Algorithms and Data Structures
for Mathematicians

Lecture 5: Sorting

Peter Kostolanyi
kostolanyi at fmph and so on
Room M-258

26 October 2017

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):

» Insertion Sort

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Worst-case time complexity ©(nlog n):

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Worst-case time complexity ©(nlog n):

» Merge Sort

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Worst-case time complexity ©(nlog n):
» Merge Sort
» Heap Sort

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Worst-case time complexity ©(nlog n):
» Merge Sort
» Heap Sort

» Tree Sort (balanced binary search trees)

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:

1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:

1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [
» ali] < pivfori="f,....m—1

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [
» ali] < pivfori="f,....m—1
> a[m] = piv

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [
» ali] < pivfori="f,....m—1
> a[m] = piv
> alil = pivfori=m+1,...,1/

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [:
» ali] < pivfori="f,....m—1
> a[m] = piv
> alil = pivfori=m+1,...,1/
Conquer the subproblems by recursively applying the procedure to
(a[f],...,a[m—1]) and (a[m+1],..., a[l])
(simply return for arrays with 1 or 0 elements)

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [:
» ali] < pivfori="f,....m—1
> a[m] = piv
> alil = pivfori=m+1,...,1/
Conquer the subproblems by recursively applying the procedure to
(a[f],...,a[m—1]) and (a[m+1],..., a[l])
(simply return for arrays with 1 or 0 elements)

Combine phase is not needed here

Quick Sort

QUICKSORT(a, , /):

Quick Sort

QUICKSORT(a, f, /):

if £ >/ then return

else
m < DIVIDE(a, f, /);
QUICKSORT(a, f,m — 1);
QUICKSORT (a, m+ 1, 1);

end

Quick Sort

QUICKSORT(a, f, /):

if £ >/ then return

else
m < DIVIDE(a, f, /);
QUICKSORT(a, f,m — 1);
QUICKSORT (a, m+ 1, 1);

end

DIVIDE(a, £, /):

Quick Sort

QUICKSORT(a, f, /):
if £ >/ then return
else
m < DIVIDE(a, f, /);
QUICKSORT(a, f,m — 1);
QUICKSORT (a, m+ 1, 1);
end
DIVIDE(a, £, /):
piv <« a[l]; j« f;
fori< fto/—1do
if a[i] < piv then
alj] < alil;
j+—Jj+1
end
end
alj] < a[l];
return j;

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],...,a[n]) is already sorted

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted
» Then for each f </, the array (a[f],..., a[l]) is divided as follows:

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted
» Then for each f </, the array (a[f],..., a[l]) is divided as follows:

» m=1,

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted

» Then for each f </, the array (a[f],..., a[l]) is divided as follows:
» m=1,
» No elements of the array are exchanged

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted

» Then for each f </, the array (a[f],..., a[l]) is divided as follows:
» m=1,
» No elements of the array are exchanged
> One recursive call for (a[f], ..., a[l —1]) and one for an empty array

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted
» Then for each f </, the array (a[f],..., a[l]) is divided as follows:

» m=1,
» No elements of the array are exchanged
> One recursive call for (a[f], ..., a[l —1]) and one for an empty array

» Time complexity on such input: Ts(n) = Ts(n—1) + T5(0) + ©(n)

Worst-Case Time Complexity of Quick Sort

» Suppose that (a[1],..., a[n]) is already sorted
» Then for each f </, the array (a[f],..., a[l]) is divided as follows:
» m=1,
» No elements of the array are exchanged
> One recursive call for (a[f], ..., a[l —1]) and one for an empty array
» Time complexity on such input: Ts(n) = Ts(n—1) + T5(0) + ©(n)

v

Hence, Ts(n) = ©(n?)

Worst-Case Time Complexity of Quick Sort

v

Suppose that (a[1], ..., a[n]) is already sorted

Then for each f </, the array (a[f],..., a[/]) is divided as follows:
» m=1,
» No elements of the array are exchanged
> One recursive call for (a[f], ..., a[l —1]) and one for an empty array

Time complexity on such input: T¢(n) = Ts(n—1) 4+ T4(0) + ©(n)
Hence, Ts(n) = ©(n?)

