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Dynamic Sets and Data Structures

I Many algorithms need to keep record of sets of certain “objects”
I These sets usually have to be modified in time by operations such as

insertion, deletion, etc.
I Requirements for supported operations may vary
I Dynamic sets: sets that can be modified in time by one of several

operations specified
I Data structures: “realisations” (or “almost-implementations”) of

dynamic sets usually aiming at efficiency

Elements of dynamic sets:

I We shall think of them as of objects in a programming language
I Elements can have attributes; we shall usually assume that each

element x has an attribute x .key
I This allows us to realise multisets
I Elements might not be implemented as objects, but we shall always

think of them as pointers (not values)



Typical Operations on Dynamic Sets

Modifying operations:

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I . . .

Queries:

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I EMPTY(X ): returns true if X is empty
I MIN(X ): returns some element x of X with minimal x .key

(only if keys are taken from a totally ordered set)
I SUCC(X , x): returns a successor y of x in some total ordering of

keys
I . . .



Dynamic Sets and Data Structures

By a type of a dynamic set, we shall understand:

I The collection of supported operations
I Programming terminology: abstract data types
I Most frequent ones have their own names (e.g., dictionaries, . . . )

Data structures are “realisations” of dynamic sets:

I Aim is to realise the supported operations efficiently
I There is no optimal data structure for all operations
I The choice of a data structure thus depends on the type of the

dynamic set realised
I Examples: arrays, linked lists, heaps, trees, . . .



Dictionaries

Dynamic sets supporting the following operations:

I SEARCH(D, k): returns some element x of D such that x .key = k
(if there is at least one such element)

I INSERT(D, x): inserts x into D
I DELETE(D, x): deletes x from D



Dictionaries via (Doubly) Linked Lists
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Dictionaries via (Doubly) Linked Lists

LISTINSERT(L, x):
Input : A linked list L; x not in L
Behaviour: Inserts x to L

x .prev ← L.tail ;
x .next ← nil;
if L.tail 6= nil then

L.tail .next ← x
end
else

L.head ← x
end
L.tail ← x ;

I Time complexity: Θ(1)



Dictionaries via (Doubly) Linked Lists

LISTDELETE(L, x):
Input : A linked list L; x in L
Behaviour: Deletes x from L

if x .prev 6= nil then
x .prev .next ← x .next

end
else

L.head ← x .next
end
if x .next 6= nil then

x .next.prev ← x .prev
end
else

L.tail ← x .prev
end

I Time complexity: Θ(1)



Dictionaries via (Doubly) Linked Lists

LISTSEARCH(L, k):
Input : A linked list L; a key k
Output: First x in L such that x .key = k or nil if there is no such x

x ← L.head ;
while x 6= nil and x .key 6= k do

x ← x .next
end
return x ;

I Worst-case time complexity: Θ(n), where n is the number of
elements in L



Stacks

Dynamic sets supporting the following operations:

I PUSH(S , x): inserts x into S
I POP(S): removes and returns the last inserted x

LIFO = Last In First Out
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Stacks via Arrays

We shall represent a stack as an “object” S containing:
I A (dynamical) array S .a containing elements of the stack
I An integer S .num representing the number of elements on the stack

PUSH(S , x):
Input : A stack S ; an element x
Behaviour: Places x on the top of the stack

S .num← S .num + 1;
S .a[S .num]← x ;
POP(S):
Input : A stack S
Output: An element x on the top of the stack, which is removed from S

if S .num = 0 then
error(underflow)

end
else

S .num← S .num − 1;
return S .a[S .num + 1];

end



Queues

Dynamic sets supporting the following operations:
I ENQUEUE(Q, x): inserts x into Q
I DEQUEUE(Q): removes and returns x that is in Q for the longest

time

FIFO = First In First Out
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DEQUEUE16 37 42 10 33
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Queues via Singly Linked Lists
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ENQUEUE(Q, x):
Input : A queue Q; x not in Q
Behaviour: Inserts x to Q

x .next ← nil;
if Q.tail 6= nil then

Q.tail .next ← x
end
else

Q.head ← x
end
Q.tail ← x ;



