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Kapitola 1

Úvodné príklady: Catalanove čísla

V rámci enumeratívnej kombinatoriky sa typicky zaujímame o nájdenie počtu nejakých kombinatoric-
kých objektov – napríklad slov, stromov, či grafov – daného druhu a danej veľkosti n ∈ N. Nie vždy
pritom existuje rozumné vyjadrenie hľadaného počtu objektov v uzavretom tvare; v takom prípade
sa obvykle pokúšame nájsť čo možno najpresnejší asymptotický odhad.

Klasický prístup k riešeniu tejto úlohy je založený na metóde bijektívnych dôkazov, pri ktorej sa
konštruuje bijekcia medzi množinou uvažovaných objektov veľkosti n a nejakou inou množinou, ktorá
je vybudovaná z dostatočne jednoduchých konečných množín pomocou štandardných operácií, akými
sú napríklad disjunktné zjednotenie, karteziánsky súčin, prechod k množine všetkých kombinácií alebo
variácií, a podobne. Na ukážku teraz touto metódou bijektívnych dôkazov vyriešme tri enumeračné
úlohy vedúce k rovnakému výsledku.

1.1 Enumerácia dobrých uzátvorkovaní

Príklad 1.1.1. Uvažujme slová zložené zo zátvoriek „(“ a „)“ , pričom kvôli prehľadnosti budeme ľavú
zátvorku označovať a a pravú a. Nájdime počet dobre uzátvorkovaných slov nad abecedou Σ = {a, a}
obsahujúcich práve n ∈ N ľavých a pravých zátvoriek – pôjde teda o slová z Dyckovho jazyka D1 ⊆ Σ∗

definovaného nasledovne:

(i) ε ∈ D1;

(ii) pre všetky u, v ∈ D1 je auav ∈ D1;

(iii) žiadne iné slovo nie je v D1.

Hľadanou hodnotou je pre dané n ∈ N počet prvkov jazyka Ln := D1 ∩ Σ2n.
Pre n = 0 je |Ln| = 1, keďže jazyk Ln obsahuje iba prázdne slovo. Nech teda n ≥ 1. Každé

slovo w ∈ Ln obsahuje presne n výskytov oboch písmen: |w|a = |w|a = n. Nech Un = an � an je
jazyk všetkých slov nad abecedou Σ s touto vlastnosťou. Označme L′n := Un \ Ln jazyk všetkých slov
nad abecedou Σ, ktoré obsahujú n výskytov oboch písmen, ale nie sú dobre uzátvorkované.

Uvažujme ľubovoľné slovo w ∈ L′n, kde w = a1 . . . a2n pre a1, . . . , a2n ∈ Σ. Ľahko vidieť, že v takom
prípade musí existovať k ∈ [2n] také, že

|a1 . . . ak|a < |a1 . . . ak|a .

Vezmime najmenšie také k; to je zrejme nepárne, pričom ak = a a

|a1 . . . ak|a + 1 = |a1 . . . ak|a .
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Pri konvencii a = a je predpisom c 7→ c pre c ∈ Σ jednoznačne určený automorfizmus na Σ∗.
Pre uvažované slovo w ∈ L′n a index k ∈ [2n] položme

ϕ(w) := a1 . . . akak+1 . . . a2n,

čím dostávame zobrazenie ϕ : L′n → an+1
� an−1; dokážeme, že zobrazenie ϕ je bijekcia.

Za tým účelom definujme zobrazenie ψ : an+1
� an−1 → L′n takto: ak x = b1 . . . b2n ∈ an+1

� an−1

pre nejaké b1, . . . , b2n ∈ Σ, nutne musí existovať j ∈ [2n] také, že

|b1 . . . bj |a > |b1 . . . bj |a ;

opäť vezmime najmenšie také j a položme

ψ(x) := b1 . . . bjbj+1 . . . b2n.

V takom prípade zrejme
|b1 . . . bj |a = |b1 . . . bj |a + 1,

takže |ψ(x)|a = |ψ(x)|a a súčasne ∣∣b1 . . . bj∣∣a < ∣∣b1 . . . bj∣∣a ,
takže slovo ψ(x) nie je dobre uzátvorkované; naozaj teda dostávame zobrazenie ψ : an+1

�an−1 → L′n.
Dokážeme, že ϕ a ψ sú vzájomne inverzné bijekcie.

a) Nech w = a1 . . . a2n ∈ L′n pre a1, . . . , a2n ∈ Σ a k ∈ [2n] je najmenší index taký, že

|a1 . . . ak|a < |a1 . . . ak|a .

Zrejme potom ide aj o najmenší index taký, že

|a1 . . . ak|a > |a1 . . . ak|a .

Preto

ψ(ϕ(w)) = ψ(ϕ(a1 . . . a2n)) = ψ(a1 . . . akak+1 . . . a2n) = a1 . . . akak+1 . . . a2n = a1 . . . a2n = w.

b) Nech x = b1 . . . b2n ∈ an+1
� an−1 pre b1, . . . , b2n ∈ Σ a j ∈ [2n] je najmenší index taký, že

|b1 . . . bj |a > |b1 . . . bj |a .

Ide potom aj o najmenší index taký, že∣∣b1 . . . bj∣∣a < ∣∣b1 . . . bj∣∣a ,
takže

ϕ(ψ(x)) = ϕ(ψ(b1 . . . b2n)) = ϕ(b1 . . . bjbj+1 . . . b2n) = b1 . . . bjbj+1 . . . b2n = b1 . . . b2n = x.

Vďaka práve dokázanej existencii bijekcie medzi L′n a an+1
� an−1 teda

|Ln| =
∣∣Un \ L′n∣∣ = |Un| −

∣∣L′n∣∣ =

(
2n

n

)
−
∣∣an+1

� an−1
∣∣ =

(
2n

n

)
−
(

2n

n+ 1

)
=

=
(2n)!

n!n!
− (2n)!

(n+ 1)! (n− 1)!
=

(n+ 1)(2n)!− n(2n)!

(n+ 1)!n!
=

(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
.

Tento výsledok pre n ∈ N \ {0} je v súlade s pozorovaním |L0| = 1 učineným vyššie; môžeme teda
uzavrieť, že pre všetky n ∈ N je

|Ln| =
1

n+ 1

(
2n

n

)
.
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Čísla, ku ktorým sme sa v predchádzajúcom príklade dopracovali, sú v kombinatorike natoľko
významné, že si zaslúžili zvláštne pomenovanie.

Definícia 1.1.2. Pre všetky n ∈ N je n-té Catalanovo číslo dané ako

Cn :=
1

n+ 1

(
2n

n

)
.

Z uvedeného príkladu vyplýva, že n-té Catalanovo číslo môžeme interpretovať ako počet dobre
uzátvorkovaných slov obsahujúcich n ľavých a n pravých zátvoriek jedného typu. V nasledujúcom
pridáme ešte dve ďalšie kombinatorické interpretácie Catalanových čísel.

1.2 Usporiadané zakorenené stromy

Príklad 1.2.1. Vyčíslime počet všetkých usporiadaných zakorenených stromov o n ∈ N\{0} vrcholoch
– čiže zakorenených stromov, v ktorých je pre každý vrchol dané lineárne usporiadanie jeho synov.
Príklad takéhoto stromu je na obrázku 1.1.

Obr. 1.1: Usporiadaný zakorenený strom o dvanástich vrcholoch. Od koreňa k listom postupujeme zhora nadol
a synovia každého vrcholu sú znázornení v poradí zľava doprava podľa ich usporiadania.

Prehľadajme takýto strom do hĺbky, pričom synov každého vrcholu navštevujme v poradí podľa ich
usporiadania – za každú hranu prejdenú smerom nadol si pritom zaznačme ľavú zátvorku a a za každú
hranu prejdenú smerom nahor pravú zátvorku a. Strom o n ∈ N \ {0} vrcholoch má presne n− 1 hrán
– výsledkom je tak preň evidentne dobre uzátvorkované slovo w ∈ D1 dĺžky 2(n−1). Napríklad stromu
na obrázku 1.1 zodpovedá slovo aaaaaaaaaaaaaaaaaaaaaa.

Ku každému dobre uzátvorkovanému slovu w ∈ D1 môžeme naopak priradiť usporiadaný zakore-
nený strom nasledujúcim spôsobom:

(i) Prázdnemu slovu ε priradíme strom o jedinom vrchole.

(ii) Každé iné slovo w ∈ D1 možno jednoznačne vyjadriť ako aw1aaw2a . . . awka, kde k ∈ N \ {0}
a w1, . . . , wk ∈ D1. Takémuto slovu priradíme strom, ktorého koreň má k synov a pre j = 1, . . . , k
dostaneme podstrom zakorenený v j-tom synovi ako strom priradený slovu wj .

Zjavne sme práve opísali vzájomne inverzné bijekcie medzi množinou všetkých neprázdnych uspo-
riadaných zakorenených stromov a Dyckovým jazykom D1. Stromu o n ∈ N \ {0} vrcholoch pritom
zodpovedá slovo dĺžky 2(n−1) a naopak. Vďaka príkladu 1.1.1 tak môžeme uzavrieť, že existuje presne

Cn−1 =
1

n

(
2n− 2

n− 1

)
usporiadaných zakorenených stromov o n ∈ N \ {0} vrcholoch.
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1.3 Plné binárne stromy

Príklad 1.3.1. Pod plným binárnym stromom rozumieme usporiadaný zakorenený strom, v ktorom
má každý vnútorný vrchol práve dvoch synov. Príklad takéhoto stromu je na obrázku 1.2.

Obr. 1.2: Plný binárny strom.

Neprázdny plný binárny strom má vždy pre nejaké n ∈ N presne 2n+1 vrcholov, spomedzi ktorých
je n vnútorných a n+1 listov. To ľahko dokážeme indukciou vzhľadom na hĺbku uvažovaného stromu –
čiže vzhľadom na najväčšiu vzdialenosť medzi koreňom a niektorým listom. Jediným stromom hĺbky 0
je strom pozostávajúci z jediného listu (ktorý je súčasne koreňom); možno tak vziať n = 0. Nech teda
tvrdenie platí pre plné binárne stromy hĺbky menšej alebo rovnej k; uvažujme ľubovoľný plný binárny
strom hĺbky k + 1. Koreň takéhoto stromu musí mať dvoch synov, pričom podstromy zakorenené
v týchto synoch sú hĺbky nanajvýš k. Existujú teda n1, n2 ∈ N také, že podstrom zakorenený v ľavom
synovi koreňa má 2n1 + 1 vrcholov, spomedzi ktorých je n1 vnútorných a n1 + 1 listov a podstrom
zakorenený v pravom synovi koreňa má 2n2 + 1 vrcholov, spomedzi ktorých je n2 vnútorných a n2 + 1
listov. Celkovo teda strom obsahuje presne

(2n1 + 1) + (2n2 + 1) + 1 = 2 (n1 + n2 + 1) + 1

vrcholov, z ktorých je n1 + n2 + 1 vnútorných a (n1 + 1) + (n2 + 1) = (n1 + n2 + 1) + 1 listov; možno
teda vziať n = n1 + n2 + 1.

Nájdime teraz počet všetkých neprázdnych plných binárnych stromov o n ∈ N vnútorných vrcholoch
(resp. o n+ 1 listoch alebo o 2n+ 1 vrcholoch celkom).

Uvažujme ľubovoľný takýto strom. Každý jeho vnútorný vrchol označme ľavou zátvorkou a a každý
list okrem najpravejšieho pravou zátvorkou a; najpravejší list zo stromu odstráňme. Následne traver-
zujme výsledný strom v poradí preorder a zapisujme na výstup zátvorky, ktorými sú označené jednotlivé
vrcholy. Indukciou ľahko dokážeme, že tak vždy dostaneme dobre uzátvorkované slovo, kde ľavú zát-
vorku prislúchajúcu k vnútornému vrcholu vždy uzatvára pravá zátvorka v najpravejšom liste jeho
ľavého podstromu. Na dôkaz indukciou by sme mohli použiť napríklad rekurzívnu štruktúru stromu
naznačenú na obrázku 1.3.

Ku každému dobre uzátvorkovanému slovu dĺžky 2n naopak môžeme priradiť plný binárny strom
o n vnútorných vrcholoch nasledujúcim spôsobom: prázdnemu slovu ε priradíme strom s jediným
listom a slovu auav, kde u, v ∈ D1 sú dobre uzátvorkované slová, priradíme strom, ktorého koreň má
dvoch synov, pričom podstrom zakorenený v ľavom synovi je stromom prislúchajúcim k u a podstrom
zakorenený v pravom synovi je stromom prislúchajúcim k v.
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a

a a

a a a

a a

Obr. 1.3: Každý vnútorný vrchol plného binárneho stromu označíme ľavou zátvorkou a každý list okrem
najpravejšieho označíme pravou zátvorkou; najpravejší list odstránime. Ľavá zátvorka v každom vrchole je
uzavretá pravou zátvorkou v najpravejšom liste jeho ľavého podstromu.

Opäť nie je ťažké nahliadnuť, že sme práve opísali dve navzájom inverzné bijekcie medzi množinou
všetkých neprázdnych plných binárnych stromov o n vnútorných vrcholoch a jazykom všetkých dobre
uzátvorkovaných slov dĺžky 2n. So znalosťou príkladu 1.1.1 tak môžeme uzavrieť, že pre všetky n ∈ N
existuje presne

Cn =
1

n+ 1

(
2n

n

)
neprázdnych plných binárnych stromov o n vnútorných vrcholoch.

1.4 Rekurencia a asymptotický odhad pre Catalanove čísla

S pomocou ich interpretácie z príkladu 1.3.1 možno ľahko odvodiť rekurentný vzťah pre Catalanove
čísla.

Veta 1.4.1. Catalanove čísla vyhovujú nasledujúcej rekurencii: C0 = 1 a pre všetky n ∈ N je

Cn+1 =
n∑
k=0

CkCn−k.

Dôkaz. Rovnosť C0 = 1 možno overiť priamym výpočtom. Rekurentný vzťah je dôsledkom skutočnosti,
že každý neprázdny plný binárny strom s n+1 vnútornými vrcholmi pre n ∈ Nmusí pozostávať z koreňa
a dvoch neprázdnych plných binárnych podstromov, ktoré majú dohromady n vnútorných vrcholov;
ak má teda napríklad ľavý podstrom k vnútorných vrcholov, pravý podstrom ich musí mať n− k.

Hoci sme v uvedených príkladoch zakaždým vyjadrili počet uvažovaných objektov danej veľkosti
v uzavretom tvare, nemáme zatiaľ dobrú predstavu o tom, ako rýchlo počet týchto objektov rastie
pre n → ∞. Táto informácia pritom býva často cennejšou, než vzorec vyjadrujúci príslušnú kvantitu
v uzavretom tvare. Zíde sa nám preto asymptotický odhad pre n-té Catalanovo číslo Cn a n → ∞
– ten môžeme odvodiť napríklad s použitím Stirlingovej aproximácie [12, veta 14.7.7], podľa ktorej
pre n→∞ je

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
.
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Veta 1.4.2. Pre n→∞ je

Cn =
4n

√
πn3/2

(
1 +O

(
1

n

))
.

Dôkaz. S použitím Stirlingovej aproximácie dostávame

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1
· (2n)!

n!n!
=

1

n+ 1

√
4πn

(
2n

e

)2n(
1 +O

(
1

n

))
1

2πn

( e
n

)2n 1(
1 +O

(
1
n

))2 =

=
1

n+ 1
· 4n√

πn

(
1 +O

(
1

n

))
=

1

n
(
1 +O

(
1
n

)) · 4n√
πn

(
1 +O

(
1

n

))
=

=
4n

√
πn3/2

(
1 +O

(
1

n

))
.

Naše skúmanie Catalanových čísel týmto nateraz ukončíme – mohli by sme ale pokračovať ďalej,
pretože Catalanove čísla sa vynárajú aj vo veľkom množstve ďalších kombinatorických úloh: napríklad
Stanleyho kniha [24] uvádza viac ako 200 rôznych kombinatorických interpretácií týchto čísel. Časom
by sme ale mali prísť k poznaniu, že (podobne ako napríklad pri Fibonacciho číslach) spočíva význam
Catalanových čísel viac ako v nich samotných v tom, že ide o jeden z najjednoduchších príkladov
dôležitej triedy postupností – konkrétne postupností s algebraickou vytvárajúcou funkciou.
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Kapitola 2

Formálne mocninové rady

2.1 Pojem kombinatorickej triedy

Metóda bijektívnych dôkazov, ktorej použitie sme si v predchádzajúcej kapitole predviedli na nie-
koľkých príkladoch, bola svojho času považovaná za jediný správny prístup k úlohám enumeratívnej
kombinatoriky – naopak vytvárajúce funkcie, na ktorých budú prevažne založené metódy používané
v tomto texte, boli dlho zatracované ako nástroj druhej kategórie. Dôvodom bola predovšetkým skutoč-
nosť, že vytvárajúce funkcie boli dlho považované najmä za technickú pomôcku pri riešení rekurencií,
ktorej súvis s príslušnými enumeračnými problémami je v zásade náhodný – argumentovalo sa, že
na rozdiel od bijektívnych dôkazov použitie vytvárajúcich funkcií neprináša žiaden skutočný vhľad
do riešeného problému.

Časom sa ale ukázalo, že presný opak je pravdou. Napriek často pomerne vysokej estetickej hodnote
bijektívnych dôkazov sa ukazuje ako prakticky nemožné vybudovať na tejto metóde systematickejšiu
teóriu – takmer každý bijektívny dôkaz totiž, zdá sa, vyžaduje vlastnú netriviálnu myšlienku. Naopak
súvis vytvárajúcich funkcií s problémami enumeratívnej kombinatoriky v skutočnosti nie je zďaleka
náhodný – ako teraz ukážeme, ide o objekty s týmito problémami fundamentálne späté. Akonáhle
sa nám totiž podarí identifikovať hlavný objekt skúmania enumeratívnej kombinatoriky – takzvané
kombinatorické triedy – vyplynie potreba uvažovať vytvárajúce funkcie úplne prirodzene.

V typickej úlohe enumeratívnej kombinatoriky býva daná množina objektov, kde každému objektu
zodpovedá nejaké prirodzené číslo reprezentujúce jeho veľkosť a pre každé n ∈ N existuje konečne veľa
objektov veľkosti n. Cieľom je obvykle vyčísliť alebo odhadnúť počet objektov veľkosti n. Prichádzame
tak k nasledujúcej definícii základného objektu skúmania enumeratívnej kombinatoriky [9].

Definícia 2.1.1. Kombinatorická trieda je dvojica C = (C, |·|), kde C je množina a |·| : C → N je
zobrazenie také, že pre všetky n ∈ N je množina Cn := {x ∈ C | |x| = n} konečná.

Prvkom množiny C hovoríme objekty a pre každý objekt x ∈ C nazývame číslo |x| jeho veľkosťou.
Množina Cn tak pozostáva z konečného počtu všetkých objektov veľkosti n.

Definícia 2.1.2. Enumeračnou postupnosťou kombinatorickej triedy (C, |·|) nazveme nekonečnú po-
stupnosť prirodzených čísel (c0, c1, c2, . . .), kde pre všetky n ∈ N je cn = |Cn|.

Za základný problém enumeratívnej kombinatoriky možno považovať nájdenie čo možno najpres-
nejšieho opisu enumeračnej postupnosti danej kombinatorickej triedy – môže ísť napríklad o vyjadrenie
hodnôt cn pre všetky n ∈ N v uzavretom tvare alebo o asymptotický odhad hodnôt cn pre n→∞.

V elementárnej kombinatorike býva predmetom štúdia počet prvkov jednej pevne danej konečnej
množiny. S kombinatorickou triedou (C, |·|) je naopak daná postupnosť takýchto množín (C0, C1, C2, . . .)
a skúmame počet prvkov jednotlivých množín Cn buď pre všetky n ∈ N, alebo asymptoticky pre n→∞.
Najdôležitejšie konštrukcie elementárnej kombinatoriky – t. j. disjunktné zjednotenie (pravidlo súčtu)
a karteziánsky súčin (pravidlo súčinu) ale môžeme uvažovať aj pre kombinatorické triedy.
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Disjunktným zjednotením dvoch nie nutne disjunktných množín S, T nazveme množinu

S + T = (S × {1}) ∪ (T × {2}).

Druhá zložka slúži čisto na odlíšenie prvkov pochádzajúcich z množiny S od prvkov pochádzajúcich
z množiny T ; čísla 1, 2 by sme teda mohli nahradiť ľubovoľnou dvojicou rôznych prvkov. Keďže nás
väčšinou bude zaujímať iba počet prvkov danej množiny a nie prvky množiny samotné, môžeme písať
napríklad aj S1 + . . .+ Sn pre disjunktné zjednotenie n množín, pričom pod týmto zápisom máme
na mysli ľubovoľné z uzátvorkovaní daného výrazu. Aj keď teda operácia + formálne nie je asociatívna,
budeme ju za asociatívnu považovať.

Pri disjunktnom zjednotení dvoch kombinatorických tried je navyše každému objektu výslednej
triedy ponechaná jeho pôvodná veľkosť.

Definícia 2.1.3. Disjunktným zjednotením kombinatorických tried C = (C, |·|C) a D = (D, |·|D) na-
zveme kombinatorickú triedu C+D = (C+D, |·|) takú, že pre všetky x ∈ C je |(x, 1)| = |x|C a pre všetky
y ∈ D je |(y, 2)| = |y|D.

Tvrdenie 2.1.4. Nech C = (C, |·|C) a D = (D, |·|D) sú kombinatorické triedy. Pre všetky n ∈ N potom
(C +D)n = Cn +Dn.

Dôkaz. Zrejmé.

Karteziánsky súčin kombinatorických tried C,D definujeme prirodzeným spôsobom – trieda bude
pozostávať zo všetkých dvojíc (x, y) ∈ C×D, pričom veľkosť takejto dvojice bude daná súčtom veľkosti
prvku x triedy C s veľkosťou prvku y triedy D. Napríklad veľkosť dvojice grafov teda môže byť daná
celkovým počtom vrcholov v grafoch, ktoré ju tvoria.

Definícia 2.1.5. Karteziánskym súčinom kombinatorických tried C = (C, |·|C) a D = (D, |·|D) nazveme
kombinatorickú triedu C × D = (C × D, |·|) takú, že pre všetky x ∈ C a y ∈ D je |(x, y)| = |x|C + |y|D.

Tvrdenie 2.1.6. Nech C = (C, |·|C) a D = (D, |·|D) sú kombinatorické triedy. Pre všetky n ∈ N je

(C × D)n =
n⋃
k=0

Ck ×Dn−k,

pričom ide o zjednotenie po dvoch disjunktných množín.

Dôkaz. Nech x ∈ C a y ∈ D. Dvojica (x, y) je potom prvkom (C × D)n práve vtedy, keď |(x, y)| = n
– čiže práve vtedy, keď |x|C + |y|D = n. To nastane práve vtedy, keď existuje k ∈ {0, . . . , n} také, že
|x|C = k a |y|D = n − k – čiže (x, y) ∈ Ck × Dn−k. Pre ľubovoľné rôzne k1, k2 ∈ {0, . . . , n} sú pritom
množiny Ck1 ×Dn−k1 a Ck2 ×Dn−k2 očividne disjunktné.

Môžeme teraz sformulovať výsledok, ktorý je pre kombinatorické triedy obdobou pravidiel súčtu
a súčinu z elementárnej kombinatoriky.

Veta 2.1.7. Nech C = (C, |·|C) a D = (D, |·|D) sú kombinatorické triedy. Pre všetky n ∈ N potom

|(C +D)n| = |Cn|+ |Dn|

a

|(C × D)n| =
n∑
k=0

|Ck| · |Dn−k| .

Dôkaz. Tvrdenie pre disjunktné zjednotenie vyplýva z tvrdenia 2.1.4 a pravidla súčtu. Tvrdenie pre kar-
teziánsky súčin je dôsledkom tvrdenia 2.1.6, pravidla súčinu a pravidla súčtu.
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Vráťme sa teraz k hlavnej úlohe enumeratívnej kombinatoriky a skúmajme, akým spôsobom sa
operácie disjunktného zjednotenia a karteziánskeho súčinu kombinatorických tried prejavia na úrovni
enumeračných postupností. Nech C je kombinatorická trieda s enumeračnou postupnosťou (c0, c1, c2, . . .)
a D je kombinatorická trieda s enumeračnou postupnosťou (d0, d1, d2, . . .). Vďaka vete 2.1.7 je potom
enumeračná postupnosť (s0, s1, s2, . . .) kombinatorickej triedy C +D daná pre všetky n ∈ N ako

sn = cn + dn, (2.1)

kým enumeračná postupnosť (p0, p1, p2, . . .) kombinatorickej triedy C × D je daná pre všetky n ∈ N
ako

pn =

n∑
k=0

ckdn−k. (2.2)

Kým teda enumeračná postupnosť triedy C + D vznikne z enumeračných postupností tried C a D
bežným súčtom po zložkách, enumeračná postupnosť triedy C×D nie je bežným súčinom enumeračných
postupností tried C a D, ale zodpovedá operácii nazývanej konvolúciou postupností. Táto situácia nie
je zrovna ideálna – vzhľadom na kľúčový význam enumeračných postupností by totiž bolo omnoho
vhodnejšie, keby aj prirodzená multiplikatívna operácia na enumeračných postupnostiach zodpovedala
multiplikatívnej operácii na kombinatorických triedach, ktorou je karteziánsky súčin.

Riešením je interpretovať enumeračné postupnosti ako prvky inej algebry – namiesto s enumerač-
nými postupnosťami teda budeme pracovať s objektmi nesúcimi rovnakú informáciu a zvolenými tak,
aby prirodzená aditívna resp. multiplikatívna operácia na nich zodpovedala vzťahu (2.1) resp. (2.2).
Môžeme si pritom všimnúť, že rovnakým spôsobom ako v (2.2) počítame Cauchyho súčin mocnino-
vých radov – ponúka sa teda možnosť uvažovať namiesto enumeračných postupností (c0, c1, c2, . . .)
mocninové rady s príslušnými postupnosťami koeficientov; operácie na takýchto radoch by potom zod-
povedali operáciám na príslušných kombinatorických triedach. Keďže ale potrebujeme vedieť pracovať
s ľubovoľnou kombinatorickou triedou – a tým pádom aj s ľubovoľnou enumeračnou postupnosťou
– nesmieme klásť nijaké požiadavky týkajúce sa konvergencie týchto radov, aby sme mohli uvažovať
rady s ľubovoľnými postupnosťami koeficientov. Mocninové rady teda nebudeme chápať ako repre-
zentácie analytických funkcií, ale ako čisto algebraické objekty. Tak prichádzame k pojmu formálneho
mocninového radu, ktorým budeme – zhruba povedané – rozumieť formálny zápis

C(z) =

∞∑
n=0

cnz
n,

kde cn ∈ C pre všetky n ∈ N a z samé o sebe a priori nemá žiaden význam (špeciálne teda nejde
o premennú, do ktorej by bolo možné v obvyklom zmysle dosadzovať). Rozdiel medzi mocninovým
radom v analytickom zmysle a formálnym mocninovým radom je teda podobný rozdielu medzi polynó-
mom a polynomickou funkciou. Po zvyšok tejto kapitoly budeme budovať exaktnú teóriu formálnych
mocninových radov.

Pre ľubovoľnú postupnosť komplexných čísel (cn)∞n=0 nazveme obyčajnou vytvárajúcou funkciou
tejto postupnosti formálny mocninový rad

C(z) =
∞∑
n=0

cnz
n;

ak je pritom (cn)∞n=0 enumeračnou postupnosťou kombinatorickej triedy C, budeme v súvislosti s C(z)
hovoriť aj o obyčajnej vytvárajúcej funkcii triedy C. Obyčajné vytvárajúce funkcie kombinatorických
tried sú pritom vždy formálnymi mocninovými radmi s prirodzenými koeficientmi; napriek tomu je
však výhodné chápať ich ako špeciálne rady s komplexnými koeficientmi – nielen kvôli bohatšej al-
gebraickej štruktúre radov s komplexnými koeficientmi, ale napríklad aj kvôli neskoršiemu prechodu
do matematickej analýzy.
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Neskôr sa budeme zaoberať takzvanou symbolickou metódou, vďaka ktorej budeme pre množstvo
kombinatorických tried schopní mechanicky prejsť od špecifikácie k vyjadreniu vytvárajúcej funkcie
pomocou určitých „základných“ funkcií a štandardných operácií na nich. Takáto znalosť vytvárajúcej
funkcie nám typicky umožní algoritmicky počítať jej koeficienty – čiže prvky enumeračnej postupnosti
uvažovanej kombinatorickej triedy – ktoré v niektorých prípadoch budeme vedieť vyjadriť aj v uzav-
retom tvare. Často navyše vo výsledku získame vytvárajúcu funkciu, ktorá je formálnou obdobou
Maclaurinovho radu funkcie analytickej v bode 0 – chápaná analyticky teda má nenulový polomer
konvergencie. Pre významnú triedu takýchto vytvárajúcich funkcií bude možné metódami analytickej
kombinatoriky mechanicky získať veľmi presný asymptotický odhad pre ich koeficienty.

Pre veľké množstvo kombinatorických tried tak bude získanie asymptotického odhadu pre prvky
ich enumeračnej postupnosti iba otázkou dvoch mechanických krokov – od špecifikácie kombinatorickej
triedy k vytvárajúcej funkcii a od vytvárajúcej funkcie k asymptotickému odhadu. Kým prvý z týchto
dvoch krokov je svojou podstatou algebraický, druhý z nich je založený na metódach komplexnej
analýzy.

2.2 Formálne mocninové rady a elementárne operácie na nich

Začneme teraz s budovaním teórie formálnych mocninových radov – detailné spracovanie tejto prob-
lematiky možno nájsť napríklad v [17, 15] a jej o niečo stručnejší výklad je podaný aj vo výbornej
knihe [4]. Obmedzíme sa pritom na rady s komplexnými koeficientmi, ktoré z vyššie opísaných prí-
čin nachádzajú uplatnenie v enumeratívnej kombinatorike. Zmysluplnými objektmi sú ale napríklad
aj formálne mocninové rady s koeficientmi z polokruhu alebo okruhu, prípadne zo všeobecného poľa;
základy teórie takýchto radov možno nájsť napríklad v [13].

Ako už bolo spomenuté, formálny mocninový rad R o jednej premennej z s komplexnými koefi-
cientmi možno chápať ako formálny súčet

R(z) =
∞∑
n=0

anz
n, (2.3)

kde (an)∞n=0 je ľubovoľná postupnosť komplexných čísel – koeficientov radu. Uvedený súčet nazývame
formálnym preto, lebo v skutočnosti sa ho nikdy nesnažíme vypočítať – nezaujímajú nás teda ani
žiadne otázky okolo konvergencie radu. Formálny mocninový rad tak nenadobúda žiadne hodnoty, ne-
reprezentuje žiadnu funkciu – je iba formálnym zápisom výrazu na pravej strane (2.3), čo H. Wilf [29]
vyjadril konštatovaním, že formálny mocninový rad je iba „vešiakom na koeficienty“ . Tento pohľad
sa odráža aj v nasledujúcej definícii formálneho mocninového radu, v ktorej ho dokonca s jeho po-
stupnosťou koeficientov stotožníme. Formálny mocninový rad je teda v skutočnosti iba postupnosťou
koeficientov zapisovanou a interpretovanou trochu neobvyklým spôsobom.

Definícia 2.2.1. Formálny mocninový rad o jednej premennej z s komplexnými koeficientmi je po-
stupnosť R = (an)∞n=0, kde pre všetky n ∈ N je an ∈ C. Namiesto R = (a0, a1, a2, . . .) = (an)∞n=0

píšeme

R = R(z) = a0z
0 + a1z

1 + a2z
2 + . . . =

∞∑
n=0

anz
n

a prvky postupnosti (an)∞n=0 nazývame koeficientmi radu R. Koeficient an pri zn označujeme pre všetky
n ∈ N aj ako

[zn]R(z) := an

a koeficient a0 nazývame konštantným. Množinu všetkých formálnych mocninových radov o jednej
premennej z s komplexnými koeficientmi označujeme CJzK; pre ľubovoľnú množinu S ⊆ C ďalej ozna-
čujeme ako SJzK množinu všetkých R(z) ∈ CJzK takých, že pre všetky n ∈ N je [zn]R(z) ∈ S.
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Tento neobvyklý pohľad na postupnosti je, samozrejme, zmysluplný iba vo svetle nasledujúcej defi-
nície dvoch základných operácií na formálnych mocninových radoch – to, či pracujeme s postupnosťou
alebo s formálnym mocninovým radom teda nie je ani tak otázkou týchto objektov samotných, ako
skôr algebry, ktorú na nich uvažujeme.

Definícia 2.2.2. Nech R(z) =
∑∞

n=0 anz
n a S(z) =

∑∞
n=0 bnz

n sú formálne mocninové rady z CJzK.
Súčtom radov R(z) a S(z) nazývame formálny mocninový rad (R + S)(z) = R(z) + S(z) taký, že
pre všetky n ∈ N je

[zn](R+ S)(z) = [zn]R(z) + [zn]S(z) = an + bn.

Cauchyho súčinom radov R(z) a S(z) nazývame formálny mocninový rad (R ·S)(z) = R(z) ·S(z) taký,
že pre všetky n ∈ N je

[zn](R · S)(z) =
n∑
k=0

(
[zk]R(z)

)(
[zn−k]S(z)

)
=

n∑
k=0

akbn−k.

Komplexné číslo a ∈ C typicky stotožňujeme s formálnym mocninovým radom R(z) ∈ CJzK takým,
že [z0]R(z) = a a [zn]R(z) = 0 pre všetky n ∈ N \ {0}. Pre ľubovoľný rad S(z) ∈ CJzK zodpovedá
Cauchyho súčin aS(z) prenásobeniu radu S(z) skalárom a; rady 0 resp. 1 sú navyše evidentne neutrálne
vzhľadom na sčítanie resp. násobenie radov.

Podobnou konštrukciou priradíme význam aj samotnej „premennej“ z, ktorú budeme stotožňovať
s formálnym mocninovým radom R(z) ∈ CJzK takým, že [z1]R(z) = 1 a pre všetky n ∈ N \ {1} je
[zn]R(z) = 0.

Umocňovanie formálnych mocninových radov definujeme vzhľadom na multiplikatívnu operáciu
Cauchyho súčinu štandardným spôsobom – pre ľubovoľný formálny mocninový rad R(z) ∈ CJzK je
teda R0(z) = 1 a Rn+1(z) = Rn(z)R(z) pre všetky n ∈ N.

Ľahko teraz vidieť, že pre všetky n ∈ N a a0, . . . , an ∈ C je R(z) = a0z
0 + a1z

1 + . . . + anz
n rad

taký, že pre k = 0, . . . , n je [zk]R(z) = ak a pre všetky prirodzené k > n je [zk]R(z) = 0. Rady takéhoto
typu nazývame polynómami a množinu všetkých polynómov v CJzK označujeme C[z].

Definícia 2.2.3. Nech R(z) =
∑∞

n=0 anz
n je formálny mocninový rad z CJzK. Ako −R(z) potom

označujeme formálny mocninový rad

−R(z) =

∞∑
n=0

(−an)zn.

Pre ľubovoľný rad S(z) ∈ CJzK potom namiesto S(z) + (−R(z)) píšeme len S(z) − R(z). Ľahko
tiež vidieť, že pre všetky R(z) ∈ CJzK je rad −R(z) aditívnym inverzným prvkom k radu R(z) – čiže
R(z)−R(z) = −R(z) +R(z) = 0 – a rad −R(z) možno vyjadriť aj ako −R(z) = (−1)R(z).

Keďže sú navyše obidve operácie + a · na CJzK evidentne asociatívne a komutatívne a ľahko
pre všetky rady A(z) =

∑∞
n=0 anz

n, B(z) =
∑∞

n=0 bnz
n a C(z) =

∑∞
n=0 cnz

n overíme aj platnosť
distributívnych zákonov

A(z)(B(z) + C(z)) =

∞∑
n=0

(
n∑
k=0

ak(bn−k + cn−k)

)
zn =

∞∑
n=0

(
n∑
k=0

akbn−k

)
zn +

∞∑
n=0

(
n∑
k=0

akcn−k

)
zn =

= A(z)B(z) +A(z)C(z),

(A(z) +B(z))C(z) =
∞∑
n=0

(
n∑
k=0

(ak + bk)cn−k

)
zn =

∞∑
n=0

(
n∑
k=0

akcn−k

)
zn +

∞∑
n=0

(
n∑
k=0

bkcn−k

)
zn =

= A(z)C(z) +B(z)C(z),

zisťujeme, že množina CJzK tvorí spolu s operáciami + a · komutatívny okruh (s jednotkou).
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Dokážeme teraz, že algebra (CJzK,+, ·, 0, 1) je dokonca aj oborom integrity – čiže netriviálnym ko-
mutatívnym okruhom s jednotkou bez netriviálnych deliteľov nuly. Posledná z menovaných podmienok
znamená, že pre všetky dvojice nenulových radov R(z), S(z) ∈ CJzK je aj R(z)S(z) 6= 0. Skutočnosť,
že CJzK tvorí obor integrity, pre nás bude dôležitá najmä preto, že práve vďaka tejto vlastnosti okruhu
CJzK v ňom bude možné krátiť nenulovými radmi : ak totiž A(z), B(z), C(z) ∈ CJzK sú rady také, že
A(z)C(z) = B(z)C(z) a C(z) 6= 0, nutne (A(z) − B(z))C(z), z čoho vďaka nenulovosti radu C(z)
a neexistencii netriviálnych deliteľov nuly dostávame A(z)−B(z) = 0 – čiže A(z) = B(z).

Tvrdenie 2.2.4. Okruh (CJzK,+, ·, 0, 1) je oborom integrity.

Dôkaz. Vieme už, že ide o komutatívny okruh, ktorý je evidentne netriviálny. Uvažujme teda ľubovoľné
R(z), S(z) ∈ CJzK \ {0}. Nech m ∈ N je najmenšie prirodzené číslo také, že [zm]R(z) 6= 0 a n ∈ N je
najmenšie prirodzené číslo také, že [zn]S(z) 6= 0. Potom

[zm+n](R · S)(z) =

m+n∑
k=0

(
[zk]R(z)

)(
[zm+n−k]S(z)

)
= ([zm]R(z)) ([zn]S(z)) 6= 0,

takže nutne (R · S)(z) = R(z)S(z) 6= 0.

Oborom integrity je v dôsledku práve dokázaného tvrdenia aj okruh polynómov (C[z],+, ·, 0, 1).

Poznámka 2.2.5. Všetky operácie na formálnych mocninových radoch sme doposiaľ definovali na zá-
klade analógie s mocninovými radmi, ktoré v komplexnej analýze slúžia na reprezentáciu funkcií ana-
lytických v bode 0. Vieme navyše, že súčet a súčin dvoch analytických funkcií je opäť analytickou
funkciou. Množina H0 všetkých funkcií analytických v bode 0 teda (modulo izomorfizmus) tvorí pod-
okruh (H0,+, ·, 0, 1) okruhu (CJzK,+, ·, 0, 1) a vďaka tvrdeniu 2.2.4 je takisto oborom integrity.

Toto pozorovanie je dôležité z nasledujúceho dôvodu: ak začneme s formálnymi mocninovými radmi,
ktoré konvergujú na neprázdnom okolí bodu 0 a zodpovedajú tak nejakej analytickej funkcii, je použitie
operácií na CJzK definovaných v tomto oddiele na tieto rady ekvivalentné použitiu príslušných operácií
na analytických funkciách. Aj výsledok týchto operácií teda môžeme interpretovať ako analytickú
funkciu.

2.3 Delenie formálnych mocninových radov

Zaoberajme sa teraz existenciou multiplikatívnych inverzných prvkov k formálnym mocninovým radom
z oboru integrity CJzK.

Definícia 2.3.1. Nech R(z) ∈ CJzK je formálny mocninový rad. Multiplikatívnym inverzným prvkom
radu R(z) nazveme, ak existuje, rad R−1(z) = R(z)−1 taký, že R−1(z) ·R(z) = R(z) ·R−1(z) = 1.

Ak multiplikatívny inverzný prvok k formálnemu mocninovému radu R(z) existuje, píšeme preň
namiesto R−1(z) aj (1/R)(z) = 1/R(z). Je ale zrejmé, že multiplikatívny inverzný prvok nemusí
existovať pre všetky rady R(z) ∈ CJzK – napríklad pre multiplikatívny inverzný prvok S(z) radu z
by muselo byť S(z)z = 1 a v dôsledku toho aj [z0](S(z)z) = 1, kým na druhej strane

[z0](S(z)z) =
(
[z0]S(z)

) (
[z0]z

)
=
(
[z0]S(z)

)
0 = 0;

multiplikatívny inverzný prvok k radu z teda neexistuje.
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Dokážeme teraz kritérium existencie multiplikatívneho inverzného prvku, podľa ktorého rad R−1(z)
existuje práve vtedy, keď má rad R(z) nenulový konštantný koeficient.

Tvrdenie 2.3.2. Nech R(z) =
∑∞

n=0 anz
n je formálny mocninový rad z CJzK. Rad R−1(z) potom

existuje práve vtedy, keď a0 6= 0.

Dôkaz. Uvažujme najprv prípad, keď a0 = 0 a za účelom sporu predpokladajme existenciu radu
R−1(z) =

∑∞
n=0 bnz

n. Keďže R(z)R−1(z) = 1, z definície Cauchyho súčinu dostávame

1 = [z0]
(
R(z)R−1(z)

)
=

0∑
k=0

akb0−k = a0b0 = 0b0 = 0,

čo je spor.
Nech teraz a0 6= 0. Položme

b0 =
1

a0
(2.4)

a
bn+1 = −a1bn + a2bn−1 + . . .+ an+1b0

a0
. (2.5)

pre všetky n ∈ N. Uvažujme rad S(z) =
∑∞

n=0 bnz
n. Preň je

[z0] (R(z)S(z)) = a0b0 =
a0

a0
= 1

a pre všetky n ∈ N dostávame

[zn+1] (R(z)S(z)) =
n+1∑
k=0

akbn+1−k = a0bn+1 + (a1bn + a2bn−1 + . . .+ an+1b0) =

= −a0 ·
a1bn + a2bn−1 + . . .+ an+1b0

a0
+ (a1bn + a2bn−1 + . . .+ an+1b0) = 0.

Preto R(z)S(z) = 1 a rad S(z) je multiplikatívnym inverzným prvkom radu R(z).

Poznámka 2.3.3. Aj práve dokázané tvrdenie je v zmysle poznámky 2.2.5 konzistentné s vlastnosťami
analytických funkcií: pre funkciu f analytickú v bode 0 existuje funkcia 1/f analytická v bode 0 práve
vtedy, keď f(0) 6= 0 – čo je to isté ako nenulovosť konštantného koeficientu Maclaurinovho rozvoja
funkcie f . Keďže v takom prípade navyše musí byť Maclaurinov rad funkcie 1 daný Cauchyho súčinom
Maclaurinových radov funkcií f a 1/f , musia byť koeficienty Maclaurinovho radu funkcie 1/f dané
vzťahmi (2.4) a (2.5) z dôkazu tvrdenia 2.3.2.

Je zrejmé, že pre rad R(z) s nenulovým konštantným koeficientom a všetky k ∈ N musí byť
(R−1)k(z) = (Rk)−1(z). Tento rad označujeme R−k(z).

Príklad 2.3.4. Je jednoduchou úlohou overiť platnosť nasledujúcich rovností v okruhu formálnych
mocninových radov CJzK pre všetky a ∈ C a b ∈ C \ {0}:

1

1− z
= 1 + z + z2 + z3 + . . . =

∞∑
n=0

zn,

1

1− az
= 1 + az + a2z2 + a3z3 + . . . =

∞∑
n=0

anzn,

1

b− az
=

1

b
+
a

b2
z +

a2

b3
z2 +

a3

b4
z3 + . . . =

∞∑
n=0

an

bn+1
zn.

Poznámka 2.3.3 vysvetľuje, že podobnosť so vzorcami pre Maclaurinove rady známymi z komplexnej
analýzy nie je nijak náhodná.
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Vďaka tvrdeniu 2.3.2 je tak pre ľubovoľnú dvojicu radov R(z), S(z) ∈ CJzK, kde [z0]S(z) 6= 0,
dobre definovaný podiel (R/S)(z) = R(z)/S(z) = R(z)S−1(z). Podiel radov R(z)/S(z) je ale často
potrebné uvažovať aj v prípade, že [z0]S(z) = 0: je napríklad prirodzené položiť

z + z3 + z5 + . . .

z
= 1 + z2 + z4 + . . .

alebo
z3 − z5

z + z2
= z2 − z3.

Prichádzame tak k nasledujúcej definícii.

Definícia 2.3.5. Nech R(z) ∈ CJzK a S(z) ∈ CJzK \ {0} sú formálne mocninové rady. Podielom radov
R(z) a S(z) nazveme, ak existuje, rad (R/S)(z) = R(z)/S(z) taký, že R(z) = (R/S)(z)S(z).

Keďže je CJzK oborom integrity, vyplýva z rovností R(z) = Q1(z)S(z) = Q2(z)S(z), po vykrátení
druhej z nich nenulovým radom S(z), rovnosť Q1(z) = Q2(z); existujúce podiely formálnych moc-
ninových radov sú tak dané jednoznačne. Ak teda špeciálne [z0]S(z) 6= 0, je podiel R(z)/S(z) daný
jednoznačne ako R(z)/S(z) = R(z)S−1(z).

Kritérium existencie podielu daných dvoch formálnych mocninových radov, ktoré je zovšeobecne-
ním tvrdenia 2.3.2, využíva pojem kostupňa nenulového formálneho mocninového radu – ten teraz
definujeme a hneď vzápätí sformulujeme spomínané kritérium.

Definícia 2.3.6. Kostupňom formálneho mocninového radu R(z) ∈ CJzK \ {0} nazveme prirodzené
číslo

codegR(z) := min{n ∈ N | [zn]R(z) 6= 0}.

Tvrdenie 2.3.7. Nech R(z) ∈ CJzK a S(z) ∈ CJzK \ {0} sú formálne mocninové rady. Rad R(z)/S(z)
potom existuje práve vtedy, keď R(z) = 0, alebo R(z) 6= 0 a zároveň codegS(z) ≤ codegR(z).

Dôkaz. Ak R(z) = 0, je zrejme R(z)/S(z) = 0. Predpokladajme teda, že R(z) 6= 0 – a uvažujme najprv
prípad, keď s = codegS(z) ≤ codegR(z) = r. Pre nejakú dvojicu radov R̂(z), Ŝ(z) ∈ CJzK takých, že
codeg R̂(z) = codeg Ŝ(z) = 0 potom

R(z) = zrR̂(z) a S(z) = zsŜ(z).

Okrem iného teda [z0]Ŝ(z) 6= 0, z čoho vyplýva existencia radov Ŝ−1(z) a R̂(z)/Ŝ(z) = R̂(z)Ŝ−1(z).
Podiel radov R(z) a S(z) je potom daný ako

R(z)

S(z)
= zr−s

R̂(z)

Ŝ(z)
,

pretože (
zr−s

R̂(z)

Ŝ(z)

)
S(z) = zr−s

R̂(z)

Ŝ(z)
zsŜ(z) = zr

R̂(z)

Ŝ(z)
Ŝ(z) = zrR̂(z) = R(z).

Uvažujme zostávajúci prípad, keď s = codegS(z) > codegR(z) = r; špeciálne teda [zr]R(z) 6= 0.
Za účelom sporu predpokladajme existenciu podielu R(z)/S(z). Potom ale

R(z) =
R(z)

S(z)
S(z),

z čoho

[zr]R(z) = [zr]

(
R(z)

S(z)
S(z)

)
=

r∑
k=0

(
[zk]

R(z)

S(z)

)(
[zr−k]S(z)

)
=

r∑
k=0

(
[zk]

R(z)

S(z)

)
0 = 0,

pretože codegS(z) > r. To v spore s naším skorším pozorovaním, podľa ktorého je [zr]R(z) 6= 0.
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Poznámka 2.3.8. Podobne ako predchádzajúce tvrdenia, je aj tvrdenie 2.3.7 konzistentné s vlast-
nosťami analytických funkcií. Kostupeň Maclaurinovho radu inej ako konštantne nulovej funkcie f
analytickej v bode 0 je totiž práve rádom koreňa funkcie f v bode 0. Ak sú pritom f, g analytické
funkcie v bode 0, ktoré majú v nule koreň rádu r resp. s, možno tieto funkcie na nejakom okolí bodu 0
vyjadriť ako

f(z) = zrf̂(z) a g(z) = zsĝ(z),

kde f̂ , ĝ sú funkcie analytické a nenulové v bode 0. Analytická a nenulová v bode 0 tak musí byť aj fun-
kcia f̂/ĝ, ktorú preto možno rozvinúť do Maclaurinovho radu s nenulovým konštantným koeficientom.
Laurentov rozvoj funkcie f/g v bode 0 je potom daný prenásobením tohto Maclaurinovho rozvoja
faktorom zr−s – ľahko teda vidieť, že funkcia f/g je analytická v bode 0 práve vtedy, keď s ≤ r.

2.4 Formálna derivácia

Zavedieme teraz ďalšiu dôležitú operáciu na formálnych mocninových radoch – takzvanú formálnu
deriváciu. Jej definícia je inšpirovaná skutočnosťou, že Maclaurinove rady funkcií analytických v bode 0
derivujeme člen po člene.

Definícia 2.4.1. Nech R(z) =
∑∞

n=0 anz
n je formálny mocninový rad z CJzK. Formálnou deriváciou

radu R(z) nazveme formálny mocninový rad

R′(z) =
d

dz
R(z) :=

∞∑
n=0

(n+ 1)an+1z
n.

Bežným induktívnym spôsobom definujeme aj formálne derivácie radu R(z) vyšších rádov: kladieme

R(0)(z) =
d0

dz0
R(z) := R(z)

a

R(k+1)(z) =
dk+1

dzk+1
R(z) :=

d

dz

(
dk

dzk
R(z)

)
.

Pripomeňme si, že k-ty klesajúci faktoriál komplexného čísla z ∈ C je pre k ∈ N definovaný ako

zk :=
k−1∏
j=0

(z − j).

Ľahko teraz odvodíme nasledujúci vzorec pre koeficienty formálnych derivácií vyšších rádov.

Tvrdenie 2.4.2. Nech R(z) =
∑∞

n=0 anz
n je formálny mocninový rad z CJzK a k ∈ N. Pre všetky

n ∈ N potom
[zn]R(k)(z) = (n+ k)k[zn+k]R(z).

Dôkaz. Pre k = 0 je tvrdenie triviálne. Ak ďalej [zn]R(k)(z) = (n + k)k[zn+k]R(z) pre všetky n ∈ N,
pre (k + 1)-tu deriváciu radu R(z) dostávame

[zn]R(k+1)(z) = [zn]
(
R(k)

)′
(z) = (n+ 1)[zn+1]R(k)[z] = (n+ 1)(n+ k + 1)k[zn+k+1]R(z) =

= (n+ k + 1)k+1[zn+k+1]R(z).
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Tvrdenie 2.4.3. Pre všetky R(z) ∈ CJzK a k, ` ∈ N je
(
R(k)

)(`)
(z) = R(k+`)(z).

Dôkaz. Nech je k ∈ N pevné a dokazujme indukciou vzhľadom na `. Pre ` = 0 je z definície(
R(k)

)(0)
(z) = R(k)(z).

Nech teraz pre ` = s je (
R(k)

)(s)
(z) = R(k+s)(z)

a uvažujme ` = s+1; z definície (s+1)-tej derivácie, indukčného predpokladu a definície (k+s+1)-tej
derivácie postupne dostávame(

R(k)
)(s+1)

(z) =
(

(R(k))(s)
)′

(z) =
(
R(k+s)

)′
(z) = R(k+s+1)(z).

Nasledujúce jednoduché pozorovanie možno chápať ako formálnu obdobu vety o Maclaurinových
radoch.

Veta 2.4.4. Nech R(z) ∈ CJzK. Potom

R(z) =

∞∑
n=0

[z0]R(n)(z)

n!
zn.

Dôkaz. Indukciou vzhľadom na n dokážeme naraz pre všetky R(z) ∈ CJzK rovnosť

[zn]R(z) =
[z0]R(n)(z)

n!
.

Pre n = 0 a každé R(z) ∈ CJzK je evidentne

[z0]R(z) =
[z0]R(0)(z)

0!
;

ak teraz predpokladáme platnosť tvrdenia pre n = k a všetky R(z) ∈ CJzK, pre n = k+ 1 a ľubovoľné
R(z) ∈ CJzK s využitím tvrdenia 2.4.3 a indukčného predpokladu dostávame

[z0]R(k+1)(z)

(k + 1)!
=

1

k + 1
· [z0](R′)(k)(z)

k!
=

1

k + 1
[zk]R′(z) = [zk+1]R(z).

Dokážeme teraz vetu o formálnej derivácii súčtu, rozdielu, konštantného násobku, Cauchyho súčinu,
kladnej prirodzenej mocniny a multiplikatívneho inverzného prvku formálnych mocninových radov –
vo všetkých prípadoch pôjde opäť o obdobu dobre známych vzorcov z matematickej analýzy.

Veta 2.4.5. Nech R(z), S(z) ∈ CJzK, a ∈ C a k ∈ N \ {0}. Potom:

a) (R± S)′(z) = R′(z)± S′(z);

b) (aR)′(z) = aR′(z);

c) (R · S)′(z) = R(z)S′(z) +R′(z)S(z);

d)
(
Rk
)′

(z) = kRk−1(z)R′(z);

e) ak navyše [z0]R(z) 6= 0, tak
(
R−1

)′
(z) = −R′(z)/R2(z).
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Dôkaz. Predpokladajme, že pre nejaké postupnosti (an)∞n=0, (bn)∞n=0 komplexných čísel je

R(z) =
∞∑
n=0

anz
n a S(z) =

∞∑
n=0

bnz
n.

Vzorec pre formálnu deriváciu súčtu a rozdielu potom vyplýva z rovnosti

[zn](R± S)′(z) = (n+ 1)(an+1 ± bn+1) = (n+ 1)an+1 ± (n+ 1)bn+1 = [zn]R′(z)± [zn]S′(z) =

= [zn]
(
R′ + S′

)
(z)

platnej pre všetky n ∈ N. Podobne v prípade skalárneho násobku pre všetky n ∈ N dostávame

[zn](aR)′(z) = (n+ 1)aan+1 = a ((n+ 1)an+1) = a[zn]R′(z) = [zn](aR′)(z).

Pre Cauchyho súčin je, opäť pre všetky n ∈ N,

[zn](R · S)′(z) = (n+ 1)

n+1∑
k=0

akbn+1−k =

n+1∑
k=0

(n+ 1)akbn+1−k =

n+1∑
k=0

(k + (n+ 1− k))akbn+1−k =

=
n+1∑
k=0

kakbn+1−k +

n+1∑
k=0

(n+ 1− k)akbn+1−k =

=
n+1∑
k=1

(kak) bn+1−k +
n∑
k=0

ak ((n+ 1− k)bn+1−k) =

=

n∑
s=0

((s+ 1)as+1) bn−s +

n∑
k=0

ak ((n+ 1− k)bn+1−k) =

= [zn]
(
R′ · S

)
(z) + [zn]

(
R · S′

)
(z) = [zn]

(
R′ · S +R · S′

)
(z).

Vzorec pre deriváciu kladnej prirodzenej mocniny je záležitosťou indukcie vzhľadom na k ∈ N \ {0}:
pre k = 1 je

R′(z) = 1R0(z)R′(z);

ak tvrdenie platí pre k = s, pre k = s+ 1 dostávame(
Rs+1

)′
(z) = (R ·Rs)′ (z) = R(z) (Rs)′ (z) +R′(z)Rs(z) = sR(z)Rs−1(z)R′(z) +R′(z)Rs(z) =

= (s+ 1)Rs(z)R′(z).

V prípade [z0]R(z) 6= 0 napokon zo vzorca pre deriváciu Cauchyho súčinu (R ·R−1)(z) dostávame

R(z)
(
R−1

)′
(z) +R′(z)R−1(z) = 0,

z čoho úpravou dostávame dokazovanú rovnosť

(
R−1

)′
(z) = −R

′(z)

R2(z)
.

Príklad 2.4.6. Pre všetky k ∈ N \ {0} je vďaka vete 2.4.5

d

dz

1

1− z
=

1

(1− z)2

a
d

dz

1

(1− z)k
= k · 1

(1− z)k−1
· 1

(1− z)2
=

k

(1− z)k+1
.
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Indukciou by sme teda ľahko dokázali, že pre všetky ` ∈ N je

d`

dz`
1

1− z
=

`!

(1− z)`+1
.

Pre všetky k ∈ N \ {0} tak
1

(1− z)k
=

1

(k − 1)!
· dk−1

dzk−1

1

1− z
,

z čoho podľa tvrdenia 2.4.2 pre všetky n ∈ N dostávame

[zn]
1

(1− z)k
=

(n+ k − 1)k−1

(k − 1)!
=

(
n+ k − 1

k − 1

)
.

To znamená, že pre všetky k ∈ N \ {0} je

1

(1− z)k
=
∞∑
n=0

(
n+ k − 1

k − 1

)
zn.

Príklad 2.4.7. Podobne pre všetky a ∈ C, b ∈ C \ {0} a k ∈ N \ {0} je vďaka vete 2.4.5

d

dz

1

1− az/b
=

a

b(1− az/b)2

a

d

dz

1

(b− az)k
=

1

bk
· d

dz

1

(1− az/b)k
=

1

bk
· k · 1

(1− az/b)k−1
· a

b(1− az/b)2
=

ak

bk+1(1− az/b)k+1
=

=
ak

(b− az)k+1
.

Indukciou by sme teda ľahko dokázali, že pre všetky ` ∈ N je

d`

dz`
1

b− az
=

a``!

(b− az)`+1
,

z čoho pre všetky k ∈ N \ {0} dostávame

1

(b− az)k
=

1

ak−1(k − 1)!
· dk−1

dzk−1

1

b− az
.

Podľa tvrdenia 2.4.2 a príkladu 2.3.4 tak pre všetky n ∈ N musí byť

[zn]
1

(b− az)k
=

(n+ k − 1)k−1 an+k−1

ak−1(k − 1)!bn+k
=

(
n+ k − 1

k − 1

)
an

bn+k
.

Pre všetky a ∈ C, b ∈ C \ {0} a k ∈ N \ {0} teda

1

(b− az)k
=
∞∑
n=0

(
n+ k − 1

k − 1

)
an

bn+k
zn.
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2.5 Obyčajné vytvárajúce funkcie

Pripomeňme si, že obyčajnou vytvárajúcou funkciou postupnosti komplexných čísel

(c0, c1, c2, . . .) = (cn)∞n=0

rozumieme formálny mocninový rad

C(z) = c0z
0 + c1z

1 + c2z
2 + . . . =

∞∑
n=0

cnz
n.

Tento rad bol pritom definovaný práve ako postupnosť koeficientov (cn)∞n=0 – na formálnej úrovni teda
neexistuje žiaden rozdiel medzi postupnosťou a jej obyčajnou vytvárajúcou funkciou; prechod od po-
stupnosti k vytvárajúcej funkcii predstavuje iba zmenu uhlu pohľadu a uvažovanej algebry.

Každú operáciu na obyčajných vytvárajúcich funkciách možno interpretovať aj ako operáciu na prí-
slušných postupnostiach koeficientov a naopak – zmysel vytvárajúcich funkcií pritom spočíva najmä
v tom, že operácie s najväčším kombinatorickým významom majú prirodzenejšie vyjadrenie práve v ich
jazyku. Tabuľka 2.1 uvádza niekoľko operácií na formálnych mocninových radoch zavedených v pred-
chádzajúcich oddieloch spolu s príslušnými operáciami na ich postupnostiach koeficientov. Neskôr
k týmto operáciám pridáme aj ďalšie.

Obyčajná vytvárajúca funkcia Postupnosť koeficientov
A(z) (a0, a1, a2, . . .) = (an)∞n=0

B(z) (b0, b1, b2, . . .) = (bn)∞n=0

c ·A(z) pre c ∈ C (can)∞n=0

A(z)±B(z) (an ± bn)∞n=0

A(z) ·B(z) (
∑n

k=0 akbn−k)
∞
n=0

A(z)−a0

z (a1, a2, a3, . . .)
z ·A(z) (0, a0, a1, a2, . . .)
A(z)−a0z0−a1z1−...−aj−1z

j−1

zj
pre j ∈ N (aj , aj+1, aj+2, . . .)

zj ·A(z) pre j ∈ N (0, 0, . . . , 0︸ ︷︷ ︸
j

, a0, a1, a2, . . .)

A′(z) ((n+ 1)an+1)∞n=0

A(k)(z) pre k ∈ N
(
(n+ k)kan+k

)∞
n=0

...
...

Tabuľka 2.1: Niektoré operácie na obyčajných vytvárajúcich funkciách s príslušnými operáciami na postup-
nostiach koeficientov.

Tabuľka 2.2 ďalej podáva zhrnutie nám už známych významných konkrétnych obyčajných vytvá-
rajúcich funkcií spoločne s ich postupnosťami koeficientov. Opäť ide o neúplný výpočet, ktorý neskôr
doplníme o ďalšie dôležité vytvárajúce funkcie.

Typický proces použitia vytvárajúcich funkcií na analýzu danej kombinatorickej postupnosti po-
zostáva z dvoch fáz. Prvá fáza spočíva v nájdení vytvárajúcej funkcie, t. j. v jej vyjadrení pomocou
základných radov ako napríklad 1 a z a štandardných operácií, najjednoduchšie z ktorých sú uvedené
v tabuľke 2.1. Výstupom tejto fázy tak môže byť napríklad pozorovanie, že obyčajná vytvárajúca
funkcia skúmanej postupnosti je daná ako

R(z) =
z

1− z − z2
.
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Obyčajná vytvárajúca funkcia Postupnosť koeficientov
0 (0, 0, 0, . . .)
1 (1, 0, 0, . . .)
a pre a ∈ C (a, 0, 0, . . .)
z (0, 1, 0, 0, . . .)
zj pre j ∈ N (0, 0, . . . , 0︸ ︷︷ ︸

j − 1

, 1, 0, 0, . . .)

