Algorithms and Data Structures for Mathematicians

Lecture 6: Dynamic Programming

Peter Kostolányi kostolanyi at fmph and so on Room M-258

2 November 2017

Dynamic Programming

Dynamic programming refers to:

- An approach to solving optimisation problems
- Programming in a mathematical sense, not computer programming
- Can be thought of as a paradigm for efficient algorithm design
- What follows is an "algorithm design viewpoint"
- A typical "optimisation viewpoint" is slightly different

Dynamic Programming vs. Divide and Conquer

Divide and conquer:

- Applies to problems with "recursive structure"
- That is: when a solution to a problem can be expressed in terms of solutions to its subproblems
- The solution is computed recursively in a top-down manner
- This may be inefficient in case of large overlaps between the subproblems...
- ... and particularly inefficient if some subproblems can have subproblems in common

Dynamic Programming vs. Divide and Conquer

Dynamic programming:

- Applies mostly to optimisation problems with "recursive structure"
- ► The optimum (value) for a problem has to be expressed recursively in terms of optima for its subproblems
- The optimum is computed in a bottom-up manner, while storing optima for subproblems, e.g., in some form of a table
- This avoids dealing with the same subproblems multiple times
- One can usually modify this approach to find a solution with optimal value as well

Matrix Chain Multiplication

- Suppose we are given matrices A_1, \ldots, A_n such that A_i is of size $r_{i-1} \times r_i$ for $i = 1, \ldots, n$ and some r_0, \ldots, r_n in \mathbb{N}
- We want to compute their product $A_1A_2...A_n$
- This can be done by calling the "naive" matrix multiplication algorithm for pairs of matrices several times
- ► To multiply a pair of matrices of sizes p × q and q × r, precisely p · q · r scalar multiplications are needed
- The order, in which these pairs are chosen can influence the overall performance
- Which order minimises the total number of scalar multiplications?

Matrix Chain Multiplication

The order of multiplying pairs of matrices is determined by making the matrix chain fully parenthesised

For example, consider matrices A_1, A_2, A_3 such that:

- A_1 is of size 2 \times 500
- A_2 is of size 500 \times 5
- A_3 is of size 5×1000

The first possible multiplication order is given by $A_1(A_2A_3)$:

- First compute A_2A_3 (500 · 5 · 1000 = 2500000 multiplications)
- The resulting matrix A_2A_3 is of size 500×1000
- Next compute $A_1(A_2A_3)$ (2 · 500 · 1000 = 1000000 multiplications)
- ► 2500000 + 1000000 = 3500000 multiplications in total

The second order is given by $(A_1A_2)A_3$:

- First compute A_1A_2 (2 · 500 · 5 = 5000 multiplications)
- The resulting matrix A_1A_2 is of size 2×5
- Next compute $(A_1A_2)A_3$ $(2 \cdot 5 \cdot 1000 = 10000$ multiplications)
- ► 5000 + 10000 = 15000 multiplications in total

Matrix Chain Multiplication

Given matrices A_1, \ldots, A_n and their sizes, the optimum value is:

The minimum number of scalar multiplications needed when multiplying the matrix chain according to some full parenthesisation

The optimal solution is:

 A full parenthesisation, for which the number of scalar multiplications needed is optimal

Checking all possible parenthesisations is inefficient

For each $1 \le i \le j \le n$, consider the following subproblem:

- Compute the product $A_i \ldots A_j$
- If i = j, we need no scalar multiplications
- If i < j, then for each parenthesisation there is k such that:
 - $i \leq k < j$
 - The last pair of matrices multiplied is $A_i \dots A_k$ and $A_{k+1} \dots A_j$
- Given such k, the following has to be done to multiply the chain:
 - Compute A_i...A_k
 - Compute A_{k+1}...A_j
 - Compute $(A_i \ldots A_k)(A_{k+1} \ldots A_j)$ in $r_{i-1} \cdot r_k \cdot r_j$ multiplications
- ▶ We are interested in *k*, for which the above three steps involve the least number of multiplications

- For 1 ≤ i ≤ j ≤ n, let m_{i,j} be the least number of scalar multiplications needed for the matrix chain A_i...A_j
- The optimum value for the whole problem thus is $m_{1,n}$

The values $m_{i,j}$ satisfy the following recurrence:

$$m_{i,j} = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} (m_{i,k} + m_{k+1,j} + r_{i-1} \cdot r_k \cdot r_j) & \text{if } i < j \end{cases}$$

• We shall now compute the values $m_{i,i}$ using a bottom-up approach

OPTVALUE(*n*, *r*):

- **Input** : Integer $n \ge 1$; Array $r = \langle r[0], \ldots, r[n] \rangle$ of positive integers such that A_i is of size $r[i-1] \times r[i]$ for $i = 1, \ldots, n$
- **Output**: The minimal number of scalar multiplications needed for the matrix chain $A_1 \dots A_n$

```
Let m[1 \dots n, 1 \dots n] be a new two-dimensional array;
for i \leftarrow 1 to n do m[i, i] \leftarrow 0;
for len \leftarrow 2 to n do
     for i \leftarrow 1 to n - \operatorname{len} + 1 do
         j \leftarrow i + \text{len} - 1;
     m[i, j] \leftarrow \infty;
        for k \leftarrow i to j - 1 do
              num \leftarrow m[i,k] + m[k+1,j] + r[i-1] \cdot r[k] \cdot r[j];
if num < m[i,j] then m[i,j] \leftarrow num;
           end
     end
end
return m[1, n];
```

