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Kapitola 1

Uvodné priklady: Catalanove ¢&isla

V ramci enumerativnej kombinatoriky sa typicky zaujimame o najdenie po¢tu nejakych kombinatoric-
kych objektov — napriklad slov, stromov, & grafov — daného druhu a danej velkosti n € N. Nie vzdy
pritom existuje rozumné vyjadrenie hladaného poctu objektov v uzavretom tvare; v takom pripade
sa obvykle pokusame najst ¢o mozno najpresnejsi asymptoticky odhad.

Klasicky pristup k rieSeniu tejto tlohy je zalozeny na metdde bijektivnych dékazov, pri ktorej sa
konstruuje bijekcia medzi mnoZzinou uvaZovanych objektov velkosti n a nejakou inou mnoZzinou, ktora
je vybudované z dostatocne jednoduchych koneénych mnozin pomocou Standardnych operacii, akymi
st napriklad disjunktné zjednotenie, karteziansky sacin, prechod k mnozine vsetkych kombinécii alebo
variacif, a podobne. Na ukazku teraz touto metdédou bijektivnych dékazov vyrieSme tri enumeracné
tlohy veduce k rovnakému vysledku.

1.1 Enumeracia dobrych uzatvorkovani

Priklad 1.1.1. Uvazujme slova zlozené zo zatvoriek ,,(“ a ,,)*, pricom kvoli prehl'adnosti budeme Tava
zatvorku oznacovat a a pravi a. Najdime pocet dobre uzdtvorkovangch slov nad abecedou ¥ = {a,a}
obsahujucich prave n € N Tavych a pravych zatvoriek — pojde teda o slova z Dyckovho jazyka D1 C X*
definovaného nasledovne:

(Z) € € Dy,
(ii) pre vSetky u,v € Dy je auav € Dy,
(7i7) Ziadne iné slovo nie je v Dj.

Hladanou hodnotou je pre dané n € N poéet prvkov jazyka L, := Di N %27,

Pre n = 0 je |L,| = 1, kedZe jazyk L, obsahuje iba prazdne slovo. Nech teda n > 1. Kazdé
slovo w € L, obsahuje presne n vyskytov oboch pismen: |w|, = |w|g = n. Nech U,, = o™ wa" je
jazyk vsetkych slov nad abecedou ¥ s touto vlastnostou. Ozna¢me L/, := U, \ L,, jazyk vSetkych slov
nad abecedou X, ktoré obsahuji n vyskytov oboch pismen, ale nie st dobre uzatvorkované.

Uvazujme Tubovolné slovo w € L], kde w = ay ... aa, pre a1, ..., az, € X. Lahko vidiet, Ze v takom
pripade musi existovat k € [2n] také, ze

lai...agl, <lai...ak|;-
Vezmime najmensie také k; to je zrejme neparne, pri¢om ap =a a

lai...agl, +1=lar...akl;.
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Pri konvencii @ = a je predpisom ¢ ~ ¢ pre ¢ € ¥ jednoznacne uréeny automorfizmus na X*.
Pre uvazované slovo w € L, a index k € [2n] polozme

o(w) :==ay ... axax41 - - - a2,
¢im dostavame zobrazenie ¢: L/ — a™*! 1@"~!; dokdZeme, Ze zobrazenie ¢ je bijekcia.
Za tym tcelom definujme zobrazenie 1: a" ™! i@t — L/ takto: ak x = by ...bg, € a" i@t
pre nejaké by, ..., by, € X, nutne musi existovat j € [2n] také, ze
|bl "‘bj’a > ’bl ...bj‘a;

opét vezmime najmengie také j a polozme

Ib(x) = E . -Fjbj+1 S bgn.
V takom pripade zrejme

|br...bj, = |b1... b=+ 1,
takze |[¢Y(x)|q = |[¢(x)|g a sucasne

‘bl .. 'bj‘a < ‘bl . "bj‘ﬁ’
takze slovo 1 (z) nie je dobre uzatvorkované; naozaj teda dostavame zobrazenie ¢: "t wa" ! — L! .
Dokézeme, Ze ¢ a 1) st vzajomne inverzné bijekcie.
a) Nech w=ay...a2, € L, pre aj,...,az2, € X a k € [2n] je najmensi index taky, Ze
]al .. .ak\a < \al .. .ak\a.

Zrejme potom ide aj o najmensi index taky, Ze

lar...agl, > |a1...akl;-

P(p(w)) =(plar...azm)) =(@1...agags1 .- a2n) =1 ... GkAky] - .- A2 = A7 - . . A2y, = W.

b) Nech x = by ...by, € a1 W@ ! pre by,...,bo, € X a j € [2n] je najmensi index taky, ze

|b1-'-bj‘a> ‘blbﬂ

a-

Ide potom aj o najmensi index taky, ze

BB, < [br.. B

cp(@b(x)) = (p(l/)(bl e bgn)) = QO(E . .Fjbj.;,.l e bgn) = b1 .. .b:jbj_H e bgn = b1 e bgn =X.

Vdaka prave dokdzanej existencii bijekcie medzi L/, a a®*! lua”~! teda

b= () e () () -
(2n)! (2n)! (4@ —n@2n)!  (2n)! 1 <2n>

Conln! (n+D!'(n—-1) (n+1)!In! _(n+1)!n!:n+1

Tento vysledok pre n € N\ {0} je v stlade s pozorovanim |Ly| = 1 uéinenym vy3sie; mozeme teda
uzavriet, Ze pre vSetky n € N je
1 2n
Ly| = .
[Enl n+1<n)
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Cisla, ku ktorym sme sa v predchidzajucom priklade dopracovali, st v kombinatorike natolko
vyznamné, ze si zaslizili zvlastne pomenovanie.

Definicia 1.1.2. Pre vSetky n € N je n-té Catalanovo ¢islo dané ako

. 1 <2n)
n+1\n

Z uvedeného prikladu vyplyva, Ze n-té Catalanovo ¢islo mozeme interpretovat ako pocet dobre
uzatvorkovanych slov obsahujtcich n lavych a n pravych zatvoriek jedného typu. V nasledujiicom
priddme eSte dve daldie kombinatorické interpretacie Catalanovych ¢&isel.

1.2 Usporiadané zakorenené stromy

Priklad 1.2.1. Vy¢islime pocet vietkych usporiadangch zakorenenych stromov o n € N\ {0} vrcholoch
— Cize zakorenenych stromov, v ktorych je pre kazdy vrchol dané linedrne usporiadanie jeho synov.
Priklad takéhoto stromu je na obrézku 1.1.

Obr. 1.1: Usporiadany zakoreneny strom o dvanastich vrcholoch. Od koreiia k listom postupujeme zhora nadol
a synovia kazdého vrcholu st znazorneni v poradi zlava doprava podla ich usporiadania.

Prehl'adajme takyto strom do hibky, pricom synov kazdého vrcholu navitevujme v poradi podla ich
usporiadania — za kazda hranu prejdent smerom nadol si pritom zaznacme Tava zatvorku a a za kazdu
hranu prejdent smerom nahor prava zatvorku a@. Strom o n € N\ {0} vrcholoch ma presne n — 1 hran
— vysledkom je tak prefi evidentne dobre uzéatvorkované slovo w € Dy dizky 2(n—1). Napriklad stromu
na obrazku 1.1 zodpoveda slovo aaa@aaaaaaadaaataaaana.

Ku kazdému dobre uzatvorkovanému slovu w € D; mozeme naopak priradit usporiadany zakore-

neny strom nasledujiicim spdsobom:
(1) Prazdnemu slovu e priradime strom o jedinom vrchole.
(77) Kazdé iné slovo w € D; mozno jednozna¢ne vyjadrit ako awiaawsa . ..awya, kde k € N\ {0}

awi,...,wg € Di. Takémuto slovu priradime strom, ktorého korenn ma k synovaprej =1,...,k
dostaneme podstrom zakoreneny v j-tom synovi ako strom priradeny slovu wj.

Zjavne sme prave opisali vzajomne inverzné bijekcie medzi mnozinou vsetkych neprazdnych uspo-
riadanych zakorenenych stromov a Dyckovym jazykom Dj. Stromu o n € N\ {0} vrcholoch pritom
zodpoveda slovo dlzky 2(n—1) a naopak. Vdaka prikladu 1.1.1 tak méZeme uzavriet, Ze existuje presne

1/2n—2
n\n-—1

usporiadanych zakorenenych stromov o n € N\ {0} vrcholoch.



4 1.3 Plné binarne stromy

1.3 Plné binarne stromy

Priklad 1.3.1. Pod pinym bindrnym stromom rozumieme usporiadany zakoreneny strom, v ktorom
mé kazdy vnutorny vrchol préave dvoch synov. Priklad takéhoto stromu je na obrizku 1.2.

Obr. 1.2: Plny binarny strom.

Neprazdny plny binarny strom mé vzdy pre nejaké n € N presne 2n+ 1 vrcholov, spomedzi ktorych
je n vnatornych a n+1 listov. To Iahko dokazeme indukciou vzhladom na hibku uvazovaného stromu —
¢ize vzhladom na najvicsiu vzdialenost medzi koreiom a niektorym listom. Jedinym stromom hibky 0
je strom pozostavajuci z jediného listu (ktory je sucasne korefiom); mozno tak vziat n = 0. Nech teda
tvrdenie plati pre plné binarne stromy hlbky mensej alebo rovnej k; uvazujme I'ubovolny plny binarny
strom hibky k + 1. Korei takéhoto stromu musi mat dvoch synov, pri¢om podstromy zakorenené
v tychto synoch st hlbky nanajvys k. Existuju teda ny,ny € N také, Ze podstrom zakoreneny v lavom
synovi korenia ma 2n; 4+ 1 vrcholov, spomedzi ktorych je n; vntatornych a n; + 1 listov a podstrom
zakoreneny v pravom synovi korefia ma 2ns + 1 vrcholov, spomedzi ktorych je ng vnitornych a ng 4 1
listov. Celkovo teda strom obsahuje presne

@2ni+ 1)+ 2na+1)+1=2(ng +n2+1)+1

vrcholov, z ktorych je ny + n2 + 1 vodtornych a (ny + 1) + (n2 + 1) = (n1 + n2 + 1) + 1 listov; mozno
teda vziat n = ny +ng + 1.

N4jdime teraz pocet vSetkych neprazdnych plnych bindrnych stromov o n € N vntitornych vrcholoch
(resp. o n + 1 listoch alebo o 2n + 1 vrcholoch celkom).

Uvazujme [ubovolny takyto strom. Kazdy jeho vnatorny vrchol ozna¢me l'avou zatvorkou a a kazdy
list okrem najpravejSieho pravou zatvorkou a; najpravejsi list zo stromu odstranme. Nésledne traver-
zujme vysledny strom v porad{ preorder a zapisujme na vystup zatvorky, ktorymi st oznacené jednotlivé
vrcholy. Indukciou Tahko dokadzeme, Ze tak vzdy dostaneme dobre uzatvorkované slovo, kde Tavi zat-
vorku prislachajicu k vnitornému vrcholu vzdy uzatvara prava zatvorka v najpravejSom liste jeho
Tavého podstromu. Na dokaz indukciou by sme mohli pouZzit napriklad rekurzivnu Struktiru stromu
naznaceni na obrizku 1.3.

Ku kazdému dobre uzéatvorkovanému slovu dlzky 2n naopak mézeme priradit plny binarny strom
o n vnutornych vrcholoch nasledujicim spésobom: prazdnemu slovu e priradime strom s jedinym
listom a slovu auav, kde u,v € Dy st dobre uzatvorkované slova, priradime strom, ktorého koren ma
dvoch synov, pricom podstrom zakoreneny v Tavom synovi je stromom prislichajacim k u a podstrom
zakoreneny v pravom synovi je stromom prislichajacim k v.
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Obr. 1.3: Kazdy vnutorny vrchol plného binarneho stromu oznadime lavou zatvorkou a kazdy list okrem
najpravejSicho oznadime pravou zatvorkou; najpravejsi list odstranime. Lava zatvorka v kazdom vrchole je
uzavretd pravou zatvorkou v najpravejSom liste jeho Tavého podstromu.

Opét nie je tazké nahliadnut, Ze sme prave opisali dve navzajom inverzné bijekcie medzi mnozinou
vSetkych neprazdnych plnych binarnych stromov o n vnttornych vrcholoch a jazykom vsetkych dobre
uzatvorkovanych slov dizky 2n. So znalostou prikladu 1.1.1 tak méZeme uzavriet, Ze pre vietky n € N

existuje presne
1 2n
C pu—
" n+1 ( n )

neprazdnych plnych binarnych stromov o n vnitornych vrcholoch.

1.4 Rekurencia a asymptoticky odhad pre Catalanove ¢isla

S pomocou ich interpretacie z prikladu 1.3.1 moZno Tahko odvodit rekurentny vztah pre Catalanove
¢isla.

Veta 1.4.1. Catalanove c¢isla vyhovuji nasledujicej rekurencii: Co = 1 a pre vsetky n € N je

Cnt1 = Z CrCr—k-
k=0

Dékaz. Rovnost Cy = 1 mozno overit priamym vypoctom. Rekurentny vztah je dosledkom skuto¢nosti,
ze kazdy neprazdny plny binarny strom s n+1 vnttornymi vrcholmi pre n € N musi pozostavat z korena
a dvoch neprézdnych plnych bindrnych podstromov, ktoré maji dohromady n vnutornych vrcholov;
ak mé teda napriklad Tavy podstrom k vnutornych vrcholov, pravy podstrom ich musi mat n — k. [

Hoci sme v uvedenych prikladoch zakazdym vyjadrili pocet uvazovanych objektov danej velkosti
v uzavretom tvare, nemame zatial dobra predstavu o tom, ako rychlo podet tychto objektov rastie
pre n — oo. Tato informécia pritom byva Casto cennejSou, nez vzorec vyjadrujici prislusna kvantitu
v uzavretom tvare. Zide sa nam preto asymptoticky odhad pre n-té Catalanovo ¢&islo C, a n — oo
— ten moZzeme odvodit napriklad s pouzitim Stirlingovej aproximacie [12, veta 14.7.7], podla ktorej

nl = V2 (g)n <1+O (i)) .

pre n — oo je



6 1.4 Rekurencia a asymptoticky odhad pre Catalanove ¢isla

(o (2)

Dékaz. S pouzitim Stirlingovej aproximécie dostavame
| 2n 2n
C, - 1 /2n _ 1 '(2n).: 1 gy 2n 140 1 L(E) %:
n+1\n n+1 nlnl n4+1 e n/)) 2mn \n (1+0(3))
1 4n 1 1 4n 1
= . 140 =)= : 1+0(—| | =
v (0 () =y v (00 6)

- (ieo() :

Nage skumanie Catalanovych ¢isel tymto nateraz ukon¢ime — mohli by sme ale pokracovat dalej,
pretoze Catalanove ¢isla sa vynaraju aj vo velkom mnozZstve dalsich kombinatorickych tuloh: napriklad
Stanleyho kniha [24] uvadza viac ako 200 roznych kombinatorickych interpretécii tychto ¢isel. Casom
by sme ale mali prist k poznaniu, ze (podobne ako napriklad pri Fibonacciho ¢islach) spociva vyznam
Catalanovych ¢isel viac ako v nich samotnych v tom, Ze ide o jeden z najjednoduchsich prikladov
dolezitej triedy postupnosti — konkrétne postupnosti s algebraickou vytvérajicou funkciou.

Veta 1.4.2. Pre n — oo je




Kapitola 2

Formalne mocninové rady

2.1 Pojem kombinatorickej triedy

Metoda bijektivnych dékazov, ktorej pouzitie sme si v predchédzajicej kapitole predviedli na nie-
kolkych prikladoch, bola svojho ¢asu povaZovana za jediny spravny pristup k tloham enumerativnej
kombinatoriky — naopak vytvarajiace funkcie, na ktorych buda prevazne zaloZené metédy pouzivané
v tomto texte, boli dlho zatracované ako nastroj druhej kategérie. D6vodom bola predovSetkym skutoc-
nost, ze vytvarajuce funkcie boli dlho povaZzované najmaé za technickid pomdcku pri rieSeni rekurencii,
ktorej stvis s prislusnymi enumera¢nymi problémami je v zasade ndhodny — argumentovalo sa, Ze
na rozdiel od bijektivnych dokazov pouZitie vytvarajacich funkcii neprinisa ziaden skuto¢ny vhlad
do rieSeného problému.

Casom sa ale ukazalo, Ze presny opak je pravdou. Napriek c¢asto pomerne vysokej estetickej hodnote
bijektivnych dokazov sa ukazuje ako prakticky nemozné vybudovat na tejto metode systematickejsiu
tedriu — takmer kazdy bijektivny dokaz totiz, zd4 sa, vyzaduje vlastnt netrividlnu myslienku. Naopak
stvis vytvarajacich funkcii s problémami enumerativnej kombinatoriky v skutoc¢nosti nie je zdaleka
nédhodny — ako teraz ukazeme, ide o objekty s tymito problémami fundamentdlne spdité. Akonahle
sa nam totiz podari identifikovat hlavny objekt skimania enumerativnej kombinatoriky — takzvané
kombinatorické triedy — vyplynie potreba uvazovat vytvarajice funkcie tiplne prirodzene.

V typickej tlohe enumerativnej kombinatoriky byva dana mnozina objektov, kde kazdému objektu
zodpoved4 nejaké prirodzené ¢islo reprezentujtce jeho velkost a pre kazdé n € N existuje koneéne vela
objektov velkosti n. Cielom je obvykle vy¢islit alebo odhadnit pocet objektov velkosti n. Prichddzame
tak k nasledujuicej definicii zakladného objektu skiimania enumerativnej kombinatoriky [9].

Definicia 2.1.1. Kombinatorickd trieda je dvojica C = (C,|-]), kde C je mnozina a |-[: C — N je
zobrazenie také, ze pre vietky n € N je mnozina C,, := {z € C | |x| = n} konec¢na.

Prvkom mnoziny C hovorime objekty a pre kazdy objekt x € C nazyvame ¢&islo |z| jeho velkostou.
Mnozina C,, tak pozostava z koneéného poctu vsetkych objektov velkosti n.

Definicia 2.1.2. Enumeracnou postupnostou kombinatorickej triedy (C,|-|) nazveme nekonefni po-
stupnost prirodzenych ¢isel (¢, c1, ¢, .. .), kde pre vSetky n € N je ¢, = |Cy/.

Za zakladny problém enumerativnej kombinatoriky mozno povazovat najdenie ¢o mozno najpres-
nejSieho opisu enumeracnej postupnosti danej kombinatorickej triedy — moéze ist napriklad o vyjadrenie
hodnét ¢, pre vSetky n € N v uzavretom tvare alebo o asymptoticky odhad hodnot ¢, pre n — oc.

V elementarnej kombinatorike byva predmetom $ttidia pocet prvkov jednej pevne danej konecnej
mnoziny. S kombinatorickou triedou (C, |-|) je naopak dané postupnost takychto mnozin (Cy,Cy,Co,...)
a skimame podet prvkov jednotlivych mnozin C,, bud pre vetky n € N, alebo asymptoticky pre n — oo.
Najdolezitejsie konstrukcie elementarnej kombinatoriky — t. j. disjunktné zjednotenie (pravidlo sucétu)
a kartezidnsky sucin (pravidlo su¢inu) ale moéZzeme uvazovat aj pre kombinatorické triedy.
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Disjunktngm zjednotenim dvoch nie nutne disjunktnych mnozin S, T nazveme mnozinu
S+T=(Sx{1})uU (T x {2}).

Druha zlozka slazi ¢isto na odliSenie prvkov pochéadzajucich z mnoziny S od prvkov pochadzajacich
z mnoziny T'; ¢isla 1,2 by sme teda mohli nahradit Iubovolnou dvojicou roéznych prvkov. KedZe nas
vacsinou bude zaujimat iba pocet prvkov danej mnoziny a nie prvky mnoziny samotné, mdZzeme pisat
napriklad aj S1 + ...+ .5, pre disjunktné zjednotenie n mnozin, pricom pod tymto zapisom mame
na mysli [ubovolné z uzatvorkovani daného vyrazu. Aj ked teda operécia + formalne nie je asociativna,
budeme ju za asociativnu povaZzovat.

Pri disjunktnom zjednoteni dvoch kombinatorickych tried je navyse kazdému objektu vyslednej
triedy ponechané jeho pdvodna velkost.

Definicia 2.1.3. Disjunktnym zjednotenim kombinatorickych tried C = (C,|-|¢c) a D = (D, |-|p) na-
zveme kombinatorickd triedu C+D = (C+7D, |-|) taku, ze pre vsetky « € C je |(x,1)| = |z|¢ a pre vSetky
y € Dje |(y,2)| = [ylp-

Tvrdenie 2.1.4. Nech C = (C,|-|c) a D = (D, ||p) su kombinatorické triedy. Pre vetky n € N potom
(C+ D), =Cy, + D,.
Dékaz. Zrejmé. O

Karteziansky sacin kombinatorickych tried C,D definujeme prirodzenym spdsobom — trieda bude
pozostéavat zo vietkych dvojic (z,y) € C x D, pricom velkost takejto dvojice bude dan4 su¢tom velkosti
prvku z triedy C s velkostou prvku y triedy D. Napriklad velkost dvojice grafov teda moze byt dana
celkovym poc¢tom vrcholov v grafoch, ktoré ju tvoria.

Definicia 2.1.5. Kartezidnskym sicinom kombinatorickych tried C = (C, |-|¢c) a D = (D, |-|p) nazveme
kombinatoricku triedu C x D = (C x D, |-|) taka, Ze pre vietky x € C ay € D je |(z,y)| = |z|c + |y|p.

Tvrdenie 2.1.6. Nech C = (C,|-|c) a D = (D, |-|p) su kombinatorické triedy. Pre vSetky n € N je
n
(C X D)n = U Cr, < Dy —k,
k=0
pricom ide o zjednotenie po dvoch disjunktnyjch mnoZin.

Dokaz. Nech z € C ay € D. Dvojica (z,y) je potom prvkom (C x D),, prave vtedy, ked |(z,y)| =n

— Cize prave vtedy, ked |z|c + |y|p = n. To nastane prave vtedy, ked existuje k € {0,...,n} také, ze
lz|c = k a lylp =n —k — ¢ze (x,y) € Cx X Dy_g. Pre lubovolné rozne ki, ko € {0,...,n} st pritom
mnoziny Cx, X Dp_k, a Cr, X Dp_, ocfividne disjunktné. O

Mozeme teraz sformulovat vysledok, ktory je pre kombinatorické triedy obdobou pravidiel sac¢tu
a sucinu z elementérnej kombinatoriky.

Veta 2.1.7. Nech C = (C,|-|¢c) a D = (D, |-|p) su kombinatorické triedy. Pre vietky n € N potom

(€ + D), = [Cul +[Dal

(CxD),| =) ICkl - [Pl
k=0

Dékaz. Tvrdenie pre disjunktné zjednotenie vyplyva z tvrdenia 2.1.4 a pravidla sti¢tu. Tvrdenie pre kar-
teziansky sucin je désledkom tvrdenia 2.1.6, pravidla stcinu a pravidla sictu. O
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Vréatme sa teraz k hlavnej tlohe enumerativnej kombinatoriky a skimajme, akym spésobom sa
operacie disjunktného zjednotenia a kartezianskeho st¢inu kombinatorickych tried prejavia na trovni
enumeracnych postupnosti. Nech C je kombinatoricka trieda s enumera¢nou postupnostou (co, 1, ca, . . .)
a D je kombinatorické trieda s enumera¢nou postupnostou (dg,d1, ds, ...). Vdaka vete 2.1.7 je potom
enumeracnd postupnost (s, 1, S2, . ..) kombinatorickej triedy C + D dana pre vSetky n € N ako

Sp = Cp + dy, (2.1)

kym enumeraéné postupnost (po,p1,pe2,...) kombinatorickej triedy C x D je dana pre vietky n € N

ako
n

Pn = chdn—k- (2.2)
k=0

Kym teda enumera¢na postupnost triedy C + D vznikne z enumeracénych postupnosti tried C a D
beznym suc¢tom po zlozkéch, enumeracné postupnost triedy C x D nie je beznym st¢inom enumeracnych
postupnosti tried C a D, ale zodpoved4 operécii nazyvanej konvoliciou postupnosti. Tato situécia nie
je zrovna idedlna — vzhladom na kla¢ovy vyznam enumera¢nych postupnosti by totiz bolo omnoho
vhodnejsie, keby aj prirodzenéd multiplikativna operacia na enumera¢nych postupnostiach zodpovedala
multiplikativnej operécii na kombinatorickych triedach, ktorou je kartezidnsky sacin.

Riesenim je interpretovat enumeracné postupnosti ako prvky inej algebry — namiesto s enumerac-
nymi postupnostami teda budeme pracovat s objektmi nesticimi rovnaki informaciu a zvolenymi tak,
aby prirodzena aditivna resp. multiplikativna operécia na nich zodpovedala vztahu (2.1) resp. (2.2).
Mozeme si pritom v8imnit, Ze rovnakym spdsobom ako v (2.2) poc¢itame Cauchyho stéin mocnino-
vych radov — pontka sa teda moZnost uvazovat namiesto enumeracnych postupnosti (co,c1,co,...)
mocninové rady s prislusnymi postupnostami koeficientov; operacie na takychto radoch by potom zod-
povedali operaciam na prislusnych kombinatorickych triedach. Kedze ale potrebujeme vediet pracovat
s Tubovolnou kombinatorickou triedou — a tym padom aj s I'ubovolnou enumerac¢nou postupnostou
— nesmieme klast nijaké poziadavky tykajice sa konvergencie tychto radov, aby sme mohli uvazovat
rady s Tubovolnymi postupnostami koeficientov. Mocninové rady teda nebudeme chapat ako repre-
zentéacie analytickych funkcii, ale ako ¢isto algebraické objekty. Tak prichddzame k pojmu formdineho
mocninového radu, ktorym budeme — zhruba povedané — rozumiet formdiny zdpis

C(z) = i cnz",
n=0

kde ¢, € C pre vietky n € N a z samé o sebe a priori nemé ziaden vyznam (Specialne teda nejde
o premennt, do ktorej by bolo moZzné v obvyklom zmysle dosadzovat). Rozdiel medzi mocninovym
radom v analytickom zmysle a formalnym mocninovym radom je teda podobny rozdielu medzi polyné-
mom a polynomickou funkciou. Po zvySok tejto kapitoly budeme budovat exaktnu teériu formalnych
mocninovych radov.