For worst-case complexity, this implies T(n) = Q(n?)

v

v

v

v

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< ok —
T(n) < OSTSaI):fl(T(k) +T(h—k—-1))+cn

for some ¢; > 0

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< ok —
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn
for some ¢; > 0

» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n > 2

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< ok —
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn
for some ¢; > 0

» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n >

2
» We shall prove that T(n) < cx(n? +1) forall n >0

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< ok —
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn
for some ¢; > 0

» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n >

2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< ok —
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn
for some ¢; > 0

» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:
» T0)<e<e0®+1)and T(1) < < (1?2 +1)

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< — k=
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn

for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and

2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

» T0)<e<e0®+1)and T(1) < < (1?2 +1)
> Now, let n > 2

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))

» By definition of worst-case complexity:
< T(h—k—-1
T(0) < max (T(K)+ T(n— k1) +an

for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and

2con > 2c, +cinforn>2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

» T0)<e<e0®+1)and T(1) < < (1?2 +1)
> Now, let n > 2

> By the induction hypothesis: T (k) < c2(k*+1) for k =0, ...

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
< — k=
T(n) < ongar)w(fl(T(k) +T(h—k—-1))+cn

for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and

2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

» T0)<e<e0®+1)and T(1) < < (1?2 +1)

> Now, let n > 2

> By the induction hypothesis: T(k) < c2(k?*+1) for k=0,...,n—1
> T(n) < max (c2(K®+1)+ca((n—k—1)>+1)) +can

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:

T(n) < 0<r)(1<a,>7<71(T(k) +T(n—k—1))+cn

for some ¢; > 0

» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n >

2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

>
>
>
>

>

TO) <o <eo0*+1)and T(1) < < (1 +1)

Now, let n > 2

By the induction hypothesis: T(k) < c2(k*+1) for k=0,...,n—1
T(n) < ,nax (c2(K®+1)+ca((n—k—1)>+1)) +can

T(n) < ongar),(A (C2k2 +ce(n—k-— 1)2) +2c +can

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
T(n) < T(k T(h—k—-1
(m) = pax (T +T(n—k=1) +an
for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:
» T0)<e<e0®+1)and T(1) < < (1?2 +1)
> Now, let n > 2
> By the induction hypothesis: T(k) < c2(k?*+1) for k=0,...,n—1
> T(n) < ,nax (c2(K®+1)+ca((n—k—1)>+1)) +can

T(n) < ongar),(q (C2k2 +ce(n—k-— 1)2) +2c +can

v

> &x? + c2(n — x — 1)? has positive second derivative on (0,n — 1)

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))
» By definition of worst-case complexity:
T(n) < Tk)+ T(n—k-1
(m) = pax (T +T(n—k=1) +an
for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:
» T0)<e<e0®+1)and T(1) < < (1?2 +1)
> Now, let n > 2
> By the induction hypothesis: T(k) < c2(k?*+1) for k=0,...,n—1
» T(n) < oM2X | (c2(K®+1)+ca((n—k—1)>+1)) +can
> T(n) < o n2X (2k® + c2(n— k—1)*) + 2c2 + c1n
> &x? + c2(n — x — 1)? has positive second derivative on (0,n — 1)
> The maximum is attained for x =0and x=n—1

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))

» By definition of worst-case complexity:

T(n) < 0<r)(1<a,>7<71(T(k) +T(n—k—1))+cn

for some ¢; > 0
» Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn for n > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

>
>
>
>

>

TO) <o <eo0*+1)and T(1) < < (1 +1)

Now, let n > 2

By the induction hypothesis: T(k) < c2(k*+1) for k=0,...,n—1
T(n) < ,nax (c2(K®+1)+ca((n—k—1)>+1)) +can

T(n) < ongar),(q (C2k2 +ce(n—k-— 1)2) +2c +can

> &x? + c2(n — x — 1)? has positive second derivative on (0,n — 1)
» The maximum is attained for x =0and x=n—1
» T(n) < cz(n—1)2+2(:2+c1n = n?—2cn+c+2c+cin < cz(n2+1)

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?
» Good average-case performance

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?
» Good average-case performance

» If a pivot is not chosen as a[/], but randomly: no adversary can
choose an input with bad running time (randomised quick sort)

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?
» Good average-case performance

» If a pivot is not chosen as a[/], but randomly: no adversary can
choose an input with bad running time (randomised quick sort)

» Quick sort is particularly well suited for practical implementation
(cache efficiency, etc.)

