
Algorithms and Data Structures
for Mathematicians

Lecture 4: Trees

Peter Kostolányi
kostolanyi at fmph and so on

Room M-258

19 October 2017



Binary Trees and Their Representation

From the last lecture:

I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property

I “Almost-completeness” of heaps makes arrays a convenient choice
for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:

I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple

I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead

I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists

I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

From the last lecture:
I Heaps: “almost-complete” binary trees satisfying some property
I “Almost-completeness” of heaps makes arrays a convenient choice

for their representation

For general binary trees:
I Representation by arrays would not be so simple
I We shall use an approach similar to linked lists instead
I Binary trees will simply be “branching” linked lists
I Generalisation to k-ary trees is straightforward



Binary Trees and Their Representation

15

9

3530

7 28

key par

15 nil

left rightnil

9

30 35
nil

7
nil

28
nil

nil

nil nil



Binary Trees and Their Representation

15

9

3530

7 28

key par

15 nil

left rightnil

9

30 35
nil

7
nil

28
nil

nil

nil nil



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)

I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”

I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X

I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X

I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key

I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key

I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys

I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

I Binary trees satisfying some condition (other than for heaps)
I In general neither complete, nor “almost-complete”
I Keys are taken from a totally ordered set

The following operations on dynamic sets can be done in time
proportional to the height of a tree (Θ(n) worst-case, but usually better):

I SEARCH(X , k): returns some element x of X such that x .key = k
(if there is at least one such element)

I INSERT(X , x): inserts x into a dynamic set X
I DELETE(X , x): deletes x from X
I MIN(X ): returns some element x of X with minimal x .key
I MAX(X ): returns some element x of X with maximal x .key
I SUCC(X , x): returns a successor x in the total ordering of keys
I PRED(X , x): returns a predecessor x in the total ordering of keys

These can be used to realise, e.g., dictionaries or priority queues



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:

Let x be a node of a binary search tree. Then:
I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key

I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

Assume that the keys are taken from a totally ordered set (S ,�)

The Binary Search Tree Property:
Let x be a node of a binary search tree. Then:

I For all y in a subtree rooted at x .left, we have y .key � x .key
I For all y in a subtree rooted at x .right, we have y .key � x .key

15

9

3530

7 28

Not a binary search tree

15

9 35

30

7

28

A binary search tree



Binary Search Trees

I Let x be a node in a binary search tree T

I BSTSEARCH(x , k) will search for a node with key k in a subtree
rooted at x

I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):
if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSEARCH(x , k) will search for a node with key k in a subtree

rooted at x

I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):
if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSEARCH(x , k) will search for a node with key k in a subtree

rooted at x
I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):
if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSEARCH(x , k) will search for a node with key k in a subtree

rooted at x
I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):

if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSEARCH(x , k) will search for a node with key k in a subtree

rooted at x
I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):
if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSEARCH(x , k) will search for a node with key k in a subtree

rooted at x
I The call BSTSEARCH(T .root, k) searches the whole tree

BSTSEARCH(x , k):
if x = nil or k = x .key then return x ;
if x 6= nil and k ≺ x .key then return BSTSEARCH(x .left, k);
if x 6= nil and k � x .key then return BSTSEARCH(x .right, k);

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T

I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.
a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):

while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;

BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):

while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTMIN(x) resp. BSTMAX(x) will find a minimum resp.

a maximum in a subtree rooted at x

BSTMIN(x):
while x .left 6= nil do x ← x .left;
return x ;
BSTMAX(x):
while x .right 6= nil do x ← x .right;
return x ;

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

I Let x be a node in a binary search tree T

I BSTSUCC(x) will find a successor of x in T w.r.t. the total
ordering of keys

BSTSUCC(x):
if x .right 6= nil then

return BSTMIN(x .right)
end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T
I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSUCC(x) will find a successor of x in T w.r.t. the total

ordering of keys

BSTSUCC(x):
if x .right 6= nil then

return BSTMIN(x .right)
end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T
I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSUCC(x) will find a successor of x in T w.r.t. the total

ordering of keys

BSTSUCC(x):

if x .right 6= nil then
return BSTMIN(x .right)

end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T
I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSUCC(x) will find a successor of x in T w.r.t. the total

ordering of keys

BSTSUCC(x):
if x .right 6= nil then

return BSTMIN(x .right)
end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T
I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSUCC(x) will find a successor of x in T w.r.t. the total

ordering of keys

BSTSUCC(x):
if x .right 6= nil then

return BSTMIN(x .right)
end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T