Pre T'ubovoInt postupnost komplexnych ¢isel (¢y,)02, nazveme obycajnou vytvdrajicou funkciou
tejto postupnosti formalny mocninovy rad

C(z) = i 2"
n=0

ak je pritom (c,)02, enumera¢nou postupnostou kombinatorickej triedy C, budeme v stvislosti s C(z)
hovorit aj o obyGajnej vytvarajicej funkeii triedy C. Obyc¢ajné vytvarajtce funkcie kombinatorickych
tried sd pritom vzdy forméalnymi mocninovymi radmi s prirodzenymi koeficientmi; napriek tomu je
vSak vyhodné chéapat ich ako $pecidlne rady s komplexnymi koeficientmi — nielen kvéli bohatsej al-
gebraickej struktire radov s komplexnymi koeficientmi, ale napriklad aj kvoli neskorsiemu prechodu
do matematickej analyzy.
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Neskor sa budeme zaoberat takzvanou symbolickou metédou, vdaka ktorej budeme pre mnoZstvo
kombinatorickych tried schopni mechanicky prejst od Specifikiacie k vyjadreniu vytvarajucej funkcie
pomocou ur¢itych ,,zakladnych® funkcii a Standardnych operacii na nich. Takato znalost vytvarajucej
funkcie nam typicky umozni algoritmicky podcitat jej koeficienty — ¢ize prvky enumeracnej postupnosti
uvazovanej kombinatorickej triedy — ktoré v niektorych pripadoch budeme vediet vyjadrit aj v uzav-
retom tvare. Casto navySe vo vysledku ziskame vytvarajucu funkciu, ktord je formélnou obdobou
Maclaurinovho radu funkcie analytickej v bode 0 — chapané analyticky teda ma nenulovy polomer
konvergencie. Pre vyznamnu triedu takychto vytvarajucich funkcii bude mozné metédami analytickej
kombinatoriky mechanicky ziskat velmi presny asymptoticky odhad pre ich koeficienty.

Pre velké mnoZzstvo kombinatorickych tried tak bude ziskanie asymptotického odhadu pre prvky
ich enumerad¢nej postupnosti iba otédzkou dvoch mechanickych krokov — od Specifikacie kombinatoricke;j
triedy k vytvarajacej funkcii a od vytvarajicej funkcie k asymptotickému odhadu. Kym prvy z tychto
dvoch krokov je svojou podstatou algebraicky, druhy z nich je zaloZzeny na metédach komplexnej
analyzy.

2.2 Formalne mocninové rady a elementarne operacie na nich

Zacfneme teraz s budovanim teérie formdlnych mocninovych radov — detailné spracovanie tejto prob-
lematiky moZno najst napriklad v [17, 15] a jej o nieco strucnejsi vyklad je podany aj vo vybornej
knihe [4]. Obmedzime sa pritom na rady s komplexngmi koeficientmi, ktoré z vyssie opisanych pri-
¢in nachédzaji uplatnenie v enumerativnej kombinatorike. Zmysluplnymi objektmi sa ale napriklad
aj formalne mocninové rady s koeficientmi z polokruhu alebo okruhu, pripadne zo vSeobecného pola;
zéklady teorie takychto radov mozno najst napriklad v [13].

Ako uz bolo spomenuté, formdlny mocninovy rad R o jednej premennej z s komplexnymi koefi-
cientmi mozno chéapat ako formdlny sucet

R(z) = Z anz", (2.3)
n=0

kde (ap)22 je Tubovolna postupnost komplexnych ¢isel — koeficientov radu. Uvedeny stucet nazyvame
formdlnym preto, lebo v skuto¢nosti sa ho nikdy nesnazime vypocitat — nezaujimaji néas teda ani
ziadne otézky okolo konvergencie radu. Formélny mocninovy rad tak nenadobiida Ziadne hodnoty, ne-
reprezentuje Ziadnu funkciu — je iba formalnym zapisom vyrazu na pravej strane (2.3), ¢o H. Wilf [29]
vyjadril konstatovanim, Zze formalny mocninovy rad je iba ,veSiakom na koeficienty*. Tento pohlad
sa odraza aj v nasledujicej definicii forméalneho mocninového radu, v ktorej ho dokonca s jeho po-
stupnostou koeficientov stotoZnime. Formalny mocninovy rad je teda v skutoc¢nosti iba postupnostou
koeficientov zapisovanou a interpretovanou trochu neobvyklym spésobom.

Definicia 2.2.1. Formdlny mocninovy rad o jednej premennej z s komplexnymi koeficientmi je po-
stupnost R = (an)5, kde pre vietky n € N je a, € C. Namiesto R = (ag,a1,a2,...) = (an)i,
piSeme

[o¢]
R=R(z) = ap’ + a1zt + a2t +... = Zanz”
n=0

a prvky postupnosti (a, )22, nazyvame koeficientmi radu R. Koeficient ay, pri 2" oznacujeme pre vetky
n € N aj ako
[2"R(2) = an

a koeficient ag nazyvame konStantnym. Mnozinu vSetkych formélnych mocninovych radov o jednej
premennej z s komplexnymi koeficientmi oznac¢ujeme C[z]; pre lubovolntt mnozinu S C C dalej ozna-
¢ujeme ako S[z] mnozinu vietkych R(z) € C[z] takych, Ze pre vietky n € N je [z"]R(z) € S.
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Tento neobvykly pohlad na postupnosti je, samozrejme, zmysluplny iba vo svetle nasledujicej defi-
nicie dvoch zékladnych operdcii na formélnych mocninovych radoch — to, ¢ pracujeme s postupnostou
alebo s formalnym mocninovym radom teda nie je ani tak otazkou tychto objektov samotnych, ako
skor algebry, ktorti na nich uvazujeme.

Definicia 2.2.2. Nech R(z) = ) 7 ja,2" a S(z) = Y .~ by2" st formalne mocninové rady z C[z].
Suctom radov R(z) a S(z) nazyvame formélny mocninovy rad (R + S)(z) = R(z) + S(z) taky, ze
pre vSetky n € N je

[2"(R+ 5)(2) = [z"]R(2) + ["]5(2) = an + bn.

Cauchyho sicinom radov R(z) a S(z) nazyvame formalny mocninovy rad (R-S)(z) = R(z)-S(z) taky,
ze pre vsetky n € N je

1R-$)) = 3 (9RE) (7786) = 3 b
k=0

k=0

Komplexné ¢islo a € C typicky stotoziiujeme s formalnym mocninovym radom R(z) € C[z] takym,
ze [29)R(z) = a a [z"]R(z) = 0 pre vietky n € N\ {0}. Pre lubovolny rad S(z) € C[z] zodpoveda
Cauchyho sié¢in aS(z) prenasobeniu radu S(z) skalarom a; rady 0 resp. 1 st navySe evidentne neutralne
vzhladom na sé¢itanie resp. nasobenie radov.

Podobnou konstrukciou priradime vyznam aj samotnej ,,premennej“ z, ktori budeme stotoznovat
s formalnym mocninovym radom R(z) € C[z] takym, Ze [2!]R(z) = 1 a pre vietky n € N\ {1} je
[2"|R(z) = 0.

Umoctiovanie formalnych mocninovych radov definujeme vzhladom na multiplikativnu operaciu
Cauchyho stéinu Standardnym spoésobom — pre lubovolny formalny mocninovy rad R(z) € C[z] je
teda R%(z) =1 a R""1(2) = R"(2)R(z) pre vietky n € N.

Lahko teraz vidiet, ze pre vietky n € N a ag,...,a, € C je R(2) = apz® + a12' + ... + a,2" rad
taky, ze pre k = 0,...,n je [¥]R(2) = a a pre vietky prirodzené k > n je [z*]R(z) = 0. Rady takéhoto
typu nazyvame polyndmami a mnoZzinu vSetkych polynémov v C[z] oznac¢ujeme C|z].

Definicia 2.2.3. Nech R(z) = Y 7 anz" je formalny mocninovy rad z C[z]. Ako —R(z) potom
oznac¢ujeme formalny mocninovy rad

o0
—R(z) = Z(—an)z”.
n=0
Pre Tubovolny rad S(z) € C[z] potom namiesto S(z) + (—R(z)) piSeme len S(z) — R(z). Lahko
tiez vidiet, ze pre vSetky R(z) € C[z] je rad —R(z) aditivnym inverznym prvkom k radu R(z) — ¢ize
R(z) — R(z) = —R(2) + R(z) = 0 — arad —R(z) mozno vyjadrit aj ako —R(z) = (—1)R(z).
Kedze st navySe obidve operacie + a - na C[z] evidentne asociativne a komutativne a lahko
pre vetky rady A(z) = > o2 anz", B(z) = Y . qbnz™ a C(z) = > .07 cpnz" overime aj platnost
distributivnych zakonov

Z (Z ap(bp—r + Cn—k)) 2" = Z (Z akbn—k> 2"+ Z (Z ak%-k) 2" =
=0 \k=0 n=0 \k=0

= n=0 \k=0

A(2)(B(2) + C(2))

= A(2)B(z) + A(2)C(2),

(A(z) + B(2))C(2) = > _ (Z(ak + bk)%—k) = < akcn—kz> Y (Z bkzcn—k) 2" =
0 n=0 \k=0

n=0 \k=0 n=0 \k=
= A(2)C(z) + B(2)C(z),

zistujeme, Ze mnozina C[z] tvori spolu s operaciami + a - komutativny okruh (s jednotkou).
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Dokazeme teraz, ze algebra (C[z],+,-,0,1) je dokonca aj oborom integrity — ¢ize netrividlnym ko-
mutativnym okruhom s jednotkou bez netrivialnych delitelov nuly. Poslednéa z menovanych podmienok
znamena, ze pre vietky dvojice nenulovijch radov R(z),S(z) € C[z] je aj R(z)S(z) # 0. Skutoc¢nost,
ze C[z] tvori obor integrity, pre nas bude déleZita najma preto, Ze prave vdaka tejto vlastnosti okruhu
C[z] v fom bude mozné krdtit nenulovymi radmi: ak totiz A(z), B(z),C(z) € C[z] su rady také, zZe
A(z)C(z) = B(2)C(z) a C(z) # 0, nutne (A(z) — B(z))C(z), z ¢oho vdaka nenulovosti radu C(z)
a neexistencii netrivialnych delitelov nuly dostavame A(z) — B(z) = 0 — ¢ize A(z) = B(z).

Tvrdenie 2.2.4. Okruh (C[z],+,-,0,1) je oborom integrity.

Dokaz. Vieme uz, Ze ide o komutativny okruh, ktory je evidentne netrivialny. Uvazujme teda lubovolné
R(z),S(z) € C[z] \ {0}. Nech m € N je najmensie prirodzené ¢islo také, ze [z™]R(z) # 0 an € N je
najmensdie prirodzené ¢islo také, ze [2"]S(z) # 0. Potom

m—+n

R 8)() = D (FHRE)) (7 7H8(2) = (27)R() (27)8(2)) £0,
k=0
takze nutne (R - S)(z) = R(2)S(z) # 0. O

Oborom integrity je v désledku prave dokazaného tvrdenia aj okruh polynémov (C[z],+,-,0,1).

Poznamka 2.2.5. Vsetky operacie na formélnych mocninovych radoch sme doposial definovali na za-
klade analdgie s mocninovymi radmi, ktoré v komplexnej analyze sluzia na reprezentéciu funkcii ana-
lytickych v bode 0. Vieme navyse, ze stcet a saéin dvoch analytickych funkcii je opét analytickou
funkciou. Mnozina Hy v8etkych funkcii analytickych v bode 0 teda (modulo izomorfizmus) tvori pod-
okruh (Hy, +,-,0,1) okruhu (C[z],+,,0,1) a vdaka tvrdeniu 2.2.4 je takisto oborom integrity.

Toto pozorovanie je dolezité z nasledujiceho dévodu: ak zacneme s formalnymi mocninovymi radmi,
ktoré konverguju na neprazdnom okoli bodu 0 a zodpovedaju tak nejakej analytickej funkcii, je pouZitie
operéacii na C[[z] definovanych v tomto oddiele na tieto rady ekvivalentné pouzitiu prislusnych operacii
na analytickych funkcidch. Aj vysledok tychto operéacii teda mozeme interpretovat ako analyticku
funkciu.

2.3 Delenie formalnych mocninovych radov

Zaoberajme sa teraz existenciou multiplikativnych inverzniyjch prvkov k formalnym mocninovym radom
z oboru integrity C[z].

Definicia 2.3.1. Nech R(z) € C[z] je formélny mocninovy rad. Multiplikativnym inverzngm prokom
radu R(z) nazveme, ak existuje, rad R™1(z) = R(2)~! taky, ze R™1(2) - R(z) = R(z) - R™(2) = 1.

Ak multiplikativny inverzny prvok k formélnemu mocninovému radu R(z) existuje, piSeme pren
namiesto R=1(z) aj (1/R)(z) = 1/R(z). Je ale zrejmé, ze multiplikativny inverzny prvok nemusi
existovat pre v8etky rady R(z) € C[z] — napriklad pre multiplikativny inverzny prvok S(z) radu z
by muselo byt S(z)z = 1 a v dosledku toho aj [2°](S(2)z) = 1, kym na druhej strane

multiplikativny inverzny prvok k radu z teda neexistuje.
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Dokazeme teraz kritérium existencie multiplikativneho inverzného prvku, podla ktorého rad R~!(z)
existuje prave vtedy, ked ma rad R(z) nenulovy konstantny koeficient.

Tvrdenie 2.3.2. Nech R(z) = > 00 anz"™ je formdiny mocninovy rad z C[z]. Rad R™'(z) potom
existuje prave vtedy, ked ag # 0.

Doékaz. Uvazujme najprv pripad, ked ag = 0 a za ucelom sporu predpokladajme existenciu radu
R™1(2) =322 jby2". KedZe R(z)R™1(z) = 1, z definicie Cauchyho stéinu dostavame

0
1=[2") (R(z)R™"(2)) = > _ axbo_x = agby = by =0,
k=0
¢o je spor.
Nech teraz ag # 0. Polozme

1
by = — 2.4
o=t (2.0
albn + agbn_l +...+ an+1b0
ag '
pre vietky n € N. Uvazujme rad S(z) = > 7, b,2". Prei je

bn+1 = -

2] (R(2)S(2)) = agby = 2 =1

ag
a pre vietky n € N dostavame

n+1
[zn-i-l] (R(Z)S(Z)) = Z akbn-i-l—k = apbp41 + (albn +agby,_1+ ...+ an+lbO) =
k=0
o a1by + agbp—1+ ...+ ant1bo

= —ag - - + (a1bp + agbp—1 + ... + any1bo) = 0.
0

Preto R(z)S(z) =1 arad S(z) je multiplikativnym inverznym prvkom radu R(z). O

Poznamka 2.3.3. Aj prave dokdzané tvrdenie je v zmysle poznamky 2.2.5 konzistentné s vlastnostami
analytickych funkeii: pre funkciu f analytickt v bode 0 existuje funkcia 1/ f analytickd v bode 0 prave
vtedy, ked f(0) # 0 — o je to isté ako nenulovost konstantného koeficientu Maclaurinovho rozvoja
funkcie f. KedZe v takom pripade navyse musi byt Maclaurinov rad funkcie 1 dany Cauchyho sta¢inom
Maclaurinovych radov funkcii f a 1/f, musia byt koeficienty Maclaurinovho radu funkcie 1/f dané
vztahmi (2.4) a (2.5) z dékazu tvrdenia 2.3.2.

Je zrejmé, ze pre rad R(z) s nenulovym konstantnym koeficientom a vSetky & € N musi byt
(R71*(2) = (R¥)~1(2). Tento rad oznacujeme R~*(2).

Priklad 2.3.4. Je jednoduchou tlohou overit platnost nasledujucich rovnosti v okruhu formélnych
mocninovych radov C[z] pre vietky a € C a b e C\ {0}:

1 2 3 n
T =ttt =) 2"
n=0
1 o
_ 2.2 3.3 _ n_n
1_a2f1+az+az +a’z —i—...fZa z
L 1+ + a* + +.
=+ =z —z —z
b—az b b2 b3 b”Jrl

Poznamka 2.3.3 vysvetluje, ze podobnost so vzorcami pre Maclaurinove rady znamymi z komplexnej
analyzy nie je nijak ndhodné.
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Vdaka tvrdeniu 2.3.2 je tak pre Iubovolnt dvojicu radov R(z),S(z) € C[z], kde [29]S(z) # 0,
dobre definovany podiel (R/S)(z) = R(2)/S(z) = R(2)S™(z). Podiel radov R(2)/S(z) je ale asto
potrebné uvazovat aj v pripade, Ze [2°]S(z) = 0: je napriklad prirodzené polozit

3 5
z2+22+204 ... :1+z2+z4+...
z
alebo 5 s
z 4+ 22

Prichadzame tak k nasledujicej definicii.

Definicia 2.3.5. Nech R(z) € C[z] a S(z) € C[z] \ {0} st formalne mocninové rady. Podielom radov
R(z) a S(z) nazveme, ak existuje, rad (R/S)(z) = R(2)/S(z) taky, ze R(z) = (R/S)(2)S(%).

Kedze je C[z] oborom integrity, vyplyva z rovnosti R(z) = Q1(2)S(z) = Q2(2)S(z), po vykrateni
druhej z nich nenulovym radom S(z), rovnost Q1(z) = Q2(2); existujice podiely formélnych moc-
ninovych radov st tak dané jednoznacne. Ak teda 3pecidlne [2°]S(2) # 0, je podiel R(z)/S(z) dany
jednoznaéne ako R(2)/S(z) = R(2)S™!(z).

Kritérium existencie podielu danych dvoch formalnych mocninovych radov, ktoré je zovseobecne-
nim tvrdenia 2.3.2, vyuZiva pojem kostupria nenulového formalneho mocninového radu — ten teraz
definujeme a hned vzapati sformulujeme spominané kritérium.

Definicia 2.3.6. Kostupiiom formélneho mocninového radu R(z) € C[z] \ {0} nazveme prirodzené
¢islo

codeg R(z) := min{n € N | [z"]R(z) # 0}.
Tvrdenie 2.3.7. Nech R(z) € C[z] a S(z) € C[z] \ {0} su formdine mocninové rady. Rad R(z)/S(z)
potom ezistuje prave vtedy, ked R(z) = 0, alebo R(z) # 0 a zdroveri codeg S(z) < codeg R(z).
Doékaz. Ak R(z) =0, je zrejme R(z)/S(z) = 0. Predpokladajme teda, ze RA(Z) # 0 —a uvazujme najprv
pripad, ked s = codeg S(z) < codeg R(z) = r. Pre nejakt dvojicu radov R(z), S(z) € C[z] takych, Ze
codeg R(z) = codeg S(z) = 0 potom

R(z) = 2"R(2) a S(z) = 2°5(2).

Okrem iného teda [2°]S(z) # 0, z Goho vyplyva existencia radov S71(2) a R(2)/S(z) = R(2)571(=).
Podiel radov R(z) a S(z) je potom dany ako

pretoze

R R A R(2) , )
o= BN gy 2 =B gy L o BB g0y g = R(x).
S5(2) S5(2) 5(2)
Uvazujme zostavajuci pripad, ked s = codeg S(z) > codeg R(z) = r; §pecialne teda [2"|R(z) # 0.
Za uc¢elom sporu predpokladajme existenciu podielu R(z)/S(z). Potom ale

RE) = 7 5C).

7 ¢oho

T

1R = ] ()56 ) = > (1520 (150) = 3 (12475 Yo =0

k=0

pretoZe codeg S(z) > r. To v spore s na8im skor§im pozorovanim, podla ktorého je [z"|R(z) #0. O
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Poznamka 2.3.8. Podobne ako predchadzajice tvrdenia, je aj tvrdenie 2.3.7 konzistentné s vlast-
nostami analytickych funkcii. Kostupen Maclaurinovho radu inej ako konStantne nulovej funkcie f
analytickej v bode 0 je totiz prave radom korena funkcie f v bode 0. Ak st pritom f, g analytické
funkcie v bode 0, ktoré maja v nule koreni rddu r resp. s, mozno tieto funkcie na nejakom okoli bodu 0
vyjadrit ako

kde f , g st funkcie analytické a nenulové v bode 0. Analytickd a nenulova v bode 0 tak musi byt aj fun-
kcia f /g, ktort preto mozno rozviniat do Maclaurinovho radu s nenulovym konstantnym koeficientom.
Laurentov rozvoj funkcie f/g v bode 0 je potom dany prenasobenim tohto Maclaurinovho rozvoja
faktorom 2" ~® — lahko teda vidiet, Ze funkcia f/g je analytickd v bode 0 prave vtedy, ked s < r.

2.4 Formalna derivacia

Zavedieme teraz dalsiu doleziti operaciu na formalnych mocninovych radoch — takzvanu formdinu
derivdciu. Jej definicia je inSpirované skuto¢nostou, Ze Maclaurinove rady funkcii analytickych v bode 0
derivujeme ¢len po ¢lene.

Definicia 2.4.1. Nech R(z) = > 7 ;a,2" je formalny mocninovy rad z C[z]. Formdlnou derivdciou
radu R(z) nazveme formalny mocninovy rad

R(z) = %R(z) =3 1+ Dans1e"
n=0

Beznym induktivnym sposobom definujeme aj formalne derivacie radu R(z) vyssich radov: kladieme

dO
RO(z) = ofi(2) = R(2)

dk+1 d dk
REHD () = TR Re) = (dsz(z)> .

Pripomenme si, Ze k-ty klesajici faktoridl komplexného ¢isla z € C je pre k € N definovany ako

Lahko teraz odvodime nasledujtici vzorec pre koeficienty formalnych derivacii vyssich radov.

Tvrdenie 2.4.2. Nech R(z) = > ;7 anz" je formdlny mocninovy rad z C[z] a k € N. Pre vsetky
n € N potom

[Z"]RM)(2) = (n + k)E[2" ] R(=).

Dékaz. Pre k = 0 je tvrdenie trivialne. Ak dalej [z"]R®)(2) = (n + k)E[2"T*]R(2) pre vietky n € N,
pre (k + 1)-tu derivaciu radu R(z) dostavame

LRE () = 7] (R®) (2) = (n+ D" RO[E] = (04 D+ b+ DA R(z) =
= (n+k+ DEEL R ), O
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Tvrdenie 2.4.3. Pre vSetky R(z) € C[z] a k,£ € N je (R(k))(é) (z) = R+ ().

Dokaz. Nech je k € N pevné a dokazujme indukciou vzhladom na £. Pre £ = 0 je z definicie
(0)
(R<k>) (2) = R®)(2).

Nech teraz pre £ = s je
(s)
(R(k>) 7 (2) = RE+9)(2)

a uvazujme ¢ = s+ 1; z definicie (s+ 1)-tej derivacie, indukéného predpokladu a definicie (k+ s+ 1)-tej
derivacie postupne dostavame

(R(k)>(3“) (2) = ((R(k))(s))/ (2) = (R(k+s))/ () = RU++D)(5). O

Nasledujiice jednoduché pozorovanie mozno chapat ako formélnu obdobu vety o Maclaurinovych
radoch.

Veta 2.4.4. Nech R(z) € C[z]. Potom

Dokaz. Indukciou vzhladom na n dokdzeme naraz pre vetky R(z) € C[z] rovnost

n 20 R(”)(z
Pre n = 0 a kazdé R(z) € C[z] je evidentne
22RO (z
]R() = G,

ak teraz predpokladame platnost tvrdenia pre n = k a vSetky R(z) € C[z], pre n = k + 1 a Tubovolné
R(z) € C[z] s vyuzitim tvrdenia 2.4.3 a induk¢éného predpokladu dostavame

IRV 1 AR ) 1

k+1! ~k+1 & = il IR (@) = [IRG) -

DokéZzeme teraz vetu o formalnej derivécii sictu, rozdielu, konstantného nasobku, Cauchyho sicinu,
kladnej prirodzenej mocniny a multiplikativneho inverzného prvku formalnych mocninovych radov —
vo vSetkych pripadoch pdjde opét o obdobu dobre zndmych vzorcov z matematickej analyzy.

Veta 2.4.5. Nech R(z),S(z) € C[z], a € C a k € N\ {0}. Potom:

a) (R+S)(z) =R(2)£5(2);

(R-9)(2) = R(2)S"(2) + R'(2)S(2);
d) (R¥) (z) = kR¥1(2)R/(2);

e) ak navyse [2°|R(z) # 0, tak (Rfl)/ (2) = —R'(2)/R%(2).
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o0

Dékaz. Predpokladajme, Ze pre nejaké postupnosti (a,)52,

(bn)22y komplexnych ¢isel je

oo o0
R(z) = Zanz” a S(z) = Z bp2".
n=0 n=0

Vzorec pre formalnu derivaciu stic¢tu a rozdielu potom vyplyva z rovnosti

E)(R 4+ SY(2) = (1 + Danst £ bur) = (1 + Dangs & (0 + Dbrss = "R (2) % [-7]8(2) =
= [2"] (R/ + S/) (2)

platnej pre vietky n € N. Podobne v pripade skalarneho nésobku pre vSetky n € N dostavame
[2")(aR)'(2) = (n + 1)aans1 = a((n + 1)ans1) = a["|R'(2) = [2"](aR')(2).