1
1−z (1, 1, 1, . . .)

1
1−az pre a ∈ C (a0, a1, a2, . . .)

1
b−az pre a ∈ C a b ∈ C \ {0}

(
a0

b1
, a

1

b2
, a

2

b3
, . . .

)
1

(1−z)k pre k ∈ N \ {0}
((

k−1
k−1

)
,
(
k
k−1

)
,
(
k+1
k−1

)
,
(
k+2
k−1

)
, . . .

)
1

(b−az)k pre k ∈ N \ {0}, a ∈ C a b ∈ C \ {0}
((

k−1
k−1

)
a0

bk
,
(
k
k−1

)
a1

bk+1 ,
(
k+1
k−1

)
a2

bk+2 ,
(
k+2
k−1

)
a3

bk+3 , . . .
)

...
...

Tabuľka 2.2: Niektoré významné obyčajné vytvárajúce funkcie.

Vytvárajúce funkcie možno jednoduchým spôsobom nájsť napríklad pre postupnosti dané niektorými
druhmi rekurentných vzťahov. Neskôr v kapitole 3 opíšeme špecifikačné mechanizmy umožňujúce proces
nájdenia vytvárajúcej funkcie kombinatorickej triedy do veľkej miery zmechanizovať.

Druhá fáza potom pozostáva z použitia nájdenej vytvárajúcej funkcie na získanie informácií o skú-
manej postupnosti. V niektorých viac-menej ojedinelých prípadoch je možné vyjadriť postupnosť ko-
eficientov v uzavretom tvare. Omnoho častejšie možno vytvárajúcu funkciu použiť na algoritmický
výpočet členov postupnosti – a predovšetkým aplikovať metódy analytickej kombinatoriky umožňujúce
opäť relatívne mechanickým spôsobom nájsť veľmi presný asymptotický odhad členov cn skúmanej
postupnosti (cn)∞n=0 pre n→∞. Takýmito analytickými metódami sa budeme v tomto texte zaoberať
počnúc kapitolou 5.

2.6 Fibonacciho čísla a ďalšie lineárne rekurencie

V rámci jednoduchej ukážky použitia obyčajných vytvárajúcich funkcií sa teraz zamerajme na riešenie
lineárnych rekurencií s konštantnými koeficientmi. Začnime známym príkladom Fibonacciho čísel.

Príklad 2.6.1. Postupnosť Fibonacciho čísel (Fn)∞n=0 = (F0, F1, F2, . . .) je definovaná rekurentným
vzťahom

F0 = 0,

F1 = 1,

Fn+2 = Fn+1 + Fn pre všetky n ∈ N. (2.6)

Označme F (z) obyčajnú vytvárajúcu funkciu postupnosti (Fn)∞n=0. Obyčajná vytvárajúca funkcia po-
stupnosti (Fn+1)∞n=0 je potom daná ako

F (z)− F0

z
=
F (z)

z

a obyčajná vytvárajúca funkcia postupnosti (Fn+2)∞n=0 je daná ako

F (z)− F0 − F1z

z2
=
F (z)− z

z2
.
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Keďže súčet dvoch postupností zodpovedá súčtu obyčajných vytvárajúcich funkcií, z rekurentného
vzťahu (2.6) dostávame

F (z)− z
z2

=
F (z)

z
+ F (z),

z čoho úpravou pomocou operácií na formálnych mocninových radoch dostávame

F (z)− zF (z)− z2F (z)− z
z2

= 0,

a teda
F (z) · (1− z − z2) = z.

Preto

F (z) =
z

1− z − z2
=

z

(1− ϕz)(1− ψz)
=

1√
5

(
1

1− ϕz
− 1

1− ψz

)
,

kde

ϕ =
1 +
√

5

2
a ψ =

1−
√

5

2
.

Obyčajnú vytvárajúcu funkciu F (z) sme teda vyjadrili ako lineárnu kombináciu známych formálnych
mocninových radov 1/(1−ϕz) a 1/(1−ψz). Z tabuliek 2.1 a 2.2 už teda možno vyčítať, že pre všetky
n ∈ N je

Fn = [zn]F (z) = [zn]
1√
5

(
1

1− ϕz
− 1

1− ψz

)
=

1√
5

(ϕn − ψn).

Tým sme vyjadrili n-té Fibonacciho číslo v uzavretom tvare.

Postup z uvedeného príkladu je možné zovšeobecniť na univerzálnu metódu riešenia lineárnych
homogénnych rekurencií s konštantnými koeficientmi, t. j. rekurencií typu

cdan+d + cd−1an+d−1 + . . .+ c0an = 0,

kde c0, . . . , cd ∈ C sú konštanty, cd 6= 0 a hodnoty a0, . . . , ad−1 sú dané ako počiatočné podmienky. Oby-
čajnú vytvárajúcu funkciu A(z) postupnosti (an)∞n=0 danej takouto rekurenciou možno vždy vyjadriť
zo vzťahu

d∑
k=0

ck ·
A(z)− a0z

0 − a1z
1 − . . .− ak−1z

k−1

zk
= 0

ako podiel dvoch polynómov – hovoríme, že vytvárajúca funkcia A(z) je racionálna. Pre nejakú dvojicu
polynómov P (z), Q(z) ∈ C[z] je teda

A(z) =
P (z)

Q(z)
;

ľahko pritom napríklad vidieť, že [z0]Q(z) = cd 6= 0 a stupeň polynómu P (z) nemôže byť väčší, než
d− 1. Túto rovnosť možno po vydelení polynómov P (z) a Q(z) so zvyškom prepísať ako

A(z) = S(z) +
R(z)

Q(z)
,

kde S(z), R(z) ∈ C[z] sú polynómy, stupeň polynómu S(z) je najviac d − 1 a stupeň polynómu R(z)
je ostro menší, než stupeň polynómu Q(z). Ak pritom

Q(z) = C ·
m∏
j=1

(z − κj)dj
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pre nejaké C ∈ C\{0},m ∈ N, po dvoch rôzne κ1, . . . , κm ∈ C\{0} a d1, . . . , dm ∈ N\{0}, prichádzame
po rozložení podielu R(z)/Q(z) na parciálne zlomky ku vzťahu

A(z) = S(z) +
m∑
j=1

dj∑
k=1

αj,k
(z − κj)k

,

kde pre j = 1, . . . ,m a k = 1, . . . , dj je αj,k ∈ C. Úpravou tejto rovnosti môžeme napokon dôjsť
k vyjadreniu

A(z) = S(z) +

m∑
j=1

dj∑
k=1

βj,k
(1− λjz)k

, (2.7)

kde
S(z) = s0z

0 + . . .+ sd−1z
d−1

je polynóm stupňa najviac d − 1 s koeficientmi s0, . . . , sd−1 ∈ C, λ1, . . . , λm ∈ C \ {0} sú po dvoch
rôzne nenulové komplexné čísla, d1, . . . , dm ∈ N \ {0} a βj,k ∈ C pre j = 1, . . . ,m a k = 1, . . . , dj .
Z príkladu 2.4.7 pritom vieme, že pre j = 1, . . . ,m a k = 1, . . . , dj je

1

(1− λjz)k
=

∞∑
n=0

(
n+ k − 1

k − 1

)
λnj z

n.

Vzťah (2.7) tak vedie k nasledujúcemu vyjadreniu čísel an pre všetky n ∈ N v uzavretom tvare:

an =

d−1∑
k=0

s0δn,k +

m∑
j=0

dj−1∑
k=0

βj,k

(
n+ k

k

)
λnj ,

kde δn,k je Kroneckerova delta, t. j.

δn,k =

{
1 ak n = k,
0 ak n 6= k.

Metódu, ktorú sme práve vo všeobecnosti opísali, teraz predvedieme na ešte jednom príklade.

Príklad 2.6.2. Uvažujme postupnosť (an)∞n=0 = (a0, a1, a2, . . .) danú pre všetky n ∈ N rekurentným
vzťahom

an+4 = 3an+3 − 4an+1 (2.8)

s počiatočnými podmienkami

a0 = 1,

a1 = 2,

a2 = 1,

a3 = 2.

Nech A(z) je obyčajná vytvárajúca funkcia postupnosti (an)∞n=0 – vďaka (2.8) potom

A(z)− a0z
0 − a1z

1 − a2z
2 − a3z

3

z4
− 3 · A(z)− a0z

0 − a1z
1 − a2z

2

z3
+ 4 · A(z)− a0z

0

z
= 0,

čo je to isté ako

A(z)− 1− 2z − z2 − 2z3

z4
− 3 · A(z)− 1− 2z − z2

z3
+ 4 · A(z)− 1

z
= 0.
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Úpravou dostávame
A(z)(1− 3z + 4z3) + (−1 + z + 5z2 − 3z3)

z4
= 0,

z čoho

A(z) =
1− z − 5z2 + 3z3

1− 3z + 4z3
.

Po vydelení týchto dvoch polynómov so zvyškom tak prichádzame k vyjadreniu

A(z) =
3

4
+

1

4
· 1 + 5z − 20z2

1− 3z + 4z3
=

3

4
+

1

16
· 1 + 5z − 20z2

(z + 1)(z − 1/2)2

a po rozklade na parciálne zlomky dostávame

A(z) =
3

4
− 2

3(z + 1)
− 7

12(z − 1/2)
− 1

16(z − 1/2)2
,

čiže
A(z) =

3

4
− 2

3(1 + z)
+

7

6(1− 2z)
− 1

4(1− 2z)2
.

Prvok an uvažovanej postupnosti tak pre všetky n ∈ N môžeme vyjadriť ako

an =
3

4
· δn,0 −

2

3
· (−1)n +

7

6
2n − 1

4

(
n+ 1

1

)
2n =

3

4
· δn,0 −

2

3
· (−1)n +

11

12
· 2n − 1

4
· n2n.

Poznámka 2.6.3. Obyčajné vytvárajúce funkcie R(z) postupností definovaných lineárnymi homogén-
nymi rekurenciami s konštantnými koeficientmi sú teda vždy racionálne – čiže vyjadriteľné ako

R(z) =
P (z)

Q(z)
,

kde P (z), Q(z) ∈ C[z] sú polynómy také, že [z0]Q(z) 6= 0 (poprípade by stačilo predpokladať nerovnosť
codegP (z) ≥ codegQ(z)). Ukážeme teraz, že aj postupnosť koeficientov každého racionálneho formál-
neho mocninového radu musí vždy spĺňať nejakú lineárnu homogénnu rekurenciu s konštantnými ko-
eficientmi. Postupnosti definované lineárnymi homogénnymi rekurenciami s konštantnými koeficientmi
sú tak práve všetky postupnosti s racionálnymi obyčajnými vytvárajúcimi funkciami.

Uvažujme formálny mocninový rad

R(z) =
∞∑
n=0

anz
n

a polynómy P (z) = b0z
0 + . . .+ bsz

s a Q(z) = c0z
0 + . . .+ ctz

t, kde an ∈ C pre všetky n ∈ N, s, t ∈ N,
b0, . . . , bs, c0, . . . , ct ∈ C a c0 6= 0. Predpokladajme, že

R(z) =
P (z)

Q(z)
.

Potom Q(z)R(z) = P (z) – pre všetky n ∈ N spĺňajúce súčasne n ≥ s + 1 a n ≥ t tak z definície
Cauchyho súčinu dostávame

0 =

n∑
k=0

ckan−k =

t∑
k=0

ckan−k,

z čoho
an = −c1an−1 + . . .+ ctan−t

c0
.

Špeciálne dostávame túto rovnosť pre všetky prirodzené čísla n ≥ s+ t+ 1. Koeficienty an radu R(z)
tak pre všetky n ∈ N spĺňajú rekurenciu

an+s+t+1 +
c1

c0
· an+s+t + . . .+

ct
c0
· an+s+1 = 0.
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2.7 Lokálne konečné súčty a skladanie formálnych mocninových radov

Nutnosť zavedenia operácie zloženia, ktorá by na úrovni formálnych mocninových radov predstavovala
obdobu operácie zloženia dvoch analytických funkcií, si vyžaduje uvažovať niektoré nekonečné súčty
formálnych mocninových radov. Samozrejme nemôže byť definovaný ľubovoľný nekonečný súčet radov;
ak ale pre každé n ∈ N máme iba konečne veľa sčítancov s nenulovým koeficientom pri zn, môžeme
nekonečný súčet cez takýto systém radov vypočítať po zložkách. Systémy formálnych mocninových
radov s uvedenou vlastnosťou nazveme lokálne konečnými.

Definícia 2.7.1. Nech I je ľubovoľná množina. Systém (Rk(z) | k ∈ I) formálnych mocninových
radov Rk(z) ∈ CJzK pre k ∈ I je lokálne konečný, ak je pre všetky n ∈ N konečná množina indexov

I(n) = {k ∈ I | [zn]Rk(z) 6= 0}.

Definícia 2.7.2. Nech (Rk(z) | k ∈ I) je lokálne konečný systém formálnych mocninových radov
z CJzK. Súčtom systému (Rk(z) | k ∈ I) nazveme formálny mocninový rad(∑

k∈I
Rk

)
(z) =

∑
k∈I

Rk(z)

taký, že pre všetky n ∈ N je jeho koeficient pri zn daný konečným súčtom

[zn]

(∑
k∈I

Rk

)
(z) :=

∑
k∈I(n)

[zn]Rk(z).

Každý konečný systém radov je evidentne lokálne konečný; uvedená definícia súčtu je v takom
prípade konzistentná s bežne definovanými konečnými súčtami.

Nasledujúce tvrdenie je kľúčom k neskoršej definícii operácie zloženia dvoch formálnych mocnino-
vých radov.

Tvrdenie 2.7.3. Nech S(z) ∈ CJzK je formálny mocninový rad taký, že [z0]S(z) = 0 a (an)∞n=0 je
ľubovoľná postupnosť komplexných čísel. Potom je systém (amS(z)m | m ∈ N) lokálne konečný.

Dôkaz. Indukciou vzhľadom na m ∈ N dokážeme, že pre všetky a ∈ C a všetky prirodzené n < m je
[zn]aS(z)m = 0. To je triviálne pravda pre m = 0 a vďaka predpokladu [z0]S(z) = 0 aj pre m = 1.
Nech teraz pre nejaké s ∈ N, všetky a ∈ C a všetky prirodzené n < s je [zn]aS(z)s = 0. Pre každé
a ∈ C a n = 0, . . . , s potom

[zn]aS(z)s+1 = [zn] (aS(z)s)S(z) =
n∑
k=0

(
[zk]aS(z)s

)(
[zn−k]S(z)

)
= 0,

lebo pre k = 0, . . . , n− 1 je k < s a [zk]aS(z)s = 0, kým pre k = n je [zn−k]S(z) = [z0]S(z) = 0.
Pre všetky n ∈ N teda môže byť koeficient pri zn nenulový v nanajvýš konečne veľa radoch

a0S(z)0, . . . , anS(z)n uvažovaného systému.

Práve dokázané tvrdenie nám umožňuje definovať zloženie (R ◦S)(z) = R(S(z)) dvoch formálnych
mocninových radov R,S ∈ CJzK za predpokladu, že konštantný koeficient radu S(z) je nulový.

Definícia 2.7.4. Nech R(z), S(z) ∈ CJzK sú formálne mocninové rady také, že [z0]S(z) = 0; nech
R(z) =

∑∞
n=0 anz

n, kde pre všetky n ∈ N je an ∈ C. Zložením radov R(z) a S(z) nazveme formálny
mocninový rad

(R ◦ S)(z) = R(S(z)) :=
∞∑
n=0

anS(z)n.

Existujú aj iné prístupy k definícii zloženia formálnych mocninových radov, umožňujúce definovať
tento koncept aj za o niečo všeobecnejších okolností. Definícia predpokladajúca [z0]S(z) = 0 je ale
zďaleka najbežnejšia a pre naše účely postačujúca.
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Poznámka 2.7.5. Lokálne konečné súčty sú prvou z našich operácií na formálnych mocninových ra-
doch, ktorá sa rovnakým spôsobom nespráva aj na podokruhu analytických funkcií. Ľahko totiž vidieť,
že lokálne konečným súčtom cez spočítateľne veľa monómov anzn ∈ H0 pre n ∈ N a an ∈ C možno
získať aj formálny mocninový rad, ktorý nereprezentuje analytickú funkciu v bode 0 – podokruh H0

oboru integrity CJzK teda nie je uzavretý na lokálne konečné súčty.
Definícia zloženia formálnych mocninových radov ale napriek tomu s konceptom zloženia dvoch

analytických funkcií konzistentná je: ak sú totiž f, g funkcie analytické v bode 0 a g(0) = 0 – čo
zodpovedá nulovosti konštantného koeficientu Maclaurinovho radu funkcie g – musí byť v bode 0
analytická aj funkcia f ◦ g [12, veta 2.5.6]. Ak pritom na nejakom okolí D bodu 0 je

f(z) =
∞∑
n=0

anz
n,

musí aj pre všetky z ∈ C s g(z) ∈ D byť

f(g(z)) =
∞∑
n=0

ang(z)n; (2.9)

z analytickosti – a z nej vyplývajúcej spojitosti – funkcie g v bode 0 a predpokladu g(0) = 0 pritom
vyplýva, že pre nejaké okolie bodu 0 a všetky z z tohto okolia je g(z) ∈ D. Maclaurinov rad analytickej
funkcie f ◦ g tak musí byť daný ako v (2.9).

Samozrejme, zloženie f ◦ g dvoch funkcií f, g analytických v bode 0 môže byť analytickou funkciou
v bode 0 aj v prípade, že g(0) 6= 0; to súvisí s vyššie spomínanou skutočnosťou, že aj zloženie dvoch
formálnych mocninových radov možno definovať v o niečo všeobecnejšom kontexte.

Nasledujúce jednoduché tvrdenie ukazuje, že linearita formálnej derivácie sa prenáša aj na lokálne
konečné nekonečné súčty formálnych mocninových radov.

Tvrdenie 2.7.6. Nech (Rk(z) | k ∈ I) je lokálne konečný systém formálnych mocninových radov
z CJzK. Potom je lokálne konečný aj systém (R′k(z) | k ∈ I) a

d

dz

∑
k∈I

Rk(z) =
∑
k∈I

d

dz
Rk(z).

Dôkaz. Pre všetky k ∈ I a n ∈ N je [zn]R′k(z) = (n+ 1)[zn+1]Rk(z). Pre všetky n ∈ N preto

I ′(n) := {k ∈ I | [zn]R′k(z) 6= 0} = {k ∈ I | [zn+1]Rk(z) 6= 0} = I(n+ 1);

z lokálnej konečnosti systému (Rk(z) | k ∈ I) tak vyplýva aj lokálna konečnosť systému (R′k(z) | k ∈ I).
Pre všetky n ∈ N navyše

[zn]
d

dz

∑
k∈I

Rk(z) = (n+ 1)[zn+1]
∑
k∈I

Rk(z) = (n+ 1)
∑

k∈I(n+1)

[zn+1]Rk(z) =

=
∑

k∈I(n+1)

(n+ 1)[zn+1]Rk(z) =
∑

k∈I′(n)

[zn]
d

dz
Rk(z) = [zn]

∑
k∈I

d

dz
Rk(z),

z čoho vyplýva aj dokazovaná rovnosť

d

dz

∑
k∈I

Rk(z) =
∑
k∈I

d

dz
Rk(z).
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Spomedzi množstva ďalších užitočných vlastností lokálne konečných súčtov spomeňme ešte jednu,
ktorá hovorí o silnejšej verzii distributívnosti v okruhu CJzK.

Tvrdenie 2.7.7. Nech (Rk(z) | k ∈ I) je lokálne konečný systém formálnych mocninových radov
z CJzK a S(z) ∈ CJzK. Potom je aj systém (Rk(z)S(z) | k ∈ I) lokálne konečný a∑

k∈I
Rk(z)S(z) = S(z)

∑
k∈I

Rk(z).

Dôkaz. Nech n ∈ N. Vďaka lokálnej konečnosti systému (Rk(z) | k ∈ I) je potom množina

I(≤ n) := {k ∈ I | ∃` ∈ {0, . . . , n} : [z`]Rk(z) 6= 0}

konečná. Keďže pre všetky k ∈ I je

[zn]Rk(z)S(z) =
n∑
`=0

(
[z`]Rk(z)

)(
[zn−`]S(z)

)
,

musí pre všetky k 6∈ I(≤ n) byť [zn]Rk(z)S(z) = 0. To dokazuje lokálnu konečnosť systému

(Rk(z)S(z) | k ∈ I).

Z distributívnosti okruhu CJzK ďalej

[zn]
∑
k∈I

Rk(z)S(z) = [zn]
∑

k∈I(≤n)

Rk(z)S(z) = [zn]

S(z)
∑

k∈I(≤n)

Rk(z)

 = [zn]

(
S(z)

∑
k∈I

Rk(z)

)
.

Keďže je n ∈ N ľubovoľné, je týmto tvrdenie dokázané.

Vyslovme teraz relatívne dôležitú vetu o formálnej derivácii zloženia dvoch formálnych mocninových
radov – opäť pôjde o obdobu dobre známej vety o derivácii zloženej funkcie z matematickej analýzy.

Veta 2.7.8. Nech R(z), S(z) ∈ CJzK sú formálne mocninové rady také, že [z0]S(z) = 0. Potom

(R ◦ S)′(z) = R′(S(z))S′(z).

Dôkaz. Nech (an)∞n=0 je postupnosť komplexných čísel takých, že

R(z) =
∞∑
n=0

anz
n.

Z definície 2.7.4, tvrdenia 2.7.6, vety 2.4.5 a tvrdenia 2.7.7 potom dostávame

(R ◦ S)′(z) =
d

dz

∞∑
n=0

anS(z)n =
∞∑
n=0

d

dz
anS(z)n =

∞∑
n=0

an
d

dz
S(z)n =

=

∞∑
n=1

nanS(z)n−1S′(z) = S′(z)

∞∑
n=0

(n+ 1)an+1S(z)n = R′(S(z))S′(z),

pričom všetky uvažované nekonečné súčty sú lokálne konečné buď vďaka predpokladu [z0]S(z) = 0
a tvrdeniu 2.7.3, alebo vďaka tvrdeniu 2.7.6.
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2.8 Formálna exponenciálna funkcia

Formálny mocninový rad ez definujeme prirodzeným spôsobom na základe znalosti Maclaurinovho
radu exponenciálnej funkcie. Pri stotožnení okruhu H0 funkcií analytických v bode 0 s podokruhom
okruhu CJzK tak môžeme aj formálny mocninový rad ez stotožniť s analytickou funkciou ez.

Definícia 2.8.1. Rad ez = exp(z) ∈ CJzK definujeme ako

ez = exp(z) := 1 + z +
z2

2!
+
z3

3!
+ . . . =

∞∑
n=0

zn

n!
.

Pre ľubovoľný rad R(z) ∈ CJzK spĺňajúci [z0]R(z) = 0 teraz môžeme aplikovať definíciu zloženia
formálnych mocninových radov, čím dostávame rad

eR(z) = exp (R(z)) =
∞∑
n=0

R(z)n

n!
,

kde súčet je cez lokálne konečný systém radov. V skutočnosti ale môžeme formálnu exponenciálnu
funkciu definovať pre ľubovoľný argument R(z) ∈ CJzK – stačí využiť známu vlastnosť analytickej
exponenciálnej funkcie, ktorú by sme očakávali aj od formálnej exponenciálnej funkcie.

Definícia 2.8.2. Pre všetky R(z) ∈ CJzK kladieme

eR(z) = exp (R(z)) := e[z0]R(z)eR(z)−[z0]R(z) = e[z0]R(z)

( ∞∑
n=0

(
R(z)− [z0]R(z)

)n
n!

)
,

kde e[z0]R(z) označuje bežné umocňovanie čísla e na komplexný exponent.

Keďže ez ∈ H0 a formálna derivácia sa na H0 správa rovnako ako bežná derivácia, je nasledujúce
tvrdenie dôsledkom známeho tvrdenia z matematickej analýzy – napriek tomu však uvádzame aj jeho
dôkaz, ktorý matematickú analýzu nevyužíva.

Tvrdenie 2.8.3. Formálna derivácia formálneho mocninového radu ez spĺňa rovnosť

d

dz
ez = ez.

Dôkaz. Pre všetky n ∈ N je

[zn]
d

dz
ez = (n+ 1)[zn+1]ez =

n+ 1

(n+ 1)!
=

1

n!
= [zn]ez.

Nasledujúce tvrdenie hovorí o dvoch ďalších elementárnych vlastnostiach formálnej exponenciálnej
funkcie, ktoré sú obdobou vlastností exponenciálnej funkcie známych z matematickej analýzy.

Tvrdenie 2.8.4. Nech R(z), S(z) ∈ CJzK. Potom:

a) d
dz e

R(z) = R′(z)eR(z);

b) eR(z)+S(z) = eR(z)eS(z).

Dôkaz. Ak [z0]R(z) = 0, je tvrdenie a) bezprostredným dôsledkom vety 2.7.8 a tvrdenia 2.8.3; v prípade
[z0]R(z) 6= 0 je zas

d

dz
eR(z) =

d

dz
e[z0]R(z)eR(z)−[z0]R(z) = e[z0]R(z) d

dz
eR(z)−[z0]R(z) =

= e[z0]R(z)eR(z)−[z0]R(z) d

dz

(
R(z)− [z0]R(z)

)
= R′(z)eR(z).
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Dokážme tvrdenie b). Predpokladajme najprv, že [z0]R(z) = [z0]S(z) = 0; z binomickej vety –
ktorá evidentne platí v ľubovoľnom komutatívnom okruhu, a teda aj v CJzK – potom dostávame

eR(z)+S(z) =
∞∑
n=0

(R(z) + S(z))n

n!
=
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
R(z)kS(z)n−k =

∞∑
n=0

n∑
k=0

R(z)kS(z)n−k

k!(n− k)!
=

=
∞∑
s=0

∞∑
t=0

R(z)sS(z)t

s!t!
=
∞∑
s=0

R(z)s

s!

∞∑
t=0

S(z)t

t!
=

( ∞∑
s=0

R(z)s

s!

)( ∞∑
t=0

S(z)t

t!

)
= eR(z)eS(z).

Ak R(z) 6= 0 alebo S(z) 6= 0, je

eR(z)+S(z) = e[z0]R(z)+[z0]S(z)e(R(z)−[z0]R(z))+(S(z)−[z0]S(z)) = e[z0]R(z)eR(z)−[z0]R(z)e[z0]S(z)eS(z)−[z0]S(z) =

= eR(z)eS(z),

čím je dôkaz tvrdenia dokončený.

2.9 Formálny logaritmus

Maclaurinovým radom funkcie Ln(1 + z), kde Ln: C \ {0} → C označuje hlavnú vetvu prirodzeného
logaritmu analytickú na C \ (−∞, 0], je tzv. Mercatorov rad [12, cvičenie 7.8]

Ln(1 + z) = z − z2

2
+
z3

3
− z4

4
+ . . . =

∞∑
n=1

(−1)n−1

n
zn.

Podobne ako v prípade formálnej exponenciálnej funkcie tak môžeme prirodzeným spôsobom definovať
aj formálny mocninový rad Ln(1 + z) ∈ CJzK.

Definícia 2.9.1. Rad Ln(1 + z) ∈ CJzK definujeme ako

Ln(1 + z) := z − z2

2
+
z3

3
− z4

4
+ . . . =

∞∑
n=1

(−1)n−1

n
zn.

Uvedený rad definujeme ako obdobu Maclaurinovho radu pre hlavnú vetvu prirodzeného logaritmu;
to je dané predovšetkým skutočnosťou, že naším hlavným objektom skúmania budú vytvárajúce funkcie
kombinatorických tried, ktorých koeficientmi sú vždy prirodzené čísla.

Pre ľubovoľný formálny mocninový rad R(z) ∈ CJzK spĺňajúci [z0]R(z) = 0 môžeme opäť aplikovať
operáciu zloženia formálnych mocninových radov, čím prichádzame k radu

Ln (1 +R(z)) = R(z)− R(z)2

2
+
R(z)3

3
− R(z)4

4
+ . . . =

∞∑
n=1

(−1)n−1

n
R(z)n.

Máme tak definované aj rady Ln(R(z)) pre všetky R(z) ∈ CJzK také, že [z0]R(z) = 1 – je totiž
Ln(R(z)) = Ln(1 + (R(z)− 1)). Očakávanú vlastnosť logaritmov súčinu pritom môžeme využiť na to,
aby sme túto definíciu rozšírili aj na všetky rady R(z) také, že [z0]R(z) 6= 0.

Definícia 2.9.2. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) 6= 0. Potom kladieme

Ln (R(z)) := Ln
(
[z0]R(z)

)
+ Ln

(
R(z)

[z0]R(z)

)
.

Podobne ako v prípade formálnej exponenciálnej funkcie, môžeme aj formálny mocninový rad
Ln(1 + z) považovať za prvok okruhu H0 funkcií analytických v bode 0; nasledujúce tvrdenie potom
možno považovať za známe z matematickej analýzy. Napriek tomu ale opäť uvedieme aj dôkaz, ktorý
sa na matematickú analýzu neodvoláva.
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Tvrdenie 2.9.3. Formálna derivácia formálneho mocninového radu Ln(1 + z) spĺňa rovnosť

d

dz
Ln(1 + z) =

1

1 + z
.

Dôkaz. Pre všetky n ∈ N je

[zn]
d

dz
Ln(1 + z) = (n+ 1)[zn+1] Ln(1 + z) =

(−1)n(n+ 1)

n+ 1
= (−1)n = [zn]

1

1 + z
.

Môžeme teraz dokázať formálne obdoby viacerých vlastností logaritmickej funkcie známych z mate-
matickej analýzy. Nasledujúce tvrdenie pre jednoduchosť sformulujeme len pre rady s kladnými reálnymi
konštantnými koeficientmi; na dôkaz prvej a poslednej z uvedených štyroch vlastností ale v skutočnosti
stačí predpokladať iba nenulovosť týchto koeficientov.

Tvrdenie 2.9.4. Nech R(z), S(z) ∈ CJzK sú také, že [z0]R(z) > 0 a [z0]S(z) > 0. Potom:

a) d
dz Ln (R(z)) = R′(z)

R(z) ;

b) Ln (R(z)S(z)) = Ln (R(z)) + Ln (S(z));

c) Ln (1/R(z)) = −Ln (R(z));

d) ak Ln (R(z)) = Ln (S(z)), tak R(z) = S(z).

Dôkaz. Nech [z0]R(z) =: a0, [z0]S(z) =: b0, R(z)/a0 − 1 =: R̂(z) a S(z)/b0 − 1 =: Ŝ(z). Z definície
radu Ln (R(z)) a vety o derivácii zloženia radov potom

d

dz
Ln (R(z)) =

d

dz

(
Ln(a0) + Ln

(
1 + R̂(z)

))
=

d

dz
Ln
(

1 + R̂(z)
)

=
R̂′(z)

1 + R̂(z)
=

R′(z)

a0 + a0R̂(z)
=

=
R′(z)

R(z)
,

čím je dokázané tvrdenie a). Z dokázaného ďalej vyplýva

d

dz
Ln (R(z)S(z)) =

1

R(z)S(z)

(
d

dz
R(z)S(z)

)
=
R(z)S′(z) +R′(z)S(z)

R(z)S(z)
=
R′(z)

R(z)
+
S′(z)

S(z)
=

=
d

dz
Ln(R(z)) +

d

dz
Ln(S(z)).

Pre všetky n ∈ N tak

[zn+1] Ln (R(z)S(z)) =
1

n+ 1
[zn]

d

dz
Ln (R(z)S(z)) =

1

n+ 1
[zn]

(
d

dz
Ln(R(z)) +

d

dz
Ln(S(z))

)
=

=
1

n+ 1
[zn]

d

dz
Ln(R(z)) +

1

n+ 1
[zn]

d

dz
Ln(S(z)) =

= [zn+1] Ln(R(z)) + [zn+1] Ln(R(z)) = [zn+1] (Ln(R(z)) + Ln(S(z))) .

Keďže navyše aj

[z0] Ln (R(z)S(z)) = Ln
(
[z0]R(z)S(z)

)
= Ln(a0b0) = Ln(a0) + Ln(b0) =

= Ln
(
[z0]R(z)

)
+ Ln

(
[z0]S(z)

)
= [z0] Ln(R(z)) + [z0] Ln(S(z)) =

= [z0] (Ln(R(z)) + Ln(S(z))) ,

musí nutne byť
Ln (R(z)S(z)) = Ln (R(z)) + Ln (S(z))
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a dokázané je aj tvrdenie b). Pre rad R(z) vďaka tomu špeciálne dostávame

Ln (R(z)) + Ln

(
1

R(z)

)
= Ln

(
R(z) · 1

R(z)

)
= Ln(1) = 0;

preto

Ln

(
1

R(z)

)
= −Ln (R(z)) ,

čo dokazuje tvrdenie c). Z rovnosti Ln (R(z)) = Ln (S(z)) napokon dostávame

Ln (R(z))− Ln (S(z)) = Ln

(
R(z)

S(z)

)
= 0,

z čoho nutne vyplýva1 R(z)/S(z) = 1. Preto R(z) = S(z) a dokázané je aj tvrdenie d).

Vyjasnime si ešte vzťah formálnej exponenciálnej a logaritmickej funkcie, ktorý je aspoň v reálnom
prípade taký, aký by sme intuitívne očakávali.

Tvrdenie 2.9.5. Nech R(z), S(z) ∈ CJzK také, že [z0]R(z) ∈ R a [z0]S(z) > 0. Potom:

a) Ln
(
eR(z)

)
= R(z);

b) eLn(S(z)) = S(z).

Dôkaz. Na dôkaz tvrdenia a) uvažujme najprv prípad, keď [z0]R(z) = 0. Potom [z0]eR(z) = 1 a z vety
o derivácii zloženia formálnych mocninových radov dostávame

d

dz

(
Ln
(
eR(z)

))
=

1

eR(z)

(
d

dz

(
eR(z) − 1

))
=
eR(z)R′(z)

eR(z)
= R′(z).

To znamená, že pre všetky n ∈ N je

[zn+1] Ln
(
eR(z)

)
=

1

n+ 1
[zn]

d

dz

(
Ln
(
eR(z)

))
=

1

n+ 1
[zn]R′(z) = [zn+1]R(z);

keďže navyše [z0] Ln
(
eR(z)

)
= [z0]R(z) = 0, je nutne Ln

(
eR(z)

)
= R(z).

Pre všeobecné [z0]R(z) ∈ R ďalej

Ln
(
eR(z)

)
= Ln

(
e[z0]R(z)eR(z)−[z0]R(z)

)
= Ln

(
e[z0]R(z)

)
+ Ln

(
eR(z)−[z0]R(z)

)
=

= [z0]R(z) +
(
R(z)− [z0]R(z)

)
= R(z),

čím je tvrdenie a) dokázané.
Ak teraz S(z) ∈ CJzK a [z0]S(z) > 0, je [z0] LnS(z) = Ln[z0]S(z) ∈ R a z dokázaného vyplýva

Ln eLnS(z) = LnS(z).

Keďže teda [z0]S(z) > 0 a [z0]eLnS(z) = e[z0] LnS(z) > 0, z časti d) tvrdenia 2.9.4 dostávame

eLnS(z) = LnS(z),

čo dokazuje aj tvrdenie b).

1Ak totiž pre T (z) ∈ CJzK spĺňajúce [z0]T (z) 6= 0 platí Ln(T (z)) = 0, musí byť aj d
dz

Ln(T (z)) = T ′(z)/T (z) = 0,
z čoho T ′(z) = 0; preto [zn]T (z) = 0 pre všetky n ∈ N \ {0} a z rovnosti Ln(T (z)) = Ln([z0]T (z)) = 0 dostávame
T (z) = 1.
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2.10 Racionálne a komplexné mocniny

Preskúmame teraz umocňovanie formálnych mocninových radov na racionálny alebo prípadne aj kom-
plexný exponent.

Definovali sme už celočíselné mocniny formálnych mocninových radov – k racionálnym mocninám
nám už teda chýba iba jeden krok spočívajúci v zavedení k-tych odmocnín formálnych mocninových
radov pre k ∈ N \ {0}. Ihneď si môžeme všimnúť, že takéto odmocniny nemusia existovať pre všetky
formálne mocninové rady: ťažko by sme napríklad hľadali druhú odmocninu zo z. Hoci občas môže
„náhodou“ existovať aj k-ta odmocnina radu s nulovým konštantným koeficientom, typicky býva veľ-
kým obmedzením už iba skutočnosť, že kostupeň k-tej odmocniny takéhoto radu R(z) musí byť presne
(codegR(z))/k. Vo väčšine prípadov teda k-ta odmocnina radu s nulovým konštantným koeficien-
tom vôbec neexistuje. Obmedzíme sa preto na skúmanie odmocnín radov s nenulovým konštantným
koeficientom, kde sa situácia ukáže byť omnoho zaujímavejšou.

Začnime pomocným tvrdením o existencii k-tych odmocnín formálnych mocninových radov, ktorých
konštantný koeficient je rovný jednej.

Tvrdenie 2.10.1. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) = 1 a k ∈ N \ {0}.
Potom existuje práve jeden formálny mocninový rad S(z) ∈ CJzK taký, že [z0]S(z) = 1 a Sk(z) = R(z).

Dôkaz. Uvažujme ľubovoľný formálny mocninový rad A(z) =
∑∞

n=0 anz
n s a0 = 1 a predpokladajme,

že Ak(z) =
∑∞

n=0 bnz
n. Matematickou indukciou vzhľadom na k dokážeme, že b0 = 1, b1 = ka1

a pre všetky prirodzené čísla n ≥ 1 je

bn = kan + pn,k(a1, . . . , an−1),

kde pn,k : Cn−1 → C je vhodná polynomická funkcia o n− 1 premenných nezávislá od A(z).
Pre k = 1 je skutočne b0 = a0 = 1, b1 = a1 = ka1 a bn = an = kan + pn,k(a1, . . . , an−1) pre všetky

prirodzené n ≥ 1 a konštantne nulovú funkciu pn,k. Nech teda tvrdenie platí pre k = s a uvažujme
k = s+ 1. Z indukčného predpokladu potom

b0 = [z0] (As(z)A(z)) =
(
[z0]As(z)

) (
[z0]A(z)

)
= 1a0 = 1

a

b1 = [z1] (As(z)A(z)) =
1∑
`=0

(
[z`]As(z)

)(
[z1−`]A(z)

)
= 1a1 + sa1a0 = (s+ 1)a1;

pre všetky prirodzené čísla n ≥ 2 ďalej, takisto vďaka indukčnému predpokladu,

bn = [zn] (As(z)A(z)) =

n∑
`=0

(
[z`]As(z)

)(
[zn−`]A(z)

)
=

=
(
[z0]As(z)

)
([zn]A(z)) +

n−1∑
`=1

(
[z`]As(z)

)(
[zn−`]A(z)

)
+ ([zn]As(z))

(
[z0]A(z)

)
=

= an +

n−1∑
`=1

(sa` + p`,s(a1, . . . , a`−1)) an−` + (san + pn,s(a1, . . . , an−1)) a0 =

= (s+ 1)an +
n−1∑
`=1

sa`an−` +

n∑
`=1

p`,s(a1, . . . , a`−1)an−` = (s+ 1)an + pn,s+1(a1, . . . , an−1),

kde pn,s+1 : Cn−1 → C je polynomická funkcia daná pre všetky c1, . . . , cn−1 ∈ C ako

pn,s+1(c1, . . . , cn−1) :=
n−1∑
`=1

sc`cn−` +
n∑
`=1

p`,s(c1, . . . , c`−1)cn−`.

Tým je hotový dôkaz indukčného kroku.
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Z dokázaného vyplýva, že ak pre rad R(z) =
∑∞

n=0 bnz
n s b0 = 1 vezmeme a0 := 1 a pre všetky

prirodzené n ≥ 1 položíme

an :=
bn − pn,k(a1, . . . , an−1)

k
,

bude rad S(z) =
∑∞

n=0 anz
n spĺňať [z0]S(z) = 1 a Sk(z) = R(z). Navyše je takýto rad evidentne

daný jednoznačne, pretože existuje práve jedna postupnosť koeficientov (an)∞n=0 spĺňajúca uvedené
vzťahy.

Uvažujme teraz ľubovoľný formálny mocninový rad R(z) =
∑∞

n=0 anz
n taký, že a0 6= 0 a ľubovoľné

k ∈ N\{0}. Pre rad R̂(z) = 1
a0
R(z) potom [z0]R̂(z) = 1 – existuje teda práve jeden formálny mocninový

rad Ŝ(z) ∈ CJzK taký, že [z0]Ŝ(z) = 1 a Ŝk(z) = R̂(z). Pre ľubovoľné b0 ∈ Ja1/k
0 K potom formálny

mocninový rad S(z) = b0Ŝ(z) spĺňa

Sk(z) = bk0Ŝ
k(z) = a0R̂(z) = R(z).

Ak je navyše T (z) =
∑∞

n=0 cnz
n ľubovoľný formálny mocninový rad taký, že T k(z) = R(z), nutne

ck0 = a0 a rad T̂ (z) = 1
c0
T (z) spĺňa [z0]T̂ (z) = 1. Keďže T k(z) = a0T̂

k(z) = R(z), a0R̂(z) = R(z)
a a0 6= 0, zo zákona o krátení v obore integrity CJzK vyplýva T̂ k(z) = R̂(z) a z jednoznačnosti radu
Ŝ(z) dostávame T̂ (z) = Ŝ(z). Dokázali sme teda nasledujúce tvrdenie.

Tvrdenie 2.10.2. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) 6= 0 a k ∈ N \ {0}.
Potom existuje práve k radov S(z) ∈ CJzK takých, že Sk(z) = R(z). Tieto rady S(z) sú dané ako

α0Ŝ(z), . . . , αk−1Ŝ(z),

kde α0, . . . , αk−1 sú práve všetky k-te komplexné odmocniny čísla a0 a Ŝ(z) ∈ CJzK je jednoznačne daný
formálny mocninový rad taký, že [z0]Ŝ(z) = 1 a Ŝk(z) = 1

a0
R(z).

Dôkaz. Vyplýva z diskusie predchádzajúcej tomuto tvrdeniu.

Definícia 2.10.3. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) 6= 0 a k ∈ N \ {0}.
Ľubovoľný rad S(z) ∈ CJzK taký, že Sk(z) = R(z) potom nazveme k-tou odmocninou radu R(z).

Z tvrdenia 2.10.2 vyplýva, že každý formálny mocninový rad R(z) s nenulovým konštantným ko-
eficientom má pre každé k ∈ N \ {0} presne k rôznych k-tych odmocnín.

Definícia 2.10.4. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0 a k ∈ N \ {0}.
Kanonickou k-tou odmocninou radu R(z) potom nazveme rad S(z) ∈ CJzK taký, že Sk(z) = R(z)
a [z0]S(z) > 0. Píšeme pritom

S(z) =: k
√
R(z) = R1/k(z).

Keďže má ľubovoľné kladné reálne číslo pre všetky k ∈ N \ {0} práve jednu kladnú reálnu k-tu
odmocninu, je aj kanonická k-ta odmocnina radov s kladným reálnym konštantným koeficientom určená
jednoznačne. Pre k = 2 navyše píšeme aj√

R(z) := 2
√
R(z).

Pre každý formálny mocninový rad R(z) ∈ CJzK s kladným konštantným koeficientom, všetky p ∈ Z
a všetky q ∈ N \ {0} je ďalej

(Rp)1/q (z) =
(
R1/q

)p
(z);

umocnením radu na pravej strane na q-tu totiž dostávame((
R1/q

)p)q
(z) =

(
R1/q

)pq
(z) =

((
R1/q

)q)p
(z) = Rp(z).

Rad
(
R1/q

)p
(z) je teda kanonickou q-tou odmocninou radu Rp(z) a je tak rovný radu (Rp)1/q (z)

na ľavej strane dokazovanej rovnosti. Na základe tohto pozorovania teraz môžeme definovať kanonické
racionálne mocniny radov s kladnými reálnymi konštantnými koeficientmi.
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Definícia 2.10.5. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0, nech p ∈ Z
a q ∈ N \ {0}. Kanonickou p/q-tou mocninou radu R(z) potom nazveme rad

Rp/q(z) := (Rp)1/q (z) =
(
R1/q

)p
(z).

Tvrdenie 2.10.6. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0. Pre všetky
r ∈ Q potom

Ln (Rr(z)) = r Ln (R(z)) .

Dôkaz. Uvažujme najprv prípad, keď r ∈ N. Pre r = 0 potom Ln
(
R0(z)

)
= Ln(1) = 0 = 0 Ln (R(z));

ak ďalej predpokladáme platnosť tvrdenia pre r = s ∈ N, pre r = s+1 s použitím časti b) tvrdenia 2.9.4
dostávame

Ln
(
Rs+1(z)

)
= Ln (Rs(z)R(z)) = Ln (Rs(z))+Ln (R(z)) = sLn (R(z))+Ln (R(z)) = (s+1) Ln (R(z)) .

Ak ďalej r = p/q pre p ∈ N a q ∈ N \ {0}, vyplýva z dokázaného

pLn (R(z)) = Ln (Rp(z)) = Ln ((Rr)q (z)) = q Ln (Rr(z)) ,

z čoho

Ln (Rr(z)) =
p

q
Ln (R(z)) = r Ln (R(z)) .

Ak napokon r = −p/q pre p ∈ N a q ∈ N \ {0}, vďaka časti c) tvrdenia 2.9.4 a vyššie dokázanému je

Ln (Rr(z)) = Ln
(
R−p/q(z)

)
= Ln

((
Rp/q

)−1
(z)

)
= −Ln

(
Rp/q(z)

)
= −p

q
Ln (R(z)) = r Ln (R(z)) ,

čím je tvrdenie dokázané.

Dokážeme teraz formálnu obdobu Newtonovej zovšeobecnenej binomickej vety v prípade racionál-
neho exponentu; pripomeňme si pritom, že pre všetky α ∈ C a n ∈ N kladieme(

α

n

)
:=

αn

n!
.

Veta 2.10.7. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) = 0. Pre všetky r ∈ Q
potom

(1 +R(z))r =

∞∑
n=0

(
r

n

)
Rn(z).

Dôkaz. Označme

T (z) :=
∞∑
n=0

(
r

n

)
Rn(z).

Potom

T ′(z) =
d

dz

∞∑
n=0

(
r

n

)
Rn(z) =

∞∑
n=0

d

dz

(
r

n

)
Rn(z) = R′(z)

∞∑
n=1

n

(
r

n

)
Rn−1(z).
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To znamená, že

(1 +R(z))T ′(z) = R′(z)

∞∑
n=1

n

(
r

n

)
Rn−1(z) +R′(z)

∞∑
n=1

n

(
r

n

)
Rn(z) =

= R′(z)
∞∑
n=1

n

(
r

n

)
Rn−1(z) +R′(z)

∞∑
n=2

(n− 1)

(
r

n− 1

)
Rn−1(z) =

= rR′(z) +R′(z)
∞∑
n=2

(
n

(
r

n

)
+ (n− 1)

(
r

n− 1

))
Rn−1(z) =

= rR′(z) +R′(z)

∞∑
n=2

(
(r − n+ 1)

(
r

n− 1

)
+ (n− 1)

(
r

n− 1

))
Rn−1(z) =

= rR′(z) +R′(z)
∞∑
n=2

r

(
r

n− 1

)
Rn−1(z) = rR′(z)

(
1 +

∞∑
n=1

(
r

n

)
Rn(z)

)
=

= rR′(z)T (z).

Preto
T ′(z)

T (z)
=

rR′(z)

1 +R(z)
,

a teda aj
d

dz
Ln (T (z)) =

T ′(z)

T (z)
=

rR′(z)

1 +R(z)
=

d

dz
Ln (1 +R(z))r .

Z toho vyplýva, že pre všetky n ∈ N je

[zn+1] Ln (T (z)) =
1

n+ 1
[zn]

d

dz
Ln (T (z)) =

1

n+ 1
[zn]

d

dz
Ln (1 +R(z))r = [zn+1] Ln (1 +R(z))r .

Keďže je navyše [z0] Ln (T (z)) = [z0] Ln (1 +R(z))r = 0, je

Ln (T (z)) = Ln (1 +R(z))r ,

z čoho podľa časti d) tvrdenia 2.9.4 vyplýva dokazovaná rovnosť

(1 +R(z))r = T (z) =
∞∑
n=0

(
r

n

)
Rn(z).

Hoci sú racionálne mocniny formálnych mocninových radov z hľadiska kombinatorických aplikácií
zvyčajne postačujúce, môžeme vetu o binomickom rozvoji hlavných vetiev mocninových funkcií, známu
z matematickej analýzy [12, cvičenie 7.9], využiť aj ako inšpiráciu pre definíciu komplexných mocnín
formálnych mocninových radov.

Definícia 2.10.8. Nech α ∈ C. Rad (1 + z)α ∈ CJzK potom definujeme ako

(1 + z)α :=

∞∑
n=0

(
α

n

)
zn.

Pre ľubovoľný formálny mocninový rad spĺňajúci [z0]R(z) = 0 môžeme aplikovať operáciu zloženia
formálnych mocninových radov, čím dostaneme nasledujúce vyjadrenie mocnín formálnych mocnino-
vých radov s konštantným koeficientom rovným jednej:

(1 +R(z))α =

∞∑
n=0

(
α

n

)
Rn(z).

Veta 2.10.7 pritom zaručuje konzistenciu definícií mocnín takýchto formálnych mocninových radov
s komplexným a racionálnym exponentom. Umocňovanie na komplexný exponent teraz môžeme defi-
novať aj pre všetky rady s kladným konštantným koeficientom.



Predbežná verzia

Formálne mocninové rady 35

Definícia 2.10.9. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0 a α ∈ C. Potom
kladieme

Rα(z) := eαLn[z0]R(z)

(
1

[z0]R(z)
R

)α
(z).

Pri skúmaní vlastností takto definovaných mocnín formálnych mocninových radov sa nám zíde
nasledujúce tvrdenie, ktoré je zovšeobecnením dobre známej kombinatorickej identity.

Lema 2.10.10 (Vandermondova konvolúcia). Nech α, β ∈ C a n ∈ N. Potom

n∑
k=0

(
α

k

)(
β

n− k

)
=

(
α+ β

n

)
.

Dôkaz. Po rozpísaní definície zovšeobecnených binomických koeficientov dostávame

n∑
k=0

(
α

k

)(
β

n− k

)
=

n∑
k=0

αkβn−k

k!(n− k)!
=

1

n!

n∑
k=0

(
n

k

)
αkβn−k. (2.10)

Indukciou na n ∈ N teraz dokážeme, že

n∑
k=0

(
n

k

)
αkβn−k = (α+ β)n . (2.11)

Pre n = 0 je
0∑

k=0

(
0

k

)
αkβ0−k = 1 = (α+ β)0 .

Ak ďalej tvrdenie platí pre n = s, pre n = s+ 1 je

s+1∑
k=0

(
s+ 1

k

)
αkβs+1−k = αs+1 + βs+1 +

s∑
k=1

(
s+ 1

k

)
αkβs+1−k =

= αs+1 + βs+1 +
s∑

k=1

((
s

k − 1

)
+

(
s

k

))
αkβs+1−k =

=
s+1∑
k=1

(
s

k − 1

)
αkβs−k+1 +

s∑
k=0

(
s

k

)
αkβs−k+1 =

=

s∑
k=0

(
s

k

)
αk+1βs−k +

s∑
k=0

(
s

k

)
αkβs−k+1 =

=

s∑
k=0

(
s

k

)
(α− k)αkβs−k +

s∑
k=0

(
s

k

)
(β − s+ k)αkβs−k =

=

s∑
k=0

(α+ β − s)
(
s

k

)
αkβs−k = (α+ β − s)

s∑
k=0

(
s

k

)
αkβs−k =

= (α+ β − s) (α+ β)s = (α+ β)s+1 .

Z (2.10) a práve dokázaného vzťahu (2.11) tak dostávame

n∑
k=0

(
α

k

)(
β

n− k

)
=

1

n!

n∑
k=0

(
n

k

)
αkβn−k =

1

n!
(α+ β)n =

(
α+ β

n

)
,

čo bolo treba dokázať.
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Tvrdenie 2.10.11. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0 a α, β ∈ C.
Potom

a) Rα(z)Rβ(z) = Rα+β(z);

b) 1/Rα(z) = R−α(z).

Dôkaz. Uvažujme najprv prípad, keď [z0]R(z) = 1 a označme R̂(z) := R(z)− 1. Potom

Rα(z)Rβ(z) =
(

1 + R̂(z)
)α (

1 + R̂(z)
)β

=

( ∞∑
s=0

(
α

s

)
R̂s(z)

)( ∞∑
t=0

(
β

t

)
R̂t(z)

)
=

=
∞∑
s=0

∞∑
t=0

(
α

s

)(
β

t

)
R̂s(z)R̂t(z) =

∞∑
n=0

n∑
k=0

(
α

k

)(
β

n− k

)
R̂k(z)R̂n−k(z) =

=
∞∑
n=0

R̂n(z)
n∑
k=0

(
α

k

)(
β

n− k

)
=
∞∑
n=0

(
α+ β

n

)
R̂n(z) =

(
1 + R̂(z)

)α+β
= Rα+β(z).

Pre všeobecné [z0]R(z) > 0 ďalej z dokázaného

Rα(z)Rβ(z) = eαLn[z0]R(z)

(
1

[z0]R(z)
R

)α
(z) eβ Ln[z0]R(z)

(
1

[z0]R(z)
R

)β
(z) =

= e(α+β) Ln[z0]R(z)

(
1

[z0]R(z)
R

)α+β

(z) = Rα+β(z).

Tým je dokázané tvrdenie a), z ktorého tiež vyplýva

Rα(z)R−α(z) = Rα−α(z) = R0(z) = 1.

Nutne teda
1

Rα(z)
= R−α(z)

a dokázané je aj tvrdenie b).

Tvrdenie 2.10.12. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) = 1 a α ∈ C.
Potom

Ln (Rα(z)) = αLnR(z).

Dôkaz. Označme R̂(z) := R(z)− 1. Potom

[z0] Ln (Rα(z)) = [z0] Ln
(

1 + R̂(z)
)α

= 0

a
[z0]αLnR(z) = [z0]αLn

(
1 + R̂(z)

)
= 0.

Stačí teda dokázať
d

dz
Ln
(

1 + R̂(z)
)α

=
d

dz
αLn

(
1 + R̂(z)

)
, (2.12)

lebo v takom prípade pre všetky n ∈ N bude

[zn+1] Ln (Rα(z)) =
1

n+ 1
[zn]

d

dz
Ln
(

1 + R̂(z)
)α

=
1

n+ 1
[zn]

d

dz
αLn

(
1 + R̂(z)

)
= [zn+1]αLnR(z),
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z čoho vyplynie dokazovaná rovnosť Ln (Rα(z)) = αLnR(z). Dokážme teda rovnosť (2.12):

d

dz
Ln
(

1 + R̂(z)
)α

=

(
d

dz

(
1 + R̂(z)

)α) 1(
1 + R̂(z)

)α =

=

(
d

dz

∞∑
n=0

(
α

n

)
R̂n(z)

)
1(

1 + R̂(z)
)α =

=

( ∞∑
n=1

n

(
α

n

)
R̂n−1(z)R̂′(z)

)
1(

1 + R̂(z)
)α =

=

( ∞∑
n=1

αn

(n− 1)!
R̂n−1(z)R̂′(z)

)
1(

1 + R̂(z)
)α =

= αR̂′(z)
∞∑
n=1

(
(α− 1)n−1

(n− 1)!
R̂n−1(z)

)
1(

1 + R̂(z)
)α =

= αR̂′(z)
∞∑
n=0

(
(α− 1)n

n!
R̂n(z)

)
1(

1 + R̂(z)
)α =

= αR̂′(z)

(
1 + R̂(z)

)α−1(
1 + R̂(z)

)α = αR̂′(z)
1

1 + R̂(z)
=

d

dz
αLn

(
1 + R̂(z)

)
.

Tvrdenie 2.10.13. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0 a α ∈ R.
Potom

Ln (Rα(z)) = αLnR(z).

Dôkaz. Z tvrdenia 2.10.12 vyplýva

Ln (Rα(z)) = Ln

(
eαLn[z0]R(z)

(
1

[z0]R(z)
R

)α
(z)

)
= Ln

(
eαLn[z0]R(z)

)
+ Ln

(
1

[z0]R(z)
R

)α
(z) =

= αLn
(
[z0]R(z)

)
+ αLn

(
R(z)

[z0]R(z)

)
= αLn (R(z)) .

Tvrdenie 2.10.14. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) > 0 a α ∈ R.
Potom

Rα(z) = eαLn(R(z)).

Dôkaz. Vďaka tvrdeniam 2.10.13 a 2.9.5 je

Ln (Rα(z)) = αLn (R(z)) = Ln
(
eαLn(R(z))

)
.

Dokazovaná rovnosť potom vyplýva z časti d) tvrdenia 2.9.4.

2.11 Nekonečné súčiny

Na záver nášho skúmania operácií na obore integrity formálnych mocninových radov CJzK sa ešte
v krátkosti pristavme pri nekonečných súčinoch. Podobne ako v prípade nekonečných súčtov nebudú
definované všetky nekonečné súčiny, ale budeme musieť klásť vhodné obmedzujúce podmienky na prí-
slušný systém formálnych mocninových radov.
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Definícia 2.11.1. Nech (Rk(z) | k ∈ I) je systém formálnych mocninových radov taký, že

(i) pre všetky k ∈ I je [z0]Rk(z) = 1 a

(ii) pre všetky n ∈ N \ {0} je množina I(n) = {k ∈ I | [zn]Rk(z) 6= 0} konečná.

Súčinom systému (Rk(z) | k ∈ I) potom nazveme formálny mocninový rad(∏
k∈I

Rk

)
(z) =

∏
k∈I

Rk(z)

taký, že

[z0]

(∏
k∈I

Rk

)
(z) = 1

a pre všetky n ∈ N \ {0} je

[zn]

(∏
k∈I

Rk

)
(z) =

∑
m∈N

j1,...,jm∈N\{0}
j1+...+jm=n

∑
k1∈I(j1)

...
km∈I(jm)

m∏
t=1

[zjt ]Rkt(z).

Všetky súčty a súčiny vystupujúce v definícii koeficientov radu
∏
k∈I Rk(z) sú pritom evidentne

konečné.
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Kapitola 3

Kombinatorické triedy a symbolická
metóda

Ako hlavný objekt skúmania enumeratívnej kombinatoriky sme v predchádzajúcej kapitole identifiko-
vali kombinatorické triedy a ich vytvárajúce funkcie – formálne mocninové rady, ktorých koeficienty
tvoria enumeračnú postupnosť príslušnej kombinatorickej triedy. Teraz sa ku kombinatorickým trie-
dam vrátime a opíšeme techniky umožňujúce prejsť od špecifikácie kombinatorickej triedy – čiže jej
vyjadrenia pomocou určitých elementárnych kombinatorických tried a štandardných operácií na nich
– k vytvárajúcej funkcii tejto kombinatorickej triedy.

Teória, ktorej základy v tejto kapitole preskúmame, má množstvo rozmanitých historických výcho-
dísk. V ucelenej podobe ju po prvý raz opísali P. Flajolet a R. Sedgewick v prvej časti ich knihy [9].
Z knihy [9] vychádza aj väčšia časť tejto kapitoly.

3.1 Označené a neoznačené objekty

V enumeratívnej kombinatorike často rozlišujeme medzi enumeráciou neoznačených a označených ob-
jektov. Tento rozdiel možno asi najlepšie ilustrovať na úlohách o enumerácii grafov: v neoznačenom
grafe sa každé dva vrcholy a priori chápu ako identické, v označenom grafe má naopak každý vrchol svoj
jednoznačný identifikátor (číslo resp. názov), ktorý ho odlišuje od ostatných. Existuje tak napríklad
jediný strom o troch neoznačených vrcholoch, ktorý je znázornený na obrázku 3.1. Na obrázku 3.2 sú
naopak znázornené všetky tri stromy o troch označených vrcholoch, kde množina vrcholov je {1, 2, 3}.

Obr. 3.1: Jediný strom o troch neoznačených vrcholoch.

1 2 3 1 3 2 2 1 3

Obr. 3.2: Všetky tri stromy o troch označených vrcholoch 1, 2, 3.

Vo všeobecnosti možno povedať, že neoznačené kombinatorické objekty sú vybudované z atomic-
kých objektov niekoľkých druhov, pričom atomické objekty jedného druhu sú samé o sebe vzájomne
nerozlíšiteľné – napríklad neoznačený graf je vybudovaný z niekoľkých vzájomne a priori nerozlíši-
teľných vrcholov. Naopak označené kombinatorické objekty sú vybudované z atomických objektov,
ktorým sú navyše „zvonku“ priradené ich identifikátory z nejakej pevne danej množiny.
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Rozdiel medzi neoznačeným a označeným kombinatorickým objektom je často viac metodický, než
vecný – uvidíme napríklad, že slová nad danou abecedou možno rovnako dobre chápať ako neoznačené
aj ako označené objekty. Napriek tomu sa ale ukazuje, že k enumerácii neoznačených a označených
objektov je žiadúce pristupovať podstatne odlišným spôsobom – v čom presne tento rozdiel spočíva,
uvidíme v nasledujúcich niekoľkých oddieloch.

3.2 Kombinatorické triedy neoznačených objektov

Kombinatorické triedy a elementárne operácie na nich v podobe, v akej sme ich definovali v oddiele 2.1,
budeme obyčajne používať pri enumerácii neoznačených objektov – v tejto súvislosti preto tiež hovoríme
o kombinatorických triedach neoznačených objektov. Pripomeňme si definíciu kombinatorickej triedy
a jej obyčajnej vytvárajúcej funkcie.