I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTSUCC(x) will find a successor of x in T w.r.t. the total

ordering of keys

BSTSUCC(x):
if x .right 6= nil then

return BSTMIN(x .right)
end
else

y ← y .par ;
while y 6= nil and x = y .right do

x = y ;
y = y .par ;

end
return y ;

end

I Time complexity: Θ(h), where h is the height of the tree T
I Predecessors can be found in a symmetric way



Binary Search Trees

I Let x be a node not in a binary search tree T

I That is, initially x .par = x .left = x .right = nil
I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):
par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node not in a binary search tree T
I That is, initially x .par = x .left = x .right = nil

I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):
par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node not in a binary search tree T
I That is, initially x .par = x .left = x .right = nil
I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):
par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node not in a binary search tree T
I That is, initially x .par = x .left = x .right = nil
I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):

par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node not in a binary search tree T
I That is, initially x .par = x .left = x .right = nil
I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):
par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node not in a binary search tree T
I That is, initially x .par = x .left = x .right = nil
I BSTINSERT(T , x) will insert x into T

BSTINSERT(T , x):
par ← nil;
y ← T .root;
while y 6= nil do

par ← y ;
if x .key ≺ par .key then y ← par .left else y ← par .right;

end
x .par ← par ;
if par = nil then T .root ← x
else

if x .key ≺ par .key then par .left ← x
if x .key � par .key then par .right ← x

end

I Time complexity: Θ(h), where h is the height of T



Binary Search Trees

I Let x be a node in a binary search tree T

I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:

I If x has no left child, then replace x by its right child
(or by nil if there is none)

I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)

I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child

I If x has both children, then:
I Let y be the successor of x (i.e., the minimal element of the subtree

rooted at the right child of x)
I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y

I Otherwise replace y by its right child and then x by y
I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I Let x be a node in a binary search tree T
I BSTDELETE(T , x) will delete x from T

Idea:
I If x has no left child, then replace x by its right child

(or by nil if there is none)
I If x has a left child but no right child, then replace x by its left child
I If x has both children, then:

I Let y be the successor of x (i.e., the minimal element of the subtree
rooted at the right child of x)

I If y is the right child of x , then replace x by y
I Otherwise replace y by its right child and then x by y

I Replacements shall be done via BSTTRANSPLANT(T , u, v)



Binary Search Trees

I BSTTRANSPLANT(T , u, v) replaces a subtree rooted at u by
a subtree rooted at v

BSTTRANSPLANT(T , u, v):
if u.par = nil then T .root ← v ;
else

if u = u.par .left then u.par .left ← v ;
if u = u.par .right then u.par .right ← v ;

end
if v 6= nil then v .par ← u.par ;

I Time complexity: Θ(1)



Binary Search Trees

I BSTTRANSPLANT(T , u, v) replaces a subtree rooted at u by
a subtree rooted at v

BSTTRANSPLANT(T , u, v):

if u.par = nil then T .root ← v ;
else

if u = u.par .left then u.par .left ← v ;
if u = u.par .right then u.par .right ← v ;

end
if v 6= nil then v .par ← u.par ;

I Time complexity: Θ(1)



Binary Search Trees

I BSTTRANSPLANT(T , u, v) replaces a subtree rooted at u by
a subtree rooted at v

BSTTRANSPLANT(T , u, v):
if u.par = nil then T .root ← v ;
else

if u = u.par .left then u.par .left ← v ;
if u = u.par .right then u.par .right ← v ;

end
if v 6= nil then v .par ← u.par ;

I Time complexity: Θ(1)



Binary Search Trees

I BSTTRANSPLANT(T , u, v) replaces a subtree rooted at u by
a subtree rooted at v

BSTTRANSPLANT(T , u, v):
if u.par = nil then T .root ← v ;
else

if u = u.par .left then u.par .left ← v ;
if u = u.par .right then u.par .right ← v ;

end
if v 6= nil then v .par ← u.par ;