Pre Cauchyho stcin je, opét pre vsetky n € N,

n+1 n+1 n+1
"J(R-8) () = (n+ 1) arbnrik = Y _(n+ Dagbpyr—x = Y _(k+ (n+1—k))agbna_p =
k=0 k=0 k=0
n+1 n+1
= Z kagbp+1-k + Z(n +1—k)agbpi1-x =
k=0 k=0
n+1 n

= " (kap) bppi—k + Y ak (n+ 1= k)bpy1p) =

k=1 k=0
= ((8 + 1)a8+1) bp—s + Z g ((n +1- k)bn+1—k) =
s=0 k=0

=" (R'-S5)(2) +[z"] (R-5) (2) = [z"] (R'- S+ R-5) (2).

Vzorec pre derivaciu kladnej prirodzenej mocniny je zalezitostou indukcie vzhladom na k& € N\ {0}:
pre k=1 je
R'(2) = 1R%(2)R'(2);

ak tvrdenie plati pre kK = s, pre k = s + 1 dostavame

(R (2) = (R R*) (2) = R(2) (R*)' (2) + R/(2)R*(2) = sR(2)R* " (2) R (2) + R (2)R*(2) =
= (s+1)R°(2)R/(2).

V pripade [2°]R(z) # 0 napokon zo vzorca pre derivaciu Cauchyho stéinu (R - R~!)(z) dostavame
R(z) (R™") () + R(2)R™'(2) =0,

z ¢oho upravou dostavame dokazovani rovnost

v, Ri(2)
(R 1) (z) = —7R2(2). O

Priklad 2.4.6. Pre vsetky £ € N\ {0} je vdaka vete 2.4.5
d 1 1

dzl—2z (1—2)2

d 1 1 1 k

dz(1—2)F 7 Q=21 (1-2)2 (1—z)k
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Indukciou by sme teda I'ahko dokazali, Ze pre vietky £ € N je

¢ 1 /!

dzl1—2z  (1—2)H0

Pre vietky k € N\ {0} tak
1 1 =t o1

(1—2)F (k=1 deb11-2

z ¢oho podla tvrdenia 2.4.2 pre vietky n € N dostavame

] 1 (n+k-1DFL mik—1
11—k (k=1  \ k-1 )
To znamena, Ze pre vsetky k& € N\ {0} je
1 = /n+k—1 n
<1—z>k‘§;;< k-1 >

Priklad 2.4.7. Podobne pre vietky a € C, b€ C\ {0} a k € N\ {0} je vdaka vete 2.4.5

d 1 B a
dz1—az/b  b(1—az/b)?

a
d 1 1 d 1 _ 1 I 1 a B ak B
dz (b—az)* b dz(1—az/b)k bk (1 —az/b)k~1 b(1 —az/b)2  bF+1(1 —az/b)k+1
B ak
- (b— az)k"‘l'

Indukciou by sme teda l'ahko dokazali, Ze pre vietky £ € N je

dt 1 atd!

dzlb—az  (b—az)Hl

z ¢oho pre vietky k € N\ {0} dostavame

I 1 =t o1
(b—az)k  ab1(k—1) dzb1b—az’

Podl'a tvrdenia 2.4.2 a prikladu 2.3.4 tak pre v8etky n € N musi byt

"] = E_1 ptk

1 (n+k—1)k;1a”+k_1_ n+k—1\ a"
(b—az)k akb=1(k — 1)lpntk

Pre vietky a € C, b€ C\ {0} a k € N\ {0} teda

[e.e]

1 n+k—1\ a"
(baz)k_z( k-1 )b”+kz’

n=0
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2.5 Obycajné vytvarajiuce funkcie
Pripomenme si, Ze obycajnou vytvdrajicou funkciou postupnosti komplexnych ¢isel

(C(), C1,C2, .. ) = (Cn)zozo

rozumieme formélny mocninovy rad
o
_ .0 1 2 _ n
C(z) =cpz” +c120 2"+ ... = E 2.
n=0

Tento rad bol pritom definovany prave ako postupnost koeficientov (¢,,)2% , — na formélnej tirovni teda
neexistuje Ziaden rozdiel medzi postupnostou a jej obycajnou vytvdrajucou funkciou; prechod od po-
stupnosti k vytvarajacej funkcii predstavuje iba zmenu uhlu pohladu a uvaZovanej algebry.

Kazdu operéciu na obyc¢ajnych vytvarajucich funkciach mozno interpretovat aj ako operaciu na pri-
slusnych postupnostiach koeficientov a naopak — zmysel vytvarajiacich funkcii pritom spociva najméa
v tom, Ze operécie s najvacsim kombinatorickym vyznamom maja prirodzenejSie vyjadrenie prave v ich
jazyku. Tabulka 2.1 uvadza niekol'ko operacii na formalnych mocninovych radoch zavedenych v pred-
chadzajicich oddieloch spolu s prislusnymi operdciami na ich postupnostiach koeficientov. Neskor
k tymto operacidm pridame aj dalsie.

Obycajna vytvarajica funkcia ‘ Postupnost koeficientov ‘

A(z) (a0, a1, az,...) = (an)ilg
B(Z) (b07b17b2a"') — (bn)%oZO
c-A(z) preceC (can)sy
A(z) £ B(z2) (an £ bn)pZo
A(z) - B(2) (X k=0 Wkbn—k) g
A(zl_“o (a1,a2,a3,...)
2+ A(2) (0,a9,a1,az,...)

1 . j—1
AFZ)_aozo_alzj_'"_a]_lzj pre j € N | (aj,a;+1,a512,. )
Z]A(Z) prejeN (0,0,...,0,@0,@1,@2,- )

J

Al(2) ((n+ Dant1)n2g
AWM () pre k € N (4 k)eansr),”,

Tabul'ka 2.1: Niektoré operacie na oby¢ajnych vytvarajtcich funkcidch s prislusnymi operaciami na postup-
nostiach koeficientov.

Tabulka 2.2 dalej podava zhrnutie ndm uZz znamych vyznamnych konkrétnych obycajnych vytva-
rajicich funkcii spolo¢ne s ich postupnostami koeficientov. Opét ide o netiplny vypodcet, ktory neskor
doplnime o dalgie délezité vytvarajtce funkcie.

Typicky proces pouzitia vytvarajucich funkcii na analyzu danej kombinatorickej postupnosti po-
zostéava z dvoch faz. Prva faza spoCiva v ndjdeni vytvdrajicej funkcie, t. j. v jej vyjadreni pomocou
zékladnych radov ako napriklad 1 a z a Standardnych operacii, najjednoduchsie z ktorych st uvedené
v tabulke 2.1. Vystupom tejto fazy tak moze byt napriklad pozorovanie, Ze obycCajna vytvarajuca
funkcia sktimanej postupnosti je dana ako



20 2.6 Fibonacciho é&isla a d’alsie linearne rekurencie

Obyc¢ajna vytvarajiuca funkcia ‘ Postupnost koeficientov
0 (0,0,0,...)
1 (1707 07 )
aprea € C (a,0,0,...)
2 (0,1,0,0,...)
2 pre j €N (0,0,...,0,1,0,0,...)
ji—1

= (1,1,1,...)
1_1az pre a € C (a% at,a?,...)
b_lazpreaECabG(C\{O} %7%,%,...>

k—1 k+1 k+2
e pre k€ N\ {0} (ED G5 (5D (5,

_ aO al a2 a3
W pre k € N\ {0}, a € Cabe C\{0} (liz—})z% (kﬁl) PRI (ZJ—F}) pRT2 ) (iff) RT3 0 )

Tabul'ka 2.2: Niektoré vyznamné obycajné vytvarajice funkcie.

Vytvarajuce funkcie mozno jednoduchym spésobom néjst napriklad pre postupnosti dané niektorymi
druhmi rekurentnych vztahov. Neskor v kapitole 3 opiseme $pecifikaéné mechanizmy umoziujice proces
najdenia vytvarajtcej funkcie kombinatorickej triedy do velkej miery zmechanizovat.

Druh4 faza potom pozostava z pouZitia ndjdenej vytvdrajicej funkcie na ziskanie informéacii o sku-
manej postupnosti. V niektorych viac-menej ojedinelych pripadoch je mozné vyjadrit postupnost ko-
eficientov v uzavretom tvare. Omnoho CastejSie mozno vytvarajicu funkciu pouzit na algoritmicky
vypocet ¢lenov postupnosti — a predovSetkym aplikovat metody analytickej kombinatoriky umozinujice
opat relativne mechanickym spdsobom néajst velmi presny asymptoticky odhad &lenov ¢, skiimanej
postupnosti (¢,)o2, pre n — oco. Takymito analytickymi metédami sa budeme v tomto texte zaoberat
po¢ntc kapitolou 5.

2.6 Fibonacciho é&isla a d’alsie lineArne rekurencie

V ramci jednoduchej ukazky pouzitia obycajnych vytvarajacich funkcii sa teraz zamerajme na rieSenie
linedrnych rekurencii s konstantnymi koeficientmi. Za¢nime znadmym prikladom Fibonacciho cisel.

Priklad 2.6.1. Postupnost Fibonacciho ¢&isel (F,)02, = (Fo, F1, Fy,...) je definovana rekurentnym
vztahom

Fy =0,
Fy =1,
Foio=F,1+ F, pre vietky n € N. (2.6)

Ozna¢me F(z) oby¢ajni vytvarajucu funkciu postupnosti (F5,)52,. Oby¢ajné vytvarajaca funkcia po-
stupnosti (F,+1)52, je potom dané ako

a oby¢ajna vytvarajtuca funkcia postupnosti (F,12)52 je dana ako

F(z) - Fy—Fz  F(z) —z

22 22
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KedZe sucet dvoch postupnosti zodpoveda stactu obycajnych vytvarajucich funkcii, z rekurentného
vztahu (2.6) dostavame
F(z)—z F(2) n

z ¢oho tpravou pomocou operacii na formalnych mocninovych radoch dostéavame

F(2) — 2F(2) — 2°F(z) — 2

22 =0,
a teda
F(z) - (1—2—2%) =2
Preto
z z 1 1 1
F(z) = = - _
LAl g (1 —p2)(1 —¢z) \/5<1—s0z 1—¢Z>’
kde
1++5 1-+5
v= o U=

Oby¢ajnt vytvarajicu funkciu F(z) sme teda vyjadrili ako linearnu kombinaciu znamych formalnych
mocninovych radov 1/(1 —¢z) a 1/(1 —z). Z tabuliek 2.1 a 2.2 uz teda mozno vy¢itat, Ze pre vietky
n € N je

n ) 1 1 - 1 _L n_ n
Fa= PO =2 (12— s ) = 75" -9

Tym sme vyjadrili n-té Fibonacciho ¢islo v uzavretom tvare.

Postup z uvedeného prikladu je moZzné zovSeobecnit na univerzalnu metodu rieSenia linedrnych
homogénnych rekurencii s konstantnymi koeficientmi, t. j. rekurencii typu

CdOn+d T Cd—10n+d—1 + ... + coan =0,

kde cg, . .., cq € C st konstanty, cq # 0 a hodnoty ay, . . ., ag_1 si dané ako pociatoéné podmienky. Oby-
Cajni vytvarajucu funkciu A(z) postupnosti (a,)5>, danej takouto rekurenciou mozno vzdy vyjadrit
zo vztahu

d A(2) —ap2® —arzt — ... —ap_12
>k ok

k-1

=0

k=0
ako podiel dvoch polynémov — hovorime, Ze vytvarajuca funkcia A(z) je raciondlna. Pre nejaka dvojicu
polynomov P(z),Q(z) € C[z] je teda

Tahko pritom napriklad vidiet, ze [2°]Q(z) = ¢4 # 0 a stupen polynému P(z) nemoze byt vacsi, nez
d — 1. Tato rovnost mozno po vydeleni polynémov P(z) a Q(z) so zvySkom prepisat ako

kde S(z), R(z) € C|z] st polynomy, stupen polynéomu S(z) je najviac d — 1 a stupeii polynému R(z)
je ostro mensi, nez stupeii polynému Q(z). Ak pritom

Q(z)=C-[[(z=x;)%

m
J=1
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pre nejaké C' € C\{0}, m € N, po dvoch roézne k1, ..., k5, € C\{0} ady,...,dy, € N\{0}, prichadzame
po rozloZeni podielu R(z)/Q(z) na parcialne zlomky ku vztahu

mod
k
Az (2)+ D> —
Z—Hj
=1 k=1

.

kde pre j = 1,...,ma k = 1,...,d; je aj; € C. Upravou tejto rovnosti mézeme napokon dojst
k vyjadreniu

m b g
A(z +§:§:1_&z (2.7)
7j=1k=1

kde

S(z) =502 4 ...+ sq_12471

je polyném stupha najviac d — 1 s koeficientmi sg,...,sq-1 € C, A1,..., Ay, € C\ {0} st po dvoch
rozne nenulové komplexné &isla, dy,...,d, € N\ {0} a Bj, € Cpre j =1,...,mak =1,...,d;.
Z prikladu 2.4.7 pritom vieme, Ze pre j =1,...,mak=1,...,d; je

1 > /n+k—1
[ — An n
e (et )

Vztah (2.7) tak vedie k nasledujicemu vyjadreniu ¢isel a,, pre vietky n € N v uzavretom tvare:

2:%%k+§:§:6ﬁ(n+k>

j=0 k=0

kde 0,1 je Kroneckerova delta, t. j.

5. - 1 akn=k,
Tl 0 akn £k

Metodu, ktord sme prave vo vSeobecnosti opisali, teraz predvedieme na este jednom priklade.

Priklad 2.6.2. Uvazujme postupnost (a,)2>, = (ao, a1, ag, ...) dant pre vietky n € N rekurentnym
vztahom

Ontd = 3apts — dany1 (2.8)
s pocdiatotnymi podmienkami
ap =1,
a1::2,
as =1,
a3::2.

Nech A(z) je oby¢ajna vytvarajuca funkcia postupnosti (a,)22, — vdaka (2.8) potom

A(2) — apz® — a1zt — agz? — az2? A(2) — apz® — a1zt — ag2? A(z) — ap2®
24 - 23 4 z

pu— 0’
¢o je to isté ako

A(z) =1 -2z — 22 — 223
24 23 z
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Upravou dostavame
A(z)(1 =32 +42%) + (=1 + 2+ 522 — 323)
1

:0’
z

z ¢oho ) X
1—2—-52+32
A =
G =5
Po vydeleni tychto dvoch polynémov so zvyskom tak prichadzame k vyjadreniu
3 1 1+452-2022 3 1  1+45z—20z2

AB) =1+ 1 T 14 T1T16 GrnG o122

a po rozklade na parcidlne zlomky dostéavame

3 2 7 1
AD =T 5D Be 1D 166 1P

¢ize 3 5 . 1
Alz) =2 — - .
) =130+, T2 11-2

Prvok a, uvazovanej postupnosti tak pre vSetky n € N modZeme vyjadrit ako

3 2 7 1/n+1 3 2 11 1
N S G (I o — 25 S (1) — 9" = pon,
n =7 000 =5 (=1)"+ ¢ 4<1> g o3 (CD)T 45 1"

Poznamka 2.6.3. Oby¢ajné vytvarajuce funkcie R(z) postupnosti definovanych linearnymi homogén-
nymi rekurenciami s konstantnymi koeficientmi st teda vzdy racionélne — ¢iZe vyjadriteIné ako

kde P(z),Q(z) € C[z] st polynémy také, ze [2°]Q(z) # 0 (popripade by stacilo predpokladat nerovnost
codeg P(z) > codeg Q(z)). UkaZeme teraz, Ze aj postupnost koeficientov kazdého racionélneho formaél-
neho mocninového radu musi vizdy spliiat nejakia linearnu homogénnu rekurenciu s kongtantnymi ko-
eficientmi. Postupnosti definované linedrnymi homogénnymi rekurenciami s konstantnymi koeficientmi
su tak prave vsetky postupnosti s raciondlnymi obycajnymi vytvdrajicimi funkciami.

Uvazujme formélny mocninovy rad

R(z) = Z anz"
n=0

a polynémy P(z) = bgz® + ... +bs2% a Q(2) = co2 + ... + ¢z, kde a,, € C pre vietky n € N, s,t € N,
by, .. .,bs,¢0,...,¢ € Cacy+#0. Predpokladajme, Ze

Potom Q(z)R(z) = P(z) — pre vietky n € N spliiajiice sticasne n > s+ 1 a n > t tak z definicie
Cauchyho stc¢inu dostavame
n t
0= Z Ckp—k = Z Ckn—k,
k=0 k=0

ClGp—1+ ...+ CtQn_¢
Co .

7 ¢oho

ap —

épeciélne dostéavame tuto rovnost pre vsetky prirodzené &isla n > s + t + 1. Koeficienty a,, radu R(z)
tak pre vietky n € N spliiaju rekurenciu

C1 Ct
An+ts+t+1 T P Aptst T ...+ o apysy1 = 0.
0 0
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2.7 Lokalne konec¢né sticty a skladanie formalnych mocninovych radov

Nutnost zavedenia operécie zlozenia, ktora by na trovni formélnych mocninovych radov predstavovala
obdobu operacie zloZenia dvoch analytickych funkcii, si vyzaduje uvazovat niektoré nekonecné sicty
formalnych mocninovych radov. Samozrejme neméze byt definovany Tubovolny nekoneény sicet radov;
ak ale pre kazdé n € N mame iba kone¢ne vela s¢itancov s nenulovym koeficientom pri 2", moZzeme
nekonecny sucet cez takyto systém radov vypoéitat po zlozkich. Systémy formalnych mocninovych
radov s uvedenou vlastnostou nazveme lokdlne konecnijmi.

Definicia 2.7.1. Nech I je Iubovolna mnozina. Systém (Ry(z) | k € I) formalnych mocninovych
radov Ry (z) € C[z] pre k € I je lokdlne konecny, ak je pre vSetky n € N konefna mnozina indexov

I(n) = {k e I'| ["|Rx(2) # 0}.

Definicia 2.7.2. Nech (Ry(z) | k € I) je lokilne koneény systém formalnych mocninovych radov
z C[z]. Suctom systému (Ry(z) | k € I) nazveme formélny mocninovy rad

<Z Rk> (2) =3 Rul2)

kel kel

taky, Ze pre vSetky n € N je jeho koeficient pri 2z dany kone¢nym stactom

[2"] (Z Rk) (2):= > [2"]R(2).

kel kel(n)

Kazdy kone¢ny systém radov je evidentne lokalne konecny; uvedené definicia suctu je v takom
pripade konzistentné s bezne definovanymi konec¢nymi sactami.

Nasledujiice tvrdenie je kIi¢om k neskorgej definicii operacie zloZenia dvoch formalnych mocnino-
vych radov.
Tvrdenie 2.7.3. Nech S(z) € C[z] je formdlny mocninovy rad taky, Ze [2°]S(2) = 0 a (an)22, je
lubovolnd postupnost komplexnijch ¢isel. Potom je systém (ap,S(z)™ | m € N) lokdlne konecnyj.
Doékaz. Indukciou vzhladom na m € N dokdZeme, Ze pre vietky a € C a vetky prirodzené n < m je
[2"]aS(z)™ = 0. To je trivialne pravda pre m = 0 a vdaka predpokladu [2°]S(z) = 0 aj pre m = 1.
Nech teraz pre nejaké s € N, vietky a € C a v8etky prirodzené n < s je [2"]aS(z)® = 0. Pre kazdé
a€Can=0,...,s potom

[2"]as (=) = [2"] (aS(2)") 5(2) = > (1S (2)°) (12" 7*18(2)) =0,
k=0
lebo pre k =0,...,n —1je k < s a [zF]aS(2)®* = 0, kym pre k = n je [z"¥]S(2) = [2°]S(2) = 0.
Pre v8etky n € N teda moze byt koeficient pri z" nenulovy v nanajvys konecne vela radoch
a05(2)°, ..., a,S(2)" uvazovaného systému. O

Prave dokazané tvrdenie naim umoznuje definovat zloZenie (Ro S)(z) = R(S(z)) dvoch formalnych
mocninovych radov R, S € C[z] za predpokladu, Ze konstantny koeficient radu S(z) je nulovy.
Definicia 2.7.4. Nech R(z),S(z) € C[z] st formalne mocninové rady také, ze [2°]S(z) = 0; nech
R(z) = Y07y anz", kde pre vietky n € N je a,, € C. ZloZenim radov R(z) a S(z) nazveme formalny
mocninovy rad

(Ro S)(z) = R(S(2)) := ZanS(z)”.
n=0

Existuju aj iné pristupy k definicii zloZenia formalnych mocninovych radov, umoziujice definovat
tento koncept aj za o nieco vieobecnejsich okolnosti. Definicia predpokladajica [2°]S(z) = 0 je ale
zdaleka najbeznejsia a pre naSe acely postadujuca.
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Poznamka 2.7.5. Lokalne kone¢né siacty st prvou z naSich operacii na formalnych mocninovych ra-
doch, ktora sa rovnakym spdsobom nesprava aj na podokruhu analytickych funkcii. Lahko totiz vidiet,
ze lokalne konednym stactom cez spocitatelne vela monoémov a,z" € Hy pre n € N a a, € C moZno
ziskat aj formalny mocninovy rad, ktory nereprezentuje analyticka funkciu v bode 0 — podokruh Hy
oboru integrity C[z] teda nie je uzavrety na lokilne kone¢né sucty.

Definicia zlozenia formalnych mocninovych radov ale napriek tomu s konceptom zloZenia dvoch
analytickych funkcii konzistentna je: ak su totiz f,g funkcie analytické v bode 0 a g(0) = 0 — ¢o
zodpoveda nulovosti konstantného koeficientu Maclaurinovho radu funkcie g — musi byt v bode 0
analyticka aj funkcia f o g [12, veta 2.5.6]. Ak pritom na nejakom okoli D bodu 0 je

f(Z) = Z a’nzna
n=0

musi aj pre vSetky z € C s g(z) € D byt

Fl9(2)) = ang(2)"; (2.9)
n=0

z analytickosti — a z nej vyplyvajtcej spojitosti — funkcie g v bode 0 a predpokladu g(0) = 0 pritom
vyplyva, Ze pre nejaké okolie bodu 0 a vSetky z z tohto okolia je g(z) € D. Maclaurinov rad analytickej
funkcie f o g tak musi byt dany ako v (2.9).

Samozrejme, zlozenie f o g dvoch funkcii f, g analytickych v bode 0 mo6ze byt analytickou funkciou
v bode 0 aj v pripade, Ze g(0) # 0; to stuvisi s vySSie spominanou skuto¢nostou, ze aj zlozenie dvoch
forméalnych mocninovych radov mozno definovat v o nieco vSeobecnejSom kontexte.

Nasledujtce jednoduché tvrdenie ukazuje, Ze linearita formalnej derivéicie sa prenésa aj na lokalne
kone¢né nekonec¢né sicty formélnych mocninovych radov.

Tvrdenie 2.7.6. Nech (Ri(z) | k € I) je lokdlne konecny systém formdlnych mocninovych radov
z C[z]. Potom je lokdlne konecny aj systém (R.(z) |k € I) a

LS m) =Y SRl

kel kel
Dékaz. Pre vietky k € I an € N je [2"|R}(2) = (n+ 1)[z" T Rg(2). Pre vietky n € N preto
I'(n) = {k € I | [."|Ri(2) # 0} = {k € I | ["""|Ri(2) # 0} = I(n +1);

z lokalnej kone¢nosti systému (Ry(z) | k € I) tak vyplyva aj lokalna koneénost systému (R} (z) | k € I).
Pre vsetky n € N navyse

215 Y Rl

(n+ D" Re(z) = (n+1) Y [2"TRi(2) =

kel kel kel(n+1)
d d
= Y rDETIRG) = Y ISR = Y S Rie)
kel(n+1) kel’(n) kel

z ¢oho vyplyva aj dokazovana rovnost

%ZRk(z) :Z%Rk(@. 0

kel kel
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Spomedzi mnozstva dalsich uzitoénych vlastnosti lokdlne kone¢nych sta¢tov spomeiime este jednu,
ktora hovori o silnejsej verzii distributivnosti v okruhu C[z].

Tvrdenie 2.7.7. Nech (Rp(z) | k € I) je lokdlne konecny systém formdlnych mocninovijch radov
z C[z] a S(z) € C[z]. Potom je aj systém (Ry(2)S(z) | k € I) lokdlne konecny a

ST R()8(2) = S(2) D] Ra2)

kel kel

Dékaz. Nech n € N. Vdaka lokalnej konec¢nosti systému (Rg(z) | k € I) je potom mnoZzina

I(<n):={kel|3e{0,...,n}: [Y]Ri(z) # 0}

konec¢na. Kedze pre vsetky k € I je

IR(5E) = Y (F1RE) (7156))

=0
musi pre vietky k ¢ I(< n) byt [2"]Rk(2)S(2) = 0. To dokazuje lokalnu kone¢nost systému
(Ri(2)S(2) | k € I).
Z distributivnosti okruhu C[z] dalej

1Y Bi(2)S(2) =["] Y Bi(2)S(2)=["]| S(=) D, Rul()|=1["] <5(2)2Rk(2)>-
kel kel(<n) kel(<n) kel

Kedze je n € N Tubovolné, je tymto tvrdenie dokdzané. O

Vyslovme teraz relativne déleziti vetu o formalnej derivécii zloZenia dvoch formélnych mocninovych
radov — opét pojde o obdobu dobre zndmej vety o derivacii zloZzenej funkcie z matematickej analyzy.

