
Algorithms and Data Structures
for Mathematicians

Lecture 6: Dynamic Programming

Peter Kostolányi
kostolanyi at fmph and so on

Room M-258

2 November 2017



Dynamic Programming

Dynamic programming refers to:

I An approach to solving optimisation problems
I Programming in a mathematical sense, not computer programming
I Can be thought of as a paradigm for efficient algorithm design
I What follows is an “algorithm design viewpoint”
I A typical “optimisation viewpoint” is slightly different



Dynamic Programming

Dynamic programming refers to:
I An approach to solving optimisation problems

I Programming in a mathematical sense, not computer programming
I Can be thought of as a paradigm for efficient algorithm design
I What follows is an “algorithm design viewpoint”
I A typical “optimisation viewpoint” is slightly different



Dynamic Programming

Dynamic programming refers to:
I An approach to solving optimisation problems
I Programming in a mathematical sense, not computer programming

I Can be thought of as a paradigm for efficient algorithm design
I What follows is an “algorithm design viewpoint”
I A typical “optimisation viewpoint” is slightly different



Dynamic Programming

Dynamic programming refers to:
I An approach to solving optimisation problems
I Programming in a mathematical sense, not computer programming
I Can be thought of as a paradigm for efficient algorithm design

I What follows is an “algorithm design viewpoint”
I A typical “optimisation viewpoint” is slightly different



Dynamic Programming

Dynamic programming refers to:
I An approach to solving optimisation problems
I Programming in a mathematical sense, not computer programming
I Can be thought of as a paradigm for efficient algorithm design
I What follows is an “algorithm design viewpoint”

I A typical “optimisation viewpoint” is slightly different



Dynamic Programming

Dynamic programming refers to:
I An approach to solving optimisation problems
I Programming in a mathematical sense, not computer programming
I Can be thought of as a paradigm for efficient algorithm design
I What follows is an “algorithm design viewpoint”
I A typical “optimisation viewpoint” is slightly different



Dynamic Programming vs. Divide and Conquer

Divide and conquer:

I Applies to problems with “recursive structure”
I That is: when a solution to a problem can be expressed in terms of

solutions to its subproblems
I The solution is computed recursively in a top-down manner
I This may be inefficient in case of large overlaps between the

subproblems. . .
I . . . and particularly inefficient if some subproblems can have

subproblems in common



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
I Applies to problems with “recursive structure”

I That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

I The solution is computed recursively in a top-down manner
I This may be inefficient in case of large overlaps between the

subproblems. . .
I . . . and particularly inefficient if some subproblems can have

subproblems in common



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
I Applies to problems with “recursive structure”
I That is: when a solution to a problem can be expressed in terms of

solutions to its subproblems

I The solution is computed recursively in a top-down manner
I This may be inefficient in case of large overlaps between the

subproblems. . .
I . . . and particularly inefficient if some subproblems can have

subproblems in common



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
I Applies to problems with “recursive structure”
I That is: when a solution to a problem can be expressed in terms of

solutions to its subproblems
I The solution is computed recursively in a top-down manner

I This may be inefficient in case of large overlaps between the
subproblems. . .

I . . . and particularly inefficient if some subproblems can have
subproblems in common



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
I Applies to problems with “recursive structure”
I That is: when a solution to a problem can be expressed in terms of

solutions to its subproblems
I The solution is computed recursively in a top-down manner
I This may be inefficient in case of large overlaps between the

subproblems. . .

I . . . and particularly inefficient if some subproblems can have
subproblems in common



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
I Applies to problems with “recursive structure”
I That is: when a solution to a problem can be expressed in terms of

solutions to its subproblems
I The solution is computed recursively in a top-down manner
I This may be inefficient in case of large overlaps between the

subproblems. . .
I . . . and particularly inefficient if some subproblems can have

subproblems in common



Dynamic Programming vs. Divide and Conquer

Dynamic programming:

I Applies mostly to optimisation problems with “recursive structure”
I The optimum (value) for a problem has to be expressed recursively

in terms of optima for its subproblems
I The optimum is computed in a bottom-up manner, while storing

optima for subproblems, e.g., in some form of a table
I This avoids dealing with the same subproblems multiple times
I One can usually modify this approach to find a solution with optimal

value as well



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
I Applies mostly to optimisation problems with “recursive structure”

I The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

I The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

I This avoids dealing with the same subproblems multiple times
I One can usually modify this approach to find a solution with optimal

value as well



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
I Applies mostly to optimisation problems with “recursive structure”
I The optimum (value) for a problem has to be expressed recursively

in terms of optima for its subproblems

I The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

I This avoids dealing with the same subproblems multiple times
I One can usually modify this approach to find a solution with optimal

value as well



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
I Applies mostly to optimisation problems with “recursive structure”
I The optimum (value) for a problem has to be expressed recursively

in terms of optima for its subproblems
I The optimum is computed in a bottom-up manner, while storing

optima for subproblems, e.g., in some form of a table

I This avoids dealing with the same subproblems multiple times
I One can usually modify this approach to find a solution with optimal

value as well



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
I Applies mostly to optimisation problems with “recursive structure”
I The optimum (value) for a problem has to be expressed recursively

in terms of optima for its subproblems
I The optimum is computed in a bottom-up manner, while storing

optima for subproblems, e.g., in some form of a table
I This avoids dealing with the same subproblems multiple times

I One can usually modify this approach to find a solution with optimal
value as well



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
I Applies mostly to optimisation problems with “recursive structure”
I The optimum (value) for a problem has to be expressed recursively

in terms of optima for its subproblems
I The optimum is computed in a bottom-up manner, while storing

optima for subproblems, e.g., in some form of a table
I This avoids dealing with the same subproblems multiple times
I One can usually modify this approach to find a solution with optimal

value as well



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I Suppose we are given matrices A1, . . . ,An such that Ai is of size
ri−1 × ri for i = 1, . . . , n and some r0, . . . , rn in N

I We want to compute their product A1A2 . . .An

I This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

I To multiply a pair of matrices of sizes p × q and q × r , precisely
p · q · r scalar multiplications are needed

I The order, in which these pairs are chosen can influence the overall
performance

I Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:

I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500

I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5

I A3 is of size 5× 1000
The first possible multiplication order is given by A1(A2A3):

I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):

I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)

I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000

I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)

I 2500000+ 1000000 = 3500000 multiplications in total
The second order is given by (A1A2)A3:

I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:

I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)

I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5

I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)

I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

I The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A1,A2,A3 such that:
I A1 is of size 2× 500
I A2 is of size 500× 5
I A3 is of size 5× 1000

The first possible multiplication order is given by A1(A2A3):
I First compute A2A3 (500 · 5 · 1000 = 2500000 multiplications)
I The resulting matrix A2A3 is of size 500× 1000
I Next compute A1(A2A3) (2 · 500 · 1000 = 1000000 multiplications)
I 2500000+ 1000000 = 3500000 multiplications in total

The second order is given by (A1A2)A3:
I First compute A1A2 (2 · 500 · 5 = 5000 multiplications)
I The resulting matrix A1A2 is of size 2× 5
I Next compute (A1A2)A3 (2 · 5 · 1000 = 10000 multiplications)
I 5000+ 10000 = 15000 multiplications in total



Matrix Chain Multiplication

Given matrices A1, . . . ,An and their sizes, the optimum value is:

I The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:
I A full parenthesisation, for which the number of scalar

multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication

Given matrices A1, . . . ,An and their sizes, the optimum value is:
I The minimum number of scalar multiplications needed when

multiplying the matrix chain according to some full parenthesisation

The optimal solution is:
I A full parenthesisation, for which the number of scalar

multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication

Given matrices A1, . . . ,An and their sizes, the optimum value is:
I The minimum number of scalar multiplications needed when

multiplying the matrix chain according to some full parenthesisation
The optimal solution is:

I A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication

Given matrices A1, . . . ,An and their sizes, the optimum value is:
I The minimum number of scalar multiplications needed when

multiplying the matrix chain according to some full parenthesisation
The optimal solution is:

I A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication

Given matrices A1, . . . ,An and their sizes, the optimum value is:
I The minimum number of scalar multiplications needed when

multiplying the matrix chain according to some full parenthesisation
The optimal solution is:

I A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:

I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications

I If i < j , then for each parenthesisation there is k such that:
I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j

I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:

I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications

I We are interested in k , for which the above three steps involve the
least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 ≤ i ≤ j ≤ n, consider the following subproblem:
I Compute the product Ai . . .Aj

I If i = j , we need no scalar multiplications
I If i < j , then for each parenthesisation there is k such that:

I i ≤ k < j
I The last pair of matrices multiplied is Ai . . .Ak and Ak+1 . . .Aj

I Given such k , the following has to be done to multiply the chain:
I Compute Ai . . .Ak

I Compute Ak+1 . . .Aj

I Compute (Ai . . .Ak)(Ak+1 . . .Aj) in ri−1 · rk · rj multiplications
I We are interested in k , for which the above three steps involve the

least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

I For 1 ≤ i ≤ j ≤ n, let mi,j be the least number of scalar
multiplications needed for the matrix chain Ai . . .Aj

I The optimum value for the whole problem thus is m1,n

The values mi,j satisfy the following recurrence:

mi,j =

{
0 if i = j
min
i≤k<j

(mi,k +mk+1,j + ri−1 · rk · rj) if i < j

I We shall now compute the values mi,j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

I For 1 ≤ i ≤ j ≤ n, let mi,j be the least number of scalar
multiplications needed for the matrix chain Ai . . .Aj

I The optimum value for the whole problem thus is m1,n

The values mi,j satisfy the following recurrence:

mi,j =

{
0 if i = j
min
i≤k<j

(mi,k +mk+1,j + ri−1 · rk · rj) if i < j

I We shall now compute the values mi,j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

I For 1 ≤ i ≤ j ≤ n, let mi,j be the least number of scalar
multiplications needed for the matrix chain Ai . . .Aj

I The optimum value for the whole problem thus is m1,n

The values mi,j satisfy the following recurrence:

mi,j =

{
0 if i = j
min
i≤k<j

(mi,k +mk+1,j + ri−1 · rk · rj) if i < j

I We shall now compute the values mi,j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

I For 1 ≤ i ≤ j ≤ n, let mi,j be the least number of scalar
multiplications needed for the matrix chain Ai . . .Aj

I The optimum value for the whole problem thus is m1,n

The values mi,j satisfy the following recurrence:

mi,j =

{
0 if i = j
min
i≤k<j

(mi,k +mk+1,j + ri−1 · rk · rj) if i < j

I We shall now compute the values mi,j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

I For 1 ≤ i ≤ j ≤ n, let mi,j be the least number of scalar
multiplications needed for the matrix chain Ai . . .Aj

I The optimum value for the whole problem thus is m1,n

The values mi,j satisfy the following recurrence:

mi,j =

{
0 if i = j
min
i≤k<j

(mi,k +mk+1,j + ri−1 · rk · rj) if i < j

I We shall now compute the values mi,j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

OPTVALUE(n, r):

Input : Integer n ≥ 1; Array r = 〈r [0], . . . , r [n]〉 of positive integers
such that Ai is of size r [i − 1]× r [i ] for i = 1, . . . , n

Output: The minimal number of scalar multiplications needed for the
matrix chain A1 . . .An

Let m[1 . . . n, 1 . . . n] be a new two-dimensional array;
for i ← 1 to n do m[i , i ]← 0;
for len← 2 to n do

for i ← 1 to n − len+ 1 do
j ← i + len− 1;
m[i , j ]←∞;
for k ← i to j − 1 do

num← m[i , k] +m[k + 1, j ] + r [i − 1] · r [k] · r [j ];
if num < m[i , j ] then m[i , j ]← num;

end
end

end
return m[1, n];