I Time complexity: Θ(1)



Binary Search Trees

BSTDELETE(T , x):

if x .left = nil then
BSTTRANSPLANT(T , x , x .right)

else if x .right = nil then
BSTTRANSPLANT(T , x , x .left)

else
y ← BSTMIN(x .right);
if y .par 6= x then

BSTTRANSPLANT(T , y , y .right);
y .right ← x .right;
y .right.par ← y ;

end
BSTTRANSPLANT(T , x , y);
y .left ← x .left;
y .left.par ← y ;

end

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

BSTDELETE(T , x):
if x .left = nil then

BSTTRANSPLANT(T , x , x .right)
else if x .right = nil then

BSTTRANSPLANT(T , x , x .left)
else

y ← BSTMIN(x .right);
if y .par 6= x then

BSTTRANSPLANT(T , y , y .right);
y .right ← x .right;
y .right.par ← y ;

end
BSTTRANSPLANT(T , x , y);
y .left ← x .left;
y .left.par ← y ;

end

I Time complexity: Θ(hx), where hx is the height of x in T



Binary Search Trees

BSTDELETE(T , x):
if x .left = nil then

BSTTRANSPLANT(T , x , x .right)
else if x .right = nil then

BSTTRANSPLANT(T , x , x .left)
else

y ← BSTMIN(x .right);
if y .par 6= x then

BSTTRANSPLANT(T , y , y .right);
y .right ← x .right;
y .right.par ← y ;

end
BSTTRANSPLANT(T , x , y);
y .left ← x .left;
y .left.par ← y ;

end

I Time complexity: Θ(hx), where hx is the height of x in T



Balanced Binary Search Trees

For most operations on binary search trees:

I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree

I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:

I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:

I Red-black trees
I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees

I AVL trees
I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees

I . . .



Balanced Binary Search Trees

For most operations on binary search trees:
I The worst-case complexity is Θ(h), where h is the height of the tree
I The worst case over all trees with n nodes: Θ(n)

It makes sense to keep the tree balanced, so that:
I The height of the tree is Θ(log n)

I The operations on the tree take Θ(log n) in worst-case

Solutions:
I Red-black trees
I AVL trees
I . . .



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

Elementary transformations retaining the binary search tree property

x

yα

β γ

LEFTROTATE(x) :

y

γx

α β

RIGHTROTATE(x) :

x

γy

α β

y

xα

β γ



Rotations

I The following pseudocode assumes that x .right 6= nil

LEFTROTATE(T , x):
y ← x .right;
x .right ← y .left;
if x .right 6= nil then x .right.par ← x ;
y .par ← x .par ;
if y .par = nil then T .root ← y ;
else

if x = y .par .left then y .par .left ← y ;
if x = y .par .right then y .par .right ← y ;

end
y .left ← x ;
x .par ← y ;

I Time complexity: Θ(1)

I RIGHTROTATE(T , x) can be done symmetrically



Rotations

I The following pseudocode assumes that x .right 6= nil

LEFTROTATE(T , x):

y ← x .right;
x .right ← y .left;
if x .right 6= nil then x .right.par ← x ;
y .par ← x .par ;
if y .par = nil then T .root ← y ;
else

if x = y .par .left then y .par .left ← y ;
if x = y .par .right then y .par .right ← y ;

end
y .left ← x ;
x .par ← y ;

I Time complexity: Θ(1)

I RIGHTROTATE(T , x) can be done symmetrically



Rotations

I The following pseudocode assumes that x .right 6= nil

LEFTROTATE(T , x):
y ← x .right;
x .right ← y .left;
if x .right 6= nil then x .right.par ← x ;
y .par ← x .par ;
if y .par = nil then T .root ← y ;
else

if x = y .par .left then y .par .left ← y ;
if x = y .par .right then y .par .right ← y ;

end
y .left ← x ;
x .par ← y ;

I Time complexity: Θ(1)