Veta 2.7.8. Nech R(z),S(z) € C[z] su formdlne mocninové rady také, Ze [2°]S(z) = 0. Potom
(RoS)(2) = R'(S(2))5(2).

Dékaz. Nech (an)2, je postupnost komplexnych ¢isel takych, ze

o
= g anz"
n=0

Z definicie 2.7.4, tvrdenia 2.7.6, vety 2.4.5 a tvrdenia 2.7.7 potom dostavame

(Ro S)( Zan Z—an 2)" = ZandizS(z)” =

—Znan LS (= Zn—i—l ant15(2)" = R'(5(2))5'(2),

pricom vietky uvaZované nekoneéné sicty st lokalne konecné bud vdaka predpokladu [2°]S(2) = 0
a tvrdeniu 2.7.3, alebo vdaka tvrdeniu 2.7.6. O
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2.8 Formalna exponencialna funkcia

Formalny mocninovy rad e* definujeme prirodzenym spdsobom na zaklade znalosti Maclaurinovho
radu exponencialnej funkcie. Pri stotozneni okruhu Hy funkcii analytickych v bode 0 s podokruhom
okruhu C[z] tak mézeme aj formélny mocninovy rad e® stotoznit s analytickou funkciou e?.

Definicia 2.8.1. Rad e* = exp(z) € C[z] definujeme ako

22 3 Oozn
z P - _ —
e = exp(z) .—1—|—z+2! —1—3! +...= gon!.
n=

Pre Tubovolny rad R(z) € C[z] splhajuci [z°|R(z) = 0 teraz mozeme aplikovat definiciu zloZenia
formalnych mocninovych radov, ¢im dostdvame rad

i

R(z)™
n!

e = exp (R(2)) = 3
n—=0

kde sucet je cez lokalne koneCny systém radov. V skutoCnosti ale mozeme forméalnu exponencialnu
funkciu definovat pre Tubovolny argument R(z) € C[z] — sta¢i vyuzit znamu vlastnost analytickej
exponencidlnej funkcie, ktora by sme oc¢akavali aj od formalnej exponencialnej funkcie.

Definicia 2.8.2. Pre vsetky R(z) € C[z] kladieme

n!

oo 0 n
D) exp (R(2)) 1= eFIRE) RE)-EIRE) Z ([IR() (Z (R(2) — [2°|R(2)) ) ’

n=0
0 o . . v s oxe -
kde el2'1E(2) oznacuje bezné umociiovanie &sla e na komplexny exponent.

Kedze e* € Hy a formalna derivacia sa na Hy sprava rovnako ako bezné derivécia, je nasledujuce
tvrdenie désledkom znameho tvrdenia z matematickej analyzy — napriek tomu v8ak uvadzame aj jeho
dokaz, ktory matematickd analyzu nevyuziva.

Tvrdenie 2.8.3. Formdlna derivicia formdlneho mocninového radu e* spliia rovnost

diez =e°.
z
Dékaz. Pre vsetky n € N je
n—+1 1
[z"]&ez = (TL + 1)[Zn+1]€z = m = E = [z"]eZ D

Nasledujiice tvrdenie hovori o dvoch dalgich elementarnych vlastnostiach formélnej exponencialne;j
funkcie, ktoré sit obdobou vlastnosti exponencialnej funkcie zndmych z matematickej analyzy.

Tvrdenie 2.8.4. Nech R(z),S(z) € C[z]. Potom:
a) %eR(z) — R/(Z)eR(Z);
b) ef(D)+5(2) = oR(2)¢S(2)

Dékaz. Ak [2°]|R(z) = 0, je tvrdenie a) bezprostrednym dosledkom vety 2.7.8 a tvrdenia 2.8.3; v pripade
[2°]R(2) # 0 je zas

4 re) _ 4 OR() REe)-[IR() _ [)R(z) L R()-[°)R(2) _
dze - dze € = dze -

= e[z(’]R(z)eR(z)—[zo]R(z)% (R(z) — [2°]|R(2)) = R/(2)eR?.
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Dokézme tvrdenie b). Predpokladajme najprv, 7ze [2°|R(z) = [2°]S(z) = 0; z binomickej vety —
ktora evidentne plati v Tubovolnom komutativnom okruhu, a teda aj v C[[z] — potom dostavame

00 n %) n o n k n—k
res S (RE) S &1 (1) 1 ek e RS
c D nl D2\ JRESE) Kl(n — k)!
n=0 n=0 k=0 n=0 k=0
& iR PSSR NS | (S AEY (§3SEY _ ao, s
N slt! N s! t s! t! - '
s=0 t= s=0 t=0 s=0 t=0

Ak R(z) # 0 alebo S(z) # 0, je
R(2)+5(2) _ [2IR(2)+[2°]8(2) o (R(2)— [z°]R(2))+(S(2)—[2°]15(2)) _ [2°]R(2) (R(2)—[2°1R(2) o[2°]8(2) o S(2)—[2"1S(2) _

¢im je dokaz tvrdenia dokonceny. O

2.9 Formalny logaritmus

Maclaurinovym radom funkcie Ln(1 + z), kde Ln: C \ {0} — C oznacuje hlavni vetvu prirodzeného
logaritmu analyticka na C\ (—o0, 0], je tzv. Mercatorov rad [12, cvi¢enie 7.8|

Podobne ako v pripade formalnej exponencialnej funkcie tak moéZzeme prirodzenym sposobom definovat
aj forméalny mocninovy rad Ln(1 + z) € C[z].

Definicia 2.9.1. Rad Ln(1 + z) € C[z] definujeme ako

2 3 4

Ln(1 - 4 Z
n(l+2z):=z 2+3 T+ g

Uvedeny rad definujeme ako obdobu Maclaurinovho radu pre hlavni vetvu prirodzeného logaritmu;
to je dané predovsetkym skutoc¢nostou, Ze nasim hlavnym objektom skiimania budi vytvarajuce funkcie
kombinatorickych tried, ktorych koeficientmi st vzdy prirodzené &isla.

Pre Tubovolny formalny mocninovy rad R(z) € C[z] splhajuci [z°]R(z) = 0 mdZzeme opit aplikovat
operéciu zloZenia forméalnych mocninovych radov, ¢im prichadzame k radu

R(2)* | R(2)* R(z) e DL
- +..._ZTR(Z) :

n(l+ R(z)) = R(z) — 5 + 3

n=1

Mame tak definované aj rady Ln(R(z)) pre vietky R(z) € C[z] také, Ze [2°]R(z) = 1 — je totiz
Ln(R(z)) = Ln(1 + (R(z) — 1)). O¢akavanu vlastnost logaritmov su¢inu pritom mézeme vyuzit na to,
aby sme ttto definiciu rozsirili aj na vietky rady R(z) také, Ze [2°]R(2) # 0.

Definicia 2.9.2. Nech R(z) € C[z] je formalny mocninovy rad taky, ze [2°]R(z) # 0. Potom kladieme

R(z)
Ln(R(2)) := Ln ([2°1R(2)) + Ln | ——2— ).
(=) o= Ln ()RG) + L (o))

Podobne ako v pripade formélnej exponencidlnej funkcie, méZzeme aj forméalny mocninovy rad
Ln(1 4 z) povazovat za prvok okruhu Hy funkcii analytickych v bode 0; nasledujtice tvrdenie potom
mozno povazovat za zname z matematickej analyzy. Napriek tomu ale opéat uvedieme aj dokaz, ktory
sa na matematickt analyzu neodvolava.
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Tvrdenie 2.9.3. Formdina derivdcia formdlneho mocninového radu Ln(1 + 2) splita rovnost

d
— Ln(1 .
dz n(l+2) = 1+2
Dokaz. Pre vSetky n € N je
d (=D)™(n+1) 1
— Ln(1 1)[z" T Ln(1 =2 = (=1 =[" . O
2" (1 +2) = (e D I+ 2) = B g

Mozeme teraz dokazat formalne obdoby viacerych vlastnosti logaritmickej funkcie znamych z mate-
matickej analyzy. Nasledujuce tvrdenie pre jednoduchost sformulujeme len pre rady s kladngmi redlnyms
konStantnymi koeficientmi; na dokaz prvej a poslednej z uvedenych Styroch vlastnosti ale v skuto¢nosti
staci predpokladat iba nenulovost tychto koeficientov.

Tvrdenie 2.9.4. Nech R(z),S(z) € C[z] si také, ze [z°]|R(z) > 0 a [2Y]S(z) > 0. Potom:

a) £In(R() = 55
b) Ln (R(2)S(2)) = Ln (R(2)) + Ln (S(2));
¢) Ln(1/R(z)) = —Ln (R(2));
d) ak Ln (R(z)) = Ln (S(2)), tak R(z) = S(z).

Doékaz Nech [2°]R(z) =: aq, [2]S(2) =: by, R(2)/ag — 1 =: R(z) a S(z)/by — 1 =: S(2). Z definicie
radu Ln (R(z)) a vety o derivacii zlozenia radov potom

d ! - d . _ R(2) R'(2)
S In(R(2) = — (Ln(ao) +Ln (1 + R(z))) = Ln( R(z)) SETS il
_R(3)
R(z)’
¢im je dokdzané tvrdenie a). Z dokézaného dalej vyplyva
A e 1 (A RESEERESE RE) | SE)
£ 10 (RSN = gy (7500) R()S() RG) T S6)
d

d
= o Ln(R(2)) + - In(S(2)).

Pre vetky n € N tak

" L (R(2)S(2)) = —— "] L (R(2)S(2)) = —— [2"] (d Ln<R<z>>+dLn<s<z>>) -

n+1" 'dz T+l dz dz
1 ..d 1 d _
= [ I(R(E) + =[] In(S(2) =

= [z""Ln(R(2)) + [" 1] Ln(R(2)) = ["1] (Ln(R(2)) + Ln(S(2))) -

KedZe navyse aj

[2°] Ln (R(2)S(2)) = ([zO]R(z)S(z)) Ln( agbo) Ln(ag) + Ln(by) =
Ln ([2°|R(2)) + Ln ([2°]S(z)) = [z°] Ln(R(2)) + [°] Ln(S(2)) =
= [ ’] (Ln(R(2)) + Ln(S(2))).

musi nutne byt

Ln(R(2)S(z)) =Ln(R(2)) + Ln (S(2))
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a dokazané je aj tvrdenie b). Pre rad R(z) vdaka tomu $pecialne dostavame

Ln (R(2)) + Ln (Ré)) —In (R(z) . Rzz)) — Ln(1) = 0;

preto

In (Rgz)) — L (R(2)),

¢o dokazuje tvrdenie c¢). Z rovnosti Ln (R(z)) = Ln (S(z)) napokon dostavame

Ln (R(z)) — Ln (S(z)) = Ln (?8) =0,

z ¢oho nutne vyplyval R(2)/S(z) = 1. Preto R(z) = S(z) a dokazané je aj tvrdenie d). O

Vyjasnime si eSte vztah formélnej exponenciédlnej a logaritmickej funkcie, ktory je aspon v redlnom
pripade taky, aky by sme intuitivne ocakavali.

Tvrdenie 2.9.5. Nech R(z),S(z) € C[z] také, Ze [2°]R(z) € R a [2°]S(2) > 0. Potom:
a) Ln (ef®) = R(z);
b) eln(5G) = §(2).

Dékaz. Na dokaz tvrdenia a) uvazujme najprv pripad, ked [z°]R(z) = 0. Potom [2°]e®(*) = 1 a 7 vety
o derivécii zloZenia formalnych mocninovych radov dostavame

£ () s (30 1)) - S -

To znamené, Ze pre vSetky n € N je

L (F0) = [ (Lo (59))) = R = [RG);

kedze navyse [2°] Ln (ef!®)) = [z0]R(z) = 0, je nutne Ln (%)) = R(z).
Pre vieobecné [2]R(z) € R dalej

Lo (emz)) —In (6[20}R<z>eR<z>—[z01R<z>) —In (e[zow«z(z)) T In (emz)—[zom(z)) _
= [2"JR(2) + (R(2) — [z°]R(2)) = R(2),

¢im je tvrdenie a) dokazané.
Ak teraz S(z) € C[z] a [2Y]S(z) > 0, je [z°] Ln S(2) = Ln[2°]S(2) € R a 7z dokazaného vyplyva

Ln et %G = Ln S(2).
Kedze teda [20]S(z) > 0 a [20]elnS() = l°1InS(2) 5 0, 4 ¢asti d) tvrdenia 2.9.4 dostavame
e!SG) — Ln §(z),

¢o dokazuje aj tvrdenie b). O

LAk totiz pre T(z) € C[z] splhajice [2°]T(z) # 0 plati Ln(T(z)) = 0, musi byt aj
z ¢oho T'(z) = 0; preto [2"]T(z) = 0 pre vietky n € N\ {0} a z rovnosti Ln(T(z))
T(z)=1.

(T(2)) = T'(2)/T(2) = 0,

i Ln
= Ln([z°]T(2)) = 0 dostavame
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2.10 Racionalne a komplexné mocniny

Preskiimame teraz umociiovanie formalnych mocninovych radov na racionalny alebo pripadne aj kom-
plexny exponent.

Definovali sme uz celo¢iselné mocniny formalnych mocninovych radov — k raciondlnym mocnindm
nédm uz teda chyba iba jeden krok spocivajici v zavedeni k-tych odmocnin formalnych mocninovych
radov pre k € N\ {0}. Thned si mézeme vsimnut, Ze takéto odmocniny nemusia existovat pre vietky
formalne mocninové rady: tazko by sme napriklad hladali druht odmocninu zo z. Hoci obéas méze
,nahodou” existovat aj k-ta odmocnina radu s nulovym konstantnym koeficientom, typicky byva vel-
kym obmedzenim uZ iba skuto¢nost, Ze kostupen k-tej odmocniny takéhoto radu R(z) musi byt presne
(codeg R(z))/k. Vo vacsine pripadov teda k-ta odmocnina radu s nulovym konstantnym koeficien-
tom vobec neexistuje. Obmedzime sa preto na skiimanie odmocnin radov s nenulovym konStantnym
koeficientom, kde sa situéacia ukaZze byt omnoho zaujimavejSou.

Zacfnime pomocnym tvrdenim o existencii k-tych odmocnin forméalnych mocninovych radov, ktorych
konstantny koeficient je rovny jedne;j.

Tvrdenie 2.10.1. Nech R(z) € C[z] je formdlny mocninovy rad taky, Ze [z°|R(z) =1 a k € N\ {0}.
Potom existuje prdave jeden formdlny mocninovy rad S(z) € C[2] taky, ze [2°]S(2) = 1 a S*(2) = R(2).
Dokaz. Uvazujme Tubovolny formalny mocninovy rad A(z) =Y 2 an2" s ap = 1 a predpokladajme,
ze AF(z2) = Yol g bnz™. Matematickou indukciou vzhladom na k dokézeme, Ze by = 1, by = ka;

a pre vSetky prirodzené ¢islan > 1 je

by, = kay, +pn7k(a1> cee 7an—1)7

kde p,, : C" ! — C je vhodné polynomicka funkcia o n — 1 premennych nezavisla od A(z).

Pre k =1 je skuto¢ne by = a9 =1, by = a1 = ka; a b, = a, = ka, —i—pmk(al, ...,ap_1) pre vietky
prirodzené n > 1 a konstantne nulova funkciu pj, . Nech teda tvrdenie plati pre k = s a uvazujme
k = s+ 1. Z indukéného predpokladu potom

bo = [2°] (A°(2) A(2)) = ([2°)4°(2)) ([z")A(2)) = Lag = 1

1
b= [ (A*(2)A() = Y ([14°()) (1" 7A(2) ) = 1as + sara = (s + Das;
(=0
pre vietky prirodzené &isla n > 2 d'alej, takisto vd'aka indukénému predpokladu,

b= "] (A*(2)A() = 3 (z14°)) (1" 94(2)) =

n—1
= (["14%(2) (")AE) + D (194°)) ("9AG) ) + (2714%(2) (1" A()) =
=1
n—1
=an + Z (sag +pes(ar, ..., a-1)) an—g + (San + pns(a,...,an—1)) ao =
=1
n—1 n
=(s+1)a, + Z SApQy_g + Zp&s(al, ey @p_1)ap—p = (s + Day + ppsyi(ai, ..., an—1),
=1 =1
kde py s41: C" ! — C je polynomické funkcia dana pre vetky ci,...,cp—1 € C ako
n—1 n
Prsti(Cly. - ieno1) == Y scocn_e+ Y pes(cr,. .. co1)en—s.
=1 =1

Tym je hotovy dokaz indukéného kroku.
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Z dokazaného vyplyva, Ze ak pre rad R(z) = Y 2 b,2" s by = 1 vezmeme ag := 1 a pre vSetky
prirodzené n > 1 polozime
by, — pn,k(ah ceey an—l)
k )
bude rad S(z) = 300, a,z" splhat [29]S(2) = 1 a S¥(z) = R(z). Navyse je takyto rad evidentne
dany jednoznacne, pretoZe existuje prave jedna postupnost koeficientov (an)22, spliajica uvedené
vztahy. O

Ay =

UvaZzujme teraz l’}lbovol’ny formélny mocninovy rad R(z) =Y .2 anz™ taky, ze ag # 0 a l'ubovolné
k € N\{0}. Prerad R(z) = R( ) potom [2°]R(z) = 1 - existuje teda prave jeden formalny mocninovy
rad S(z) € C[z] taky, zeA[ 15(z) = 1 a §¥(z) = R(z). Pre Tubovolné by € [[aé/ ] potom formalny

mocninovy rad S(z) = byS(z) splha

SF(2) = bES*(2) = agR(2) = R(2).
Ak je navyse TA(z) Yoy 2" Tubovolny formalny mocninovy rad taky, Ze Tk(z) = AR(z), nutne
ek = ap arad T(z) = 1T( ) splna [20]T(2) = 1. Kedze T*(z ) = aOTk( ) = R(2), apR(z) = R(z)
a ag # 0, zo zédkona o krAatenl v obore integrity C[z] vyplyva T* (z) = R(z) a z jednoznacnosti radu
S(z) dostavame T'(z) = S(z). Dokézali sme teda nasledujice tvrdenie.

Tvrdenie 2.10.2. Nech R(z) € C[z] je formdlny mocninovy rad taky, Ze [z°|R(z) #0 a k € N\ {0}.
Potom existuje prave k radov S(z) € C[z] takych, Ze S*(z) = R(2). Tieto rady S(z) si dané ako

a0S(2), ..., ap_15(z),
kde o, . . ., ap_1 si prave vietky k-te komplezné odmocniny ¢isla ag a S(z) € C[z] je jednoznacne dany
formdlny mocninovy rad taky, ze [2°]S(z) =1 a S¥(2) = %R(z).
Dékaz. Vyplyva z diskusie predchadzajtucej tomuto tvrdeniu. O

Definicia 2.10.3. Nech R(z) € C[z] je formalny mocninovy rad taky, Ze [2°]R(z) # 0 a k € N\ {0}.
Lubovolny rad S(z) € C[z] taky, ze S*(z) = R(z) potom nazveme k-tou odmocninou radu R(z).

Z tvrdenia 2.10.2 vyplyva, ze kazdy formalny mocninovy rad R(z) s nenulovym konstantnym ko-
eficientom ma pre kazdé k € N\ {0} presne k roznych k-tych odmocnin.

Definicia 2.10.4. Nech R(z) € C[2] je formalny mocninovy rad taky, Ze [z'|R(z) > 0 a k € N\ {0}.
Kanonickou k-tou odmocninou radu R(z) potom nazveme rad S(z) € C[z] taky, ze S¥(2) = R(2)
a [29]S(z) > 0. Piseme pritom
S(z) =: Y/R(z) = RY*(2).
Kedze mé lubovolné kladné realne ¢islo pre vsetky & € N\ {0} prave jednu kladna realnu k-tu
odmocninu, je aj kanonické k-ta odmocnina radov s kladnym realnym konstantnym koeficientom urcena
jednoznacne. Pre k = 2 navyse piSeme aj

VR(z) := VR(z).

Pre kazdy formalny mocninovy rad R(z) € C[z] s kladnym konstantnym koeficientom, vietky p € Z
a vietky ¢ € N'\ {0} je dalej
(B7)'7 () = (RV9)" (2);

umocnenim radu na pravej strane na g-tu totiz dostavame

()"0 = (1) 0= ()Y 1= e

Rad (RY9)"(2) je teda kanonickou g-tou odmocninou radu RP(z) a je tak rovny radu (RP)Y1 (2)
na lavej strane dokazovanej rovnosti. Na zaklade tohto pozorovania teraz mozeme definovat kanonické
racionalne mocniny radov s kladnymi realnymi konstantnymi koeficientmi.
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Definicia 2.10.5. Nech R(z) € C[z] je formalny mocninovy rad taky, ze [2°]R(z) > 0, nech p € Z
a g € N\ {0}. Kanonickou p/q-tou mocninou radu R(z) potom nazveme rad

RP1(2) == (RP)V1 (2) = (Rl/q)p (2).

Tvrdenie 2.10.6. Nech R(z) € C[z] je formdiny mocninovy rad taky, Ze [z°]R(z) > 0. Pre vsetky
r € Q potom

Ln(R"(z)) =rLn(R(2)).
Dokaz. Uvazujme najprv pripad, ked r € N. Pre r = 0 potom Ln (R%(z)) = Ln(1) = 0 = 0Ln (R(2));

ak d'alej predpokladame platnost tvrdenia pre r = s € N, pre r = s+1 s pouZitim ¢asti b) tvrdenia 2.9.4
dostavame

n (Rs+1(z)) =ILn(R°(2)R(z)) = Ln (R*(z))+Ln (R(z)) = sLn (R(z))+Ln (R(z)) = (s+1) Ln (R(z)) .
Ak dalej r = p/q pre p € N aqe N\ {0}, vyplyva z dokadzaného
pLn(R(z)) = Ln (RP(2)) = Ln ((R")? (2)) = ¢Ln (R"(2)),
z ¢oho

Ln (R"(2)) = § Ln (R(2)) = rLn (R(2)).

Ak napokon r = —p/q pre p € N a ¢ € N\ {0}, vdaka ¢asti ¢) tvrdenia 2.9.4 a vyssie dokdzanému je

Ln(R"(2)) = Ln (R‘p/q(z)) —Ln ((Rp/q)1 (z)> — _In (Rp/q(z)) - _g Ln (R(2)) = rLn (R(2)),

¢im je tvrdenie dokézané. O

Dokézeme teraz formalnu obdobu Newtonovej zovSeobecnenej binomickej vety v pripade racionél-
neho exponentu; pripomenime si pritom, ze pre vietky a € C a n € N kladieme

o __aﬂ
n)  nl’

Veta 2.10.7. Nech R(z) € C[z] je formdlny mocninovy rad taky, Ze [2°]R(z) = 0. Pre vietky r € Q
potom

(14 R(2))" = i (;) R™(2).

n=0

Dokaz. Oznacme

Potom

n—O
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To znamena, ze

(14 R(2))T'(2) = R'(» in(:)m L )+R’(z)in<;>m(z):

n=1 n=1
g:lnC)R” L )+R’(z)g(n_1)<n_1>Rn ')

n=2 n=1
=rR(2)T(z)
Preto
T'(2) rR'(2)
T(z) 1+ R(z)
a teda aj , ,
7 toho vyplyva, Ze pre vSetky n € N je
[ Ln (T()) = — [Z"]i Ln (T(2)) = — 712 ]i Ln (14 R(2))" = [z""]Ln (1 + R(2))".
n+1 dz n+1 dz
KedZe je navyse [z Ln (T'(2)) = [z°] Ln (1 + R(2))" = 0, je

Ln(T(z)) =Ln(1+ R(2))",

z ¢oho podla casti d) tvrdenia 2.9.4 vyplyva dokazované rovnost

(1+R(2)" =T(z) = i <;> R"(2). O

n=0
Hoci st racionalne mocniny forméalnych mocninovych radov z hladiska kombinatorickych aplikacii
zvycajne postaéujflce mozZeme vetu 0 binomickom rozvoji hlavnych vetiev mocninov;’rch funkcii znému

formalnych mocninovych radov.

Definicia 2.10.8. Nech o € C. Rad (1 + 2)® € C[z] potom definujeme ako

o0
@
1 = "
o =3 (%)
n=0
Pre l'ubovolny formalny mocninovy rad spliajici [2°] R(z) = 0 mozeme aplikovat operaciu zloZenia
formalnych mocninovych radov, ¢im dostaneme nasledujtce vyjadrenie mocnin formalnych mocnino-
vych radov s konStantnym koeficientom rovnym jednej:

(1+ R(2))* = i <z> R"(2).

n=0
Veta 2.10.7 pritom zarucuje konzistenciu definicii mocnin takychto forméalnych mocninovych radov
s komplexnym a raciondlnym exponentom. Umochovanie na komplexny exponent teraz mdzeme defi-
novat aj pre vSetky rady s kladnym konStantnym koeficientom.
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Definicia 2.10.9. Nech R(z) € C[z] je formalny mocninovy rad taky, ze [z°]R(z) > 0 a « € C. Potom

kladieme

Ra(z) — eaLn[zo]R(z) ([Zo]‘lR(z)R) (Z)

Pri skiimani vlastnosti takto definovanych mocnin formalnych mocninovych radov sa nam zide
nasledujtce tvrdenie, ktoré je zovseobecnenim dobre znamej kombinatorickej identity.