Definícia 3.2.1. Kombinatorická trieda je dvojica C = (C, |·|), kde C je množina a |·| : C → N je
zobrazenie také, že pre všetky n ∈ N je množina Cn := {x ∈ C | |x| = n} konečná.
Definícia 3.2.2. Enumeračnou postupnosťou kombinatorickej triedy (C, |·|) nazývame nekonečnú po-
stupnosť prirodzených čísel (c0, c1, c2, . . .), kde pre všetky n ∈ N je cn = |Cn|.
Definícia 3.2.3. Obyčajnou vytvárajúcou funkciou kombinatorickej triedy (C, |·|) s enumeračnou po-
stupnosťou (cn)∞n=0 nazývame formálny mocninový rad

C(z) =

∞∑
n=0

cnz
n ∈ NJzK ⊆ CJzK.

Obyčajná vytvárajúca funkcia kombinatorickej triedy (C, |·|) je teda aj obyčajnou vytvárajúcou fun-
kciou jej enumeračnej postupnosti. Pripomeňme si tiež, že v princípe neexistuje žiaden rozdiel medzi
enumeračnou postupnosťou a obyčajnou vytvárajúcou funkciou kombinatorickej triedy – dôvod pre po-
užitie odlišnej terminológie spočíva v odlišnej algebre uvažovanej na vytvárajúcich funkciách, ktorá
lepšie korešponduje s najdôležitejšími operáciami na kombinatorických triedach samotných.

Kombinatorické triedy budeme štandardne označovať veľkými kaligrafickými písmenami, naprí-
kladA,B, C, . . . Príslušné obyčajné vytvárajúce funkcie potom typicky označujeme A(z), B(z), C(z), . . .
a ich postupnosti koeficientov – čiže enumeračné postupnosti uvažovaných tried – zvyčajne označujeme
(an)∞n=0, (bn)∞n=0, (cn)∞n=0, . . .

Nasledujúce jednoduché tvrdenie hovorí o alternatívnom vyjadrení obyčajnej vytvárajúcej funkcie
kombinatorickej triedy – niekedy sa hovorí o takzvanom jej kombinatorickom tvare.

Tvrdenie 3.2.4. Nech C = (C, |·|) je kombinatorická trieda a C(z) je jej obyčajná vytvárajúca funkcia.
Potom

C(z) =
∑
x∈C

z|x|,

kde súčet je cez lokálne konečný systém radov.

Dôkaz. Pre všetky n ∈ N a x ∈ C je [zn]z|x| 6= 0 práve vtedy, keď x ∈ Cn. Keďže je množina Cn konečná
pre všetky n ∈ N, je uvažovaný systém radov lokálne konečný. Pre všetky n ∈ N navyše

[zn]
∑
x∈C

z|x| =
∑
x∈Cn

[zn]z|x| =
∑
x∈Cn

[zn]zn =
∑
x∈Cn

1 = |Cn| = [zn]C(z);

keďže môže byť n ∈ N ľubovoľné, je rovnosť radov dokázaná.

Definícia 3.2.5. Kombinatorické triedy A,B sú izomorfné, ak pre všetky n ∈ N je |An| = |Bn|.
V takom prípade píšeme A ∼= B a izomorfizmom kombinatorických tried A,B nazývame bijektívne
zobrazenie ϕ : A → B také, že pre všetky n ∈ N je ϕ(An) = Bn.

Kombinatorické triedy A,B sú teda izomorfné práve vtedy, keď sa rovnajú ich obyčajné vytvárajúce
funkcie. Izomorfné triedy často stotožňujeme a namiesto A ∼= B píšeme A = B.
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3.3 Symbolická metóda pre neoznačené objekty

Položíme teraz základy takzvanej symbolickej metódy pre neoznačené objekty – pôjde o systematický
prístup k špecifikácii kombinatorických tried pomocou jednoduchých základných tried a štandardných
operácií na kombinatorických triedach, ktorý je v mnohom podobný opisu formálnych jazykov po-
mocou gramatík. Významnou črtou tohto špecifikačného mechanizmu bude možnosť „mechanického
prekladu“ špecifikácie kombinatorickej triedy na jej obyčajnú vytvárajúcu funkciu. Aby bol tento cieľ
splniteľný, uvažované operácie na kombinatorických triedach nemôžu byť úplne ľubovoľné, ale musí
byť možné definovať k nim prislúchajúce operácie na vytvárajúcich funkciách – môžu teda závisieť
iba od enumeračných postupností kombinatorických tried, ktoré sú jej argumentmi. Takéto operácie
nazývame prípustnými konštrukciami.

Definícia 3.3.1. Nech m ∈ N a Φ je čiastočné m-árne zobrazenie, ktoré m-ticiam kombinatorických
tried B(1), . . . ,B(m) priraďuje kombinatorické triedy

A = Φ
(
B(1), . . . ,B(m)

)
.

Hovoríme, že Φ je prípustná konštrukcia, ak pre kombinatorické triedy B(1), . . . ,B(m), C(1), . . . , C(m)

spĺňajúce B(k) ∼= C(k) pre k = 1, . . . ,m je Φ
(
B(1), . . . ,B(m)

)
definované práve vtedy, keď je definované

Φ
(
C(1), . . . , C(m)

)
, pričom v takom prípade je

Φ
(
B(1), . . . ,B(m)

)
∼= Φ

(
C(1), . . . , C(m)

)
.

Ku každej prípustnej konštrukcii tak prislúcha čiastočné zobrazenie φ : NJzKm → NJzK také, že
pre ľubovoľné kombinatorické triedy B(1), . . . ,B(m) s definovaným výstupom čiastočného zobrazenia Φ
a s obyčajnými vytvárajúcimi funkciami B1(z), . . . , Bm(z) je

A(z) = φ(B1(z), . . . , Bm(z))

obyčajnou vytvárajúcou funkciou kombinatorickej triedy A = Φ
(
B(1), . . . ,B(m)

)
. V nasledujúcich par-

tiách tohto oddielu budeme budovať „slovník“ medzi štandardnými prípustnými konštrukciami Φ
na kombinatorických triedach a príslušnými operáciami φ na ich obyčajných vytvárajúcich funkciách.

Neutrálne a atomické triedy. Základnými stavebnými kameňmi konštrukcií kombinatorických
tried pomocou symbolickej metódy sú špeciálne jednoprvkové kombinatorické triedy – v prípade, že
je jediný prvok takejto kombinatorickej triedy veľkosti 0, hovoríme o neutrálnej triede; triedu s jediným
prvkom veľkosti 1 naopak nazývame atomickou.

Neutrálnou triedou teda rozumieme kombinatorickú triedu E = (E , |·|) takú, že E = {1E} a |1E | = 0.
Neutrálne triedy typicky označujeme E s prípadným indexom určujúcim ich jediný prvok 1E – píšeme
teda napríklad Eε = {ε}, E� = {�} a podobne.

Atomickou triedou nazývame kombinatorickú triedu Z = (Z, |·|) takú, že Z = {zZ} a |zZ | = 1.
Atomické triedy obyčajne označujeme Z, často s indexom určujúcim ich jediný prvok zZ – napríklad
Za = {a}, Z• = {•}, Z◦ = {◦}, atď.

Obyčajnou vytvárajúcou funkciou každej neutrálnej triedy je evidentne 1 a obyčajnou vytvárajúcou
funkciou každej atomickej triedy je z.

Disjunktné zjednotenie. Operáciu disjunktného zjednotenia alebo kombinatorického súčtu dvoch
kombinatorických tried sme už zaviedli v definícii 2.1.3 – disjunktným zjednotením kombinatorických
tried C = (C, |·|C) a D = (D, |·|D) nazývame kombinatorickú triedu C + D = (C + D, |·|) takú, že
pre všetky x ∈ C je |(x, 1)| = |x|C a pre všetky y ∈ D je |(y, 2)| = |y|D.
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Videli sme tiež, že obyčajnou vytvárajúcou funkciou disjunktného zjednotenia dvoch kombinato-
rických tried je súčet obyčajných vytvárajúcich funkcií týchto tried – toto pozorovanie teraz vyslovíme
v podobe vety, ktorú možno považovať za prvý záznam v „slovníku“ prípustných konštrukcií na kom-
binatorických triedach a k nim prislúchajúcich operácií na obyčajných vytvárajúcich funkciách.

Veta 3.3.2. Disjunktné zjednotenie je prípustnou konštrukciou na kombinatorických triedach. Ak sú
navyše C,D kombinatorické triedy s obyčajnými vytvárajúcimi funkciami C(z) resp. D(z), je obyčajnou
vytvárajúcou funkciou kombinatorickej triedy C +D formálny mocninový rad

C(z) +D(z).

Dôkaz. Vyplýva bezprostredne z vety 2.1.7.

Karteziánsky súčin. Ďalšou nám už dobre známou operáciou na kombinatorických triedach je ich
karteziánsky súčin, ktorý sme zaviedli v definícii 2.1.5 – bola to práve táto operácia, ktorá nás doviedla
k potrebe zavedenia pojmu obyčajnej vytvárajúcej funkcie. Karteziánskym súčinom kombinatorických
tried C = (C, |·|C) a D = (D, |·|D) nazývame kombinatorickú triedu C × D = (C × D, |·|) takú, že
pre všetky x ∈ C a y ∈ D je |(x, y)| = |x|C + |y|D.

Nasledujúca veta je opäť iba pripomenutím dôležitého pozorovania učineného už v predchádzajúcej
kapitole.

Veta 3.3.3. Karteziánsky súčin je prípustnou konštrukciou na kombinatorických triedach. Ak sú na-
vyše C,D kombinatorické triedy s obyčajnými vytvárajúcimi funkciami C(z) resp. D(z), je obyčajnou
vytvárajúcou funkciou kombinatorickej triedy C × D formálny mocninový rad

C(z) ·D(z).

Dôkaz. Vyplýva bezprostredne z vety 2.1.7.

Operácie + a × na kombinatorických triedach chápeme ako asociatívne, čo je nie je prekvapivé
v kontexte stotožňovania izomorfných kombinatorických tried: keďže pre ľubovoľné kombinatorické
triedy A,B, C je zrejme

(A+ B) + C ∼= A+ (B + C)

a
(A× B)× C ∼= A× (B × C),

píšeme obvykle
(A+ B) + C = A+ (B + C) =: A+ B + C

a
(A× B)× C = A× (B × C) =: A× B × C.

Je ďalej zrejmé, že neutrálne triedy – resp. po stotožnení izomorfných kombinatorických tried mô-
žeme hovoriť o jedinej neutrálnej triede – zohrávajú úlohu neutrálneho prvku vzhľadom na operáciu
karteziánskeho súčinu: pre ľubovoľnú kombinatorickú triedu C a neutrálnu triedu E je

C × E ∼= E × C ∼= C,

pričom často píšeme aj
C × E = E × C = C.
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Mocniny. Keďže karteziánsky súčin kombinatorických tried bežne chápeme ako asociatívnu operá-
ciu, môžeme pre všetky k ∈ N definovať k-tu mocninu kombinatorickej triedy C bežným induktívnym
spôsobom: C0 definujeme ako neutrálnu triedu E a pre všetky k ∈ N kladieme Ck+1 = Ck × C.

Kombinatorická trieda Ck pozostáva zo všetkých postupností dĺžky k tvorených prvkami kombi-
natorickej triedy C, pričom pod veľkosťou postupnosti rozumieme súčet veľkostí všetkých jej členov.
Pre k ∈ N a kombinatorickú triedu C preto píšeme aj

Seqk(C) := Ck.

Veta 3.3.4. Pre všetky k ∈ N je k-ta mocnina prípustnou konštrukciou na kombinatorických triedach.
Ak je navyše C kombinatorická trieda s obyčajnou vytvárajúcou funkciou C(z), je obyčajnou vytvárajú-
cou funkciou kombinatorickej triedy Ck = Seqk(C) formálny mocninový rad

Ck(z).

Dôkaz. Indukciou vzhľadom na k. Pre k = 0 je C0 = E , pričom obyčajnou vytvárajúcou funkciou
triedy E je 1 = C0(z). Ak tvrdenie platí pre k = s, pre k = s + 1 je Cs+1 = Cs × C; obyčajnou
vytvárajúcou funkciou triedy C je pritom C(z) a z indukčného predpokladu vyplýva, že obyčajnou
vytvárajúcou funkciou triedy Cs je Cs(z). Vďaka vete 3.3.3 je teda obyčajná vytvárajúca funkcia
triedy Cs+1 = Cs × C daná ako Cs(z)C(z) = Cs+1(z).

Trieda konečných postupností. Nech C je kombinatorická trieda taká, že C0 = ∅. Triedu konečných
postupností objektov triedy C potom definujeme ako

Seq(C) := E + C + (C × C) + (C × C × C) + . . . =

∞∑
k=0

Ck,

kde E je neutrálna trieda. Táto kombinatorická trieda (Seq(C), |·|Seq(C)) teda pozostáva zo všetkých
postupností (x1, . . . , xk), kde k ∈ N a x1, . . . , xk ∈ C, pričom veľkosť každej postupnosti je daná súčtom
veľkostí jej členov. Keďže je C0 = ∅, môže pre n ∈ N byť

|(x1, . . . , xk)|Seq(C) = n

iba ak k ≤ n a pre j = 1, . . . , k je xj prvkom konečnej množiny C1∪ . . .∪Cn. Trieda Seq(C) tak naozaj
obsahuje pre všetky n ∈ N iba konečne veľa objektov veľkosti n – je teda dobre definovaná.

Veta 3.3.5. Prechod k triede konečných postupností je prípustnou konštrukciou na kombinatorických
triedach. Ak je navyše C kombinatorická trieda s C0 = ∅ a s obyčajnou vytvárajúcou funkciou C(z),
je obyčajnou vytvárajúcou funkciou kombinatorickej triedy Seq(C) formálny mocninový rad

1

1− C(z)
.

Dôkaz. Keďže C0 = ∅, je [z0]C(z) = 0 a rad 1/(1 − C(z)) je dobre definovaný. Pre všetky n ∈ N je
teraz

|(Seq(C))n| =
∞∑
k=0

∣∣∣(Ck)
n

∣∣∣ =

∞∑
k=0

[zn]Ck(z),

kde obidva súčty sú v skutočnosti konečné. Vďaka tvrdeniu 2.7.3 je systém radov (Ck(z) | k ∈ N)
lokálne konečný, takže

|(Seq(C))n| =
∞∑
k=0

[zn]Ck(z) = [zn]
∞∑
k=0

Ck(z) = [zn]
1

1− C(z)
.

Číslo n ∈ N je ľubovoľné – rad 1/(1 − C(z)) teda musí byť obyčajnou vytvárajúcou funkciou kombi-
natorickej triedy Seq(C).
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Pre všetky k ∈ N a ľubovoľnú kombinatorickú triedu C spĺňajúcu C0 = ∅ ďalej kladieme

Seq≥k(C) := Ck × Seq(C);

ide teda o triedu všetkých postupností dĺžky aspoň k pozostávajúcich z objektov triedy C, pričom
veľkosť postupnosti je daná súčtom veľkostí jej členov. Z dokázaného vyplýva, že pre kombinatorickú
triedu C s C0 = ∅ a s obyčajnou vytvárajúcou funkciou C(z) je obyčajná vytvárajúca funkcia kombi-
natorickej triedy Seq≥k daná ako Ck(z)/(1− C(z)).

Trieda konečných podmnožín. Nech C = (C, |·|) je kombinatorická trieda. Triedou konečných
podmnožín kombinatorickej triedy C nazveme kombinatorickú triedu PSet(C) = (PSet(C), |·|PSet(C)),
kde

PSet(C) :=

(
C
0

)
∪
(
C
1

)
∪
(
C
2

)
∪ . . . =

∞⋃
k=0

(
C
k

)
je množina všetkých konečných podmnožín C a pre všetky konečné množiny S ⊆ C je

|S|PSet(C) =
∑
x∈S
|x|;

veľkosť konečnej podmnožiny C je teda daná súčtom veľkostí jej prvkov.
Obyčajnú vytvárajúcu funkciu kombinatorickej triedy PSet(C) identifikujeme najprv za predpo-

kladu, že C0 = ∅ – tento prípad je zďaleka najvýznamnejší, pričom P. Flajolet a R. Sedgewick [9]
dokonca kombinatorickú triedu PSet(C) definujú iba za uvedeného predpokladu.

Veta 3.3.6. Prechod k triede konečných podmnožín kombinatorickej triedy bez prvkov nulovej veľ-
kosti je prípustnou konštrukciou na kombinatorických triedach. Ak je navyše C kombinatorická trieda
s C0 = ∅, s obyčajnou vytvárajúcou funkciou C(z) a s enumeračnou postupnosťou (cn)∞n=0, je obyčajnou
vytvárajúcou funkciou kombinatorickej triedy PSet(C) formálny mocninový rad

∞∏
n=1

(1 + zn)cn = exp

( ∞∑
k=1

(−1)k−1

k
C(zk)

)
.

Dôkaz. Systém radov ((1 + zn)cn | n ∈ N \ {0}) zrejme spĺňa podmienky definície 2.11.1 – nekonečný
súčin zo znenia vety je teda dobre definovaný. Rovnako tak je dobre definovaný aj nekonečný súčet
zo znenia vety, pretože systém sumovaných radov je evidentne lokálne konečný.

Vetu dokážeme najprv v prípade, keď je nosná množina C kombinatorickej triedy C = (C, |·|)
konečná. V takom prípade je zrejme1

PSet(C) ∼=
∏
x∈C

(E + {x}) ,

kde E = {ε} je neutrálna trieda a {x} je skráteným zápisom pre jednoprvkovú triedu obsahujúcu ob-
jekt x veľkosti |x|. Neutrálna trieda E má obyčajnú vytvárajúcu funkciu 1 a z tvrdenia 3.2.4 vyplýva,
že kombinatorická trieda {x} má vytvárajúcu funkciu z|x|. Vďaka znalosti vytvárajúcich funkcií zodpo-
vedajúcich disjunktnému zjednoteniu a karteziánskemu súčinu kombinatorických tried teda zisťujeme,
že vytvárajúca funkcia P (z) kombinatorickej triedy PSet(C) je daná ako

P (z) =
∏
x∈C

(
1 + z|x|

)
=

∞∏
n=1

(1 + zn)cn ,

kde súčin napravo je v skutočnosti konečný, pretože pre konečnú kombinatorickú triedu C môže existovať
iba konečne veľa rôznych n ∈ N takých, že cn 6= 0.

1Zápis pre konečný karteziánsky súčin na pravej môžeme použiť vďaka konvencii stotožňovania izomorfných tried –
na poradí násobenia kombinatorických tried v takom prípade nezáleží.
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Keďže evidentne [z0]P (z) = 1 > 0, vďaka tvrdeniu 2.9.5, tvrdeniu 2.9.4 a tvrdeniu 2.10.6 je

P (z) = eLn(P (z)) = exp

( ∞∑
n=1

cn Ln (1 + zn)

)
= exp

( ∞∑
n=1

cn

∞∑
k=1

(−1)k−1

k
znk

)
=

= exp

( ∞∑
k=1

(−1)k−1

k

∞∑
n=1

cnz
nk

)
= exp

( ∞∑
k=1

(−1)k−1

k
C(zk)

)
.

Zostáva vetu dokázať v prípade, keď je kombinatorická trieda C nekonečná. Pre všetky n ∈ N
označme

C≤n :=
n∑
j=0

Cj

kombinatorickú triedu pozostávajúcu z objektov triedy C veľkosti neprevyšujúcej n – táto trieda musí
evidentne byť konečná. Pre všetky n ∈ N potom zrejme

(PSet(C))n = (PSet(C≤n))n ,

pretože množina prvkov so súčtom veľkostí n nemôže obsahovať žiaden prvok veľkosti väčšej, než n.
Ak je teda P (z) obyčajná vytvárajúca funkcia kombinatorickej triedy PSet(C) a pre všetky n ∈ N
označuje P≤n(z) obyčajnú vytvárajúcu funkciu triedy PSet(C≤n), pre všetky n ∈ N je

[zn]P (z) = [zn]P≤n(z) = [zn] exp

( ∞∑
k=1

(−1)k−1

k
C≤n(zk)

)
,

kde

C≤n(z) =

n∑
j=0

cjz
j

je obyčajná vytvárajúca funkcia konečnej kombinatorickej triedy C≤n. Keďže ale pre j = 0, . . . , n je
[zj ]C≤n(z) = [zj ]C(z) = cj , musí v skutočnosti byť

[zn]P (z) = [zn] exp

( ∞∑
k=1

(−1)k−1

k
C≤n(zk)

)
= [zn] exp

( ∞∑
k=1

(−1)k−1

k
C(zk)

)
, (3.1)

pretože koeficienty cj = [zj ]C(z) radu C(z) pre j > n evidentne nemôžu ovplyvniť koeficient pri zn

v rade

exp

( ∞∑
k=1

(−1)k−1

k
C(zk)

)
=
∞∑
n=0

1

n!

( ∞∑
k=1

(−1)k−1

k
C(zk)

)n
na pravej strane rovnosti (3.1). Z rovnosti [zn]P (z) = [zn]P≤n(z) tiež pre všetky n ∈ N vyplýva

[zn]P (z) = [zn]P≤n(z) = [zn]
n∏
`=1

(
1 + z`

)c`
= [zn]

∞∏
`=1

(
1 + z`

)c`
. (3.2)

Z platnosti rovností (3.1) a (3.2) pre všetky n ∈ N tak dostávame dokazované vzťahy

P (z) =
∞∏
n=1

(1 + zn)cn = exp

( ∞∑
k=1

(−1)k−1

k
C(zk)

)
.
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S pomocou vety 3.3.6 teraz ľahko identifikujeme aj obyčajnú vytvárajúcu funkciu kombinatorickej
triedy PSet(C), kde C0 6= ∅.

Veta 3.3.7. Prechod k triede konečných podmnožín je prípustnou konštrukciou na kombinatorických
triedach. Ak je navyše C kombinatorická trieda s obyčajnou vytvárajúcou funkciou C(z) a s enumeračnou
postupnosťou (cn)∞n=0, je obyčajnou vytvárajúcou funkciou kombinatorickej triedy PSet(C) formálny
mocninový rad

2c0
∞∏
n=1

(1 + zn)cn = 2[z0]C(z) exp

( ∞∑
k=1

(−1)k−1

k

(
C(zk)− [z0]C(z)

))
.

Dôkaz. Nech C≥1 = C \ C0 je kombinatorická trieda obsahujúca objekty nenulovej veľkosti z kombi-
natorickej triedy C; za kombinatorickú triedu navyše môžeme považovať aj podmnožinu C0 triedy C.
Potom zrejme PSet(C) ∼= PSet(C0)× PSet(C≥1), pričom vytvárajúcou funkciou triedy PSet(C0) je
2c0 = 2[z0]C(z) a vytvárajúcou funkciou triedy PSet(C≥1) je

∞∏
n=1

(1 + zn)cn = exp

( ∞∑
k=1

(−1)k−1

k

(
C(zk)− [z0]C(z)

))
.

Trieda konečných multimnožín. Nech C je kombinatorická trieda taká, že C0 = ∅. Triedu koneč-
ných multimnožín objektov z kombinatorickej triedy C získame z triedy (Seq(C), |·|Seq(C)) stotožnením
tých konečných postupností, ktoré obsahujú rovnaký počet výskytov každého objektu x ∈ C. Na Seq(C)
teda definujeme reláciu ekvivalencie ≡ takú, že pre (x1, . . . , xk), (y1, . . . , y`) ∈ Seq(C) je

(x1, . . . , xk) ≡ (y1, . . . , y`)

práve vtedy, keď k = ` a súčasne existuje permutácia ϕ : [k]→ [k] taká, že pre j = 1, . . . , k je xj = yϕ(j).
Je zrejmé, že pre takúto dvojicu postupností musí vždy byť

|(x1, . . . , xk)|Seq(C) = |(y1, . . . , y`)|Seq(C) .

Kombinatorickú triedu MSet(C) = (MSet(C), |·|), pozostávajúcu zo všetkých konečných multimnožín
objektov triedy C, tak môžeme korektne definovať ako

MSet(C) := Seq(C)/≡,

kde pre každú postupnosť (x1, . . . , xk) ∈ Seq(C) je veľkosť triedy [(x1, . . . , xk)]≡ ∈MSet(C) daná ako

|[(x1, . . . , xk)]≡| = |(x1, . . . , xk)|Seq(C) .

Veta 3.3.8. Prechod k triede konečných multimnožín je prípustnou konštrukciou na kombinatorických
triedach. Ak je navyše C kombinatorická trieda s C0 = ∅, s obyčajnou vytvárajúcou funkciou C(z)
a s enumeračnou postupnosťou (cn)∞n=0, je obyčajnou vytvárajúcou funkciou kombinatorickej triedy
MSet(C) formálny mocninový rad

∞∏
n=1

1

(1− zn)cn
= exp

( ∞∑
k=1

1

k
C(zk)

)
.

Dôkaz. Ľahko vidieť, že systém radov ((1 − zn)−cn | n ∈ N \ {0}) spĺňa podmienky definície 2.11.1
a systém radov ((1/k)C(zk) | k ∈ N) je lokálne konečný – znenie vety teda dáva zmysel.
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Vetu opäť dokážeme najprv v prípade, keď je kombinatorická trieda C = (C, |·|) konečná. V takom
prípade je

MSet(C) ∼=
∏
x∈C

Seq({x}), (3.3)

kde {x} je skrátený zápis pre kombinatorickú triedu obsahujúcu jediný prvok x veľkosti |x|. Ak je
totiž C = {x1, . . . , xm}, možno ľubovoľnú multimnožinu objektov z C reprezentovať aj ako konečnú
postupnosť postupností (x1, . . . , x1︸ ︷︷ ︸

k1

), (x2, . . . , x2︸ ︷︷ ︸
k2

), . . . , (xm, . . . , xm︸ ︷︷ ︸
km

)

 ,

kde k1, . . . , km ∈ N sú – vo všeobecnosti aj nulové – počty výskytov objektov x1, . . . , xm ∈ C v danej
multimnožine.

Zo vzťahu (3.3) dostávame prvý z dokazovaných vzorcov pre obyčajnú vytvárajúcu funkciu M(z)
triedy MSet(C):

M(z) =
∏
x∈C

1

1− z|x|
=
∞∏
n=1

1

(1− zn)cn
,

kde aj druhý zo súčinov je konečný – existuje totiž iba konečne veľa n ∈ N \ {0} takých, že cn 6= 0.
Keďže evidentne [z0]M(z) = 1 > 0, z tvrdenia 2.9.5, tvrdenia 2.9.4 a tvrdenia 2.10.6 dostávame

M(z) = eLn(M(z)) = exp

( ∞∑
n=1

−cn Ln(1− zn)

)
= exp

( ∞∑
n=1

−cn
∞∑
k=1

(−1)k−1

k
(−1)kznk

)
=

= exp

( ∞∑
n=1

cn

∞∑
k=1

znk

k

)
= exp

( ∞∑
k=1

1

k

∞∑
n=1

cnz
nk

)
= exp

( ∞∑
k=1

1

k
C(zk)

)
.

Dôkaz pre nekonečné kombinatorické triedy je podobný ako v prípade tried konečných podmnožín:
ľahko vidieť, že pre všetky n ∈ N je

(MSet(C))n = (MSet(C≤n))n ,

kde C≤n je konečná trieda C≤n :=
∑n

j=0 Cj . Ak je teda M(z) vytvárajúca funkcia triedy MSet(C)
a pre všetky n ∈ N je M≤n(z) vytvárajúca funkcia triedy MSet(C≤n), musí pre všetky n ∈ N byť

[zn]M(z) = [zn]M≤n(z) = [zn] exp

( ∞∑
k=1

1

k
C≤n(zk)

)
,

kde C≤n(z) je obyčajná vytvárajúca funkcia triedy C≤n(z). Pre j = 0, . . . , n je ale

[zj ]C≤n(z) = [zj ]C(z) = cj ,

takže v skutočnosti musí byť aj

[zn]M(z) = [zn] exp

( ∞∑
k=1

1

k
C≤n(zk)

)
= [zn] exp

( ∞∑
k=1

1

k
C(zk)

)
,

pretože koeficienty cj = [zj ]C(z) radu C(z) pre j > n nemôžu ovplyvniť koeficient pri zn v rade

exp

( ∞∑
k=1

1

k
C(zk)

)
=

∞∑
n=0

1

n!

( ∞∑
k=1

1

k
C(zk)

)n
V dôsledku rovnosti [zn]M(z) = [zn]M≤n(z) tiež dostávame

[zn]M(z) = [zn]M≤n(z) = [zn]

n∏
`=1

1

(1− z`)c`
= [zn]

∞∏
`=1

1

(1− z`)c`
.
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Punktácia. Pod punktáciou kombinatorickej triedy C rozumieme triedu ΘC pozostávajúcu z objektov
triedy C, v ktorých je navyše „jeden spomedzi atómov určený ako význačný“ . Príkladommôže byť trieda
všetkých slov nad abecedou Σ = {a, b} s práve jedným označeným písmenom, ktorú získame punktáciou
z triedy všetkých slov nad abecedou Σ = {a, b}. Formálne definujeme punktáciu kombinatorickej triedy
(C, |·|C) ako triedu (ΘC, |·|), kde

ΘC :=
∞∑
n=0

Cn × {ε1, . . . , εn}

a pre všetky n ∈ N, x ∈ Cn a k = 1, . . . , n je |(x, εk)| := |x|C .

Veta 3.3.9. Punktácia je prípustnou konštrukciou na kombinatorických triedach. Ak je navyše C kom-
binatorická tried s obyčajnou vytvárajúcou funkciou C(z), je obyčajnou vytvárajúcou funkciou kombi-
natorickej triedy ΘC formálny mocninový rad

z
d

dz
C(z).

Dôkaz. Pre n = 0 je

|(ΘC)n| = 0 = [zn]z
d

dz
C(z)

a pre všetky n ∈ N \ {0} je

|(ΘC)n| = n |Cn| = n[zn]C(z) = n
1

n
[zn−1]C ′(z) = [zn−1]C ′(z) = [zn]z

d

dz
C(z).

Obyčajnou vytvárajúcou funkciou kombinatorickej triedy ΘC teda musí byť zC ′(z).

Substitúcia. Pod substitúciou kombinatorickej triedy D spĺňajúcej D0 = ∅ do triedy C – resp.
pod zložením kombinatorických tried C a D – rozumieme kombinatorickú triedu C ◦ D = C[D] pozos-
távajúcu z objektov triedy C, v ktorých je „každý atóm nahradený objektom triedy D“ . Ak sú teda
(C, |·|C) a (D, |·|D) kombinatorické triedy také, že D0 = ∅, nazveme ich zložením – alebo substitúciou
triedy D do triedy C – kombinatorickú triedu (C ◦ D, |·|) = (C[D], |·|), kde

C ◦ D = C[D] :=
∞∑
n=0

Cn × Seqn(D)

a pre všetky n ∈ N, x ∈ Cn a (y1, . . . , yn) ∈ Seqn(D) je

|(x, (y1, . . . , yn))| := |(y1, . . . , yn)|Seqn(D) =
n∑
k=1

|yk|D .

Veta 3.3.10. Substitúcia je prípustnou konštrukciou na kombinatorických triedach. Ak je navyše C
kombinatorická trieda s obyčajnou vytvárajúcou funkciou C(z) a D je kombinatorická trieda s D0 = ∅
a s obyčajnou vytvárajúcou funkciou D(z), je obyčajnou vytvárajúcou funkciou kombinatorickej triedy
C ◦ D = C[D] formálny mocninový rad

(C ◦D)(z) = C(D(z)).

Dôkaz. Nech (cn)∞n=0 je postupnosť komplexných čísel taká, že

C(z) =

∞∑
n=0

cnz
n
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Vďaka tvrdeniu 3.2.4 je potom vytvárajúcou funkciou kombinatorickej triedy C ◦ D rad

∑
u∈C◦D

z|u| =

∞∑
n=0

∑
x∈Cn

∑
(y1,...,yn)∈Seqn(D)

z|(x,(y1,...,yn))| =

∞∑
n=0

∑
x∈Cn

∑
(y1,...,yn)∈Seqn(D)

z|(y1,...,yn)|Seqn(D) =

=
∞∑
n=0

cn
∑

(y1,...,yn)∈Seqn(D)

z|(y1,...,yn)|Seqn(D) =
∞∑
n=0

cnD
n(z) = C(D(z)) = (C ◦D)(z).

3.4 Iteratívne a rekurzívne špecifikácie

Pod špecifikáciou kombinatorických tried rozumieme systém rovníc

A(1) = Φ1

(
A(1), . . . ,A(m)

)
,

A(2) = Φ2

(
A(1), . . . ,A(m)

)
,

...

A(m) = Φm

(
A(1), . . . ,A(m)

)
,

kde A(1), . . . ,A(m) sú neznáme kombinatorické triedy a Φ1, . . . ,Φm sú m-árne prípustné konštrukcie
na kombinatorických triedach – typicky sa pritom obmedzujeme na vhodnú množinu uvažovaných
prípustných konštrukcií, akou môžu byť napríklad termy zložené z neutrálnych tried E , atomických
tried Z a štandardných prípustných konštrukcií zavedených v rámci predchádzajúceho oddielu. V zá-
vislosti od kontextu tento systém môžeme považovať za špecifikáciu vektora kombinatorických tried

A = (A(1), . . . ,A(m))

alebo za špecifikáciu kombinatorickej triedy A(1).
Špecifikáciu nazývame iteratívnou v prípade, že pre k = 1, . . . ,m závisí Φk iba od kombinatorických

tried A(k+1), . . . ,A(m) – pre ľubovoľné kombinatorické triedy B(1), . . . ,B(k) a C(1), . . . , C(k) je teda

Φk

(
B(1), . . . ,B(k),A(k+1), . . . ,A(m)

)
= Φk

(
C(1), . . . , C(k),A(k+1), . . . ,A(m)

)
.

Prípustná konštrukcia Φm je tak v podstate nulárna – určuje jednu konštantnú kombinatorickú triedu.
Vo výsledku takto možno kombinatorickú triedu A(1) vyjadriť pomocou jediného termu zloženého z prí-
pustných konštrukcií uvažovaného typu a konštantných tried uvažovaného typu – definícia sémantiky
špecifikácie je teda bezproblémová.

Menej zrejmou je sémantika iných ako iteratívnych špecifikácií, ktoré nazývame rekurzívnymi –
napríklad aj

A(1) = A(1)

je korektnou rekurzívnou špecifikáciou a ľahko vidieť, že jej riešením môže byť ľubovoľná kombinato-
rická trieda. Často sa preto obmedzujeme napríklad na najmenšie riešenie v zmysle množinovej inklúzie,
resp. na riešenie, ktoré možno získať iterovaním uvažovaného systému rovníc v prípade, že začneme
s vektorom prázdnych tried.
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My k sémantike rekurzívnych špecifikácií zaujmeme o niečo pragmatickejší prístup: spomedzi ich
riešení nebudeme vyberať jedno kanonické, ale budeme pracovať iba so špecifikáciami alebo triedami
špecifikácií, pri ktorých bude ľahko možné dokázať existenciu jediného riešenia. Táto vlastnosť často
vyplynie z jednoznačnosti riešenia príslušného systému rovníc o m neznámych vytvárajúcich funkciách

A1(z) = φ1 (A1(z), . . . , Am(z)) ,

A2(z) = φ2 (A1(z), . . . , Am(z)) ,

...

Am(z) = φm (A1(z), . . . , Am(z)) ,

kde A1(z), . . . , Am(z) sú neznáme formálne mocninové rady a φ1, . . . , φm sú operácie na obyčajných
vytvárajúcich funkciách prislúchajúce k prípustným konštrukciám Φ1, . . . ,Φm. Takýmto spôsobom
neraz dostaneme systém rovníc s viacerými riešeniami, pričom ale iba jedno z nich je kombinatoricky
významné – t. j. A1(z) je formálny mocninový rad s prirodzenými koeficientmi, ktorý tak je obyčajnou
vytvárajúcou funkciou nejakej kombinatorickej triedy. Z toho potom vyplynie aj jednoznačnosť riešenia
pôvodného systému na kombinatorických triedach (chápaná modulo izomorfizmus).

3.5 Symbolická metóda pre neoznačené objekty: príklady

Príklad 3.5.1. Uvažujme kombinatorickú triedu W všetkých slov nad abecedou Σ = {a, b} s obvykle
definovanou dĺžkou. Takéto slová možno chápať ako konečné postupnosti atómov, ktorými sú jednotlivé
písmená z abecedy Σ. Pre atomické triedy Za = {a} a Zb = {b} je teda špecifikácia kombinatorickej
triedy W daná ako

W = Seq (Za + Zb) ,

z čoho dostávame aj vyjadrenie pre obyčajnú vytvárajúcu funkciu W (z) triedy W v tvare

W (z) =
1

1− 2z
.

Z príkladu 2.3.4 pritom vieme, že pre všetky n ∈ N je [zn]W (z) = 2n, čo je skutočne počet všetkých
slov dĺžky n nad abecedou Σ = {a, b}.

Príklad 3.5.2. Vráťme sa k príkladu 1.2.1, v ktorom sme vyčíslovali počet všetkých usporiadaných
zakorenených stromov o n ∈ N \ {0} vrcholoch.

Každý takýto strom je jednoznačne daný svojím koreňom a konečným počtom podstromov zako-
renených v jeho synoch, ktorými sú tiež usporiadané zakorenené stromy. Veľkosť takéhoto stromu je
daná celkovým počtom vrcholov. Pomocou symbolickej metódy pre neoznačené objekty teda môžeme
kombinatorickú triedu T všetkých takýchto stromov vyjadriť rekurzívnou špecifikáciou

T = Z × Seq(T ),

kde Z je atomická trieda. Pre vytvárajúcu funkciu T (z) triedy T tak dostávame vzťah

T (z) =
z

1− T (z)
,

z čoho
T (z)2 − T (z) + z = 0. (3.4)

Táto kvadratická rovnica má dve riešenia v CJzK:

T±(z) =
1±
√

1− 4z

2
.
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Vďaka vete 2.10.7 je

√
1− 4z =

∞∑
n=0

(
1/2

n

)
(−1)n4nzn = 1− 2z − 2z2 − 4z3 − 10z3 − . . .

Riešenie

T+(z) =
1 +
√

1− 4z

2

teda nie je kombinatoricky významné, pretože nejde o rad z NJzK – napríklad [z1]T+(z) = −1. Keďže
ale obyčajná vytvárajúca funkcia kombinatorickej triedy T musí byť riešením rovnice (3.4), je nutne
daná ako

T−(z) =
1−
√

1− 4z

2
. (3.5)

Z príkladu 1.2.1 vyplýva, že T−(z) je obyčajná vytvárajúca funkcia posunutej postupnosti Catalanových
čísel (0, C0, C1, C2, . . .).

Zo vzťahu (3.5) môžeme ad hoc odvodiť uzavretý tvar pre koeficienty tejto vytvárajúcej funkcie.
Pre všetky n ∈ N \ {0} totiž

[zn]T−(z) = [zn]
1−
√

1− 4z

2
= −1

2
[zn]

∞∑
n=0

(
1/2

n

)
(−1)n4nzn = −1

2

(
1/2

n

)
(−1)n4n =

= −1

2
· (1/2)n

n!
(−1)n4n = −1

2
·

(−1)n−1 1
2n
∏n−1
k=1(2k − 1)

n!
(−1)n4n = 2n−1

∏n−1
k=1(2k − 1)

n!
=

=
2n−1

n!
· (2n− 2)!∏n−1

k=1 2k
=

2n−1

n!
· (2n− 2)!

2n−1(n− 1)!
=

1

n
· (2n− 2)!

(n− 1)!(n− 1)!
=

1

n

(
2n− 2

n− 1

)
= Cn−1

a pre n = 0 je [z0]T−(z) = 0. To sa zhoduje s našimi výsledkami z príkladu 1.2.1 – teraz sme ale
aspoň po odvodenie vzorca pre obyčajnú vytvárajúcu funkciu T−(z) postupovali plne systematickým
spôsobom.

Príklad 3.5.3. Vráťme sa k príkladu 1.3.1, v ktorom sme vyčíslovali počet všetkých neprázdnych
plných binárnych stromov s n ∈ N vnútornými vrcholmi.

Každý plný binárny strom je zložený z dvoch druhov základných stavebných prvkov – z vnútorných
vrcholov, ktoré budeme označovať • a z listov, ktoré budeme označovať ◦. Keďže pritom podľa zadania
úlohy prispievajú k celkovej veľkosti stromu iba vnútorné vrcholy, budeme pracovať s atomickou triedou
Z• = {•} a s neutrálnou triedou E◦ = {◦}. Neprázdny plný binárny strom môže buď pozostávať
z jediného vrcholu, ktorý je súčasne jeho koreňom aj listom, alebo je jeho koreň vnútorným vrcholom
s dvoma synmi, v ktorých sú opäť zakorenené plné binárne stromy. Prichádzame teda k nasledujúcej
rekurzívnej špecifikácii pre kombinatorickú triedu F všetkých plných binárnych stromov s veľkosťou
danou počtom vnútorných vrcholov:

F = E◦ + Z• ×F ×F .

Z toho vyplýva, že obyčajná vytvárajúca funkcia F (z) kombinatorickej triedy F vyhovuje vzťahu

F (z) = 1 + zF (z)2;

musí teda ísť o riešenie kvadratickej rovnice

zF (z)2 − F (z) + 1 = 0.

Tá má v CJzK jediné riešenie

F−(z) =
1−
√

1− 4z

2z
.
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Formálny mocninový rad F−(z) je teda obyčajnou vytvárajúcou funkciou kombinatorickej triedy F
a z príkladu 1.3.1 – poprípade z príkladu 3.5.2 – vyplýva, že ide aj o obyčajnú vytvárajúcu funkciu
postupnosti Catalanových čísel. Pre všetky n ∈ N je teda

[zn]
1−
√

1− 4z

2z
= Cn =

1

n+ 1

(
2n

n

)
.

Príklad 3.5.4. Vyčíslime počet všetkých binárnych stromov o n ∈ N vrcholoch. Takýto strom môže byť
prázdny – prázdny strom budeme označovať ε – alebo môže pozostávať z koreňa a dvoch podstromov,
ktoré sú opäť binárne (a môžu byť aj prázdne). Pre atomickú triedu Z• = {•} a neutrálnu triedu
Eε = {ε} je preto kombinatorická trieda B všetkých binárnych stromov s veľkosťou danou počtom
vrcholov daná špecifikáciou

B = Eε + Z• × B × B,

z ktorej vyplýva, že trieda B je izomorfná kombinatorickej triede F z príkladu 3.5.3. Počet všetkých
binárnych stromov o n ∈ N vrcholoch je teda rovnaký ako počet všetkých plných binárnych stromov
o n vnútorných vrcholoch – čiže Cn. Čitateľ túto skutočnosť iste ľahko dokáže aj bijektívne.

Príklad 3.5.5. Uvažujme napokon ešte raz aj príklad 1.1.1, v ktorom bolo úlohou nájsť počet všetkých
dobre uzátvorkovaných slov z Dyckovho jazyka D1 obsahujúcich n ľavých zátvoriek a a n pravých
zátvoriek a.

Keďže je veľkosť každého takéhoto slova daná počtom ľavých zátvoriek, môžeme pracovať s ato-
mickou triedou Za = {a} a s neutrálnou triedou Ea = {a}. Navyše budeme uvažovať neutrálnu
triedu Eε = {ε} zodpovedajúcu prázdnemu slovu.

Dyckov jazyk D1 je definovaný ako jazyk nad abecedou Σ = {a, a} taký, že:

(i) ε ∈ D1;

(ii) pre všetky u, v ∈ D1 je auav ∈ D1;

(iii) nič iné nie je v D1.

Faktorizácia slova v (ii) je navyše určená jednoznačne, keďže prvú ľavú zátvorku môže vždy uzatvárať
jediná pravá zátvorka. Kombinatorickú triedu D pozostávajúcu zo všetkých slov z jazykaD1 s veľkosťou
danou počtom ľavých zátvoriek tak možno vyjadriť pomocou rekurzívnej špecifikácie

D = Eε + Za ×D × Ea ×D,

ktorej zodpovedá vzťah
D(z) = 1 + zD(z)2

pre obyčajnú vytvárajúcu funkciu D(z) kombinatorickej triedy D. Ten je rovnaký ako v príklade 3.5.3
– opäť teda prichádzame k obyčajnej vytvárajúcej funkcii

D(z) =
1−
√

1− 4z

2z

postupnosti Catalanových čísel.

Príklad 3.5.6. Pre všetky n ∈ N uvažujme počet triangulácií konvexného (n+2)-uholníka (s navzájom
rozlíšiteľnými vrcholmi) – čiže počet jeho rozkladov na po dvoch disjunktné trojuholníky s vrcholmi
vo vrcholoch uvažovaného (n+ 2)-uholníka. Príklad takejto triangulácie je na obrázku 3.3.



Predbežná verzia

Kombinatorické triedy a symbolická metóda 53

Obr. 3.3: Jedna z možných triangulácií pravidelného osemuholníka.

Obr. 3.4: Uvažovaný význačný trojuholník pri triangulácii pravidelného osemuholníka.

Pre n = 0 za konvexný dvojuholník považujeme úsečku, ktorá nemá žiadnu trianguláciu. Indukciou
vzhľadom na n dokážeme, že každá triangulácia konvexného (n + 2)-uholníka pozostáva z presne n
trojuholníkov. Pre n = 0 a n = 1 je táto skutočnosť zrejmá. Predpokladajme teraz platnosť tvrdenia
pre n = s a uvažujme ľubovoľný konvexný (s+ 3)-uholník s vrcholmi 1, . . . , s+ 3. Hrana [1, 2] potom
musí byť súčasťou nejakého trojuholníka triangulácie. Tento trojuholník je na obrázku 3.4 vyznačený
sivou farbou.

Ľahko vidieť, že každý takýto trojuholník určuje rozklad pôvodného (s+ 3)-uholníka, ktorý okrem
tohto trojuholníka pozostáva z nejakého (p+2)-uholníka a nejakého (q+2)-uholníka s p, q ∈ N takými,
že p ≤ s, q ≤ s a (p + 2) + (q + 2) = s + 4 (prípad p = 0 resp. q = 0 nastane v prípade, že je tretí
vrchol zvoleného trojuholníka susedný s niektorým z vrcholov 1 a 2). Z indukčného predpokladu teda
vyplýva, že každá triangulácia uvažovaného (s + 3)-uholníka pozostáva z presne p + q + 1 = s + 1
trojuholníkov, čo bolo treba dokázať.

Uvažujme teraz kombinatorickú triedu T pozostávajúcu zo všetkých triangulácií konvexných mno-
houholníkov, ktorých veľkosť je daná počtom trojuholníkov, ktoré ju tvoria – ten je podľa vyššie
učineného pozorovania o dva menší ako počet vrcholov konvexného mnohouholníka, ku ktorému trian-
gulácia prislúcha. Každá takáto triangulácia je buď prázdna (v prípade, že ide o trianguláciu úsečky),
alebo v nej možno vyššie opísaným spôsobom kanonicky zvoliť jeden trojuholník a trianguláciu po-
tom možno vyjadriť pomocou tohto trojuholníka a dvoch ďalších (prípadne aj prázdnych) triangulácií.
Dostávame tak rekurzívnu špecifikáciu

T = E + Z4 × T × T ,

kde E je neutrálna trieda a Z4 = {4} je atomická trieda. Pre vytvárajúcu funkciu T (z) kombinatorickej
triedy T tak dostávame vzťah

T (z) = 1 + zT (z)2,



Predbežná verzia

54 3.5 Symbolická metóda pre neoznačené objekty: príklady

ktorý je opäť rovnaký ako v predchádzajúcich dvoch príkladoch. Zisťujeme teda, že

T (z) =
1−
√

1− 4z

2z

a počet všetkých triangulácií konvexného (n+ 2)-uholníka je pre všetky n ∈ N daný ako

[zn]T (z) = Cn =
1

n+ 1

(
2n

n

)
.

Príklad 3.5.7. Pod unárno-binárnym stromom rozumieme usporiadaný zakorenený strom, v ktorom
má každý vrchol najviac dvoch synov; v prípade, že má jedného syna, nepovažuje sa tento ani za ľavého,
ani za pravého. Skúmajme počet všetkých takýchto stromov o n ∈ N \ {0} vrcholoch.

Každý unárno-binárny strom pozostáva z koreňa, ktorý môže mať žiadneho, jedného, alebo dvoch
synov – v každom synovi je potom opäť zakorenený ďalší unárno-binárny strom. Pre atomickú triedu Z•
zodpovedajúcu ľubovoľnému vrcholu teda môžeme kombinatorickú triedu U všetkých neprázdnych
unárno-binárnych stromov s veľkosťou danou počtom vrcholov vyjadriť pomocou rekurzívnej špecifi-
kácie

U = Z• + Z• × U + Z• × U × U ,

čím pre obyčajnú vytvárajúcu funkciu U(z) kombinatorickej triedy U prichádzame k rovnici

U(z) = z + zU(z) + zU(z)2,

ktorá má v CJzK jediné riešenie

U−(z) =
1− z −

√
1− 2z − 3z2

2z
= z + z2 + 2z3 + 4z4 + . . .

Koeficient [zn+1]U−(z) tejto vytvárajúcej funkcie kombinatorickej triedy U sa zvykne nazývať n-tým
Motzkinovým číslom Mn. Neskôr uvidíme, ako možno pomocou analytických metód ľahko dospieť
k asymptotickému odhadu pre Mn a n→∞.

Príklad 3.5.8. Uvažujme teraz (neusporiadané) zakorenené stromy o n ∈ N \ {0} neoznačených
vrcholoch. Každý takýto strom pozostáva z koreňa, ktorý môže byť hranami spojený s niekoľkými
podstromami. Ak tieto podstromy zakoreníme vo vrcholoch, ktoré sú hranou spojené s koreňom uva-
žovaného stromu, budú výsledné zakorenené podstromy spolu s koreňom jednoznačne určovať celý
strom. Na poradí jednotlivých podstromov pritom nezáleží – zaujíma nás iba to, koľkokrát sa dané
podstromy v strome vyskytujú. Pre atomickú triedu Z• = {•} tak prichádzame k vyjadreniu kombi-
natorickej triedy R všetkých neoznačených zakorenených stromov s veľkosťou danou počtom vrcholov
pomocou rekurzívnej špecifikácie

R = Z• ×MSet(R).

Obyčajná vytvárajúca funkcia R(z) kombinatorickej triedy R je teda riešením rovnice

R(z) = z exp

( ∞∑
k=1

1

k
R(zk)

)
.

Tento vzťah umožňuje rekurzívny výpočet koeficientov [zn]R(z), ktorý je o poznanie efektívnejší, než
úplné prehľadávanie všetkých neoznačených zakorenených stromov o danom počte vrcholov. Prvých
niekoľko členov vytvárajúcej funkcie R(z) je daných nasledovne:

R(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + . . .
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Príklad 3.5.9. Aj množinu všetkých nenulových prirodzených čísel N\{0} môžeme chápať ako kombi-
natorickú triedu (N , |·|), kde N = N \ {0} a pre všetky n ∈ N je |n| = n. Keďže navyše môžeme každé
nenulové prirodzené číslo n zapísať v unárnej sústave ako presne n atómov •, možno pre atomickú
triedu Z• vyjadriť triedu N pomocou iteratívnej špecifikácie

N = Seq≥1(Z•),

z čoho priamo dostávame očakávaný vzorec pre obyčajnú vytvárajúcu funkciu N(z) tejto kombinato-
rickej triedy:

N(z) =
z

1− z
.

Pre ňu, samozrejme, platí [z0]N(z) = 0 a [zn]N(z) = 1 pre všetky n ∈ N \ {0}.

Príklad 3.5.10. Kompozíciou prirodzeného čísla n ∈ N nazývame konečnú postupnosť (n1, . . . , nk)
pozostávajúcu z k ∈ N čísel n1, . . . , nk ∈ N \ {0} takých, že

n1 + . . .+ nk = n.

Počet všetkých kompozícií čísla n ∈ N je teda počtom všetkých spôsobov, ktorými môžeme toto
číslo vyjadriť ako súčet nenulových prirodzených čísel, pričom záleží na poradí jednotlivých sčítancov.
Aj pomocou elementárnej kombinatoriky možno ľahko nahliadnuť, že počet všetkých kompozícií čísla
n ∈ N \ {0} je 2n−1 – stačí číslo n vyjadriť v unárnej sústave ako postupnosť n atómov •; kompozícia
čísla n je potom jednoznačne daná pridaním „predelov“ do niektorých „medzier“ medzi jednotlivými
atómami. Keďže je takýchto „medzier“ n − 1 a v každej môže a nemusí byť „predel“ , prichádzame
k avizovanému výsledku 2n−1.

K rovnakému výsledku môžeme prísť aj pomocou symbolickej metódy. Uvažujme kombinatorickú
triedu C všetkých kompozícií prirodzených čísel, kde veľkosťou každej kompozície (n1, . . . , nk) je číslo
n = n1 + . . . + nk, o ktorého kompozíciu ide. Túto kombinatorickú triedu potom evidentne môžeme
vyjadriť ako

C = Seq(N ),

kde N je kombinatorická trieda z príkladu 3.5.9. V dôsledku toho dostávame pre obyčajnú vytvárajúcu
funkciu C(z) kombinatorickej triedy C vzťah

C(z) =
1

1− z
1−z

=
1− z
1− 2z

.

Keďže

C(z) =
1− z
1− 2z

=
1

1− 2z
− z

1− 2z
=

∞∑
n=0

2nzn −
∞∑
n=1

2n−1zn,

prichádzame aj týmto spôsobom k výsledku

[zn]C(n) = 2n − 2n−1 = 2n−1.

Príklad 3.5.11. Rozkladom prirodzeného čísla n ∈ N nazývame jeho kompozíciu (n1, . . . , nk) takú,
že n1 ≤ . . . ≤ nk. Počet všetkých rozkladov čísla n je teda počtom všetkých spôsobov, ktorými toto
číslo môžeme vyjadriť ako súčet nenulových prirodzených čísel, pričom na poradí sčítancov nezáleží.

Uvažujme kombinatorickú triedu P všetkých rozkladov prirodzených čísel, kde veľkosťou rozkladu
(n1, . . . , nk) je číslo n = n1 + . . . + nk. S použitím kombinatorickej triedy N z príkladu 3.5.9 potom
môžeme triedu P vyjadriť ako

P = MSet(N ).
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Pre obyčajnú vytvárajúcu funkciu P (z) kombinatorickej triedy P tak dostávame vzťah

P (z) = exp

( ∞∑
k=1

1

k
· zk

1− zk

)
=
∞∏
m=1

1

1− zm
.

Prvých niekoľko členov vytvárajúcej funkcie P (z) je daných ako

P (z) = (1 + z + z2 + z3 + z4 + . . .)(1 + z2 + z4 + . . .)(1 + z3 + z6 + . . .)(1 + z4 + z8 + . . .) . . . =

= 1 + z + 2z2 + 3z3 + 5z4 + . . .

Príklad 3.5.12. Pokúsme sa vyčísliť počet všetkých rozkladov n-prvkovej množiny na r tried rozkladu.
Táto hodnota sa obvykle nazýva Stirlingovým číslom druhého druhu a označuje sa{n

r

}
.

Použitie symbolickej metódy tu vyžaduje drobnú kombinatorickú predprípravu. Je zrejmé, že namiesto
rozkladov ľubovoľnej n-prvkovej množiny stačí pre n ∈ N uvažovať rozklady množiny [n] = {1, . . . , n}.
Uvažujme teda kombinatorickú triedu S(r) pozostávajúcu zo všetkých rozkladov množín [n] pre n ∈ N
na r ∈ N \ {0} tried, pričom veľkosťou rozkladu rozumieme súčet veľkostí jeho tried – čiže počet
prvkov rozkladanej množiny. Jednotlivé triedy takéhoto rozkladu množiny [n] kanonicky očíslujme
číslami 1, . . . , r tak, že za prvú triedu vezmeme triedu obsahujúcu prvok 1, za druhú triedu vezmeme
triedu obsahujúcu najmenší prvok neobsiahnutý v prvej triede, atď. Každý rozklad množiny [n] potom
môžeme zakódovať ako slovo dĺžky n nad abecedou [r], kde pre k = 1, . . . , n je k-te písmeno rovné
c ∈ [r] práve vtedy, keď k ∈ [n] patrí do c-tej triedy rozkladu.

Zisťujeme teda, že kombinatorickú triedu S(r) môžeme vyjadriť ako

S(r) = Z [1] × Seq(Z [1])×Z [2] × Seq(Z [1] + Z [2])× . . .×Z [r] × Seq(Z [1] + . . .+ Z [r]),

kde Z [1] = {1}, . . . ,Z [r] = {r} sú atomické triedy. Pre obyčajnú vytvárajúcu funkciu S(r)(z) triedy
S(r) tak dostávame vzťah

S(r)(z) =
zr

(1− z)(1− 2z) . . . (1− rz)
=

1

r!

r∑
j=1

(
r

j

)
(−1)r−j

1− jz
.

Stirlingove čísla druhého druhu sú preto pre všetky n ∈ N a r ∈ N \ {0} dané ako{n
r

}
= [zn]S(r)(z) =

1

r!

r∑
j=1

(−1)r−j
(
r

j

)
jn.

3.6 Kombinatorické triedy označených objektov

Opäť sa dostávame do situácie, keď je výhodné interpretovať už definovaný pojem trochu odlišným
spôsobom. Ak kombinatorická trieda (C, |·|) pozostáva z objektov x, ktoré možno chápať ako vybu-
dované z atómov označených po dvoch rôznymi úplne usporiadanými značkami – napríklad 1, . . . , |x|
– nazývame (C, |·|) kombinatorickou triedou označených objektov. Vďaka relatívnej vágnosti konceptu
„vybudovania objektov z označených atómov“ sa ale javí ako najprirodzenejšie považovať každú kom-
binatorickú triedu súčasne aj za triedu označených objektov – ak totiž aj nejaká trieda pozostáva
z neoznačených objektov, typicky k nej ľahko môžeme skonštruovať izomorfnú kombinatorickú triedu,
ktorej objekty už označené sú (napríklad práve jedným ľubovoľným spôsobom označíme vrcholy kaž-
dého neoznačeného grafu z uvažovanej triedy). Rozdiel medzi označenou a neoznačenou triedou je teda
viac otázkou interpretácie, než vlastného charakteru objektov, ktoré túto triedu tvoria. Prichádzame
tak k nasledujúcej – jemne bizarnej – definícii.
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Definícia 3.6.1. Kombinatorickou triedou označených objektov nazveme ľubovoľnú kombinatorickú
triedu (C, |·|).

Pre každú kombinatorickú triedu označených objektov C tak môžeme hovoriť aj o triedach Cn
pre všetky n ∈ N a rovnako ako pre triedy neoznačených objektov definujeme aj enumeračné postupnosti
a dvojice izomorfných kombinatorických tried označených objektov C,D, pre ktoré píšeme C ∼= D.

Dôvod pre zavedenie nového pomenovania pre už definovaný koncept súvisí s definíciou prirodze-
ných operácií na kombinatorických triedach označených objektov. Kým za aditívnu operáciu môžeme
opäť vziať disjunktné zjednotenie, karteziánsky súčin už pre triedy označených objektov bude len sotva
zmysluplnou multiplikatívnou operáciou: ak napríklad kombinatorické triedy C aj D pozostávajú z gra-
fov určitého typu, kde vrcholy každého grafu rádu n sú označené značkami 1, . . . , n, bude karteziánsky
súčin C × D pozostávať z dvojíc takýchto grafov.

Omnoho zmysluplnejšou, než táto trieda, je ale obyčajne trieda všetkých dvojíc grafov (G′, H ′),
pre ktoré existujú nejaké grafy G ∈ C a H ∈ D také, že v prípade |G| = m a |H| = n vzniknú grafy
G′ a H ′ z G resp. H preznačením vrcholov tak, aby každý vrchol výslednej dvojice dostal jedinečnú
značku z množiny [m+n]. Od každého takéhoto preznačenia pritom zvyčajne vyžadujeme izotónnosť –
ak má niektorý vrchol u niektorého z grafov G,H menšiu značku ako niektorý iný vrchol v toho istého
grafu, mala by táto vlastnosť zostať zachovaná aj po preznačení v grafe G′ resp. H ′. Len za tohto
predpokladu sú totiž dvojicou (G′, H ′) jednoznačne dané aj grafy G a H. Pri opísanej konštrukcii
teda abstrahujeme od konkrétnych značiek jednotlivých vrcholov grafov G a H a pracujeme iba s nimi
určeným úplným usporiadaním – na vrcholoch dvojice (G′, H ′) potom uvažujeme všetky možné úplné
usporiadania, ktorých zúžením na jednotlivé zložky G′ resp. H ′ dostaneme pôvodné usporiadania.

Podobne ako pri neoznačených objektoch by sme veľkosť |(G′, H ′)| dvojice (G′, H ′) chceli definovať
ako |G′| + |H ′| = |G| + |H|. S využitím konvencie stotožňovania izomorfných tried tak môžeme dve
najdôležitejšie operácie na kombinatorických triedach označených objektov definovať nasledovne.

Definícia 3.6.2. Disjunktným zjednotením alebo kombinatorickým súčtom kombinatorických tried
označených objektov C = (C, |·|C),D = (D, |·|D) nazveme kombinatorickú triedu označených objektov
C +D = (C +D, |·|), kde pre všetky x ∈ C je |(x, 1)| = |x|C a pre všetky y ∈ D je |(y, 2)| = |y|D.

Pre všetky m,n ∈ N označíme ako Λ(m,n) množinu všetkých bijekcií f : [m] + [n] → [m + n]
takých, že pre všetky u, v ∈ [m] s u < v je f(u, 1) < f(v, 1) a pre všetky u, v ∈ [n] s u < v je
f(u, 2) < f(v, 2). Zobrazenia f ∈ Λ(m,n) tak zodpovedajú všetkým možným izotónnym preznačeniam
dvojíc označených objektov (x, y), kde x je veľkosti m a y je veľkosti n.

