D, x): deletes x from D



Dictionaries via (Doubly) Linked Lists

prev

L.head

L.head

L.head

L.tail1nil

nextkey

3 nil

1nil 3 L.tail3 nil

L.tail3nil 3 nil



Dictionaries via (Doubly) Linked Lists

LISTINSERT(L, x):
Input : A linked list L; x not in L
Behaviour: Inserts x to L

x .prev ← L.tail ;
x .next ← nil;
if L.tail 6= nil then

L.tail .next ← x
end
else

L.head ← x
end
L.tail ← x ;

I Time complexity: Θ(1)



Dictionaries via (Doubly) Linked Lists

LISTDELETE(L, x):
Input : A linked list L; x in L
Behaviour: Deletes x from L

if x .prev 6= nil then
x .prev .next ← x .next

end
else

L.head ← x .next
end
if x .next 6= nil then

x .next.prev ← x .prev
end
else

L.tail ← x .prev
end

I Time complexity: Θ(1)



Dictionaries via (Doubly) Linked Lists

LISTSEARCH(L, k):
Input : A linked list L; a key k
Output: First x in L such that x .key = k or nil if there is no such x

x ← L.head ;
while x 6= nil and x .key 6= k do

x ← x .next
end
return x ;

I Worst-case time complexity: Θ(n), where n is the number of
elements in L



Stacks

Dynamic sets supporting the following operations:

I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19

PUSH 21



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19

PUSH 21

21



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19

POP

21



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19

POP



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

19

POP



Stacks

Dynamic sets supporting the following operations:
I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out

11

42

POP



Stacks via Arrays

We shall represent a stack as an “object” S containing:
I A (dynamical) array S .a containing elements of the stack
I An integer S .num representing the number of elements on the stack

PUSH(S , x):
Input : A stack S ; an element x
Behaviour: Places x on the top of the stack

S .num← S .num + 1;
S .a[S .num]← x ;
POP(S):
Input : A stack S
Output: An element x on the top of the stack, which is removed from S

if S .num = 0 then
error(underflow)

end
else

S .num← S .num − 1;
return S .a[S .num + 1];

end



Queues

Dynamic sets supporting the following operations:
I ENQUEUE(Q, x): inserts x into Q
I DEQUEUE(Q): removes and returns x that is in Q for the longest

time

FIFO = First In First Out

19 16 37 42 10 ENQUEUE 33

19 16 37 42 10 DEQUEUE33

DEQUEUE16 37 42 10 33

37 42 10 33



Queues via Singly Linked Lists

3Q.head

key next

1 9 5 Q.tailnil

ENQUEUE(Q, x):
Input : A queue Q; x not in Q
Behaviour: Inserts x to Q

x .next ← nil;
if Q.tail 6= nil then

Q.tail .next ← x
end
else

Q.head ← x
end
Q.tail ← x ;



Queues via Singly Linked Lists

3Q.head

key next

1 9 5 Q.tailnil

DEQUEUE(Q):
Input : A queue Q
Output: The element x inserted to Q the longest time ago, which is

removed from Q

x ← Q.head ;
if x 6= nil then

Q.head ← x .next
end
if Q.head = nil then

Q.tail ← nil
end
return x ;



Priority Queues

Dynamic sets supporting the following operations (assuming that each x
has an attribute x .key from a totally ordered set (S ,�)):

I INSERT(Q, x): inserts x into Q
I MAX(Q): returns some x in Q with maximal x .key
I EXTRACTMAX(Q): removes and returns some x in Q with

maximal x .key
I INCREASEKEY(Q, x , k): assuming that k is greater than x .key ,

changes x .key to k

We shall realise priority queues via data structures called max-heaps



Max-Heaps

I “Nearly complete” binary trees
I Each level except the last one is complete
I The last level is complete from left up to some point
I Each parent has a larger (or equal) key than any of its children

42

21 37

29 415 8

2 9



Max-Heaps

I We shall represent max-heaps using arrays

42

21 37

29 415 8

2 9

1

2 3

4 5 6 7

8 9

42 21 37 15 8 29 4 2 9
1 2 3 4 5 6 7 8 9

heap size

10

PARENT(i):
return bi/2c;
LEFT(i):
return 2i ;
RIGHT(i):
return 2i + 1;



Max-Heaps

I We shall describe an operation HEAPIFY(H, i) that maintains the
heap property at index i

I Assumption: both children of the i-th node are roots of valid heaps
I The i-th node can have a smaller key than some of its children
I The operation HEAPIFY(H, i) transforms the subtree rooted at i

into a valid heap



Max-Heaps

HEAPIFY(H, i):
max ← i ;
if LEFT(i) ≤ H.heap_size and H[LEFT(i)].key � H[max ].key then

max ← LEFT(i)
end
if RIGHT(i) ≤ H.heap_size and H[RIGHT(i)].key � H[max ].key then

max ← RIGHT(i)
end
if max 6= i then

H[i ]↔ H[max ];
HEAPIFY(H,max);

end

I Time complexity: Θ(h), where h is the height of the i-th node
I Worst-case over all nodes: Θ(log n)



Priority Queues via Max-Heaps

MAX(H):
return H[1];

I Time complexity: Θ(1)

EXTRACTMAX(H):
if H.heap_size = 0 then

error(underflow)
end
else

max ← H[1];
H[1]← H[H.heap_size];
H.heap_size ← H.heap_size − 1;
HEAPIFY(H, 1);
return max ;

end

I Time complexity: Θ(log n)



Priority Queues via Max-Heaps

INCREASEKEY(H, i , k):
if k ≺ H[i ].key then

error(too small key)
end
else

H[i ].key ← k ;
while i > 1 and H[PARENT(i)].key ≺ H[i ].key do

H[i ]↔ H[PARENT(i)];
i ← PARENT(i);

end
end

I Time complexity: Θ(log n)



Priority Queues via Max-Heaps

INSERT(H, x):
k ← x .key ;
x .key ← ⊥;
H.heap_size ← H.heap_size + 1;
H[H.heap_size]← x ;
INCREASEKEY(H,H.heap_size, k);

I Time complexity: Θ(log n)



An Application of Heaps: Heap Sort

Idea:
I First “convert” an array a into a heap: BUILDHEAP(a)

I The root of the heap is the maximum element of a
I Extract the maximum and place it at the single “free” position in a
I Repeat until all elements are processed



Heap Sort

BUILDHEAP(a):
a.heap_size ← a.length;
for i ← ba.length/2c downto 1 do

HEAPIFY(a, i)
end

Worst-Case Time Complexity T (n):
I Obviously T (n) = Ω(n)

I On the other hand, we have

T (n) ≤
blog nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n ·
blog nc∑
h=0

h
2h

 ,

where
blog nc∑
h=0

h
2h ≤

∞∑
h=0

h
2h = O(1)

I Hence, T (n) = O(n), implying that T (n) = Θ(n)



Heap Sort

HEAPSORT(a):

BUILDHEAP(a);
while a.heap_size ≥ 2 do

x ← EXTRACTMAX(a);
a[heap_size + 1]← x ;

end

I Worst-case time complexity T (n): surely T (n) = O(n log n)

I It can also be proved that T (n) = Ω(n log n) (exercise)
I As a result: T (n) = Θ(n log n)


