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Dynamic programming refers to:

v

An approach to solving optimisation problems

Programming in a mathematical sense, not computer programming
Can be thought of as a paradigm for efficient algorithm design
What follows is an “algorithm design viewpoint”

A typical “optimisation viewpoint” is slightly different
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Applies to problems with “recursive structure”

That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

» The solution is computed recursively in a top-down manner

This may be inefficient in case of large overlaps between the
subproblems. . .

...and particularly inefficient if some subproblems can have
subproblems in common
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Dynamic Programming vs. Divide and Conquer

Dynamic programming:

>

>

Applies mostly to optimisation problems with “recursive structure”

The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

This avoids dealing with the same subproblems multiple times

One can usually modify this approach to find a solution with optimal
value as well
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Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N
» We want to compute their product A1A,... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

» To multiply a pair of matrices of sizes p X g and g x r, precisely
p - q - r scalar multiplications are needed

» The order, in which these pairs are chosen can influence the overall
performance

» Which order minimises the total number of scalar multiplications?
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Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)
» The resulting matrix A1 A, is of size 2 x 5
> Next compute (A;A2)As (251000 = 10000 multiplications)
» 5000 4 10000 = 15000 multiplications in total
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Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:

» A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient
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Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:
» Compute A;... Ak
» Compute Agi1... A;
» Compute (A;...A)(Aks1 .. Aj) in riy - re - rj multiplications
» We are interested in k, for which the above three steps involve the
least number of multiplications
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Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;

» The optimum value for the whole problem thus is my ,

The values m; j satisfy the following recurrence:

0 ifi=j
mjj = min (m,-,k + Mgp1j+rie1- e I’J) if <J
i<k<j

» We shall now compute the values m; j using a bottom-up approach
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OPTVALUE(n, r):

Input : Integer n > 1; Array r = (r[0],..., r[n]) of positive integers
such that A; is of size r[i — 1] x r[i] for i=1,...,n

Output: The minimal number of scalar multiplications needed for the
matrix chain A; ... A,

Let m[1...n,1...n] be a new two-dimensional array;

for i <~ 1 to ndo ml[i,i] < 0;

for len < 2 to n do

for i< 1ton—len+1do

j—i+len—1,;

mli, j] + oo;

for k< itoj—1do
num < mi, k] + m[k + 1, ] + r[i = 1] - r[K] - r[J];
if num < m[i,j] then m[i,j] + num;

end

end

end

return m[1, n|;




Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value

» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally

> We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i,/ into an auxiliary array aux[i, ]



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally

> We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i,/ into an auxiliary array aux[i, ]

» We shall be able to reconstruct an optimal solution from aux
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OPTVALUEAUX(n, r):

Let m[1...n,1...n and aux[1l...n—1,2...n] be new arrays;
for i < 1 to ndo m[i,i] + 0;
for len < 2 to n do
fori+ 1ton—len+1do
j+—i+len—1,
mli, j] + oo;
for k< itoj—1do
num <— mli, k] + mlk + 1,j] + r[i — 1] - r[K] - r[j];
if num < m[i, ] then
mli, j] + num;
aux|[i,j] + k;
end
end
end
end
return aux;
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> Let aux be the output of OPTVALUEAUX(n, r)

» The call RECONSTRUCT (aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i, j):
if i = then
‘ Print “A;";

end

else
Print “(";
RECONSTRUCT(a, i, a[i, j]);
RECONSTRUCT(a, a[i, ] + 1,/);
Print *)";

end
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Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
» Let go be a probability for searching for some x such that x < x;

» Fori=1,...,n—1, let g; be a probability of searching for some x
such that x; < x < xj11

v

Let g, be a probability of searching for some x such that x, < x

n n
ZP; + Zq/' =1
i-1 i=0
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> Let dr(x) be a depth of x in T
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How to construct T so that ET is minimised?
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Consider a subproblem of constructing an optimal tree T; ; for keys
U1 <X < Uj < ... < U1 <X; < Uj

v

If j=i—1, then T;; contains a single node u;_1, which is its root
If j > i, then the root of T;; is x, for some k with i < k <

> The left subtree of xix has to be equal to T;x_1
> The right subtree of xi has to be equal to Ty 1

v

» We are interested in k such that Er,, , + E7,,,, are minimised
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For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,
> Let pijbe Yo ip+ Y1 1 a

The values of E;; are then given by the following recurrence:

£ qi-1 ifj=i-1

= ,_212;,(5/,%1 + Exyrjtpig) ifj>

> The values E;; can be computed using a bottom-up approach

» The table E[i, ] is filled in gradually for increasing j — i, starting at
joi=—1

» By recording the choices for k, it is possible to build the optimal tree