Lema 2.10.10 (Vandermondova konvolucia). Nech «, 3 € C a n € N. Potom

g@ (n€k> - <a:5)'

Doékaz. Po rozpisani definicie zovSeobecnenych binomickych koeficientov dostavame
n " akgn— n

@ S k gn—k
S ()0 =2 fer = ()
k=0

Indukciou na n € N teraz dokazeme, Ze

n

3 (Z) akgik = (a + )2

k=0

Pren =20 je

0
Z (2)0/“5“2 1= (a+p)%.
k=0

Ak dalej tvrdenie plati pre n = s, pre n = s+ 1 je

s+1 s
SHL\ gostiok stl | astl SH+1\ kostik
Z( i >a6—a+5 —i—Z k a”p =

k=0 k=1

_ s+1 s+1 ¢ § $ Es—l—l—k:
=l 1 +Z(<k_1>+<k>>aﬁ
k=1
< § k gs—k+1 ~ (s kps—k+1 _
(32 Jatoret o 3 (F)ots

<Z>ak+163—k ( ) ok skl _
0

+
—_

>
Il

I
WE

i

|
NE

b
Il
o

Mm

O

k=0

k=
= (a+B—s)(a+B)* = (a+ B~

Z (2.10) a prave dokazaného vztahu (2.11) tak dostéavame

ki:O(Z)(n— > n'z<> kﬁ’"b"“—;(aw)”—(azﬁ),

¢o bolo treba dokézat.

£ g oo
(at8-s) (Z)a%” (a9 <Z>akﬂ

k

(2.10)

(2.11)
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Tvrdenie 2.10.11. Nech R(z) € C[z] je formdlny mocninovyj rad taky, Ze [z°|R(z) > 0 a o, B € C.
Potom

a) R*(2)RP(z) = R**P(z);
b) 1/R(z) = R—%(2).

Dékaz Uvazujme najprv pripad, ked [z°]R(z) = 1 a oznaéme R(z) := R(z) — 1. Potom

“EEO(ror-ZEE)( Jroe -
SR (0 -H - (o)

Pre vieobecné [2°]R(2) > 0 dalej z dokazaného

a B
RQ(Z)RB(Z) — eaLn[zO]R(z) <[Z0]1R(Z)R> (Z) eBLn[zo]R(z) <[ZO]1R(Z)R> (Z) _

_etBORe (1 5 R Ro+8
‘ IRE ) DT

Tym je dokézané tvrdenie a), z ktorého tiez vyplyva
R*(2)R™%(2) = R*%(2) = R%(2) = 1.
Nutne teda

1
R (2)

=R"%(2)
a dokdzané je aj tvrdenie b). O

Tvrdenie 2.10.12. Nech R(z) € C[z] je formdlny mocninovy rad taky, Ze [:°|R(z) = 1 a a € C.
Potom

Ln(R*(2)) = aLn R(z).

Doékaz Oznacme R(z) := R(z) — 1. Potom

2] Ln (R%(2)) = [ L (1 + Fo(2)

—
Q
I
o

Stac¢i teda dokazat 1 1
~In (1 + R(z)) ~ —aln (1 + R(z)) , (2.12)

lebo v takom pripade pre vSetky n € N bude

(2] Ln (R*(2) = — i : [z”]% Ln (1 + R(z))a - [2"]~aLn (1 + R(z)) = [""aLnR(2),
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z ¢oho vyplynie dokazovana rovnost Ln (R%(z)) = a Ln R(z). Dokazme teda rovnost (2.12):

% Lo (1+R(:))" = <;Z (1+ R(z))a> m _

/ - (05_1)”; n— 1 B
_aR(z)nz::l< T R 1(z)> (1+R(z)>a_
YIS WA P 1 B
_aR(z);)< R (z)> (1+R(z))“_
(1+ A ))a_1
R i —aA'z#zian R(2)) .
~a (Z)(HR(Z))“_ R()1+R(z) —al <1+R( )) 0

Tvrdenie 2.10.13. Nech R(z) € C[z] je formdlny mocninovy rad taky, Ze [z°]|R(z) > 0 a o € R.
Potom

Ln(R*(2)) = aLn R(z).

Doékaz. 7 tvrdenia 2.10.12 vyplyva

e = i (0 (L) ) <t () () -

=aLn ([z%R(z)) + aLn <[z§bg()z)> = aln(R(2)). O

Tvrdenie 2.10.14. Nech R(z) € C[Z] je formdlny mocninovy rad taky, Ze [2°JR(z) > 0 a o € R.
Potom
Ra(z) — eaLn(R(z)).
Dokaz. Vdaka tvrdeniam 2.10.13 a 2.9.5 je
Ln (R%(2)) = aLn (R(2)) = Ln (ea Ln(R(Z”) .

Dokazovana rovnost potom vyplyva z ¢asti d) tvrdenia 2.9.4. Ul

2.11 Nekonecné suciny

Na zaver nasho skimania operacii na obore integrity formélnych mocninovych radov C[z] sa este
v kratkosti pristavme pri nekoneénych stu¢inoch. Podobne ako v pripade nekone¢nych sti¢tov nebudi
definované vSetky nekonecné sudiny, ale budeme musiet klast vhodné obmedzujice podmienky na pri-
slusny systém formélnych mocninovych radov.
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Definicia 2.11.1. Nech (Ri(z) | k € I) je systém formalnych mocninovych radov taky, ze
(i) pre vietky k € I je [2°]Rip(2) =1 a
(73) pre vSetky n € N\ {0} je mnozina I(n) = {k € I | [2"|Ri(z) # 0} konec¢na.

Siucinom systému (Rp(z) | k € I) potom nazveme formalny mocninovy rad

()

kel kel

2] <H Rk) () =
kel
a pre vietky n € N'\ {0} je

2" (HRk) (2) = Z > ﬁz]t | Ry, (=

kel klef(jl) =1
J1sme JmGN\{ }
Jit+...+jm=n

taky, ze

km€1(jm)

Vsetky stcty a siciny vystupujtce v definicii koeficientov radu [],.; Rx(2) st pritom evidentne
konecné.



Kapitola 3

Kombinatorické triedy a symbolicka
metoda

Ako hlavny objekt skimania enumerativnej kombinatoriky sme v predchadzajacej kapitole identifiko-
vali kombinatorické triedy a ich wvytvdrajice funkcie — forméalne mocninové rady, ktorych koeficienty
tvoria enumeracniu postupnost prislusnej kombinatorickej triedy. Teraz sa ku kombinatorickym trie-
dam vratime a opiSeme techniky umoznujuce prejst od $pecifikdcie kombinatorickej triedy — &iZe jej
vyjadrenia pomocou uréitych elementérnych kombinatorickych tried a Standardnych operacii na nich
— k vytvdrajicej funkcii tejto kombinatorickej triedy.

Teoria, ktorej zaklady v tejto kapitole preskimame, ma mnozZstvo rozmanitych historickych vycho-
disk. V ucelenej podobe ju po prvy raz opisali P. Flajolet a R. Sedgewick v prvej ¢asti ich knihy [9].
Z knihy [9] vychadza aj vacsia Cast tejto kapitoly.

3.1 Oznacené a neoznacené objekty

V enumerativnej kombinatorike ¢asto rozlisujeme medzi enumeraciou neoznaceniych a oznacenych ob-
jektov. Tento rozdiel mozZzno asi najlepsie ilustrovat na tlohach o enumeracii grafov: v neoznac¢enom
grafe sa kazdé dva vrcholy a priori chapu ako identické, v oznacenom grafe ma naopak kazdy vrchol svoj
jednoznaény identifikdtor (¢islo resp. nézov), ktory ho odlisuje od ostatnych. Existuje tak napriklad
jeding strom o troch neoznacengch vrcholoch, ktory je zndzorneny na obrazku 3.1. Na obrazku 3.2 su
naopak znazornené vsetky tri stromy o troch oznacengch vrcholoch, kde mnozina vrcholov je {1,2, 3}.

o 0—0

Obr. 3.1: Jediny strom o troch neoznacenych vrcholoch.

Obr. 3.2: VSetky tri stromy o troch oznacenych vrcholoch 1,2, 3.

Vo vseobecnosti mozno povedat, ze neoznac¢ené kombinatorické objekty st vybudované z atomic-
kych objektov niekolkych druhov, pricom atomické objekty jedného druhu st samé o sebe vzajomne
nerozlisitelné — napriklad neoznaceny graf je vybudovany z niekolkych vzajomne a priori nerozlisi-
telnych vrcholov. Naopak oznacené kombinatorické objekty st vybudované z atomickych objektov,
ktorym st navysSe ,,zvonku* priradené ich identifikitory z nejakej pevne danej mnoziny.
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Rozdiel medzi neoznafenym a oznacenym kombinatorickym objektom je ¢asto viac metodicky, nez
vecny — uvidime napriklad, Ze slova nad danou abecedou mozno rovnako dobre chépat ako neoznacené
aj ako oznacené objekty. Napriek tomu sa ale ukazuje, Ze k enumerécii neoznacenych a oznacenych
objektov je Ziadtce pristupovat podstatne odlisnym spdésobom — v ¢om presne tento rozdiel spociva,
uvidime v nasledujtcich niekolkych oddieloch.

3.2 Kombinatorické triedy neoznacenych objektov

Kombinatorické triedy a elementirne operécie na nich v podobe, v akej sme ich definovali v oddiele 2.1,
budeme obyc¢ajne pouzivat pri enumeracii neoznacengch objektov — v tejto suvislosti preto tiez hovorime
o kombinatorickiyjch triedach neoznacengjch objektov. Pripomenme si definiciu kombinatorickej triedy
a jej obycajnej vytvarajucej funkcie.

Definicia 3.2.1. Kombinatorickd trieda je dvojica C = (C,|-]), kde C je mnozina a |-|: C — N je
zobrazenie také, Ze pre vietky n € N je mnozina C,, := {z € C | |x| = n} konec¢na.

Definicia 3.2.2. Enumeracnou postupnostou kombinatorickej triedy (C, |-|) nazyvame nekone¢nu po-
stupnost prirodzenych ¢isel (¢, c1, ¢, .. .), kde pre vSetky n € N je ¢, = |Cy.

Definicia 3.2.3. Obycajnou vytvdrajicou funkciou kombinatorickej triedy (C,|-|) s enumeracnou po-
stupnostou (¢y,)22, nazyvame formalny mocninovy rad
o0
C(z) = chz” € N[z] C C[#].
n=0
Obycajna vytvarajtuca funkcia kombinatorickej triedy (C, |-|) je teda aj oby¢ajnou vytvarajticou fun-
kciou jej enumerac¢nej postupnosti. Pripomenme si tiez, ze v principe neexistuje Ziaden rozdiel medzi
enumeracnou postupnostou a obycajnou vytvdrajicou funkciou kombinatorickej triedy — dévod pre po-
uzitie odlisnej terminolégie spociva v odlisnej algebre uvaZovanej na vytvarajacich funkcidch, ktoréa
lepsie koresponduje s najdolezitejsimi operiaciami na kombinatorickych triedach samotnych.
Kombinatorické triedy budeme $tandardne oznacovat velkymi kaligrafickymi pismenami, napri-
klad A, B,C, ... Prislugné obycajné vytvarajtuce funkcie potom typicky oznacujeme A(z), B(z), C(2),. ..
a ich postupnosti koeficientov — ¢ize enumeracné postupnosti uvazovanych tried — zvycajne oznacujeme
(an)2107(bn)2207(Cn)210a~--
Nasledujtce jednoduché tvrdenie hovori o alternativnom vyjadreni obyc¢ajnej vytvarajicej funkcie
kombinatorickej triedy — niekedy sa hovori o takzvanom jej kombinatorickom tvare.

Tvrdenie 3.2.4. Nech C = (C, |-|) je kombinatorickd trieda a C(z) je jej obycajnd vytvdrajica funkcia.

Potom
C(z) = Z zlel
zeC
kde siucet je cez lokdlne konecny systém radov.
Doékaz. Pre vietkyn €e Nax € C je [z”]z'x‘ = 0 prave vtedy, ked x € C,. KedZe je mnozina C,, kone¢na
pre vSetky n € N, je uvazovany systém radov lokalne koneény. Pre vSetky n € N navySe
Y = S = SR = 3 1= el = IC)
zeC x€Cn z€Cn x€Cn

kedze moze byt n € N Iubovolné, je rovnost radov dokazané. O

Definicia 3.2.5. Kombinatorické triedy A, B sa izomorfné, ak pre vietky n € N je |A,| = |B,].
V takom pripade piseme A = B a izomorfizmom kombinatorickych tried A, B nazyvame bijektivne
zobrazenie p: A — B také, Ze pre vietky n € N je ¢(A,) = By,.

Kombinatorické triedy A, B st teda izomorfné prave vtedy, ked sa rovnaji ich oby¢ajné vytvarajtuce
funkcie. Izomorfné triedy Casto stotoziiujeme a namiesto A = B piSeme A = B.



Kombinatorické triedy a symbolickA metoda 41

3.3 Symbolickd metéda pre neoznacené objekty

Polozime teraz zéklady takzvanej symbolickej metddy pre neoznacené objekty — pdjde o systematicky
pristup k $pecifikacii kombinatorickych tried pomocou jednoduchych zékladnych tried a Standardnych
operacii na kombinatorickych triedach, ktory je v . mnohom podobny opisu formalnych jazykov po-
mocou gramatik. Vyznamnou &rtou tohto $pecifika¢ného mechanizmu bude moznost , mechanického
prekladu® $pecifikicie kombinatorickej triedy na jej oby¢ajna vytvarajiucu funkciu. Aby bol tento ciel
splnitelny, uvazované operacie na kombinatorickych triedach nemdézu byt tuplne ubovolné, ale musi
byt mozné definovat k nim prislichajice operacie na vytvarajucich funkciach — mézu teda zavisiet
iba od enumeracnych postupnosti kombinatorickych tried, ktoré su jej argumentmi. Takéto operécie
nazyvame pripustnymi konstrukciams.

Definicia 3.3.1. Nech m € N a ® je ¢iastotné m-arne zobrazenie, ktoré m-ticiam kombinatorickych
tried BY, ..., Bm) priraduje kombinatorické triedy

Az@(ﬁQ”WBWO.

Hovorime, ze ® je pripustnd konstrukcia, ak pre kombinatorické triedy BY, ... Bm c®) . cm)
splhajace B®) = c®) pre k=1,... ., mje ® (B(l), . ,B(m)) definované prave vtedy, ked je definované
P (C(l), - ,C(m)), pricom v takom pripade je

@@m,wgmgg@@@,wdm)

Ku kazdej pripustnej konstrukeii tak prislicha ¢iastoéné zobrazenie ¢: N[z]™ — N[z] takeé, ze
pre Tubovolné kombinatorické triedy B, ..., B(™) s definovanym vystupom ¢iasto¢ného zobrazenia ®
a s obyCajnymi vytvarajucimi funkciami By (z),..., Bn(2) je

A(Z) = gb(Bl(Z)’ s aBm(z))

oby¢ajnou vytvarajucou funkciou kombinatorickej triedy A = ® (B(l), e ,B(m)). V nasledujtcich par-
tiach tohto oddielu budeme budovat ,slovnik* medzi Standardnymi pripustnymi konstrukciami &
na kombinatorickych triedach a prislusnymi operdciami ¢ na ich oby¢ajnych vytvarajucich funkciéch.

Neutralne a atomické triedy. Zéikladnymi stavebnymi kamenmi konstrukcii kombinatorickych
tried pomocou symbolickej metédy st Specidlne jednoprvkové kombinatorické triedy — v pripade, ze
je jediny prvok takejto kombinatorickej triedy velkosti 0, hovorime o neutrdlnej triede; triedu s jedinym
prvkom velkosti 1 naopak nazyvame atomickou.

Neutrdlnou triedou teda rozumieme kombinatoricku triedu € = (&, |-|) taka, ze € = {1¢} a|lg| = 0.
Neutralne triedy typicky oznacujeme £ s pripadnym indexom urcujtcim ich jediny prvok lg — piSeme
teda napriklad & = {e}, &g = {J} a podobne.

Atomickou triedou nazyvame kombinatoricku triedu Z = (Z,|-|) taka, 7e Z = {2z} a |zz| = 1.
Atomické triedy oby¢ajne oznacujeme Z, ¢asto s indexom urcujicim ich jediny prvok zz — napriklad
Z, ={a}, Ze = {o}, Z, = {0}, atd.

Oby¢ajnou vytvarajicou funkciou kazdej neutralnej triedy je evidentne 1 a obycCajnou vytvarajacou
funkciou kazdej atomickej triedy je z.

Disjunktné zjednotenie. Opericiu disjunktného zjednotenia alebo kombinatorického siuctu dvoch
kombinatorickych tried sme uz zaviedli v definicii 2.1.3 — disjunktngm zjednotenim kombinatorickych
tried C = (C,|-|c) a D = (D,|-|p) nazyvame kombinatoricka triedu C + D = (C + D, |-|) taka, ze
pre vietky x € C je |(x,1)| = |z|c a pre vSetky y € D je |(y,2)| = |y|p.
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Videli sme tiez, Ze oby¢ajnou vytvarajacou funkciou disjunktného zjednotenia dvoch kombinato-
rickych tried je sucet obyCajnych vytvarajicich funkcii tychto tried — toto pozorovanie teraz vyslovime
v podobe vety, ktorit mozno povazovat za prvy zaznam v ,slovniku®“ pripustnych konstrukcii na kom-
binatorickych triedach a k nim prislichajicich operécii na oby¢ajnych vytvarajacich funkciach.

Veta 3.3.2. Disjunktné zjednotenie je pripustnou konstrukciou na kombinatorickijch triedach. Ak si
navySe C, D kombinatorické triedy s obycajnymi vytvaragicimi funkciami C(z) resp. D(z), je obycajnou
vytvdragicou funkciou kombinatorickej triedy C + D formdlny mocninovy rad

C(z) + D(z).

Dékaz. Vyplyva bezprostredne z vety 2.1.7. OJ

Karteziansky stcin. Dalsou nam uz dobre znamou operaciou na kombinatorickych triedach je ich
kartezidnsky siucin, ktory sme zaviedli v definicii 2.1.5 — bola to prave tato operacia, ktora nas doviedla
k potrebe zavedenia pojmu obycCajnej vytvarajucej funkcie. Kartezidnskym sucinom kombinatorickych
tried C = (C,|-|c) a D = (D, |-|p) nazyvame kombinatoricka triedu C x D = (C x D,|-|) taka, ze
pre vietky x € C ay € D je |(z,y)| = |z|c + |y|p-

Nasledujuca veta je opéat iba pripomenutim dolezitého pozorovania u¢ineného uz v predchédzajuce;j
kapitole.

Veta 3.3.3. Kartezidnsky sucin je pripustnou konstrukciou na kombinatorickych triedach. Ak si na-
vySe C, D kombinatorické triedy s obycajnymi vytvdrajicimi funkciami C(z) resp. D(z), je obycajnou
vytvdragicou funkciou kombinatorickej triedy C x D formdlny mocninovyj rad

C(z)-D(z).

Dékaz. Vyplyva bezprostredne z vety 2.1.7. O

Operacie + a x na kombinatorickych triedach chapeme ako asociativne, ¢o je nie je prekvapivé
v kontexte stotozilovania izomorfnych kombinatorickych tried: kedZe pre T'ubovolné kombinatorické
triedy A, B, C je zrejme
(A+B)+C= A+ (B+C)

(AxB)xC=2Ax (BxC),

piSeme obvykle

A+B)+C=A+(B+C)=:A+B+C

AXB)xC=Ax (BxC)=:AxBxC.

Je dalej zrejmé, Ze neutralne triedy — resp. po stotoZneni izomorfnych kombinatorickych tried mo-
7eme hovorit o jedinej neutralnej triede — zohravaju tlohu neutralneho prvku vzhl'adom na operaciu
kartezidnskeho sucinu: pre T'ubovolnti kombinatorickt triedu C a neutralnu triedu £ je

CxExEXCC,

pricom casto piSeme aj

CxE=ExC=C.



Kombinatorické triedy a symbolickA metoda 43

Mocniny. Kedze karteziansky suc¢in kombinatorickych tried bezne chapeme ako asociativnu opera-
ciu, mozeme pre vSetky k € N definovat k-tu mocninu kombinatorickej triedy C beznym induktivnym
sposobom: CY definujeme ako neutralnu triedu &€ a pre vietky k € N kladieme C*+1 = CF x C.

Kombinatoricka trieda C* pozostava zo vetkych postupnosti diZky k tvorenych prvkami kombi-
natorickej triedy C, pricom pod velkostou postupnosti rozumieme sucet velkosti vSetkych jej ¢lenov.
Pre k € N a kombinatoricki triedu C preto piSeme aj

SEQ(C) := C*.

Veta 3.3.4. Pre vsetky k € N je k-ta mocnina pripustnou konstrukciou na kombinatorickych triedach.
Ak je navyse C kombinatorickd trieda s obycajnou vytvdragicou funkciou C(z), je obycajnou vytvdraji-
cou funkciou kombinatorickej triedy C* = SEQL(C) formdlny mocninovy rad

C*(2).

Dékaz. Indukciou vzhladom na k. Pre k = 0 je C° = &, pricom oby&ajnou vytvarajicou funkciou
triedy € je 1 = CY(2). Ak tvrdenie plati pre k = s, pre k = s + 1 je C*T! = C* x C; oby¢ajnou
vytvéarajicou funkciou triedy C je pritom C(z) a z indukéného predpokladu vyplyva, Ze oby¢ajnou
vytvarajucou funkciou triedy C® je C*¥(z). Vdaka vete 3.3.3 je teda oby¢ajna vytvarajiaca funkcia

triedy C*T! = C% x C dand ako C*(2)C(z) = C*T1(2). O

Trieda kone¢nych postupnosti. Nech C je kombinatorické trieda taka, ze Co = 0. Triedu konecnijch
postupnosti objektov triedy C potom definujeme ako

SEQ(C) :=5+C+(C><C)+(C><C><C)+,,,:ZC’€7
k=0

kde £ je neutrdlna trieda. Tato kombinatorickd trieda (SEQ(C), |-|seq(c)) teda pozostéva zo vietkych
postupnosti (z1,...,x), kde k € Nazy,...,z; € C, pricom velkost kazdej postupnosti je dana sa¢tom
vel'kosti jej ¢lenov. KedZe je Cy = 0, moze pre n € N byt

[(@15 -+, Tk) |spqey =1
iba ak k <naprej=1,...,k jex; prvkom kone¢nej mnoziny C; U...UC,. Trieda SEQ(C) tak naozaj

obsahuje pre vSetky n € N iba kone¢ne vela objektov velkosti n — je teda dobre definovana.

Veta 3.3.5. Prechod k triede konecngch postupnosti je pripustnou konstrukciou na kombinatorickijch
triedach. Ak je navySe C kombinatorickd trieda s Co = 0 a s obycajnou vytvdrajicou funkciou C(z),
je obycajnou vytvdragicou funkciou kombinatorickej triedy SEQ(C) formdlny mocninovy rad

1
1-C(2)

Dékaz. Kedze Cy = 0, je [2°]C(z) = 0 a rad 1/(1 — C(2)) je dobre definovany. Pre vietky n € N je

teraz
(SEa(e)), ] = - |(¢*) | = YomIct ),
k=0 k=0

kde obidva stcty st v skutoénosti koneéné. Vdaka tvrdeniu 2.7.3 je systém radov (C*(z) | k € N)
lokélne koneény, takze

(SEQ(C)),| = S ["ICk(2) = ["] Y CF(z) = [Z"h_lc(z)'
k=0 k=0

Cislo n € N je Tubovolné — rad 1 /(1 = C(z)) teda musi byt oby¢ajnou vytvarajicou funkciou kombi-
natorickej triedy SEQ(C). O



44 3.3 Symbolickd metéda pre neoznacené objekty

Pre vietky k € N a Tubovolnt kombinatoricku triedu C splhajacu Co = () dalej kladieme
SEQ>(C) == C* x SEQ(C);

ide teda o triedu vietkych postupnosti dlzky aspoii k pozostavajicich z objektov triedy C, pri¢om
velkost postupnosti je dana suc¢tom velkosti jej €lenov. Z dokézaného vyplyva, Ze pre kombinatorickt
triedu C s Cy = ) a s oby¢ajnou vytvarajucou funkciou C(z) je obyfajna vytvarajaca funkcia kombi-
natorickej triedy SEQ>y dand ako C*(z)/(1 — C(z)).

Trieda koneénych podmnozin. Nech C = (C,|:|) je kombinatorickd trieda. Triedou konecénych
podmnozin kombinatorickej triedy C nazveme kombinatoricki triedu PSET(C) = (PSET(C), |-|pser(c)),

kde
psncr = (§) (6 oS- 0 ()

je mnozina vSetkych konecnych podmnozin C a pre v8etky kone¢né mnoziny S C C je

IS|pser(c) = Z|!E|;

€S

vel'kost kone¢nej podmnoziny C je teda dana suc¢tom velkosti jej prvkov.

Obycajni vytvarajacu funkciu kombinatorickej triedy PSET(C) identifikujeme najprv za predpo-
kladu, ze Cop = 0 — tento pripad je zdaleka najvyznamnejsi, pricom P. Flajolet a R. Sedgewick [9]
dokonca kombinatoricku triedu PSET(C) definuju iba za uvedeného predpokladu.

Veta 3.3.6. Prechod k triede konecénijch podmnoZin kombinatorickej triedy bez prvkov nulovej vel-
kosti je pripustnou konstrukciou na kombinatorickych triedach. Ak je navyse C kombinatorickd trieda
s Co =0, s obycagnou vytvdragicou funkciou C(z) a s enumeracnou postupnostou (¢,)52 ), je obycajnou
vytvdragicou funkciou kombinatorickej triedy PSET(C) formdlny mocninovy rad

0 X (_1\k—-1
H (142" =exp (Z (1]{):0(2"“)) .
n=1

k=1

Doékaz. Systém radov ((1+ 2")° | n € N'\ {0}) zrejme splha podmienky definicie 2.11.1 — nekoneény
sicin zo znenia vety je teda dobre definovany. Rovnako tak je dobre definovany aj nekonecény sicet
zo znenia vety, pretoZe systém sumovanych radov je evidentne lokdlne kone¢ny.