Definícia 3.6.3. Súčinom kombinatorických tried označených objektov C = (C, |·|C),D = (D, |·|D)
nazveme kombinatorickú triedu označených objektov C ?D = (C ?D, |·|), kde

C ?D = {(x, y, f) | x ∈ C; y ∈ D; f ∈ Λ(|x|C , |y|D)}.

Pre všetky (x, y, f) ∈ C ?D ďalej kladieme |(x, y, f)| = |x|C + |y|D.

S takto pozmenenou definíciou súčinu tried súvisí komplikácia spočívajúca v tom, že súčin tried
označených objektov už naďalej nebude zodpovedať Cauchyho súčinu obyčajných vytvárajúcich funkcií.
Tým pádom nebude naďalej opodstatnené ani samotné používanie obyčajných vytvárajúcich funkcií,
ktoré bolo súvislosťou s karteziánskymi súčinmi kombinatorických tried motivované. Počet objektov
veľkosti n ∈ N triedy C ?D je naopak daný nasledovne.

Tvrdenie 3.6.4. Pre všetky triedy označených objektov C = (C, |·|C),D = (D, |·|D) a všetky n ∈ N je

|(C ?D)n| =
n∑
k=0

(
n

k

)
|Ck| · |Dn−k| .
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Dôkaz. Podobne ako pri karteziánskom súčine tried neoznačených objektov je

(C ?D)n =
n⋃
k=0

Ck ×Dn−k × Λ(k, n− k), (3.6)

pričom ide o disjunktné zjednotenie. Každé f ∈ Λ(k, n− k) je navyše bijekciou f : [k] + [n− k]→ [n]
takou, že pre všetky u, v ∈ [k] s u < v je f(u, 1) < f(v, 1) a pre všetky u, v ∈ [n − k] s u < v je
f(u, 2) < f(v, 2). Takéto zobrazenie je zrejme jednoznačne určené obrazom množiny [k]×{1}, ktorým
môže byť ľubovoľná k-prvková podmnožina množiny [n]. Preto

|Λ(k, n− k)| =
(
n

k

)
.

Pomocou pravidiel súčinu a súčtu tak z (3.6) dostávame dokazovanú rovnosť

|(C ?D)n| =
n∑
k=0

(
n

k

)
|Ck| · |Dn−k| .

Ak je teraz (cn)∞n=0 enumeračnou postupnosťou triedy C a (dn)∞n=0 je enumeračnou postupnosťou
triedy D, sú prvky enumeračnej postupnosti (pn)∞n=0 triedy C ?D dané pre všetky n ∈ N ako

pn =
n∑
k=0

(
n

k

)
ckdn−k =

n∑
k=0

n!

k!(n− k)!
ckdn−k,

z čoho
pn
n!

=
n∑
k=0

(ck
k!

)( dn−k
(n− k)!

)
.

Tento vzťah opäť nápadne pripomína Cauchyho súčin formálnych mocninových radov – koeficienty
týchto radov už ale nie sú priamo prvkami uvažovaných enumeračných postupností, ale koeficient
pri zn vznikne z príslušného prvku enumeračnej postupnosti predelením hodnotou n!. Dostávame sa
tak k dôležitému pojmu exponenciálnej vytvárajúcej funkcie.

Definícia 3.6.5. Exponenciálnou vytvárajúcou funkciou kombinatorickej triedy označených objektov
(C, |·|) s enumeračnou postupnosťou (cn)∞n=0 nazývame formálny mocninový rad

C(z) =
∞∑
n=0

cn
zn

n!
∈ R≥0JzK ⊆ CJzK.

Exponenciálne vytvárajúce funkcie sú teda podobné „vešiaky na koeficienty“ ako obyčajné vytvá-
rajúce funkcie, avšak konštrukcia tohto „vešiaka“ teraz zahŕňa aj faktor 1/n! pri každom koeficiente.
Ak je teda C(z) exponenciálnou vytvárajúcou funkciou triedy C s enumeračnou postupnosťou (cn)∞n=0,
je pre všetky n ∈ N člen cn tejto postupnosti daný vzťahom cn = n![zn]C(z). V tomto duchu mô-
žeme, rovnako ako pri obyčajných vytvárajúcich funkciách, pre ľubovoľnú postupnosť komplexných
čísel (cn)∞n=0 nazvať jej exponenciálnou vytvárajúcou funkciou formálny mocninový rad

C(z) =
∞∑
n=0

cn
zn

n!
.

V súvislosti s kombinatorickými triedami ale platí, že exponenciálne vytvárajúce funkcie uvažujeme
vo vzťahu k triedam označených objektov a obyčajné vytvárajúce funkcie vo vzťahu k triedam ne-
označených objektov. Exponenciálne vytvárajúce funkcie teda používame na enumeráciu označených
objektov a obyčajné vytvárajúce funkcie používame na enumeráciu neoznačených objektov.

Vyslovme ešte jednoduché tvrdenie, ktoré je pre kombinatorické triedy označených objektov obdo-
bou tvrdenia 3.2.4.
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Tvrdenie 3.6.6. Nech C = (C, |·|) je kombinatorická trieda označených objektov a C(z) je jej expo-
nenciálna vytvárajúca funkcia. Potom

C(z) =
∑
x∈C

z|x|

|x|!
,

kde súčet je cez lokálne konečný systém radov.

Dôkaz. Pre všetky n ∈ N je evidentne

[zn]
∑
x∈C

z|x|

|x|!
=
∑
x∈Cn

[zn]
z|x|

|x|!
=
∑
x∈Cn

1

n!
=
|Cn|
n!

= [zn]C(z).

3.7 Symbolická metóda pre označené objekty

Podobne ako pre kombinatorické triedy neoznačených objektov teraz preskúmame niekoľko základ-
ných konštrukcií na kombinatorických triedach označených objektov a k nim prislúchajúcich operácií
na exponenciálnych vytvárajúcich funkciách. Prípustnou konštrukciou na kombinatorických triedach
označených objektov opäť pre ľubovoľné m ∈ N nazveme m-árne čiastočné zobrazenie Φ, priraďu-
júce m-ticiam tried označených objektov B(1), . . . ,B(m) triedu označených objektov Φ(B(1), . . . ,B(m));
musí pritom platiť, že pre ľubovoľné triedy označených objektov B(1), . . . ,B(m), C(1), . . . , C(m) spĺňa-
júce B(k) ∼= C(k) pre k = 1, . . . ,m je Φ(B(1), . . . ,B(m)) definované práve vtedy, keď je definované
Φ(C(1), . . . , C(m)), pričom v takom prípade je

Φ
(
B(1), . . . ,B(m)

)
∼= Φ

(
C(1), . . . , C(m)

)
.

Ku každej prípustnej konštrukcii Φ na kombinatorických triedach označených objektov tak zodpo-
vedá čiastočné zobrazenie φ na exponenciálnych vytvárajúcich funkciách také, že pre kombinatorické
triedy označených objektov B(1), . . . ,B(m) s definovaným výstupom zobrazenia Φ a s exponenciálnymi
vytvárajúcimi funkciami B1(z), . . . , Bm(z) je φ(B1(z), . . . , Bm(z)) exponenciálnou vytvárajúcou fun-
kciou triedy Φ(B(1), . . . ,B(m)). Opäť teda môžeme začať s budovaním „slovníka“ medzi niekoľkými
štandardnými prípustnými konštrukciami Φ a k nim prislúchajúcimi operáciami φ na exponenciálnych
vytvárajúcich funkciách.

Neutrálne a atomické triedy. Podobne ako pri triedach neoznačených objektov nazveme neutrál-
nou triedou kombinatorickú triedu označených objektov E = (E , |·|) takú, že E = {1E} a |1E | = 0.
Neutrálne triedy typicky označujeme E s prípadným indexom určujúcim ich jediný prvok 1E – píšeme
teda napríklad Eε = {ε}, E� = {�} a podobne.

Atomickou triedou nazývame kombinatorickú triedu označených objektov Z = (Z, |·|) takú, že
Z = {zZ} a |zZ | = 1. Podobne ako pri neoznačených objektoch najčastejšie označujeme automatické
triedy ako Z, často s indexom určujúcim jediný prvok zZ – napríklad Za = {a}, Z• = {•}, Z◦ = {◦}.

Exponenciálnou vytvárajúcou funkciou každej neutrálnej triedy je evidentne 1 a exponenciálnou
vytvárajúcou funkciou každej atomickej triedy je z.

Disjunktné zjednotenie. Pripomeňme si z predchádzajúceho oddielu, že disjunktným zjednotením
alebo kombinatorickým súčtom kombinatorických tried označených objektov C = (C, |·|C),D = (D, |·|D)
nazývame kombinatorickú triedu označených objektov C + D = (C + D, |·|) takú, že pre všetky x ∈ C
je |(x, 1)| = |x|C a pre všetky y ∈ D je |(y, 2)| = |y|D.

Veta 3.7.1. Disjunktné zjednotenie je prípustnou konštrukciou na kombinatorických triedach označe-
ných objektov. Ak sú navyše C,D kombinatorické triedy označených objektov s exponenciálnymi vytvá-
rajúcimi funkciami C(z) resp. D(z), je exponenciálna vytvárajúca funkcia triedy C +D daná ako

C(z) +D(z).
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Dôkaz. Pre všetky n ∈ N je

n![zn](C(z) +D(z)) = n![zn]C(z) + n![zn]D(z) = |Cn|+ |Dn| = |(C +D)n|.

Súčin tried označených objektov. Poznáme už tiež operáciu súčinu kombinatorických tried ozna-
čených objektov C = (C, |·|C) a D = (D, |·|D), ktorým nazývame kombinatorickú triedu označených
objektov C ?D = (C ?D, |·|) takú, že

C ?D = {(x, y, f) | x ∈ C; y ∈ D; f ∈ Λ(|x|C , |y|D)}

a pre všetky (x, y, f) ∈ C ?D je |(x, y, f)| = |x|C + |y|D.

Veta 3.7.2. Súčin je prípustnou konštrukciou na kombinatorických triedach označených objektov.
Ak sú navyše C,D kombinatorické triedy označených objektov s exponenciálnymi vytvárajúcimi fun-
kciami C(z) resp. D(z), je exponenciálna vytvárajúca funkcia triedy C ?D daná ako

C(z) ·D(z).

Dôkaz. Z definície Cauchyho súčinu radov a tvrdenia 3.6.4 pre všetky n ∈ N dostávame

n![zn] (C(z)D(z)) = n!
n∑
k=0

(
[zk]C(z)

)(
[zn−k]D(z)

)
= n!

n∑
k=0

(
|Ck|
k!

)(
|Dn−k|

(n− k)!

)
=

=
n∑
k=0

(
n

k

)
|Ck| · |Dn−k| = |(C ?D)n| .

Podobne ako pri dvoch základných operáciách na kombinatorických triedach neoznačených objek-
tov, nie sú ani operácie + a ? na kombinatorických triedach označených objektov asociatívne; pre
ľubovoľné kombinatorické triedy označených objektov A,B, C ale evidentne

A+ (B + C) ∼= (A+ B) + C

a
A ? (B ? C) ∼= (A ? B) ? C.

S použitím konvencie stotožňovania izomorfných tried teda píšeme

A+ (B + C) = (A+ B) + C

a
A ? (B ? C) = (A ? B) ? C;

operácie + a ? teda pokladáme za asociatívne. Ak navyše k ∈ N a S1, . . . , Sk sú množiny, môžeme po-
važovať množinu S1 + . . .+Sk za zloženú z prvkov (x, j), kde j ∈ [k] a x ∈ Sj . Podobne pre kombinato-
rické triedy označených objektov (A(1), |·|1), . . . , (A(k), |·|k) považujeme triedu (A(1) + . . .+A(k), |·|)
za zloženú z práve všetkých objektov (x, j), kde j ∈ [k] a x ∈ A(j), pričom v takom prípade je
|(x, j)| = |x|j . Triedu (A(1) ? . . . ?A(k), |·|) napokon považujeme za zloženú z práve všetkých objek-
tov ((x1, . . . , xk), f), kde pre j = 1, . . . , k je xj ∈ A(j) a f : [|x1|1] + . . .+ [|xk|k]→ [|x1|1 + . . .+ |xk|k]
je bijekcia taká, že pre j = 1, . . . , k a všetky u, v ∈ [|xj |j ] s u < v je f(u, j) < f(v, j); v takom
prípade |((x1, . . . , xk), f)| = |x1|1 + . . . + |xk|k. Takáto trieda je evidentne izomorfná s ľubovoľným
uzátvorkovaním výrazu A(1) ? . . . ?A(k).
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Mocniny tried označených objektov. Keďže považujeme operáciu ? za asociatívnu, môžeme
pre všetky k ∈ N definovať k-tu mocninu Seqk(C) kombinatorickej triedy označených objektov C re-
kurzívne ako Seq0(C) = E pre neutrálnu triedu E a Seqk+1(C) = Seqk(C) ? C pre všetky k ∈ N.
Kombinatorická trieda Seqk(C) pozostáva zo všetkých postupností dĺžky k tvorených izotónne prezna-
čenými objektmi z kombinatorickej triedy C.

Veta 3.7.3. Pre všetky k ∈ N je k-ta mocnina prípustnou konštrukciou na kombinatorických trie-
dach označených objektov. Ak je navyše C kombinatorická trieda označených objektov s exponenciálnou
vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou funkciou kombinatorickej triedy Seqk(C)
formálny mocninový rad

Ck(z).

Dôkaz. Indukciou vzhľadom na k. Pre k = 0 je Seq0(C) = E , pričom exponenciálnou vytvárajúcou
funkciou triedy E je 1 = C0(z). Ak tvrdenie platí pre k = s, pre k = s+ 1 je Seqs+1(C) = Seqs(C) ?C.
Exponenciálnou vytvárajúcou funkciou triedy C je pritom C(z) a vďaka indukčnému predpokladu je
exponenciálnou vytvárajúcou funkciou triedy Seqs(C) rad Cs(z). Vďaka vete 3.7.2 je teda exponen-
ciálna vytvárajúca funkcia triedy Seqs+1(C) = Seqs(C) ? C daná ako Cs(z)C(z) = Cs+1(z).

Trieda konečných postupností. Nech C je kombinatorická trieda označených objektov taká, že
C0 = ∅. Triedou konečných postupností objektov triedy C potom nazveme kombinatorickú triedu ozna-
čených objektov

Seq(C) = E + C + (C ? C) + (C ? C ? C) + . . . =
∞∑
k=0

Seqk(C),

kde E je neutrálna trieda.

Veta 3.7.4. Prechod k triede konečných postupností je prípustnou konštrukciou na kombinatorických
triedach označených objektov. Ak je navyše C kombinatorická trieda označených objektov s C0 = ∅
a s exponenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou funkciou kombinato-
rickej triedy Seq(C) formálny mocninový rad

1

1− C(z)
.

Dôkaz. Pre všetky n ∈ N je

n![zn]
1

1− C(z)
= n![zn]

∞∑
k=0

Ck(z) =

∞∑
k=0

n![zn]Ck(z) =

∞∑
k=0

|(Seqk(C))n| = |(Seq(C))n| .

Triedy k-prvkových a konečných množín. V prípade označených objektov sa rozdiel medzi mno-
žinami a multimnožinami stráca – prvkom množiny totiž môže byť aj viackrát „ten istý“ objekt s inými
značkami; naopak všetky objekty v multimnožine sú vždy „po dvoch rôzne“ , pretože majú odlišné
značky. Namiesto tried konečných podmnožín a multimnožín teda budeme pre kombinatorické triedy
označených objektov C definovať iba triedy konečných množín pozostávajúce z niekoľkých izotónne
preznačených objektov triedy C, na ktorých poradí nezáleží.

Nech C = (C, |·|C) je kombinatorická trieda označených objektov taká, že C0 = ∅. Pre všetky
k ∈ N zaveďme na kombinatorickej triede označených objektov Seqk(C) = (Seqk(C), |·|Seqk(C)) reláciu
ekvivalencie ≡ takú, že pre ((x1, . . . , xk), f), ((y1, . . . , yk), g) ∈ Seqk(C) je

((x1, . . . , xk), f) ≡ ((y1, . . . , yk), g)

práve vtedy, keď existuje permutácia ϕ : [k] → [k] množiny [k] taká, že pre j = 1, . . . , k je xj = yϕ(j)

a f(u, j) = g(u, ϕ(j)) pre všetky u ∈ [|xj |C ]. Kombinatorickú triedu Setk(C) = (Setk(C), |·|) potom
definujeme ako

Setk(C) := Seqk(C)/ ≡,
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pričom pre všetky ((x1, . . . , xk), f) ∈ Seqk(C) je

|[((x1, . . . , xk), f)]≡| := |((x1, . . . , xk), f)|Seqk(C) = |x1|C + . . .+ |xk|C .

Ďalej položme

Set(C) :=
∞∑
j=0

Setj(C) (3.7)

a pre všetky k ∈ N definujme

Set≥k(C) :=
∞∑
j=k

Setj(C). (3.8)

Triedu Setk(C) nazývame triedou k-prvkových množín označených objektov triedy C, triedu Set(C)
nazývame triedou konečných množín označených objektov triedy C a triedu Set≥(C) nazývame triedou
najmenej k-prvkových množín označených objektov triedy C.

Veta 3.7.5. Prechod k triede k-prvkových množín je pre všetky k ∈ N prípustnou konštrukciou na kom-
binatorických triedach označených objektov. Ak je navyše C = (C, |·|) kombinatorická trieda označených
objektov s C0 = ∅ a s exponenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou
funkciou kombinatorickej triedy Setk(C) formálny mocninový rad

1

k!
Ck(z).

Dôkaz. Nech ((x1, . . . , xk), f) ∈ Seqk(C). Trieda ekvivalencie [((x1, . . . , xk), f)]≡ potom pozostáva
z práve všetkých objektov ((y1, . . . , yk), g), kde y1, . . . , yk ∈ C a g : [|y1|]+ . . .+[|yk|]→ [|y1|+ . . .+ |yk|]
je bijekcia spĺňajúca f(u, j) < f(v, j) pre všetky j ∈ [k] a u, v ∈ [|yj |] také, že u < v, pričom pre ne-
jakú permutáciu ϕ : [k] → [k] a j = 1, . . . , k je xj = yϕ(j) a f(u, j) = g(u, ϕ(j)) pre všetky u ∈ [|xj |].
Pre j = 1, . . . , k je potom g([|yϕ(j)|]×{ϕ(j)}) = f([|xj |]×{j}) – keďže sú pritom tieto obrazy množín
pre j = 1, . . . , k po dvoch disjunktné, je zobrazením g jednoznačne určená aj permutácia ϕ. Každá per-
mutácia ϕ : [k]→ [k] teda zodpovedá práve jednému objektu z triedy ekvivalencie [((x1, . . . , xk), f)]≡,
ktorá v dôsledku toho obsahuje presne k! rôznych objektov. Keďže sú všetky objekty z tejto triedy
ekvivalencie rovnakej veľkosti, pre všetky n ∈ N dostávame

|(Setk(C))n| =
1

k!
|(Seqk(C))n| .

Pre exponenciálnu vytvárajúcu funkciu Sk(z) triedy označených objektov Setk(C) a všetky n ∈ N teda
vďaka vete 3.7.3 dostávame

[zn]Sk(z) =
1

k!
[zn]Ck(z) = [zn]

1

k!
Ck(z),

z čoho vyplýva aj dokazovaná rovnosť

Sk(z) =
1

k!
Ck(z).

Dôkaz predchádzajúcej vety bol založený na pozorovaní, že pre každú postupnosť dĺžky k zloženú
z označených objektov triedy C sú ľubovoľné dve jej permutácie navzájom rozlíšiteľné, pretože na as-
poň dvoch pozíciách musia obsahovať objekty označené rôznou množinou značiek. To je pravda iba
v prípade, že C0 = ∅, čo vysvetľuje použitie tohto predpokladu už pri triedach k-prvkových množín
(a nie až pri triedach konečných množín, kde je tento predpoklad nevyhnutný).
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Veta 3.7.6. Prechod k triede konečných množín je prípustnou konštrukciou na kombinatorických trie-
dach označených objektov. Ak je navyše C kombinatorická trieda označených objektov s C0 = ∅ a s expo-
nenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou funkciou kombinatorickej triedy
Set(C) formálny mocninový rad

eC(z).

Dôkaz. Zo vzťahu (3.7) a vety 3.7.5 pre exponenciálnu vytvárajúcu funkciu S(z) triedy Set(C) dostá-
vame

S(z) =

∞∑
j=0

1

j!
Cj(z) = eC(z).

Veta 3.7.7. Prechod k triede najmenej k-prvkových množín je prípustnou konštrukciou na kombi-
natorických triedach označených objektov. Ak je navyše C kombinatorická trieda označených objektov
s C0 = ∅ a s exponenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou funkciou
kombinatorickej triedy Set≥k(C) formálny mocninový rad

eC(z) −
k−1∑
j=0

1

j!
Cj(z).

Dôkaz. Zo vzťahu (3.8) a vety 3.7.5 pre exponenciálnu vytvárajúcu funkciu S≥k(z) triedy Set≥k(C)
dostávame

S(z) =
∞∑
j=k

1

j!
Cj(z) = eC(z) −

k−1∑
j=0

1

j!
Cj(z).

Triedy orientovaných kružníc. Nech C = (C, |·|C) je kombinatorická trieda označených objektov
taká, že C0 = ∅. Pre všetky k ∈ N \ {0} zaveďme na triede Seqk(C) = (Seqk(C), |·|Seqk(C)) reláciu
ekvivalencie ≡ takú, že pre ((x1, . . . , xk), f), ((y1, . . . , yk), g) ∈ Seqk(C) je

((x1, . . . , xk), f) ≡ ((y1, . . . , yk), g)

práve vtedy, keď existuje zobrazenie ϕ : [k]→ [k] realizujúce cyklický posun – t. j.

ϕ(j) = ((j − 1 + s) mod k) + 1

pre nejaké s ∈ Zk a j = 1, . . . , k – také, že pre j = 1, . . . , k je xj = yϕ(j) a f(u, j) = g(u, ϕ(j)) pre všetky
u ∈ [|xj |C ]. Triedu Cyck(C) = (Cyck(C), |·|) orientovaných kružníc dĺžky k zložených z označených
objektov triedy C potom definujeme ako

Cyck(C) := Seqk(C)/ ≡,

pričom pre všetky ((x1, . . . , xk), f) ∈ Seqk(C) je

|[((x1, . . . , xk), f)]≡| := |((x1, . . . , xk), f)|Seqk(C) = |x1|C + . . .+ |xk|C .

Triedu Cyc(C) všetkých orientovaných kružníc zložených z označených objektov triedy C ďalej definu-
jeme ako

Cyc(C) :=

∞∑
k=1

Cyck(C). (3.9)
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Veta 3.7.8. Prechod k triede orientovaných kružníc dĺžky k je pre všetky k ∈ N \ {0} prípustnou
konštrukciou na kombinatorických triedach označených objektov. Ak je navyše C kombinatorická trieda
označených objektov s C0 = ∅ a s exponenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvá-
rajúcou funkciou kombinatorickej triedy Cyck(C) formálny mocninový rad

1

k
Ck(z).

Dôkaz. Nech ((x1, . . . , xk), f) ∈ Seqk(C). Podobne ako pri dôkaze vety 3.7.5 potom zisťujeme, že trieda
ekvivalencie [((x1, . . . , xk), f)]≡ pozostáva z práve k rôznych objektov. Keďže sú navyše všetky objekty
z tejto triedy ekvivalencie rovnakej veľkosti, pre všetky n ∈ N je

|(Cyck(C))n| =
1

k
|(Seqk(C))n| .

Pre exponenciálnu vytvárajúcu funkciu Yk(z) triedy označených objektov Cyck(C) a všetky n ∈ N tak
vďaka vete 3.7.3 dostávame

[zn]Yk(z) =
1

k
[zn]Ck(z) = [zn]

1

k
Ck(z),

a teda aj

Yk(z) =
1

k
Ck(z).

Veta 3.7.9. Prechod k triede všetkých orientovaných kružníc je prípustnou konštrukciou na kombi-
natorických triedach označených objektov. Ak je navyše C kombinatorická trieda označených objektov
s C0 = ∅ a s exponenciálnou vytvárajúcou funkciou C(z), je exponenciálnou vytvárajúcou funkciou
kombinatorickej triedy Cyc(C) formálny mocninový rad

∞∑
k=1

1

k
Ck(z) = Ln

(
1

1− C(z)

)
.

Dôkaz. Zo vzťahu (3.9) a vety 3.7.8 pre exponenciálnu vytvárajúcu funkciu Y (z) triedy Cyc(C) do-
stávame

Y (z) =

∞∑
k=1

1

k
Ck(z),

kde súčet je cez lokálne konečný systém radov, keďže [z0]C(z) = 0. Podľa vety 2.9.4 je ďalej

Ln

(
1

1− C(z)

)
= −Ln (1− C(z)) = −

∞∑
k=1

(−1)k−1

k
(−1)kCk(z) =

∞∑
k=1

1

k
Ck(z) = Y (z),

čím je dokázané aj druhé z vyjadrení exponenciálnej vytvárajúcej funkcie Y (z).

Punktácia. Punktáciu kombinatorickej triedy označených objektov C = (C, |·|C) definujeme podobne
ako pre triedy neoznačených objektov: ide o kombinatorickú triedu označených objektov ΘC = (ΘC, |·|)
pozostávajúcu z objektov triedy C, v ktorých je jedna zo značiek zvolená ako význačná - je teda

ΘC :=
∞∑
n=0

Cn × [n],

pričom pre všetky n ∈ N, x ∈ Cn a k ∈ [n] je |(x, k)| := |x|C .
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Veta 3.7.10. Punktácia je prípustnou konštrukciou na kombinatorických triedach označených objektov.
Ak je navyše C kombinatorická trieda označených objektov s exponenciálnou vytvárajúcou funkciou
C(z), je exponenciálnou vytvárajúcou funkciou kombinatorickej triedy ΘC formálny mocninový rad

z
d

dz
C(z).

Dôkaz. Pre n = 0 je

|(ΘC)n| = 0 = n! · [zn]z
d

dz
C(z)

a pre všetky n ∈ N \ {0} je

|(ΘC)n| = n |Cn| = n · n! · [zn]C(z) = n · n! · 1

n
· [zn−1]C ′(z) = n! · [zn−1]C ′(z) = n! · [zn]z

d

dz
C(z).

Exponenciálnou vytvárajúcou funkciou kombinatorickej triedy ΘC teda musí byť zC ′(z).

Substitúcia. Pod substitúciou kombinatorickej triedy označených objektov D spĺňajúcej D0 = ∅
do kombinatorickej triedy označených objektov C – resp. pod zložením tried C a D – rozumieme
kombinatorickú triedu C ◦ D pozostávajúcu z označených objektov, ktoré vzniknú z objektov triedy C
nahradením atómov izotónne preznačenými objektmi triedy D. Ak sú pritom atómy pôvodného objektu
z triedy C označené značkami 1, . . . , n, bude pre všetky k ∈ [n] atóm so značkou k nahradený tým
spomedzi objektov triedy D, ktorého minimálna značka je spomedzi dosadzovaných objektov k-ta
najmenšia. Každý takýto objekt triedy C ◦D je teda jednoznačne určený označeným objektom triedy C
veľkosti n a n-prvkovou množinou označených objektov triedy D, pričom veľkosť výsledného objektu
je daná veľkosťou tejto n-prvkovej množiny z triedy (Setn(D), |·|Setn(D)).

Nech teda (C, |·|C), (D, |·|D) sú kombinatorické triedy označených objektov. Kombinatorická trieda
označených objektov (C ◦ D, |·|) je potom daná ako

C ◦ D :=

∞∑
n=0

Cn × Setn(D),

pričom pre všetky n ∈ N, x ∈ Cn a S ∈ Setn(D) je

|(x, S)| := |S|Setn(D).

Veta 3.7.11. Substitúcia je prípustnou konštrukciou na kombinatorických triedach označených objek-
tov. Ak je navyše C kombinatorická trieda označených objektov s exponenciálnou vytvárajúcou funkciou
C(z) a D je kombinatorická trieda označených objektov s D0 = ∅ a s exponenciálnou vytvárajúcou fun-
kciou D(z), je exponenciálnou vytvárajúcou funkciou kombinatorickej triedy C ◦D formálny mocninový
rad

(C ◦D)(z) = C(D(z)).

Dôkaz. Nech (cn)∞n=0 je postupnosť komplexných čísel taká, že

C(z) =
∞∑
n=0

cn
zn

n!
.

Vďaka tvrdeniu 3.6.6 je potom exponenciálnou vytvárajúcou funkciou triedy C◦D formálny mocninový
rad ∑

u∈C◦D

z|u|

|u|!
=

∞∑
n=0

∑
x∈Cn

∑
S∈Setn(D)

z|(x,S)|

|(x, S)|!
=

∞∑
n=0

∑
x∈Cn

∑
S∈Setn(D)

z|S|Setn(D)

|S|Setn(D)!
=

=

∞∑
n=0

cn
∑

S∈Setn(D)

z|S|Setn(D)

|S|Setn(D)!
=

∞∑
n=0

cn
Dn(z)

n!
= C(D(z)) = (C ◦D)(z).
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Iteratívne a rekurzívne špecifikácie. Špecifikáciou kombinatorických tried označených objektov
nazveme, podobne ako pri triedach neoznačených objektov, systém rovníc

A(1) = Φ1

(
A(1), . . . ,A(m)

)
,

A(2) = Φ2

(
A(1), . . . ,A(m)

)
,

...

A(m) = Φm

(
A(1), . . . ,A(m)

)
,

kde A(1), . . . ,A(m) sú neznáme kombinatorické triedy označených objektov a Φ1, . . . ,Φm sú m-árne
prípustné konštrukcie na kombinatorických triedach označených objektov – typicky sa pritom stačí
obmedziť na prípustné konštrukcie, ktoré sú dané ako termy zložené z neutrálnych tried E , atomických
tried Z a štandardných prípustných konštrukcií zavedených vyššie. Podobne ako pre kombinatorické
triedy neoznačených objektov tiež špecifikácie delíme na iteratívne a rekurzívne.

3.8 Symbolická metóda pre označené objekty: príklady

Príklad 3.8.1. Všetky permutácie množín [n] pre n ∈ N, s veľkosťou danou počtom prvkov n permu-
tovanej množiny, tvoria kombinatorickú triedu označených objektov P, ktorú môžeme vyjadriť ako

P = Seq(Z),

kde Z je atomická trieda – prvkami tejto triedy sú totiž všetky postupnosti atómov označených v prí-
pade postupnosti dĺžky n ∈ N značkami 1, . . . , n. Exponenciálna vytvárajúca funkcia P (z) triedy P je
teda daná ako

P (z) =
1

1− z
,

z čoho pre všetky n ∈ N pre počet permutácií množiny [n] podľa očakávania dostávame

|Pn| = n![zn]P (z) = n!.

Príklad 3.8.2. Urnou nazveme graf o n ∈ N označených vrcholoch bez jedinej hrany. Pre všetky
n ∈ N evidentne existuje práve jeden takýto graf, čo môžeme potvrdiť aj pomocou symbolickej metódy.
Triedu U všetkých urien s veľkosťou danou počtom vrcholov totiž môžeme evidentne vyjadriť ako

U = Set(Z),

z čoho pre exponenciálnu vytvárajúcu funkciu U(z) triedy U dostávame

U(z) = ez.

Pre všetky n ∈ N je teda naozaj

|Un| = n![zn]U(z) =
n!

n!
= 1.

Príklad 3.8.3. Uvažujme teraz počet všetkých surjektívnych zobrazení z množiny [n] pre n ∈ N
do množiny [r] pre r ∈ N \ {0}. Pre r ∈ N \ {0} pevné tvorí množina takýchto surjekcií pre všetky
n ∈ N kombinatorickú triedu označených objektov S(r), kde veľkosťou surjekcie ϕ : [n]→ [r] rozumieme
číslo n. Každú takúto surjekciu pritom možno opísať postupnosťou vzorov jednotlivých prvkov 1, . . . , r,
ktorými môžu byť ľubovoľné neprázdne podmnožiny množiny [n]. Je teda

S(r) = Seqr(Set≥1(Z)),
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kde Z je atomická trieda. Pre exponenciálnu vytvárajúcu funkciu Sr(z) triedy S(r) tak dostávame
vzťah

Sr(z) = (ez − 1)r.

Pre všetky n ∈ N je teda počet surjekcií z množiny [n] do množiny [r] daný ako

∣∣∣S(r)
∣∣∣ = n![zn]Sr(z) = n![zn](ez − 1)r = n![zn]

r∑
j=0

(
r

j

)
(−1)r−jejz =

r∑
j=0

(
r

j

)
(−1)r−jjn = r!

{n
r

}
.

Tento súvis so Stirlingovými číslami druhého druhu nie je z kombinatorického hľadiska nijak prekvapivý
– každá surjekcia do r-prvkovej množiny je totiž jednoznačne daná rozkladom svojho definičného oboru
na r tried a informáciou o tom, na ktoré prvky sa zobrazia prvky jednotlivých tried rozkladu.

Príklad 3.8.4. Podobne ako v predchádzajúcom príklade môžeme uvažovať aj celkový počet všetkých
surjektívnych zobrazení z množiny [n] pre n ∈ N do ktorejkoľvek z množín [r] pre r ∈ N \ {0}. Takéto
surjekcie tvoria kombinatorickú triedu označených objektov S, kde veľkosťou surjekcie ϕ : [n] → [r]
rozumieme číslo n; túto triedu potom možno evidentne opísať ako

S = Seq(Set≥1(Z)),

z čoho pre príslušnú exponenciálnu vytvárajúcu funkciu S(z) dostávame

S(z) =
1

1− (ez − 1)
=

1

2− ez
.

Neskôr uvidíme, že pomocou analytických metód možno ľahko dospieť k asymptotickému odhadu
pre koeficienty tejto vytvárajúcej funkcie.

Príklad 3.8.5. Jazyk všetkých slov nad abecedou Σ = {a, b} môžeme chápať aj ako kombinatorickú
triedu označených objektovW, kde veľkosťou každého slova je jeho bežne definovaná dĺžka. Každé slovo
je pritom dané dvojicou urien, kde prvá urna pozostáva z atómov označených indexmi písmen a a druhá
urna pozostáva z atómov označených indexmi písmen b v danom slove. Pre triedu U z príkladu 3.8.2
je teda

W = U × U ,

z čoho pre exponenciálnu vytvárajúcu funkciu W (z) triedy W dostávame

W (z) = U2(z) = e2z.

Podľa očakávania teda pre všetky n ∈ N je

|Wn| = n![zn]W (z) = n![zn]e2z = n!
2n

n!
= 2n.

Príklad 3.8.6. Triedu P všetkých permutácií množín [n] pre n ∈ N z príkladu 3.8.1 možno špecifikovať
aj s využitím poznatku, že každú permutáciu možno práve jedným spôsobom rozložiť na disjunktné
cykly – prichádzame tak ku vzťahu

P = Set(Cyc(Z)),

z čoho pre exponenciálnu vytvárajúcu funkciu P (z) triedy P dostávame

P (z) = exp

(
Ln

(
1

1− z

))
=

1

1− z
,

čo sa zhoduje s pozorovaním z príkladu 3.8.1.
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Príklad 3.8.7. Uvažujme teraz pre všetky r ∈ N\{0} kombinatorickú triedu označených objektov P(r)

pozostávajúcu z práve všetkých permutácií množín [n] pre n ∈ N rozložiteľných na práve r disjunktných
cyklov; veľkosťou permutácie opäť rozumieme počet prvkov permutovanej množiny. Túto triedu možno
špecifikovať ako

P(r) = Setr(Cyc(Z)),

z čoho pre exponenciálnu vytvárajúcu funkciu Pr(z) triedy P(r) dostávame vzťah

Pr(z) =
1

r!

(
Ln

(
1

1− z

))r
.

Preto [n
r

]
:=
∣∣∣P(r)

n

∣∣∣ = n![zn]Pr(z) =
n!

r!
[zn]

(
Ln

(
1

1− z

))r
.

Tieto hodnoty sa zvyknú nazývať Stirlingovými číslami prvého druhu.

Príklad 3.8.8. Dismutáciou nazývame permutáciu bez pevného bodu – všetky cykly takejto permu-
tácie sú teda dĺžky aspoň 2. Uvažujme kombinatorickú triedu označených objektov D pozostávajúcu
zo všetkých dismutácií množín [n] pre n ∈ N. Veľkosťou dismutácie opäť rozumieme počet prvkov
permutovanej množiny.

Pre ľubovoľnú kombinatorickú triedu označených objektov C spĺňajúcu C0 = ∅ môžeme uvažovať
kombinatorickú triedu

Cyc>1(C) =

∞∑
k=2

Cyck(C),

ktorej exponenciálna vytvárajúca funkcia C>1(z) je evidentne daná ako

C>1(z) =

∞∑
k=2

1

k
Ck(z) = Ln

(
1

1− C(z)

)
− C(z).

Triedu D potom možno vyjadriť pomocou špecifikácie

D = Set(Cyc>1(Z)),

z čoho pre exponenciálnu vytvárajúcu funkciu D(z) triedy D dostávame

D(z) = exp

(
Ln

(
1

1− z

)
− z
)

=
e−z

1− z
.
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Kapitola 4

Lagrangeova veta o inverzii

Enumeračné úlohy často vedú k vyjadreniu obyčajnej alebo exponenciálnej vytvárajúcej funkcie C(z)
uvažovanej kombinatorickej triedy C neoznačených resp. označených objektov v podobe formálneho
mocninového radu, ktorý je vzhľadom na skladanie radov inverzný k nejakému známemu radu – vytvá-
rajúca funkcia C(z) teda môže byť daná ako z = R(C(z)) pre nejaký známy formálny mocninový rad
R(z) ∈ CJzK. Hoci v takom prípade nemusí byť vždy možné prejsť od takéhoto implicitného vyjadrenia
vytvárajúcej funkcie C(z) k jej explicitnému vyjadreniu, možno pomocou koeficientov radu R(z) vyjad-
riť koeficienty radu C(z). O vzťahu koeficientov týchto dvoch radov hovorí Lagrangeova veta o inverzii,
ktorú v nasledujúcom dokážeme a aplikujeme na riešenie niekoľkých kombinatorických úloh. Niektoré
časti tejto kapitoly vychádzajú z knihy [23].

4.1 Formálne Laurentove rady

Hoci možno Lagrangeovu vetu o inverzii dokázať napríklad aj analyticky alebo kombinatoricky, my túto
vetu dokážeme – podobne ako všetky ostatné fundamentálne vlastnosti formálnych mocninových radov
– čisto algebraicky. Takýto dôkaz si ale vyžaduje rozšíriť obor integrity CJzK formálnych mocninových
radov s komplexnými koeficientmi na jeho podielové pole C((z)) pozostávajúce zo všetkých formálnych
Laurentových radov o jednej premennej z s komplexnými koeficientmi. Formálne Laurentove rady
pritom definujeme ako zľava konečné, čo v komplexnej analýze zodpovedá existencii pólu v bode 0;
rady, ktoré by zodpovedali podstatnej izolovanej singularite v bode 0, prvkami C((z)) nie sú.

Definícia 4.1.1. Formálny Laurentov rad o jednej premennej z s komplexnými koeficientmi je po-
stupnosť R = (an)∞n=−∞, kde pre všetky n ∈ Z je an ∈ C a existuje N ∈ Z také, že pre všetky celé
čísla n < N je an = 0. Pre ľubovoľné takéto N potom namiesto R = (an)∞n=−∞ píšeme

R = R(z) = aNz
N + aN+1z

N+1 + aN+2z
N+2 + . . . =

∞∑
n=N

anz
n

a prvky postupnosti (an)∞n=−∞ nazývame koeficientmi radu R. Koeficient pri zn označujeme pre všetky
n ∈ Z ako

[zn]R(z) := an.

Koeficient a0 radu R nazývame konštantným a koeficient a−1 nazývame formálnym rezíduom radu R.
Množinu všetkých formálnych Laurentových radov o jednej premennej z s komplexnými koeficientmi
označujeme C((z)).

Každý formálny mocninový rad R(z) zároveň považujeme aj za formálny Laurentov rad taký, že
pre všetky celé čísla n < 0 je [zn]R(z) = 0. Dostávame tak inklúziu CJzK ⊆ C((z)).
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Dve najdôležitejšie operácie na formálnych Laurentových radoch – súčet a Cauchyho súčin – defi-
nujeme obdobným spôsobom ako pre formálne mocninové rady.

Definícia 4.1.2. Nech R(z), S(z) ∈ C((z)) sú formálne Laurentove rady. Súčtom radov R(z) a S(z)
nazývame formálny Laurentov rad (R+ S)(z) = R(z) + S(z) taký, že pre všetky n ∈ Z je

[zn](R+ S)(z) = [zn]R(z) + [zn]S(z).

Cauchyho súčinom radov R(z) a S(z) nazývame formálny Laurentov rad (R ·S)(z) = R(z) ·S(z) taký,
že pre všetky n ∈ Z je

[zn](R · S)(z) =

n−N∑
k=N

(
[zk]R(z)

)(
[zn−k]S(z)

)
,

kde N ∈ Z je ľubovoľné celé číslo také, že pre všetky celé čísla n < N je [zn]R(z) = [zn]S(z) = 0.

Pre všetky n ∈ N \ {0} ďalej označíme ako z−n formálny Laurentov rad R(z) ∈ C((z)) taký, že
[z−n]R(z) = 1 a [zk]R(z) = 0 pre všetky k ∈ Z \ {−n}.

Podobným spôsobom ako pre formálne mocninové rady by sme ľahko dokázali, že (C((z)) ,+, ·, 0, 1)
je obor integrity. Z uvedenej definície operácií súčtu a Cauchyho súčinu formálnych Laurentových
radov navyše ľahko vidieť, že obor integrity (CJzK,+, ·, 0, 1) je podokruhom C((z)). Dokážeme teraz, že
(C((z)) ,+, ·, 0, 1) tvorí v skutočnosti pole.

Tvrdenie 4.1.3. Nech R(z) ∈ C((z)) \ {0} je nenulový formálny Laurentov rad. Potom existuje práve
jeden formálny Laurentov rad R−1(z) taký, že R(z)R−1(z) = 1 a (C((z)) ,+, ·, 0, 1) je pole.

Dôkaz. Rad R(z) je nenulový – nech je teda N najmenšie n ∈ Z také, že [zn]R(z) 6= 0. To znamená,
že

R(z) =
∞∑
n=N

anz
n,

kde aN 6= 0. Potom

S(z) := z−NR(z) =

∞∑
n=0

an+Nz
n ∈ CJzK

je formálny mocninový rad s nenulovým konštantným koeficientom a podľa tvrdenia 2.3.2 tak k nemu
existuje multiplikatívny inverzný prvok S−1(z) ∈ CJzK. Pre rad

R−1(z) := z−NS−1(z)

ale v takom prípade dostávame

R(z)R−1(z) = zNS(z)z−NS−1(z) = S(z)S−1(z) = 1.

Obor integrity (C((z)) ,+, ·, 0, 1) tak musí byť poľom, z čoho vyplýva aj jedinečnosť multiplikatívneho
inverzného prvku R−1(z).

Formálnu deriváciu formálneho Laurentovho radu definujeme podobne ako pre formálne mocninové
rady, čo vychádza zo skutočnosti, že aj Laurentove rady analytických funkcií možno derivovať člen
po člene.

Definícia 4.1.4. Nech R(z) =
∑∞

n=N anz
n ∈ C((z)) je formálny Laurentov rad. Formálnou deriváciou

radu R(z) nazveme formálny Laurentov rad

R′(z) =
d

dz
R(z) :=

∞∑
n=N−1

(n+ 1)an+1z
n.
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4.2 Lagrangeova veta o inverzii

Začnime dôkazom jednoduchého tvrdenia charakterizujúceho tie formálne mocninové radyR(z) ∈ CJzK,
ku ktorým existuje rad inverzný vzhľadom na skladanie – čiže formálny mocninový rad S(z) ∈ CJzK
taký, že R(S(z)) = S(R(z)) = z. Keďže sú tieto zložené rady R(S(z)) a S(R(z)) definované iba
za predpokladu [z0]S(z) = 0 resp. [z0]R(z) = 0, obmedzíme sa v znení tvrdenia iba na rady s nulovými
konštantnými koeficientmi.

Tvrdenie 4.2.1. Nech R(z) ∈ CJzK je formálny mocninový rad taký, že [z0]R(z) = 0. Formálny
mocninový rad S(z) ∈ CJzK spĺňajúci [z0]S(z) = 0 a R(S(z)) = S(R(z)) = z potom existuje práve
vtedy, keď [z1]R(z) 6= 0; v takom prípade je rad S(z) daný jednoznačne. Ak navyše [z0]S(z) = 0 a je
splnená aspoň jedna z rovností R(S(z)) = z alebo S(R(z)) = z, nutne R(S(z)) = S(R(z)) = z.

Dôkaz. Nech (an)∞n=1 je postupnosť komplexných koeficientov takých, že

R(z) =
∞∑
n=1

anz
n.

Ak a1 = [z1]R(z) = 0, musí pre všetky S(z) ∈ CJzK spĺňajúce [z0]S(z) = 0 byť

[z1]R(S(z)) = [z1]
∞∑
n=1

anS
n(z) = [z1]

∞∑
n=2

anS
n(z) = 0,

a teda R(S(z)) 6= z.
Uvažujme teda prípad, keď a1 = [z1]R(z) 6= 0. Predpokladajme, že formálny mocninový rad

S(z) ∈ CJzK, daný ako

S(z) =
∞∑
n=1

bnz
n

pre postupnosť komplexných koeficientov (bn)∞n=1, vyhovuje rovnosti R(S(z)) = z. Z definície zloženia
formálnych mocninových radov potom

∞∑
n=1

anS
n(z) = a1(b1z

1 + b2z
2 + b3z

3 + . . .) + a2(b1z
1 + b2z

2 + . . .)2 + a3(b1z
1 + b2z

2 + . . .)3 + . . . = z.

Z toho vyplýva, že

a1b1 = 1,

a1b2 + a2b
2
1 = 0,

a1b3 + 2a2b1b2 + a3b
3
1 = 0,

...

Ak pritom pre nejaké n ∈ N poznáme koeficienty b1, . . . , bn, môžeme z (n+ 1)-tej z uvedených rovníc
– vďaka predpokladu a1 6= 0 – jednoznačne vyjadriť aj hodnotu koeficientu bn+1. Pre ľubovoľný rad
S(z) =

∑∞
n=1 bnz

n s koeficientmi spĺňajúcimi uvedený systém rovníc naopak evidentne R(S(z)) = z.
Existuje teda práve jeden rad S(z) ∈ CJzK taký, že [z0]S(z) = 0 a R(S(z)) = z. Z rovnosti a1b1 = 1
navyše vyplýva [z1]S(z) 6= 0 a z horeuvedených úvah dostaneme existenciu jediného radu T (z) ∈ CJzK
spĺňajúceho [z0]T (z) = 0 a S(T (z)) = z. Keďže pritom (R◦S)(z) = z, musí byť aj (R◦S)(T (z)) = T (z),
a teda R(z) = R(S(T (z))) = T (z). Dostávame tak aj druhú rovnosť S(R(z)) = z.

Keby napokon pre nejaký rad T (z) ∈ CJzK rôzny od S(z) bolo [z0]T (z) = 0 a T (R(z)) = z,
z uvedeného by vyplývalo aj R(T (z)) = z, čo by odporovalo dokázanej jednoznačnosti radu S(z)
spĺňajúceho [z0]S(z) = 0 a R(S(z)) = z.
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Môžeme teraz sformulovať a dokázať samotnú Lagrangeovu vetu o inverzii, pomocou ktorej možno
pre formálne mocninové rady R(z), S(z) ∈ CJzK spĺňajúce [z0]R(z) = [z0]S(z) = 0 a S(R(z)) = z –
a podľa tvrdenia 4.2.1 teda aj R(S(z)) = z – vyjadriť koeficienty R(z) pomocou koeficientov S(z).

Veta 4.2.2 (Lagrangeova veta o inverzii). Nech R(z), S(z) ∈ CJzK sú formálne mocninové rady také,
že [z0]R(z) = [z0]S(z) = 0 a S(R(z)) = z. Pre všetky n ∈ N \ {0} potom

[zn]R(z) =
1

n
[z−1]

1

Sn(z)
. (4.1)

Špeciálne v prípade, keď S(z) = z/φ(z) pre nejaký formálny mocninový rad φ(z) ∈ CJzK spĺňajúci
[z0]φ(z) 6= 0 a R(z) = zφ(R(z)), je pre všetky n ∈ N \ {0}

[zn]R(z) =
1

n
[zn−1]φn(z) (4.2)

a pre všetky n ∈ N \ {0} a k ∈ N je1

[zn]Rk(z) =
k

n
[zn−k]φn(z). (4.3)

Poznámka 4.2.3. Pri vzťahu (4.2) sa niekedy zvykne hovoriť o inverzii v Lagrangeovom tvare, kým
vzťah (4.3) sa nazýva Bürmannovým tvarom Lagrangeovej vety o inverzii.

Dôkaz vety 4.2.2. Podľa tvrdenia 4.2.1 musí byť aj R(S(z)) = z. Ak teda

R(z) =

∞∑
n=1

anz
n

a

S(z) =

∞∑
n=1

bnz
n

pre nejaké postupnosti komplexných koeficientov (an)∞n=1 a (bn)∞n=1, je

R(S(z)) =
∞∑
k=1

akS
k(z) = z. (4.4)

Pokúsme sa pre dané n ∈ N z tohto vzťahu vyjadriť koeficient an. Využijeme pritom očividnú vlastnosť
formálnych Laurentových radov: pre rezíduum derivácie ľubovoľného L(z) ∈ C((z)) platí [z−1]L′(z) = 0.

Derivovaním rovnosti (4.4) dostávame

∞∑
k=1

kakS
k−1(z)S′(z) = 1.

Rad S(z) je vďaka tvrdeniu 4.2.1 nenulový a rovnosť tak môžeme predeliť radom Sn(z):

1

Sn(z)
=
∞∑
k=1

kakS
k−n−1(z)S′(z) =

n−1∑
k=1

kak
k − n

d

dz
Sk−n(z) + nanS

−1(z)S′(z) +
∞∑

k=n+1

kak
k − n

d

dz
Sk−n(z).

1Vo všeobecnosti nemusí byť k ≤ n, takže koeficient [zn−k]φn(z) treba na pravej strane nasledujúcej rovnosti inter-
pretovať v zmysle definície pre Laurentove rady; keďže je ale φn(z) formálny mocninový rad, bude v prípade k > n vždy
[zn−k]φn(z) = 0.
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Keďže je teda rezíduum formálnej derivácie každého formálneho Laurentovho radu nulové a keďže
podľa tvrdenia 4.2.1 musí byť b1 6= 0, nutne

[z−1]
1

Sn(z)
= [z−1]nanS

−1(z)S′(z) = nan[z−1]
S′(z)

S(z)
= nan[z−1]

b1 + 2b2z + 3b3z
2 + . . .

b1z + b2z2 + b3z3 + . . .
=

= nan[z−1]

(
b1 + 2b2z + 3b3z

2 + . . .

b1z
· 1

1 + (b2/b1)z + (b3/b1)z2 + . . .

)
= nan,

čím je dokázaná rovnosť (4.1):

an = [zn]R(z) =
1

n
[z−1]

1

Sn(z)
.

Nech ďalej S(z) = z/φ(z) pre φ(z) ∈ CJzK také, že [z0]φ(z) 6= 0. Potom

S(R(z)) =
R(z)

φ(R(z))

a rovnosti R(S(z)) = S(R(z)) = z sú tak ekvivalentné rovnosti R(z) = zφ(R(z)). V takom prípade je

an = [zn]R(z) =
1

n
[z−1]

1

Sn(z)
=

1

n
[zn−1]

zn

Sn(z)
=

1

n
[zn−1]φn(z),

čo dokazuje rovnosť (4.2).
Pri dôkaze rovnosti (4.3) napokon môžeme postupovať podobne ako vyššie. Predpokladajme, že

pre k ∈ N \ {0} je

Rk(z) =
∞∑
n=1

cnz
n

pre nejakú postupnosť koeficientov (cn)∞n=1. Keďže R(S(z)) = z, musí byť Rk(S(z)) = zk – čiže

Rk(S(z)) =
∞∑
j=1

cjS
j(z) = zk.

Derivovaním tejto rovnosti dostávame

∞∑
j=1

jcjS
j−1(z)S′(z) = kzk−1.

Z toho

kzk−1

Sn(z)
=

∞∑
j=1

jcjS
j−n−1(z)S′(z) =

n−1∑
j=1

jcj
j − n

d

dz
Sj−n(z) + nanS

−1(z)S′(z) +

∞∑
j=n+1

jcj
j − n

d

dz
Sj−n(z)

a rovnakým spôsobom ako vyššie tak zisťujeme, že

[z−1]
kzk−1

Sn(z)
= [z−1]ncnS

−1(z)S′(z) = ncn.

Skutočne teda

cn = [zn]Rk(z) =
1

n
[z−1]

kzk−1

Sn(z)
=
k

n
[zn]

zk+n

Sn(z)
=
k

n
[zn]zkφn(z) =

k

n
[zn−k]φn(z).

Pre k = 0 je rovnosť (4.3) triviálna – veta je teda dokázaná.
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Ukážme si teraz príklad kombinatorickej aplikácie Lagrangeovej vety o inverzii – pôjde o zovšeobec-
nenie úlohy o počte plných binárnych stromov z príkladov 1.3.1 a 3.5.3.

Príklad 4.2.4. Uvažujme kombinatorickú triedu T (t) neoznačených objektov pozostávajúcu zo všet-
kých plných t-árnych stromov pre nejaké t ∈ N \ {0} – čiže zo všetkých usporiadaných zakorenených
stromov, ktorých vnútorné vrcholy majú vždy presne t synov. Veľkosť stromu je daná počtom vrcholov.

Triedu T (t) môžeme opísať pomocou rekurzívnej špecifikácie

T (t) = Z• + Z• ×
(
T (t)

)t
,

kde Z• = {•} je atomická trieda. Pre obyčajnú vytvárajúcu funkciu Tt(z) triedy T (t) tak dostávame
vzťah

Tt(z) = z(1 + T tt (z)).

Pre rad φt(z) = 1 + zt je teda Tt(z) = zφt(Tt(z)) a z Lagrangeovej vety o inverzii preto vyplýva, že
pre všetky n ∈ N \ {0} je∣∣∣T (t)

n

∣∣∣ = [zn]Tt(z) =
1

n
[zn−1]φnt (z) =

1

n
[zn−1](1 + zt)n =

{ 1
n

(
n

(n−1)/t

)
ak n ≡ 1 (mod t),

0 inak,

kde v rámci posledného kroku sme použili binomickú vetu. Všimnime si, že v súlade s príkladom 1.3.1
a príkladom 3.5.3 pre t = 2 a všetky n ∈ N dostávame∣∣∣T (2)

2n+1

∣∣∣ = [z2n+1]T2(z) =
1

2n+ 1

(
2n+ 1

n

)
=

(2n+ 1)!

(2n+ 1)(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
= Cn.

4.3 Enumerácia označených stromov: Cayleyho vzorec

Odvodíme teraz známy Cayleyho vzorec, podľa ktorého existuje presne nn−2 stromov o n ∈ N \ {0}
označených vrcholoch; alternatívne ho možno formulovať ako tvrdenie hovoriace, že existuje presne
nn−1 zakorenených stromov o n ∈ N \ {0} označených vrcholoch. Práve túto druhú verziu tvrdenia
teraz dokážeme s použitím symbolickej metódy a Lagrangeovej vety o inverzii.

Veta 4.3.1. Pre všetky n ∈ N\{0} existuje presne nn−1 zakorenených stromov o n vrcholoch označených
prvkami množiny [n].

Dôkaz. Kombinatorickú triedu označených objektov T , pozostávajúcu zo všetkých zakorenených stro-
mov s veľkosťou danou počtom vrcholov, možno vyjadriť pomocou rekurzívnej špecifikácie

T = Z ? Set(T );

každý zakorenený strom totiž pozostáva z koreňa a niekoľkých podstromov, ktoré možno považovať
za zakorenené vo vrcholoch spojených hranou s koreňom pôvodného stromu. Pre exponenciálnu vytvá-
rajúcu funkciu T (z) triedy T tak dostávame vzťah

T (z) = zeT (z).

Z Lagrangeovej vety o inverzii preto vyplýva, že pre všetky n ∈ N \ {0} je

|Tn| = n![zn]T (z) = n! · 1

n
[zn−1]enz = n! · 1

n
· nn−1

(n− 1)!
= nn−1.
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Dôsledok 4.3.2 (Cayleyho vzorec). Pre všetky n ∈ N\{0} existuje presne nn−2 stromov o n vrcholoch
označených prvkami množiny [n].

Dôkaz. Nech U je kombinatorická trieda všetkých takýchto označených stromov s veľkosťou danou
počtom vrcholov. Kombinatorická trieda T z dôkazu predchádzajúcej vety je k nej potom vo vzťahu

ΘU = T .

Z toho vyplýva, že pre všetky n ∈ N je |Tn| = |(ΘU)n| = n|Un|. Keďže teda z vety 4.3.1 máme
|Tn| = nn−1, prichádzame k výsledku |Un| = nn−2.

Existuje aj viacero iných dôkazov Cayleyho vzorca, z ktorých mnohé využívajú omnoho elementár-
nejšie nástroje, než sú vytvárajúce funkcie, symbolická metóda a Lagrangeova veta o inverzii. Na ukážku
teraz uveďme bijektívny dôkaz založený na tzv. Prüferových kódoch.

Bijektívny dôkaz Cayleyho vzorca. Pre n = 1 existuje práve jeden strom o n označených vrcholoch,
pričom nn−2 = 1. Predpokladajme teda, že n ≥ 2. Ku každému stromu T o n vrcholoch označených
prvkami množiny [n] potom možno priradiť postupnosť prvkov tejto množiny [n] dĺžky (n − 2) –
tzv. Prüferov kód stromu T – definovanú nasledujúcim spôsobom: nech T1, . . . , Tn−1 sú stromy také,
že T1 = T a strom Tk+1 vznikne pre k = 1, . . . , n − 2 zo stromu Tk odstránením listu s najmenšou
značkou; nech vk ∈ [n] je značka vrcholu, s ktorým list odstránený v k-tom kroku susedí. Prüferovým
kódom stromu T potom nazveme postupnosť (v1, . . . , vn−2).

Dokážeme, že každá postupnosť prvkov [n] dĺžky n − 2 je Prüferovým kódom nejakého stromu.
Nech (v1, . . . , vn−2) ∈ [n]n−2. Ak je táto postupnosť Prüferovým kódom nejakého stromu T , musí byť
pre k = 1, . . . , n− 2 jeho k-tym odstráneným listom vrchol so značkou

`k = min ([n] \ ({`1, . . . , `k−1} ∪ {vk, . . . , vn−2})) ; (4.5)

čísla `1, . . . , `k−1 sú totiž práve všetky značky vrcholov odstránených v predchádzajúcich krokoch a spo-
medzi zvyšných vrcholov so značkami z [n]\{`1, . . . , `k−1} sú listmi stromu Tk práve tie z týchto vrcho-
lov, ktoré sa nevyskytujú medzi vrcholmi so značkami vk, . . . , vn−2. Keby bol totiž listom stromu Tk
vrchol s niektorou zo značiek vk, . . . , vn−2 – napríklad vj pre j ∈ {k, . . . , n − 2} – v j-tom kroku by
sme odstránili s ním susedný list a strom Tj+1 by pozostával z práve jedného vrcholu; to je spor,
pretože každý zo stromov T1, . . . , Tn−1 obsahuje aspoň dva vrcholy. Keby bol naopak niektorý vrchol
so značkou z [n] \ ({`1, . . . , `k−1} ∪ {vk, . . . , vn−2}) vnútorným vrcholom stromu Tk, museli by sme
pre nejaké j ∈ {k, . . . , n − 2} odstrániť v j-tom kroku celého procesu jeho suseda, pretože vo vý-
sledku musíme získať strom Tn−1 bez vnútorných vrcholov; to ale znamená, že ide o vrchol so znač-
kou vj 6∈ [n] \ ({`1, . . . , `k−1} ∪ {vk, . . . , vn−2}), čo je opäť spor. V rámci (4.5) teda naozaj vyberáme
najmenšiu značku listu v strome Tk.

Týchto n− 2 postupne odstránených listov jednoznačne určuje n− 2 hrán stromu T , ktoré musia
pre k = 1, . . . , n − 2 spájať vrcholy so značkami `k a vk. Zvyšná hrana stromu T spája jediné dva
vrcholy so značkami z [n] \ {`1, . . . , `n−2}.

K ľubovoľnej postupnosti (v1, . . . , vn−2) ∈ [n]n−2 teraz môžeme skonštruovať graf tak, že začneme
s grafom G1 o n vrcholoch so značkami 1, . . . , n a s jedinou hranou spájajúcou dvojicu rôznych vrcholov
so značkami z [n] \ {`1, . . . , `n−2} – keďže `1, . . . , `n−2 sú evidentne po dvoch rôzne, je táto dvojica
vrcholov daná jednoznačne. Pre k = 2, . . . , n − 1 teraz graf Gk vznikne z grafu Gk−1 pridaním hrany
spájajúcej vrcholy so značkami `n−k a vn−k. Musíme dokázať, že graf Gn−1, ktorý týmto postupom
nakoniec dostaneme, bude stromom.