Queues via Singly Linked Lists
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DEQUEUE(Q):
Input : A queue Q
Output: The element x inserted to Q the longest time ago, which is

removed from Q

x ← Q.head ;
if x 6= nil then

Q.head ← x .next
end
if Q.head = nil then

Q.tail ← nil
end
return x ;



Priority Queues

Dynamic sets supporting the following operations (assuming that each x
has an attribute x .key from a totally ordered set (S ,�)):

I INSERT(Q, x): inserts x into Q
I MAX(Q): returns some x in Q with maximal x .key
I EXTRACTMAX(Q): removes and returns some x in Q with

maximal x .key
I INCREASEKEY(Q, x , k): assuming that k is greater than x .key ,

changes x .key to k

We shall realise priority queues via data structures called max-heaps



Max-Heaps

I “Nearly complete” binary trees
I Each level except the last one is complete
I The last level is complete from left up to some point
I Each parent has a larger (or equal) key than any of its children
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Max-Heaps

I We shall represent max-heaps using arrays
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heap size

10

PARENT(i):
return bi/2c;
LEFT(i):
return 2i ;
RIGHT(i):
return 2i + 1;



Max-Heaps

I We shall describe an operation HEAPIFY(H, i) that maintains the
heap property at index i

I Assumption: both children of the i-th node are roots of valid heaps
I The i-th node can have a smaller key than some of its children
I The operation HEAPIFY(H, i) transforms the subtree rooted at i

into a valid heap



Max-Heaps

HEAPIFY(H, i):
max ← i ;
if LEFT(i) ≤ H.heap_size and H[LEFT(i)].key � H[max ].key then

max ← LEFT(i)
end
if RIGHT(i) ≤ H.heap_size and H[RIGHT(i)].key � H[max ].key then

max ← RIGHT(i)
end
if max 6= i then

H[i ]↔ H[max ];
HEAPIFY(H,max);

end

I Time complexity: Θ(h), where h is the height of the i-th node
I Worst-case over all nodes: Θ(log n)



Priority Queues via Max-Heaps

MAX(H):
return H[1];

I Time complexity: Θ(1)

EXTRACTMAX(H):
if H.heap_size = 0 then

error(underflow)
end
else

max ← H[1];
H[1]← H[H.heap_size];
H.heap_size ← H.heap_size − 1;
HEAPIFY(H, 1);
return max ;

end

I Time complexity: Θ(log n)



Priority Queues via Max-Heaps

INCREASEKEY(H, i , k):
if k ≺ H[i ].key then

error(too small key)
end
else

H[i ].key ← k ;
while i > 1 and H[PARENT(i)].key ≺ H[i ].key do

H[i ]↔ H[PARENT(i)];
i ← PARENT(i);

end
end

I Time complexity: Θ(log n)



Priority Queues via Max-Heaps

INSERT(H, x):
k ← x .key ;
x .key ← ⊥;
H.heap_size ← H.heap_size + 1;
H[H.heap_size]← x ;
INCREASEKEY(H,H.heap_size, k);

I Time complexity: Θ(log n)



An Application of Heaps: Heap Sort

Idea:
I First “convert” an array a into a heap: BUILDHEAP(a)

I The root of the heap is the maximum element of a
I Extract the maximum and place it at the single “free” position in a
I Repeat until all elements are processed



Heap Sort

BUILDHEAP(a):
a.heap_size ← a.length;
for i ← ba.length/2c downto 1 do

HEAPIFY(a, i)
end

Worst-Case Time Complexity T (n):
I Obviously T (n) = Ω(n)

I On the other hand, we have

T (n) ≤
blog nc∑
h=0

⌈ n
2h+1

⌉
O(h) = O

n ·
blog nc∑
h=0

h
2h

 ,

where
blog nc∑
h=0

h
2h ≤
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h=0

h
2h = O(1)

I Hence, T (n) = O(n), implying that T (n) = Θ(n)



Heap Sort

HEAPSORT(a):

BUILDHEAP(a);
while a.heap_size ≥ 2 do

x ← EXTRACTMAX(a);
a[heap_size + 1]← x ;

end

I Worst-case time complexity T (n): surely T (n) = O(n log n)

I It can also be proved that T (n) = Ω(n log n) (exercise)
I As a result: T (n) = Θ(n log n)