I RIGHTROTATE(T , x) can be done symmetrically



Rotations

I The following pseudocode assumes that x .right 6= nil

LEFTROTATE(T , x):
y ← x .right;
x .right ← y .left;
if x .right 6= nil then x .right.par ← x ;
y .par ← x .par ;
if y .par = nil then T .root ← y ;
else

if x = y .par .left then y .par .left ← y ;
if x = y .par .right then y .par .right ← y ;

end
y .left ← x ;
x .par ← y ;

I Time complexity: Θ(1)

I RIGHTROTATE(T , x) can be done symmetrically



Rotations

I The following pseudocode assumes that x .right 6= nil

LEFTROTATE(T , x):
y ← x .right;
x .right ← y .left;
if x .right 6= nil then x .right.par ← x ;
y .par ← x .par ;
if y .par = nil then T .root ← y ;
else

if x = y .par .left then y .par .left ← y ;
if x = y .par .right then y .par .right ← y ;

end
y .left ← x ;
x .par ← y ;

I Time complexity: Θ(1)

I RIGHTROTATE(T , x) can be done symmetrically



Red-Black Trees

Binary search trees such that:

I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour

I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black

I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:

I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black

I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black

I For each x in T : each path from x to its descendant nils contains
the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:

I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete

I There are not so many red nodes. . .



Red-Black Trees

Binary search trees such that:
I Each node has an additional attribute – a colour
I The colour of a node can be red or black
I We shall regard nil as being black

A binary search tree T coloured like this is a red-black tree if:
I The root of T is black
I If a node in T is red, then both its children are black
I For each x in T : each path from x to its descendant nils contains

the same number of black nodes

The idea behind this definition:
I If T contains black nodes only, then T is complete
I There are not so many red nodes. . .



Red-Black Trees

Not a red-black tree A red-black tree

15 30

9

287

15 30

9

287



Red-Black Trees

Not a red-black tree A red-black tree

15 30

9

287

15 30

9

287



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes
I In a red-black tree: given a path from the root to a leaf, each other

such path is at most twice as long
I A tree of height h has between Θ(2h/2) and Θ(2h) nodes
I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes
I In a red-black tree: given a path from the root to a leaf, each other

such path is at most twice as long
I A tree of height h has between Θ(2h/2) and Θ(2h) nodes
I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes

I In a red-black tree: given a path from the root to a leaf, each other
such path is at most twice as long

I A tree of height h has between Θ(2h/2) and Θ(2h) nodes
I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes
I In a red-black tree: given a path from the root to a leaf, each other

such path is at most twice as long

I A tree of height h has between Θ(2h/2) and Θ(2h) nodes
I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes
I In a red-black tree: given a path from the root to a leaf, each other

such path is at most twice as long
I A tree of height h has between Θ(2h/2) and Θ(2h) nodes

I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Lemma
Let T be a red-black tree with n nodes. Then the height of each node in
T is at most Θ(log n).

Proof sketch

I A tree of height h has at most Θ(2h) nodes
I In a red-black tree: given a path from the root to a leaf, each other

such path is at most twice as long
I A tree of height h has between Θ(2h/2) and Θ(2h) nodes
I A tree with n nodes is of height Θ(log n)



Red-Black Trees

Insertion and deletion can both be written so that they:

I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties

I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:

I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree

I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red

I Run fixup procedures that recover the red-black properties via some
rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Red-Black Trees

Insertion and deletion can both be written so that they:
I Retain the red-black properties
I Have time complexity Θ(log n)

Idea:
I First insert or delete a node as in a binary search tree
I When inserting a node, colour it red
I Run fixup procedures that recover the red-black properties via some

rotations

See Cormen et al. for details



Tree Sort

Idea:

I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a

I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):

if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;

TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):

T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)



Tree Sort

Idea:
I Build a search tree containing elements of an array a
I Traverse the tree in inorder

TRAVERSE(x):
if x .left 6= nil then al ← TRAVERSE(x .left);
if x .right 6= nil then ar ← TRAVERSE(x .right);
return al · 〈x〉 · ar ;
TREESORT(a):
T ← nil;
for i ← 1 to a.length do

BSTINSERT(T , a[i ])
end
a← TRAVERSE(T .root);

I Worst-case time complexity: Θ(n2)

I Using balanced search trees: Θ(n log n)