Keďže má Gn−1 presne n−1 hrán, stačí dokázať acyklickosť grafov G1, . . . , Gn−1. Dokážeme o niečo
silnejšie tvrdenie: pre k = 1, . . . , n − 1 je graf acyklický a neobsahuje žiadnu hranu incidentnú s vr-
cholom s niektorou zo značiek {`1, . . . , `n−k−1}. Graf G1 obsahuje jedinú hranu, takže určite acyklický
je; priamo z jeho definície navyše vyplýva, že jeho jediná hrana nie je incidentná so žiadnym vrcho-
lom s niektorou zo značiek {`1, . . . , `n−2}. Nech je ďalej graf Gk pre k ∈ [n − 2] acyklický a nech
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neobsahuje žiadnu hranu incidentnú s vrcholom s niektorou zo značiek {`1, . . . , `n−k−1}. Graf Gk+1

vznikne z grafu Gk pridaním hrany incidentnej s vrcholom so značkou `n−k−1, pričom s týmto vrcho-
lom nie je incidentná žiadna hrana grafu Gk – acyklický teda musí byť aj graf Gk+1. Novopridaná
hrana navyše spája vrchol so značkou `n−k−1 s vrcholom so značkou vn−k−1 a zo (4.5) vyplýva, že
vn−k−1 6∈ {`1, . . . , `n−k−2}. Graf Gk+1 teda neobsahuje žiadnu hranu incidentnú s vrcholom s niekto-
rou zo značiek {`1, . . . , `n−k−2}.

Zostáva dokázať, že zobrazenie priraďujúce stromu jeho Prüferov kód a zobrazenie priraďujúce
postupnostiam z [n]n−2 pre n ∈ N \ {0, 1} príslušný strom Gn−1 sú vzájomné inverzné bijekcie.
Z našej argumentácie v súvislosti s definíciou stromu Gn−1 vyplýva, že ak k Prüferovmu kódu ľu-
bovoľného stromu T opísaným spôsobom zostrojíme strom Gn−1, bude Gn−1 = T . Potrebujeme ešte
dokázať, že Prüferovým kódom stromu Gn−1 zostrojeného vyššie opísaným spôsobom k postupnosti
(v1, . . . , vn−2) ∈ [n]n−2 je opäť postupnosť (v1, . . . , vn−2).

Nech teda T = Gn−1 opísaným spôsobom prislúcha k nejakej postupnosti (v1, . . . , vn−2) ∈ [n]n−2

a nech T1, . . . , Tn−1 sú stromy získané zo stromu T ako v definícii Prüferovho kódu. Potrebujeme
dokázať, že pre k = 1, . . . , n − 2 je list s najmenšou značkou v strome Tk susedný vrcholu vk. Vyššie
sme ale už videli, že najmenšia značka `k listu v strome Tk je daná ako

`k = min ([n] \ ({`1, . . . , `k−1} ∪ {vk, . . . , vn−2})) .

Strom Tk pritom pozostáva z vrcholov so značkami [n] \ {`1, . . . , `k−1} a obsahuje všetky hrany stromu
T = Gn−1 spájajúce dvojice takýchto vrcholov. Keďže navyše pre j = 1, . . . , k − 1 je

`j = min ([n] \ ({`1, . . . , `j−1} ∪ {vj , . . . , vn−2})) ,

nutne vk 6∈ {`1, . . . , `k−1}. Strom Tk teda obsahuje vrcholy so značkami `k aj vk, a teda musí obsahovať
aj hranu medzi týmito dvoma vrcholmi, ktorá je súčasťou stromu T = Gn−1 – vrchol s minimálnou
značkou v strome Tk teda naozaj musí susediť s vrcholom so značkou vk.

Veľké množstvo ďalších rôznorodých dôkazov Cayleyho vzorca je zozbieraných v knihe Matouška
a Nešetřila [16].
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Kapitola 5

Základy analytickej kombinatoriky

Vytvárajúce funkcie kombinatorických tried sme doposiaľ chápali výhradne ako formálne mocninové
rady – nešlo teda o funkcie v pravom slova zmysle, nedávalo zmysel hovoriť o dosadzovaní hodnôt
za premennú z a otázky konvergencie radov pri takomto pohľade nehrali žiadnu rolu. V našom ponímaní
sú napríklad dobre definovanými aj obyčajné vytvárajúce funkcie ako napríklad

A(z) =
∞∑
n=0

22nzn

alebo

B(z) =
∞∑
n=0

n! zn

– hoci ide o mocninové rady s nulovým polomerom konvergencie, ktoré tak nie sú reprezentáciami
žiadnej funkcie analytickej v bode 0.

V nasledujúcich partiách tohto textu sa budeme zaoberať predovšetkým analýzou asymptotických
vlastností koeficientov vytvárajúcich funkcií – jedným z najdôležitejších problémov enumeratívnej kom-
binatoriky. Tu sa naopak analytický pohľad na vytvárajúce funkcie ukazuje ako rozhodujúci. Uvidíme,
že pokiaľ je vytvárajúca funkcia daná mocninovým radom s nenulovým polomerom konvergencie –
a teda reprezentuje funkciu analytickú v bode 0 – možno na analýzu asymptotických vlastností jej ko-
eficientov aplikovať nástroje komplexnej analýzy, ako napríklad Cauchyho integrálny vzorec; kľúčovú
úlohu pritom budú zohrávať singularity takto analyticky chápaných vytvárajúcich funkcií. Vstúpime
tak na pôdu analytickej kombinatoriky.

Namiesto oboru integrity formálnych mocninových radov sa teda poväčšine budeme pohybovať
v jeho podokruhu tvorenom komplexnými funkciami analytickými v bode 0. Symbolická metóda – ako aj
všetky ďalšie techniky vybudované na čisto formálnej úrovni – však vďaka pozorovaniam učineným
v druhej a tretej kapitole zostanú použiteľné aj naďalej. Ak sa napríklad vytvárajúca funkcia nejakej
kombinatorickej triedy, vyjadrená pomocou elementárnych radov a ∈ C a z a štandardných operácií
na formálnych mocninových radoch ukáže byť konvergentnou na okolí bodu 0, môžeme ihneď prejsť
do komplexnej analýzy a tento nový pohľad na vytvárajúcu funkciu využiť na analýzu jej koeficientov.

V tejto kapitole sa budeme zaoberať najzákladnejšími analytickými vlastnosťami – obyčajných
aj exponenciálnych – vytvárajúcich funkcií. Budeme teda skúmať vlastnosti holomorfných funkcií,
ktorých Maclaurinov rad má nezáporné reálne koeficienty (čo je prípad všetkých vytvárajúcich funkcií)
a špeciálne prirodzené koeficienty (ktorými sa vyznačujú obyčajné vytvárajúce funkcie). Pôjde pritom
o matematický základ potrebný na skúmanie asymptotických vlastností koeficientov vytvárajúcich
funkcií metódou analýzy singularít, ktorou sa budeme zaoberať v nasledujúcej kapitole.
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5.1 Polomer konvergencie radu a asymptotické vlastnosti koeficientov

Na úvod nášho skúmania radov z podokruhu H0 oboru integrity CJzK dokážme jednoduché tvrdenie
dávajúce do súvisu polomer konvergencie Maclaurinovho radu analytickej funkcie s asymptotickým
správaním jej koeficientov, ktoré okrem iného poskytuje aj veľmi jednoduchú charakterizáciu pod-
okruhu H0 okruhu CJzK. Pôjde pritom o variant vety o polomere konvergencie mocninového radu
známej z komplexnej analýzy.

Tvrdenie 5.1.1. Nech R(z) ∈ CJzK je formálny mocninový rad. Potom R(z) ∈ H0 práve vtedy, keď
existuje reálne číslo r ≥ 0 také, že pre n→∞ je |[zn]R(z)| = O(rn). Polomer konvergencie funkcie R(z)
v bode 0 je v takom prípade daný ako

% =
1

inf {r ≥ 0 | |[zn]R(z)| = O(rn)}
,

kde pre účely tohto tvrdenia je 1/0 =∞.

Dôkaz. Podľa vety o polomere konvergencie [12, veta 3.2.3] je polomer konvergencie % mocninového
radu s koeficientmi rovnakými ako v R(z) ∈ CJzK daný vzťahom

% =
1

lim supn→∞
n
√
|[zn]R(z)|

,

kde 1/0 =∞ a 1/∞ = 0. Polomer konvergencie % je teda nenulový práve vtedy, keď je horná limita

lim sup
n→∞

n
√
|[zn]R(z)|

konečná. Za tohto predpokladu však zároveň platí rovnosť

lim sup
n→∞

n
√
|[zn]R(z)| = inf {r ≥ 0 | |[zn]R(z)| = O(rn)} , (5.1)

o čom sa môžeme presvedčiť nasledovne:

lim sup
n→∞

n
√
|[zn]R(z)| = lim

m→∞
sup
n≥m

n
√
|[zn]R(z)| =

= lim
m→∞

inf

{
r ≥ 0

∣∣∣∣ sup
n≥m

n
√
|[zn]R(z)| ≤ r

}
=

= lim
m→∞

inf
{
r ≥ 0

∣∣∣ ∀n ≥ m : n
√
|[zn]R(z)| ≤ r

}
=

= lim
m→∞

inf {r ≥ 0 | ∀n ≥ m : |[zn]R(z)| ≤ rn } (∗)
=

(∗)
= inf

m∈N
inf {r ≥ 0 | ∀n ≥ m : |[zn]R(z)| ≤ rn } =

= inf {r ≥ 0 | ∃m ∈ N ∀n ≥ m : |[zn]R(z)| ≤ rn } (∗∗)
=

(∗∗)
= inf {r ≥ 0 | ∃C > 0 ∃m ∈ N ∀n ≥ m : |[zn]R(z)| ≤ Crn } =

= inf {r ≥ 0 | |[zn]R(z)| = O(rn)} .

Rovnosť s označením (∗) tu vyplýva z toho, že ide o limitu postupnosti infím rastúceho reťazca množín,
ktorá je nutne nerastúca. Predposlednú rovnosť (∗∗) možno dokázať nasledovne: keďže je množina
na pravej strane rovnosti nadmnožinou množiny na ľavej strane, nutne

inf {r ≥ 0 | ∃m ∈ N ∀n ≥ m : |[zn]R(z)| ≤ rn } ≥
≥ inf {r ≥ 0 | ∃C > 0 ∃m ∈ N ∀n ≥ m : |[zn]R(z)| ≤ Crn } .
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Za účelom sporu predpokladajme, že je táto nerovnosť ostrá a označme

r0 = inf {r ≥ 0 | ∃C > 0 ∃m ∈ N ∀n ≥ m : |[zn]R(z)| ≤ Crn } .

Pre ľubovoľné ε > 0 potom existuje r ∈ [r0, r0 + ε] také, že pre nejaké C > 0, nejaké m ∈ N a všetky
n ≥ m je |[zn]R(z)| ≤ Crn; súčasne však musí existovať δ > 0 také, že pre žiadne s ∈ [r0, r0 + δ]
neexistuje m′ ∈ N také, že pre všetky n ≥ m′ je |[zn]R(z)| ≤ sn. To však nie je možné – ak napríklad
vezmeme ε = δ/2 a k nemu prislúchajúce r ∈ [r0, r0 + ε] a C > 0, môžeme uvažovať

s = r + δ/2 ∈ [r0, r0 + δ].

Pre dostatočne veľké n potom musí byť sn ≥ Crn – existuje teda aj m′ ∈ N také, že pre všetky n ≥ m′
je |[zn]R(z)| ≤ sn: spor. To dokazuje rovnosť (∗∗) a tým pádom aj rovnosť (5.1).

Pre rady s nenulovým polomerom konvergencie % teda existuje r ≥ 0 také, že pre n → ∞ je
|[zn]R(z)| = O(rn) a samotný polomer konvergencie % je daný ako v znení tvrdenia. Zostáva dokázať,
že existencia reálneho čísla r ≥ 0 spĺňajúceho |[zn]R(z)| = O(rn) pre n → ∞ implikuje nenulovosť
polomeru konvergencie uvažovaného radu. V takom prípade ale existujú C > 0 a m ∈ N také, že
pre všetky prirodzené čísla n ≥ m je |[zn]R(z)| ≤ Crn, v dôsledku čoho pre polomer konvergencie %
dostávame

%−1 = lim sup
n→∞

n
√
|[zn]R(z)| ≤ lim sup

n→∞
n
√
|Crn| = r <∞,

takže skutočne % > 0.

Dôsledok 5.1.2. Nech R(z) ∈ R≥0JzK je formálny mocninový rad. Potom R(z) ∈ H0 práve vtedy, keď
existuje reálne číslo r ≥ 0 také, že pre n→∞ je [zn]R(z) = O(rn). Polomer konvergencie funkcie R(z)
v bode 0 je v takom prípade daný ako

% =
1

inf {r ≥ 0 | [zn]R(z) = O(rn)}
,

kde pre účely tohto tvrdenia je 1/0 =∞.

Polomer konvergencie funkcie analytickej v bode 0 teda úzko súvisí s asymptotickými vlastnosťami
koeficientov jej Maclaurinovho radu. Pozorovania učinené v rámci tohto oddielu už onedlho preformu-
lujeme do podoby prvého princípu asymptotiky koeficientov – získame tak nástroj na „hrubozrnnú“
analýzu koeficientov vytvárajúcich funkcií a súčasne aj náš prvý jednoduchý výsledok z oblasti analy-
tickej kombinatoriky.

5.2 Pringsheimova veta

Dokážeme teraz ďalšie dôležité tvrdenie o funkciách, ktorých Maclaurinov rad má nezáporné reálne
koeficienty. Vieme, že každá funkcia, ktorej Maclaurinov rad má polomer konvergencie % spĺňajúci
0 < % < ∞, musí mať aspoň jednu singularitu s absolútnou hodnotou % [12, veta 13.2.1] – každú
takúto singularitu budeme nazývať dominantnou. Takzvaná Pringsheimova veta je spresnením tohto
tvrdenia pre funkcie z H0 ∩ R≥0JzK s nenulovým konečným polomerom konvergencie %: hovorí, že
singularitou každej takejto funkcie musí byť aj samotný polomer konvergencie %. Ak má teda funkcia
z H0∩R≥0JzK singularitu, je medzi jej dominantnými singularitami vždy aj nejaké kladné reálne číslo.
Dôkaz Pringsheimovej vety možno nájsť napríklad aj v [26].
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Veta 5.2.1 (Pringsheimova veta). Nech R(z) ∈ H0 ∩ R≥0JzK je funkcia s polomerom konvergencie %
Maclaurinovho radu spĺňajúcim 0 < % <∞. Potom je bod % singularitou funkcie R(z).

Dôkaz. Predpokladajme, že pre z ∈ D(0, %) je

R(z) =
∞∑
n=0

anz
n,

kde pre všetky n ∈ N je an nezáporné reálne číslo. Na D(0, %) sú potom holomorfné aj všetky derivácie
R(m)(z) funkcie R pre m ∈ N [12, dôsledok 6.3.4], pričom pre všetky z ∈ D(0, %) je

R(m)(z) =
∞∑
n=m

nm anz
n−m; (5.2)

ide tu o dôsledok tvrdenia 2.4.2 a skutočnosti, že formálna derivácia sa pre rady z H0 správa rovnako
ako bežná analytická derivácia.

Za účelom sporu teraz predpokladajme, že bod % nie je singularitou funkcie R(z). To znamená, že
existuje priame analytické predĺženie (S(z), D(%, r)) analytického prvku (R(z), D(0, %)) v bode %, kde
r > 0 je reálne číslo. Táto situácia je znázornená na obrázku 5.1.

0 %

%

(R(z), D(0, %))

r

(S(z), D(%, r))

Obr. 5.1: Analytické predĺženie funkcie R(z) v bode %.

Z definície priameho analytického predĺženia vyplýva R(z) = S(z) pre všetky z ∈ D(0, %)∩D(%, r).
Môžeme teda obor definície funkcie R(z) rozšíriť na D(0, %) ∪D(%, r) a namiesto S(z) pre z ∈ D(%, r)
písať opäť len R(z).

Zvoľme teraz reálne h spĺňajúce 0 < h < % a reálne ε > h tak, aby pre nejaké δ > 0 platilo
D(%− h, ε+ δ) ⊆ D(%, r).1 Táto situácia je znázornená na obrázku 5.2.

(R(z), D(0, %))

(R(z), D(%, r))

%− h

ε

Obr. 5.2: Voľba hodnôt h a ε.

1Za predpokladu r ≤ %, nespôsobujúceho ujmu na všeobecnosti, možno vziať napríklad h < r/3 a ε = 2h.
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Funkcia R(z) je v (nezápornom reálnom) bode % − h analytická – možno ju tam teda rozvinúť
do Taylorovho radu

R(z) =
∞∑
m=0

bm(z − %+ h)m. (5.3)

Keďže je R(z) analytická na D(% − h, ε + δ) ⊆ D(%, r), z vety o Taylorových radoch [12, veta 7.2.1]
vyplýva konvergencia tohto radu pre všetky z ∈ D(%− h, ε). Podľa tej istej vety a podľa (5.2) navyše
pre koeficienty bm pre všetky m ∈ N dostávame vzťah

bm =
R(m)(%− h)

m!
=

1

m!

∞∑
n=m

nm an(%− h)n−m =
∞∑
n=m

(
n

m

)
an(%− h)n−m.

Keďže sú všetky koeficienty an nezáporné reálne a keďže % − h > 0, sú všetky koeficienty bm takisto
nezáporné reálne.

Vyhodnoťme teraz rad (5.3) v bode z = %− h+ ε. Zisťujeme, že

R(%− h+ ε) =
∞∑
m=0

bmε
m =

∞∑
m=0

( ∞∑
n=m

(
n

m

)
an(%− h)n−m

)
εm =

=

∞∑
n=0

n∑
m=0

(
n

m

)
an(%− h)n−mεm =

∞∑
n=0

an

(
n∑

m=0

(
n

m

)
(%− h)n−mεm

)
=

=
∞∑
n=0

an (%− h+ ε)n ,

kde všetky rady konvergujú a zámena nekonečných súčtov je odôvodnená nezápornosťou všetkých
členov. Maclaurinov rad pre R(z) teda konverguje v bode %−h+ ε > %, pričom podľa vety o polomere
konvergencie musí v tomto bode divergovať: spor.

5.3 Prvý princíp asymptotiky koeficientov

Tvrdenie 5.1.1 vyjadruje polomer konvergencie analytickej funkcie pomocou asymptotických vlastností
koeficientov jej Maclaurinovho radu. Možno ho však chápať aj „naopak“ – ako tvrdenie opisujúce
asymptotické správanie koeficientov pomocou polomeru konvergencie.

V špeciálnom prípade vytvárajúcich funkcií teda ide o jednoduchý nástroj na „hrubozrnnú“ ana-
lýzu ich koeficientov na základe polomeru konvergencie, alebo ekvivalentne – podľa Pringsheimovej
vety – na základe kladnej dominantnej singularity. Tento ekvivalentný pohľad na tvrdenie 5.1.1 expli-
citne sformulujeme vo vete 5.3.5, ktorá sa tak stane naším prvým jednoduchým výsledkom z oblasti
analytickej kombinatoriky, umožňujúcim skúmať „exponenciálny rast“ hornej hranice koeficientov vy-
tvárajúcich funkcií, pričom akákoľvek „subexponenciálna zložka“ bude takouto analýzou zanedbaná.
Táto idea je sformalizovaná v nasledujúcej definícii.

Definícia 5.3.1. Nech (an)∞n=0 je postupnosť komplexných čísel. Hovoríme, že (an)∞n=0 je exponenciál-
neho rádu q > 0 – a píšeme an ./ qn – ak

q = inf {r > 0 | |an| = O(rn) pre n→∞} .

Namiesto an ./ 1n budeme písať an ./ 1 a namiesto an ./
(
q−1
)n budeme písať an ./ q−n.

Takto definovaný pojem exponenciálneho rádu možno zachytiť rôznymi ekvivalentnými spôsobmi,
ako ukazujú napríklad nasledujúce tri tvrdenia.
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Tvrdenie 5.3.2. Nech (an)∞n=0 je postupnosť komplexných čísel a q > 0. Potom an ./ q
n práve vtedy,

keď
q = lim sup

n→∞
n
√
|an|.

Dôkaz. Z tvrdenia 5.1.1 vyplýva, že za uvedených predpokladov je q = %−1, kde % je polomer konver-
gencie mocninového radu

R(z) =
∞∑
n=0

anz
n.

Vďaka vete o polomere konvergencie ale súčasne aj

%−1 = lim sup
n→∞

n
√
|an|

a tvrdenie je dokázané.

Tvrdenie 5.3.3. Nech (an)∞n=0 je postupnosť komplexných čísel a q > 0. Potom an ./ q
n práve vtedy,

keď sú pre všetky ε > 0 splnené nasledujúce podmienky:

(i) Pre nekonečne veľa rôznych n ∈ N je |an| > (q − ε)n.

(ii) Pre skoro všetky n ∈ N je |an| < (q + ε)n.

Dôkaz. Platnosť podmienky (i) pre všetky ε > 0 je očividne ekvivalentná s výrokom „pre žiadne p < q
nie je |an| = O(pn)“ . Podobne platnosť podmienky (ii) pre všetky ε > 0 je ekvivalentná s výrokom
„pre všetky p > q je |an| = O(pn)“ . Priamo z definície exponenciálneho rádu už potom vyplýva, že
obidva tieto výroky sú pravdivé práve vtedy, keď an ./ q

n.

Tvrdenie 5.3.4. Nech (an)∞n=0 je postupnosť komplexných čísel a q > 0. Potom an ./ q
n práve vtedy,

keď pre všetky n ∈ N je
an = qnα(n),

kde α : N→ C je funkcia spĺňajúca α(n) ./ 1.2

Dôkaz. Položme α(n) := an/q
n. Potom

lim sup
n→∞

n
√
|α(n)| = lim sup

n→∞

n

√
|an|
qn

=
1

q
lim sup
n→∞

n
√
|an|.

Z tvrdenia 5.3.2 teda vyplýva, že an ./ qn práve vtedy, keď α(n) ./ 1.

Veta 5.3.5. Nech R(z) ∈ H0 je analytická funkcia s polomerom konvergencie % Maclaurinovho radu
spĺňajúcim 0 < % <∞. Potom

[zn]R(z) ./ %−n.

Dôkaz. Vyplýva bezprostredne z tvrdenia 5.1.1 a definície exponenciálneho rádu.

Ak špeciálne R(z) ∈ H0 ∩ R≥0JzK – čo je prípad všetkých vytvárajúcich funkcií – je % v predchá-
dzajúcej vete rovné kladnej dominantnej singularite funkcie R(z) a exponenciálny rád hovorí, namiesto
o ich absolútnej hodnote, o samotných koeficientoch tejto vytvárajúcej funkcie. Vetu 5.3.5 vyslovenú
v tomto kontexte Flajolet a Sedgewick [9] nazývajú prvým princípom asymptotiky koeficientov. Slovne
možno tento princíp zhrnúť tak, že absolútna hodnota dominantných singularít vytvárajúcej funkcie
udáva exponenciálny rád jej koeficientov.

2Funkcia α(n) sa v tomto kontexte nazýva aj subexponenciálny faktor. Ide o funkciu, ktorej horná hranica rastie
pomalšie, než ľubovoľná rastúca exponenciálna funkcia (avšak pre nekonečne veľa n sa dá zdola ohraničiť ľubovoľnou
klesajúcou exponenciálnou funkciou). Do tejto triedy patria napríklad všetky polynomické alebo logaritmické funkcie.
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Omnoho hlbším tvrdením je druhý princíp asymptotiky koeficientov, podľa ktorého je subexponen-
ciálny faktor vytvárajúcich funkcií v určitých (často nastávajúcich) prípadoch daný charakterom týchto
singularít – napríklad funkcie, ktorých jediná dominantná singularita je pólom, všetky vykazujú veľmi
podobné asymptotické vlastnosti koeficientov; podobne aj všetky funkcie, ktorých jediná dominantná
singularita je algebraickým bodom vetvenia a podobne. Tento druhý princíp asymptotiky koeficientov
je úzko spätý s metódou analýzy singularít, ktorou sa budeme zaoberať v nasledujúcej kapitole.

5.4 Hankelova integrálna reprezentácia funkcie 1/Γ(z)

Funkciu gama možno pre všetky z ∈ C spĺňajúce Re z > 0 definovať prostredníctvom (vo všeobecnosti
obojstranne) nevlastného Eulerovho integrálu

Γ(z) :=

∫ ∞
0

e−ttz−1 dt,

ktorý konverguje pre všetky z s kladnou reálnou zložkou a reprezentuje tak funkciu, ktorá je na svojom
definičnom obore holomorfná [12]. V rámci tohto oddielu dokážeme alternatívnu integrálnu reprezen-
táciu pre funkciu 1/Γ(z), pomocou ktorej možno túto funkciu vyjadriť vo všetkých bodoch komplexnej
roviny. Táto tzv. Hankelova integrálna reprezentácia funkcie 1/Γ(z) už viac nebude nevlastným in-
tegrálom komplexnej funkcie reálnej premennej, ale pôjde o nevlastný krivkový integrál komplexnej
funkcie komplexnej premennej – čo je typ integrálu, s ktorým sme sa doposiaľ nestretli. Tento výsle-
dok neskôr využijeme pri dôkazoch tvrdení, na ktorých je založená metóda analýzy singularít – jeden
zo stredobodov analytickej kombinatoriky. Čitateľa odkazujeme aj na [9, 11].

Funkcia gama: opakovanie. Na úvod si pripomeňme niekoľko základných poznatkov o funkcii gama
[12]. Vieme, že pre všetky z ∈ C s Re z > 0 funkcia Γ(z) spĺňa rekurentný vzťah Γ(z + 1) = zΓ(z);
dôležitými hodnotami funkcie gama sú Γ(1) = 1 a Γ(1/2) =

√
π. V dôsledku uvedeného rekurentného

vzťahu a hodnoty funkcie gama v bode 1 zisťujeme, že pre všetky n ∈ N je Γ(n + 1) = n! – funkciu
gama tak možno chápať ako spojité rozšírenie faktoriálu.

Pomocou rekurentného vzťahu

Γ(z) =
Γ(z + n)

z(z + 1) . . . (z + n− 1)
,

ktorý očividne platí pre všetky z z jej pôvodného definičného oboru S = {z ∈ C | Re z > 0}, možno
funkciu gama analyticky predĺžiť na definičný obor C \ {0,−1,−2, . . .}. Body 0,−1,−2, . . . sú potom
jednoduchými pólmi funkcie gama.

Dôležitý je navyše súvis funkcie gama so sínusom: pre všetky z ∈ C \ Z je

Γ(z)Γ(1− z) =
π

sinπz
. (5.4)

Napríklad odtiaľto možno vidieť, že funkcia Γ(z) je na C\Z – a teda v dôsledku jej súvisu s faktoriálom
aj na C\{0,−1,−2, . . .} – nenulová. Funkcia 1/Γ(z) je teda po odstránení jej odstrániteľných singularít
– čo je spôsob, akým budeme túto funkciu v nasledujúcom vždy chápať – celá, t. j. holomorfná na C:
vďaka nenulovosti funkcie gama je holomorfná na C \ {0,−1,−2, . . .}, pričom jednoduché póly funkcie
Γ(z) v bodoch 0,−1,−2, . . . sa premietnu do jednoduchých koreňov funkcie 1/Γ(z).

Integrály pozdĺž nevlastných kriviek. V komplexnej analýze obvykle uvažujeme konečné krivky,
dané nejakým spojitým zobrazením γ : [α, β] → C, kde α ≤ β sú reálne čísla. Dôležitými triedami
takýchto kriviek sú hladké a po častiach hladké krivky [12].
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Budeme teraz nútení uvažovať o niečo všeobecnejší pojem krivky, zahŕňajúci tzv. nevlastné – alebo
„nekonečné“ – krivky. Pod (vlastnou alebo nevlastnou) krivkou budeme rozumieť ľubovoľné spojité
zobrazenie γ : I → C, kde I je neprázdny uzavretý interval reálnej osi. Interval I teda môže byť typu
[α, β], [α,∞), (−∞, β], alebo (−∞,∞), kde α ≤ β sú reálne čísla; v prvom prípade hovoríme o vlastnej
krivke a vo zvyšných prípadoch o (jednostranne resp. obojstranne) nevlastnej krivke.

Rovnako ako pre vlastné krivky možno pre nevlastné krivky definovať aj opačnú krivku a zúženie
krivky na podinterval; ak sú navyše γ1 : I → C a γ2 : J → C vlastné alebo nevlastné krivky také, že
intervaly I resp. J sú ohraničené sprava resp. zľava, možno podobne ako pre dvojice vlastných kriviek
definovať aj spojenie γ1 + γ2. Pojmy hladkej a po častiach hladkej krivky možno na nevlastné krivky
taktiež rozšíriť prirodzeným spôsobom. Integrály pozdĺž nevlastných po častiach hladkých kriviek
definujeme rovnako ako v prípade konečných kriviek [12, definícia 4.3.1]; ide však v tomto prípade
o nevlastné integrály. Tie nemusia vždy existovať – stačí si uvedomiť, že špeciálnym prípadom nevlastnej
po častiach hladkej krivky je napríklad aj reálna os alebo polos, a teda každý nevlastný integrál funkcie
reálnej premennej možno chápať aj ako integrál pozdĺž nevlastnej krivky.

Čitateľovi prenechávame dôkaz obdoby tvrdenia o reparametrizácii [12, tvrdenie 4.4.5] pre integrály
pozdĺž nevlastných kriviek, vďaka ktorej nie je nutné nevlastné krivky vždy parametrizovať explicitne.

Hankelova integrálna reprezentácia. Pod Hankelovou integrálnou reprezentáciou funkcie 1/Γ(z)
rozumieme jej vyjadrenie pre všetky z ∈ C pomocou integrálu pozdĺž nevlastnej krivky ako napríklad
v nasledujúcich dvoch vetách, ktoré budeme po zvyšok tohto oddielu dokazovať.3

0

i

−i

1

. . .

. . . H−

H◦
H+

(a) Hankelova krivka H.

0

i

−i

−1

. . .

. . .

(b) Hankelova krivka G.

Obr. 5.3: Hankelove krivky z viet 5.4.1 a 5.4.3. „Čiarkovane“ je znázornený uvažovaný rez komplexnej roviny.

Veta 5.4.1. Pre všetky z ∈ C je
1

Γ(z)
=

1

2πi

∫
H
eww−z dw,

kde H je krivka na obrázku 5.3a. Pri funkcii w−z pritom uvažujeme jej hlavnú vetvu na C \ (−∞, 0];
t. j. pre všetky w ∈ C \ (−∞, 0] je

w−z = e−z Lnw = e(ln|w|+i argw)(−z),

kde Ln je hlavná vetva prirodzeného logaritmu, ln je reálny prirodzený logaritmus a argument vyberáme
z intervalu (−π, π).4

3Skôr než o jedno konkrétne tvrdenie ide o skupinu podobných tvrdení, pričom nevlastné krivky v nich používané
sú vždy – až na drobné detaily – veľmi podobné; takéto krivky sa niekedy zvyknú nazývať Hankelovými krivkami alebo
krivkami Hankelovho typu.

4Možno tiež povedať, že ide o vetvu funkcie w−z takú, že 1−z = 1.
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Formálne môžeme krivku H definovať ako

H := H− +H◦ +H+,

kde H− : (−∞, 0]→ C je daná pre všetky t ∈ (−∞, 0] predpisom H−(t) = t− i, H◦ : [−π/2, π/2]→ C
je daná pre všetky t ∈ [−π/2, π/2] predpisom H◦(t) = eit a H+ : [0,∞) → C je daná pre všetky
t ∈ [0,∞) predpisom H+(t) = −t+ i.

Poznámka 5.4.2. Hlavnú vetvu funkcie w−z uvažujeme v rozrezanej rovine C\(−∞, 0]. Vieme ale, že
singularitou tejto funkcie môže byť iba bod w = 0; v bodoch w ∈ (−∞, 0) naopak možno túto funkciu
analyticky predĺžiť, pričom ale toto predĺženie môže byť rôzne v závislosti od toho, z ktorej strany
polpriamky (−∞, 0] sa k bodu w blížime. V nasledujúcom bude užitočné uvažovať hodnoty funkcie w−z

aj na reze (−∞, 0), pričom budeme rozlišovať medzi hodnotami „na vrchnej a spodnej strane“ rezu
– pre všetky w ∈ (−∞, 0) definujeme (w + 0i)−z ako hodnotu funkcie w−z získanú jej priamym
analytickým predĺžením v nejakom bode w+εi pre ε > 0; podobne pre všetky w ∈ (−∞, 0) definujeme
(w − 0i)−z ako hodnotu w−z získanú priamym analytickým predĺžením tejto funkcie v nejakom bode
w − εi pre ε > 0. Pre všetky w ∈ (−∞, 0) teda

(w − 0i)−z = |w|−zeiπz,
(w + 0i)−z = |w|−ze−iπz,

pričom hodnota |w|−z je daná hlavnou vetvou w−z, t. j. |w|−z = e(ln|w|)(−z), kde logaritmus je reálny.

Nasledujúcu formuláciu Hankelovej integrálnej reprezentácie budeme používať pri dokazovaní tvr-
dení, na ktorých je založená metóda analýzy singularít. Ide o jednoduchý dôsledok vety 5.4.1.

Veta 5.4.3. Pre všetky z ∈ C je

1

Γ(z)
= − 1

2πi

∫
G
e−u(−u)−z du,

kde G je krivka na obrázku 5.3b. Pri funkcii (−u)−z pritom uvažujeme jej hlavnú vetvu na C \ [0,∞);
t. j. pre všetky u ∈ C \ [0,∞) je

(−u)−z = e−z Ln(−u)e(ln|u|+i arg(−u))(−z),

kde Ln je hlavná vetva prirodzeného logaritmu, ln je reálny prirodzený logaritmus a argument vyberáme
z intervalu (−π, π).

Dôkaz. Stačí na reprezentáciu z vety 5.4.1 použiť substitúciu w = −u. Z du sa potom stane −dw
a pre u opisujúce krivku G opíše w krivku H.

Dôkaz Hankelovej integrálnej reprezentácie. Budeme teraz postupne dokazovať vetu 5.4.1 –
a tým pádom aj vetu 5.4.3. Najprv ukážeme, že nevlastný integrál

1

2πi

∫
H
eww−z dw (5.5)

z vety 5.4.1 konverguje pre všetky z ∈ C. To nám očividne zaručí nasledujúca lema.5 Vo zvyšku tohto
oddielu pre všetky n ∈ N kladieme H−n := H− � [−n, 0] a H+

n := H+ � [0, n].

5Na dôkaz existencie integrálu (5.5) by nám v nasledujúcej leme stačilo ukázať bodovú konvergenciu – vlastnosť
lokálne rovnomernej konvergencie ale využijeme neskôr.
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Lema 5.4.4. Pre všetky n ∈ N položme

I−n (z) :=

∫
H−n

eww−z dw a I+
n (z) :=

∫
H+
n

eww−z dw.

Potom sú postupnosti funkcií (I−n (z))∞n=0 a (I+
n (z))∞n=0 premennej z na C lokálne rovnomerne konver-

gentné, a teda pre n→∞ je ∫
H−n

eww−z dw ⇒loc

∫
H−

eww−z dw,∫
H+
n

eww−z dw ⇒loc

∫
H+

eww−z dw,

kde nevlastné integrály na pravej strane konvergujú pre všetky z ∈ C.

Dôkaz. Lemu dokážeme pre integrál pozdĺž H+ – pre krivku H− by sme mohli argumentovať analo-
gicky. Z definície je

I+
n (z) =

∫
H+
n

eww−z dw =

∫ n

0
e−t+i(−t+ i)−z(−1) dt = −

∫ n

0
e−t+i(−t+ i)−z dt.

Potrebujeme ukázať, že postupnosť funkcií (I+
n (z))∞n=0 pre n→∞ na C lokálne rovnomerne konverguje.

Zafixujme preto a ∈ C a ľubovoľnú ohraničenú oblasť S takú, že a ∈ S. Ukážeme, že postupnosť funkcií
(I+
n (z))∞n=0 na S konverguje rovnomerne. Budeme pritom v skutočnosti dokazovať, že táto postupnosť

funkcií je na S „rovnomerne cauchyovská“ : pre všetky ε > 0 existuje n0 ∈ N také, že pre všetky
prirodzené n ≥ m ≥ n0 a všetky z ∈ S je∣∣I+

n (z)− I+
m(z)

∣∣ < ε.

Počítajme teda: ∣∣I+
n (z)− I+

m(z)
∣∣ =

∣∣∣∣∫ n

m
e−t+i(−t+ i)−z dt

∣∣∣∣ ≤ ∫ n

m

∣∣e−t+i(−t+ i)−z
∣∣ dt. (5.6)

Pre ľubovoľné t ∈ R ale, pri výbere argumentov z intervalu (−π, π),∣∣e−t+i(−t+ i)−z
∣∣ =

∣∣∣e−t+ie(−z)(ln|−t+i|+i arg(−t+i))
∣∣∣ =

=
∣∣∣e−t+ie(−Re z)(ln|−t+i|+i arg(−t+i))e(−i Im z)(ln|−t+i|+i arg(−t+i))

∣∣∣ =

=
∣∣∣e−teie(−Re z) ln|−t+i|ei(−Re z) arg(−t+i)e−i(Im z) ln|−t+i|e(Im z) arg(−t+i)

∣∣∣ =

= e−t |−t+ i|−Re z
∣∣∣earg(−t+i) Im z

∣∣∣ ≤ e−t |−t+ i|−Re z eπ|Im z|.

Z (5.6) preto∣∣I+
n (z)− I+

m(z)
∣∣ ≤ ∫ n

m
e−t |−t+ i|−Re z eπ|Im z| dt = eπ|Im z|

∫ n

m
e−t |−t+ i|−Re z dt. (5.7)

Číslo n0 ∈ N teraz môžeme zvoliť tak, aby pre všetky z ∈ S a všetky t ≥ n0 bolo

|−t+ i|−Re z ≤ et/2;

špeciálne bude táto vlastnosť splnená aj pre všetky t ∈ [m,n] a z nerovnosti (5.7) dostaneme∣∣I+
n (z)− I+

m(z)
∣∣ ≤ eπ|Im z|

∫ n

m
e−t/2 dt ≤ eπ|Im z|

∫ ∞
m

e−t/2 dt =

= eπ|Im z| lim
n→∞

[
−2e−t/2

]n
m

= 2eπ|Im z|e−m/2 ≤

≤ 2eπ|Im z|e−n0/2,

pričom túto hodnotu možno vhodnou voľbou n0 stlačiť pod ľubovoľné ε > 0.
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Z dokázanej „rovnomernej cauchyovskosti“ postupnosti funkcií (I+
n (z))∞n=0 na S vyplýva aj jej rov-

nomerná konvergencia na S. Špeciálne je totiž pre každé z ∈ S postupnosť čísel (I+
n (z))∞n=0 cauchyovská,

a teda existuje funkcia I+(z), ku ktorej postupnosť (I+
n (z))∞n=0 na S konverguje bodovo. Pre dané ε > 0

teda existuje n0(z) ∈ N také, že pre všetky prirodzené čísla n ≥ n0(z) je |I+
n (z)− I+(z)| < ε/2. Z do-

kázaného vyplýva, že súčasne existuje n0 ∈ N také, že pre všetky prirodzené n ≥ m ≥ n0 a všetky
z ∈ S je |I+

n (z)− I+
m(z)| < ε/2. V dôsledku toho teda pre všetky m ≥ n0 a všetky z ∈ S existuje

n ≥ m také, že |I+
n (z)− I+

m(z)| < ε/2 a |I+
n (z)− I+(z)| < ε/2, z čoho |I+

m(z)− I+(z)| < ε.

Z lemy 5.4.4 tak dostávame aj konvergenciu integrálu (5.5), keďže o konvergencii integrálu funkcie
eww−z pozdĺž konečnej krivky H◦ nemôžu byť najmenšie pochybnosti.

Naším najbližším cieľom teraz bude dokázať, že funkcia premennej z daná integrálom (5.5) je celá.
Popri leme 5.4.4 bude kľúčom k dôkazu tejto skutočnosti nasledujúca lema 5.4.5.

Lema 5.4.5. Nech γ s γ∗ ⊆ C \ (−∞, 0] je po častiach hladká vlastná (t. j. konečná) krivka. Potom
je funkcia

F (z) :=

∫
γ
eww−z dw

celá (t. j. holomorfná na C).

Dôkaz. Dokážeme najprv, že funkcia F (z) je spojitá na C. Zvoľme teda a ∈ C pevne; ukážeme spoji-
tosť funkcie F (z) v bode a. Položme g(z, w) := eww−z. Takto definovaná funkcia je očividne spojitá
na množine C×(C\(−∞, 0]).6 Keďže je množina γ∗ kompaktná, existujú ohraničené oblasti T1, T2 ⊆ C
také, že:

(i) a ∈ T1,

(ii) γ∗ ⊆ T2 a T2 ⊆ C \ (−∞, 0].

Funkcia g(z, w) je teda spojitá na kompaktnej množine T1 × T2, a preto musí byť na tejto množine
rovnomerne spojitá. To znamená, že pre všetky ε > 0 existuje δ > 0 také, že pre všetky z1, z2 ∈ T1

a všetky w1, w2 ∈ T2 platí

|z1 − z2| < δ ∧ |w1 − w2| < δ ⇒ |g(z1, w1)− g(z2, w2)| < ε. (5.8)

Uvažujme teraz ľubovoľnú postupnosť (an)∞n=0 prvkov množiny T1 takú, že an → a pre n → ∞.
Pre všetky δ > 0 teda existuje n0 ∈ N také, že pre všetky prirodzené n ≥ n0 je

|an − a| < δ. (5.9)

Z (5.8) a (5.9) dohromady vyplýva, že pre všetky ε > 0 existuje n0 ∈ N také, že pre všetky prirodzené
čísla n ≥ n0 a všetky w ∈ T2 je

|g(an, w)− g(a,w)| < ε.

Postupnosť funkcií g(an, w) premennej w teda na T2 pre n → ∞ konverguje rovnomerne k funkcii
g(a,w). S použitím zámeny krivkového integrálu s rovnomernou limitou [12, veta 7.1.8] teda dostávame

lim
n→∞

F (an) = lim
n→∞

∫
γ
eww−an dw = lim

n→∞

∫
γ
g(an, w) dw =

=

∫
γ

lim
n→∞

g(an, w) dw =

∫
γ
g(a,w) dw =

∫
γ
eww−a dw = F (a).

Keďže je (an)∞n=0 ľubovoľnou postupnosťou prvkov T1 konvergujúcou k a ∈ T1, z Heineho definície
limity dostávame

lim
z→a

F (z) = F (a)

a funkcia F (z) je skutočne spojitá v bode a. Tým je dokázaná spojitosť funkcie F (z) na C.
6Spojitosť funkcie g(z, w) bude jediným predpokladom na túto funkciu, ktorý potrebujeme na dôkaz spojitosti fun-

kcie F (z). Rovnako by sme teda vedeli dokázať aj spojitosť ďalších funkcií definovaných krivkovými integrálmi.
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Zostáva dokázať holomorfnosť funkcie F (z) na C. Vieme už, že funkcia F (z) je spojitá a že funkcia
g(z, w) = eww−z je spojitá na C× (C \ (−∞, 0]). Pre fixné w ∈ C \ (−∞, 0] je navyše funkcia

eww−z = ewe−z Lnw

premennej z očividne holomorfná na C. Z Cauchyho integrálnej vety pre trojuholník tak pre ľubovoľný
trojuholník γ∆ s γ∗∆ ⊆ C dostávame∫

γ∆

F (z) dz =

∫
γ∆

∫
γ
eww−z dw dz =

∫
γ

∫
γ∆

eww−z dz dw =

∫
γ

0 dw = 0,

kde zámena integrálov je odôvodnená spojitosťou eww−z na C × (C \ (−∞, 0]) [12, tvrdenie 10.4.3].
Z Morerovej vety teda vyplýva, že funkcia F (z) je holomorfná na C, t. j. celá.

Dôsledok 5.4.6. Integrál (5.5) definuje celú funkciu

I(z) :=
1

2πi

∫
H
eww−z dw.

Dôkaz. Podľa lemy 5.4.5 sú nasledujúce funkcie premennej z celé pre všetky n ∈ N:

1

2πi

∫
H−n

eww−z dw,
1

2πi

∫
H◦
eww−z dw,

1

2πi

∫
H+
n

eww−z dw.

Keďže lokálne rovnomerná limita holomorfných funkcií je holomorfná [12, veta 7.1.9], musia byť vďaka
leme 5.4.4 celé funkcie

1

2πi

∫
H−

eww−z dw a
1

2πi

∫
H+

eww−z dw,

v dôsledku čoho je celá aj funkcia I(z).

Zostáva ukázať, že celá funkcia I(z) z predchádzajúceho dôsledku je v skutočnosti rovná 1/Γ(z).
Náš postup bude nasledovný: dokážeme túto rovnosť funkcií pre všetky reálne z < −1 rôzne od celého
čísla a následne ju rozšírime na všetky z ∈ C pomocou vety o jednoznačnosti.

V nasledujúcom budeme uvažovať pre každé ε > 0 modifikáciu Hankelovej krivky H, ktorú ozna-
číme H[ε]. Pôjde o krivku v komplexnej rovine rozrezanej pozdĺž (−∞, 0], ktorú však chápeme ako
v poznámke 5.4.2 – budeme rozlišovať medzi vrchnou a spodnou stranou zápornej reálnej osi (−∞, 0),
pričom pre každé reálne číslo x < 0 budeme jeho „vrchnú stranu“ označovať x + 0i a jeho „spodnú
stranu“ x − 0i. Samozrejme ide v oboch prípadoch o rovnaký bod komplexnej roviny; význam tejto

0−1
. . .. . .
H−[1]

H+[1]
H◦[1]

(a) Krivka H[1].

0− 1
2

. . .. . .
H−[1/2]

H+[1/2]
H◦[1/2]

(b) Krivka H[1/2].

Obr. 5.4: Krivky H[1] a H[1/2].
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notácie spočíva v tom, že sa pri vyhodnocovaní integrálu podľa w obsahujúceho v integrande w−z

(prípadne inú funkciu premennej w, ktorú možno v tomto bode považovať za analytickú v zmysle po-
známky 5.4.2), pozdĺž krivky prechádzajúcej cez bod w = x+ 0i, použije hodnota (x+ 0i)−z. Podobne
pre w = x− 0i sa použije hodnota (x− 0i)−z. Formálnu definíciu kriviek v takto „obohatenej“ rozre-
zanej rovine prenechávame čitateľovi. Je však dôležité si uvedomiť, že celý tento koncept nie je ničím
iným, než skratkou pre inak pomerne zložitú, avšak presnú, konštrukciu.

Krivku H[ε] v duchu práve zavedených konvencií definujeme pre každé ε > 0 takto:

H[ε] := H−[ε] +H◦[ε] +H+[ε],

kde krivka H−[ε] : (−∞,−ε] → C je daná pre všetky t ∈ (−∞,−ε] predpisom H−[ε](t) = t − 0i,
krivka H◦[ε] : [−π, π]→ C je daná pre všetky t ∈ [−π, π] predpisom7 H◦[ε](t) = εeit a napokon krivka
H+[ε] : [ε,∞)→ C je daná pre všetky t ∈ [ε,∞) predpisom H+[ε](t) = −t+ 0i. Krivky H[1] a H[1/2]
sú znázornené na obrázku 5.4.

Pre všetky ε > 0 a z ∈ C také, že Re z < 0, teraz dokážeme konvergenciu integrálu∫
H[ε]

eww−z dw.

Stačí pritom dokázať konvergenciu integrálov pozdĺž H−[ε] a H+[ε]. Avšak∫
H−[ε]

eww−z dw =

∫ −ε
−∞

et−0i(t− 0i)−z dt =

∫ ∞
ε

e−t(−t− 0i)−z dt =

=

∫ ∞
ε

e−tt−zeiπz dt = eiπz
∫ ∞
ε

e−tt−z dt,

pričom integrál ∫ ∞
ε

e−tt−z dt

konverguje vďaka elementárnej teórii okolo funkcie gama z minulého semestra. Od Eulerovho integrálu
pre funkciu Γ(1− z) – ktorý je dobre definovaný, keďže predpoklad Re z < 0 implikuje Re(1− z) > 0
– sa totiž tento integrál líši iba dolnou hranicou ε namiesto 0. Podobne dostávame∫

H+[ε]
eww−z dw =

∫ ∞
ε

e−t+0i(−t+ 0i)−z(−1) dt = −
∫ ∞
ε

e−t(−t+ 0i)−z dt =

= −
∫ ∞
ε

e−tt−ze−iπz dt = −e−iπz
∫ ∞
ε

e−tt−z dt.

Aproximácie Eulerovho integrálu k funkcii gama konvergujú lokálne rovnomerne [12, lema 14.4.2] –
zo vzťahov získaných vyššie teda pre ε = 1/n, n→∞ a z ∈ C s Re z < 0 dostávame∫

H−[1/n]
eww−z dw ⇒loc e

iπz Γ(1− z), (5.10)∫
H+[1/n]

eww−z dw ⇒loc −e−iπz Γ(1− z). (5.11)

(Bude nám ale stačiť aj bodová konvergencia.) Dokážeme teraz, že pre z ako vyššie sú hodnoty integ-
rálov funkcie eww−z premennej w pozdĺž kriviek H[ε] pre rôzne ε > 0 vždy tie isté.

7Pri konvenciách εe−iπ = −ε− 0i a εeiπ = −ε+ 0i.
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0−ε
. . .. . .
H[ε]

(a) Krivka H[ε].

0−ε
. . .
H↓[ε]

(b) Krivka H↓[ε].

0−ε
. . . H

↑[ε]

(c) Krivka H↑[ε].

Obr. 5.5: Rozdelenie krivky H[ε] na krivky H↓[ε] a H↑[ε].

Lema 5.4.7. Nech ε1, ε2 > 0 a z ∈ C je také, že Re z < 0. Potom∫
H[ε1]

eww−z dw =

∫
H[ε2]

eww−z dw.

Dôkaz. Každú z kriviek H[ε] pre ε > 0 rozdeľme na dve časti H↓[ε] a H↑[ε], tak ako na obrázku 5.5.
Pre všetky ε > 0 potom možno integrál ∫

H↓[ε]
eww−z dw

bezo zmeny jeho hodnoty interpretovať aj tak, že integrandom je funkcia eww−z pre vetvu funkcie w−z

danú ako
w−z = e(ln|w|+i argw)(−z),

kde argw vyberáme z intervalu (−3π/2, π/2) – môžeme teda pracovať aj v komplexnej rovine rozrezanej
ako na obrázku 5.6a. Podobne integrál ∫

H↑[ε]
eww−z dw

možno interpretovať aj tak, že jeho integrandom je funkcia eww−z pre vetvu w−z danú ako

w−z = e(ln|w|+i argw)(−z),

kde argw vyberáme z intervalu (−π/2, 3π/2); to zodpovedá rezu komplexnej roviny na obrázku 5.6b.
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0−ε
. . .
H↓[ε]

(a) Argument z intervalu (−3π/2, π/2) pri H↓[ε].

0−ε
. . . H

↑[ε]

(b) Argument z intervalu (−π/2, 3π/2) pri H↑[ε].

Obr. 5.6: Možná zmena rezu komplexnej roviny („čiarkovane“) pri integráloch pozdĺž kriviek H↓[ε] a H↑[ε].

Integrandy sú potom v obidvoch prípadoch holomorfné na celej „novorozrezanej“ komplexnej ro-
vine, ktorá je jednoducho súvislá. Integrály pozdĺž H↓[ε1] resp. H↑[ε1] teda môžeme bezo zmeny ich
hodnoty premeniť na integrály pozdĺž H↓[ε2]+[ε2, ε1] resp. [ε1, ε2]+H↑[ε2], pretože v oboch prípadoch
nahrádzame nejakú „vlastnú podkrivku“ inou vlastnou krivkou s rovnakým počiatočným aj koncovým
bodom [12, dôsledok 5.6.2]. Teda∫

H[ε1]
eww−z dw =

∫
H↓[ε1]

eww−z dw +

∫
H↑[ε1]

eww−z dw =

=

∫
H↓[ε2]+[ε2,ε1]

eww−z dw +

∫
[ε1,ε2]+H↑[ε2]

eww−z dw =

=

∫
H↓[ε2]

eww−z dw +

∫
H↑[ε2]

eww−z dw +

∫
[ε2,ε1]

eww−z dw +

∫
[ε1,ε2]

eww−z dw =

=

∫
H[ε2]

eww−z dw,

čo bolo treba dokázať.

Vráťme sa teraz k pôvodne uvažovanému integrálu pozdĺž Hankelovej krivky H – dokážeme, že
pre z ∈ C s Re z < 0 v ňom možno krivku H nahradiť ľubovoľnou z kriviek H[ε].

Lema 5.4.8. Nech z ∈ C je také, že Re z < 0. Potom pre všetky ε > 0 je∫
H
eww−z dw =

∫
H[ε]

eww−z dw.

Dôkaz. Vďaka leme 5.4.7 stačí tvrdenie dokázať len pre ε = 1. Z tvaru kriviek H a H[1] – znázornených
aj na obrázku 5.7 – ľahko vidieť, že stačí dokázať rovnosti∫

H−
eww−z dw =

∫
H−[1]+(H◦[1]�[−π,−π/2])

eww−z dw

a ∫
H+

eww−z dw =

∫
(H◦[1]�[π/2,π])+H+[1]

eww−z dw.

Dokážeme druhú z týchto rovností – prvá by sa dokazovala analogicky.
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0−1
. . .. . .

. . .

. . .

Obr. 5.7: Krivky H (plné šípky na krivke) a H[1] (jednoduché šípky vedľa krivky).

Podobne ako v dôkaze lemy 5.4.7 môžeme pri krivkách H+ a (H◦[1] � [π/2, π]) +H+[1] bezo zmeny
hodnoty integrálov zmeniť uvažovaný rez komplexnej roviny – napríklad na [0,∞), pričom integrand

eww−z = ewe(ln|w|+i argw)(−z),

interpretujeme ako daný vetvou, v ktorej argw vyberáme z intervalu (0, 2π).8 Táto situácia je znázor-
nená na obrázku 5.8a.

0−1
. . .

. . .

(a) Zmena rezu komplexnej roviny.

0−1−n

γn−n+ i i

(b) Uzavretá krivka γn.

Obr. 5.8: Dôkaz rovnosti integrálov pre krivky H+ a (H◦[1] � [π/2, π]) +H+[1].

Pre všetky prirodzené n ≥ 2 teraz označme H+
n [1] := H+[1] � [1, n] = [−1 + 0i,−n + 0i]; pripo-

meňme si tiež, že H+
n = H+ � [0, n] = [i,−n+ i]. Definujme uzavretú krivku

γn := (H◦[1] � [π/2, π]) +H+
n [1] + [−n+ 0i,−n+ i] + (−H+

n ).

Tá je znázornená na obrázku 5.8b.
Z Cauchyho integrálnej vety pre jednoducho súvislú oblasť pre všetky n ∈ N \ {0, 1} dostávame

0 =

∫
γn

eww−z dw =

=

∫
(H◦[1]�[π/2,π])+H+

n [1]
eww−z dw +

∫
[−n+0i,−n+i]

eww−z dw −
∫
H+
n

eww−z dw.

Avšak ∫
[−n+0i,−n+i]

eww−z dw =

∫ 1

0
e−n+ti(−n+ ti)−zi dt, (5.12)

pričom pre dostatočne veľké n a fixné z je∣∣(−n+ ti)−z
∣∣ ≤ en/2

8Pre krivky H− a H−[1] + (H◦[1] � [−π,−π/2]) by sme mohli použiť rovnaký rez, ktorý by však v tomto prípade
zodpovedal výberu argumentu z intervalu (−2π, 0).
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pre všetky t ∈ [0, 1]. Preto∣∣∣∣∫ 1

0
e−n+ti(−n+ ti)−zi dt

∣∣∣∣ ≤ ∫ 1

0

∣∣e−n+ti(−n+ ti)−zi
∣∣ dt ≤

∫ 1

0
e−nen/2 dt = e−n/2,

z čoho vďaka (5.12) dostávame

lim
n→∞

∫
[−n+0i,−n+i]

eww−z dw = lim
n→∞

∫ 1

0
e−n+ti(−n+ ti)−z dt = 0.

V dôsledku toho

0 = lim
n→∞

(∫
(H◦[1]�[π/2,π])+H+

n [1]
eww−z dw +

∫
[−n+0i,−n+i]

eww−z dw −
∫
H+
n

eww−z dw

)
=

= lim
n→∞

∫
(H◦[1]�[π/2,π])+H+

n [1]
eww−z dw − lim

n→∞

∫
H+
n

eww−z dw =

=

∫
(H◦[1]�[π/2,π])+H+[1]

eww−z dw −
∫
H+

eww−z dw,

čiže ∫
H+

eww−z dw =

∫
(H◦[1]�[π/2,π])+H+[1]

eww−z dw,

čo bolo treba dokázať.

Môžeme teraz pristúpiť k dôkazu samotnej Hankelovej integrálnej reprezentácie funkcie 1/Γ(z).

Dôkaz vety 5.4.1. Predpokladajme najprv, že z < −1. Vďaka leme 5.4.8 je pre všetky n ∈ N \ {0}∫
H
eww−z dw =

∫
H[1/n]

eww−z dw,

v dôsledku čoho aj∫
H
eww−z dw = lim

n→∞

∫
H[1/n]

eww−z dw =

= lim
n→∞

(∫
H−[1/n]

eww−z dw +

∫
H◦[1/n]

eww−z dw +

∫
H+[1/n]

eww−z dw

)
.

Keďže ale z < −1, s použitím vety o odhade pre všetky n ∈ N \ {0} dostávame∣∣∣∣∣
∫
H◦[1/n]

eww−z dw

∣∣∣∣∣ ≤ 2πe

n
,

a teda
lim
n→∞

∫
H◦[1/n]

eww−z dw = 0.

Podľa (5.10), (5.11) a (5.4) potom pre z 6∈ Z je∫
H
eww−z dw = lim

n→∞

∫
H−[1/n]

eww−z dw + lim
n→∞

∫
H◦[1/n]

eww−z dw + lim
n→∞

∫
H+[1/n]

eww−z dw =

= eiπzΓ(1− z)− e−iπz Γ(1− z) = 2i

(
eiπz − eiπz

2i

)
Γ(1− z) = 2i sin(πz)Γ(1− z) =

2πi

Γ(z)
.
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Pre všetky reálne čísla z < −1 také, že z 6∈ Z teda

1

2πi

∫
H
eww−z dw =

1

Γ(z)
.

Keďže sú navyše funkcie na oboch stranách celé, z vety o jednoznačnosti dostávame platnosť uvedeného
vzťahu aj pre všetky z ∈ C, čím je dôkaz Hankelovej integrálnej reprezentácie dokončený.
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Kapitola 6

Metóda analýzy singularít

Metóda analýzy singularít – dielo P. Flajoleta a A. Odlyzka [8] z roku 1990 – tvorí samotné jadro analy-
tickej kombinatoriky: umožňuje totiž prejsť, pomocou jednoduchého mechanického postupu, od singu-
lárnych rozvojov analyticky chápanej vytvárajúcej funkcie k veľmi presnému asymptotickému odhadu
pre jej koeficienty. V tejto kapitole sa najprv budeme zaoberať základným variantom tejto metódy
pre vytvárajúce funkcie s jedinou dominantnou singularitou, ktorou podľa Pringsheimovej vety musí
byť kladné reálne číslo. Už v tejto svojej najjednoduchšej podobe metóda analýzy singularít nachá-
dza veľké množstvo rôznych kombinatorických aplikácií – tým sa budeme venovať vzápätí. Neskôr
v hrubých rysoch naznačíme možnosti zovšeobecnenia metódy analýzy singularít na funkcie s viace-
rými dominantnými singularitami a preskúmame niektoré významné triedy funkcií, ktorých koeficienty
možno pomocou tejto metódy analyzovať.

6.1 Metóda analýzy singularít v skratke

V nasledujúcom sa budeme zaoberať funkciami R(z) ∈ H0 ∩ R≥0JzK – čiže funkciami analytickými
v bode 0, ktorých Maclaurinov rozvoj má všetky koeficienty nezáporné reálne. Túto podmienku spĺňajú
okrem iného všetky obyčajné aj exponenciálne vytvárajúce funkcie, ktoré sú v bode 0 analytické.
Spočiatku tiež budeme predpokladať existenciu jedinej dominantnej singularity funkcie R(z), ktorou
podľa Pringsheimovej vety musí byť reálne číslo % > 0 rovné polomeru konvergencie Maclaurinovho
radu funkcie R(z).

Metóda analýzy singularít nám pre širokú triedu takýchto funkcií umožní prejsť pomocou mechanic-
kého procesu od singulárneho rozvoja funkcie R(z) v bode % k asymptotickému rozvoju pre koeficienty
jej Maclaurinovho radu. Asymptotické vlastnosti koeficientov tak budú dané vlastnosťami singulárneho
rozvoja funkcie R(z) v bode %, čiže v konečnom dôsledku najmä hodnotou a charakterom singularity %.
K prvému princípu asymptotiky koeficientov, dávajúcemu do súvisu hodnotu dominantnej singularity %
s exponenciálnym rádom postupnosti koeficientov Maclaurinovho radu funkcie, tak pridáme aj druhý
princíp asymptotiky koeficientov P. Flajoleta a R. Sedgewicka [9], podľa ktorého sú subexponenciálne
vlastnosti koeficientov Maclaurinovho radu funkcie dané charakterom dominantných singularít.

