Algorithms and Data Structures
for Mathematicians

Lecture 6: Dynamic Programming

Peter Kostolanyi
kostolanyi at fmph and so on
Room M-258

2 November 2017



Dynamic Programming

Dynamic programming refers to:



Dynamic Programming

Dynamic programming refers to:

» An approach to solving optimisation problems



Dynamic Programming

Dynamic programming refers to:
» An approach to solving optimisation problems

» Programming in a mathematical sense, not computer programming



Dynamic Programming

Dynamic programming refers to:
» An approach to solving optimisation problems
» Programming in a mathematical sense, not computer programming

» Can be thought of as a paradigm for efficient algorithm design



Dynamic Programming

Dynamic programming refers to:

» An approach to solving optimisation problems

» Programming in a mathematical sense, not computer programming
» Can be thought of as a paradigm for efficient algorithm design
>

What follows is an “algorithm design viewpoint”



Dynamic Programming

Dynamic programming refers to:

v

An approach to solving optimisation problems

Programming in a mathematical sense, not computer programming
Can be thought of as a paradigm for efficient algorithm design
What follows is an “algorithm design viewpoint”

A typical “optimisation viewpoint” is slightly different



Dynamic Programming vs. Divide and Conquer

Divide and conquer:



Dynamic Programming vs. Divide and Conquer

Divide and conquer:

» Applies to problems with “recursive structure”



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
» Applies to problems with “recursive structure”

» That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
» Applies to problems with “recursive structure”

» That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

» The solution is computed recursively in a top-down manner



Dynamic Programming vs. Divide and Conquer

Divide and conquer:
» Applies to problems with “recursive structure”

» That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

» The solution is computed recursively in a top-down manner

» This may be inefficient in case of large overlaps between the
subproblems. . .



Dynamic Programming vs. Divide and Conquer

Divide and conquer:

>

>

Applies to problems with “recursive structure”

That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

» The solution is computed recursively in a top-down manner

This may be inefficient in case of large overlaps between the
subproblems. . .

...and particularly inefficient if some subproblems can have
subproblems in common



Dynamic Programming vs. Divide and Conquer

Dynamic programming:



Dynamic Programming vs. Divide and Conquer

Dynamic programming:

» Applies mostly to optimisation problems with “recursive structure”



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
» Applies mostly to optimisation problems with “recursive structure”

» The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
» Applies mostly to optimisation problems with “recursive structure”
» The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

» The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table



Dynamic Programming vs. Divide and Conquer

Dynamic programming:
» Applies mostly to optimisation problems with “recursive structure”

» The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

» The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

» This avoids dealing with the same subproblems multiple times



Dynamic Programming vs. Divide and Conquer

Dynamic programming:

>

>

Applies mostly to optimisation problems with “recursive structure”

The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

This avoids dealing with the same subproblems multiple times

One can usually modify this approach to find a solution with optimal
value as well



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N

» We want to compute their product A1A,... A,



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N

» We want to compute their product A1A,... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N
» We want to compute their product A1A,... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

» To multiply a pair of matrices of sizes p X g and g x r, precisely
p - q - r scalar multiplications are needed



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N

» We want to compute their product A1A,... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

» To multiply a pair of matrices of sizes p X g and g x r, precisely
p - q - r scalar multiplications are needed

» The order, in which these pairs are chosen can influence the overall
performance



Matrix Chain Multiplication

» Suppose we are given matrices Ay, ..., A, such that A; is of size
ri_,y X rpfori=1,...,nand some ry,...,r, in N
» We want to compute their product A1A,... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

» To multiply a pair of matrices of sizes p X g and g x r, precisely
p - q - r scalar multiplications are needed

» The order, in which these pairs are chosen can influence the overall
performance

» Which order minimises the total number of scalar multiplications?



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)
» The resulting matrix A1 A, is of size 2 x 5



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)
» The resulting matrix A1 A, is of size 2 x 5
> Next compute (A;A2)As (251000 = 10000 multiplications)



Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2As3):
» First compute AzA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2Asz) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)
» The resulting matrix A1 A, is of size 2 x 5
> Next compute (A;A2)As (251000 = 10000 multiplications)
» 5000 4 10000 = 15000 multiplications in total



Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:



Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation



Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:



Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:

» A full parenthesisation, for which the number of scalar
multiplications needed is optimal



Matrix Chain Multiplication

Given matrices A, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:

» A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;

» If i =, we need no scalar multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications

> If i < j, then for each parenthesisation there is k such that:
» i <k<j



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:
» Compute A;... Ak



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:

» Compute A;... Ak
» Compute Agi1... A;



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:
» Compute A;... Ak
» Compute Agi1... A;
» Compute (A;...A)(Aks1 .. Aj) in riy - re - rj multiplications



Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i <k<j
> The last pair of matrices multiplied is A; ... Ax and Axy1... A|

v

Given such k, the following has to be done to multiply the chain:
» Compute A;... Ak
» Compute Agi1... A;
» Compute (A;...A)(Aks1 .. Aj) in riy - re - rj multiplications
» We are interested in k, for which the above three steps involve the
least number of multiplications



Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;



Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;

» The optimum value for the whole problem thus is my ,



Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;

» The optimum value for the whole problem thus is my ,

The values m; j satisfy the following recurrence:



Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;

» The optimum value for the whole problem thus is my ,

The values m; j satisfy the following recurrence:

0 ifi=j
mjj = min (m,-,k + Mgp1j+rie1- e I’J) if <J
i<k<j



Matrix Chain Multiplication via Dynamic Programming

» For 1 < i< j<n,let mjjbe the least number of scalar
multiplications needed for the matrix chain A;... A;

» The optimum value for the whole problem thus is my ,

The values m; j satisfy the following recurrence:

0 ifi=j
mjj = min (m,-,k + Mgp1j+rie1- e I’J) if <J
i<k<j

» We shall now compute the values m; j using a bottom-up approach



Matrix Chain Multiplication via Dynamic Programming

OPTVALUE(n, r):



Matrix Chain Multiplication via Dynamic Programming

OPTVALUE(n, r):

Input : Integer n > 1; Array r = (r[0],..., r[n]) of positive integers
such that A; is of size r[i — 1] x r[i] for i=1,...,n

Output: The minimal number of scalar multiplications needed for the
matrix chain A; ... A,

Let m[1...n,1...n] be a new two-dimensional array;

for i <~ 1 to ndo ml[i,i] < 0;

for len < 2 to n do

for i< 1ton—len+1do

j—i+len—1,;

mli, j] + oo;

for k< itoj—1do
num < mi, k] + m[k + 1, ] + r[i = 1] - r[K] - r[J];
if num < m[i,j] then m[i,j] + num;

end

end

end

return m[1, n|;




Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value

» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally

> We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i,/ into an auxiliary array aux[i, ]



Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally

> We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i,/ into an auxiliary array aux[i, ]

» We shall be able to reconstruct an optimal solution from aux



Matrix Chain Multiplication via Dynamic Programming

OPTVALUEAUX(n, r):



Matrix Chain Multiplication via Dynamic Programming

OPTVALUEAUX(n, r):

Let m[1...n,1...n and aux[1l...n—1,2...n] be new arrays;
for i < 1 to ndo m[i,i] + 0;
for len < 2 to n do
fori+ 1ton—len+1do
j+—i+len—1,
mli, j] + oo;
for k< itoj—1do
num <— mli, k] + mlk + 1,j] + r[i — 1] - r[K] - r[j];
if num < m[i, ] then
mli, j] + num;
aux|[i,j] + k;
end
end
end
end
return aux;




Matrix Chain Multiplication via Dynamic Programming

> Let aux be the output of OPTVALUEAUX(n, r)



Matrix Chain Multiplication via Dynamic Programming

> Let aux be the output of OPTVALUEAUX(n, r)

» The call RECONSTRUCT (aux, 1, n) will print the optimal
parenthesisation



Matrix Chain Multiplication via Dynamic Programming

> Let aux be the output of OPTVALUEAUX(n, r)
» The call RECONSTRUCT (aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i, j):



Matrix Chain Multiplication via Dynamic Programming

> Let aux be the output of OPTVALUEAUX(n, r)

» The call RECONSTRUCT (aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i, j):
if i = then
‘ Print “A;";

end

else
Print “(";
RECONSTRUCT(a, i, a[i, j]);
RECONSTRUCT(a, a[i, ] + 1,/);
Print *)";

end



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set
» Suppose we are given elements x; < xp < ... < x, of §



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set
» Suppose we are given elements x; < xp < ... < x, of §
» We want to build a binary search tree containing xi, ..., X,



Optimal Binary Search Trees

Let (S, <) be a totally ordered set

Suppose we are given elements x; < x < ... < x, of S
We want to build a binary search tree containing xy, ..., x,
We have a fixed probability distribution of queries

vV v v v



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x, of §

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
» Let go be a probability for searching for some x such that x < x;



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
» Let go be a probability for searching for some x such that x < x;

» Fori=1,...,n—1, let g; be a probability of searching for some x
such that x; < x < xj11



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
» Let go be a probability for searching for some x such that x < x;

» Fori=1,...,n—1, let g; be a probability of searching for some x
such that x; < x < xj11

v

Let g, be a probability of searching for some x such that x, < x



Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xp < ... < x,0of S

» We want to build a binary search tree containing xi, ..., X,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
» Let go be a probability for searching for some x such that x < x;

» Fori=1,...,n—1, let g; be a probability of searching for some x
such that x; < x < xj11

v

Let g, be a probability of searching for some x such that x, < x

n n
ZP; + Zq/' =1
i-1 i=0



Optimal Binary Search Trees

» We may add keys ug, ..., u, representing unsuccessful searches



Optimal Binary Search Trees

» We may add keys ug, ..., u, representing unsuccessful searches

» This can be viewed as if ug < x3 < 1 < ... < Up—1 < Xp < Uy



Optimal Binary Search Trees

» We may add keys ug, ..., u, representing unsuccessful searches
» This can be viewed as if ug < x3 < 1 < ... < Up—1 < Xp < Uy

