Algorithms and Data Structures
for Mathematicians

Lecture 6: Dynamic Programming

Peter Kostolanyi
kostolanyi at fmph and so on
Room M-258

2 November 2017

Dynamic Programming

Dynamic programming refers to:

v

An approach to solving optimisation problems

Programming in a mathematical sense, not computer programming
Can be thought of as a paradigm for efficient algorithm design
What follows is an “algorithm design viewpoint”

A typical “optimisation viewpoint” is slightly different

Dynamic Programming vs. Divide and Conquer

Divide and conquer:

>

>

Applies to problems with “recursive structure”

That is: when a solution to a problem can be expressed in terms of
solutions to its subproblems

» The solution is computed recursively in a top-down manner

This may be inefficient in case of large overlaps between the
subproblems. . .

...and particularly inefficient if some subproblems can have
subproblems in common

Dynamic Programming vs. Divide and Conquer

Dynamic programming:

>

>

Applies mostly to optimisation problems with “recursive structure”

The optimum (value) for a problem has to be expressed recursively
in terms of optima for its subproblems

The optimum is computed in a bottom-up manner, while storing
optima for subproblems, e.g., in some form of a table

This avoids dealing with the same subproblems multiple times

One can usually modify this approach to find a solution with optimal
value as well

Matrix Chain Multiplication

» Suppose we are given matrices As, ..., A, such that A; is of size
ri_y X rpfori=1,...,nand some rg,...,r, in N

» We want to compute their product A1A>... A,

» This can be done by calling the “naive” matrix multiplication
algorithm for pairs of matrices several times

» To multiply a pair of matrices of sizes p x g and g x r, precisely
p - q - r scalar multiplications are needed

» The order, in which these pairs are chosen can influence the overall
performance

» Which order minimises the total number of scalar multiplications?

Matrix Chain Multiplication

» The order of multiplying pairs of matrices is determined by making
the matrix chain fully parenthesised

For example, consider matrices A;, Az, Az such that:
> A; is of size 2 x 500
> A, is of size 500 x 5
» Asis of size 5 x 1000
The first possible multiplication order is given by A;(A2A3):
» First compute AA3 (500 -5 - 1000 = 2500000 multiplications)
» The resulting matrix AxAsz is of size 500 x 1000
» Next compute A;(A2A3) (2500 - 1000 = 1000000 multiplications)
» 2500000 + 1000000 = 3500000 multiplications in total
The second order is given by (A;Az)As:
» First compute A;A; (2500 -5 = 5000 multiplications)
» The resulting matrix A1 A, is of size 2 x 5
> Next compute (A1A2)As (251000 = 10000 multiplications)
» 5000 4 10000 = 15000 multiplications in total

Matrix Chain Multiplication

Given matrices A1, ..., A, and their sizes, the optimum value is:

» The minimum number of scalar multiplications needed when
multiplying the matrix chain according to some full parenthesisation

The optimal solution is:

» A full parenthesisation, for which the number of scalar
multiplications needed is optimal

Checking all possible parenthesisations is inefficient

Matrix Chain Multiplication via Dynamic Programming

For each 1 < i <j < n, consider the following subproblem:
» Compute the product A; ... A;
» If i =, we need no scalar multiplications
> If i < j, then for each parenthesisation there is k such that:

» i< k<j
> The last pair of matrices multiplied is A; ... Ax and Agy1 ... A;j

v

Given such k, the following has to be done to multiply the chain:
» Compute A;...Ax
» Compute Axy1 ... A;
» Compute (A;...Ak)(Aky1---Aj) in ri_1 - re - rj multiplications
» We are interested in k, for which the above three steps involve the
least number of multiplications

Matrix Chain Multiplication via Dynamic Programming

» For 1 <i<j<n,let mjj be the least number of scalar
multiplications needed for the matrix chain A;...A;

» The optimum value for the whole problem thus is my

The values m; j satisfy the following recurrence:

0 ifi=j
mjj = min (m,-yk + Mg+ e rece rJ) if i <j
i<k<j

> We shall now compute the values m; ; using a bottom-up approach

Matrix Chain Multiplication via Dynamic Programming

OPTVALUE(n, r):

Input : Integer n > 1; Array r = (r[0],..., r[n]) of positive integers
such that A; is of size r[i — 1] x r[i] for i=1,...,n