Idea metódy analýzy singularít spočíva v kombinácii dvoch ingrediencií: asymptotických odha-
dov pre koeficienty Maclaurinových radov istej štandardnej triedy funkcií, ktoré budeme pripúšťať ako
možné členy singulárnych rozvojov funkcie R(z) a takzvaných viet o transfere, podľa ktorých zanedba-
teľné členy singulárneho rozvoja za istých podmienok zodpovedajú zanedbateľným členom asympto-
tického rozvoja pre koeficienty. Asymptotický odhad pre koeficienty funkcie R(z) potom často možno
získať nasledujúcim spôsobom: funkciu R(z) lokálne rozvinieme do jej singulárneho rozvoja v bode %,
ktorým je nejaký rad funkcií

R(z) = c1f1(z) + c2f2(z) + c3f3(z) + . . . ,
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kde c1, c2, c3, . . . sú komplexné koeficienty1 a zanedbáme všetky až na konečne veľa členov tohto rozvoja.
Funkciu R(z) teda napríklad vyjadríme ako

R(z) = c1f1(z) + c2f2(z) + c3f3(z) +O (g(z)) ,

kde funkcia g je na okolí bodu % oproti funkciám f1, f2, f3 zanedbateľná. Ak teraz funkcie f1, f2, f3 a g
patria do štandardnej triedy funkcií a ak sú splnené neveľmi obmedzujúce podmienky vety o transfere,
možno koeficienty funkcie R(z) pre n→∞ vyjadriť ako

[zn]R(z) = c1[zn]f1(z) + c2[zn]f2(z) + c3[zn]f3(z) +O ([zn]g(z)) ,

pričom presné asymptotické odhady koeficientov [zn]f1(z), [zn]f2(z), [zn]f3(z) a [zn]g(z) pre n → ∞
možno získať z „katalógu“ takýchto odhadov pre štandardnú triedu funkcií. V konečnom dôsledku tak
získame presný asymptotický odhad pre koeficienty Maclaurinovho radu samotnej funkcie R(z).

Za štandardnú triedu funkcií pritom budeme považovať triedu pozostávajúcu z funkcií typu

(
1− z

%

)α(%
z

Ln
1

1− z
%

)β
(6.1)

pre α, β ∈ C a % > 0, pričom pre mocninové funkcie wα, wβ a prirodzený logaritmus vždy uvažujeme
ich hlavnú vetvu. Definičným oborom týchto funkcií je teda C\ [%,∞) – pracujeme preto v komplexnej
rovine narezanej pozdĺž polpriamky [%,∞).

Poznámka 6.1.1. Účelom faktora %/z je v (6.1) vyrobiť z Ln(1/(1 − z/%)) ∈ CJzK formálny moc-
ninový rad s konštantným koeficientom rovným jednej, na ktorý tak možno aplikovať umocňovanie
na exponent β ∈ C. V prípade, že β ∈ N, bude asymptotický odhad pre funkciu (6.1) rovnaký ako
pre funkciu (

1− z

%

)α(
Ln

1

1− z
%

)β
.

Poznámka 6.1.2. V pôvodnom článku P. Flajoleta a A. Odlyzka [8] sa uvažuje o niečo všeobecnejšia
štandardná trieda funkcií, zahŕňajúca aj iterované logaritmy.

Keďže β ∈ C môže byť aj nulové, bude nám takto umožnené analyzovať napríklad funkcie, kto-
rých jediná dominantná singularita % je pólom alebo algebraickým bodom vetvenia a možno ich tak
v bode % rozvinúť do Laurentovho resp. Puiseuxovho radu. Okrem toho sú vytvárajúce funkcie často už
priamo alebo „takmer priamo“ dané požadovaným singulárnym rozvojom, ktorý môže byť aj konečný
– ukážkovým príkladom je vytvárajúca funkcia pre posunuté Catalanove čísla

T (z) =
1−
√

1− 4z

2
=

1

2
− 1

2

√
1− 4z

s dominantnou singularitou % = 1/4, ktorá je algebraickým bodom vetvenia.
Vety o transfere možno sformulovať v rôznych podobách, využívajúc rôzne asymptotické notácie

ako napríklad O, o, alebo ∼. Spoločným menovateľom týchto viet je predpoklad na funkcie, pre ktoré
sú tieto vety použiteľné: musia byť definované a analytické na určitej špeciálnej oblasti – tzv. ∆-obore
– neobsahujúcej bod % a „o niečo väčšej“ , než D(0, %).

1Tieto koeficienty by samozrejme bolo možné zahrnúť do funkcií f1(z), f2(z), f3(z), . . . Ak ale jednotlivé členy radu
majú patriť do uvažovanej štandardnej triedy funkcií, je užitočnejšie vyjadrenie v uvedenom tvare.
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6.2 Koeficienty štandardnej triedy funkcií

Nech f(z) ∈ H0 ∩R≥0JzK je funkcia daná Maclaurinovým radom o polomere konvergencie % > 0 taká,
že % je jej jediná dominantná singularita. Maclaurinov rad funkcie g(z) := f(%z) má potom očividne
polomer konvergencie rovný jednej, pričom bod 1 je jedinou dominantnou singularitou tejto funkcie.
Maclaurinov rozvoj funkcie g(z) navyše získame dosadením %z za premennú z v Maclaurinovom rozvoji
funkcie f(z); z toho je zrejmé, že pre všetky n ∈ N je

[zn]f(z) = %−n[zn]g(z). (6.2)

V nasledujúcom sa preto bez ujmy na všeobecnosti obmedzíme na funkcie s jedinou dominantnou
singularitou % = 1; pre ostatné % > 0 bude stačiť v závere analýzy použiť vzťah (6.2). Nami uvažovaná
štandardná trieda bude pri tejto voľbe % pozostávať z funkcií

(1− z)α
(

1

z
Ln

1

1− z

)β
pre α, β ∈ C, kde pri umocňovaní na komplexný exponent uvažujeme jeho hlavnú vetvu. Naším prvým
cieľom bude nájsť asymptotický rozvoj pre koeficienty Maclaurinových radov funkcií

(1− z)α .

Pre α ∈ N je (1− z)α polynomickou funkciou – koeficienty Maclaurinovho radu takejto funkcie
sú teda počnúc nejakým n0 ∈ N všetky nulové. Tento triviálny prípad už teda nemusíme ďalej uva-
žovať a môžeme predpokladať, že α ∈ C \ N. V rámci nasledujúceho tvrdenia a jeho dôkazu pritom
uvidíme, že pomerne presný asymptotický odhad koeficientov [zn] (1− z)α pre n → ∞ možno získať
aj pomocou relatívne elementárnych metód. V znení tohto tvrdenia pre jednoduchosť predpokladáme
reálnosť čísla α; neskôr vo vete 6.2.2 totiž dokážeme o niečo presnejší odhad aj pre komplexné expo-
nenty. Aj nasledujúce tvrdenie by ale bolo možné dokázať pre všetky α ∈ C \ N v prípade, že by sme
použili vhodné zovšeobecnenie Stirlingovej aproximácie reálnej funkcie gama.

Tvrdenie 6.2.1. Nech α ∈ R \ N. Pre n→∞ potom

[zn](1− z)α =
n−α−1

Γ(−α)

(
1 +O

(
n−1

))
∼ n−α−1

Γ(−α)
.

Dôkaz. Pre všetky n ∈ N je

[zn](1− z)α = (−1)n
(
α

n

)
= (−1)n

αn

n!
= (−1)n

α(α− 1) . . . (α− n+ 1)

n!
=

=
(n− α− 1) . . . (−α)

n!
=

(
n− α− 1

n

)
.

Vďaka rekurentnému vzťahu pre funkciu Γ(z) potom

[zn](1− z)α =
Γ(n− α)

Γ(−α)Γ(n+ 1)

a zo Stirlingovej aproximácie pre reálnu funkciu gama [12, veta 14.7.7] tak pre n→∞ dostávame

[zn](1− z)α =

√
2π√
n−α

(
n−α
e

)n−α (
1 +O

(
n−1

))
Γ(−α)

√
2π√
n+1

(
n+1
e

)n+1
(1 +O (n−1))

=

=
1

Γ(−α)
n−α−1eα+1 (1− α/n)n−α−1/2 (1 + 1/n)−n−1/2 (1 +O

(
n−1

))
=

=
n−α−1

Γ(−α)
eα+1 (1− α/n)−α−1

(
1− α+ 1

n+ 1

)n+1/2 (
1 +O

(
n−1

))
=

=
n−α−1

Γ(−α)
eα+1

(
1− α+ 1

n+ 1

)n+1 (
1 +O

(
n−1

))
.
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Predposledný faktor výsledného výrazu pritom pre dostatočne veľké n ∈ N spĺňa [12, lema 14.5.2]

0 ≤ e−α−1 −
(

1− α+ 1

n+ 1

)n+1

≤ (α+ 1)2 e
−α−1

n
,

z čoho (
1− α+ 1

n+ 1

)n+1

= e−α−1
(
1 +O

(
n−1

))
,

a teda naozaj

[zn](1− z)α =
n−α−1

Γ(−α)

(
1 +O

(
n−1

))
.

O niečo presnejšiu verziu asymptotického odhadu z predchádzajúceho tvrdenia teraz pre všetky
α ∈ C\N dokážeme metódou P. Flajoleta a A. Odlyzka [8] založenou na použití Cauchyho integrálneho
vzorca pre derivácie a Hankelovej integrálnej reprezentácie funkcie 1/Γ(z).

Získame tak asymptotický rozvoj 2 pre koeficienty [zn](1− z)α a n→∞, ktorý ich umožní asymp-
toticky odhadnúť s chybou O(n−k)[zn](1− z)α pre ľubovoľné k ∈ N \ {0}. Najpodstatnejšou výhodou
metódy založenej na Hankelovej integrálnej reprezentácii je ale jej priamočiara adaptovateľnosť na vše-
obecnejšie triedy funkcií, čo oceníme akonáhle do našich úvah zahrnieme logaritmické faktory.

Veta 6.2.2. Nech α ∈ C \ N. Pre n→∞ potom

[zn](1− z)α ∼ n−α−1

Γ(−α)

(
1 +

∞∑
k=1

εk(α)

nk

)
,

kde εk(α) je, pre všetky k ∈ N \ {0}, polynomická funkcia premennej α stupňa 2k. Prvých niekoľko
členov tohto asymptotického rozvoja je

[zn](1− z)α =
n−α−1

Γ(−α)

(
1 +

α(α+ 1)

2n
+
α(α+ 1)(α+ 2)(3α+ 1)

24n2
+O

(
n−3

))
.

Dôkaz. Predpokladajme, že n ≥ 2 a označme

an := [zn](1− z)α.

Podľa Cauchyho integrálneho vzorca pre koeficienty Maclaurinovho radu potom

an =
1

2πi

∫
κ(0,1/2)

(1− z)α

zn+1
dz.

Keďže je hlavná vetva funkcie (1 − z)α holomorfná na C \ [1,∞), môžeme v Cauchyho integrálnom
vzorci vymeniť kružnicu κ(0, 1/2) za ľubovoľnú kladne orientovanú jednoduchú uzavretú po častiach
hladkú krivku v C\ [1,∞) takú, že bod 0 leží v jej vnútri. Špeciálne môžeme vziať ľubovoľnú z kriviek
Kn[R] pre reálne R > 1, daných nasledovne:

Kn[R] =

[
Re−iθ, 1− i

n

]
− κ[π/2,3π/2]

(
1,

1

n

)
+

[
1 +

i

n
,Reiθ

]
+ κ[θ,2π−θ] (0, R) ,

kde θ ∈ (0, π/2) je také, že R sin θ = 1/n. Typické krivkyKn[R] sú znázornené na obrázkoch 6.1a a 6.1b.

2Vo všeobecnosti rozumieme asymptotickým rozvojom postupnosti (an)∞n=0 pre n → ∞ vyjadrenie jej členov v tvare
an ∼

∑∞
k=0 ϕk(n), pričom tento zápis treba chápať ako an =

∑s
k=0 ϕk(n) +O(ϕs+1(n)) pre všetky prirodzené čísla s.
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0 13
4

(a) Krivka K4[3/2].

0 13
4

(b) Krivka K4[2].

0 1

. . .

. . .3
4

(c) Hankelovská krivka K4[∞].

Obr. 6.1: Krivky z dôkazu vety 6.2.2. Čiarkovane je znázornený uvažovaný rez komplexnej roviny pozdĺž [1,∞).

Pre integrál pozdĺž „veľkej takmer-kružnice“

κn(R) := κ[θ,2π−θ] (0, R)

teraz z vety o odhade vyplýva∣∣∣∣∣ 1

2πi

∫
κn(R)

(1− z)α

zn+1
dz

∣∣∣∣∣ ≤ 1

2π

∣∣∣∣∣
∫
κ(0,R)

(1− z)α

zn+1
dz

∣∣∣∣∣ ≤
≤ 1

2π
2πR

(R+ 1)Reα

Rn+1
=

(R+ 1)Reα

Rn
.

Pre dostatočne veľké n teda

lim
R→∞

1

2πi

∫
κn(R)

(1− z)α

zn+1
dz = 0.

V dôsledku toho pre krivky K̂n(R) definované ako

K̂n(R) :=

[
Re−iθ, 1− i

n

]
− κ[π/2,3π/2]

(
1,

1

n

)
+

[
1 +

i

n
,Reiθ

]
zisťujeme, že

an = lim
R→∞

1

2πi

∫
Kn[R]

(1− z)α

zn+1
dz = lim

R→∞

1

2πi

∫
K̂n(R)

(1− z)α

zn+1
dz =

=
1

2πi

∫
Kn[∞]

(1− z)α

zn+1
dz,

kdeKn[∞] je nevlastná krivka hankelovského typu znázornená na obrázku 6.1c. Formálne je táto krivka
definovaná nasledovne:

Kn[∞] := K−n [∞] +K◦n[∞] +K+
n [∞],

kde polpriamka K−n [∞] : (−∞, 1] → C je pre všetky t ∈ (−∞, 1] daná ako K−n [∞](t) = −t − i/n,
polkružnica K◦n[∞] je daná ako K◦n[∞] = −κ[π/2,3π/2](1, 1/n) a polpriamka K+

n [∞] : [1,∞) → C je
pre všetky t ∈ [1,∞) daná ako K+

n [∞](t) = t+ i/n.
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Zostáva teda nájsť asymptotický rozvoj pre nevlastné integrály

an =
1

2πi

∫
Kn[∞]

(1− z)α

zn+1
dz (6.3)

v prípade, že n→∞. Aplikujme substitúciu u := n(z− 1). Keďže pre všetky n ∈ N \ {0} a z ∈ C \ {0}
je Ln(z/n) = Ln z − lnn – z čoho pre hlavnú vetvu mocninovej funkcie vyplýva (z/n)α = n−αzα –
integrál (6.3) sa tým zmení na

an =
1

2πi

∫
−G

(
−u
n

)α (
1 +

u

n

)−n−1 1

n
du =

=
n−α−1

2πi

∫
−G

(−u)α
(

1 +
u

n

)−n−1
du, (6.4)

kde −G, znázornená aj na obrázku 6.2, je opačne orientovaná Hankelova krivka G z vety 5.4.3, podľa
ktorej

1

2πi

∫
−G

(−u)αe−u du =
1

Γ(−α)
.

Z toho možno získať určitú intuíciu o pôvode faktora 1/Γ(−α) v asymptotickom rozvoji zo znenia vety
– výraz (1 + u/n)−n−1 totiž pre n→∞ konverguje k e−u a integrál z (6.4) tak „nápadne pripomína“
práve uvedený Hankelov integrál pre 1/Γ(−α). Ozajstný dôkaz však vyžaduje o niečo technickejší
prístup.

0

i

−i

−1

. . .

. . .

Obr. 6.2: Hankelova krivka −G.

Všimnime si najprv, že v integráli (6.4) je príspevok získaný integrovaním pozdĺž častí krivky −G,
na ktorých platí Reu ≥ (lnn)2, zanedbateľný (t. j. nemá žiaden vplyv na asymptotický rozvoj pre an).
Pre takéto u je totiž

∣∣∣∣(1 +
u

n

)−n/2∣∣∣∣ ≤ (1 +
(lnn)2

n

)−n/2
= e
−(n/2) ln

(
1+

(lnn)2

n

)
.

Keďže pre všetky dostatočne veľké n je (lnn)2/n < 1, môžeme vonkajší logaritmus v exponente
rozvinúť do Mercatorovho radu, čím dostaneme

∣∣∣∣(1 +
u

n

)−n/2∣∣∣∣ ≤ e(−n/2)

(
(lnn)2

n
+O

(
(lnn)4

n2

))
= e(−1/2)((lnn)2+O(1)) ≤ e−C(lnn)2

pre vhodnú konštantu C > 0. Ak teda označíme ako Γ zúženie krivky −G na u také, že Reu ≥ (lnn)2,
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môžeme integrál pozdĺž Γ odhadnúť ako3∣∣∣∣n−α−1

2πi

∫
Γ
(−u)α

(
1 +

u

n

)−n−1
du

∣∣∣∣ ≤ n|Reα|+1

2π

∣∣∣∣∫
Γ
(−u)α

(
1 +

u

n

)−n−1
du

∣∣∣∣ ≤
≤ n|Reα|+1

2π

∣∣∣∣∫
Γ
(−u)α

(
1 +

u

n

)−n/2 (
1 +

u

n

)−n/2−1
du

∣∣∣∣ ≤
≤ n|Reα|+1

π

∫ ∞
(lnn)2

(t+ 1)re−C(lnn)2

(
1 +

t

n

)−n/2−1

dt ≤

≤ n−D lnn

∫ ∞
(lnn)2

(t+ 1)r
(

1 +
t

n

)−n/2−1

dt (6.5)

pre nejaké vhodné konštanty r,D > 0 a dostatočne veľké n. Nevlastný integrál∫ ∞
(lnn)2

(t+ 1)r
(

1 +
t

n

)−n/2−1

dt (6.6)

ale pre dostatočne veľké n konverguje k nejakej kladnej hodnote zhora ohraničenej polynomickou
funkciou premennej n, pretože po substitúcii x = t/n pre nejaké s > r nezávislé od n dostávame∫ ∞

(lnn)2

(t+ 1)r
(

1 +
t

n

)−n/2−1

dt =

∫ ∞
(lnn)2/n

(xn+ 1)r (1 + x)−n/2−1 n dx ≤

≤
∫ ∞

(lnn)2/n
(xn)s (1 + x)−n/2−1 n dx =

= ns+1

∫ ∞
(lnn)2/n

xs (1 + x)−n/2−1 dx =

= ns+1

(∫ 1

(lnn)2/n
xs (1 + x)−n/2−1 dx+

∫ ∞
1

xs (1 + x)−n/2−1 dx

)
.

Keďže pre x ∈ [(lnn)2/n, 1] je xs (1 + x)−n/2−1 ≤ 1, nutne∫ 1

(lnn)2/n
xs (1 + x)−n/2−1 dx ≤ 1;

pre dostatočne veľké n tiež ∫ ∞
1

xs (1 + x)−n/2−1 dx ≤
∫ ∞

1
x−2 dx = 1.

Hodnota integrálu (6.6) je teda zhora ohraničená polynomickou funkciou 2ns+1, z čoho vyplýva, že (6.5)
skutočne klesá rýchlejšie, než n−k pre ľubovoľné k ∈ N. V dôsledku toho sa teda v integráli (6.4)
môžeme obmedziť na konečnú krivku zodpovedajúcu u takým, že Reu ≤ (lnn)2 – príspevok získaný
integrovaním pozdĺž zvyšných častí tejto krivky je totiž zanedbateľný.

Označme túto konečnú časť krivky −G ako γ – teda

γ = γ− + γ◦ + γ+,

kde
γ− = [(lnn)2 − i,−i], γ◦ = −κ[π/2,3π/2](0, 1) a γ+ = [i, (lnn)2 + i].

Krivka γ je znázornená na obrázku 6.3.
3Takto definované Γ nie je krivka, ale ide o reťaz pozostávajúcu z dvoch disjunktných nevlastných kriviek. Integrál

pozdĺž Γ definujeme ako súčet integrálov pozdĺž týchto dvoch kriviek.
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0

i

−i

−1

(lnn)2 + i

(lnn)2 − i

(lnn)2

Obr. 6.3: Krivka γ.

Doposiaľ dokázané výsledky tak možno zhrnúť do nasledujúceho vzťahu: pre an = [zn](1 − z)α

a n→∞ je

an =
n−α−1

2πi

∫
γ
(−u)α

(
1 +

u

n

)−n−1
du+O

(
n−c lnn

)
(6.7)

pre nejakú konštantu c > 0. Na nájdenie asymptotického rozvoja pre an teda stačí nájsť takýto rozvoj
pre uvedený integrál.

Pre všetky u ∈ γ∗ ale evidentne |u| ≤ (lnn)2 + 1. Pre dostatočne veľké n je potom |u/n| < 1
a z Maclaurinovho rozvoja funkcie Ln(1 + u/n) do Mercatorovho radu a následného Maclaurinovho
rozvoja exponenciálnej funkcie pre všetky takéto u dostávame(

1 +
u

n

)−n−1
= e−(n+1) Ln(1+u/n) = e−(n+1)(u/n−u2/(2n2)+u3/(3n3)−u4/(4n4)+...) =

= e−ueu−(n+1)(u/n−u2/(2n2)+u3/(3n3)−u4/(4n4)+...) =

= e−ueu−(n+1)u/n+(n+1)u2/(2n2)−(n+1)u3/(3n3)+... =

= e−u
(

1 +
u2 − 2u

2n
+

3u4 − 20u3 + 24u2

24n2
+ . . .

)
. (6.8)

Uvedený vzťah možno písať aj ako(
1 +

u

n

)−n−1
= e−u

(
1 + ϕ1(u)n−1 + ϕ2(u)n−2 + ϕ3(u)n−3 + . . .

)
, (6.9)

kde ϕk(u) je pre všetky k ∈ N \ {0} polynomická funkcia premennej u stupňa 2k a kostupňa k.
Každý mocninový rad s polomerom konvergencie % navyše musí konvergovať rovnomerne na D(0, r)
pre ľubovoľné r < % [12, cvičenie 7.3]. Preto aj rad funkcií (6.9), ktorý konverguje na D(0, n), musí
konvergovať rovnomerne na oblasti obsahujúcej γ∗. V dôsledku toho môžeme tento rad integrovať člen
po člene [12, veta 7.1.8] a vďaka (6.7) dostávame

an =
n−α−1

2πi

(∫
γ
(−u)αe−u du+

∞∑
k=1

∫
γ
(−u)αe−uϕk(u)n−k du

)
+O

(
n−c lnn

)
. (6.10)

Vzťahom (6.10) je daný aj asymptotický rozvoj pre an a n→∞:

an ∼
n−α−1

2πi

(∫
γ
(−u)αe−u du+

∞∑
k=1

n−k
∫
γ
(−u)αe−uϕk(u) du

)
.

Pre všetky t ∈ N \ {0} a všetky dostatočne veľké n ∈ N totiž z (6.10) dostávame

an =
n−α−1

2πi

(∫
γ
(−u)αe−u du+

t−1∑
k=1

n−k
∫
γ
(−u)αe−uϕk(u) du+ χt(n)

)
,
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kde

χt(n) =
∞∑
k=t

n−k
∫
γ
(−u)αe−uϕk(u) du+O

(
n−c lnn

)
.

Treba dokázať, že pre n→∞ je χt(n) = O(n−t). Pre dostatočne veľké n ∈ N je ale

χt(n) = n−t

( ∞∑
k=t

n−k+t

∫
γ
(−u)αe−uϕk(u) du+O

(
n−c lnn

))
=

= n−t

(∫
γ

∞∑
k=t

n−k+t(−u)αe−uϕk(u) du+O
(
n−c lnn

))
,

kde nekonečný rad konverguje absolútne pre všetky u ∈ γ∗ podľa vety o polomere konvergencie moc-
ninového radu [12, veta 3.2.3]. Postupnosť súčtov

∞∑
k=t

∣∣∣n−k+t(−u)αe−uϕk(u)
∣∣∣

je pritom pre n→∞ nerastúca, a teda∫
γ

∞∑
k=t

n−k+t(−u)αe−uϕk(u) du = O(1).

V dôsledku toho naozaj χt(n) = O(n−t).
Všimnime si ďalej, že ∫

γ
(−u)αe−u du =

∫
−G

(−u)αe−u du+O
(
n− lnn

)
(6.11)

a pre všetky k ∈ N \ {0} je∫
γ
(−u)αe−uϕk(u) du =

∫
−G

(−u)αe−uϕk(u) du+O
(
n− lnn

)
. (6.12)

Ide tu o jednoduchý dôsledok toho, že absolútnu hodnotu mocninovej funkcie (−u)α, ako aj polyno-
mických funkcií ϕk(u), možno pre dostatočne veľké n a u ∈ (−G)∗ s Reu ≥ (lnn)2 zhora odhadnúť
napríklad funkciou eReu/4. V dôsledku toho možno absolútnu hodnotu rozdielu integrálov na ľavej
a pravej strane (6.12) zhora odhadnúť napríklad integrálom

2

∫ ∞
(lnn)2

e−t/2 dt = 4e−(lnn)2
= O

(
n− lnn

)
a podobne pre (6.11).

V konečnom dôsledku teda zisťujeme, že asymptotický rozvoj pre an a n→∞ je daný ako

an ∼
n−α−1

2πi

(∫
−G

(−u)αe−u du+

∞∑
k=1

n−k
∫
−G

(−u)αe−uϕk(u) du

)
.

Z Hankelovej integrálnej reprezentácie funkcie 1/Γ(z) ale

1

2πi

∫
−G

(−u)αe−u du =
1

Γ(−α)

a každý z integrálov
1

2πink

∫
−G

(−u)αe−uϕk(u) du
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možno – po roznásobení polynómu ϕk(u) zvyškom integrandu a integrovaní výsledku člen po člene –
vyjadriť ako konečný súčet integrálov typu

1

2πink

∫
−G

(−u)αe−ucju
j du =

(−1)jcj
nk

· 1

2πi

∫
−G

(−u)α+je−u du =
dj
nk
· 1

Γ(−α− j)
=

=
dj(−α− 1)(−α− 2) . . . (−α− j)

Γ(−α)nk

pre j = k, . . . , 2k, kde ck, . . . , c2k ∈ Q a dk, . . . , d2k ∈ Q sú konštanty. Opätovným pozbieraním
jednotlivých členov

dj(−α− 1)(−α− 2) . . . (−α− j)

pre každé k ∈ N a j = k, . . . , 2k do polynómu εk(α) tak dostávame existenciu asymptotického rozvoja

an = [zn](1− z)α ∼ n−α−1

Γ(−α)

(
1 +

∞∑
k=1

εk(α)

nk

)

zo znenia vety. Priamym výpočtom založeným na (6.8) ďalej ľahko vyjadríme εk(α) pre ľubovoľné
k ∈ N \ {0} – napríklad

ε1(α) =
α(α+ 1)

2
,

ε2(α) =
α(α+ 1)(α+ 2)(3α+ 1)

24
,

atď. Tým je veta dokázaná.

Pri dôkaze asymptotických odhadov pre zvyšné funkcie z nami uvažovanej štandardnej triedy
sa nám zíde tzv. Leibnizovo pravidlo umožňujúce za určitých okolností vymeniť deriváciu s integrálom.

Tvrdenie 6.2.3 (Leibnizovo pravidlo). Nech a ≤ b a c ≤ d sú reálne čísla. Pre ľubovoľnú funkciu f(s, t)
dvoch reálnych premenných s, t, ktorá je na [a, b] × [c, d] spojitá a spojite diferencovateľná podľa s, je
na intervale [a, b]

d

ds

∫ d

c
f(s, t) dt =

∫ d

c

∂

∂s
f(s, t) dt.

Dôkaz. Pre ľubovoľné pevne dané s0 ∈ [a, b] je pre všetky s ∈ [a, b]

d

ds

∫ d

c
f(s, t) dt =

d

ds

∫ d

c
(f(s, t)− f(s0, t)) dt =

d

ds

∫ d

c

∫ s

s0

∂

∂x
f(x, t) dx dt =

=
d

ds

∫ s

s0

∫ d

c

∂

∂x
f(x, t) dtdx =

∫ d

c

∂

∂s
f(s, t) dt,

kde zámenu integrálov možno odôvodniť spojitosťou funkcie ∂
∂xf(x, t) [12, tvrdenie 10.4.2].

Podobne ako pri zámene integrálov [12, tvrdenie 10.4.3] možno Leibnizovo pravidlo evidentne pria-
močiaro rozšíriť aj na prípad krivkových integrálov pozdĺž konečných kriviek.

Zahrnieme teraz do našich úvah aj logaritmické faktory a postupne dokážeme asymptotické odhady
koeficientov Maclaurinových radov pre všetky funkcie z nami uvažovanej štandardnej triedy. Začneme
funkciami

(1− z)α
(

1

z
Ln

1

1− z

)β
,
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kde α, β ∈ C sú čísla také, že α 6∈ N. Asymptotický rozvoj z nasledujúcej vety umožňuje odhadnúť
koeficienty Maclaurinových radov týchto funkcií pre n→∞ s chybou

O
(

(lnn)−k
)

[zn]

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
pre ľubovoľné k ∈ N \ {0}.

Veta 6.2.4. Pre všetky α ∈ C \ N a β ∈ C je

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
=
n−α−1

Γ(−α)
(lnn)β

(
1 +O

(
(lnn)−1

))
∼ n−α−1

Γ(−α)
(lnn)β .

Pre tieto koeficienty navyše existuje asymptotický rozvoj

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
∼ n−α−1

Γ(−α)
(lnn)β

(
1 +

∞∑
k=1

ηk(α, β)

(lnn)k

)
,

kde pre všetky k ∈ N \ {0} je

ηk(α, β) =

(
β

k

)
Γ(−α)

[
dk

dsk
1

Γ(s)

]
s=−α

.

Dôkaz. Metóda dôkazu je z veľkej časti prakticky identická ako pri vete 6.2.2. Koeficient

an := [zn](1− z)α
(

1

z
Ln

1

1− z

)β
možno pomocou Cauchyho integrálneho vzorca pre derivácie vyjadriť ako

an =
1

2πi

∫
κ(0,1/2)

(1− z)α

zn+1

(
1

z
Ln

1

1− z

)β
dz.

Rovnakými metódami ako v dôkaze vety 6.2.2 potom možno tento vzorec transformovať na nevlastný
integrál pozdĺž hankelovskej krivky Kn[∞]:

an =
1

2πi

∫
Kn[∞]

(1− z)α

zn+1

(
1

z
Ln

1

1− z

)β
dz.

Substitúciou u := n(z − 1) následne dostávame, pre Hankelovu krivku −G a dostatočne veľké n ∈ N,

an =
1

2πi

∫
−G

(
−u
n

)α (
1 +

u

n

)−n−1
((

1 +
u

n

)−1
Ln
(
−n
u

))β 1

n
du =

=
n−α−1

2πi

∫
−G

(−u)α
(

1 +
u

n

)−n−1
((

1 +
u

n

)−1
(lnn− Ln(−u))

)β
du;

využili sme, že pre všetky n ∈ N \ {0} a z ∈ C \ {0} je Ln(n/z) = lnn− Ln z a Ln(z/n) = Ln z − lnn,
v dôsledku čoho pre hlavnú vetvu mocninovej funkcie dostávame aj (z/n)α = n−αzα.

Podobne ako v dôkaze vety 6.2.2 následne zisťujeme, že pre krivku γ na obrázku 6.3 a n→∞ je

an =
n−α−1

2πi

∫
γ
(−u)α

(
1 +

u

n

)−n−1
((

1 +
u

n

)−1
(lnn− Ln(−u))

)β
du+O

(
n−c lnn

)
=

=
n−α−1

2πi

∫
γ
(−u)α

(
1 +

u

n

)−n−1−β
(lnn− Ln(−u))β du+O

(
n−c lnn

)
=

=
n−α−1

2πi
(lnn)β

∫
γ
(−u)α

(
1 +

u

n

)−n−1−β
(

1− Ln(−u)

lnn

)β
du+O

(
n−c lnn

)
, (6.13)
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kde c > 0 je vhodná konštanta; využili sme pritom skutočnosť, že pre n → ∞ a u ∈ γ∗ sa argumenty
čísel (1 + u/n)−1 a (lnn− Ln(−u)) blížia k nule, v dôsledku čoho je

Ln

((
1 +

u

n

)−1
(lnn− Ln(−u))

)
= Ln

((
1 +

u

n

)−1
)

+ Ln (lnn− Ln(−u)) ,

a teda aj ((
1 +

u

n

)−1
(lnn− Ln(−u))

)β
=
(

1 +
u

n

)−β
(lnn− Ln(−u))β ;

taktiež sme pre x = lnn využili rovnosť (xz)β = xβzβ platnú pre všetky x > 0 a z ∈ C \ {0}.
Tým istým postupom ako v dôkaze vety 6.2.2 ďalej možno ukázať, že sa nedopustíme veľkej chyby4,

ak faktor (1 + u/n)−n−1−β v (6.13) nahradíme za e−u. Pre n→∞ tak dostávame

an =
n−α−1

2πi

(
(lnn)β

∫
γ
(−u)αe−u

(
1− Ln(−u)

lnn

)β
du+O

(
(lnn)β

n

))
. (6.14)

Zostáva nájsť odhad pre integrál ∫
γ
(−u)αe−u

(
1− Ln(−u)

lnn

)β
du.

Pre dostatočne veľké n a u ∈ γ∗ ale pre nejaké r < 1 musí byť∣∣∣∣Ln(−u)

lnn

∣∣∣∣ < r,

v dôsledku čoho binomický rozvoj(
1− Ln(−u)

lnn

)β
=
∞∑
k=0

(
β

k

)
(−1)k

(Ln(−u))k

(lnn)k

konverguje na γ∗ rovnomerne, a teda∫
γ
(−u)αe−u

(
1− Ln(−u)

lnn

)β
du =

∫
γ
(−u)αe−u

∞∑
k=0

(
β

k

)
(−1)k

(Ln(−u))k

(lnn)k
du =

=

∞∑
k=0

(
β

k

)
(−1)k

(lnn)k

∫
γ
(−u)αe−u (Ln(−u))k du. (6.15)

Z Leibnizovho pravidla teraz pre všetky k ∈ N a komplexnú premennú s máme(
β

k

)
(−1)k

(lnn)k

∫
γ
(−u)−se−u (Ln(−u))k du =

(
β

k

)
1

(lnn)k

∫
γ

∂k

∂sk
(−u)−se−u du =

=

(
β

k

)
1

(lnn)k
· dk

dsk

∫
γ
(−u)−se−u du.

Preto(
β

k

)
(−1)k

(lnn)k

∫
γ
(−u)αe−u (Ln(−u))k du =

(
β

k

)
1

(lnn)k

[
dk

dsk

∫
γ
(−u)−se−u du

]
s=−α

=

=

(
β

k

)
1

(lnn)k

[
dk

dsk

∫
−G

(−u)−se−u du

]
s=−α

+O
(
n− lnn

)
=

=

(
β

k

)
2πi

(lnn)k

[
dk

dsk
1

Γ(s)

]
s=−α

+O
(
n− lnn

)
,

4Chyba teda bude menšieho rádu, než (lnn)−k pre ľubovoľné k ∈ N.
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kde prechod od integračnej krivky γ k Hankelovej krivke −G možno odôvodniť podobne ako v dôkaze
vety 6.2.2. Z (6.14) a (6.15) teda pre n→∞ vyplýva existencia asymptotického rozvoja

an ∼
n−α−1

2πi
(lnn)β

(
2πi

Γ(−α)
+
∞∑
k=1

(
β

k

)
2πi

(lnn)k

[
dk

dsk
1

Γ(s)

]
s=−α

)
;

to je to isté ako

an ∼
n−α−1

Γ(−α)
(lnn)β

(
1 +

∞∑
k=1

(
β

k

)
Γ(−α)

(lnn)k

[
dk

dsk
1

Γ(s)

]
s=−α

)
,

čo bolo treba dokázať.

Zostáva asymptoticky odhadnúť koeficienty Maclaurinových radov funkcií

(1− z)α
(

1

z
Ln

1

1− z

)β
,

kde α ∈ N a β ∈ C.

Veta 6.2.5. Pre všetky α ∈ N a β ∈ C \ {0} je

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
= n−α−1 (lnn)β−1 β

[
d

ds

1

Γ(s)

]
s=−α

(
1 +O

(
(lnn)−1

))
∼

∼ n−α−1 (lnn)β−1 β

[
d

ds

1

Γ(s)

]
s=−α

.

Pre tieto koeficienty navyše existuje asymptotický rozvoj

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
∼ n−α−1 (lnn)β

( ∞∑
k=1

ξk(α, β)

(lnn)k

)
,

kde pre všetky k ∈ N \ {0} je

ξk(α, β) =

(
β

k

)[
dk

dsk
1

Γ(s)

]
s=−α

.

Dôkaz. Pre α ∈ N je bod −α jednoduchým pólom funkcie gama. Ak ale budeme, rovnako ako v rámci
oddielu 5.4, pracovať s konvenciou 1/Γ(−α) = 0, dospejeme rovnako ako v dôkaze vety 6.2.4 k vyjad-
reniu

an ∼
n−α−1

2πi
(lnn)β

(
2πi

Γ(−α)
+
∞∑
k=1

(
β

k

)
2πi

(lnn)k

[
dk

dsk
1

Γ(s)

]
s=−α

)
,

pre n→∞, čo je to isté ako

an ∼ n−α−1 (lnn)β
( ∞∑
k=1

(
β

k

)
1

(lnn)k

[
dk

dsk
1

Γ(s)

]
s=−α

)
.

V prípade, že α, β ∈ N, je obvykle oproti použitiu predchádzajúcej vety výhodnejšie aplikovať
analýzu založenú na elementárnych metódach.
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Poznámka 6.2.6. V prípade, že α ∈ C a β ∈ N \ {0}, uvažuje sa často v kontexte predchádzajúcich
dvoch viet namiesto funkcie

(1− z)α
(

1

z
Ln

1

1− z

)β
funkcia

(1− z)α
(

Ln
1

1− z

)β
.

Pre n→∞ totiž v takom prípade evidentne

[zn](1− z)α
(

Ln
1

1− z

)β
= [zn−β](1− z)α

(
1

z
Ln

1

1− z

)β
=

=

(
[zn](1− z)α

(
1

z
Ln

1

1− z

)β)(
1 +O

(
n−1

))
,

z čoho vyplýva, že asymptotické rozvoje dané vetami 6.2.4 a 6.2.5 zostanú nezmenené.

Dôsledok 6.2.7. Nech % > 0. Pre všetky α ∈ C \ N a n→∞ potom

[zn]

(
1− z

%

)α
∼ n−α−1

Γ(−α)
%−n;

pre všetky α ∈ C \ N, β ∈ C a n→∞ ďalej

[zn]

(
1− z

%

)α(%
z

Ln
1

1− z
%

)β
∼ n−α−1 (lnn)β

Γ(−α)
%−n;

pre všetky α ∈ N, β ∈ C \ {0} a n→∞ napokon

[zn]

(
1− z

%

)α(%
z

Ln
1

1− z
%

)β
∼ n−α−1 (lnn)β−1 β

[
d

ds

1

Γ(s)

]
s=−α

%−n.

Dôkaz. Vyplýva z viet 6.2.2, 6.2.4 a 6.2.5 a zo skutočnosti, že pre všetky funkcie f(z) ∈ H0 a všetky
n ∈ N je [zn]f(z) = %−n[zn]f(%z).

6.3 Vety o transfere

Budeme sa teraz zaoberať vetami o transfere, ktoré – spoločne s asymptotickými odhadmi pre ko-
eficienty Maclaurinových radov funkcií štandardnej triedy odvodenými v predchádzajúcom oddiele –
tvoria základ metódy analýzy singularít. Stále pritom zostávame pri základnom variante, kde skúmané
funkcie f(z) ∈ H0 ∩ R≥0JzK majú jedinú dominantnú singularitu, nutne rovnú polomeru konvergencie
Maclaurinovho radu. Dokázaním viet o transfere získame posledný nástroj potrebný na plnohodnotné
použitie metódy analýzy singularít pre takéto vytvárajúce funkcie.

Pod vetou o transfere rozumieme, v kontexte analytickej kombinatoriky a v prípade jedinej do-
minantnej singularity, tvrdenie umožňujúce asymptoticky odhadnúť koeficienty Maclaurinovho radu
funkcie f(z) koeficientmi Maclaurinovho radu nejakej inej funkcie g(z), ktorá patrí do štandardnej
triedy. Možno tak urobiť za predpokladu, že funkciu f(z) samotnú možno asymptoticky odhadnúť fun-
kciou g(z), a to na nejakej vhodnej časti okolia dominantnej singularity % > 0 funkcie g(z) pre z → %.
Použitie takejto vety v procese analýzy singularít sme si už vysvetlili v oddiele 6.1: zanedbateľný člen
singulárneho rozvoja analyzovanej funkcie sa – v prípade, že spĺňa predpoklady vety o transfere –
priamo „preloží“ na zanedbateľný člen asymptotického rozvoja pre koeficienty analyzovanej funkcie.
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0 %

φ

R%

Obr. 6.4: ∆-obor ∆(%,R, φ).

Postačujúcou podmienkou použiteľnosti viet o transfere je analytickosť uvažovanej funkcie f(z)
na rozrezanej komplexnej rovine C\ [%,∞). Tieto vety však možno sformulovať aj za omnoho slabšieho
predpokladu na funkciu f(z) – stačí jej analytickosť na tzv. ∆-obore, ktorý si teraz definujeme. Typický
∆-obor je znázornený na obrázku 6.4 – ide o mierne „zväčšené“ okolie D(0, %) neobsahujúce bod %,
ktoré možno vytvoriť odstránením vhodného výseku z okolia D(0, R%) pre nejaké R > 1.

Definícia 6.3.1. Nech %,R, φ sú reálne čísla také, že % > 0, R > 1 a 0 < φ < π/2. Pod ∆-oborom
∆(%,R, φ) potom rozumieme oblasť

∆(%,R, φ) := {z ∈ C | |z| < R%; arg(z − %) ∈ (φ, 2π − φ)} .

Pod ∆-oborom v bode % > 0 rozumieme ľubovoľný ∆-obor ∆(%,R, φ) pre nejaké R > 1 a 0 < φ < π/2.

Podobne ako v oddiele 6.2 budeme bez ujmy na všeobecnosti predpokladať, že % = 1. Môžeme si
to dovoliť, pretože pre ľubovoľnú funkciu f(z) ∈ H0 s Maclaurinovým radom o polomere konvergencie
% > 0 má funkcia f(%z) polomer konvergencie rovný jednej, pričom pre všetky n ∈ N je

[zn]f(z) = %−n[zn]f(%z). (6.16)

Špeciálne teda pre dvojicu funkcií f(z), g(z) ∈ H0 ∩ R≥0JzK platí [zn]f(z) = O ([zn]g(z)) práve vtedy,
keď [zn]f(%z) = O ([zn]g(%z)) – a podobne pre o a ∼.

Pripomeňme si v zjednodušenej podobe hlavné výsledky oddielu 6.2, ktorými sú asymptotické
odhady pre koeficienty Maclaurinových radov funkcií štandardnej triedy: pre všetky α ∈ C \N, všetky
β ∈ C a n→∞ je

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
∼ n−α−1

Γ(−α)
(lnn)β

a pre všetky α ∈ N, β ∈ C \ {0} a n→∞ je

[zn](1− z)α
(

1

z
Ln

1

1− z

)β
∼ n−α−1 (lnn)β−1 β

[
d

ds

1

Γ(s)

]
s=−α

.

Nie je preto náhoda, že práve funkcie typu n−α−1 (lnn)β budú vystupovať aj vo vetách o transfere.
Najdôležitejším tvrdením tohto oddielu je nasledujúca veta o O-transfere, v ktorej sa horný asymp-

totický odhad spomínaný vyššie formalizuje pomocou notácie O.
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Veta 6.3.2 (O O-transfere). Nech α, β ∈ R.5 Nech f(z) je funkcia analytická na nejakom ∆-obore
∆(1, R, φ) v bode 1 pre R > 1 a φ ∈ (0, π/2). Ak potom pre z ∈ ∆(1, R, φ) a z → 1 je

f(z) = O

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
, (6.17)

tak pre n→∞ je
[zn]f(z) = O

(
n−α−1 (lnn)β

)
.

Dôkaz. Nech r, θ sú reálne čísla také, že 1 < r < R a φ < θ < π/2. Môžeme predpokladať, že n je
dostatočne veľké nato, aby bolo 1/n < r − 1. Nech ν je uhol 0 < ν < π/2 taký, že arg(reiν − 1) = θ
a nech γ je krivka daná ako γ := γ1 + γ2 + γ3 + γ4, kde

γ1 := −κ[θ,2π−θ](1, 1/n),

γ2 := [1 + (1/n)eiθ, reiν ],

γ3 := κ[ν,2π−ν](0, r),

γ4 := [rei(2π−ν), 1 + (1/n)ei(2π−θ)].

Táto krivka γ je znázornená aj na obrázku 6.5.

0

R

1

r

γ3

γ4

γ1
γ2

Obr. 6.5: Krivka γ (plnou čiarou) v ∆-obore ∆(1, R, φ) (čiarkovane). Polomer malého oblúku kružnice je 1/n.
Úsečky γ2 resp. γ4 zvierajú s kladnou reálnou osou uhol θ, úsečky hranice ∆-oboru s ňou zvierajú uhol φ.

Zjavne 0 ∈ I(γ) a γ∗ ⊆ ∆(1, R, φ). Z Cauchyho integrálneho vzorca pre koeficienty Maclaurinovho
radu tak dostávame

[zn]f(z) =
1

2πi

∫
γ

f(z)

zn+1
dz.

Inými slovami: [zn]f(z) = I1 + I2 + I3 + I4, kde pre k = 1, . . . , 4 je

Ik :=
1

2πi

∫
γk

f(z)

zn+1
dz.

Na dôkaz vety stačí vhodne zhora odhadnúť tieto štyri integrály.
5Predpoklad reálnosti čísel α, β tu nie je obmedzujúci, pretože pri asymptotických odhadoch sa berie do úvahy len

absolútna hodnota funkcie.
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Začnime integrálom pozdĺž malého oblúku γ1. Dĺžka tohto oblúku je určite nanajvýš 2π/n, pričom
pre všetky z ∈ γ∗1 je

|1− z| = 1

n

a pre n→∞ je ∣∣∣∣ 1

zn+1

∣∣∣∣ ≤ (1− 1

n

)−n−1

→ e.

Z vety o odhade preto pre vhodné C > 0 a všetky dostatočne veľké n dostávame

|I1| ≤
1

2π
· 2π

n
· C ·

(
1

n

)α
·
(

1 +
1

n− 1

)|β|
· (lnn)β · (e+ 1)

a pre n→∞ tak
|I1| = O

(
n−α−1 (lnn)β

)
. (6.18)

Uvažujme teraz úsečku γ2 (pričom rovnakú argumentáciu by sme mohli použiť aj pre úsečku γ4).
Predpoklad (6.17) znamená, že existujú čísla δ > 0 a C > 0 také, že pre všetky z ∈ ∆(1, R, φ)∩D(1, δ)
je

|f(z)| ≤ C

∣∣∣∣∣(1− z)α
(

1

z
Ln

1

1− z

)β∣∣∣∣∣ . (6.19)

Bez ujmy na všeobecnosti budeme predpokladať, že δ < min{1, r − 1}. Číslo δ ďalej nezávisí od n,
pričom môžeme predpokladať, že n je dostatočne veľké nato, aby platila nerovnosť 1/n < δ. Pre takéto
dostatočne veľké n možno úsečku γ2 rozdeliť na dve časti ako γ2 = γ2,1 + γ2,2, kde γ∗2,1 ⊆ D(1, δ)
a γ∗2,2 ⊆ ∆(1, R, φ) \D(1, δ). Absolútna hodnota analytickej – a tým pádom aj nutne spojitej – fun-
kcie f(z) musí byť na kompaktnej množine γ∗2,2 zhora ohraničená nejakou konštantou M ≥ 0. Keďže
na tejto úsečke je |z| ≥ 1 + ε pre nejaké ε > 0 nezávislé od n, z vety o odhade pre integrál

I2,2 :=
1

2πi

∫
γ2,2

f(z)

zn+1
dz

ihneď dostávame

|I2,2| =

∣∣∣∣∣ 1

2πi

∫
γ2,2

f(z)

zn+1
dz

∣∣∣∣∣ ≤ M

2π
(1 + ε)−n−1L (γ2,2) ≤ Mr

2π
(1 + ε)−n−1 = O

(
n−α−1 (lnn)β

)
. (6.20)

Úsečka γ2,1 je daná ako γ2,1 = [1 + (1/n)eiθ, 1 + δeiθ] a možno ju parametrizovať ako γ2,1 : [1, nδ]→ C,
kde pre všetky t ∈ [1, nδ] je γ2,1(t) = 1 + (t/n)eiθ. Preto

I2,1 :=
1

2πi

∫
γ2,1

f(z)

zn+1
dz =

1

2πi

∫ nδ

1
f

(
1 +

t

n
eiθ
)(

1 +
t

n
eiθ
)−n−1 eiθ

n
dt.

Z vety o odhade teda

|I2,1| =

∣∣∣∣∣ 1

2πi

∫
γ2,1

f(z)

zn+1
dz

∣∣∣∣∣ ≤ 1

2π

∫ nδ

1

∣∣∣∣f (1 +
t

n
eiθ
)∣∣∣∣ · ∣∣∣∣1 +

t

n
eiθ
∣∣∣∣−n−1

· 1

n
dt ≤

≤ 1

2π

∫ nδ

1

∣∣∣∣f (1 +
t

n
eiθ
)∣∣∣∣Re

(
1 +

t

n
eiθ
)−n−1 1

n
dt =

=
1

2π

∫ nδ

1

∣∣∣∣f (1 +
t

n
eiθ
)∣∣∣∣ (1 +

t cos θ

n

)−n−1 1

n
dt =

= I2,1,1 + I2,1,2,
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kde – za predpokladu, že n je dostatočne veľké nato, aby bolo (lnn)2 < nδ –

I2,1,1 :=
1

2π

∫ (lnn)2

1

∣∣∣∣f (1 +
t

n
eiθ
)∣∣∣∣ (1 +

t cos θ

n

)−n−1 1

n
dt

a

I2,1,2 :=
1

2π

∫ nδ

(lnn)2

∣∣∣∣f (1 +
t

n
eiθ
)∣∣∣∣ (1 +

t cos θ

n

)−n−1 1

n
dt.

Odhadneme teraz tieto dva integrály.
Pre integrál I2,1,1 vďaka (6.19) pre dostatočne veľké n dostávame

I2,1,1 ≤
1

2π

∫ (lnn)2

1
C

∣∣∣∣∣
(
− t
n
eiθ
)α( 1

1 + t
ne

iθ
Ln
(
−n
t
e−iθ

))β∣∣∣∣∣
(

1 +
t cos θ

n

)−n−1 1

n
dt ≤

≤ 1

2π

∫ (lnn)2

1
C

∣∣∣∣( tn
)α

(1 + δ)|β| (lnn− ln t+ i(π − θ))β
∣∣∣∣ (1 +

t cos θ

n

)−n−1 1

n
dt ≤

≤ C ′

2π
n−α−1 (lnn)β

∫ (lnn)2

1
tα
(

1 +
t cos θ

n

)−n−1

dt, (6.21)

kde C ′ > 0 je vhodná konštanta. Podobne integrál I2,1,2 môžeme odhadnúť ako

I2,1,2 ≤
1

2π

∫ nδ

(lnn)2

C

∣∣∣∣∣
(
− t
n
eiθ
)α( 1

1 + t
ne

iθ
Ln
(
−n
t
e−iθ

))β∣∣∣∣∣
(

1 +
t cos θ

n

)−n−1 1

n
dt ≤

≤ 1

2π

∫ nδ

(lnn)2

C ′′n

∣∣∣∣( tn
)α∣∣∣∣ (1 +

t cos θ

n

)−n−1 1

n
dt ≤

≤ C ′′

2π
n−α

∫ nδ

(lnn)2

tα
(

1 +
t cos θ

n

)−n−1

dt, (6.22)

kde C ′′ > 0 je vhodná konštanta. Pre n → ∞ teraz asymptoticky odhadneme integrály na pravých
stranách (6.21) a (6.22).

Za účelom asymptotického odhadu oboch týchto integrálov môžeme bez ujmy na všeobecnosti
predpokladať, že δ ≤ 1/(4 cos θ). Pre všetky t ∈ [1, δn] totiž v takom prípade

0 ≤ t cos θ

n
≤ δn cos θ

n
≤ 1

4
,

pričom pre všetky u ∈ [0, 1/4] je 1 + u ≥ eu/2, a teda aj ln(1 + u) ≥ u/2. To znamená, že pre všetky
t ∈ [1, δn] je

ln

(
1 +

t cos θ

n

)
≥ t cos θ

2n
,

z čoho (
1 +

t cos θ

n

)−n−1

≤ (1 + δ)

(
1 +

t cos θ

n

)−n
≤ (1 + δ) exp

(
−n ln

(
1 +

t cos θ

n

))
≤

(1 + δ) exp

(
−nt cos θ

2n

)
= (1 + δ) exp

(
− t cos θ

2

)
. (6.23)
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Keďže na pravej strane (6.22) integrujeme cez t ∈ [(lnn)2, δn], musí pre takéto t vďaka (6.23) byť(
1 +

t cos θ

n

)−n−1

≤ (1 + δ) exp

(
−cos θ

2
(lnn)2

)
a pre n→∞ môžeme integrál z (6.22) odhadnúť ako∫ nδ

(lnn)2

tα
(

1 +
t cos θ

n

)−n−1

dt ≤
∫ nδ

(lnn)2

n|α|(1 + δ) exp

(
−cos θ

2
(lnn)2

)
dt =

=
(
nδ − (lnn)2

)
n|α|(1 + δ) exp

(
−cos θ

2
(lnn)2

)
= O

(
n−2

)
.

Pre integrál I2,1,2 a n→∞ teda dostávame

I2,1,2 ≤
C ′′

2π
n−α

∫ nδ

(lnn)2

tα
(

1 +
t cos θ

n

)−n−1

dt = O
(
n−α−2

)
.

Odhadnime ešte integrál na pravej strane (6.21). Tu vďaka (6.23) pre n→∞ dostávame∫ (lnn)2

1
tα
(

1 +
t cos θ

n

)−n−1

dt ≤ (1 + δ)

∫ (lnn)2

1
t|α|e−(t cos θ)/2 dt =

= (1 + δ)

∫ (lnn)2(cos θ)/2

(cos θ)/2

(
2x

cos θ

)|α|
e−x

2

cos θ
dx =

= (1 + δ)

(
2

cos θ

)|α|+1 ∫ (lnn)2(cos θ)/2

(cos θ)/2
x|α|e−x dx ≤

≤ (1 + δ)

(
2

cos θ

)|α|+1 ∫ ∞
0

x|α|e−x dx =

= (1 + δ)

(
2

cos θ

)|α|+1

Γ (|α|+ 1) = O(1),

z čoho pre integrál I2,1,1 vyplýva odhad

I2,1,1 ≤
C ′

2π
n−α−1 (lnn)β

∫ (lnn)2

1
tα
(

1 +
t cos θ

n

)−n−1

dt = O
(
n−α−1 (lnn)β

)
.

Možeme teda uzavrieť, že

|I2| = |I2,1|+ |I2,2| ≤ I2,1,1 + I2,1,2 + |I2,2| = O
(
n−α−1 (lnn)β

)
(6.24)

a obdobným spôsobom možno dokázať aj odhad

|I4| = O
(
n−α−1 (lnn)β

)
(6.25)

Zostáva odhadnúť integrál pozdĺž veľkého oblúku γ3. Pre všetky z ∈ γ∗3 ale∣∣∣∣ 1

zn+1

∣∣∣∣ = r−n−1,

pričom r > 1. Spojitá funkcia f(z) musí navyše byť na kompaktnej množine γ∗3 v absolútnej hodnote
ohraničená nejakou konštantou M ′ ≥ 0 a dĺžku krivky γ3 možno zhora odhadnúť konštantou 2πr.
Z vety o odhade preto pre n→∞ dostávame

|I3| =
∣∣∣∣ 1

2πi

∫
γ3

f(z)

zn+1
dz

∣∣∣∣ ≤ 1

2π
M ′r−n−12πr = O(r−n) = O

(
n−α−1 (lnn)p

)
. (6.26)

V tomto momente už len stačí sčítať dohromady jednotlivé odhady (6.18), (6.24), (6.25) a (6.26) –
veta je dokázaná.
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Analogicky k vete o O-transfere možno vysloviť aj vetu o o-transfere, ktorej dôkaz je len drobnou
variáciou dôkazu vety 6.3.2.

Veta 6.3.3 (O o-transfere). Nech α, β ∈ R. Nech f(z) je funkcia analytická na nejakom ∆-obore
∆(1, R, φ) v bode 1 pre R > 1 a φ ∈ (0, π/2). Ak potom pre z ∈ ∆(1, R, φ) a z → 1 je

f(z) = o

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
, (6.27)

tak pre n→∞ je
[zn]f(z) = o

(
n−α−1 (lnn)β

)
.

Dôkaz. Stačí jemne pozmeniť argumentáciu z dôkazu vety 6.3.2. Pri analýze integrálov pozdĺž kriviek
γ2,2 a γ3 stačí len zmeniť O na o. Pri krivkách γ1 a γ2,1 sa namiesto odhadu (6.19), podľa ktorého je

|f(z)| ≤ C

∣∣∣∣∣(1− z)α
(

1

z
Ln

1

1− z

)β∣∣∣∣∣
pre nejaké C > 0 použije ten istý odhad pre všetky C > 0, ktorý je dôsledkom predpokladu (6.27).
Pri krivke γ1 potom rovnakým postupom ako v dôkaze vety 6.3.2 pre n→∞ dostaneme

|I1| = o
(
n−α−1 (lnn)β

)
.

Pri krivke γ2,1 získame ∣∣∣∣∣ 1

2πi

∫
γ2,1

f(z)

zn+1
dz

∣∣∣∣∣ ≤ I2,1,1 + I2,1,2,

kde

I2,1,1 ≤
1

2π

∫ (lnn)2

1
C

∣∣∣∣∣
(
− t
n
eiθ
)α( 1

1 + t
ne

iθ
Ln
(
−n
t
e−iθ

))β∣∣∣∣∣
(

1 +
t cos θ

n

)−n−1 1

n
dt

a

I2,1,2 ≤
1

2π

∫ nδ

(lnn)2

C

∣∣∣∣∣
(
− t
n
eiθ
)α( 1

1 + t
ne

iθ
Ln
(
−n
t
e−iθ

))β∣∣∣∣∣
(

1 +
t cos θ

n

)−n−1 1

n
dt

pre všetky C > 0. Zvyšok argumentácie je obdobný ako v dôkaze vety 6.3.2.

Nasledujúca veta o ∼-transfere platí iba za o niečo silnejších predpokladov, než vyššie – na rozdiel
od predchádzajúcich dvoch viet sa totiž v tejto vete nepripúšťa možnosť α ∈ N. To je dané skutoč-
nosťou, že pre takéto α sa – ako sme videli v rámci oddielu 6.2 – koeficienty Maclaurinových radov
funkcií

(1− z)α
(

1

z
Ln

1

1− z

)β
správajú trochu odlišne ako pre zvyšné α ∈ R.

Veta 6.3.4 (O ∼-transfere). Nech α ∈ R \ N a β ∈ R. Nech f(z) je funkcia analytická na nejakom
∆-obore ∆(1, R, φ) v bode 1 pre R > 1 a φ ∈ (0, π/2). Ak potom pre z ∈ ∆(1, R, φ) a z → 1 je

f(z) ∼ (1− z)α
(

1

z
Ln

1

1− z

)β
, (6.28)

tak pre n→∞ je

[zn]f(z) ∼ n−α−1

Γ(−α)
(lnn)β .
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Dôkaz. Odhad (6.28) platí práve vtedy, keď

f(z) = (1− z)α
(

1

z
Ln

1

1− z

)β
+ g(z),

kde pre z ∈ ∆(1, R, φ) a z → 1 je

g(z) = o

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
.

Pre všetky n ∈ N teraz

[zn]f(z) = [zn]

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
+ [zn]g(z). (6.29)

Z vety o koeficientoch Maclaurinových radov funkcií štandardnej triedy ale pre n→∞ vyplýva

[zn]

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
∼ n−α−1

Γ(−α)
(lnn)β ,

čo je to isté ako

[zn]

(
(1− z)α

(
1

z
Ln

1

1− z

)β)
=
n−α−1

Γ(−α)
(lnn)β + o

(
n−α−1 (lnn)β

)
.

Z vety 6.3.3 ďalej
[zn]g(z) = o

(
n−α−1 (lnn)β

)
.

Dosadením do (6.29) teda dostávame

[zn]f(z) =
n−α−1

Γ(−α)
(lnn)β + o

(
n−α−1 (lnn)β

)
,

čiže

[zn]f(z) ∼ n−α−1

Γ(−α)
(lnn)β ,

čo bolo treba dokázať.

Pre úplnosť ešte sformulujme dôsledok viet 6.3.2, 6.3.3 a 6.3.4, ktorý je adaptáciou práve dokázaných
viet o transfere na prípad funkcií s kladným reálnym polomerom konvergencie rôznym od 1.

Dôsledok 6.3.5. Nech α, β ∈ R a % > 0. Nech f(z) je analytická na nejakom ∆-obore ∆(%,R, φ)
v bode % pre R > 1 a φ ∈ (0, π/2). Potom:

(i) Ak pre z ∈ ∆(%,R, φ) a z → % je

f(z) = O

(1− z

%

)α(%
z

Ln
1

1− z
%

)β ,

tak pre n→∞ je
[zn]f(z) = O

(
%−nn−α−1 (lnn)β

)
.
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(ii) Ak pre z ∈ ∆(%,R, φ) a z → % je

f(z) = o

(1− z

%

)α(%
z

Ln
1

1− z
%

)β ,

tak pre n→∞ je

[zn]f(z) = o
(
%−nn−α−1 (lnn)β

)
.

(iii) Ak α 6∈ N a pre z ∈ ∆(%,R, φ) a z → % je

f(z) ∼
(

1− z

%

)α(%
z

Ln
1

1− z
%

)β
,

tak pre n→∞ je

[zn]f(z) ∼ %−nn−α−1 (lnn)β

Γ(−α)
.

Dôkaz. Vyplýva z viet 6.3.2, 6.3.3 a 6.3.4, vzťahu (6.16) a skutočnosti, že funkcia f(z) je analytická
na ∆(%,R, φ) práve vtedy, keď f(%z) je analytická na ∆(1, R, φ).