- So far we have computed the optimal value
- ► This is of little use, since we do not know the optimal solution
- In other words: we want to find out how to multiply the matrix chain optimally
- We shall extend OPTVALUE(n, r) to store an information about selected values of k for given i, j into an auxiliary array aux[i, j]
- ► We shall be able to reconstruct an optimal solution from aux

```
OPTVALUEAUX(n, r):
Let m[1 \dots n, 1 \dots n] and aux[1 \dots n-1, 2 \dots n] be new arrays;
for i \leftarrow 1 to n do m[i, i] \leftarrow 0;
for len \leftarrow 2 to n do
     for i \leftarrow 1 to n - \operatorname{len} + 1 do
          i \leftarrow i + \text{len} - 1;
         m[i, j] \leftarrow \infty;
         for k \leftarrow i to j - 1 do
                num \leftarrow m[i,k] + m[k+1,j] + r[i-1] \cdot r[k] \cdot r[j];
              if num < m[i, j] then
           \begin{vmatrix} m[i,j] \leftarrow \text{num};\\ aux[i,j] \leftarrow k; \end{vmatrix} 
                end
          end
     end
end
return aux:
```

- Let aux be the output of OPTVALUEAUX(n, r)
- ► The call RECONSTRUCT(aux, 1, *n*) will print the optimal parenthesisation

```
RECONSTRUCT(a, i, j):
```

Optimal Binary Search Trees

- Let (S, \preceq) be a totally ordered set
- ▶ Suppose we are given elements $x_1 \prec x_2 \prec \ldots \prec x_n$ of *S*
- We want to build a binary search tree containing x_1, \ldots, x_n
- We have a fixed probability distribution of queries

The following probabilities are known and do not change in time:

- For i = 1, ..., n, let p_i be a probability of searching for x_i
- ▶ Let q_0 be a probability for searching for some x such that $x \prec x_1$
- For i = 1,..., n − 1, let q_i be a probability of searching for some x such that x_i ≺ x ≺ x_{i+1}
- ▶ Let q_n be a probability of searching for some x such that $x_n \prec x$

$$\sum_{i=1}^n p_i + \sum_{i=0}^n q_i = 1$$

Optimal Binary Search Trees

- ▶ We may add keys u_0, \ldots, u_n representing unsuccessful searches
- ▶ This can be viewed as if $u_0 \prec x_1 \prec u_1 \prec \ldots \prec u_{n-1} \prec x_n \prec u_n$
- The probability of "searching for u_i " is q_i for i = 0, ..., n
- We shall require the leaves of a tree to be precisely u_0, \ldots, u_n
- We thus add one level of nodes to make each query successful

For each x in $\{u_0, x_1, u_1, \dots, u_{n-1}, x_n, u_n\}$ and each search tree T:

- Let $d_T(x)$ be a depth of x in T
- Assume that searching for x has cost $d_T(x) + 1$

The expected cost of searching a tree then is:

$$E_T = 1 + \sum_{i=1}^n p_i \cdot d_T(x_i) + \sum_{i=0}^n q_i \cdot d_T(u_i)$$

How to construct T so that E_T is minimised?

Optimal Binary Search Trees via Dynamic Programming

- Consider a subproblem of constructing an optimal tree T_{i,j} for keys u_{i-1} ≺ x_i ≺ u_i ≺ ... ≺ u_{j-1} ≺ x_j ≺ u_j
- If j = i 1, then $T_{i,j}$ contains a single node u_{i-1} , which is its root
- ▶ If $j \ge i$, then the root of $T_{i,j}$ is x_k for some k with $i \le k \le j$
 - The left subtree of x_k has to be equal to $T_{i,k-1}$
 - ▶ The right subtree of x_k has to be equal to T_{k+1,j}
- ▶ We are interested in k such that $E_{T_{i,k-1}} + E_{T_{k+1,i}}$ are minimised

Optimal Binary Search Trees via Dynamic Programming

For all i, j such that $1 \le i, j \le n$ and $j \ge i - 1$:

- Let us write $E_{i,j}$ instead of $E_{T_{i,j}}$
- Let $p_{i,j}$ be $\sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$

The values of $E_{i,j}$ are then given by the following recurrence:

$$E_{i,j} = \begin{cases} q_{i-1} & \text{if } j = i-1 \\ \min_{i \le k \le j} (E_{i,k-1} + E_{k+1,j} + p_{i,j}) & \text{if } j \ge i \end{cases}$$

- The values $E_{i,j}$ can be computed using a bottom-up approach
- ► The table E[i, j] is filled in gradually for increasing j i, starting at j i = -1
- By recording the choices for k, it is possible to build the optimal tree