Vetu dokazeme najprv v pripade, ked je nosnd mnoZina C kombinatorickej triedy C = (C,||)
koneéné. V takom pripade je zrejme!

PSET(C) = [] (£ + {=}),

zeC

kde €& = {e} je neutralna trieda a {z} je skratenym zapisom pre jednoprvkovi triedu obsahujicu ob-
jekt = velkosti |z|. Neutralna trieda & ma oby¢ajna vytvarajicu funkciu 1 a z tvrdenia 3.2.4 vyplyva,
Ze kombinatoricka trieda {z} ma vytvarajicu funkciu 217l Vdaka znalosti vytvarajacich funkeii zodpo-
vedajucich disjunktnému zjednoteniu a kartezidnskemu sucinu kombinatorickych tried teda zistujeme,
ze vytvarajuca funkcia P(z) kombinatorickej triedy PSET(C) je dana ako

Piz) =] (1 + z'f'f') - ﬁ (1+ 2"y,

zeC n=1

kde sti¢in napravo je v skuto¢nosti koneényj, pretoze pre kone¢ni kombinatoricki triedu C moze existovat
iba kone¢ne vela roznych n € N takych, Ze ¢, # 0.

1Zapis pre koneény karteziansky saéin na pravej mozeme pouzit vdaka konvencii stotoziiovania izomorfnych tried —
na poradi nasobenia kombinatorickych tried v takom pripade nezalezi.
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Ked7e evidentne [z']P(z) = 1 > 0, vdaka tvrdeniu 2.9.5, tvrdeniu 2.9.4 a tvrdeniu 2.10.6 je

ad > © _1)k-1
P(z) = en(P(2) — exp (Z e Im (1 + z”)) = exp (Z cn ; (1]<>;an> _

n=1 n=1

0 qyk—1 X 0 1yk—1
= exp (Z (1]{): cnz"k> = exp (Z (1]3;6'(,2]“)) :

k=1 n=1 k=1

Zostava vetu dokazat v pripade, ked je kombinatorickd trieda C nekone¢na. Pre vsetky n € N
oznacme
n
C<p = ZCj
Jj=0

kombinatoricki triedu pozostavajicu z objektov triedy C velkosti neprevySujicej n — tato trieda musi
evidentne byt kone¢na. Pre vsetky n € N potom zrejme

(PSET(C)),, = (PSET(C<p)),, s
pretoZze mmnozina prvkov so siu¢tom velkosti n nemoZze obsahovat ziaden prvok velkosti vacsej, nez n.

Ak je teda P(z) oby¢ajna vytvarajuca funkcia kombinatorickej triedy PSET(C) a pre vSetky n € N
oznacuje P<y(z) oby€ajni vytvarajicu funkciu triedy PSET(C<,,), pre vetky n € N je

n n n S (_1)k_1 k
[2"]P(2) = [z"|P<n(2) = [2"] exp (Z . Cxnlz )>7

k=1
kde
n
C<n(z) = chzj
=0
je obyc¢ajnéa vytvarajica funkcia kone¢nej kombinatorickej triedy C<,. KedZze ale pre j = 0,...,n je

[29]C<p(2) = [27]C(2) = ¢;, musi v skutoénosti byt

0 qyk—1 o qyk—1
[2"]|P(z) = [z"] exp (Z (1]3:C§n(zk)> = [z"]exp (Z (1]3:0(2]“)) , (3.1)

k=1 k=1
pretoZe koeficienty ¢; = [27]C(z) radu C(z) pre j > n evidentne nemézu ovplyvnit koeficient pri 2"
v rade .
o o o0
LRI (=DMt ok
= (E ) - S (B e

na pravej strane rovnosti (3.1). Z rovnosti [2"|P(z) = [2"]|P<p(z) tiez pre vetky n € N vyplyva

2"P(2) = [ P<a(2) = [ TT (14 2°) " = 7 T (1+2) (3.2)
=1 =1
Z platnosti rovnosti (3.1) a (3.2) pre v8etky n € N tak dostavame dokazované vztahy

- n\c = (_1)]{71 k
P(z):H(l—i—z)":exp(Z . C’(z)). O

n=1 k=1
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S pomocou vety 3.3.6 teraz lahko identifikujeme aj oby¢ajnt vytvarajicu funkciu kombinatorickej
triedy PSET(C), kde Cy # 0.

Veta 3.3.7. Prechod k triede konecnijch podmnozZin je pripustnou konstrukciou na kombinatorickijch
triedach. Ak je navyse C kombinatorickd trieda s obycajnou vytvdrajicou funkciou C(z) a s enumeracnou
postupnostou ()52, je obycagnou vytvdrajicou funkciou kombinatorickej triedy PSET(C) formdlny
mocninovy rad

20 ﬁ (14 27 = 2B exp (i (_1;_1 (czh) - [20]0(2))> .

n=1 k=1

Dékaz. Nech C>1 = C\ Cp je kombinatoricka trieda obsahujtica objekty nenulovej velkosti z kombi-
natorickej triedy C; za kombinatoricki triedu navySe mdZzeme povazovat aj podmnozinu Cy triedy C.
Potom zrejme PSET(C) = PSET(Cy) x PSET(C>1), pricom vytvarajicou funkciou triedy PSET(Cp) je
200 = 9l2"1C(2) 4 vytvarajicou funkciou triedy PSET(C>1) je

[e.9]

00 k-1
(14 2" = exp <Z (113 (C(zk) - [zO]C(z))> : O

n=1 k=1

Trieda koneénych multimnoZin. Nech C je kombinatoricka trieda taka, ze Co = (0. Triedu konec-
nych multimnoZin objektov z kombinatorickej triedy C ziskame z triedy (SEQ(C), ||sgq(c)) stotoZznenim
tych koneénych postupnosti, ktoré obsahuju rovnaky pocet vyskytov kazdého objektu z € C. Na SEQ(C)
teda definujeme relaciu ekvivalencie = taku, ze pre (z1,...,z), (y1,...,y¢) € SEQ(C) je

(xla'-'vwk)z(ylv--'ayf)

prave vtedy, ked k = £ a stiCasne existuje permutacia o: [k] — [k] takd, ze pre j = 1,..., kje z; = y(j)-
Je zrejmé, ze pre takuto dvojicu postupnosti musi vzdy byt

(@1, @) lswaiey = 115 - -5 ¥ seq(e) -

Kombinatoricku triedu MSET(C) = (MSET(C), |+|), pozostavajicu zo vietkych koneénych multimnozin
objektov triedy C, tak moZzeme korektne definovat ako

MSET(C) := SEQ(C) /=,
kde pre kazdu postupnost (x1,...,zx) € SEQ(C) je velkost triedy [(x1,...,2zk)]= € MSET(C) dané ako
(1, ze)l=] = (21, %) |sag(e) -
Veta 3.3.8. Prechod k triede konecnijch multimnoZin je pripustnou konstrukciou na kombinatorickijch
triedach. Ak je navyse C kombinatorickd trieda s Co = (), s obycajnou vytvdrajicou funkciou C(z)

a s enumeracnou postupnostou (cp)o2, je obycajnou vytvdrajicou funkciou kombinatorickej triedy
MSET(C) formdlny mocninovy rad

r 71 = eX N l Zk
== p@k(’( >)'

Dékaz. Lahko vidiet, Ze systém radov ((1 — 2")~% | n € N\ {0}) spliia podmienky definicie 2.11.1
a systém radov ((1/k)C(2¥) | k € N) je lokalne koneény — znenie vety teda dava zmysel.
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Vetu opét dokdzeme najprv v pripade, ked je kombinatorické trieda C = (C, |-|) kone¢né. V takom
pripade je
MSeT(C) = [ Sea({z}), (3.3)
zeC
kde {z} je skrateny zapis pre kombinatoricka triedu obsahujicu jediny prvok z velkosti |z|. Ak je
totiz C = {z1,..., 2y}, mozno lubovolni multimnozinu objektov z C reprezentovat aj ako koneéni
postupnost postupnosti

(«7717';7371)7(«T27-;)‘7}2)u-~7(37m7"~7xm) )
k1 ko km
kde k1,...,kn € N st — vo v8eobecnosti aj nulové — pocty vyskytov objektov x1,...,z,, € C v danej

multimnoZine.
Zo vztahu (3.3) dostavame prvy z dokazovanych vzorcov pre oby¢ajni vytvarajucu funkciu M (z)
triedy MSET(C):

[e.9]

1 1
M(Z)_ml;([jl—zlx _J;[l(l_zn)cna

kde aj druhy zo sacinov je koneény — existuje totiz iba konecne vela n € N\ {0} takych, Ze ¢, # 0.
Kedze evidentne [z°]M(z) = 1 > 0, z tvrdenia 2.9.5, tvrdenia 2.9.4 a tvrdenia 2.10.6 dostavame

M(z) = Ln(M(2)) _ exp (i —cp, Ln(1 — 2" ) = exp <Z —cp, Z k nk) _

n=1

oo
1 k 1 k
- (chz ) e (Zkzcnzn ) - (ka >> .
n=1 k=1 n=1 k=1
Doékaz pre nekone¢né kombinatorické triedy je podobny ako v pripade tried koneé¢nych podmnozin:
Tahko vidiet, Ze pre vietky n € N je
(MSET(C)),, = (MSET(C<n)),,

kde C<y, je konetna trieda C<) := E?:o C;. Ak je teda M(z) vytvarajica funkcia triedy MSET(C)
a pre vietky n € N je M<,(z) vytvarajica funkcia triedy MSET(C<,,), musi pre vietky n € N byt

1
[z"]M(2) = ["]M<n(2) = ["] exp <Z C<n(zk)> )
k=1 k
kde C<,(2) je oby¢ajna vytvarajtca funkcia triedy C<,(z). Pre j =0,...,n je ale

[2/]C<n(2) = [¢']C(2) = ¢,

takZze v skutocnosti musi byt aj

[zn]M(z) = [z”] exp <Z ;an(zk)> = [z"] exp (Z iC(zk)> 7
k=1
C

k
pretoze koeficienty ¢; = [29]C(z) radu C(2) pre j > n nemdzu ovplyvnit koeficient pri 2" v rade

1
o (3 1ee) =3 (ko)
k=1 n= O
V doésledku rovnosti [2"]M(2) = [2"]|M<,(z) tiez dostavame

n o0 1
("M (2) = [z"|M<n(2) = " [ 57— 1—z€ _[zn]Hm. O
Z:l =1
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Punktacia. Pod punktdciou kombinatorickej triedy C rozumieme triedu ©C pozostavajicu z objektov
triedy C, v ktorych je navyse ,,jeden spomedzi atémov urceny ako vyznacény“. Prikladom méze byt trieda
vSetkych slov nad abecedou ¥ = {a, b} s prave jednym oznacenym pismenom, ktoru ziskame punktéciou
z triedy vSetkych slov nad abecedou ¥ = {a, b}. Formalne definujeme punktdciu kombinatorickej triedy
(C,|-|c) ako triedu (©C, |-|), kde

ocC = ch X {€1,...,en}
n=0

aprevietky ne N,z €Cpak=1,...,nje|(x,e)] == |zc.

Veta 3.3.9. Punktdcia je pripustnou konstrukciou na kombinatorickych triedach. Ak je navyse C kom-
binatorickd tried s obycajnou vytvdrajicou funkciou C(2), je obycajnou vytvdrajicou funkciou kombi-
natorickej triedy OC formdlny mocninovy rad

Doékaz. Pre n =0 je
ny d
(60), | = 0= [2")-C(2)

a pre vietky n € N\ {0} je

(00),] = nCal = n[z"0(2) = n_["1C(2) = [ 10'(2) = [ = C2).

Oby¢ajnou vytvarajicou funkciou kombinatorickej triedy OC teda musi byt zC’(z). O

Substitticia. Pod substiticiou kombinatorickej triedy D splhajicej Dy = 0 do triedy C — resp.
pod zloZenim kombinatorickych tried C a D — rozumieme kombinatoricki triedu C o D = C[D] pozos-
tavajucu z objektov triedy C, v ktorych je ,kazdy atom nahradeny objektom triedy D*“. Ak su teda
(C,|lc) a (D,]||p) kombinatorické triedy také, ze Dy = (), nazveme ich zloZenim — alebo substiticiou
triedy D do triedy C — kombinatoricku triedu (C o D, |-|) = (C[D], |-|), kde

CoD=C[D ZC X SEQ, (D)
a pre vietky n € N, z € Cy, a (y1,...,yn) € SEQ,(D) je

(@ s 9] = 10129l p) = Z\ykwp.

Veta 3.3.10. Substiticia je pripustnou konstrukciou na kombinatorickiyjch triedach. Ak je navyse C
kombinatorickd trieda s obycajnou vytvdrajicou funkciou C(z) a D je kombinatorickd trieda s Dy = ()
a s obycajnou vytvdrajicou funkciou D(z), je obycajnou vytvdrajicou funkciou kombinatorickej triedy
C o D = C[D] formdlny mocninovy rad

(CoD)(z) = C(D(2)).

Dékaz. Nech (¢,)22 je postupnost komplexnych ¢isel taka, ze

C(z) = Z ez

n=0
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Vdaka tvrdeniu 3.2.4 je potom vytvarajucou funkciou kombinatorickej triedy C o D rad

S sl = i 3 3 )| i 3 3 N0l sgan (o) —

ueCoD n=02€Cn (Y1,..,Yyn)ESEQ (D) n=02€Cn (y1,.--,yn)ESEQ, (D)

= icn Z WLy spa, (D) — ian"(z) = C(D(z)) = (C o D)(z). O
n=0 n=0

(ylv"'ryn)GSEQn (D)

3.4 Iterativne a rekurzivne Specifikacie

Pod $pecifikdciou kombinatorickych tried rozumieme systém rovnic

AL = @, (A(l), .. ,A(m)> :
A2 — &, (A(l), . ,A(m)> ,

A — @, (A<1>, L ,A<m>) ,

kde AM ..., A" sq nezname kombinatorické triedy a ®1,...,®P,, si m-arne pripustné konstrukcie
na kombinatorickych triedach — typicky sa pritom obmedzujeme na vhodni mnoZinu uvaZovanych
pripustnych konstrukeii, akou moézu byt napriklad termy zlozené z neutrdlnych tried &£, atomickych
tried Z a standardnych pripustnych konstrukcii zavedenych v rdmci predchadzajiceho oddielu. V za-
vislosti od kontextu tento systém mozeme povazovat za Specifikdciu vektora kombinatorickych tried

alebo za Specifikiciu kombinatorickej triedy A®).
Speciﬁkéuciu nazyvame iterativnou v pripade, ze pre k = 1,...,m zavisi ¢, iba od kombinatorickych
tried AKTD . A — pre Tubovolné kombinatorické triedy BY, ..., B*) a cM ... c®) je teda

By (B0, B, A, A = g (€, e AW, 40,

Pripustné konstrukcia ®,, je tak v podstate nuldrna — urcuje jednu konstantni kombinatoricka triedu.
Vo vysledku takto mozno kombinatoricki triedu A vyjadrit pomocou jediného termu zlozeného z pri-
pustnych konstrukcii uvazovaného typu a konstantnych tried uvazovaného typu — definicia sémantiky
Specifikacie je teda bezproblémova.

Menej zrejmou je sémantika inych ako iterativnych Specifikicii, ktoré nazyvame rekurzivnymi —
napriklad aj

AL = A1)

je korektnou rekurzivnou $pecifikdciou a I'ahko vidiet, Ze jej rieSenim moze byt Iubovolna kombinato-
ricka trieda. Casto sa preto obmedzujeme napriklad na najmensie rieSenie v zmysle mnozinovej inkltzie,
resp. na rieSenie, ktoré mozno ziskat iterovanim uvazovaného systému rovnic v pripade, Ze zaCneme
s vektorom prazdnych tried.
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My k sémantike rekurzivnych Specifikacii zaujmeme o nie¢o pragmatickejsi pristup: spomedzi ich
rieSeni nebudeme vyberat jedno kanonické, ale budeme pracovat iba so Specifikdciami alebo triedami
Specifikacii, pri ktorych bude I'ahko moZné dokazat existenciu jediného rieSenia. Téato vlastnost casto
vyplynie z jednoznac¢nosti rieSenia prislusného systému rovnic o m neznamych vytvarajacich funkciach

Am(z) = ¢m (Al(z)’ v vAm(Z)) )

kde A1(2),...,Am(z) st nezname formélne mocninové rady a ¢1, ..., ¢, su operacie na oby¢ajnych
vytvéarajicich funkcidch prislachajice k pripustnym konstrukcidm ®q,...,®,,. Takymto spésobom
neraz dostaneme systém rovnic s viacerymi rieSeniami, pri¢om ale iba jedno z nich je kombinatoricky
vyznamné — t. j. A1(z) je formalny mocninovy rad s prirodzenymi koeficientmi, ktory tak je obyc¢ajnou
vytvarajiucou funkciou nejakej kombinatorickej triedy. Z toho potom vyplynie aj jednozna¢nost rieSenia
povodného systému na kombinatorickych triedach (chdpand modulo izomorfizmus).

3.5 Symbolickd metéda pre neoznacené objekty: priklady

Priklad 3.5.1. Uvazujme kombinatoricku triedu W vsetkych slov nad abecedou ¥ = {a, b} s obvykle
definovanou dlzkou. Takéto slova mozno chépat ako koneéné postupnosti atomov, ktorymi st jednotlivé
pismena z abecedy X. Pre atomické triedy Z, = {a} a Z, = {b} je teda §pecifikicia kombinatorickej
triedy W dana ako

W= SEQ (Za + Zb) s

z ¢oho dostavame aj vyjadrenie pre oby¢ajni vytvarajicu funkciu W(z) triedy W v tvare

Z prikladu 2.3.4 pritom vieme, Ze pre vietky n € N je [z"]W(z) = 2", ¢o je skuto¢ne pocet vSetkych
slov dlzky n nad abecedou ¥ = {a, b}.

Priklad 3.5.2. Vratme sa k prikladu 1.2.1, v ktorom sme vy¢islovali pocet vSetkych usporiadanych
zakorenenych stromov o n € N\ {0} vrcholoch.

Kazdy takyto strom je jednozna¢ne dany svojim korefiom a koneénym poc¢tom podstromov zako-
renenych v jeho synoch, ktorymi st tiez usporiadané zakorenené stromy. Velkost takéhoto stromu je
dana celkovym poc¢tom vrcholov. Pomocou symbolickej metédy pre neoznacené objekty teda moézeme
kombinatoricku triedu T v8etkych takychto stromov vyjadrit rekurzivnou Specifikdciou

T = Z x SEQ(T),
kde Z je atomicka trieda. Pre vytvarajucu funkciu 7'(z) triedy 7 tak dostavame vztah
z
T()= —2
0=
z ¢oho
T(2)> = T(z) + 2z = 0. (3.4)

Tato kvadratickd rovnica ma dve rieSenia v C[[z]:
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Vdaka vete 2.10.7 je

n

o0
1/2
\/1—4,2:2( / )(—1)”4",2”:1—2z—222—4z3—1023—...
n=0

RieSenie
1+v1-4z
Ty(2) = 5
teda nie je kombinatoricky vyznamné, pretoze nejde o rad z N[z] — napriklad [2']T, (z) = —1. KedZe
ale obyc¢ajna vytvarajtca funkcia kombinatorickej triedy 7 musi byt rieSenim rovnice (3.4), je nutne

danéa ako
1—+1—-4z
—
Z prikladu 1.2.1 vyplyva, ze T_(z) je oby¢ajna vytvarajica funkcia posunutej postupnosti Catalanovych
Cisel (0, Co, Cl, 02, .. )
Zo vztahu (3.5) moZeme ad hoc odvodit uzavrety tvar pre koeficienty tejto vytvarajicej funkcie.
Pre vsetky n € N\ {0} totiz

() = Y = LS () e = 5 (M) o =

T_(2) = (3.5)

2 2 —\n n
n n— n—1 n—
— _1 . (1/2)7(_1)71471 — _1 . (_1) 12% k=1 (2k — 1) (_1)n4n — on—1 Hk:%(2k — 1) _
2 n! 2 n! n!
2~ (2n-2)! 2t (2n-2)0 1 2n—=2)! 1 (2n-2\ _ o
~nl 17 2k Tl 27 =1 n (n=Dn—-1)! n\n-1) !

apren = 0 je [2Y]T_(z) = 0. To sa zhoduje s nagimi vysledkami z prikladu 1.2.1 — teraz sme ale
asponl po odvodenie vzorca pre obycajnu vytvarajiucu funkciu 7 (z) postupovali plne systematickym
sposobom.

Priklad 3.5.3. Vratme sa k prikladu 1.3.1, v ktorom sme vy¢islovali pocet vSetkych neprazdnych
plnych bindrnych stromov s n € N vnutornymi vrcholmi.

Kazdy plny binarny strom je zloZeny z dvoch druhov zakladnych stavebnych prvkov — z vntutornych
vrcholov, ktoré budeme oznacovat e a z listov, ktoré budeme oznacovat o. KedZe pritom podla zadania
tlohy prispievaju k celkovej velkosti stromu iba vniitorné vrcholy, budeme pracovat s atomickou triedou
Z, = {e} a s neutralnou triedou & = {o}. Neprazdny plny binidrny strom moéze bud pozostavat
z jediného vrcholu, ktory je sti¢asne jeho korefiom aj listom, alebo je jeho koren vnatornym vrcholom
s dvoma synmi, v ktorych si opét zakorenené plné binarne stromy. Prichddzame teda k nasledujuce;j
rekurzivnej $pecifikacii pre kombinatoricku triedu F vSetkych plnych bindrnych stromov s velkostou
danou poc¢tom vniitornych vrcholov:

F =8+ 24 x F xXF.
Z toho vyplyva, ze oby¢ajna vytvarajuca funkcia F'(z) kombinatorickej triedy F vyhovuje vztahu
F(2) =1+ 2F(2)%

musi teda ist o rieSenie kvadratickej rovnice

Ta ma v C[z] jediné rieSenie
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Formélny mocninovy rad F_(z) je teda oby¢ajnou vytvarajucou funkciou kombinatorickej triedy F
a z prikladu 1.3.1 — popripade z prikladu 3.5.2 — vyplyva, Ze ide aj o obyc¢ajnu vytvarajicu funkciu
postupnosti Catalanovych ¢isel. Pre vietky n € N je teda

n}l——xffiTZEZZ(j 1 (2n)_

22 " 41

[z

Priklad 3.5.4. Vycislime pocet vsetkgjch binarnych stromov o n € N vrcholoch. Takyto strom méze byt
prazdny — préazdny strom budeme oznacovat € — alebo moze pozostévat z korenia a dvoch podstromov,
ktoré st opat binarne (a moézu byt aj prazdne). Pre atomicka triedu Z, = {e} a neutralnu triedu
& = {e} je preto kombinatoricka trieda B vSetkych binarnych stromov s velkostou danou poctom
vrcholov dané Specifikiciou

B=E + 24 xBxB,

z ktorej vyplyva, ze trieda B je izomorfné kombinatorickej triede F z prikladu 3.5.3. Pocet v8etkych
binarnych stromov o n € N vrcholoch je teda rovnaky ako pocet vSetkych plnych binarnych stromov
o n vnatornych vrcholoch — ¢ize C),. Citatel tuto skutocnost iste Tahko dokaZe aj bijektivne.

Priklad 3.5.5. Uvazujme napokon eSte raz aj priklad 1.1.1, v ktorom bolo tilohou najst pocet vietkych
dobre uzéatvorkovanych slov z Dyckovho jazyka D; obsahujicich n lavych zatvoriek a a n pravych
zatvoriek a.

Kedze je velkost kazdého takéhoto slova dana poc¢tom lavych zatvoriek, mozeme pracovat s ato-
mickou triedou Z, = {a} a s neutralnou triedou & = {a}. NavySe budeme uvazovat neutralnu
triedu & = {e} zodpovedajicu prazdnemu slovu.

Dyckov jazyk D; je definovany ako jazyk nad abecedou ¥ = {a,a} taky, ze:

(Z) € € Dq;
11) pre vSetky u,v € D; je auav € Dq;
y J
714) nic iné nie je v Dy.
J

Faktorizacia slova v (ii) je navySe uréend jednoznacne, kedZze prva lava zatvorku moze vzdy uzatvarat
jedina prava zatvorka. Kombinatoricku triedu D pozostavajtcu zo vSetkych slov z jazyka D1 s velkostou
danou poc¢tom lavych zatvoriek tak moZno vyjadrit pomocou rekurzivnej Specifikacie

D=, +4+Z,xD x & xD,
ktorej zodpoveda vztah
D(z) =1+ 2D(2)?

pre oby¢ajna vytvarajtcu funkciu D(z) kombinatorickej triedy D. Ten je rovnaky ako v priklade 3.5.3
— opét teda prichddzame k obyc¢ajnej vytvarajacej funkcii

1—+1—-14z

D(z) = 2z

postupnosti Catalanovych ¢isel.

Priklad 3.5.6. Pre vietky n € N uvazujme pocet triangulacii konvexného (n+2)-uholnika (s navzajom
rozlisitelnymi vrcholmi) — ¢ize pocet jeho rozkladov na po dvoch disjunktné trojuholniky s vrcholmi
vo vrcholoch uvazovaného (n 4 2)-uholnika. Priklad takejto triangulacie je na obréazku 3.3.
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Obr. 3.3: Jedna z moznych triangulacii pravidelného osemuholnika.

T~

Obr. 3.4: Uvazovany vyznacny trojuholnik pri triangulécii pravidelného osemuholnika.