6.4 Jednoduché aplikácie metódy analýzy singularít

Máme teraz k dispozícii všetky tvrdenia, na ktorých je založená metóda analýzy singularít v prípade
funkcií R(z) ∈ H0 ∩ R≥0JzK s jedinou dominantnou singularitou. Použitie tejto metódy možno zhrnúť
do nasledujúcich niekoľkých krokov:

1. Nájdenie reálneho polomeru konvergencie % > 0 Maclaurinovho radu funkcie R(z), ktorý je nutne
dominantnou singularitou tejto funkcie. V prípade, že % =∞, metódu analýzy singularít nemožno
použiť.

2. Overenie, že % je jedinou dominantnou singularitou funkcie R(z) a funkcia R(z) je analytická
na nejakom ∆-obore ∆(%,R, φ). Ak tieto podmienky nie sú splnené, tento základný variant6

metódy analýzy singularít nemožno aplikovať.

3. Nájdenie singulárneho rozvoja funkcie R(z) v bode %, ktorého členmi sú konštantné násobky
funkcií štandardnej triedy. Špeciálne môže ísť napríklad o Laurentov alebo Puiseuxov rad.

4. Využitie viet o koeficientoch Maclaurinových radov funkcií štandardnej triedy na „preklad“ naj-
významnejšieho člena (resp. niekoľkých najvýznamnejších členov) singulárneho rozvoja na asymp-
toticky najvýznamnejšiu časť rozvoja pre koeficienty [zn]R(z).

5. Využitie viet o transfere na „preklad“ zvyšku singulárneho rozvoja na zvyšok asymptotického
rozvoja pre koeficienty [zn]R(z).

6Neskôr sa budeme zaoberať aj metódou analýzy singularít pre funkcie s konečným počtom dominantných singularít.
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Použitie metódy analýzy singularít pre funkcie s jedinou dominantnou singularitou teraz demon-
štrujeme na niekoľkých príkladoch.

Príklad 6.4.1. V príklade 3.5.1 sme našli obyčajnú vytvárajúcu funkciu kombinatorickej triedy W
všetkých slov nad abecedou Σ = {a, b} s obvykle definovanou dĺžkou: bola daná ako

W (z) =
1

1− 2z
.

Počet všetkých slov dĺžky n ∈ N nad abecedou Σ je teda v súlade s očakávaním [zn]W (z) = 2n.
To je konzistentné s výsledkom, ktorý je možné pre vytvárajúcu funkciu W (z) získať pomocou metódy
analýzy singularít: dominantná singularita funkcie W (z) je % = 1/2; z vety 6.2.2 preto pre n → ∞
dostávame

[zn]W (z) = [zn]
1

1− 2z
∼ 2n

n0

Γ(1)
= 2n.

Využili sme, že funkcia W (z) je priamo daná svojím Laurentovým radom v bode % = 1/2, ktorý
pozostáva z jediného člena. V dôsledku toho sme si pri aplikácii metódy analýzy singularít vystačili
s asymptotickými odhadmi pre koeficienty Maclaurinových radov funkcií štandardnej triedy a nemuseli
sme použiť vetu o transfere.

Príklad 6.4.2. Z príkladov 1.1.1, 1.3.1, 3.5.3, 3.5.4, 3.5.5 a 3.5.6 vyplýva, že pre všetky n ∈ N je počet
všetkých slov dĺžky 2n v Dyckovom jazyku D1, počet všetkých neprázdnych plných binárnych stromov
o n vnútorných vrcholoch, počet všetkých binárnych stromov o n vrcholoch, ako aj počet všetkých
triangulácií konvexného (n+ 2)-uholníka daný n-tým Catalanovým číslom

Cn =
1

n+ 1

(
2n

n

)
.

Vo vete 1.4.2 sme už pomocou Stirlingovej aproximácie ad hoc odvodili aj asymptotický odhad pre Cn
a n→∞. Rovnaký asymptotický odhad teraz odvodíme pomocou metódy analýzy singularít.

Zo spomínaných príkladov 3.5.3, 3.5.5 a 3.5.6 už vieme, že obyčajná vytvárajúca funkcia C(z)
postupnosti Catalanových čísel je daná ako

C(z) =
1−
√

1− 4z

2z
.

Jedinou dominantnou singularitou tejto funkcie je evidentne % = 1/4; funkcia C(z) je navyše analytická
na C \ [%,∞), a teda aj na nejakom ∆-obore v bode %.

Funkcia C(z) má v bode % = 1/4 algebraický bod vetvenia prvého rádu a Puiseuxov rozvoj

C(z) =
1

2z

(
1−
√

1− 4z
)

=
2

1− (1− 4z)

(
1−
√

1− 4z
)

=

=
(
2 + 2(1− 4z) + 2(1− 4z)2 +O

(
(1− 4z)3

)) (
1−
√

1− 4z
)

=

= 2− 2
√

1− 4z + 2(1− 4z)− 2(1− 4z)3/2 + 2(1− 4z)2 − 2(1− 4z)5/2 + 2(1− 4z)3+

+O
(

(1− 4z)7/2
)
.
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Koeficienty [zn](1− 4z)k sú pre k ∈ N evidentne nulové pre všetky dostatočne veľké n ∈ N. Vďaka
vetám 6.2.2 a 6.3.2 teda pre n→∞ dostávame

[zn]C(z) = −2[zn]
√

1− 4z − 2[zn](1− 4z)3/2 − 2[zn](1− 4z)5/2 +O
(

4nn−9/2
)

=

= −2
4nn−3/2

Γ(−1/2)

(
1 +

3

8n
+

25

128n2
+O

(
n−3

))
− 2

4nn−5/2

Γ(−3/2)

(
1 +

15

8n
+O

(
n−2

))
−

− 2
4nn−7/2

Γ(−5/2)

(
1 +O

(
n−1

))
+O

(
4nn−9/2

)
=

=
4nn−3/2

√
π

(
1 +

3

8n
+

25

128n2
+O

(
n−3

))
− 3

2

4nn−5/2

√
π

(
1 +

15

8n
+O

(
n−2

))
+

+
15

4

4nn−7/2

√
π

(
1 +O

(
n−1

))
+O

(
4nn−9/2

)
=

=
4n

√
πn3/2

(
1− 9

8n
+

145

128n2
+O

(
n−3

))
.

Ak by nám stačil odhad s o niečo menšou presnosťou, výpočet sa podstatne zjednoduší – dostaneme
pritom

[zn]C(z) = −2[zn]
√

1− 4z +O
(

4nn−5/2
)

= −2
4nn−3/2

Γ(−1/2)

(
1 +O

(
1

n

))
+O

(
4nn−5/2

)
=

=
4n

√
πn3/2

(
1 +O

(
1

n

))
,

čo sa zhoduje s odhadom z vety 1.4.2.

Príklad 6.4.3. V príklade 3.5.7 sme našli obyčajnú vytvárajúcu funkciu U(z) kombinatorickej triedy
všetkých neprázdnych unárno-binárnych stromov s veľkosťou danou počtom vrcholov:

U(z) =
1− z −

√
1− 2z − 3z2

2z
= z + z2 + 2z3 + 4z4 + . . .

Koeficient [zn+1]U(z) pre n ∈ N sa nazýva aj n-tým Motzkinovým číslom Mn. Obyčajná vytvárajúca
funkcia M(z) postupnosti Motzkinových čísel je tak daná ako

M(z) =
1− z −

√
1− 2z − 3z2

2z2
= 1 + z + 2z2 + 4z3 + . . .

Faktorizovaním polynómu 1− 2z − 3z2 prichádzame k vyjadreniam

U(z) =
1− z −

√
(1− 3z)(1 + z)

2z
a

M(z) =
1− z −

√
(1− 3z)(1 + z)

2z2
.

Vidíme teda, že jedinou dominantnou singularitou obidvoch týchto funkcií analytických v bode 0 je
bod % = 1/3. V oboch prípadoch pritom ide o algebraický bod vetvenia, pričom Puiseuxove rozvoje
uvažovaných funkcií v bode % sú dané ako

U(z) =
1− z −

√
1− 3z

√
1 + z

2z
=

=

(
3

2
+O (1− 3z)

)(
2

3
+O (1− 3z)−

√
1− 3z

(
2
√

3

3
+O (1− 3z)

))
=

= 1−
√

3
√

1− 3z +O (1− 3z)
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resp.

M(z) =
1− z −

√
1− 3z

√
1 + z

2z2
=

=

(
9

2
+O (1− 3z)

)(
2

3
+O (1− 3z)−

√
1− 3z

(
2
√

3

3
+O (1− 3z)

))
=

= 3− 3
√

3
√

1− 3z +O (1− 3z) .

Obe funkcie sú navyše analytické na C\((−∞,−1] ∪ [1/3,∞)), a teda aj na nejakom ∆-obore v bode %.
Použitím viet 6.2.2 a 6.3.2 teda zisťujeme, že pre n→∞ je počet všetkých unárno-binárnych stromov
o n vrcholoch daný ako

[zn]U(z) = −
√

3
3nn−3/2

Γ(−1/2)

(
1 +O

(
1

n

))
+O

(
3nn−2

)
=

3n+1/2

2
√
πn3/2

(
1 +O

(
1√
n

))
a Motzkinove čísla možno pre n→∞ odhadnúť ako

Mn = [zn]M(z) = −3
√

3
3nn−3/2

Γ(−1/2)

(
1 +O

(
1

n

))
+O

(
3nn−2

)
=

3n+3/2

2
√
πn3/2

(
1 +O

(
1√
n

))
.

Príklad 6.4.4. V rámci príkladu 3.8.4 sme prišli k pozorovaniu, že pre všetky n ∈ N je celkový počet
všetkých surjektívnych zobrazení z [n] do ktorejkoľvek z množín [r] pre r ∈ N\{0} daný ako n![zn]S(z),
kde S(z) je exponenciálna vytvárajúca funkcia

S(z) =
1

2− ez
.

Dominantnou singularitou tejto funkcie je evidentne jednoduchý pól % = ln 2, pričom funkcia S(z) je
analytická na C \ {%} a Laurentovým rozvojom funkcie S(z) v bode % je

S(z) =
1

2− (2 + 2(z − %) +O ((z − %)2))
=

1

2%(1− z/%)
· 1

1 +O (1− z/%)
=

1

2%
(1− z/%)−1 +O(1).

Vďaka vetám 6.2.2 a 6.3.2 teda pre počet uvažovaných surjekcií a n→∞ dostávame

n![zn]S(z) = n!

(
%−n

2%Γ(1)

(
1 +O

(
1

n

))
+O

(
%−n

n

))
=

n!

2 (ln 2)n+1

(
1 +O

(
1

n

))
.

Príklad 6.4.5. Počet všetkých permutácií množiny [n] pre n ∈ N rozložiteľných na práve r ∈ N \ {0}
disjunktných cyklov – čiže tzv. Stirlingovo číslo prvého druhu – sme v rámci príkladu 3.8.7 vyjadrili
ako [n

r

]
= n![zn]Pr(z),

kde Pr(z) je exponenciálna vytvárajúca funkcia

Pr(z) =
1

r!

(
Ln

(
1

1− z

))r
.

Z vety 6.2.5 a pozorovania z poznámky 6.2.6 teda pre n→∞ dostávame

[zn]Pr(z) =
1

r!
[zn]

(
Ln

(
1

1− z

))r
=

1

r!
n−1 (lnn)r−1 r

[
d

ds

1

Γ(s)

]
s=0

(
1 +O

(
(lnn)−1

))
.

Vďaka vzťahu (5.4) teraz pre všetky s ∈ C \ Z je

1

Γ(s)
=

1

π
Γ(1− s) sinπs,
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z čoho
d

ds

1

Γ(s)
=

1

π

(
−Γ′(1− s) sinπs+ πΓ(1− s) cosπs

)
,

a teda [
d

ds

1

Γ(s)

]
s=0

= lim
s→0

1

π

(
−Γ′(1− s) sinπs+ πΓ(1− s) cosπs

)
= Γ(1) cos 0 = 1.

Zisťujeme teda, že pre n→∞ a pevné r ∈ N \ {0} je

[zn]Pr(z) =
1

(r − 1)!
n−1 (lnn)r−1

(
1 +O

(
(lnn)−1

))
a [n

r

]
=

(n− 1)!

(r − 1)!
(lnn)r−1

(
1 +O

(
(lnn)−1

))
.

Iné odvodenie tohto asymptotického odhadu možno nájsť v [28].

Príklad 6.4.6. V rámci príkladu 3.8.8 sme skúmali počet všetkých dismutácií – čiže permutácií
bez pevného bodu – na množine [n] pre n ∈ N. Prišli sme k pozorovaniu, že exponenciálna vytvárajúca
funkcia kombinatorickej triedy D všetkých dismutácií, s veľkosťou danou počtom prvkov permutovanej
množiny, je daná ako

D(z) =
e−z

1− z
.

Jedinou dominantnou singularitou tejto funkcie je evidentne % = 1, pričom z Laurentovho rozvoja
funkcie D(z) v bode % dostávame

D(z) =
(
e−1 +O (1− z)

) 1

1− z
=

e−1

1− z
+O (1) .

Funkcia D(z) je analytická na C \ {1}. Pre n → ∞ preto možno počet všetkých dismutácií na [n]
odhadnúť ako

n![zn]D(z) = n!

(
e−1[zn]

1

1− z
+O

(
n−1

))
= n!

(
e−1 1

Γ(1)

(
1 +O

(
1

n

))
+O

(
1

n

))
=

= e−1n!

(
1 +O

(
1

n

))
.

Príklad 6.4.7. Odvoďme teraz asymptotický odhad pre počet 2-regulárnych grafov o n ∈ N označe-
ných vrcholoch v prípade, že n→∞. Uvažujme najprv kombinatorickú triedu X všetkých označených
neorientovaných kružníc rôznych od slučky, kde veľkosť kružnice je daná počtom vrcholov, ktoré túto
kružnicu tvoria. Pre túto triedu X , neutrálnu triedu E a atomickú triedu Z potom platí

X + X ∼= X ? (E + E) ∼= Cyc≥3(Z),

kde

Cyc≥3(Z) =

∞∑
k=3

Cyck(Z);

existencia izomorfizmu medzi prvou dvojicou tried je zrejmá a existencia izomorfizmu s Cyc≥3(Z)
vyplýva zo skutočnosti, že každá neorientovaná kružnica rôzna od slučky musí byť dĺžky n ≥ 3, pričom
každá orientovaná kružnica dĺžky n je daná neorientovanou kružnicou dĺžky n a orientáciou, ktorá
nemá vplyv na veľkosť výsledného kombinatorického objektu. Exponenciálna vytvárajúca funkcia X(z)
triedy X je teda daná vzťahom

2X(z) =

∞∑
n=3

zn

n
= −z − z2

2
+ Ln

1

1− z
,

t. j.

X(z) = −z
2
− z2

4
+

1

2
Ln

1

1− z
.
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Kombinatorickú triedu G všetkých označených 2-regulárnych grafov s veľkosťou danou počtom
vrcholov potom možno špecifikovať ako

G = Set(X ),

z čoho pre exponenciálnu vytvárajúcu funkciu G(z) triedy G dostávame

G(z) = eX(z) =
e−z/2−z

2/4

√
1− z

Jedinou dominantnou singularitou analytickej funkcie G(z) je jej jednoduchý pól % = 1, v ktorom má
Laurentov rozvoj

G(z) =
1√

1− z

(
e−3/4 +O(1− z)

)
=

e−3/4

√
1− z

+O
(√

1− z
)
.

Funkcia G(z) je navyše analytická na C\[1,∞). Počet všetkých 2-regulárnych grafov o n ∈ N vrcholoch
teda pre n→∞ možno asymptoticky odhadnúť ako

n![zn]G(z) = n!

(
e−3/4[zn]

1√
1− z

+O
(
n−3/2

))
=

= n!

(
e−3/4 n

−1/2

Γ(1/2)

(
1 +O

(
1

n

))
+O

(
n−3/2

))
=
e−3/4n!√

πn

(
1 +O

(
1

n

))
.

6.5 Prípad viacerých dominantných singularít

Doposiaľ sme sa zaoberali iba základným variantom metódy analýzy singularít, pri ktorom sme pred-
pokladali, že skúmaná vytvárajúca funkcia má práve jednu dominantnú singularitu rovnú jej polomeru
konvergencie. Teraz sa v krátkosti pristavíme pri vytvárajúcich funkciách s viacerými dominantnými
singularitami – stále však budeme predpokladať existenciu konečného počtu dominantných singularít
– a opíšeme metódu analýzy singularít v plnej všeobecnosti.

Uvažujme funkciu R(z) ∈ H0 ∩ R≥0JzK s konečným polomerom konvergencie % > 0. V prípade, že
má funkcia R(z) jedinú dominantnú singularitu – ktorou podľa Pringsheimovej vety musí byť bod % –
možno za určitých predpokladov použiť vety z predchádzajúcich oddielov tejto kapitoly na odvodenie
veľmi presného asymptotického odhadu pre koeficienty [zn]R(z) a n → ∞. Najvýznamnejším členom
asymptotického rozvoja pre [zn]R(z) je pritom vždy nejaká monotónna funkcia.

Existencia viac ako jednej dominantnej singularity sa typicky prejaví porušením tejto monotón-
nosti – koeficienty Maclaurinových radov funkcií s konečným počtom dominantných singularít môžu
oscilovať, ako napríklad pri nasledujúcich funkciách:

1

1− z2
= 1 + z2 + z4 + z6 + . . . ,

1

1− z3
= 1 + z3 + z6 + z9 + . . . ,

1

1− 9z2
+

1

1− 2z
= 2 + 2z + 13z2 + 8z3 + 97z4 + 32z5 + 793z6 + . . . (6.30)

Dominantné singularity prvej z týchto funkcií sú ±1, pri druhej funkcii ide o hodnoty 1, e2πi/3, e4πi/3

a tretia z uvedených funkcií má dominantné singularity ±1/3. Vo všetkých troch prípadoch teda ide
výlučne o singularity typu %ω, kde ω je niektorá prirodzená komplexná odmocnina jednej. Singularity
takéhoto typu sa prejavujú, podobne ako pri trojici funkcií vyššie, periodickým správaním koeficientov,
pričom perióda je daná rádom odmocniny ω; pri väčšine funkcií významných z hľadiska kombinato-
rických aplikácií narážame práve na tento prípad. Existencia singularít, ktoré nie sú uvedeného typu,
vyústi v oscilácie, ktoré sú o poznanie ťažšie predvídateľné.
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Rozšírenie metódy analýzy singularít na prípad vytvárajúcich funkcií s konečným počtom domi-
nantných singularít je z hľadiska jeho použitia veľmi jednoduché – spočíva v lokalizácii všetkých
dominantných singularít ζ1, . . . , ζk a následnom nájdení singulárnych rozvojov uvažovanej funkcie f(z)
v týchto bodoch. V prípade, že sú členy týchto singulárnych rozvojov konštantnými násobkami funkcií
štandardnej triedy, nájdeme pre niekoľko asymptoticky najvýznamnejších členov každého z nich odhad
pre ich koeficienty. Tieto odhady následne pre j = 1, . . . , k sčítame, čím – za nie príliš obmedzujú-
ceho predpokladu analytickosti funkcie f(z) na prieniku ∆-oborov v jednotlivých jej dominantných
singularitách – získame asymptotický odhad pre koeficienty funkcie f(z).

Poznámka 6.5.1. Je dôležité si uvedomiť, že pri takomto sčítaní asymptotických odhadov pre ko-
eficienty niekoľkých najvýznamnejších členov môže niekedy dôjsť k ich vyrušeniu, čo znamená, že
pre niektoré n môže byť asymptoticky najvýznamnejšia časť odhadu pre [zn]f(z) ukrytá v chybovom
člene. Uvažujme napríklad funkciu (6.30): metódou analýzy singularít získame – vďaka vete 6.5.2, ktorú
zakrátko vyslovíme – odhad

[zn]

(
1

1− 9z2
+

1

1− 2z

)
∼ 1

2
(3n + (−3)n) +O

(
3nn−1

)
.

Ľahko vidieť, že pre nepárne n sú koeficienty rovné 2n; avšak táto informácia je zahrnutá v chybovom
člene.

Presnejšie je princíp metódy analýzy singularít, v prípade vytvárajúcich funkcií s konečným počtom
dominantných singularít, sformulovaný v nasledujúcej vete.

Veta 6.5.2. Nech f(z) ∈ H0∩CJzK je funkcia s konečným polomerom konvergencie % > 0 a konečným
počtom dominantných singularít ζ1, . . . , ζk.7 Predpokladajme navyše, že existuje ∆-obor ∆ := ∆(1, R, φ)
taký, že f(z) je analytická na oblasti

D =

k⋂
j=1

(ζj ·∆) ,

kde pre j = 1, . . . , k je ζj ·∆ = {ζjz | z ∈ ∆}. Ak potom pre j = 1, . . . , k, z ∈ D a z → ζj je

f(z) = Cj,1σj,1 (z/ζj) + . . .+ Cj,pjσj,pj (z/ζj) +O

(1− z

ζj

)α(ζj
z

Ln
1

1− z
ζj

)β ,

kde pj ∈ N \ {0}, Cj,1, . . . , Cj,pj ∈ C, pre s = 1, . . . , pj je

σj,s(z) = (1− z)αj,s
(

1

z
Ln

1

1− z

)βj,s
funkcia štandardnej triedy s αj,s, βj,s ∈ C a α, β ∈ C sú čísla nezávislé od j, tak pre n→∞ je

[zn]f(z) =
k∑
j=1

pj∑
s=1

Cj,sζ
−n
j ([zn]σj,s(z)) +O

(
%−nn−α−1(lnn)β

)
.

Dôkaz. Uvedieme len hrubú ideu dôkazu, ktorý je – podobne ako v prípade jedinej dominantnej singu-
larity – založený na použití Cauchyho integrálneho vzorca pre koeficienty Maclaurinovho radu, podľa
ktorého

an := [zn]f(z) =
1

2πi

∫
γ

f(z)

zn+1
dz,

kde γ je kladne orientovaná jednoduchá uzavretá krivka s γ∗ ⊆ D obsahujúca vo svojom vnútri bod 0.
Konkrétne pre potreby dôkazu uvažujeme krivky γ podobné tým na obrázku 6.6.

7Z definície dominantnej singularity nutne |ζ1| = |ζ2| = . . . = |ζk| = %. Ak navyše f(z) ∈ H0 ∩ R≥0JzK, čo je okrem
iného prípad všetkých vytvárajúcich funkcií analytických v bode 0, musí byť jedno z čísel ζ1, . . . , ζk rovné %.
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0

D

γ

Obr. 6.6: Typická integračná krivka γ uvažovaná v dôkaze vety 6.5.2 v prípade, že k = 4.

Každá takáto krivka γ sleduje kružnicu so stredom v bode 0 o polomere r > %, pričom každú z domi-
nantných singularít vhodným spôsobom obíde. Podobnými metódami ako v predchádzajúcich oddieloch
sa dá dokázať, že príspevok k an získaný integrovaním pozdĺž častí krivky γ ležiacich na spomínanej
kružnici je zanedbateľný. Pre j = 1, . . . , k ďalej môžeme ako γ(j) označiť časť krivky γ „obchádzajúcu“
singularitu ζj , od odpojenia od kružnice s polomerom r po jej opätovné pripojenie (krivka γ(j) teda
pozostáva z dvoch úsečiek a malého kruhového oblúku).

Ak teraz pre j = 1, . . . , k označíme

σj(z) := Cj,1σj,1 (z) + . . .+ Cj,pjσj,pj (z) ,

je
1

2πi

∫
γ(j)

f(z)

zn+1
dz =

1

2πi

∫
γ(j)

σj(z/ζj)

zn+1
dz +

1

2πi

∫
γ(j)

f(z)− σj(z/ζj)
zn+1

dz.

Prvý z týchto integrálov môžeme odhadnúť podobne ako vo vetách o koeficientoch Maclaurinových
radov funkcií štandardnej triedy: krivka γ(j) sa predĺži do nekonečna a vhodne sa využije Hankelova
integrálna reprezentácia funkcie 1/Γ(z). Tým získame najvýznamnejšie členy asymptotického odhadu
pre an zo znenia vety. Chybový člen naopak získame tak, že druhý z oboch integrálov odhadneme
podobne ako v dôkaze vety o O-transfere.

Príklad 6.5.3. Uvažujme funkciu

f(z) =
1−
√

1− z
(1− 4z2)2

.

Dominantnými singularitami tejto funkcie sú zrejme body ±1/2, pričom funkcia f(z) je analytická
na C \ ({1/2,−1/2} ∪ [1,∞)); z toho vyplýva jej analytickosť na oblasti (∆/2) ∩ (−∆/2) pre nejaký
∆-obor ∆ v bode 1.

Môžeme teda nájsť Laurentove rozvoje funkcie f(z) v bodoch ±1/2:

f(z) =
2−
√

2

8
(1− 2z)−2 +O

(
(1− 2z)−1

)
,

f(z) =
2−
√

6

8
(1 + 2z)−2 +O

(
(1 + 2z)−1

)
.
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Podľa vety 6.5.2 tak pre n→∞ dostávame

[zn]f(z) =
2−
√

2

8
2n

n1

Γ(2)
+

2−
√

6

8
(−2)n

n1

Γ(2)
+O(2n) ∼ 2−

√
2

8
n2n +

2−
√

6

8
n(−2)n.

Príklad 6.5.4. Pokúsme sa pre n→∞ asymptoticky vyčísliť počet všetkých permutácií množiny [n],
ktorých rozklad na disjunktné cykly pozostáva iba z cyklov nepárnej dĺžky. Príslušnú kombinatorickú
triedu označených objektov P možno špecifikovať ako

P = Set

( ∞∑
k=0

Cyc2k+1(Z)

)
,

kde Z je atomická trieda. Pre exponenciálnu vytvárajúcu funkciu P (z) triedy P teda dostávame

P (z) = exp

( ∞∑
k=0

z2k+1

2k + 1

)
= exp

(
1

2

(
Ln

1

1− z
− Ln

1

1 + z

))
= exp

(
1

2
Ln

1 + z

1− z

)
=

√
1 + z

1− z
.

Dominantnými singularitami funkcie P (z) sú evidentne body ±1. Puiseuxov rozvoj funkcie P (z) v bode
z = 1 je daný ako

P (z) =

√
2√

1− z

√
1 +

z − 1

2
=

√
2√

1− z

(
1− 1− z

4
+O

(
(1− z)2

))
=

=

√
2√

1− z
− 1

2
√

2

√
1− z +O

(
(1− z)3/2

)
a jej Puiseuxovým rozvojom v bode z = −1 je

P (z) =

√
1 + z√

2
(1 +O (1 + z)) =

√
1 + z√

2
+O

(
(1 + z)3/2

)
.

Pre n→∞ tak vďaka vete 6.5.2 pre počet hľadaných permutácií dostávame

n![zn]P (z) = n!

(√
2[zn]

1√
1− z

− 1

2
√

2
[zn]
√

1− z +
1√
2

[zn]
√

1 + z +O
(
n−5/2

))
=

= n!

( √
2√
πn

+
1

4
√

2
√
πn3
− (−1)n

2
√

2
√
πn3

+O
(
n−5/2

))
=

= n!

( √
2√
πn

+
1− 2(−1)n

4
√

2
√
πn3

+O
(
n−5/2

))
.

Príklad 6.5.5. Uvažujme jednoznačnú bezkontextovú gramatiku s pravidlami

σ → aσσ | bα
α→ cαα | d,

kde σ, α sú neterminály, σ je počiatočný neterminál a a, b, c, d sú terminály. Pre n→∞ asymptoticky
vyčíslime počet Wn všetkých slov dĺžky n v jazyku generovanom touto gramatikou.

Vďaka jednoznačnosti uvedenej gramatiky je kombinatorická špecifikácia triedy Y1 všetkých ňou
generovaných slov daná ako

Y1 = Z × Y1 × Y1 + Z × Y2

Y2 = Z × Y2 × Y2 + Z,
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kde Z označuje atomickú triedu. Obyčajné vytvárajúce funkcie prislúchajúce k triedam Y1,Y2 sú teda
riešením systému rovníc

Y1(z) = zY1(z)2 + zY2(z)

Y2(z) = zY2(z)2 + z

o neznámych Y1(z), Y2(z). Tento systém má práve jedno riešenie v NJzK2:

Y1(z) =
1−

√
1− 2z + 2z

√
1− 4z2

2z
a Y2(z) =

1−
√

1− 4z2

2z
.

Nami hľadaná vytvárajúca funkcia je teda daná ako

Y1(z) =
1−

√
1− 2z + 2z

√
1− 4z2

2z

a pre hľadaný počet slov dĺžky n, generovaných našou gramatikou, platí Wn = [zn]Y1(z).
Asymptotický odhad tejto veličiny pre n→∞ nájdeme metódou analýzy singularít. Ľahko vidieť,

že funkcia Y1(z) má dve dominantné singularity v bodoch ±1/2, pričom je splnená aj podmienka jej
analytickosti na (∆/2)∩(−∆/2) pre nejaký ∆-obor ∆ v bode 1. Môžeme teda nájsť Puiseuxove rozvoje
funkcie Y1(z) v bodoch 1/2 a −1/2:

Y1(z) = 1− 4
√

2(1− 2z)1/4 +O
(

(1− 2z)3/4
)

= 1− 4
√

2(1− 2z)1/4 +O
(

(1− 2z)1/2
)
,

Y1(z) = −1 +
√

2 +
1

2
(1 + 2z)1/2 +O(1 + 2z) = −1 +

√
2 +O

(
(1− 2z)1/2

)
.

Keďže 1 aj −1 +
√

2 sú konštantné funkcie, z hľadiska asymptotiky nehrajú žiadnu rolu; z vety 6.5.2
teda dostávame odhad

Wn = [zn]Y1(z) = − 4
√

2 2n
n−5/4

Γ(−1/4)
+O

(
n−3/22n

)
∼ − 4

√
2

Γ(−1/4)
n−5/42n,

kde Γ(−1/4) je približne −4,902.

6.6 Racionálne a meromorfné vytvárajúce funkcie

Dôležitou triedou funkcií, na ktoré možno aplikovať metódu analýzy singularít sú racionálne funkcie
analytické v bode 0. Ak je takáto funkcia f(z) polynomická, pre dostatočne veľké n ∈ N je nutne
[zn]f(z) = 0. V opačnom prípade má funkcia f(z) konečne veľa dominantných singularít % > 0,
ktoré musia byť všetky pólmi funkcie f(z). Z Laurentových radov v dominantných singularitách tak
možno ľahko odvodiť asymptotický rozvoj pre [zn]f(z) a n→∞. To nie je nijak prekvapivé vo svetle
pozorovaní z oddielu 2.6, podľa ktorých možno koeficienty [zn]f(z) dokonca vyjadriť v uzavretom
tvare.

Podobné asymptotické vlastnosti ako koeficienty racionálnych funkcií majú aj koeficienty všetkých
ďalších meromorfných funkcií analytických v bode 0 s nenulovým konečným počtom dominantných
pólov. V knihe P. Flajoleta a R. Sedgewicka [9] sa asymptotickým odhadom koeficientov takýchto
funkcií venuje pomerne veľká pozornosť a pristupuje sa k nim elementárnymi metódami komplexnej
analýzy, ktoré nepredpokladajú znalosť metódy analýzy singularít.

V rámci tohto krátkeho oddielu si predstavíme nový špecifikačný mechanizmus kombinatorických
tried s racionálnymi vytvárajúcimi funkciami – jednoznačné regulárne výrazy, ktoré tu budeme nazývať
jednoznačnými racionálnymi výrazmi. Ukážeme, že každý takýto racionálny výraz možno mechanicky
preložiť na obyčajnú vytvárajúcu funkciu kombinatorickej triedy všetkých slov v jazyku opísanom
daným výrazom. Pripomeňme si najprv definíciu syntaxe a sémantiky racionálnych výrazov.
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Definícia 6.6.1. Množina všetkých racionálnych výrazov nad abecedou Σ je daná nasledovne:

(i) Pre všetky x ∈ Σ ∪ {ε} je x racionálny výraz nad Σ; navyše aj 0 je racionálny výraz.

(ii) Pre všetky racionálne výrazy E,F nad Σ sú aj (E+F), (E ·F) a (E∗) racionálnymi výrazmi nad Σ.

(iii) Nič iné nie je racionálny výraz nad Σ.

Definícia 6.6.2. Jazyk ‖G‖ ⊆ Σ∗ reprezentovaný racionálnym výrazom G nad abecedou Σ definujeme
nasledovne:

(i) Ak G = x pre nejaké x ∈ Σ ∪ {ε}, tak ‖G‖ = {x}; ak G = 0, tak ‖G‖ = ∅.

(ii) Nech E,F sú racionálne výrazy nad Σ. Ak G = (E + F), tak ‖G‖ = ‖E‖ ∪ ‖F‖; ak G = (E · F), tak
‖G‖ = ‖E‖ · ‖F‖; ak G = (E∗), tak ‖G‖ = ‖E‖∗.

Pri zápisoch racionálnych výrazov budeme, v súlade s bežnou konvenciou, väčšinou vynechávať
zátvorky, ktoré nemajú žiaden vplyv na ich sémantiku – napríklad namiesto (E+(F+G)) teda budeme
písať len E + F + G.

Definícia 6.6.3. Množina všetkých jednoznačných racionálnych výrazov nad abecedou Σ je daná
nasledovne:

(i) Pre všetky x ∈ Σ ∪ {ε} je x jednoznačný racionálny výraz nad Σ; navyše aj 0 je jednoznačný
racionálny výraz.

(ii) Nech E,F sú jednoznačné racionálne výrazy nad Σ. Potom:

a) (E + F) je jednoznačný racionálny výraz nad Σ, ak ‖E‖ ∩ ‖F‖ = ∅;
b) (E ·F) je jednoznačný racionálny výraz nad Σ, ak pre všetky u, u′ ∈ ‖E‖ a všetky v, v′ ∈ ‖F‖

je u = u′ a v = v′ kedykoľvek uv = u′v′.
c) (E∗) je jednoznačný racionálny výraz nad Σ, ak pre všetky n,m ∈ N a všetky slová

w1, . . . , wn, w
′
1, . . . , w

′
m ∈ ‖E‖ je n = m a wk = w′k pre k = 1, . . . , n kedykoľvek pre zreťaze-

nia týchto slov platí w1 . . . wn = w′1 . . . w
′
m.

(iii) Nič iné nie je jednoznačný racionálny výraz nad Σ.

Je zrejmé, že každý jednoznačný racionálny výraz je konečnou reprezentáciou nejakého racionálneho
– t. j. regulárneho – jazyka. Aj naopak ale možno každý racionálny jazyk opísať nejakým jednoznačným
racionálnym výrazom.

Veta 6.6.4. Každý racionálny jazyk možno opísať nejakým jednoznačným racionálnym výrazom.

Dôkaz. Nech L je ľubovoľný racionálny jazyk a nech A je deterministický konečný automat rozozná-
vajúci jazyk L. Predpokladajme, že množina stavov automatu A je Q = [n] pre nejaké n ∈ N; ďalej
predpokladajme, že 1 ∈ Q je počiatočný stav a F ⊆ Q je množina koncových stavov automatu A.
Pre všetky q ∈ Q a w ∈ Σ∗ označme ako q ·w stav, do ktorého sa automat A dostane zo stavu q po pre-
čítaní slova w. McNaughtonov-Jamadov algoritmus skonštruuje k automatu A ekvivalentný racionálny
výraz tak, že pre všetky i, j ∈ [n] a k ∈ {0, . . . , n} postupne zostrojí výrazy R

(k)
i,j také, že∥∥∥R(k)

i,j

∥∥∥ = {w ∈ Σ∗ | i · w = j; pre všetky prefixy x slova w rôzne od ε a w je q · x ∈ [k]}.

Pre všetky i, j ∈ [n] pritom

R
(0)
i,j =


x1 + . . .+ xs ak {x ∈ Σ ∪ {ε} | i · x = j} = {x1, . . . , xs} pre nejaké s ∈ N \ {0}

a po dvoch rôzne x1, . . . , xs ∈ Σ ∪ {ε},
0 inak

(6.31)
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a pre k = 1, . . . , n a všetky i, j ∈ [n] je

R
(k)
i,j = R

(k−1)
i,j + R

(k−1)
i,k ·

(
R

(k−1)
k,k

)∗
· R(k−1)

k,j . (6.32)

Racionálny výraz R ekvivalentný automatu A je napokon daný ako

R =


R

(n)
1,j1

+ . . .+ R
(n)
1,jt

ak F = {j1, . . . , jt} pre nejaké t ∈ N \ {0}
a po dvoch rôzne j1, . . . , jt ∈ [n],

0 inak.
(6.33)

Každý racionálny výraz (6.31) pre i, j ∈ N je pritom zrejme jednoznačný. Navyše je zrejmé, že keby
niektorý z výrazov (6.32) pre i, j, k ∈ [n] alebo (6.33) nebol jednoznačný, museli by na nejaké slovo
w ∈ Σ∗ existovať dva rôzne behy automatu A medzi rovnakou dvojicou stavov – spor s predpokladom,
že automat A je deterministický. Racionálny výraz R teda musí byť jednoznačný.

Pre každý jednoznačný racionálny výraz G nad abecedou Σ je teraz špecifikácia kombinatorickej
triedy neoznačených objektovW‖G‖, pozostávajúcej zo všetkých slov jazyka ‖G‖ s obvykle definovanou
dĺžkou, daná nasledujúcim spôsobom:

• Ak G = 0, je W‖G‖ prázdna trieda.

• Ak G = a pre nejaké a ∈ Σ, je W‖G‖ = Za, kde Za = {a} je atomická trieda.

• Ak G = ε, je W‖G‖ = Eε, kde Eε = {ε} je neutrálna trieda.

• Ak G = E + F pre nejaké jednoznačné racionálne výrazy E,F, je W‖G‖ =W‖E‖ +W‖F‖.

• Ak G = E · F pre nejaké jednoznačné racionálne výrazy E,F, je W‖G‖ =W‖E‖ ×W‖F‖.

• Ak G = E∗ pre nejaký jednoznačný racionálny výraz E, je W‖G‖ = Seq
(
W‖E‖

)
.

Z toho vyplýva, že každý jednoznačný racionálny výraz G možno priamo preložiť aj na obyčajnú
vytvárajúcu funkciu pre postupnosť (an)∞n=0 takú, že pre všetky n ∈ N je an = |‖G‖ ∩ Σn|. Stačí preložiť
jeho racionálne podvýrazy 0 na 0, racionálne podvýrazy a pre a ∈ Σ na z, racionálne podvýrazy ε
na 1, operáciu + na +, operáciu · na · a iteráciu racionálneho podvýrazu E na

W‖E‖(z)
∗ =

1

1−W‖E‖(z)
,

kde W‖E‖(z) je obyčajná vytvárajúca funkcia skonštruovaná takýmto spôsobom pre podvýraz E.

Príklad 6.6.5. Uvažujme jednoznačný racionálny výraz G = (ab + bb)∗c(aa)∗ + ac(a)∗ + ε a vyčís-
lime počet slov dĺžky n ∈ N v jazyku ‖G‖. Spôsobom uvedeným k vyššie prichádzame k obyčajnej
vytvárajúcej funkcii

W‖G‖(z) =
1

1− 2z2
z

1

1− z2
+

z2

1− z
+ 1 = −z +

1

2(1− z)
+

1

2(1 + z)
+

1√
2(1−

√
2z)
− 1√

2(1 +
√

2z)
.

Metódou z oddielu 2.6 tak zisťujeme, že pre všetky n ∈ N existuje presne

[zn]W‖G‖(z) =
1

2
(1 + (−1)n) +

1√
2

(2n/2 − (−1)n2n/2)− δn,1

slov dĺžky n v jazyku ‖G‖. Alternatívne môžeme pre n→∞ prísť pomocou vety 6.5.2 k asymptotickému
odhadu

[zn]W‖G‖(z) =
1√
2

(
2n/2 − (−1)n2n/2

)
+O

(
2n/2n−1

)
.



Predbežná verzia

128 6.7 Algebraické vytvárajúce funkcie

6.7 Algebraické vytvárajúce funkcie

V krátkosti sa ešte zmieňme o niekoľkých najpodstatnejších výsledkoch súvisiacich s dôležitou triedou
algebraických vytvárajúcich funkcií. Dôkazy týchto tvrdení často výrazne presahujú rámec tohto textu
a preto ich neuvádzame.

Definícia 6.7.1. Nech F je podpole C. Formálny mocninový rad R(z) ∈ CJzK nazveme algebraickým
nad F(z), ak pre nejaké n ∈ N \ {0} existujú polynómy P0(z), . . . , Pn(z) ∈ F[z] také, že Pn(z) 6= 0 a

Pn(z)R(z)n + . . .+ P1(z)R(z) + P0(z) = 0.

Rad R(z) je teda koreňom nejakého nenulového polynómu s koeficientmi v okruhu F[z] – alebo ekvi-
valentne v poli F(z).

Ľahko vidieť, že Maclaurinov rad každej vetvy algebraickej funkcie analytickej v bode 0 je al-
gebraický aj ako formálny mocninový rad a naopak každý algebraický mocninový rad s nenulovým
polomerom konvergencie definuje na okolí bodu 0 vetvu nejakej algebraickej funkcie.

Všimnime si tiež, že každý racionálny formálny mocninový rad R(z) ∈ CJzK je súčasne aj algeb-
raický – ak totiž R(z) = P (z)/Q(z) pre nejaké polynómy P (z), Q(z) ∈ C[z], je aj Q(z)R(z)−P (z) = 0.
Príkladom algebraického radu je ďalej napríklad obyčajná vytvárajúca funkcia

C(z) =
1−
√

1− 4z

2z

postupnosti Catalanových čísel, vyhovujúca rovnici zC(z)2 − C(z) + 1 = 0.

Veta 6.7.2. Algebraická funkcia môže mať najviac konečne veľa singularít, pričom každá z nich je
alebo pólom, alebo algebraickým bodom vetvenia.

Existujú dokonca aj algoritmy počítačovej algebry umožňujúce spočítať prvých niekoľko členov
Puiseuxovho rozvoja algebraickej funkcie spĺňajúcej danú alebraickú rovnicu – detaily možno nájsť v [9].
Tieto Puiseuxove rozvoje následne možno pomocou metódy analýzy singularít preložiť na asymptotický
rozvoj pre koeficienty Maclaurinovho radu uvažovanej funkcie. O tvare tohto asymptotického rozvoja
hovorí nasledujúca veta z [9], ktorá je jednoduchým dôsledkom predchádzajúcej vety.

Veta 6.7.3. Nech f(z) je vetva algebraickej funkcie analytická v bode 0. Ak má funkcia f(z) jedinú
dominantnú singularitu ζ ∈ C \ {0}, je pre n→∞

[zn]f(z) ∼ ζ−n
∞∑

k=k0

dkn
−k/κ−1,

kde k0 ∈ Z, κ ∈ N \ {0} a (dk)
∞
k=k0

je postupnosť komplexných čísel. V prípade, že má funkcia f(z)
dominantné singularity ζ1, . . . , ζm ∈ C \ {0} pre nejaké m ∈ N \ {0} s |ζ1| = . . . |ζm| = %, pre nejaké
ε > 0 a n→∞ je

[zn]f(z) =

m∑
j=1

φ(j)(n) +O
(
(%+ ε)−n

)
,

kde pre j = 1, . . . ,m je

φ(j)(n) ∼ ζ−nj
∞∑

k=k
(j)
0

d
(j)
k n−k/κj−1

pre nejaké k(j)
0 ∈ Z, κj ∈ N \ {0} a postupnosť komplexných čísel

(
d

(j)
k

)∞
k=k

(j)
0

.
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Uvažujme ďalej ľubovoľnú jednoznačnú8 bezkontextovú gramatiku s neterminálmi ξ1, . . . , ξm a pra-
vidlami

ξ1 → x1,1 | x1,2 | . . . | x1,s1

ξ2 → x2,1 | x2,2 | . . . | x2,s2

...
ξm → xm,1 | xm,2 | . . . | xm,sm .

Nahraďme teraz pre j = 1, . . . ,m neterminál ξj komutatívnou neznámou Yj , všetky terminály na-
hraďme komutatívnou komplexnou premennou z, znak → nahraďme rovnosťou a znak | nahraďme
sčítaním formálnych mocninových radov. Vo výsledku tak dostaneme systém algebraických rovníc
nad CJzK,

Y1 = P1(Y1, . . . , Ym, z)

Y2 = P2(Y1, . . . , Ym, z)

...
Ym = Pm(Y1, . . . , Ym, z),

kde P1, . . . , Pm sú polynómy o m + 1 premenných Y1, . . . , Ym, z s prirodzenými koeficientmi – ho-
voríme teda o tzv. N-algebraickom systéme. Nie je ťažké vidieť, že jedným z riešení tohto systému
musí vždy byť vektor (R1(z), . . . , Rm(z))T , kde pre j = 1, . . . ,m je Rj(z) ∈ NJzK obyčajná vytvára-
júca funkcia kombinatorickej triedy všetkých slov vygenerovaných danou gramatikou z neterminálu ξj .
Dá sa navyše dokázať,9 že ak uvažovaná gramatika neobsahuje žiadne pravidlo s prázdnym slovom ε
na pravej strane, ani žiadne reťazové pravidlo s pravou stranou pozostávajúcou z jediného neterminálu,
je vektor (R1(z), . . . , Rm(z))T jediným riešením uvažovaného systému takým, že pre j = 1, . . . ,m je
[z0]Rj(z) = 0 – hovoríme v takom prípade o jeho kanonickom riešení.

Je ďalej známe, že pre každý N-algebraický systém – alebo všeobecnejšie aj každý Q-algebraický
systém, v ktorom môžu mať polynómy P1, . . . , Pm racionálne koeficienty – a ľubovoľné jeho riešenie
(R1(z), . . . , Rm(z))T ∈ CJzKm možno pre j = 1, . . . ,m nájsť n ∈ N \ {0} a P0(z), . . . , Pn(z) ∈ Q[z]
také, že Pn(z) 6= 0 a Rj(z) je riešením rovnice

Pn(z)Y n + . . .+ P1(z)Y + P0(z) = 0

o neznámej Y . V dôsledku toho sú všetky zložky riešení N-algebraických systémov algebraickými radmi.
Dôkaz tejto skutočnosti je založený na teórii algebraickej eliminácie – či už na báze rezultantov alebo
pomocou Gröbnerových báz [9, 5, 10]. Jej dôsledkom je nasledujúca veta, v ktorej sa pod obyčajnou
vytvárajúcou funkciou bezkontextového jazyka rozumie obyčajná vytvárajúca funkcia kombinatorickej
triedy všetkých slov v tomto jazyku s veľkosťou danou ich dĺžkou.

Veta 6.7.4 (Chomského-Schützenbergerova veta o enumerácii). Obyčajná vytvárajúca funkcia každého
jednoznačného bezkontextového jazyka je algebraická.

Ak teda nejaký bezkontextový jazyk nemá algebraickú obyčajnú vytvárajúcu funkciu, ide o známku
toho, že uvažovaný jazyk je vnútorne viacznačný – toto pozorovanie umožnilo P. Flajoletovi rela-
tívne jednoduchým spôsobom dokázať vnútornú viacznačnosť niekoľkých bezkontextových jazykov [7].
Ak je naopak bezkontextový jazyk jednoznačný, možno na asymptotickú analýzu počtu jeho slov
dĺžky n pre n→∞ vždy použiť metódu analýzy singularít.

8V silnom slova zmysle, kde požadujeme jednoznačnosť pre ľubovoľnú voľbu počiatočného neterminálu. Pre reduko-
vané gramatiky je táto požiadavka evidentne ekvivalentná bežnej jednoznačnosti.

9Elegantný dôkaz tohto tvrdenia je napríklad založený na použití Banachovej vety o pevnom bode pre vhodnú metriku
na m-ticiach formálnych mocninových radov.
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Obyčajnou vytvárajúcou funkciou bezkontextového jazyka v skutočnosti nemôže byť ľubovoľná
algebraická funkcia, ale iba určité algebraické funkcie špeciálneho druhu – štruktúra bezkontextovej
gramatiky má pritom veľký vplyv na druh dominantných singularít tejto vytvárajúcej funkcie. Po-
merne dlho je už napríklad známa tzv. Drmotova-Lalleyova-Woodsova veta [9, 6, 14, 30], podľa ktorej
má obyčajná vytvárajúca funkcia jazyka generovaného nelineárnou silne súvislou10 jednoznačnou bez-
kontextovou gramatikou (s aspoň jedným pravidlom s terminálnou pravou stranou a bez reťazových
pravidiel či pravidiel s prázdnym slovom na prázdnej strane) v kladnej reálnej dominantnej singularite %
vždy Puiseuxov rozvoj s najvýznamnejším nekonštantným členom C

√
1− z% pre nejakú konštantu C.

C. Banderier a M. Drmota [1] neskôr charakterizovali možné Puiseuxove rozvoje v kladných dominant-
ných singularitách aj pre všeobecné jednoznačné bezkontextové gramatiky.

10Nelineárnosť znamená, že na pravej strane aspoň jedného z pravidiel sú aspoň dva neterminály. Silná súvislosť
znamená, že z každého neterminálu možno vygenerovať slovo obsahujúce ľubovoľný iný z neterminálov.
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Kapitola 7

Vytvárajúce funkcie viacerých
premenných

Kľúčom k mnohým aplikáciám analytickej kombinatoriky sú techniky založené na použití vytvárajú-
cich funkcií viacerých premenných. Tie umožňujú zahrnúť do analýzy okrem veľkosti kombinatorických
objektov aj ďalšie ich parametre – možno takto napríklad skúmať počet výskytov k nejakého písmena
v slovách dĺžky n, počet cyklov k v permutáciách n-prvkovej množiny, atď. Keďže takéto kombina-
torické parametre možno chápať aj ako náhodné premenné, stávajú sa vytvárajúce funkcie viacerých
premenných užitočným nástrojom na asymptotickú analýzu rozdelení pravdepodobnosti, stredných
hodnôt a rôznych štatistických ukazovateľov. Tieto techniky sú okrem iného aj základom pre aplikácie
analytickej kombinatoriky pri analýze časovej zložitosti algoritmov v priemernom prípade.

Táto kapitola je len jemným úvodom do pomerne rozsiahlej problematiky vytvárajúcich funkcií
viacerých premenných a niektorých ich aplikácií – omnoho hlbšie spracovanie tohto materiálu možno
nájsť v knihe P. Flajoleta a R. Sedgewicka [9]. V súlade s [9] nebudeme vytvárajúce funkcie viacerých
premenných chápať ako analytické objekty – to by si okrem iného vyžadovalo využívať techniky z te-
órie funkcií niekoľkých komplexných premenných. Namiesto toho budeme s vytvárajúcimi funkciami
viacerých premenných pracovať len na symbolickej úrovni formálnych mocninových radov, pričom na-
ším cieľom zvyčajne bude dospieť k vhodnej vytvárajúcej funkcii jednej premennej, na ktorú bude
následne možné aplikovať analytické metódy. Existuje ale aj relatívne nová oblasť viacrozmernej ana-
lytickej kombinatoriky, ktorá je v tomto zmysle „plnohodnotným“ rozšírením analytickej kombinatoriky
na prípad vytvárajúcich funkcií niekoľkých premenných. Ako úvod do tejto značne netriviálnej oblasti
výskumu môže poslúžiť kniha R. Pemantla a M. C. Wilsona [18].

7.1 Formálne mocninové rady o niekoľkých premenných

Podobným spôsobom, ako sme definovali formálne mocninové rady o jednej premennej z, tvoriace obor
integrity CJzK, možno definovať aj formálne mocninové rady o niekoľkých komutatívnych1 premenných
z1, . . . , zm s komplexnými koeficientmi. Rovnako ako sú formálne mocninové rady o jednej premennej
len odlišným zápisom pre postupnosť ich koeficientov, sú aj formálne mocninové rady o viacerých
premenných odlišne zapísaným (viacrozmerným) systémom ich koeficientov, pričom dôvodom odlišného
zápisu je iná uvažovaná multiplikatívna operácia. Takýto rad R je daný zobrazením, ktoré pre každú
m-ticu exponentov k1, . . . , km vráti koeficient pri zk1

1 . . . zkmm ; ide teda o funkciu exponentov. Rovnako
ako pri radoch o jednej premennej však budeme na posilnenie intuície používať zápis evokujúci, že R
je funkciou premenných z1, . . . , zm; budeme teda písať R = R(z1, . . . , zm).

1Komutatívnosť premenných znamená, že ako obvykle pre každú dvojicu premenných zr, zs platí zrzs = zszr. Na tomto
mieste ju zdôrazňujeme najmä kvôli odlíšeniu od radov o niekoľkých nekomutatívnych premenných, ktoré sú prirodzeným
zovšeobecnením formálnych jazykov. V nasledujúcom budeme komutatívnosť premenných považovať za samozrejmú
a nebudeme na ňu explicitne upozorňovať.
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Definícia 7.1.1. Formálnym mocninovým radom om ∈ N\{0} premenných z1, . . . , zm s komplexnými
koeficientmi nazveme ľubovoľné zobrazenie R : Nm → C. Ak je pre všetky k1, . . . , km ∈ N výstupná
hodnota zobrazenia R pri argumentoch (k1, . . . , km) rovná ak1,...,km , píšeme rad R ako

R = R(z1, . . . , zm) =
∑

k1,...,km∈N
ak1,...,kmz

k1
1 . . . zkmm .

Pre všetky k1, . . . , km ∈ N navyše kladieme[
zk1

1 . . . zkmm

]
R(z1, . . . , zm) := ak1,...,km

a túto hodnotu nazývame koeficientom raduR(z1, . . . , zm) pri zk1
1 . . . zkmm . Množinu všetkých formálnych

mocninových radov o premenných z1, . . . , zm označujeme CJz1, . . . , zmK a pre všetky S ⊆ C označujeme
ako SJz1, . . . , zmK množinu všetkýchR(z1, . . . , zm) ∈ CJz1, . . . , zmK takých, že pre všetky k1, . . . , km ∈ N
je [zk1

1 . . . zkmm ]R(z1, . . . , zm) ∈ S.

Väčšinu operácií na formálnych mocninových radoch z CJz1, . . . , zmK možno zaviesť úplne rovnakým
spôsobom ako pre rady z CJzK, pričom aj ich vlastnosti sú podobné ako v jednorozmernom prípade –
túto úlohu teda prenechávame čitateľovi ako jednoduché cvičenie. Špeciálne platí, že spoločne so súčtom
radov (definovaným po zložkách) a Cauchyho súčinom radov tvorí CJz1, . . . , zmK obor integrity.

Z hľadiska operácií na formálnych mocninových radoch sa rozdiel medzi prípadom jednej a viace-
rých premenných najmarkantnejšie prejaví v prípade formálnej derivácie, kde je pri radoch s m ≥ 2
premennými nutné uvažovať formálne parciálne derivácie: pre všetky

R(z1, . . . , zm) =
∑

k1,...,km∈N
ak1,...,kmz

k1
1 . . . zkmm ∈ CJz1, . . . , zmK

a j = 1, . . . ,m definujeme

∂

∂zj
R(z1, . . . , zm) = Rzj (z1, . . . , zm) :=

∑
k1,...,km∈N

(kj + 1)ak1,...,kj−1,(kj+1),kj+1,...,kmz
k1
1 . . . zkmm =

=
∑

k1,...,kj−1,kj+1,...,km≥∈N
kj∈N\{0}

kjak1,...,kmz
k1
1 . . . z

kj−1

j−1 z
kj−1
j z

kj+1

j+1 . . . zkmm .

V nasledujúcom sa budeme zaoberať najmä formálnymi mocninovými radmi dvoch premenných.
V takom prípade budeme väčšinou používať označenia z, u pre premenné, n pre exponent premennej z
a k pre exponent premennej u. Typický formálny mocninový rad dvoch premenných teda možno zapísať
ako

R(z, u) =
∑
n,k∈N

an,kz
nuk.

7.2 Kombinatorické triedy s parametrom

Zameriame sa teraz na vytvárajúce funkcie dvoch premenných – podobne by sme ale mohli skúmať vy-
tvárajúce funkcie ľubovoľného konečného počtu premenných. Tak ako (obyčajné alebo exponenciálne)
vytvárajúce funkcie jednej premennej z prirodzene zodpovedajú kombinatorickým triedam (neozna-
čených alebo označených objektov), sú vytvárajúce funkcie dvoch premenných neoddeliteľne späté
s kombinatorickými triedami s parametrom.2 Ide o kombinatorické triedy, na ktorých je okrem funkcie
určujúcej veľkosť jednotlivých objektov definované ešte jedno zobrazenie χ priraďujúce každému ob-
jektu nejaké iné prirodzené číslo, tzv. parameter (napr. počet výskytov daného symbolu v slove, počet
cyklov permutácie, atď.). Koeficient príslušnej vytvárajúcej funkcie pri znuk potom závisí od počtu
objektov veľkosti n s hodnotou parametra k.

2Vytvárajúce funkcie m premenných by potom zodpovedali kombinatorickým triedam s m− 1 parametrami.
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Definícia 7.2.1. Kombinatorická trieda s parametrom je trojica (C, |·|, χ), kde (C, |·|) je kombinatorická
trieda a χ : C → N je ľubovoľné zobrazenie.

Z definície kombinatorickej triedy vyplýva, že pre všetky n ∈ N je vzor čísla n pri zobrazení |·|,
daný množinou

Cn = {x ∈ C | |x| = n} ,

konečný. Pre všetky n, k ∈ N je teda konečná aj množina

Cn,k = {x ∈ C | |x| = n; χ(x) = k} ,

čím je zaručená zmysluplnosť nasledujúcich dvoch definícií.

Definícia 7.2.2. Obyčajnou vytvárajúcou funkciou dvoch premenných kombinatorickej triedy s para-
metrom (C, |·|, χ) nazývame formálny mocninový rad

C(z, u) =
∑
x∈C

z|x|uχ(x) =
∑
n,k∈N

cn,kz
nuk,

kde pre všetky n, k ∈ N je cn,k := |Cn,k|.

Definícia 7.2.3. Exponenciálnou vytvárajúcou funkciou dvoch premenných kombinatorickej triedy
s parametrom (C, |·|, χ) nazývame formálny mocninový rad

E(z, u) =
∑
x∈C

z|x|

|x|!
uχ(x) =

∑
n,k∈N

cn,k
n!

znuk,

kde pre všetky n, k ∈ N je cn,k := |Cn,k|.

Vzhľadom na to, že pre každú kombinatorickú triedu s parametrom (C, |·|, χ) je (C, |·|) bežná kom-
binatorická trieda, môže pre všetky n ∈ N existovať iba konečne veľa rôznych k ∈ N takých, že
cn,k = |Cn,k| je nenulové. Existuje preto aj súčet

cn =
∞∑
k=0

cn,k,

ktorý je daný konečným súčtom všetkých nenulových cn,k. V dôsledku toho môžeme pre obyčajné
aj exponenciálne vytvárajúce funkcie dvoch premenných uvažovať dosadenie hodnoty 1 za premennú u:
ak je C(z, u) obyčajná vytvárajúca funkcia triedy (C, |·|, χ) a E(z, u) je jej exponenciálna vytvárajúca
funkcia, kladieme

C(z, 1) :=

∞∑
n=0

∞∑
k=0

cn,kz
n =

∞∑
n=0

cnz
n,

E(z, 1) :=

∞∑
n=0

∞∑
k=0

cn,k
n!

zn =

∞∑
n=0

cn
n!
zn.

Ľahko vidieť, že C(z) := C(z, 1) je obyčajnou vytvárajúcou funkciou triedy (C, |·|) a E(z) := E(z, 1)
je jej exponenciálnou vytvárajúcou funkciou.
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7.3 Symbolická metóda pre kombinatorické triedy s parametrom

Na prípad kombinatorických tried s parametrami a vytvárajúcich funkcií dvoch premenných možno roz-
šíriť ako symbolickú metódu pre neoznačené objekty, tak aj symbolickú metódu pre označené objekty.
V oboch prípadoch sa atomické a neutrálne triedy interpretujú ako jednoprvkové kombinatorické triedy
s nulovým parametrom – atomickou triedou teda rozumieme triedu Z = ({zZ}, |·|, χ), kde |zZ | = 1
a χ(zZ) = 0 a neutrálnou triedou rozumieme triedu E = ({1E}, |·|, χ), kde |1E | = 0 a χ(1E) = 0. Okrem
nich ale navyše uvažujeme aj takzvané značky, čo sú triedy

U = ({�U}, |·|, χ) ,

kde |�U | = 0 a χ(�U ) = 1. Obyčajné aj exponenciálne vytvárajúce funkcie dvoch premenných sú
pre atomické triedy, neutrálne triedy resp. značky dané ako z, 1, resp. u.

Operácie na kombinatorických triedach s parametrami, z ktorých možno budovať špecifikácie (na-
príklad súčet, karteziánsky súčin, prechod k triede všetkých postupností, atď.), sú pre neoznačené
aj označené objekty veľmi podobné ako pri kombinatorických triedach bez parametrov. Nosná množina,
ako aj funkcia veľkosti, sú zakaždým definované rovnako ako pre operácie na triedach bez parametrov.
Jediný rozdiel teda spočíva v nutnosti výslednú kombinatorickú triedu parametrizovať. Pri operáciách,
ktoré budeme uvažovať, bude na výslednej triede vždy definovaný tzv. zdedený parameter : pri operácii
disjunktného zjednotenia kombinatorických tried C = (C, |·|C , χC), D = (D, |·|D, χD) – či už neoznače-
ných alebo označených objektov – je hodnota parametra χ(x) každého prvku x triedy C+D definovaná
ako χ(x) = χC(x

′) ak x = (x′, 1) pre nejaké x′ ∈ C a ako χ(x) = χD(x′) ak x = (x′, 2) pre nejaké x′ ∈ D;
pri multiplikatívnych operáciách C×D (pre triedy neoznačených objektov) resp. C ?D (pre triedy ozna-
čených objektov) je zdedenou hodnotou χ(x, y) resp. χ(x, y, f) hodnota χC(x)+χD(y); pre postupnosti
objektov x1, . . . , xm triedy C = (C, |·|C , χC) je – pre neoznačené aj označené objekty – táto hodnota
daná ako χC(x1)+. . .+χC(xm); pre zvyšné operácie, ktoré možno vyjadriť pomocou relácií ekvivalencie
na postupnostiach, vychádza táto hodnota z hodnoty pre postupnosti. Napríklad trieda U2 × Z tak
pozostáva z jediného prvku veľkosti 1 s hodnotou parametra 2.