Matrix Chain Multiplication via Dynamic Programming

OPTVALUE(n, r):
Input : Integer n ≥ 1; Array r = 〈r [0], . . . , r [n]〉 of positive integers

such that Ai is of size r [i − 1]× r [i ] for i = 1, . . . , n
Output: The minimal number of scalar multiplications needed for the

matrix chain A1 . . .An

Let m[1 . . . n, 1 . . . n] be a new two-dimensional array;
for i ← 1 to n do m[i , i ]← 0;
for len← 2 to n do

for i ← 1 to n − len+ 1 do
j ← i + len− 1;
m[i , j ]←∞;
for k ← i to j − 1 do

num← m[i , k] +m[k + 1, j ] + r [i − 1] · r [k] · r [j ];
if num < m[i , j ] then m[i , j ]← num;

end
end

end
return m[1, n];



Matrix Chain Multiplication via Dynamic Programming

I So far we have computed the optimal value

I This is of little use, since we do not know the optimal solution
I In other words: we want to find out how to multiply the matrix

chain optimally
I We shall extend OPTVALUE(n, r) to store an information about

selected values of k for given i , j into an auxiliary array aux[i , j ]
I We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

I So far we have computed the optimal value
I This is of little use, since we do not know the optimal solution

I In other words: we want to find out how to multiply the matrix
chain optimally

I We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i , j into an auxiliary array aux[i , j ]

I We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

I So far we have computed the optimal value
I This is of little use, since we do not know the optimal solution
I In other words: we want to find out how to multiply the matrix

chain optimally

I We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i , j into an auxiliary array aux[i , j ]

I We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

I So far we have computed the optimal value
I This is of little use, since we do not know the optimal solution
I In other words: we want to find out how to multiply the matrix

chain optimally
I We shall extend OPTVALUE(n, r) to store an information about

selected values of k for given i , j into an auxiliary array aux[i , j ]

I We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

I So far we have computed the optimal value
I This is of little use, since we do not know the optimal solution
I In other words: we want to find out how to multiply the matrix

chain optimally
I We shall extend OPTVALUE(n, r) to store an information about

selected values of k for given i , j into an auxiliary array aux[i , j ]
I We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

OPTVALUEAUX(n, r):

Let m[1 . . . n, 1 . . . n] and aux[1 . . . n − 1, 2 . . . n] be new arrays;
for i ← 1 to n do m[i , i ]← 0;
for len← 2 to n do

for i ← 1 to n − len+ 1 do
j ← i + len− 1;
m[i , j ]←∞;
for k ← i to j − 1 do

num← m[i , k] +m[k + 1, j ] + r [i − 1] · r [k] · r [j ];
if num < m[i , j ] then

m[i , j ]← num;
aux[i , j ]← k ;

end
end

end
end
return aux;



Matrix Chain Multiplication via Dynamic Programming

OPTVALUEAUX(n, r):
Let m[1 . . . n, 1 . . . n] and aux[1 . . . n − 1, 2 . . . n] be new arrays;
for i ← 1 to n do m[i , i ]← 0;
for len← 2 to n do

for i ← 1 to n − len+ 1 do
j ← i + len− 1;
m[i , j ]←∞;
for k ← i to j − 1 do

num← m[i , k] +m[k + 1, j ] + r [i − 1] · r [k] · r [j ];
if num < m[i , j ] then

m[i , j ]← num;
aux[i , j ]← k ;

end
end

end
end
return aux;



Matrix Chain Multiplication via Dynamic Programming

I Let aux be the output of OPTVALUEAUX(n, r)

I The call RECONSTRUCT(aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i , j):
if i = j then

Print “Ai ”;
end
else

Print “(”;
RECONSTRUCT(a, i , a[i , j ]);
RECONSTRUCT(a, a[i , j ] + 1, j);
Print “)”;

end



Matrix Chain Multiplication via Dynamic Programming

I Let aux be the output of OPTVALUEAUX(n, r)

I The call RECONSTRUCT(aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i , j):
if i = j then

Print “Ai ”;
end
else

Print “(”;
RECONSTRUCT(a, i , a[i , j ]);
RECONSTRUCT(a, a[i , j ] + 1, j);
Print “)”;

end



Matrix Chain Multiplication via Dynamic Programming

I Let aux be the output of OPTVALUEAUX(n, r)