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]

» Randomised quick sort: pivot is set to a randomly chosen element

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element

» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element

» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure

RQUICKSORT(a, f, /):

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element
» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure
RQUICKSORT (a, f, /):
if £ >/ then return
else
m < RDIVIDE(a, f, /);
RQUICKSORT(a, f, m — 1);
RQUICKSORT (a,m+ 1,/);
end

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element
» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure
RQUICKSORT (a, f, /):
if £ >/ then return
else
m < RDIVIDE(a, f, /);
RQUICKSORT(a, f, m — 1);
RQUICKSORT (a,m+ 1,/);
end
RDIVIDE(a, f, /):

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element

» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure

RQUICKSORT(a, f, /):
if £ >/ then return
else

m < RDIVIDE(a, f, /);

RQUICKSORT(a, f, m — 1);

RQUICKSORT(a, m + 1, /);
end
RDIVIDE(a, f, /):
index + RANDOM(f, /);
alindex] < a[l];
return DIVIDE(a, f, /);

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)

We shall compute the expected value of X

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)

We shall compute the expected value of X

> Let a = (a[1],...,a[n]) contain elements s; =

-2 S,

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)
We shall compute the expected value of X

> Let a = (a[l],..., a[n]) contain elements s; < ... <5,

> For each i # j: s; is compared with s; at most once (each element
can be a pivot at most once)

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)
We shall compute the expected value of X

> Let a = (a[l],..., a[n]) contain elements s; < ... <5,

> For each i # j: s; is compared with s; at most once (each element
can be a pivot at most once)

> Let X;; = 1if 5; is compared with s; and X;; = 0 otherwise

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)
We shall compute the expected value of X

> Let a = (a[l],..., a[n]) contain elements s; < ... <5,

> For each i # j: s; is compared with s; at most once (each element
can be a pivot at most once)

> Let X;; = 1if 5; is compared with s; and X;; = 0 otherwise
We obtain:

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)
We shall compute the expected value of X

> Let a = (a[l],..., a[n]) contain elements s; < ... <5,

> For each i # j: s; is compared with s; at most once (each element
can be a pivot at most once)

> Let X;; = 1if 5; is compared with s; and X;; = 0 otherwise
We obtain:

E[X]=E i > X :i Y EXijl=

i=1 j=i+1 i=1 j=i+1

n—1 n
= Z Z Pr[s; is compared with s;]

i=1 j=i+1

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;
> Let i <j and let us denote S[i,j] == {si,...,s;}

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;
> Let i <j and let us denote S[i,j] == {si,...,s;}

> If s; is a first element of S[i,j] chosen as a pivot, then s; is
compared with si11,...,s5;

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;

> Let i <j and let us denote S[i,j] == {si,...,s;}
> If s; is a first element of S[i,j] chosen as a pivot, then s; is
compared with si11,...,s5;

> If 5; is a first element of S[i, /] chosen as a pivot, then s; is
compared with s;,...,s_1

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;

> Let i <j and let us denote S[i,j] == {si,...,s;}

> If s; is a first element of S[i,j] chosen as a pivot, then s; is
compared with si11,...,s5;

> If 5; is a first element of S[i, /] chosen as a pivot, then s; is
compared with s;,...,s_1

> If some other element of S[i,j] is a first chosen pivot, then s; and s;
are not compared at all

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;

> Let i <j and let us denote S[i,j] == {si,...,s;}

> If s; is a first element of S[i,j] chosen as a pivot, then s; is
compared with si11,...,s5;

> If 5; is a first element of S[i, /] chosen as a pivot, then s; is
compared with s;,...,s_1

> If some other element of S[i,j] is a first chosen pivot, then s; and s;
are not compared at all

Pr[s; is compared with s;] = Pr[s; is a first pivot chosen from S[i, j]] +
+ Pr[s; is a first pivot chosen from S[i, j]] =
1 1 2
=— + — =—
j—i+1 j—i+1 j—i+1

Analysis of Randomised Quick Sort

As a result:

Analysis of Randomised Quick Sort

2_
- =

As a result:
n—1 n—i 2 n—1 n
EX] = ZZ /+1_Zzt+l<z
111 l+1 i=1 t=1 i=1 t=1

= Z O(log n) = O(nlog n)

Analysis of Randomised Quick Sort

2_
- =

As a result:
n—1 n—i 2 n—1 n
111 l+1 i=1 t=1 i=1 t=1

= Z O(log n) = O(nlog n)

> The expected time complexity thus is O(nlog n)

Analysis of Randomised Quick Sort

As a result:
n—1 n—i 2 n—1 n 2
E[X] ZZ _Zzt+l<z ?:
111 l+1 i=1 t=1 i=1 t=1

= Z O(log n) = O(nlog n)

> The expected time complexity thus is O(nlog n)

» It is not hard to prove that the best-case time complexity is
O(nlogn)

Analysis of Randomised Quick Sort

2_
- =

As a result:
n—1 n—i 2 n—1 n
111 l+1 i=1 t=1 i=1 t=1

= Z O(log n) = O(nlog n)

> The expected time complexity thus is O(nlog n)

» It is not hard to prove that the best-case time complexity is
O(nlogn)

> Hence, the expected time complexity is ©(nlog n)

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:

» It always produces a correct output

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:

» These may produce incorrect output

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:
» These may produce incorrect output
» The probability of error is typically small

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:
» These may produce incorrect output
» The probability of error is typically small

» Usually can be made so small that it is irrelevant

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:
» These may produce incorrect output
» The probability of error is typically small
» Usually can be made so small that it is irrelevant
» Often more efficient than their best known deterministic counterparts

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

» There might be some other actions than comparisons and exchanges,
but these depend just on the comparisons made up to the point

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

» There might be some other actions than comparisons and exchanges,
but these depend just on the comparisons made up to the point

We shall now prove the following lower bound:

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

» There might be some other actions than comparisons and exchanges,
but these depend just on the comparisons made up to the point

We shall now prove the following lower bound:

» The worst-case time complexity of any comparison sort is Q(nlog n)

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

» There might be some other actions than comparisons and exchanges,
but these depend just on the comparisons made up to the point

We shall now prove the following lower bound:
» The worst-case time complexity of any comparison sort is Q(nlog n)

» For instance merge sort and heap sort are thus optimal (among
comparison sorts)

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]
» Comparisons a[-] = a[-], a[-] = a[-], a[‘] < a[*], and a[-] > a[-] can be
“expressed in terms of”" a constant number of a[-] < a[/]

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]
» Comparisons a[-] = a[-], a[-] = a[-], a[‘] < a[*], and a[-] > a[-] can be
“expressed in terms of”" a constant number of a[-] < a[/]

Decision trees:

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]

» Comparisons a[-] = a[-], a[-] = a[-], a[‘] < a[*], and a[-] > a[-] can be
“expressed in terms of”" a constant number of a[-] < a[/]

Decision trees:

» Interior nodes are pairs of indices of elements compared

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]

» Comparisons a[-] = a[-], a[-] = a[-], a[‘] < a[*], and a[-] > a[-] can be
“expressed in terms of”" a constant number of a[-] < a[/]

Decision trees:
» Interior nodes are pairs of indices of elements compared

> Leaves are sorted arrays produced on output

Lower Bound for Sorting by Comparison

Example of a decision tree for n = 3:

Lower Bound for Sorting by Comparison

Example of a decision tree for n = 3:

1,2

2,3 1,3

IA
¥
IA
¥

(1,2,3) 2.1,3)

1,3 2,3
= - = -

1,32 (3.1,2) (231 (3,21

Lower Bound for Sorting by Comparison

If all input elements are distinct:

Lower Bound for Sorting by Comparison

If all input elements are distinct:

» A comparison sort has to be able to produce n! different outputs

Lower Bound for Sorting by Comparison

If all input elements are distinct:
» A comparison sort has to be able to produce n! different outputs

» Decision trees for inputs of length n need to have at least n!
reachable leaves

Lower Bound for Sorting by Comparison

If all input elements are distinct:
» A comparison sort has to be able to produce n! different outputs

» Decision trees for inputs of length n need to have at least n!
reachable leaves

» A maximum depth of a reachable leaf has to be at least

log(n!) =logn+log(n—1)+...+logl > glogg = Q(nlog n)