Nasledujúce dve vety hovoria o vzťahoch medzi operáciami na kombinatorických triedach s para-
metrami a príslušnými operáciami na vytvárajúcich funkciách dvoch premenných; prvá z nich sa pritom
zameriava na triedy neoznačených objektov a nim zodpovedajúce obyčajné vytvárajúce funkcie a druhá
na triedy označených objektov a nim zodpovedajúce exponenciálne vytvárajúce funkcie. V oboch prí-
padoch sú dôkazy prakticky rovnaké ako pre kombinatorické triedy bez parametra; prenechávame ich
teda čitateľovi ako cvičenie. Reláciu prislúchajúcej obyčajnej resp. exponenciálnej vytvárajúcej funkcie
dvoch premenných budeme v oboch vetách označovať ako ←→.

Veta 7.3.1. Nech C = (C, |·|C , χC) a D = (D, |·|D, χD) sú kombinatorické triedy neoznačených objek-
tov s parametrom, pričom triede C prislúcha obyčajná vytvárajúca funkcia dvoch premenných C(z, u)
a triede D prislúcha obyčajná vytvárajúca funkcia dvoch premenných D(z, u). Potom platia nasledujúce
vzťahy medzi kombinatorickými triedami s parametrom a ich obyčajnými vytvárajúcimi funkciami dvoch
premenných:

C +D ←→ C(z, u) +D(z, u),

C × D ←→ C(z, u)D(z, u),

Seq(C) ←→ 1

1− C(z, u)
(ak C0 = ∅),

PSet(C) ←→ exp

( ∞∑
t=1

(−1)t+1

t
C(zt, ut)

)
(ak C0 = ∅),

MSet(C) ←→ exp

( ∞∑
t=1

1

t
C(zt, ut)

)
(ak C0 = ∅).
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Veta 7.3.2. Nech C = (C, |·|C , χC) a D = (D, |·|D, χD) sú kombinatorické triedy označených objektov
s parametrom, pričom triede C prislúcha exponenciálna vytvárajúca funkcia dvoch premenných E(z, u)
a triede D prislúcha exponenciálna vytvárajúca funkcia dvoch premenných F (z, u). Potom platia na-
sledujúce vzťahy medzi kombinatorickými triedami s parametrom a ich exponenciálnymi vytvárajúcimi
funkciami dvoch premenných:

C +D ←→ E(z, u) + F (z, u),

C ?D ←→ E(z, u)F (z, u),

Seq(C) ←→ 1

1− E(z, u)
(ak C0 = ∅),

Set(C) ←→ exp (E(z, u)) (ak C0 = ∅),

Cyc(C) ←→ Ln
1

1− E(z, u)
(ak C0 = ∅).

7.4 Kumulatívne vytvárajúce funkcie a stredné hodnoty

Vyššie sme videli, že ak k triede s parametrom (C, |·|, χ) prislúcha obyčajná vytvárajúca funkcia C(z, u)
a exponenciálna vytvárajúca funkcia E(z, u), tak C(z) = C(z, 1) je obyčajná vytvárajúca funkcia
triedy bez parametra (C, |·|) a E(z) = E(z, 1) je jej exponenciálna vytvárajúca funkcia. Ľahko to vidieť
aj z kombinatorického tvaru vytvárajúcich funkcií, pretože

C(z, 1) = [C(z, u)]u=1 =

[∑
x∈C

z|x|uχ(x)

]
u=1

=
∑
x∈C

z|x|1χ(x) =
∑
x∈C

z|x| = C(z),

E(z, 1) = [E(z, u)]u=1 =

[∑
x∈C

z|x|

|x|!
uχ(x)

]
u=1

=
∑
x∈C

z|x|

|x|!
1χ(x) =

∑
x∈C

z|x|

|x|!
= E(z);

dosadením u = 1 teda každý objekt x triedy A započítame práve raz.
Ak teraz vytvárajúce funkcie C(z, u) a E(z, u) najprv formálne zderivujeme podľa u a až následne

za u dosadíme hodnotu 1, dostaneme pre C′ = {x ∈ C | χ(x) 6= 0} formálne mocninové rady

Cc(z) :=

[
∂

∂u
C(z, u)

]
u=1

=

[∑
x∈C′

χ(x)z|x|uχ(x)−1

]
u=1

=
∑
x∈C′

χ(x)z|x|1χ(x)−1 =
∑
x∈C

χ(x)z|x|,

Ec(z) :=

[
∂

∂u
E(z, u)

]
u=1

=

[∑
x∈C′

χ(x)
z|x|

|x|!
uχ(x)−1

]
u=1

=
∑
x∈C′

χ(x)
z|x|

|x|!
1χ(x)−1 =

∑
x∈C

χ(x)
z|x|

|x|!
.

Ľahko vidieť, že

[zn]Cc(z) =
∑
x∈Cn

χ(x) a [zn]Ec(z) =
1

n!

∑
x∈Cn

χ(x).

Koeficientom pri zn v Cc(z) je teda kumulatívna hodnota parametra χ objektov veľkosti n v triede C;
v koeficientoch radu Ec(z) je táto hodnota ešte predelená n!. Rad Cc(z) resp. Ec(z) teda nazývame
obyčajnou resp. exponenciálnou kumulatívnou vytvárajúcou funkciou triedy (C, |·|, χ).

Kumulatívne vytvárajúce funkcie možno použiť na vyjadrenie strednej hodnoty parametra χ pri rov-
nomerne náhodnom výbere objektov triedy Cn. Ak túto strednú hodnotu pre dané n ∈ N označíme
ako En(χ), očividne

En(χ) =
[zn]Cc(z)

[zn]C(z)
=

[zn]Ec(z)

[zn]E(z)
.

Na nájdenie asymptotického odhadu pre koeficienty vytvárajúcich funkcií C(z), Cc(z), E(z) a Ec(z)
možno často použiť metódu analýzy singularít. V takom prípade možno túto informáciu využiť na ana-
lýzu strednej hodnoty parametra χ pre rovnomerne náhodne vybrané objekty veľkosti n a n → ∞.
To je užitočné napríklad pri analýze zložitosti algoritmov v priemernom prípade.
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Podobným spôsobom možno analyzovať aj ďalšie ukazovatele parametra χ považovaného za ná-
hodnú premennú, napríklad jeho disperziu. Podrobnosti možno nájsť v [9].

7.5 Pravdepodobnostné vytvárajúce funkcie

Nech (C, |·|, χ) je kombinatorická trieda s parametrom. Podobne ako stredné hodnoty parametra χ
možno z vytvárajúcich funkcií dvoch premenných získať aj kompletnú informáciu o distribúcii náhodnej
premennej χ v prípade, že objekty danej veľkosti n vyberáme rovnomerne náhodne.

Pre ľubovoľný formálny mocninový rad dvoch premenných F (z, u) a všetky n ∈ Nmôžeme uvažovať
formálny mocninový rad [zn]F (z, u) o jednej premennej u definovaný ako

[zn]F (z, u) :=
∞∑
k=0

(
[znuk]F (z, u)

)
uk.

Ak teraz k triede (C, |·|, χ) prislúcha obyčajná vytvárajúca funkcia C(z, u) a exponenciálna vytvárajúca
funkcia E(z, u) a ak ako Pn[χ = k] označíme pravdepodobnosť, že hodnota parametra rovnomerne
náhodne vybraného objektu triedy Cn je rovná k, evidentne

Pn(u) :=

∞∑
k=0

Pn[χ = k]uk =
[zn]C(z, u)

[zn]C(z)
=

[zn]E(z, u)

[zn]E(z)
.

Takto definovaný formálny mocninový rad Pn(u) ∈ CJuK nazývame n-tou pravdepodobnostnou vytvá-
rajúcou funkciou triedy (C, |·|, χ).

7.6 Príklady aplikácií

Použitie vytvárajúcich funkcií dvoch premenných v kombinatorických aplikáciách si teraz predvedieme
na niekoľkých príkladoch.

Príklad 7.6.1. Jednoduchým príkladom vytvárajúcej funkcie dvoch premenných, vhodným najmä
na lepšie zžitie sa s týmto konceptom, je obyčajná vytvárajúca funkcia pre binomické koeficienty,

B(z, u) =
∑
n,k∈N

(
n

k

)
znuk.

Keďže pre všetky n ∈ N je podľa binomickej vety
∞∑
k=0

(
n

k

)
uk =

n∑
k=0

(
n

k

)
uk = (1 + u)n,

zisťujeme, že

B(z, u) =

∞∑
n=0

(1 + u)nzn =
1

1− z(1 + u)
.

Táto vytvárajúca funkcia zodpovedá napríklad kombinatorickej triede W všetkých slov nad dvoj-
prvkovou abecedou {a, b} s parametrom udávajúcim počet výskytov symbolu a. K tomuto pozorovaniu
možno ľahko prísť priamym kombinatorickým náhľadom; v nasledujúcom ho ale odvodíme pomocou
symbolickej metódy. Triedu W možno špecifikovať ako

W = Seq (U × Za + Zb) ,

kde Za a Zb sú atomické triedy a U je značka. Obyčajná vytvárajúca funkcia dvoch premennýchW (z, u)
triedy W je teda skutočne daná ako

W (z, u) =
1

1− (zu+ z)
=

1

1− z(1 + u)
= B(z, u).
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Príklad 7.6.2. Exponenciálna vytvárajúca funkcia pre binomické koeficienty je daná ako

B̂(z, u) =
∑
n,k∈N

(
n

k

)
znuk

n!
=

∞∑
n=0

(1 + u)n
zn

n!
= ez(1+u).

Príklad 7.6.3. Pre n → ∞ teraz asymptoticky vyčíslime očakávaný počet cyklov v rovnomerne
náhodne zvolenej permutácii množiny [n] pre n ∈ N. Kombinatorickú triedu P všetkých takýchto
permutácií (chápaných ako označené objekty) s parametrom udávajúcim počet cyklov možno zjavne
špecifikovať ako

P = Set (U ?Cyc(Z)) ,

kde Z je atomická trieda a U je značka. Príslušná exponenciálna vytvárajúca funkcia dvoch premenných
je teda daná ako

P (z, u) = exp

(
uLn

1

1− z

)
= (1− z)−u.

Exponenciálna vytvárajúca funkcia P (z) triedy všetkých permutácií bez parametra je tak podľa
očakávania daná ako

P (z) = P (z, 1) =
1

1− z
.

Zaujímavejším pozorovaním je, že exponenciálnou kumulatívnou vytvárajúcou funkciou P c(z) triedy P
je

P c(z) =

[
∂

∂u
P (z, u)

]
u=1

=

[
(1− z)−u Ln

1

1− z

]
u=1

=
1

1− z
Ln

1

1− z
.

Pomocou metódy analýzy singularít – alebo v tomto jednoduchom prípade aj elementárnymi metódami
– ľahko dospejeme k asymptotickým odhadom

[zn]P (z) ∼ n0

Γ(1)
= 1

a

[zn]P c(z) ∼ n0

Γ(1)
(lnn) = lnn

pre n → ∞. Pre očakávaný počet cyklov En rovnomerne náhodne zvolenej permutácie množiny [n]
teda pre n→∞ dostávame

En =
[zn]P c(z)

[zn]P (z)
∼ lnn.

Môžeme teda uzavrieť, že priemerná permutácia n-prvkovej množiny má pre dostatočne veľké n pri-
bližne lnn cyklov.

Príklad 7.6.4. Predavačka rovnomerne náhodne vydáva jednokorunové, dvojkorunové a päťkorunové
mince. Pre n → ∞ skúmajme priemerný počet jednokorunových mincí vydaných touto predavačkou
v prípade, že celková vydávaná čiastka je n korún. Kombinatorickú trieduM všetkých sád vydaných
mincí (chápaných ako neoznačené objekty), s veľkosťou danou celkovou vydanou čiastkou a s paramet-
rom udávajúcim počet jednokorunových mincí, môžeme zadať špecifikáciou

M = Seq(U × Z)× Seq(Z2)× Seq(Z5),

kde Z je atomická trieda a U je značka. Obyčajnou vytvárajúcou funkciou dvoch premenných triedy
M je teda

M(z, u) =
1

(1− uz)(1− z2)(1− z5)
.
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Obyčajná vytvárajúca funkcia M(z) príslušnej triedy bez parametra preto spĺňa

M(z) = M(z, 1) =
1

(1− z)(1− z2)(1− z5)

a kumulatívna vytvárajúca funkcia M c(z) triedyM je daná ako

M c(z) =

[
∂

∂u
M(z, u)

]
u=1

=

[
z

(1− uz)2(1− z2)(1− z5)

]
u=1

=
z

(1− z)2(1− z2)(1− z5)
.

Obidve tieto funkcie majú až šesť dominantných singularít. Ľahko ale vidieť, že pre funkciu M(z)
resp. M c(z) je bod z = 1 pólom tretieho resp. štvrtého rádu, kým zvyšné singularity sú pri oboch
funkciách jednoduchými pólmi. Z toho vidieť, že príspevok singularít rôznych od 1 bude pri aplikácii
metódy analýzy singularít (pre funkcie s viacerými dominantnými singularitami) zanedbateľný a stačí
sa tak sústrediť na singularity v bode z = 1. Pre z → 1 pritom

M(z) =
1

10(1− z)3
+O

(
(1− z)−2

)
,

M c(z) =
1

10(1− z)4
+O

(
(1− z)−3

)
.

Metódou analýzy singularít tak pre n→∞ dostávame odhady

[zn]M(z) ∼ n2

10 Γ(3)
=
n2

20
,

[zn]M c(z) ∼ n3

10 Γ(4)
=
n3

60
.

V dôsledku toho pre očakávaný počet En vydaných jednokorunových mincí pre n→∞ dostávame

En =
[zn]M c(z)

[zn]M(z)
∼ n

3
.

Príklad 7.6.5. Pre n→∞ teraz vyčíslime očakávaný počet listov v rovnomerne náhodne vybranom
(neprázdnom) binárnom strome s n vrcholmi. Kombinatorická trieda B všetkých takýchto stromov
(chápaných ako neoznačené objekty), s veľkosťou danou počtom vrcholov a s parametrom udávajúcim
počet listov, je daná špecifikáciou

B = U × Z + Z × B + Z × B + Z × B × B,

kde Z je atomická trieda a U je značka. Každý neprázdny binárny strom je totiž buď samotný list, alebo
pozostáva z koreňa a dvoch podstromov, z ktorých musí byť minimálne jeden neprázdny; druhý prípad
pritom možno rozložiť na tri jednoduchšie prípady podľa toho, ktoré z podstromov sú neprázdne.

Pre obyčajnú vytvárajúcu funkciu dvoch premenných prislúchajúcu k triede B teda dostávame

B(z, u) = uz + 2zB(z, u) + zB(z, u)2,

pričom táto rovnica má v NJz, uK jediné riešenie

B(z, u) =
1− 2z −

√
1− 4z + 4(1− u)z2

2z
.

Pre obyčajnú vytvárajúcu funkciu B(z) zodpovedajúcej triedy bez parametra tak podľa očakávania
dostávame

B(z) =
1− 2z −

√
1− 4z

2z
=

1−
√

1− 4z

2z
− 1
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a kumulatívna vytvárajúca funkcia Bc(z) triedy B je daná ako

Bc(z) =

[
∂

∂u
B(z, u)

]
u=1

=

[
z√

1− 4z + 4(1− u)z2

]
u=1

=
z√

1− 4z
.

Jedinou dominantnou singularitou oboch týchto funkcií je bod 1/4, pričom pre z → 1/4 je

B(z) = 1− 2
√

1− 4z +O(1− 4z),

Bc(z) =
1

4
√

1− 4z
+O

(√
1− 4z

)
.

Metódou analýzy singularít tak pre n→∞ prichádzame k odhadom

[zn]B(z) ∼ −2n−3/24n

Γ(−1/2)
=

4n
√
πn3/2

,

[zn]Bc(z) ∼ n−1/24n

4Γ(1/2)
=

4n

4
√
πn

.

Pre n → ∞ je teda očakávaný počet listov En v rovnomerne náhodne vybranom binárnom strome
daný ako

En =
[zn]Bc(z)

[zn]B(z)
∼ n

4
.

Príklad 7.6.6. Pre n→∞ odhadnime priemerný počet výskytov písmena a v slovách dĺžky n jazyka
generovaného jednoznačnou bezkontextovou gramatikou s pravidlami

σ → aσσ | bσ | c.

Kombinatorická trieda S všetkých takýchto slov (chápaných ako neoznačené objekty), s veľkosťou
danou dĺžkou slova a s parametrom udávajúcim počet výskytov písmena a, je daná špecifikáciou

S = U × Z × S2 + Z × S + Z,

kde Z je atomická trieda a U je značka. Obyčajná vytvárajúca funkcia dvoch premenných S(z, u)
triedy S tak vyhovuje vzťahu

S(z, u) = uzS(z, u)2 + zS(z, u) + z.

Jediným riešením tejto rovnice v NJz, uK je rad

S(z, u) =
1− z −

√
1− 2z + (1− 4u)z2

2uz
.

Vidíme teda, že obyčajná vytvárajúca funkcia S(z) príslušnej triedy bez parametra je daná ako

S(z) =
1− z −

√
1− 2z − 3z2

2z

a kumulatívna vytvárajúca funkcia Sc(z) je daná ako

Sc(z) =

[
∂

∂u
S(z, u)

]
u=1

=

[
z

u
√

1− 2z + (1− 4u)z2
−

1− z −
√

1− 2z + (1− 4u)z2

2u2z

]
u=1

=

=
z√

1− 2z − 3z2
− 1− z −

√
1− 2z − 3z2

2z
.
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Dominantnou singularitou oboch funkcií S(z) a Sc(z) je bod 1/3, pričom pre z → 1/3 je

S(z) = 1−
√

3
√

1− 3z +O (1− 3z) ,

Sc(z) =
1

2
√

3
√

1− 3z
+O(1).

Pomocou metódy analýzy singularít teda zisťujeme, že pre n→∞ je

[zn]S(z) ∼ −
√

3n−3/23n

Γ(−1/2)
=

√
3 3n

2
√
πn3/2

,

[zn]Sc(z) ∼ n−1/23n

2
√

3 Γ(1/2)
=

√
3 3n

6
√
πn

.

Pre n → ∞ teda možno priemerný počet výskytov En písmena a v slovách dĺžky n generovaných
uvedenou gramatikou odhadnúť ako

En =
[zn]Sc(z)

[zn]S(z)
∼ n

3
.

Príklad 7.6.7. Analytická kombinatorika nachádza významné uplatnenie pri analýze zložitosti al-
goritmov a dátových štruktúr v priemernom prípade – o množstve aplikácií tohto druhu sa možno
dočítať napríklad v [22, 27]. Na tomto mieste si ukážeme jednu z najjednoduchších aplikácií analytickej
kombinatoriky v oblasti analýzy algoritmov: odhadneme priemerný počet krokov Euklidovho algoritmu
na hľadanie najväčšieho spoločného deliteľa dvoch polynómov nad konečným poľom Fp, kde p je prvo-
číslo. Príklad je prebratý z knihy P. Flajoleta a R. Sedgewicka [9].

Uvažujme najprv kombinatorickú triedu P všetkých normovaných polynómov z Fp[x] chápaných
ako neoznačené objekty, s veľkosťou danou stupňom polynómu. Každý normovaný polynóm

a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 + xn ∈ Fp[x]

stupňa n ∈ N možno stotožniť s postupnosťou koeficientov (a0, . . . , an−1). Ak teda Ap = (Ap, |·|) je
kombinatorická trieda taká, že Ap = Fp a pre všetky a ∈ Ap je |a| = 1, je obyčajná vytvárajúca funkcia
Ap(z) triedy Ap daná ako Ap(z) = pz a kombinatorickú triedu P môžeme špecifikovať ako

P = Seq(Ap).

Pre obyčajnú vytvárajúcu funkciu P (z) triedy P tak prichádzame ku vzťahu

P (z) =
1

1−Ap(z)
=

1

1− pz
.

Ďalej uvažujme kombinatorickú triedu Q všetkých nie nutne normovaných polynómov z Fp[x]
stupňa aspoň 1 – opäť pôjde o triedu neoznačených objektov s veľkosťou polynómu danou jeho stup-
ňom. Podobne ako vyššie tu prichádzame k špecifikácii

Q = Seq≥1(Ap)× Lp,

kde Lp = (Lp, |·|) je kombinatorická trieda taká, že Lp = Fp \ {0} a pre všetky a ∈ Lp je |a| = 0.
Obyčajná vytvárajúca funkcia Lp(z) triedy Lp je daná ako Lp(z) = p − 1. Pre obyčajnú vytvárajúcu
funkciu Q(z) triedy Q tak dostávame

Q(z) =
Ap(z)Lp(z)

1−Ap(z)
=
p(p− 1)z

1− pz
.
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Zaveďme napokon aj kombinatorickú triedu D všetkých dvojíc polynómov (f(x), g(x)), kde po-
lynóm g(x) ∈ Fp[x] je normovaný a polynóm f(x) ∈ Fp[x] je buď nulový, alebo menšieho stupňa,
než polynóm g(x). Opäť pôjde o triedu neoznačených objektov, pričom za veľkosť dvojice budeme
považovať stupeň polynómu g(x). Evidentne potom

D = Seq(Bp ×Ap),

kde Bp = (Bp, |·|) je kombinatorická trieda taká, že Bp = Fp a pre všetky a ∈ Bp je |a| = 0; obyčajná
vytvárajúca funkcia Bp(z) triedy Bp je teda daná ako Bp(z) = p. Pre obyčajnú vytvárajúcu funkciu
D(z) triedy D tak dostávame

D(z) =
1

1−Bp(z)Ap(z)
=

1

1− p2z
.

Pripomeňme si teraz, že delením so zvyškom možno pre ľubovoľné dva polynómy f(x), g(x) ∈ Fp[x],
kde g(x) 6= 0, nájsť ich podiel q(x) ∈ Fp[x] a zvyšok r(x) ∈ Fp[x] tak, že

f(x) = q(x)g(x) + r(x),

kde deg r(x) < deg g(x); pre r(x) = 0 tu pracujeme s konvenciou deg r(x) = −∞.
Vstupmi Euklidovho algoritmu sú polynómy f0(x), f1(x) ∈ Fp[x]\{0} také, že deg f1(x) < deg f0(x).

Samotný algoritmus potom pozostáva z nasledujúcej postupnosti delení so zvyškom:

f0(x) = q1(x)f1(x) + f2(x),

f1(x) = q2(x)f2(x) + f3(x),

...
fh−2(x) = qh−1(x)fh−1(x) + fh(x),

fh−1(x) = qh(x)fh(x) + 0,

kde pre k = 2, . . . , h je fk(x) nenulový polynóm z Fp[x] taký, že deg fk(x) < deg fk−1(x). Výstupom al-
goritmu je polynóm fh(x), ktorý je najväčším spoločným deliteľom vstupných polynómov f0(x), f1(x);
číslo h ∈ N \ {0} udáva počet krokov Euklidovho algoritmu vykonaných pre danú dvojicu vstupných
polynómov.

Zaveďme konvenciu, podľa ktorej pre ľubovoľný nenulový polynóm f0(x) a f1(x) = 0 je h = 0;
najväčším spoločným deliteľom je v takom prípade polynóm f0(x). Ako vstupy Euklidovho algoritmu
tak špeciálne môžeme uvažovať aj ľubovoľnú dvojicu polynómov (f1(x), f0(x)) ∈ D.

Nech f̂h(x) ∈ Fp[x] je normovaný polynóm taký, že fh(x) = af̂h(x) pre nejaké a ∈ Fp – polynóm
f̂h(x) je potom prvkom kombinatorickej triedy P. Polynómy q1(x), . . . , qh(x) sú ďalej všetky stupňa
aspoň 1, a teda ich môžeme považovať za prvky kombinatorickej triedy Q.

Pre ľubovoľnú dvojicu vstupných polynómov (f1(x), f0(x)) ∈ D je teraz jednoznačne určený po-
čet krokov h ∈ N Euklidovho algoritmu, ako aj polynómy q1(x), . . . , qh(x) a f̂h(x). Pre ľubovoľné
q1(x), . . . , qh(x) ∈ Q a f̂h(x) ∈ P naopak ľahko spätne identifikujeme dvojicu vstupných polynómov
Euklidovho algoritmu (f1(x), f0(x)) ∈ D. Dostávame teda izomorfizmus kombinatorických tried

D ∼= Seq(Q)× P.

Interpretujme teraz triedu D ako kombinatorickú triedu s parametrom (D, |·|, χ) takú, že pre všetky
(f1(x), f0(x)) ∈ D je χ(f1(x), f0(x)) rovné počtu krokov h, ktoré vykoná Euklidov algoritmus na vstu-
poch (f1(x), f0(x)). Z uvedeného vyplýva, že túto triedu s parametrom možno špecifikovať ako

D = Seq(U ×Q)× P,
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kde triedy P aQ chápeme ako triedy s parametrom konštantne rovným nule a U je značka. Pre obyčajnú
vytvárajúcu funkciu dvoch premenných D(z, u) triedy s parametrom D preto dostávame

D(z, u) =
P (z)

1− uQ(z)
=

1

1− up(p−1)z
1−pz

· 1

1− pz
.

Z toho

Dc(z) =

[
∂

∂u
D(z, u)

]
u=1

=

 p(p−1)z
1−pz(

1− up(p−1)z
1−pz

)2 ·
1

1− pz


u=1

=
p(p− 1)z

(1− p2z)2
.

Metódou analýzy singularít tak pre n→∞ ľahko prichádzame k odhadom

[zn]D(z) ∼ p2n

a
[zn]Dc(z) ∼ p− 1

p
np2n.

Pre n → ∞ teda možno priemerný počet krokov En Euklidovho algoritmu pre náhodné vstupné
polynómy f0(x), f1(x) – kde f0(x) je normovaný a stupňa n a f1(x) je nulový alebo menšieho stupňa
ako f0(x) – odhadnúť ako

En =
[zn]Dc(z)

[zn]D(z)
∼ p− 1

p
n.

Príklad 7.6.8. Metódy analytickej kombinatoriky sa podarilo aplikovať aj pri skúmaní niektorých
otázok súvisiacich s opisnou zložitosťou racionálnych jazykov. V rámci tohto príkladu prevzatého z [2]
sa zameriame na analýzu stavovej zložitosti jednej z možných konštrukcií nedeterministického koneč-
ného automatu k danému racionálnemu výrazu v priemernom prípade.

Akonáhle sa začne hovoriť o náhodnom výbere racionálnych výrazov, stanú sa rôzne inokedy nepod-
statné detaily ich definície razom zásadnými. V snahe zbaviť sa niektorých nadbytočných podvýrazov
sa tak v [2] skúmal jazyk racionálnych výrazov nad abecedou Σk = {a1, . . . , ak} pre k ∈ N \ {0}
generovaný bezkontextovou gramatikou s pravidlami

σ → 0 | 1 | α
α→ a1 | . . . | ak | (α+ α) | (α · α) | α? | α∗

a počiatočným neterminálom σ, kde pre všetky výrazy E generované touto gramatikou je sémantika
výrazu E? definovaná ako ‖E?‖ = ‖E‖∪{ε}. Aby nedošlo k zámene prázdneho slova a symbolu pre výraz
reprezentujúci prázdne slovo, používame teraz pre výraz ε označenie 1. Do dĺžky racionálneho výrazu za-
počítavame symboly a1, . . . , ak, 0, 1 a všetky symboly reprezentujúce operátory; nezapočítavame do nej
ale zátvorky.

Kombinatorická trieda R(k) všetkých racionálnych výrazov nad Σk = {a1, . . . , ak}, chápaných ako
neoznačené objekty s veľkosťou danou dĺžkou výrazu, je tak daná špecifikáciou

R(k) = Z0 + Z1 + S(k),

S(k) = Za1 + . . .+ Zak +
(
S(k) ×Z+ × S(k)

)
+
(
S(k) ×Z× × S(k)

)
+
(
S(k) ×Z?

)
+
(
S(k) ×Z∗

)
,

kde Z0,Z1,Za1 , . . . ,Zak ,Z+,Z×,Z?,Z∗ sú atomické triedy. Pre obyčajnú vytvárajúcu funkciu Rk(z)
triedy R(k) tak dostávame vzťah

Rk(z) = 2z + Sk(z),

kde
Sk(z) = kz + 2zSk(z)

2 + 2zSk(z).
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V rámci jediného kombinatoricky významného riešenia tohto systému rovníc tak dostávame

Rk(z) =
1− 2z + 8z2 −

√
1− 4z + (4− 8k)z2

4z
.

Funkcia
Tk(z) := 4zR(z)− 8z2 + 2z = 1−

√
1− 4z + (4− 8k)z2

má jedinú dominantnú singularitu

%k =
1

2(
√

2k + 1)
.

Pre z → %k pritom
Tk(z) = 1− 2

4
√

2k
√
%k
√

1− z/%k +O
(

(1− z/%k)3/2
)
.

Metódou analýzy singularít teda pre n→∞ zisťujeme, že

[zn]Tk(z) ∼
4
√

2k
√
%k√

π
%−nk n−3/2,

v dôsledku čoho

[zn]Rk(z) ∼
4
√

2k
√
%k

4
√
π

%
−(n+1)
k (n+ 1)−3/2.

Jednou z najznámejších konštrukcií nedeterministického konečného automatu k danému racionál-
nemu výrazu je tzv. Thompsonova konštrukcia [25]. Tá racionálnemu výrazu 0, 1 resp. aj pre j ∈ [k]
priradí automat A0, A1 resp. Aaj na obrázku 7.1.

(a) Automat A0.

ε

(b) Automat A1.

ε

(c) Automat Aaj .

Obr. 7.1: Automaty zodpovedajúce racionálnym výrazom 0, 1 a aj pre j ∈ [k].

Ak sú teraz E,F racionálne výrazy, ku ktorým v rámci Thompsonovej konštrukcie prislúchajú
automaty AE resp. AF, skonštruuje sa k výrazu (E+F) automat AE+F na obrázku 7.2 a k výrazu (E ·F)
automat AE·F na obrázku 7.3.

AE

AF

ε

ε

ε

ε

Obr. 7.2: Automat AE+F.

Ak je napokon E racionálny výraz s automatom AE, priradí Thompsonova konštrukcia výrazu E∗

automat AE∗ na obrázku 7.4. Výrazu E?, ktorý v originálnej Thompsonovej konštrukcii nebol uvažo-
vaný, možno priradiť automat AE? na obrázku 7.5.



Predbežná verzia

144 7.6 Príklady aplikácií

AE AF

ε

Obr. 7.3: Automat AE·F.

AE

ε ε

ε

ε

Obr. 7.4: Automat AE∗ .

AE

ε ε

ε

Obr. 7.5: Automat AE? .

Pri všetkých týchto konštrukciách sa k automatom skonštruovaným pre podvýrazy pridáva iba
konštantne veľa nových stavov – konkrétne pri konštrukcii automatov AE+F, AE∗ a AE? sa pridajú dva
nové stavy a pri konštrukcii automatu AE·F sa nepridá žiaden nový stav.

Triedu R(k) všetkých uvažovaných racionálnych výrazov nad Σk tak môžeme interpretovať ako
kombinatorickú triedu (R(k), |·|, χ) s parametrom χ udávajúcim veľkosť automatu prislúchajúceho
k danému výrazu v Thompsonovej konštrukcii. Špecifikáciou tejto triedy je potom

R(k) = U2 ×Z0 + U2 ×Z1 + S(k),

S(k) = U2 ×Za1 + . . .+ U2 ×Zak +
(
U2 × S(k) ×Z+ × S(k)

)
+

+
(
S(k) ×Z× × S(k)

)
+
(
U2 × S(k) ×Z?

)
+
(
U2 × S(k) ×Z∗

)
,

kde U je značka. Obyčajnou vytvárajúcou funkciou dvoch premenných Sk(z, u) kombinatorickej triedy
s parametrom S(k) tak je

Sk(z, u) =
1− 2u2z −

√
(1− 2u2z)2 − 4ku2(u2 + 1)z2

2(u2 + 1)z

a kumulatívnou vytvárajúcou funkciou triedy S(k) je preto

Sck(z) =
2 + (8k − 8)z2 − (2 + 4z)

√
1− 4z + (4− 8k)z2

8z
√

1− 4z + (4− 8k)z2
.
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V dôsledku toho je obyčajná vytvárajúca funkcia dvoch premenných Rk(z, u) kombinatorickej triedy
s parametrom R(k) daná ako

Rk(z, u) = 2zu2 + Sk(z, u)

a kumulatívnou vytvárajúcou funkciou tejto triedy je

Rck(z) = 4z + Sc(z) =
2 + (8k − 8)z2 − (2 + 4z − 32z2)

√
1− 4z + (4− 8k)z2

8z
√

1− 4z + (4− 8k)z2
.

Funkcia

Xc
k(z) := 8zRck(z) + 2 + 4z − 32z2 =

2 + (8k − 8)z2√
1− 4z + (4− 8k)z2

má jedinú dominantnú singularitu

%k =
1

2(
√

2k + 1)
,

pričom Puiseuxov rozvoj funkcie Xc
k(z) v bode %k je daný ako

Xc
k(z) =

2 + (8k − 8)%2
k

2 4
√

2k
√
%k

· 1√
1− z/%k

+O
(√

1− z/%k
)

a metódou analýzy singularít tak pre n→∞ dostávame asymptotický odhad

[zn]Xc
k(z) ∼

2 + (8k − 8)%2
k

2 4
√

2k
√
%k
√
π
%−nk n−1/2.

V dôsledku toho pre n→∞ je

[zn]Rck(z) ∼
2 + (8k − 8)%2

k

16 4
√

2k
√
%k
√
π
%
−(n+1)
k (n+ 1)−1/2.

Priemerný počet stavov En nedeterministického konečného automatu zostrojeného Thompsonovou
konštrukciou k rovnomerne náhodne vybranému racionálnemu výrazu dĺžky n teda možno pre n→∞
odhadnúť ako

En =
[zn]Rck(z)

[zn]Rk(z)
∼

2 + (8k − 8)%2
k

4
√

2k%k
(n+ 1) =

2
√

2(3k + 2
√

2k)

4(
√

2k +
√
k)

(n+ 1).
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Kapitola 8

Pólyova teória

V rámci tejto záverečnej kapitoly sa vrátime na pôdu klasickej enumeratívnej kombinatoriky a v krát-
kosti si predstavíme algebraickú enumeračnú metódu historicky predchádzajúcu analytickej kombi-
natorike aj symbolickej metóde a spätú predovšetkým s menom Georgea Pólyu a s jeho článkom
z roku 1937 [19] (anglický preklad vyšiel o polstoročie neskôr ako [20]).1 Tento prístup ku kombina-
torickej enumerácii je založený predovšetkým na pozorovaní, že neoznačené kombinatorické objekty
možno často stotožniť s triedami ekvivalencie vhodných relácií ekvivalencie pochádzajúcich zo skúma-
nia symetrií príslušných označených objektov. Do kombinatoriky tak vstupuje teória grúp ako nástroj
na skúmanie takýchto symetrií.

Naším cieľom tu bude len utvorenie predstavy o najzákladnejších výsledkoch a aplikáciách Pólyovej
teórie a o ich súvise so symbolickou metódou. Čitateľa odkazujeme aj na príslušné kapitoly v [4, 3].

8.1 Akcie grupy na množine

Začnime definíciou (pravých) akcií monoidu na množine, ktoré nás budú zaujímať predovšetkým v prí-
pade, keď je uvažovaný monoid M v skutočnosti grupa.

Definícia 8.1.1. Akcia monoidu M = (M, ·, 1) na množine X je zobrazenie δ : X ×M → X také, že:

(i) Pre všetky x ∈ X je δ(x, 1) = x.

(ii) Pre všetky x ∈ X a f, g ∈M je δ(δ(x, f), g) = δ(x, fg).

Pre x ∈ X a f ∈M obvykle namiesto δ(x, f) píšeme x · f .

Príklad 8.1.2. Prechodová funkcia každého deterministického konečného automatu nad abecedou Σ
s množinou stavov Q určuje akciu δ voľného monoidu Σ∗ na množine Q – pre všetky q ∈ Q a w ∈ Σ∗

je δ(q, w) = q · w stav, v ktorom automat dočíta slovo w, ak ho začne čítať v stave q.

Každú grupu G permutácií na množine X – s grupovou operáciou · danou pre všetky f, g ∈ G ako
f · g = fg = g ◦ f – možno súčasne chápať aj ako akciu tejto grupy na X takú, že pre všetky f ∈ G
a x ∈ X je x · f = f(x). Dokážeme teraz, že aj naopak každá akcia grupy na množine X určuje grupu
permutácií na X.

Tvrdenie 8.1.3. Nech δ : X ×G → X je akcia grupy G = (G, ·, 1) na množine X. Pre všetky f ∈ G
je potom zobrazenie δf : X → X, dané pre všetky x ∈ X ako

δf (x) = δ(x, f),

permutáciou množiny X, pričom pre všetky f, g ∈ G je δfδg = δfg.
1V skutočnosti bola podstatná časť Pólyových výsledkov známa už o desať rokov skôr J. Howardovi Redfieldovi [21].
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Dôkaz. Zobrazenie δf musí byť pre všetky f ∈ G bijektívne – čiže musí byť permutáciou X – pretože
zobrazenie δf−1 : X → X pre všetky x ∈ X spĺňa

δf−1(δf (x)) = δ(δ(x, f), f−1) = δ(x, ff−1) = δ(x, 1) = x

a
δf (δf−1(x)) = δ(δ(x, f−1), f) = δ(x, f−1f) = δ(x, 1) = x;

δf−1δf aj δfδf−1 je teda identickým zobrazením na X. Rovnosť δfδg = δfg potom pre všetky f, g ∈ G
vyplýva zo skutočnosti, že pre všetky x ∈ X je

δg(δf (x)) = δ(δ(x, f), g) = δ(x, fg) = δfg(x).

Je teraz zrejmé, že množina všetkých permutácií δf pre f ∈ G tvorí spolu so skladaním grupu
permutácií na množine X a zobrazenie priraďujúce prvku f permutáciu δf je homomorfizmom grúp.
Na každú akciu grupy na množine sa tak z určitého pohľadu môžeme dívať ako na grupu permutácií
na tejto množine.

8.2 Orbity a stabilizátory

Uvažujme ľubovoľnú pevne danú akciu δ : (x, f) 7→ x ·f grupy G na množine X a pre x, y ∈ X položme
x ∼G y práve vtedy, keď existuje f ∈ G také, že x · f = y. Ľahko vidieť, že ∼G musí byť reláciou
ekvivalencie na X.

Definícia 8.2.1. NechG je grupa určujúca akciu na množineX. Orbitou v grupeG nazveme ľubovoľnú
triedu ekvivalencie relácie ∼G a orbitou prvku x ∈ X v G nazveme triedu ekvivalencie

orbG(x) := [x]∼G = x ·G = {x · f | f ∈ G}.

Definícia 8.2.2. Nech G je grupa určujúca akciu na množine X. Stabilizátorom prvku x ∈ X potom
nazveme množinu

stabG(x) := {f ∈ G | x · f = x}.

Pre všetky x ∈ X je stabilizátor stabG(x) podgrupou grupy G – z definície akcie grupy G na X totiž
vyplýva, že neutrálny prvok 1 grupy G spĺňa x · 1 = x, a teda 1 ∈ stabG(x); pre všetky f, g ∈ stabG(x)
je teraz x · (fg) = (x · f) · g = x · g = x a x · f−1 = (x · f) · f−1 = x · (f · f−1) = x · 1 = x, z čoho
fg ∈ stabG(x) a f−1 ∈ stabG(x).

Veta 8.2.3 (O orbite a stabilizátore). Nech G je konečná grupa určujúca akciu na množine X.
Pre všetky x ∈ X je potom

|orbG(x)| = |G|
|stabG(x)|

= [G : stabG(x)] .

Dôkaz. Rovnosť |G| / |stabG(x)| = [G : stabG(x)] vyplýva z Lagrangeovej vety – ide pritom o počet
všetkých pravých tried rozkladu grupy G podľa stabG(x). Zostáva opísať bijekciu medzi množinou
týchto pravých tried a orbitou orbG(x). Definujme zobrazenie ϕ pre všetky f ∈ G predpisom

ϕ (stabG(x) f) = x · f.

Táto definícia nezávisí od voľby reprezentanta f triedy stabG(x) f – ak totiž pre f1, f2 ∈ G je
stabG(x) f1 = stabG(x) f2, nutne f1f

−1
2 ∈ stabG(x), z čoho

x · f2 = (x · (f1f
−1
2 )) · f2 = x · f1f

−1
2 f2 = (x · f1) · f−1

2 f2 = x · f1.

Vidíme tiež, že zobrazenie ϕ je injektívne: ak f1, f2 ∈ G sú také, že x · f1 = x · f2, nutne x · f1f
−1
2 = x

– teda f1f
−1
2 ∈ stabG(x) a stabG(x) f1 = stabG(x) f2. Surjektívnosť zobrazenia ϕ napokon vyplýva

zo skutočnosti, že pre všetky y ∈ orbG(x) z definície orbity existuje f ∈ G také, že x · f = y; potom
ale ϕ(stabG(x) f) = y.
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8.3 Burnsidova lema

Dokážeme teraz prvý výsledok umožňujúci v niektorých jednoduchších prípadoch vyčísliť počet ne-
označených objektov určitého typu na základe skúmania symetrií príslušných označených objektov.
V literatúre je známy najmä pod historicky nepresným názvom Burnsidova lema – možno sa ale tiež
stretnúť s presnejšími pomenovaniami Cauchyho-Frobeniova lema a veta o počítaní orbít.

Definícia 8.3.1. Nech G je grupa určujúca akciu na množine X a f ∈ G. Množina pevných bodov
prvku f je potom daná ako

fix(f) := {x ∈ X | x · f = x}.
Veta 8.3.2 (Burnsidova lema). Nech G je konečná grupa určujúca akciu na konečnej množine X.
Počet orbít prvkov X v G je potom daný ako

|X/∼G| =
1

|G|
∑
f∈G
|fix(f)| .

Dôkaz. Z definície množín fix(f) dostávame
1

|G|
∑
f∈G
|fix(f)| = 1

|G|
∑
f∈G
|{x ∈ X | x · f = x}| =

=
1

|G|
|{(f, x) | f ∈ G; x ∈ X; x · f = x}| =

=
1

|G|
∑
x∈X
|{f ∈ G | x · f = x}| =

=
1

|G|
∑
x∈X
|stabG(x)| .

Podľa vety o orbite a stabilizátore teda

1

|G|
∑
f∈G
|fix(f)| = 1

|G|
∑
x∈X

|G|
|orbG(x)|

=
∑
x∈X

1

|orbG(x)|
=

∑
orb∈X/∼G

∑
x∈orb

1

|orb|
= |X/∼G| .

Príklad 8.3.3. Vyčíslime počet všetkých náhrdelníkov pozostávajúcich z n ≥ 3 korálok po dvoch
rôznych farieb z pevne danej n-prvkovej množiny F – ide o úlohu, ktorú by rovnako dobre bolo možné
vyriešiť aj elementárnymi metódami. Keby mali korálky pevne dané pozície 1, . . . , n, mohli by sme
za takýto náhrdelník považovať ľubovoľnú n-prvkovú postupnosť z množiny

Xn = {(c1, . . . , cn) ∈ Fn | ∀j, k ∈ [n] : cj = ck ⇒ j = k}.

Keďže ale korálky takéto pozície dané nemajú, budeme považovať za ekvivalentné tie dvojice konečných
postupností z Xn, ktoré vzniknú jedna z druhej postupnosťou rotácií a obrátení postupnosti. Ekviva-
lentne možno tieto symetrie opísať ako rotácie a osové súmernosti pravidelného n-uholníka, do vrcholov
ktorého jednotlivé korálky umiestnime. Tieto symetrie tvoria tzv. dihedrálnu grupu Dn – ide o podgrupu
symetrickej grupy Sn všetkých permutácií na [n] generovanú rotáciou (234 . . . n1) a osovou súmernosťou
(1n)(2(n−1)) . . . ((n/2)(n/2+1)) pre n párne resp. (1n)(2(n−1)) . . . (((n−1)/2)((n+3)/2))((n+1)/2)
pre n nepárne. Dihedrálna grupa Dn je rádu 2n a pozostáva z presne n rotácií a n osových súmerností.
Na Xn určuje dihedrálna grupa Dn akciu danú pre všetky (c1, . . . , cn) ∈ Xn a f ∈ Dn ako

(c1, . . . , cn) · f = (cf−1(1), . . . , cf−1(n))

a za náhrdelníky môžeme považovať orbity prvkov Xn v grupe Dn vzhľadom na túto akciu. Počet
všetkých náhrdelníkov je tak podľa Burnsidovej lemy daný ako

|Xn/∼Dn | =
1

|Dn|
∑
f∈Dn

|fix(f)| = 1

2n

∑
f∈Dn

|fix(f)| .
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Identická permutácia 1 zachováva všetky postupnosti z Xn a zvyšné permutácie nezachovávajú
žiadnu postupnosť z Xn. Dostávame preto |fix(1)| = n! a |fix(f)| = 0 pre všetky f ∈ Dn \{1}. Hľadaný
počet náhrdelníkov je teda daný ako

|Xn/∼Dn | =
1

2n
n! =

(n− 1)!

2
.

Príklad 8.3.4. Uvažujme teraz ľubovoľné prvočíslo p a vyčíslime počet všetkých cyklických slov
dĺžky p nad abecedou Σ = {a, b} – to znamená počet všetkých takýchto slov po stotožnení tých
z nich, ktoré možno jedno z druhého získať rotáciou. Grupa Zp určuje akciu na Σp danú pre všetky
a1, . . . , ap ∈ Σ a f ∈ Zp ako

a1 . . . ap · f = af+1 . . . apa1 . . . af

(kde sčítanie je v N) a za cyklické slová môžeme považovať orbity prvkov Σp v Zp vzhľadom na túto
akciu. Keďže je p prvočíslo, ľahko vidieť, že 0 ∈ Zp zachováva všetky slová zo Σp, kým nenulové
prvky Zp zachovávajú jedine slová 0p a 1p. Hľadaný počet cyklických slov je teda podľa Burnsidovej
lemy daný ako ∣∣Σp/∼Zp

∣∣ =
1

|Zp|
∑
f∈Zp

|fix(f)| = 1

p
(2p + 2(p− 1)) .

8.4 Pólyova veta o enumerácii

Nech G je grupa permutácií konečnej množiny X; uvažujme akciu grupy G na X takú, že pre všetky
x ∈ X a f ∈ G je x ·f = f(x). Nech je ďalej F ľubovoľná množina. Na množine FX všetkých zobrazení
z X do F potom uvažovaná akcia grupy G na X indukuje akciu takú, že pre všetky φ : X → F , f ∈ G
a x ∈ X je

(φ · f)(x) = φ(x · f−1).

Túto akciu budeme nazývať kanonickou akciou grupy G na množine FX .
Každé zobrazenie z FX možno interpretovať ako kombinatorický objekt, ktorý vznikne z jedného

fixného objektu pozostávajúceho z konečného počtu označených atómov z množiny X dosadením prvku
množiny F za každý atóm. Ak je G grupou symetrií uvažovaného fixného „základného“ objektu, zod-
povedajú orbity prvkov FX v grupe G neoznačeným objektom prislúchajúcim k označeným objektom
z množiny FX .

Začneme relatívne jednoduchým prípadom, keď je F konečná množina farieb – ide teda o po-
dobnú situáciu ako v príkladoch z minulého oddielu. Nasledujúca zjednodušená verzia Pólyovej vety
o enumerácii umožňuje vyčísliť počet orbít grupy G určujúcej akciu na FX jednoduchším spôsobom,
než pomocou priameho použitie Burnsidovej lemy.

Veta 8.4.1 (Zjednodušená Pólyova veta o enumerácii). Nech G je grupa permutácií konečnej mno-
žiny X a F je konečná množina. Počet orbít prvkov FX v grupe G vzhľadom na kanonickú akciu G
na FX je potom daný ako ∣∣FX/∼G∣∣ =

1

|G|
∑
f∈G
|F |c(f) ,

kde c(f) označuje počet cyklov rozkladu permutácie f ∈ G na disjunktné cykly.

Dôkaz. Ide o bezprostredný dôsledok Burnsidovej lemy – pre ľubovoľné f ∈ G je totiž zobrazenie
φ : X → F prvkom fix(f) práve vtedy, keď φ(x1) = φ(x2) kedykoľvek sú x1, x2 ∈ X súčasťou rovnakého
cyklu permutácie f . Počet prvkov množiny fix(f) je preto daný voľbou jednej farby z F pre každý
cyklus permutácie f – teda |fix(f)| = |F |c(f).



Predbežná verzia

Pólyova teória 151

Príklad 8.4.2. Uvažujme množinu farieb F takú, že |F | = k ∈ N \ {0} a predpokladajme, že z každej
farby c ∈ F máme k dispozícii neobmedzene veľa korálok. Vyčíslime počet všetkých náhrdelníkov dĺžky
n ≥ 3, ktoré z týchto korálok možno vytvoriť.

Podobne ako v príklade 8.3.3 môžeme za náhrdelník považovať orbitu prvkov množiny F [n] ∼= Fn

v dihedrálnej grupe Dn vzhľadom na jej akciu na F [n] danú pre všetky (c1, . . . , cn) ∈ Fn a f ∈ Dn ako

(c1, . . . , cn) · f = (cf−1(1), . . . , cf−1(n)).

Skúmajme teraz počty cyklov jednotlivých permutácií z dihedrálnej grupy Dn. Môžeme pritom rozlíšiť
medzi nasledujúcimi druhmi permutácií z Dn:

• Každú spomedzi n rotácií možno vyjadriť ako q-tu mocninu cyklu (234 . . . n1) pre nejaké q ∈ [n].
Nie je ťažké nahliadnuť, že ak d je najväčší spoločný deliteľ čísel q a n, pozostáva permutácia
(234 . . . n1)q z presne d disjunktných cyklov dĺžky n/d. Všetkých q ∈ [n] takých, že najväčší
spoločný deliteľ q a n je d, je rovnako veľa ako všetkých q′ ∈ [n/d] takých, že najväčší spoločný
deliteľ q′ a n/d je 1 – čiže presne ϕ(n/d), kde ϕ je Eulerova funkcia.2

• Ak je n nepárne, pozostáva každá z osových súmerností v Dn z práve jedného pevného bodu
a práve (n− 1)/2 transpozícií – celkový počet cyklov je teda (n+ 1)/2.

• Ak je n párne, existuje presne n/2 osových súmerností s n/2 transpozíciami a n/2 osových
súmerností s (n − 2)/2 transpozíciami a dvoma pevnými bodmi – v prvom prípade je počet
cyklov n/2, v druhom n/2 + 1.

Zo zjednodušenej Pólyovej vety o enumerácii teda dostávame, že hľadaný počet náhrdelníkov je daný
ako

∣∣∣F [n]/∼Dn
∣∣∣ =

1

|Dn|
∑
f∈Dn

|F |c(f) =
1

2n

∑
d|n

ϕ(n/d)kd + nk(n+1)/2

 =
1

2n

∑
d|n

ϕ(d)kn/d +
1

2
k(n+1)/2

pre n nepárne a

∣∣∣F [n]/∼Dn
∣∣∣ =

1

|Dn|
∑
f∈Dn

|F |c(f) =
1

2n

∑
d|n

ϕ(n/d)kd +
n

2
kn/2 +

n

2
kn/2+1

 =

=
1

2n

∑
d|n

ϕ(d)kn/d +
1

4
kn/2(1 + k)

pre n párne.

Uvažujme teraz všeobecný prípad, keď sú za prvky množiny X dosadzované prvky nejakej kombi-
natorickej triedy F = (F , |·|F ) – týmto dosadzovaným objektom z triedy F sa obyčajne hovorí obrazce.
Je pritom daná obyčajná vytvárajúca funkcia

F (z) =

∞∑
n=0

anz
n

triedy F . Veľkosť zobrazenia φ : X → F je daná ako

|φ| =
∑
x∈X
|φ(x)|F .

2Pre všetky n ∈ N \ {0} je ϕ(n) definované ako počet všetkých čísel k ∈ [n] nesúdeliteľných s n.
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Cieľom je vyčísliť počet takýchto zobrazení φ : X → F danej veľkosti za predpokladu, že stotožníme
tie spomedzi zobrazení, ktoré sú prvkami rovnakej orbity v grupe G. Takéto stotožnenie je prípustné,
pretože prvkom jednej orbity môžu evidentne byť iba zobrazenia rovnakej veľkosti. Pôjde nám teda
o nájdenie obyčajnej vytvárajúcej funkcie

PX,F ,G(z) =

∞∑
n=0

pnz
n,

kde pre všetky n ∈ N je pn počet všetkých orbít v grupe G pozostávajúcich z prvkov FX veľkosti n.

Definícia 8.4.3. Nech G je grupa permutácií konečnej množiny X s |X| = m. Cyklovým indexom
grupy G nazveme polynóm

ZG(u1, . . . , um) =
1

|G|
∑
f∈G

u
c1(f)
1 . . . ucm(f)

m ,

kde pre k = 1, . . . ,m je ck(f) počet cyklov dĺžky k v rozklade permutácie f ∈ G na disjunktné cykly.

Veta 8.4.4 (Pólyova veta o enumerácii). Nech G je grupa permutácií konečnej množiny X s |X| = m
a F je kombinatorická trieda s obyčajnou vytvárajúcou funkciou F (z). Obyčajná vytvárajúca funkcia
PX,F ,G(z) postupnosti počtov orbít v G pozostávajúcich z prvkov FX veľkosti n ∈ N je potom daná ako

PX,F ,G(z) = ZG
(
F (z), F (z2), . . . , F (zm)

)
.

Dôkaz. Uvažujme najprv pevné f ∈ G a pre všetky n ∈ N označme ako rn počet všetkých funkcií
φ : X → F veľkosti n, ktoré zároveň patria do fix(f) – je teda φ ·f = φ. Nájdeme obyčajnú vytvárajúcu
funkciu

RX,F ,f (z) =

∞∑
n=0

rnz
n

postupnosti (rn)∞n=0. Zrejme φ ∈ fix(f) práve vtedy, keď φ(x1) = φ(x2) kedykoľvek sú x1, x2 ∈ X
súčasťou rovnakého cyklu permutácie f . Všetky zobrazenia φ ∈ fix(f) teda získame tak, že si všetkými
možnými spôsobmi zvolíme pre každý cyklus permutácie f jeden obrazec z triedy F . Ak je pritom
daný cyklus dĺžky k ∈ [m] a zvolený obrazec je veľkosti q ∈ N, pôjde o príspevok kq k celkovej veľkosti
zobrazenia. Ľahko teda vidieť, že

RX,F ,f (z) = F (z)c1(f)F (z2)c2(f) . . . F (zm)cm(f).

Z Burnsidovej lemy teda vyplýva, že pre všetky n ∈ N je

[zn]PX,F ,G(z) =
1

|G|
∑
f∈G

[zn]RX,F ,f (z),

z čoho
PX,F ,G(z) =

1

|G|
∑
f∈G

RX,F ,f (z) = ZG
(
F (z), F (z2), . . . , F (zm)

)
,

čo bolo treba dokázať.

Poznámka 8.4.5. Zjednodušený variant Pólyovej vety o enumerácii je jednoduchým dôsledkom jej vše-
obecného variantu. Konečnú množinu farieb F totiž môžeme považovať aj za konečnú kombinatorickú
triedu A so všetkými prvkami veľkosti 0 a s obyčajnou vytvárajúcou funkciou A(z) = |F |. Z Pólyovej
vety o enumerácii potom vyplýva, že počet orbít prvkov FX v grupe G vzhľadom na kanonickú akciu G
na FX je daný ako

[z0]PX,A,G(z) = [z0]ZG
(
A(z), A(z2), . . . , A(zm)

)
= [z0]ZG (|F |, . . . , |F |) =

=
1

|G|
∑
f∈G
|F |c1(f) . . . |F |cm(f) =

1

|G|
∑
f∈G
|F |c(f),

čo sa zhoduje so znením zjednodušenej Pólyovej vety o enumerácii.
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8.5 Pólyova teória a symbolická metóda

Spomedzi najvýznamnejších výsledkov získaných pomocou Pólyovej teórie tvoria veľkú časť rôzne
vzťahy pre obyčajné vytvárajúce funkcie kombinatorických tried neoznačených objektov, ktoré možno
odvodiť aj pomocou omnoho neskôr objavenej symbolickej metódy P. Flajoleta a R. Sedgewicka [9],
základom ktorej sme sa už v tomto texte venovali. V určitom zmysle teda možno symbolickú metódu
považovať za prekonanie Pólyovej teórie.

V skutočnosti sú už mnohé spomedzi viet o operáciách na obyčajných vytvárajúcich funkciách
zodpovedajúcich štandardným prípustným konštrukciám na kombinatorických triedach – akými sú
napríklad PSet alebo MSet – príkladmi tvrdení, ktoré boli historicky po prvý raz sformulované
v rámci Pólyovej teórie – P. Flajolet a R. Sedgewick [9] preto v tejto súvislosti hovoria o Pólyových
operátoroch na kombinatorických triedach.

Na tomto mieste využijeme Pólyovu vetu o enumerácii na preskúmanie prípustnej konštrukcie
na kombinatorických triedach neoznačených objektov, ktorej sme sa doposiaľ v našich úvahách neveno-
vali: prechodu od triedy C k triede orientovaných kružníc Cyc(C). Týmto skompletizujeme „základné“
prípustné konštrukcie symbolickej metódy z knihy P. Flajoleta a R. Sedgewicka [9].

Nech C = (C, |·|C) je kombinatorická trieda taká, že C0 = ∅. Na nosnej množine kombinatorickej
triedy (Seq(C), |·|Seq(C)) definujme reláciu ekvivalencie ≡ takú, že pre ľubovoľné dve postupnosti
(x1, . . . , xk), (y1, . . . , y`) ∈ Seq(C) je (x1, . . . , xk) ≡ (y1, . . . , y`) práve vtedy, keď k = ` a súčasne
existuje q ∈ {0, . . . , k − 1} také, že (y1, . . . , yk) = (xq+1, . . . , xk, x1, . . . , xq). Kombinatorickú triedu
Cyc(C) = (Cyc(C), |·|) všetkých orientovaných kružníc zložených z objektov triedy C teraz definujeme
ako

Cyc(C) := Seq(C)/≡,

kde pre každú postupnosť (x1, . . . , xk) ∈ Seq(C) je veľkosť triedy [(x1, . . . , xk)]≡ ∈ Cyc(C) daná ako

|[(x1, . . . , xk)]≡| = |(x1, . . . , xk)|Seq(C) = |x1|C + . . .+ |xk|C .

Veta 8.5.1. Prechod k triede orientovaných kružníc je prípustnou konštrukciou na kombinatorických
triedach. Ak je navyše C kombinatorická trieda s C0 = ∅ a s obyčajnou vytvárajúcou funkciou C(z),
je obyčajnou vytvárajúcou funkciou kombinatorickej triedy Cyc(C) formálny mocninový rad

∞∑
k=1

ϕ(k)

k
Ln

1

1− C(zk)
,

kde ϕ je Eulerova funkcia.

Dôkaz. Uvažujme pre pevné n ∈ N \ {0} množinu všetkých zobrazení φ : [n] → C. Grupa všetkých
rotácií na [n] je izomorfná cyklickej grupe Zn, ktorá tak na C[n] ∼= Cn určuje kanonickú akciu danú
pre všetky (x1, . . . , xn) ∈ Cn a q ∈ Zn ako

(x1, . . . , xn) · q = (xq+1, . . . , xn, x1, . . . , xq),

kde sčítanie je v N. Orientované kružnice dĺžky n zložené z objektov triedy C potom môžeme chápať
ako orbity prvkov C[n] v grupe Zn vzhľadom na jej kanonickú akciu na C[n].

Rovnako ako v príklade 8.4.2 teraz zisťujeme, že pre všetky delitele k čísla n existuje v permutačnej
grupe izomorfnej Zn presne ϕ(n/k) rotácií rozložiteľných na k disjunktných cyklov dĺžky n/k. Cyklový
index grupy Zn je tak daný ako

ZZn(u1, . . . , un) =
1

n

∑
k|n

ϕ(n/k)ukn/k =
1

n

∑
k|n

ϕ(k)u
n/k
k .
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Z Pólyovej vety o enumerácii preto vyplýva, že obyčajnou vytvárajúcou funkciou triedy orientova-
ných kružníc dĺžky n pozostávajúcich z prvkov C je formálny mocninový rad

ZG(C(z), . . . , C(zn)) =
1

n

∑
k|n

ϕ(k)C(zk)n/k

a obyčajná vytvárajúca funkcia triedy Cyc(C) je naozaj daná ako

∞∑
n=1

ZG(C(z), . . . , C(zn)) =
∞∑
n=1

1

n

∑
k|n

ϕ(k)C(zk)n/k =
∞∑
k=1

ϕ(k)
∞∑
t=1

1

kt
C(zk)t =

=
∞∑
k=1

ϕ(k)

k

∞∑
t=1

1

t
C(zk)t =

∞∑
k=1

ϕ(k)

k
Ln

1

1− C(zk)
.

Podobne ako pre zvyšné spomedzi štandardných prípustných konštrukcií symbolickej metódy pre ne-
označené objekty, možno aj práve dokázanú vetu pre konštrukciu Cyc dokázať bez použitia Pólyovej
teórie – v knihe P. Flajoleta a R. Sedgewicka [9, dodatok A.4] možno nájsť dôkaz založený na vytvá-
rajúcich funkciách dvoch premenných.
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