Algorithms and Data Structures
for Mathematicians

Lecture 5: Sorting

Peter Kostolanyi
kostolanyi at fmph and so on
Room M-258

26 October 2017

Sorting Algorithms Covered So Far

Worst-case time complexity ©(n?):
> Insertion Sort

> Tree Sort (“basic” binary search trees)

Worst-case time complexity ©(nlog n):
» Merge Sort
» Heap Sort

» Tree Sort (balanced binary search trees)

Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array (a[f],...,a[l]) as follows:
1. Choose a pivot, e.g., as piv « a[/]
2. Rearrange the array so that for some f < m < [
» alij < pivfori="f,....m—1
> a[m] = piv
> alil = pivfori=m+1,...,1/
Conquer the subproblems by recursively applying the procedure to
(a[f],...,a[m—1]) and (a[m+1],..., a[l])
(simply return for arrays with 1 or 0 elements)

Combine phase is not needed here

Quick Sort

QUICKSORT(a, f, /):
if £ >/ then return
else
m < DIVIDE(a, f, /);
QUICKSORT(a, f,m — 1);
QUICKSORT (a, m+ 1, /);
end
DIVIDE(a, £, /):
piv <« a[l]; j« f;
fori< fto/—1do
if a[i] < piv then
alj] < alil;
j+—Jj+1
end
end
alj] < a[l];
return j;

Worst-Case Time Complexity of Quick Sort

v

Suppose that (a[1], ..., a[n]) is already sorted

Then for each f </, the array (a[f],..., a[/]) is divided as follows:
» m=1
» No elements of the array are exchanged
> One recursive call for (a[f], ..., a[l — 1]) and one for an empty array

Time complexity on such input: Ts(n) = Ts(n—1) + T(0) + ©(n)
Hence, Ts(n) = ©(n?)

For worst-case complexity, this implies T(n) = Q(n?)

v

v

v

v

Worst-Case Time Complexity of Quick Sort

» We shall prove that T(n) = O(n?) as well (hence, T(n) = ©(n?))

» By definition of worst-case complexity:

T(n) < 0<r)(1<a,>7<71(T(k) +T(n—k—-1))+cn

for some ¢; > 0
> Let ¢; > 0 be such that T(0) < ¢, T(1) < ¢, and
2con > 2¢ + cyn forn > 2
» We shall prove that T(n) < cx(n? +1) forall n >0
» Induction on n:

>
>
>
>

>

TO) <o <e0®*+1)and T(1) < < (1 +1)

Now, let n > 2

By the induction hypothesis: T(k) < ca(k® +1) for k=0,...,n—1
T(n) < ,nax (c2(K®+1)+c((n—k—1)>+1)) +can

T(n) < ongar),(q (C2k2 +ce(n—k-— 1)2) +2c +can

> &x? + c2(n — x — 1)? has positive second derivative on (0,n — 1)
» The maximum is attained for x =0and x=n—1
» T(n) < cz(n—1)2+2(:2+c1n = n?—2cn+c+2c+cn < cz(n2+1)

Why Quick Sort?

» The worst-case time complexity of quick sort is ©(n?)

» Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?
» Good average-case performance

» If a pivot is not chosen as a[/], but randomly: no adversary can
choose an input with bad running time (randomised quick sort)

» Quick sort is particularly well suited for practical implementation
(cache efficiency, etc.)

Randomised Quick Sort

» “Classical” quick sort: pivot is set to a[/]
» Randomised quick sort: pivot is set to a randomly chosen element

» Randomised DIVIDE: randomly choose an element, exchange it
with a[/], and call the “ordinary” DIVIDE procedure

RQUICKSORT(a, f, /):
if £ > | then return
else

m < RDIVIDE(a, f, /);

RQUICKSORT(a, f, m — 1);

RQUICKSORT(a, m + 1, /);
end
RDIVIDE(a, f, /):
index « RANDOM(f, /);
alindex] < a[l];
return DIVIDE(a, f, /);

Analysis of Randomised Quick Sort

» Let X be a random variable counting comparisons “a[i] < piv"" in
DIVIDE during the execution of RQUICKSORT

» The total running time is O(n + X) (at most n calls of DIVIDE)
We shall compute the expected value of X

> Let a = (a[l],...,a[n]) contain elements s; < ... <5,

» For each i # j: s; is compared with s; at most once (each element
can be a pivot at most once)