Pre n = 0 za konvexny dvojuholnik povazujeme tisecku, ktord nema ziadnu triangulaciu. Indukciou
vzhladom na n dokdZeme, Ze kazda triangulacia konvexného (n + 2)-uholnika pozostava z presne n
trojuholnikov. Pre n = 0 a n = 1 je tato skuto¢nost zrejma. Predpokladajme teraz platnost tvrdenia
pre n = s a uvazujme [ubovolny konvexny (s + 3)-uholnik s vrcholmi 1, ..., s+ 3. Hrana [1, 2] potom
musi byt stcastou nejakého trojuholnika triangulécie. Tento trojuholnik je na obrazku 3.4 vyznaceny
sivou farbou.

Lahko vidiet, ze kazdy takyto trojuholnik urc¢uje rozklad povodného (s + 3)-uholnika, ktory okrem
tohto trojuholnika pozostava z nejakého (p+ 2)-uholnika a nejakého (¢ + 2)-uholnika s p, g € N takymi,
zep<s,qg<sa(p+2)+(¢+2) =s+4 (pripad p = 0 resp. ¢ = 0 nastane v pripade, Ze je treti
vrchol zvoleného trojuholnika susedny s niektorym z vrcholov 1 a 2). Z indukéného predpokladu teda
vyplyva, Ze kazda triangulacia uvazovaného (s + 3)-uholnika pozostéava z presne p+q¢+1 = s+ 1
trojuholnikov, ¢o bolo treba dokézat.

Uvazujme teraz kombinatoricki triedu T pozostavajicu zo vSetkych triangulécii konvexnych mno-
houholnikov, ktorych velkost je dana poc¢tom trojuholnikov, ktoré ju tvoria — ten je podla vysSie
ucineného pozorovania o dva mensi ako pocet vrcholov konvexného mnohouholnika, ku ktorému trian-
gulacia prislicha. Kazda takato triangulacia je bud préazdna (v pripade, Ze ide o triangulaciu tsecky),
alebo v nej mozno vysSie opisanym spdsobom kanonicky zvolit jeden trojuholnik a triangulaciu po-
tom mozno vyjadrit pomocou tohto trojuholnika a dvoch dalsich (pripadne aj prazdnych) triangulécii.
Dostavame tak rekurzivnu Specifikiciu

T=E+ZAXTXT,

kde & je neutralna trieda a Za = {A} je atomicka trieda. Pre vytvarajtcu funkciu T'(z) kombinatorickej
triedy 7 tak dostavame vztah

T(z) = 1+ 2T(2)?,
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ktory je opét rovnaky ako v predchédzajucich dvoch prikladoch. Zistujeme teda, ze

1—-+v1—-14z

T(z) = 2z

a pocet vietkych triangulacii konvexného (n + 2)-uholnika je pre vSetky n € N dany ako

T (2) = Cpy = — (2:)

:n—i—l

Priklad 3.5.7. Pod undrno-bindrnym stromom rozumieme usporiadany zakoreneny strom, v ktorom
ma kazdy vrchol najviac dvoch synov; v pripade, Ze ma jedného syna, nepovazuje sa tento ani za l'avého,
ani za pravého. Skimajme pocet vSetkych takychto stromov o n € N\ {0} vrcholoch.

Kazdy unarno-binarny strom pozostava z korenia, ktory médze mat Ziadneho, jedného, alebo dvoch
synov — v kazdom synovi je potom opét zakoreneny dal$i unarno-binarny strom. Pre atomicki triedu Z,
zodpovedajicu Tubovolnému vrcholu teda méZeme kombinatorickta triedu U vsetkych neprazdnych
unarno-binarnych stromov s velkostou danou po¢tom vrcholov vyjadrit pomocou rekurzivnej Specifi-
kacie

U=Zq+Zeg XU+ Zeg xU XU,

¢im pre oby¢ajna vytvarajicu funkciu U(z) kombinatorickej triedy U prichadzame k rovnici
U(z) =z + 2U(2) + 2U(2)?,
ktora ma v C[z] jediné riesenie

1— 21— 2z 322
U_(z) = & 5 O 224t
z

Koeficient [z"T1U_(z) tejto vytvarajicej funkcie kombinatorickej triedy U sa zvykne nazyvat n-tjm
Motzkinovijm c¢islom M,. Neskor uvidime, ako mozno pomocou analytickych metod Tahko dospiet
k asymptotickému odhadu pre M,, a n — occ.

Priklad 3.5.8. Uvazujme teraz (neusporiadané) zakorenené stromy o n € N\ {0} neoznacenych
vrcholoch. Kazdy takyto strom pozostava z koreha, ktory moze byt hranami spojeny s niekolkymi
podstromami. Ak tieto podstromy zakorenime vo vrcholoch, ktoré sa hranou spojené s korefiom uva-
zovaného stromu, budu vysledné zakorenené podstromy spolu s korefiom jednoznacne urcovat cely
strom. Na poradi jednotlivych podstromov pritom nezéleZi — zaujima nas iba to, kolkokrat sa dané
podstromy v strome vyskytuji. Pre atomickt triedu Z, = {e} tak prichddzame k vyjadreniu kombi-
natorickej triedy R v8etkych neoznacenych zakorenenych stromov s velkostou danou po¢tom vrcholov
pomocou rekurzivnej $pecifikicie
R = Z¢ x MSET(R).

Obycajné vytvarajiuca funkcia R(z) kombinatorickej triedy R je teda rieSenim rovnice

R(z) = zexp (Z ;R(zk)) .
k=1

Tento vztah umoziuje rekurzivny vypocet koeficientov [2"]R(z), ktory je o poznanie efektivnejsi, nez
uplné prehladavanie v8etkych neoznacenych zakorenenych stromov o danom pocte vrcholov. Prvych
niekol'ko ¢lenov vytvarajucej funkcie R(z) je danych nasledovne:

R(2) =24+ 22 +223 + 42" +92° 42025+ ...
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Priklad 3.5.9. Aj mnozinu vSetkych nenulovych prirodzenych ¢isel N\ {0} mozeme chapat ako kombi-
natorickt triedu (N, |]), kde N'= N\ {0} a pre vSetky n € N je |n| = n. KedZe navySe mozeme kazdé
nenulové prirodzené &islo n zapisat v unarnej sistave ako presne n atémov e, mozno pre atomicku
triedu Z, vyjadrit triedu N/ pomocou iterativnej Specifikacie

N = SEQZl(Z’)v

z ¢oho priamo dostavame oCakavany vzorec pre oby¢ajni vytvarajiucu funkciu N(z) tejto kombinato-
rickej triedy:

Pre fiu, samozrejme, plati [z°]N(z) = 0 a [2"]N(z) = 1 pre vietky n € N\ {0}.

Priklad 3.5.10. Kompoziciou prirodzeného ¢isla n € N nazyvame kone¢nu postupnost (nq,...,ng)
pozostavajicu z k € N ¢&isel ny,...,n, € N\ {0} takych, ze

ny—+...+ng=n.

Pocet vsetkych kompozicii ¢isla n € N je teda po¢tom vsetkych spodsobov, ktorymi moézeme toto
¢islo vyjadrit ako stcet nenulovych prirodzenych &isel, pricom zalezi na poradi jednotlivych séitancov.
Aj pomocou elementarnej kombinatoriky mozno 'ahko nahliadnut, Ze pocet vetkych kompozicii ¢isla
n € N\ {0} je 2771 — stacf &islo n vyjadrif v unérnej stistave ako postupnost n atémov e; kompozicia
¢isla n je potom jednozna¢ne dand pridanim ,predelov® do niektorych ,medzier” medzi jednotlivymi
atomami. KedZze je takychto ,medzier n — 1 a v kazdej moéZe a nemusi byt ,predel”, prichadzame
k avizovanému vysledku 2771

K rovnakému vysledku méZeme prist aj pomocou symbolickej metédy. Uvazujme kombinatoricka
triedu C vSetkych kompozicii prirodzenych ¢isel, kde velkostou kazdej kompozicie (ny,...,ng) je ¢islo
n =mny+ ...+ ng, o ktorého kompoziciu ide. Ttito kombinatoricka triedu potom evidentne moézeme
vyjadrit ako

C = SEQ(N),

kde N je kombinatoricka trieda z prikladu 3.5.9. V dosledku toho dostavame pre obycajnu vytvarajtcu
funkciu C(z) kombinatorickej triedy C vztah

1 1—2z
C(z) = = .
-1 1-22
Ked7ze
1—-=2 1 z > >
C — — _ — on,n _ 2n71 n
O Tl s S SD DD DL
=0 n=1
prichadzame aj tymto spésobom k vysledku
[z"]C(n) = 2" — 2"t = on7L,
Priklad 3.5.11. Rozkladom prirodzeného ¢isla n € N nazyvame jeho kompoziciu (nq,...,ny) takua,
ze n1 < ... < ng. Pocet vSetkych rozkladov ¢&isla n je teda poctom vSetkych spésobov, ktorymi toto

¢islo mozeme vyjadrit ako stucet nenulovych prirodzenych &isel, pricom na poradi séitancov nezalezi.

Uvazujme kombinatoricku triedu P vSetkych rozkladov prirodzenych ¢&isel, kde velkostou rozkladu
(n1,...,ng) je ¢islo n = ny + ... + ng. S pouzitim kombinatorickej triedy N z prikladu 3.5.9 potom
moéZzeme triedu P vyjadrit ako

P = MSET(N).
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Pre oby¢ajna vytvarajiucu funkciu P(z) kombinatorickej triedy P tak dostavame vztah

21 2k = 1
A=ep (> o | = =
k=1 m=1

Prvych niekol'ko ¢lenov vytvarajtcej funkcie P(z) je danych ako

P2)=(Q+z24+224+ 24+ 4. )0 +2 420+ ) +2+20 4+ )0+ 4284+ =
=1+2+22 433 +52+...

Priklad 3.5.12. Pokuisme sa vy¢islit pocet vSetkych rozkladov n-prvkovej mnoziny na r tried rozkladu.
Tato hodnota sa obvykle nazyva Stirlingovym cislom druhého druhu a oznacuje sa

n
{v)
Pouzitie symbolickej metody tu vyzaduje drobnia kombinatorickta predpripravu. Je zrejmé, Ze namiesto
rozkladov Tubovolnej n-prvkovej mnoziny staéi pre n € N uvazovat rozklady mnoziny [n] = {1,...,n}.
Uvazujme teda kombinatoricki triedu S pozostavajicu zo vietkych rozkladov mnozin [n] pre n € N
na r € N\ {0} tried, pricom velkostou rozkladu rozumieme stucet velkosti jeho tried — ¢ize pocet
prvkov rozkladanej mnoziny. Jednotlivé triedy takéhoto rozkladu mnoZiny [n] kanonicky o¢islujme
Cislami 1,...,r tak, ze za prva triedu vezmeme triedu obsahujicu prvok 1, za druha triedu vezmeme
triedu obsahujticu najmensi prvok neobsiahnuty v prvej triede, atd. Kazdy rozklad mnoziny [n] potom
mozeme zakodovat ako slovo dizky n nad abecedou [r], kde pre k = 1,...,n je k-te pismeno rovné
€ [r] prave vtedy, ked k € [n] patri do c-tej triedy rozkladu.
Zistujeme teda, Ze kombinatoricka triedu S(") mozeme vyjadrit ako

8 = 2zl x SEq(2M) x 2@ x SEq(2M 4+ zP¥) x ... x Z[1 x Spq(2M + ... + 2,

kde 21 = {1},..., 2"l = {r} st atomické triedy. Pre oby¢ajn vytvarajicu funkciu S (z) triedy
S tak dostavame vztah

r

S e S e ‘r'Z@ =

Stirlingove ¢isla druhého druhu s preto pre vietky n € N ar € N\ {0} dané ako
n ")z jn
{ r } [="]5 ] Z '

3.6 Kombinatorické triedy oznacenych objektov

Opit sa dostavame do situacie, ked je vyhodné interpretovat uz definovany pojem trochu odlisnym
sposobom. Ak kombinatoricka trieda (C,|-|) pozostava z objektov x, ktoré mozno chapat ako vybu-
dované z atéomov oznacenych po dvoch réznymi tuplne usporiadanymi znackami — napriklad 1, ..., |z|
— nazyvame (C, |-|) kombinatorickou triedou oznacenych objektov. Vdaka relativnej vagnosti konceptu
,vybudovania objektov z oznacenych atomov® sa ale javi ako najprirodzenejsie povazovat kaZdid kom-
binatoricku triedu sucasne aj za triedu oznacenych objektov — ak totiZz aj nejakd trieda pozostéava
z neoznacenych objektov, typicky k nej l'ahko mozeme skonstruovat izomorfna kombinatoricku triedu,
ktorej objekty uz oznacené st (napriklad préave jednym Tubovolnym spdsobom ozna¢ime vrcholy kaz-
dého neoznaceného grafu z uvazovanej triedy). Rozdiel medzi oznacenou a neoznacenou triedou je teda
viac otazkou interpretacie, nez vlastného charakteru objektov, ktoré tuto triedu tvoria. Prichadzame
tak k nasledujtcej — jemne bizarnej — definicii.
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Definicia 3.6.1. Kombinatorickou triedou oznacenych objektov nazveme ubovolnt kombinatoricku

triedu (C, |-]).

Pre kazdu kombinatoricka triedu oznacenych objektov C tak moézeme hovorit aj o triedach C,
pre vSetky n € N a rovnako ako pre triedy neoznacenych objektov definujeme aj enumeracné postupnosti
a dvojice izomorfniych kombinatorickych tried oznacenych objektov C, D, pre ktoré piseme C = D.

Dovod pre zavedenie nového pomenovania pre uz definovany koncept suvisi s definiciou prirodze-
nych operacii na kombinatorickych triedach oznacenych objektov. Kym za aditivnu operaciu moézeme
opét vziat disjunktné zjednotenie, kartezidnsky sicin uz pre triedy oznacenych objektov bude len sotva
zmysluplnou multiplikativnou operaciou: ak napriklad kombinatorické triedy C aj D pozostavaju z gra-
fov ur¢itého typu, kde vrcholy kazdého grafu radu n st oznacené znackami 1, ..., n, bude karteziansky
sacin C x D pozostavat z dvojic takychto grafov.

Omnoho zmysluplnejsou, nez tato trieda, je ale oby¢ajne trieda vSetkych dvojic grafov (G, H'),
pre ktoré existuju nejaké grafy G € C a H € D také, ze v pripade |G| = m a |H| = n vznikna grafy
G' a H' z G resp. H preznac¢enim vrcholov tak, aby kaZdy vrchol vyslednej dvojice dostal jedine¢nu
znacku z mnoziny [m+n]. Od kazdého takéhoto preznacenia pritom zvycajne vyzadujeme izoténnost —
ak ma niektory vrchol u niektorého z grafov G, H mensiu znacku ako niektory iny vrchol v toho istého
grafu, mala by tato vlastnost zostat zachovana aj po preznaceni v grafe G’ resp. H'. Len za tohto
predpokladu s totiz dvojicou (G, H') jednozna¢ne dané aj grafy G a H. Pri opisanej konsStrukeii
teda abstrahujeme od konkrétnych znaciek jednotlivych vrcholov grafov G a H a pracujeme iba s nimi
uréenym uplnym usporiadanim — na vrcholoch dvojice (G', H') potom uvazujeme vSetky moZné uplné
usporiadania, ktorych ztuZenim na jednotlivé zlozky G’ resp. H' dostaneme povodné usporiadania.

Podobne ako pri neoznacenych objektoch by sme velkost |(G’, H')| dvojice (G', H') chceli definovat
ako |G'| + |H'| = |G| + |H|. S vyuzitim konvencie stotoZiiovania izomorfnych tried tak moézeme dve
najdolezitejsie operacie na kombinatorickych triedach oznacenych objektov definovat nasledovne.

Definicia 3.6.2. Disjunktnym zjednotenim alebo kombinatorickym siuctom kombinatorickych tried
oznatenych objektov C = (C, |-|¢),D = (D, |-|p) nazveme kombinatoricki triedu oznacenych objektov
C+D=(C+D,||), kde pre vietky = € C je |(z,1)| = |z|c a pre vietky y € D je |(v,2)| = |y|p-

Pre vSetky m,n € N ozna¢ime ako A(m,n) mnozinu vSetkych bijekcii f: [m] + [n] — [m + n]
takych, Ze pre vietky w,v € [m] s u < v je f(u,1) < f(v,1) a pre vSetky uw,v € [n] s u < v je
f(u,2) < f(v,2). Zobrazenia f € A(m,n) tak zodpovedaji vietkym moZnym izoténnym preznaceniam
dvojic oznacenych objektov (z,y), kde = je velkosti m a y je velkosti n.

Definicia 3.6.3. Sicinom kombinatorickych tried oznacenych objektov C = (C,|-|¢),D = (D, |-|p)
nazveme kombinatorickt triedu oznacenych objektov Cx D = (C x D, |-|), kde

CxD={(z,y, f) |z €C; yeD; f €Azl ylp)}-
Pre vietky (z,y, f) € C D dalej kladieme |(z,y, f)| = |z|c + |y|p-

S takto pozmenenou definiciou sicinu tried savisi komplikicia spocivajica v tom, Ze stcin tried
oznacenych objektov uz nad’alej nebude zodpovedat Cauchyho stiéinu obycajnych vytvarajacich funkcii.
Tym padom nebude nad’alej opodstatnené ani samotné pouZivanie obyc¢ajnych vytvarajucich funkcii,
ktoré bolo suvislostou s kartezidnskymi su¢inmi kombinatorickych tried motivované. Pocet objektov
velkosti n € N triedy C x D je naopak dany nasledovne.

Tvrdenie 3.6.4. Pre vSetky triedy oznacenyjch objektov C = (C,|-|c),D = (D, |-|p) a vsetky n € N je

exm) =3 () i+ P

k=0
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Dékaz. Podobne ako pri kartezidnskom sucine tried neoznacenych objektov je

(C*D), = |JCh x Dy x A(k,n — k), (3.6)
k=0

pricom ide o disjunktné zjednotenie. Kazdé f € A(k,n — k) je navySe bijekciou f: [k] + [n — k] — [n]
takou, Ze pre vSetky w,v € [k] s u < v je f(u,1) < f(v,1) a pre vietky u,v € [n — k] s u < v je
f(u,2) < f(v,2). Takéto zobrazenie je zrejme jednoznacne urcéené obrazom mnoziny [k] x {1}, ktorym
moze byt lubovolna k-prvkova podmnozina mnoziny [n]. Preto

Ak, n — k)| = (Z)

Pomocou pravidiel st¢inu a suc¢tu tak z (3.6) dostavame dokazovani rovnost

€x D)= (1) 16l [Pesl =

k=0

Ak je teraz ()02, enumeracnou postupnostou triedy C a (d,)5°, je enumera¢nou postupnostou
triedy D, st prvky enumeracnej postupnosti (p, )5, triedy C x D dané pre vietky n € N ako

" /n " n!
Pn = Z <k> Crlp—i = ;;) mckdn—lm

k=0

oS () ().

k=0

7 ¢oho

Tento vztah opét napadne pripomina Cauchyho saéin formélnych mocninovych radov — koeficienty
tychto radov uz ale nie st priamo prvkami uvaZovanych enumeraénych postupnosti, ale koeficient
pri 2™ vznikne z prislusného prvku enumeracnej postupnosti predelenim hodnotou n!. Dostavame sa
tak k dolezitému pojmu exponencidlnej vytvdrajicej funkcie.

Definicia 3.6.5. Fzxponencidlnou vytvdrajicou funkciou kombinatorickej triedy oznacenych objektov
(C,|-]) s enumera¢nou postupnostou (¢,)5 ; nazyvame formalny mocninovy rad

o n

C(z) = ch% € Rso[2] C C[z].

n=0

Exponencialne vytvarajiace funkcie si teda podobné ,veSiaky na koeficienty“ ako obycajné vytva-
rajuce funkcie, avsak konstrukcia tohto ,vesiaka* teraz zahfha aj faktor 1/n! pri kazdom koeficiente.
Ak je teda C(z) exponencialnou vytvarajicou funkciou triedy C s enumeraénou postupnostou (¢,)5,
je pre vietky n € N ¢len ¢, tejto postupnosti dany vztahom ¢, = n![z"|C(z). V tomto duchu méo-
zeme, rovnako ako pri oby¢ajnych vytvarajicich funkciach, pre lubovolni postupnost komplexnych
Cisel (cn)02 nazvat jej exponencidlnou vytvdrajicou funkciou formalny mocninovy rad

o Zn
C(z) = Z Cn -
n=0 ’

V stvislosti s kombinatorickymi triedami ale plati, Ze exponencidlne vytvarajice funkcie uvazujeme
vo vztahu k triedam oznacenych objektov a obycCajné vytvarajuce funkcie vo vztahu k triedam ne-
oznacenych objektov. Ezponencidlne vytvdrajice funkcie teda pouZivame ma enumerdciu oznacengch
objektov a obycajné vytvdrajice funkcie pouZivame na enumerdciu neoznacenych objektov.

Vyslovme este jednoduché tvrdenie, ktoré je pre kombinatorické triedy oznacenych objektov obdo-
bou tvrdenia 3.2.4.
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Tvrdenie 3.6.6. Nech C = (C,|-|) je kombinatorickd trieda oznaceniych objektov a C(z) je jej expo-
nencidlna vytvdrajica funkcia. Potom
||
z
C(z) = E —

zeC
kde siucet je cez lokdlne konecny systém radov.

Doékaz. Pre vSetky n € N je evidentne

Jal Jal Lol
IS = D= X = = =

IGCW, IECW,

3.7 Symbolickd metéda pre oznacené objekty

Podobne ako pre kombinatorické triedy neoznacenych objektov teraz preskiimame niekolko zaklad-
nych konstrukcii na kombinatorickych triedach oznacenych objektov a k nim prislachajicich operécii
na exponencialnych vytvarajucich funkciach. Pripustnou konstrukciou na kombinatorickych triedach
oznacenych objektov opét pre Tubovolné m € N nazveme m-arne &astoéné zobrazenie ®, priradu-
jace m-ticiam tried oznacenych objektov BM, ... B triedu oznacenych objektov @(B(l), e ,B(m));
musi pritom platit, Ze pre Iubovolné triedy oznacenych objektov BM, ... B ¢ ¢(m) splha-
jace B®) =~ ¢ pre k=1,...,m je @(B(l),...,B(m)) definované prave vtedy, ked je definované
d(CM,...,c™), pricom v takom pripade je

@@W,WBWQ2¢@@,WMW)

Ku kazdej pripustnej konstrukcii ® na kombinatorickych triedach oznacenych objektov tak zodpo-
veda Ciasto¢né zobrazenie ¢ na exponencidlnych vytvarajucich funkciach také, ze pre kombinatorické

triedy oznacenych objektov B, ..., B g definovanym vystupom zobrazenia ® a s exponencialnymi
vytvarajucimi funkciami By (2),..., Bn(z) je ¢(B1(2),...,Bmn(z)) exponencidlnou vytvarajucou fun-
kciou triedy ®(BM, ..., B™). Opit teda moézeme zacat s budovanim ,slovnika® medzi niekolkymi

standardnymi pripustnymi konstrukciami ® a k nim prisltichajicimi operaciami ¢ na exponencialnych
vytvarajucich funkciach.

Neutralne a atomické triedy. Podobne ako pri triedach neoznacenych objektov nazveme neutrdl-
nou triedou kombinatoricka triedu oznacenych objektov € = (&, |-]) taka, ze € = {lg} a |1lg| = 0.
Neutralne triedy typicky oznacujeme £ s pripadnym indexom urcujtcim ich jediny prvok lg — piSeme
teda napriklad & = {e}, &g = {J} a podobne.

Atomickou triedou nazyvame kombinatoricka triedu oznacenych objektov Z = (Z,||) taku, zZe
Z ={zz} a|zz| = 1. Podobne ako pri neoznacenych objektoch najcastejsie ozna¢ujeme automatické
triedy ako Z, ¢asto s indexom urcujicim jediny prvok zz — napriklad 2, = {a}, Z, = {e}, Z, = {o}.

Exponencidlnou vytvarajicou funkciou kazdej neutralnej triedy je evidentne 1 a exponencidlnou
vytvarajicou funkciou kazdej atomickej triedy je z.

Disjunktné zjednotenie. Pripomenme si z predchiddzajiceho oddielu, ze disjunktnym zjednotenim
alebo kombinatorickym suctom kombinatorickych tried oznacenych objektov C = (C, |-|¢), D = (D, |"|p)
nazyvame kombinatoricka triedu oznacenych objektov C + D = (C + D, |-|) taku, ze pre vietky x € C
je |(z,1)[ = |z|c a pre vietky y € D je [(y,2)| = |y|p.

Veta 3.7.1. Disjunkitné zjednotenie je pripustnou konstrukciou na kombinatorickijch triedach oznace-
ngch objektov. Ak si navyse C, D kombinatorické triedy oznacenych objektov s exponencidlnymi vytvd-
ragicimi funkciami C(z) resp. D(z), je exponencidlna vytvdrajica funkcia triedy C + D dand ako

C(2) + D(2).
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Dékaz. Pre vsetky n € N je

nl[z"](C(z) + D(z)) = n!l[z"]C(z) + n![z"]D(2) = |Cp| + |Dpn| = |(C + D)y|. O

Suéin tried oznacenych objektov. Pozname uz tiez operaciu sicinu kombinatorickych tried ozna-
¢enych objektov C = (C,|-|¢c) a D = (D, |-|p), ktorym nazyvame kombinatoricka triedu oznacenych
objektov C x D = (C * D, |-|) taka, ze

CxD={(z,y,f) |z €C; yeD; feAzle,|ylp)}
a pre vietky (z,y, f) € CxD je |(z,y, f)| = |zlc + |ylp.