Output: The minimal number of scalar multiplications needed for the
matrix chain A; ... A,

Let m[1...n,1...n] be a new two-dimensional array;

for i < 1 to ndo ml[i,i] < 0;

for len < 2 to n do

for i< 1ton—len+1do

ji+len—1,;

mli, j] + oo;

for k< itoj—1do
num < mi, k] + m[k + 1,] + r[i = 1] - r[k] - r[J];
if num < m[i,j] then m[i,j] + num;

end

end

end

return m[1, n|;

Matrix Chain Multiplication via Dynamic Programming

» So far we have computed the optimal value
» This is of little use, since we do not know the optimal solution

» In other words: we want to find out how to multiply the matrix
chain optimally

> We shall extend OPTVALUE(n, r) to store an information about
selected values of k for given i,/ into an auxiliary array aux[i, j]

» We shall be able to reconstruct an optimal solution from aux

Matrix Chain Multiplication via Dynamic Programming

OPTVALUEAUX(n, r):

Let m[1...n,1...n and aux[1l...n—1,2...n] be new arrays;
for i < 1 to ndo m[i,i] < 0;
for len + 2 to n do
for i+ 1ton—len+1do
j+—i+len—1,
mli,j] + oo;
for k<« itoj—1do
num <— mli, k] + mlk + 1,1 + r[i — 1] - r[K] - r[j];
if num < m[i, /] then
mli, j] + num;
aux|[i,j] + k;
end
end
end
end
return aux;

Matrix Chain Multiplication via Dynamic Programming

> Let aux be the output of OPTVALUEAUX(n, r)

» The call RECONSTRUCT (aux, 1, n) will print the optimal
parenthesisation

RECONSTRUCT(a, i,):
if i = then
‘ Print “A;";

end

else
Print “(";
RECONSTRUCT(a, i, a[i, j]);
RECONSTRUCT(a, a[i,] + 1,/);
Print *)";

end

Optimal Binary Search Trees

> Let (5, <) be a totally ordered set

» Suppose we are given elements x; < xo < ... < x, of S

» We want to build a binary search tree containing xi, ..., x,
» We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:
» Fori=1,...,n, let p; be a probability of searching for x;
> Let go be a probability for searching for some x such that x < x;

» Fori=1,...,n—1, let g; be a probability of searching for some x
such that x; < x < Xj31

v

Let g, be a probability of searching for some x such that x, < x

n n
ZP,‘ + Z g =1
i—1 i=0

Optimal Binary Search Trees

We may add keys ug, ..., u, representing unsuccessful searches
This can be viewed as if ug < x1 < uy < ... < Up_1 < Xp < Uy,
The probability of “searching for u;" is g; for i=0,...,n

We shall require the leaves of a tree to be precisely ug, ..., u,

vV v v v Yy

We thus add one level of nodes to make each query successful

For each x in {up,x1, u1,..., Us—1,Xn, U} and each search tree T:
> Let dr(x) be a depth of xin T
» Assume that searching for x has cost dr(x) + 1

The expected cost of searching a tree then is:

Er=1+ Z pi - dr(x;) + Z qi - dr(uj)

i=1 i=0

How to construct T so that E+ is minimised?

Optimal Binary Search Trees via Dynamic Programming

v

Consider a subproblem of constructing an optimal tree T;; for keys
Ui71‘<Xi'<Ui'<~~~'<uj71"<Xj—<uj

v

If j=1i—1, then T;; contains a single node u;_1, which is its root
If j > i, then the root of T;; is xx for some k with i < k < j

> The left subtree of x, has to be equal to T; x_1
> The right subtree of xi has to be equal to Ti1 ;

v

» We are interested in k such that Er,, + ETk+1j are minimised

Optimal Binary Search Trees via Dynamic Programming

For all i,j such that 1 </,j<nandj>i—1:
> Let us write E; j instead of E7,

> Let pijbe 3 p+ 301 1@
The values of E;; are then given by the following recurrence:

g1 if j=i—1
Eij =Y min (Eix1+Erj+piy) >0
i<k<j

> The values E;;j can be computed using a bottom-up approach

> The table E[i,j] is filled in gradually for increasing j — i, starting at
j—i=-1

» By recording the choices for k, it is possible to build the optimal tree

