
Algorithms and Data Structures
for Mathematicians

Lecture 5: Sorting

Peter Kostolányi
kostolanyi at fmph and so on

Room M-258

26 October 2017



Sorting Algorithms Covered So Far

Worst-case time complexity Θ(n2):
I Insertion Sort
I Tree Sort (“basic” binary search trees)

Worst-case time complexity Θ(n log n):
I Merge Sort
I Heap Sort
I Tree Sort (balanced binary search trees)



Quick Sort

Uses a divide and conquer strategy in a different way than merge sort:
Divide the array 〈a[f ], . . . , a[l ]〉 as follows:

1. Choose a pivot, e.g., as piv ← a[l ]
2. Rearrange the array so that for some f ≤ m ≤ l :

I a[i ] � piv for i = f , . . . ,m − 1
I a[m] = piv
I a[i ] � piv for i = m + 1, . . . , l

Conquer the subproblems by recursively applying the procedure to
〈a[f ], . . . , a[m − 1]〉 and 〈a[m + 1], . . . , a[l ]〉
(simply return for arrays with 1 or 0 elements)

Combine phase is not needed here



Quick Sort

QUICKSORT(a, f , l):
if f ≥ l then return
else

m← DIVIDE(a, f , l);
QUICKSORT(a, f ,m − 1);
QUICKSORT(a,m + 1, l);

end
DIVIDE(a, f , l):
piv ← a[l ]; j ← f ;
for i ← f to l − 1 do

if a[i ] � piv then
a[j ]↔ a[i ];
j ← j + 1;

end
end
a[j ]↔ a[l ];
return j ;



Worst-Case Time Complexity of Quick Sort

I Suppose that 〈a[1], . . . , a[n]〉 is already sorted
I Then for each f < l , the array 〈a[f ], . . . , a[l ]〉 is divided as follows:

I m = l
I No elements of the array are exchanged
I One recursive call for 〈a[f ], . . . , a[l − 1]〉 and one for an empty array

I Time complexity on such input: Ts(n) = Ts(n − 1) + Ts(0) + Θ(n)

I Hence, Ts(n) = Θ(n2)

I For worst-case complexity, this implies T (n) = Ω(n2)



Worst-Case Time Complexity of Quick Sort

I We shall prove that T (n) = O(n2) as well (hence, T (n) = Θ(n2))
I By definition of worst-case complexity:

T (n) ≤ max
0≤k≤n−1

(T (k) + T (n − k − 1)) + c1n

for some c1 > 0
I Let c2 > 0 be such that T (0) ≤ c2, T (1) ≤ c2, and

2c2n ≥ 2c2 + c1n for n ≥ 2
I We shall prove that T (n) ≤ c2(n2 + 1) for all n ≥ 0
I Induction on n:

I T (0) ≤ c2 ≤ c2(02 + 1) and T (1) ≤ c2 ≤ c2(12 + 1)
I Now, let n ≥ 2
I By the induction hypothesis: T (k) ≤ c2(k2 + 1) for k = 0, . . . , n − 1
I T (n) ≤ max

0≤k≤n−1

(
c2(k2 + 1) + c2((n − k − 1)2 + 1)

)
+ c1n

I T (n) ≤ max
0≤k≤n−1

(
c2k2 + c2(n − k − 1)2

)
+ 2c2 + c1n

I c2x2 + c2(n − x − 1)2 has positive second derivative on (0, n − 1)
I The maximum is attained for x = 0 and x = n − 1
I T (n) ≤ c2(n−1)2+2c2+c1n = c2n2−2c2n+c2+2c2+c1n ≤ c2(n2+1)



Why Quick Sort?

I The worst-case time complexity of quick sort is Θ(n2)

I Quick sort is much worse than insertion sort on already sorted inputs!

What is so quick about quick sort?
I Good average-case performance
I If a pivot is not chosen as a[l ], but randomly: no adversary can

choose an input with bad running time (randomised quick sort)
I Quick sort is particularly well suited for practical implementation

(cache efficiency, etc.)



Randomised Quick Sort

I “Classical” quick sort: pivot is set to a[l ]
I Randomised quick sort: pivot is set to a randomly chosen element
I Randomised DIVIDE: randomly choose an element, exchange it

with a[l ], and call the “ordinary” DIVIDE procedure

RQUICKSORT(a, f , l):
if f ≥ l then return
else

m← RDIVIDE(a, f , l);
RQUICKSORT(a, f ,m − 1);
RQUICKSORT(a,m + 1, l);

end
RDIVIDE(a, f , l):
index ← RANDOM(f , l);
a[index ]↔ a[l ];
return DIVIDE(a, f , l);



Analysis of Randomised Quick Sort

I Let X be a random variable counting comparisons “a[i ] � piv ” in
DIVIDE during the execution of RQUICKSORT

I The total running time is O(n + X ) (at most n calls of DIVIDE)