» The probability of “searching for u;" is g; for i=0,...,n



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up

The probability of “searching for u;" is g; for i =0,...,n

vV v v v

We shall require the leaves of a tree to be precisely ug, ..., u,



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:
> Let dr(x) be a depth of x in T



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:
> Let dr(x) be a depth of x in T
» Assume that searching for x has cost dr(x) + 1



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:
> Let dr(x) be a depth of x in T
» Assume that searching for x has cost dr(x) + 1

The expected cost of searching a tree then is:



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:
> Let dr(x) be a depth of x in T
» Assume that searching for x has cost dr(x) + 1

The expected cost of searching a tree then is:

Er=1+ Z pi - dr(xi) + Z qi - dr(uj)

i=1 i=0



Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < u1 < ... < Up_1 < Xp < Up
The probability of “searching for u;" is g; for i =0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v .Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Uy—1,Xn, Uy} and each search tree T:
> Let dr(x) be a depth of x in T
» Assume that searching for x has cost dr(x) + 1

The expected cost of searching a tree then is:

Er=1+ Z pi - dr(xi) + Z qi - dr(uj)

i=1 i=0

How to construct T so that ET is minimised?



Optimal Binary Search Trees via Dynamic Programming

» Consider a subproblem of constructing an optimal tree T;; for keys
Ui—1 <X < U < ... < U1 <X < Uj



Optimal Binary Search Trees via Dynamic Programming

» Consider a subproblem of constructing an optimal tree T;; for keys
Ui—1 <X < U < ... < U1 <X < Uj

» If j =i—1, then T;; contains a single node u;_1, which is its root



Optimal Binary Search Trees via Dynamic Programming

» Consider a subproblem of constructing an optimal tree T;; for keys
U1 <X < Uj < ... < U1 <X; < Uj

» If j =i—1, then T;; contains a single node u;_1, which is its root

> If j > i, then the root of T;; is xi for some k with i < k <



Optimal Binary Search Trees via Dynamic Programming

» Consider a subproblem of constructing an optimal tree T;; for keys
U1 <X < Uj < ... < U1 <X; < Uj
» If j =i—1, then T;; contains a single node u;_1, which is its root
> If j > i, then the root of T;; is xi for some k with i < k <
> The left subtree of xx has to be equal to Tj x_1



Optimal Binary Search Trees via Dynamic Programming

» Consider a subproblem of constructing an optimal tree T;; for keys
U1 <X < Uj < ... < U1 <X; < Uj

» If j =i—1, then T;; contains a single node u;_1, which is its root

> If j > i, then the root of T;; is xi for some k with i < k <

> The left subtree of xix has to be equal to T;x_1
> The right subtree of xi has to be equal to Ty 1



Optimal Binary Search Trees via Dynamic Programming

v

Consider a subproblem of constructing an optimal tree T; ; for keys
U1 <X < Uj < ... < U1 <X; < Uj

v

If j=i—1, then T;; contains a single node u;_1, which is its root
If j > i, then the root of T;; is x, for some k with i < k <

> The left subtree of xix has to be equal to T;x_1
> The right subtree of xi has to be equal to Ty 1

v

» We are interested in k such that Er,, , + E7,,,, are minimised



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,

> Let p;j be J,':,-P/ + Zjl.:i—l ai



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,
> Let pijbe Yo ip+ Y1 1 a

The values of E;; are then given by the following recurrence:



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,
> Let pijbe 32 p+ 30 1@
The values of E;; are then given by the following recurrence:

qi-1 ifj=i-1
Eij= min (Ejk—1+ Exy1j+pij) ifj>i
i<k<j



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,
> Let pijbe Yo ip+ Y1 1 a

The values of E;; are then given by the following recurrence:

qi-1 ifj=i-1
Eij= min (Ejk—1+ Exy1j+pij) ifj>i
i<k<j

> The values E;; can be computed using a bottom-up approach



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:
> Let us write E;; instead of Er,

> Let p;j be J,':,-P/ + Zjl.:i—l ai

The values of E;; are then given by the following recurrence:

qi-1 ifj=i-1
Eij= min (Ejk—1+ Exy1j+pij) ifj>i
i<k<j

> The values E;; can be computed using a bottom-up approach

» The table E[i, ] is filled in gradually for increasing j — i, starting at
joi=-1



Optimal Binary Search Trees via Dynamic Programming

For all i,jsuchthat 1</ j<nandj>i—1:

> Let us write E;; instead of Er,
> Let pijbe Yo ip+ Y1 1 a

The values of E;; are then given by the following recurrence:

£ qi-1 ifj=i-1

= ,_212;,(5/,%1 + Exyrjtpig) ifj>

> The values E;; can be computed using a bottom-up approach

» The table E[i, ] is filled in gradually for increasing j — i, starting at
joi=—1

» By recording the choices for k, it is possible to build the optimal tree