> Let X;; =1 if 5; is compared with s; and X;; = 0 otherwise
We obtain:

E[X]=E i > X :i > EXij=

i=1 j=i+1 i=1 j=i+1

n—1 n
= Z Z Pr[s; is compared with s;]

i=1 j=i+1

Analysis of Randomised Quick Sort

> It remains to compute the probability that s; is compared with s;

> Let i <j and let us denote S[i,j] .= {si,...,s;}

> If s; is a first element of S[i,j] chosen as a pivot, then s; is
compared with si11,...,5;

> If 5; is a first element of S[i, /] chosen as a pivot, then s; is
compared with s;,..., 51

> If some other element of S[i,] is a first chosen pivot, then s; and s;
are not compared at all

Pr[s; is compared with s;] = Pr[s; is a first pivot chosen from S[i, j]] +
+ Pr[s; is a first pivot chosen from S[i, j]] =
1 1 2
=— + — =—
j—i+1 j—i+1 j—i+1

Analysis of Randomised Quick Sort

2_
- =

As a result:
n—1 n—i 2 n—1 n
111 l+1 i=1 t=1 i=1 t=1

= Z O(log n) = O(nlog n)

> The expected time complexity thus is O(nlog n)

» It is not hard to prove that the best-case time complexity is
O(nlogn)

> Hence, the expected time complexity is ©(nlog n)

About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
» It always produces a correct output

» The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:
» These may produce incorrect output
» The probability of error is typically small
» Usually can be made so small that it is irrelevant
» Often more efficient than their best known deterministic counterparts

Sorting by Comparison

The sorting algorithms described so far are comparison sorts

» The produced output depends solely on a sequence of comparisons
(of type a[i] = a[j]) between the array elements

» There might be some other actions than comparisons and exchanges,
but these depend just on the comparisons made up to the point

We shall now prove the following lower bound:
» The worst-case time complexity of any comparison sort is Q(nlog n)

» For instance merge sort and heap sort are thus optimal (among
comparison sorts)

Lower Bound for Sorting by Comparison

Let (a[1],...,a[n]) be an array
» A comparison sort makes a sequence of comparisons a[i] < a[j]

» Comparisons a[-] = a[-], a[] = a[-], a[‘] < a[*], and a[-] > a[-] can be
“expressed in terms of”" a constant number of a[-] < a[/]

Decision trees:
» Interior nodes are pairs of indices of elements compared

> Leaves are sorted arrays produced on output

Lower Bound for Sorting by Comparison

Example of a decision tree for n = 3:

1,2

2,3 1,3

IA
¥
IA
¥

(1,2,3) 2.1,3)

1,3 2,3
= - = -

1,32 3.1,2) (231 (3,21

Lower Bound for Sorting by Comparison

If all input elements are distinct:
» A comparison sort has to be able to produce n! different outputs

» Decision trees for inputs of length n need to have at least n!
reachable leaves

» A maximum depth of a reachable leaf has to be at least
log(n!) =logn+log(n—1)+...+logl > g Iogg = Q(nlog n)

» The worst-case time complexity is Q(nlogn) as well

Sorting in “Linear Time"

We shall describe a sorting algorithm that:

» |s not comparison sort

» Makes relatively strong assumptions about the universe of possible
array elements

» Runs in time that can be considered linear worst-case under some
circumstances

> This is just an example, there are some other “similar” algorithms as
well

Counting Sort

» Assumes that array elements are integers between 0 and some k
» For each i from 0 to k:
» The algorithm counts the number of array elements equal to /

» Then counts the number of elements less than or equal to i
> Uses these values to “create” the sorted array

Counting Sort

COUNTINGSORT(a):
Create arrays b = (b[1],..., b[n]) and ¢ = (c[0],..., c[k]);
for i + 0 to k do c[i] + 0;
for j «+ 1 to ndo c[a[j]] «+ c[aj]]] + 1;
for i < 0 to k do c[i] < c[i] + ¢[i — 1]
for j + n downto 1 do
blc[al]]] « alj];
clal]] « clal]] - &
end
return b;

» If elements have no “satellite data”, the final for cycle can be
executed in increasing order as well
» The pseudocode shown above results in a stable sorting algorithm

» Time complexity: ©(n + k)