We shall compute the expected value of X
I Let a = 〈a[1], . . . , a[n]〉 contain elements s1 � . . . � sn
I For each i 6= j : si is compared with sj at most once (each element

can be a pivot at most once)
I Let Xi,j = 1 if si is compared with sj and Xi,j = 0 otherwise

We obtain:

E [X ] = E

n−1∑
i=1

n∑
j=i+1

Xi,j

 =
n−1∑
i=1

n∑
j=i+1

E [Xi,j ] =

=
n−1∑
i=1

n∑
j=i+1

Pr [si is compared with sj ]



Analysis of Randomised Quick Sort

I It remains to compute the probability that si is compared with sj
I Let i < j and let us denote S [i , j ] := {si , . . . , sj}
I If si is a first element of S [i , j ] chosen as a pivot, then si is

compared with si+1, . . . , sj
I If sj is a first element of S [i , j ] chosen as a pivot, then sj is

compared with si , . . . , sj−1

I If some other element of S [i , j ] is a first chosen pivot, then si and sj
are not compared at all

Pr [si is compared with sj ] = Pr [si is a first pivot chosen from S [i , j ]] +

+ Pr [sj is a first pivot chosen from S [i , j ]] =

=
1

j − i + 1
+

1
j − i + 1

=
2

j − i + 1



Analysis of Randomised Quick Sort

As a result:

E [X ] =
n−1∑
i=1

n∑
j=i+1

2
j − i + 1

=
n−1∑
i=1

n−i∑
t=1

2
t + 1

<

n−1∑
i=1

n∑
t=1

2
t

=

=
n−1∑
i=1

O(log n) = O(n log n)

I The expected time complexity thus is O(n log n)

I It is not hard to prove that the best-case time complexity is
Θ(n log n)

I Hence, the expected time complexity is Θ(n log n)



About Randomised Algorithms

Randomised quick sort is a Las Vegas randomised algorithm:
I It always produces a correct output
I The running time on a given input is a random variable

This is in contrast to Monte Carlo randomised algorithms:
I These may produce incorrect output
I The probability of error is typically small
I Usually can be made so small that it is irrelevant
I Often more efficient than their best known deterministic counterparts



Sorting by Comparison

The sorting algorithms described so far are comparison sorts
I The produced output depends solely on a sequence of comparisons

(of type a[i ] � a[j ]) between the array elements
I There might be some other actions than comparisons and exchanges,

but these depend just on the comparisons made up to the point

We shall now prove the following lower bound:
I The worst-case time complexity of any comparison sort is Ω(n log n)

I For instance merge sort and heap sort are thus optimal (among
comparison sorts)



Lower Bound for Sorting by Comparison

Let 〈a[1], . . . , a[n]〉 be an array
I A comparison sort makes a sequence of comparisons a[i ] � a[j ]
I Comparisons a[·] � a[·], a[·] = a[·], a[·] ≺ a[·], and a[·] � a[·] can be

“expressed in terms of” a constant number of a[·] � a[·]

Decision trees:
I Interior nodes are pairs of indices of elements compared
I Leaves are sorted arrays produced on output



Lower Bound for Sorting by Comparison

Example of a decision tree for n = 3:

1, 2

2, 3 1, 3

1, 3 2, 3

� �

� �

� �

� �

� �

〈1, 2, 3〉

〈1, 3, 2〉 〈3, 1, 2〉

〈2, 1, 3〉

〈2, 3, 1〉 〈3, 2, 1〉



Lower Bound for Sorting by Comparison

If all input elements are distinct:
I A comparison sort has to be able to produce n! different outputs
I Decision trees for inputs of length n need to have at least n!

reachable leaves
I A maximum depth of a reachable leaf has to be at least

log(n!) = log n + log(n − 1) + . . . + log 1 ≥ n
2
log

n
2

= Ω(n log n)

I The worst-case time complexity is Ω(n log n) as well



Sorting in “Linear Time”

We shall describe a sorting algorithm that:
I Is not comparison sort
I Makes relatively strong assumptions about the universe of possible

array elements
I Runs in time that can be considered linear worst-case under some

circumstances
I This is just an example, there are some other “similar” algorithms as

well



Counting Sort

I Assumes that array elements are integers between 0 and some k
I For each i from 0 to k:

I The algorithm counts the number of array elements equal to i
I Then counts the number of elements less than or equal to i
I Uses these values to “create” the sorted array



Counting Sort

COUNTINGSORT(a):
Create arrays b = 〈b[1], . . . , b[n]〉 and c = 〈c[0], . . . , c[k]〉;
for i ← 0 to k do c[i ]← 0;
for j ← 1 to n do c[a[j ]]← c[a[j ]] + 1;
for i ← 0 to k do c[i ]← c[i ] + c[i − 1];
for j ← n downto 1 do

b[c[a[j ]]]← a[j ];
c[a[j ]]← c[a[j ]]− 1;

end
return b;

I If elements have no “satellite data”, the final for cycle can be
executed in increasing order as well

I The pseudocode shown above results in a stable sorting algorithm
I Time complexity: Θ(n + k)