I The call RECONSTRUCT(aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i , j):

if i = j then
Print “Ai ”;

end
else

Print “(”;
RECONSTRUCT(a, i , a[i , j ]);
RECONSTRUCT(a, a[i , j ] + 1, j);
Print “)”;

end



Matrix Chain Multiplication via Dynamic Programming

I Let aux be the output of OPTVALUEAUX(n, r)

I The call RECONSTRUCT(aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i , j):
if i = j then

Print “Ai ”;
end
else

Print “(”;
RECONSTRUCT(a, i , a[i , j ]);
RECONSTRUCT(a, a[i , j ] + 1, j);
Print “)”;

end



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set

I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S

I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn

I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:

I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi

I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x

n∑
i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I Let (S ,�) be a totally ordered set
I Suppose we are given elements x1 ≺ x2 ≺ . . . ≺ xn of S
I We want to build a binary search tree containing x1, . . . , xn
I We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
I For i = 1, . . . , n, let pi be a probability of searching for xi
I Let q0 be a probability for searching for some x such that x ≺ x1

I For i = 1, . . . , n − 1, let qi be a probability of searching for some x
such that xi ≺ x ≺ xi+1

I Let qn be a probability of searching for some x such that xn ≺ x
n∑

i=1

pi +
n∑

i=0

qi = 1



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches

I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un

I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n

I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un

I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :

I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees

I We may add keys u0, . . . , un representing unsuccessful searches
I This can be viewed as if u0 ≺ x1 ≺ u1 ≺ . . . ≺ un−1 ≺ xn ≺ un
I The probability of “searching for ui ” is qi for i = 0, . . . , n
I We shall require the leaves of a tree to be precisely u0, . . . , un
I We thus add one level of nodes to make each query successful

For each x in {u0, x1, u1, . . . , un−1, xn, un} and each search tree T :
I Let dT (x) be a depth of x in T

I Assume that searching for x has cost dT (x) + 1

The expected cost of searching a tree then is:

ET = 1+
n∑

i=1

pi · dT (xi ) +
n∑

i=0

qi · dT (ui )

How to construct T so that ET is minimised?



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root
I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j

I The left subtree of xk has to be equal to Ti,k−1
I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root

I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j
I The left subtree of xk has to be equal to Ti,k−1
I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root
I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j

I The left subtree of xk has to be equal to Ti,k−1
I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root
I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j

I The left subtree of xk has to be equal to Ti,k−1

I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root
I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j

I The left subtree of xk has to be equal to Ti,k−1
I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

I Consider a subproblem of constructing an optimal tree Ti,j for keys
ui−1 ≺ xi ≺ ui ≺ . . . ≺ uj−1 ≺ xj ≺ uj

I If j = i − 1, then Ti,j contains a single node ui−1, which is its root
I If j ≥ i , then the root of Ti,j is xk for some k with i ≤ k ≤ j

I The left subtree of xk has to be equal to Ti,k−1
I The right subtree of xk has to be equal to Tk+1,j

I We are interested in k such that ETi,k−1 + ETk+1,j are minimised



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:

I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k, it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach

I The table E [i , j ] is filled in gradually for increasing j − i , starting at
j − i = −1

I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1

I By recording the choices for k , it is possible to build the optimal tree



Optimal Binary Search Trees via Dynamic Programming

For all i , j such that 1 ≤ i , j ≤ n and j ≥ i − 1:
I Let us write Ei,j instead of ETi,j

I Let pi,j be
∑j

l=i pl +
∑j

l=i−1 ql

The values of Ei,j are then given by the following recurrence:

Ei,j =

{
qi−1 if j = i − 1
min
i≤k≤j

(Ei,k−1 + Ek+1,j + pi,j) if j ≥ i

I The values Ei,j can be computed using a bottom-up approach
I The table E [i , j ] is filled in gradually for increasing j − i , starting at

j − i = −1
I By recording the choices for k , it is possible to build the optimal tree