Lower Bound for Sorting by Comparison

If all input elements are distinct:
» A comparison sort has to be able to produce n! different outputs

» Decision trees for inputs of length n need to have at least n!
reachable leaves

» A maximum depth of a reachable leaf has to be at least

log(n!) =logn+log(n—1)+...+logl > glogg = Q(nlog n)

» The worst-case time complexity is Q(nlog n) as well

Sorting in “Linear Time"

We shall describe a sorting algorithm that:

Sorting in “Linear Time"

We shall describe a sorting algorithm that:

» |s not comparison sort

Sorting in “Linear Time"

We shall describe a sorting algorithm that:
» |s not comparison sort

» Makes relatively strong assumptions about the universe of possible
array elements

Sorting in “Linear Time"

We shall describe a sorting algorithm that:
» |s not comparison sort
» Makes relatively strong assumptions about the universe of possible
array elements

» Runs in time that can be considered linear worst-case under some
circumstances

Sorting in “Linear Time"

We shall describe a sorting algorithm that:

» |s not comparison sort

» Makes relatively strong assumptions about the universe of possible
array elements

» Runs in time that can be considered linear worst-case under some
circumstances

> This is just an example, there are some other “similar” algorithms as
well

Counting Sort

» Assumes that array elements are integers between 0 and some k

Counting Sort

» Assumes that array elements are integers between 0 and some k
» For each i from 0 to k:

Counting Sort

» Assumes that array elements are integers between 0 and some k
» For each i from 0 to k:
» The algorithm counts the number of array elements equal to /

Counting Sort

» Assumes that array elements are integers between 0 and some k
» For each i from 0 to k:

» The algorithm counts the number of array elements equal to /
» Then counts the number of elements less than or equal to /

Counting Sort

» Assumes that array elements are integers between 0 and some k
» For each i from 0 to k:
» The algorithm counts the number of array elements equal to /

» Then counts the number of elements less than or equal to /
> Uses these values to “create” the sorted array

Counting Sort

COUNTINGSORT(a):

Counting Sort

COUNTINGSORT(a):
Create arrays b = (b[1],..., b[n]) and ¢ = (c[0],..., c[k]);
for i + 0 to k do c[i] + 0;
for j «+ 1 to ndo c[a[j]] «+ c[aj]] + 1;
for i < 0 to k do c[i] < c[i] + ¢[i — 1]
for j + n downto 1 do
blc[al]]] « alj];
clal]] « clal]] - &
end
return b;

Counting Sort

COUNTINGSORT(a):
Create arrays b = (b[1],..., b[n]) and ¢ = (c[0],..., c[k]);
for i + 0 to k do c[i] + 0;
for j «+ 1 to ndo c[a[j]] «+ c[aj]] + 1;
for i < 0 to k do c[i] < c[i] + ¢[i — 1]
for j + n downto 1 do
blc[al]]] « alj];
clal]] « clal]] - &
end
return b;

» If elements have no “satellite data”, the final for cycle can be
executed in increasing order as well

Counting Sort

COUNTINGSORT(a):
Create arrays b = (b[1],..., b[n]) and ¢ = (c[0],..., c[k]);
for i + 0 to k do c[i] + 0;
for j «+ 1 to ndo c[a[j]] «+ c[aj]] + 1;
for i < 0 to k do c[i] < c[i] + ¢[i — 1]
for j + n downto 1 do
blc[al]]] « alj];
clal]] « clal]] - &
end
return b;

» If elements have no “satellite data”, the final for cycle can be
executed in increasing order as well

» The pseudocode shown above results in a stable sorting algorithm

Counting Sort

COUNTINGSORT(a):
Create arrays b = (b[1],..., b[n]) and ¢ = (c[0],..., c[k]);
for i + 0 to k do c[i] + 0;
for j «+ 1 to ndo c[a[j]] «+ c[aj]] + 1;
for i < 0 to k do c[i] < c[i] + ¢[i — 1]
for j + n downto 1 do
blc[al]]] « alj];
clal]] « clal]] - &
end
return b;

» If elements have no “satellite data”, the final for cycle can be
executed in increasing order as well
» The pseudocode shown above results in a stable sorting algorithm

» Time complexity: ©(n + k)