Veta 3.7.2. Sucin je pripustnou konstrukciou na kombinatorickiyjch triedach oznacengch objektov.
Ak si navySe C, D kombinatorické triedy oznacengjch objektov s exponencidlnymi vytvdrajicimi fun-
kciami C(z) resp. D(z), je exponencidlna vytvdrajica funkcia triedy C x D dand ako

C(z)- D(z).

Dékaz. 7 definicie Cauchyho sicinu radov a tvrdenia 3.6.4 pre vSetky n € N dostavame

n L. ne Ck| 1Dy
nl[="] (C(2)D(2)) = n!;) (1#106) (1) = Z( ; ) ( ]f)!> _
- Zj (1) el 12a-sl = liC D), =

Podobne ako pri dvoch zékladnych operéaciach na kombinatorickych triedach neoznac¢enych objek-
tov, nie s ani operacie + a x na kombinatorickych triedach oznacenych objektov asociativne; pre
Tubovolné kombinatorické triedy oznacenych objektov A, B,C ale evidentne

A+ (B+C)= (A+B)+C

Ax(BxC) = (AxB)«*C.

S pouzitim konvencie stotozihovania izomorfnych tried teda piSeme

A+ (B+C)=(A+B)+C

Ax (BxC) = (A*B)«C;

operécie + a % teda pokladdme za asociativne. Ak navySe k € N a S, ..., Sk st mnoziny, moéZzeme po-
vazovat mnozinu Sy +. ..+ S}, za zlozent z prvkov (z, j), kde j € [k] a € Sj. Podobne pre kombinato-
rické triedy oznagenych objektov (AM | |-1),..., (A%, |-]x) povazujeme triedu (A® + ...+ A% |.|)
za zlozent z prave vietkych objektov (z,7), kde j € [k] a z € AU)| pricom v takom pripade je
((z,§)] = |z|;. Triedu (AM x...x.A® |.|) napokon povazujeme za zlozent z prave vietkych objek-
tov ((z1,...,2k), f), kde pre j = 1,..., kje x; € AV a f: [|o1)1] + ...+ [=kle] = 21l + - .- + |zrle]
je bijekcia taka, ze pre j = 1,...,k a vietky u,v € [|z;];] s u < v je f(u,j) < f(v,j); v takom
pripade |((z1,...,2k), f)| = |x1]1 + ... + |zk|r. Takato trieda je evidentne izomorfna s Tubovolnym
uzétvorkovanim vyrazu AN « ..« Ak
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Mocniny tried oznacenych objektov. KedZe povazujeme operaciu x za asociativnu, moZeme
pre vietky k € N definovat k-tu mocninu SEQg(C) kombinatorickej triedy oznacenych objektov C re-
kurzivne ako SEQ((C) = & pre neutralnu triedu £ a SEQg1(C) = SEQk(C) = C pre vietky k € N.
Kombinatorické trieda SEQy(C) pozostava zo vietkych postupnosti dlzky k tvorenych izoténne prezna-
¢enymi objektmi z kombinatorickej triedy C.

Veta 3.7.3. Pre vsetky k € N je k-ta mocnina pripustnou konstrukciou na kombinatorickych trie-
dach oznacengjch objektov. Ak je navyse C kombinatorickd trieda oznacengjch objektov s exponencidlnou
vytvdragicou funkciou C(z), je exponencidlnou vytvdrajicou funkciou kombinatorickej triedy SEQ(C)
formdlny mocninovy rad

C*(2).

Dékaz. Indukciou vzhladom na k. Pre k = 0 je SEQ(C) = &, pri¢om exponencialnou vytvéarajicou
funkciou triedy € je 1 = C°(2). Ak tvrdenie plati pre k = s, pre k = s + 1 je SEQ,,1(C) = SEQ,(C) +C.
Exponencialnou vytvéarajicou funkciou triedy C je pritom C(z) a vdaka indukénému predpokladu je
exponencialnou vytvarajicou funkciou triedy SEQ4(C) rad C*¥(z). Vdaka vete 3.7.2 je teda exponen-
cialna vytvarajica funkcia triedy SEQ,1(C) = SEQ4(C) *C dana ako C*(2)C(z) = C**1(2). O

Trieda kone¢nych postupnosti. Nech C je kombinatorickd trieda oznaenych objektov taka, Ze
Co = 0. Triedou konecnijch postupnosti objektov triedy C potom nazveme kombinatorickt triedu ozna-
¢enych objektov

SEQ(C) =E+C+ (CxC)+ (C*CxC) + Zsmk

kde £ je neutralna trieda.

Veta 3.7.4. Prechod k triede konecngjch postupnosti je pripustnou konstrukciou na kombinatorickijch
triedach oznacenijch objektov. Ak je navyse C kombinatorickd trieda oznaceniyjch objektov s Co = ()
a s exponencidlnou vyltvdrajicou funkciou C(z), je exponencidlnou vytvdrajicou funkciou kombinato-
rickej triedy SEQ(C) formdlny mocninovy rad

o
1-C(z)
Doékaz. Pre vSetky n € N je
n 1 k — n —
n![z ]1_7 =nlz Zc kzon![z |k kzo| SEQL(C)),,| = |(SEQ(C)),| - O

Triedy k-prvkovych a koneénych mnozZin. V pripade oznacenych objektov sa rozdiel medzi mno-
Zinami a multimnoZinami straca — prvkom mnoziny totiz moze byt aj viackrat ,ten isty* objekt s inymi
znackami; naopak vSetky objekty v multimnozine st vzdy ,,po dvoch rozne*, pretoze maji odlisné
znacky. Namiesto tried koneénych podmnozin a multimnozin teda budeme pre kombinatorické triedy
oznacenych objektov C definovat iba triedy koneénych mnoZin pozostévajuce z niekolkych izotonne
preznacenych objektov triedy C, na ktorych poradi nezélezi.

Nech C = (C,|-|¢) je kombinatoricka trieda oznacenych objektov taka, ze Cy = (0. Pre vSetky
k € N zavedme na kombinatorickej triede oznacenych objektov SEQ.(C) = (SEQx(C), |*|srq,(c)) reldciu
ekvivalencie = taku, ze pre ((z1,...,2k), f), (y1,---, k), g9) € SEQk(C) je

(@1, 2e), [) = (1, Yk), 9)

prave vtedy, ked existuje permutacia o: [k] — [k] mnoziny [k] taka, Ze pre j = 1,...,k je x; = yu(j)
a f(u,j) = g(u, p(j)) pre vietky u € [|z;|c]. Kombinatoricka triedu SET;(C) = (SETk(C), |-|) potom
definujeme ako

SET;(C) := SEQx(C)/ =,
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pricom pre vSetky ((x1,...,zk), f) € SEQ(C) je
H((wl, s 7xk)7f)]z| = ’((xla s 7xk)a f)‘SEQk(C) = |I’1‘C +...+ ’xk”C

f)alej poloZzme

SET(C) := iSET]’(C) (3.7)

a pre vietky k € N definujme

SET>(C) := iSET]‘(C). (3.8)

Triedu SETk(C) nazyvame triedou k-prvkovich mnoZin oznacenych objektov triedy C, triedu SET(C)
nazyvame triedou konecnyjch mnoZin oznacenych objektov triedy C a triedu SET>(C) nazyvame triedou
nagmenej k-prvkovyjch mnoZin oznafenych objektov triedy C.

Veta 3.7.5. Prechod k triede k-prvkovijch mnoZin je pre vsetky k € N pripustnou konstrukciou na kom-
binatorickych triedach oznacenych objektov. Ak je navyse C = (C,||) kombinatorickd trieda oznacenijch
objektov s Cy = 0 a s exponencidlnou vytvdrajicou funkciou C(z), je exponencidlnou vytvdragicou
funkciou kombinatorickej triedy SETE(C) formdlny mocninovy rad

k
LOM),
Dokaz. Nech ((x1,...,zk),f) € SEQi(C). Trieda ekvivalencie [((x1,...,2k), f)]= potom pozostéva
z préve vietkych objektov ((y1,...,yx),9), kde y1,...,yx € Cag: [y +.. +[kaH (yal+- - +ywl]

je bijekcia spliajica f(u,j) < f(v,j) pre vietky j € [k] a u,v € [|y;|] také, Ze u < v, pricom pre ne-
jakt permutaciu ¢: [k] — [k] a j = 1,...,k je xj = yyo;) a f(u,j) = g(u, p(j)) pre vetky u € [|z;]].
Pre j =1,...,k je potom g([|y,(;l] X {gp( )} = f([Jxj]] x {j}) — kedZe st pritom tieto obrazy mnozin
pre j = 1,...,k po dvoch disjunktné, je zobrazenim g jednozna¢ne urcené aj permutacia ¢. Kazdé per-
mutécia ¢: [k] — [k] teda zodpoveda prave jednému objektu z triedy ekvivalencie [((z1,...,2%), f)]=,
ktora v désledku toho obsahuje presne k! réznych objektov. KedZe st vetky objekty z tejto triedy
ekvivalencie rovnakej velkosti, pre vietky n € N dostavame

L\ sear(©)), -

(SETH(C)), | = 1

Pre exponencialnu vytvarajacu funkciu Sk (z) triedy oznaenych objektov SET(C) a vSetky n € N teda
vdaka vete 3.7.3 dostavame

2"15k(2) = 3 "ICH(2) = [+"]5 CHe),

z ¢oho vyplyva aj dokazovana rovnost

Sk(z) = gck( z). O

Dokaz predchadzajucej vety bol zalozeny na pozorovani, Ze pre kazda postupnost dlzky k zlozent
z oznacenych objektov triedy C st [ubovolné dve jej permutéacie navzajom rozlisitelné, pretoze na as-
pon dvoch pozicidch musia obsahovat objekty oznacené rdéznou mnozinou znaciek. To je pravda iba
v pripade, Zze Cy = 0, ¢o vysvetluje pouzitie tohto predpokladu uz pri triedach k-prvkovych mnozin
(a nie az pri triedach kone¢nych mnozin, kde je tento predpoklad nevyhnutny).
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Veta 3.7.6. Prechod k triede konecnijch mnoZin je pripustnou konstrukciou na kombinatorickijch trie-
dach oznacenijch objektov. Ak je navyse C kombinatorickd trieda oznacenijch objektov s Co = 0 a s expo-
nencidlnou vytvdragicou funkciou C(z), je exponencidlnou vytvdrajicou funkciou kombinatorickej triedy
SET(C) formdlny mocninovy rad

60(2).
Dékaz. Zo vztahu (3.7) a vety 3.7.5 pre exponencialnu vytvarajticu funkciu S(z) triedy SET(C) dosté-

vame
oo

S(z) =3 Ci(z) = 00, 0
=07

Veta 3.7.7. Prechod k triede najmenej k-prvkovijch mnoZin je pripustnou konstrukciou na kombi-
natorickych triedach oznacenych objektov. Ak je navyse C kombinatorickd trieda oznacengch objektov
s Co = 0 a s exponencidlnou vytvdrajicou funkciou C(2), je exponencidlnou vytvdrajicou funkciou
kombinatorickej triedy SET>(C) formdiny mocninovy rad

=1y
c ,
e“) — Z ﬁCJ(z).
5=0
Dékaz. Zo vztahu (3.8) a vety 3.7.5 pre exponencialnu vytvarajicu funkciu S>y(z) triedy SET>(C)

dostavame
fe’) k—1

()= 20i(2) = 96 =3 L), 0

Pl — J!

Triedy orientovanych kruznic. Nech C = (C,|-|¢) je kombinatorickéi trieda oznacenych objektov
taka, ze Co = (). Pre vietky k € N\ {0} zavedme na triede SEQ,(C) = (SEQ)(C),||spq,(c)) Telaciu
ekvivalencie = taku, ze pre ((z1,...,2k), f), (y1,---,Yx),9) € SEQL(C) je

(1, yzn), f) = (W, k), 9)
prave vtedy, ked existuje zobrazenie ¢: [k] — [k] realizujice cyklicky posun — t. j.
0(j)=((j—14+s) mod k) +1
prenejakés € Zyaj=1,...,k—také zeprej =1,... . kjex; = y,;) a f(u,j) = g(u, p(j)) pre vietky

u € [|zjlc]. Triedu Cycy(C) = (Cyck(C),|:|) orientovanyich kruznic dizky k zlozenych z oznacenych
objektov triedy C potom definujeme ako

Cyci(C) := SEQ)(C)/ =,
pricom pre vSetky ((z1,...,zk), f) € SEQx(C) je

’[((.Tl,...,l’k),f)]z| = |(($17"'?xk)7f)’SEQk(c) = ‘x1’C +..F |x/€|C

Triedu Cyc(C) véetkych orientovanych kruznic zlozenych z oznacenych objektov triedy C dalej definu-
jeme ako

Cyc(C) := i Cycg(C). (3.9)
k=1
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Veta 3.7.8. Prechod k triede orientovangch kruinic dizky k je pre vietky k € N\ {0} pripustnou
konstrukciou na kombinatorickyjch triedach oznacenijch objektov. Ak je navyse C kombinatorickd trieda
oznacenych objektov s Co = 0 a s exponencidlnou vytvdrajicou funkciou C(z), je exponencidlnou vytvd-
rajicou funkciou kombinatorickej triedy CyCk(C) formdlny mocninovy rad

—C*(2).
LCM2)
Dékaz. Nech ((x1,...,z), f) € SEQk(C). Podobne ako pri dokaze vety 3.7.5 potom zistujeme, ze trieda
ekvivalencie [((z1,...,2k), f)]= pozostava z prave k roznych objektov. KedZze st navyse vietky objekty
z tejto triedy ekvivalencie rovnakej velkosti, pre vSetky n € N je

1
-7

(CYCR(O)), = 7 |(SEQk(C)),

Pre exponencialnu vytvéarajicu funkciu Yy (z) triedy oznacenych objektov Cycy(C) a vietky n € N tak
vdaka vete 3.7.3 dostavame

"Yi(z) = 1 1MICHE) = [ CHe),
a teda aj
Vilz) = 2O, =

Veta 3.7.9. Prechod k triede vsetkijch orientovanijch kruznic je pripustnou konstrukciou na kombi-
natorickych triedach oznacenych objektov. Ak je navyse C kombinatorickd trieda oznacengch objektov
s Co = 0 a s exponencidlnou vytvdrajicou funkciou C(z), je exponencidlnou vytvdrajicou funkciou
kombinatorickej triedy Cyc(C) formdlny mocninovy rad

g %Ck(z) —Tn <1_10(z)> .

Dokaz. Zo vztahu (3.9) a vety 3.7.8 pre exponenciilnu vytvarajicu funkciu Y (z) triedy Cyc(C) do-
stavame

V(z) =3 10N,
k=1

kde sticet je cez lokdlne koneény systém radov, kedze [2°]C(z) = 0. Podl'a vety 2.9.4 je dalej

1 B _ - (pH N _
Ln (1_0<>> = —In(1-C() == 3 — () (2) = 3 1O () = Y (2),

k=1 k=1

¢im je dokdzané aj druhé z vyjadreni exponencialnej vytvarajicej funkcie Y (2). O

Punktacia. Punktdciu kombinatorickej triedy ozna¢enych objektov C = (C, |-|¢) definujeme podobne
ako pre triedy neoznacenych objektov: ide o kombinatoricki triedu ozna¢enych objektov ©C = (OC, |-|)
pozostavajicu z objektov triedy C, v ktorych je jedna zo znaliek zvolena ako vyznacna - je teda

oC = icn x [n],
n=0

pri¢om pre vietky n € N, x € C,, a k € [n] je |(z, k)| := |z|c.
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Veta 3.7.10. Punktdcia je pripustnou konstrukciou na kombinatorickijch triedach oznacengjch objektov.
Ak je navySe C kombinatorickd trieda oznacenych objektov s exponencidlnou vytvdrajicou funkciou
C(z), je exponencidlnou vytvdragicou funkciou kombinatorickej triedy OC formdlny mocninovy rad

d
—C(z2).
27 (2)
Dékaz. Pre n =0 je
d
oC), |=0=n!-[z"]z—C
(0C),| =0 =n!-["]e£C(2)
a pre vietky n € N\ {0} je
1 d
(©C),| =n|Cyh| =n-n!-[z"]C(z) =n-n!- -~ 2" NC(2) = n! - [2"NC (2) = n! - [" ]Z&C’(z).
Exponenciadlnou vytvarajicou funkciou kombinatorickej triedy ©C teda musi byt 2C’(z). O

Substitiicia. Pod substiticiou kombinatorickej triedy oznacenych objektov D splhajicej Dy = 0
do kombinatorickej triedy oznacenych objektov C — resp. pod zloZenim tried C a D — rozumieme
kombinatoricki triedu C o D pozostavajicu z oznacenych objektov, ktoré vznikni z objektov triedy C
nahradenim atémov izoténne preznac¢enymi objektmi triedy D. Ak sa pritom atémy pévodného objektu
z triedy C oznalené znackami 1,...,n, bude pre vSetky k € [n] atéom so znackou k nahradeny tym
spomedzi objektov triedy D, ktorého miniméalna znacka je spomedzi dosadzovanych objektov k-ta
najmensia. Kazdy takyto objekt triedy CoD je teda jednoznacne urceny oznacenym objektom triedy C
velkosti n a n-prvkovou mnoZinou oznacenych objektov triedy D, pricom velkost vysledného objektu
je dand velkostou tejto n-prvkovej mnoziny z triedy (SET,(D), |-|ser, (p))-

Nech teda (C,|-|¢), (D, |-|p) st kombinatorické triedy oznacenych objektov. Kombinatoricka trieda
oznacenych objektov (C o D, |-|) je potom dana ako

CoD:= ZC" X SET,, (D),
n=0

pricom pre vietky n € N, z € C,, a S € SET,(D) je
(%, S)| = [S|ser, (D)

Veta 3.7.11. Substiticia je pripustnou konstrukciou na kombinatorickijch triedach oznacengjch objek-
tov. Ak je navySe C kombinatorickd trieda oznacengjch objektov s exponencidlnou vytvdrajicou funkciou
C(2) a D je kombinatorickd trieda oznacengch objektov s Dy =) a s exponencidlnou vytvdrajicou fun-
kciou D(z), je exponencidlnou vytvdragicou funkciou kombinatorickej triedy C o D formdlny mocninovy
rad

(CoD)(z) = C(D(z)).

Doékaz. Nech (cp,)5% je postupnost komplexnych ¢isel taka, ze
(o.] Zn
=2 En 7
n=0

Vdaka tvrdeniu 3.6.6 je potom exponencidlnou vytvéarajicou funkciou triedy C oD formélny mocninovy
rad

Z Z‘ ‘ Z Z Z zl(m Z Z Z Z|S|SETH(D) -
u€CoD ‘u|‘ n=0z€Cpn SESET, (D) ’(l‘ S " n=0z€Cp SESET, (D) ‘S‘SET”(D)!
| | ETn o0 n
B DL DI A ST BT (S R

nzo SESETn(D) ‘S|SET7L(D). ’]’L:O
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Iterativne a rekurzivne Specifikacie. gpeciﬁkdciou kombinatorickych tried oznacenych objektov
nazveme, podobne ako pri triedach neoznacenych objektov, systém rovnic

AD — @, (A<1>, . ,A<m>) ,
A = g, (A<1>, . ,A<m>) ,

Am — @, (,4(1), . ,A(m)) )

kde AD ..., A™ sq nezname kombinatorické triedy oznacenych objektov a @1, ..., ®,, st m-arne
pripustné konstrukcie na kombinatorickych triedach oznacenych objektov — typicky sa pritom staci
obmedzit na pripustné konstrukcie, ktoré stt dané ako termy zloZené z neutralnych tried £, atomickych
tried Z a $tandardnych pripustnych konstrukcii zavedenych vyssie. Podobne ako pre kombinatorické
triedy neoznacenych objektov tiez Specifikicie delime na iterativne a rekurzivne.

3.8 Symbolickd metéda pre oznacené objekty: priklady

Priklad 3.8.1. Vsetky permutdcie mnozin [n] pre n € N, s velkostou danou po¢tom prvkov n permu-
tovanej mnoziny, tvoria kombinatoricki triedu oznacenych objektov P, ktori modzeme vyjadrit ako

P = SEQ(Z),

kde Z je atomicka trieda — prvkami tejto triedy si totiz vSetky postupnosti atémov oznacenych v pri-
pade postupnosti dizky n € N znackami 1,...,n. Exponencialna vytvarajica funkcia P(z) triedy P je

teda dana ako )

12

z ¢oho pre vSetky n € N pre pocet permutacii mnoziny [n] podla o¢akavania dostavame

P(z)

[Pl = nl[z"]P(z) = nl.

Priklad 3.8.2. Urnou nazveme graf o n € N oznacenych vrcholoch bez jedinej hrany. Pre vSetky
n € N evidentne existuje prave jeden takyto graf, ¢o mézeme potvrdit aj pomocou symbolickej metody.
Triedu U vSetkych urien s velkostou danou po¢tom vrcholov totiz mézeme evidentne vyjadrit ako

U = SET(Z2),
z ¢oho pre exponencialnu vytvarajucu funkciu U(z) triedy U dostavame
U(z) = €.

Pre vietky n € N je teda naozaj
n!
[Un| = nl[z"|U(z) = = 1.

Priklad 3.8.3. Uvazujme teraz pocet vSetkych surjektivnych zobrazeni z mnoZiny [n| pre n € N
do mnoziny [r] pre r € N\ {0}. Pre r € N\ {0} pevné tvori mnoZzina takychto surjekcii pre vSetky
n € N kombinatoricku triedu oznagenych objektov S, kde velkostou surjekcie ¢: [n] — [r] rozumieme
¢islo n. Kazdu takuto surjekciu pritom mozno opisat postupnostou vzorov jednotlivych prvkov 1,... 7,
ktorymi mozu byt lubovolné neprazdne podmnoziny mnoziny [n]. Je teda

S = SEQ, (SET>1(Z)),
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kde Z je atomické trieda. Pre exponencialnu vytvarajicu funkciu S,(z) triedy S) tak dostdvame
vztah
Sp(z) = (e = 1)".

Pre vSetky n € N je teda pocet surjekcii z mnoziny [n] do mnoziny [r] dany ako

)30”) = nl[2"S,(2) = nl[2"](e* — 1) = nl[z"] Z (T> (—1)dei* = Z (T> (—1)r=9jm =yl {Z} :

j=0 J Jj=0 J

Tento suvis so Stirlingovymi ¢islami druhého druhu nie je z kombinatorického hl'adiska nijak prekvapivy
— kazdé surjekcia do r-prvkovej mnoziny je totiz jednozna¢ne dané rozkladom svojho defini¢ného oboru
na r tried a informéciou o tom, na ktoré prvky sa zobrazia prvky jednotlivych tried rozkladu.

Priklad 3.8.4. Podobne ako v predchadzajucom priklade moZzeme uvazovat aj celkovy pocet vSetkych
surjektivnych zobrazeni z mnoziny [n] pre n € N do ktorejkol'vek z mnozin [r] pre r € N\ {0}. Takéto
surjekcie tvoria kombinatoricka triedu oznacenych objektov S, kde velkostou surjekcie ¢: [n] — [r]
rozumieme ¢islo n; tuto triedu potom moZno evidentne opisat ako

S = SEQ(SET>1(Z2)),

z ¢oho pre prislusni exponencialnu vytvarajucu funkciu S(z) dostavame

1 1

Sl ey P Rl

Neskor uvidime, Ze pomocou analytickych metéd mozno lahko dospiet k asymptotickému odhadu
pre koeficienty tejto vytvarajicej funkcie.

Priklad 3.8.5. Jazyk vSetkych slov nad abecedou ¥ = {a, b} mdzeme chapat aj ako kombinatoricku
triedu oznacengch objektov W, kde velkostou kazdého slova je jeho bezne definovana dlzka. Kazdé slovo
je pritom dané dvojicou urien, kde prva urna pozostava z atémov oznac¢enych indexmi pismen a a druhé
urna pozostéva z atémov oznac¢enych indexmi pismen b v danom slove. Pre triedu U z prikladu 3.8.2
je teda

W=UXU,

z ¢oho pre exponencialnu vytvarajucu funkciu W(z) triedy W dostavame
W(z) = U*(z2) = e*.

Podla odakavania teda pre vietky n € N je
(Wy| = nl[z"|W(z) = nl[z"]e** = nl— = 2".

Priklad 3.8.6. Triedu P v8etkych permutéacii mnozin [n] pre n € N z prikladu 3.8.1 moZno $pecifikovat
aj s vyuzitim poznatku, Ze kazdu permutéciu moZno prave jednym sposobom rozlozit na disjunktné
cykly — prichddzame tak ku vztahu

P = SET(CYC(Z)),

z ¢oho pre exponencidlnu vytvarajticu funkciu P(z) triedy P dostavame

oy =o (1 (1 2)) = 1

¢o sa zhoduje s pozorovanim z prikladu 3.8.1.
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Priklad 3.8.7. Uvazujme teraz pre vietky r € N\ {0} kombinatoricku triedu oznacenych objektoyv P (")
pozostéavajicu z prave vietkych permutéacii mnozin [n| pre n € N rozlozitelnych na prave r disjunktnych
cyklov; velkostou permutécie opat rozumieme pocet prvkov permutovanej mnoziny. Ttuto triedu mozno
Specifikovat ako

P = SET,.(CYc(Z)),

z ¢oho pre exponencialnu vytvarajucu funkciu P,.(z) triedy P dostavame vztah

P(z) = % (Ln <11Z>)

m = [PI0] = = Pre) = :—!![z"] <Ln <1 ! Z>>

Tieto hodnoty sa zvyknu nazyvat Stirlingoviimi ¢islami prvého druhu.

Preto

Priklad 3.8.8. Dismutdciou nazyvame permutéciu bez pevného bodu — v8etky cykly takejto permu-
tacie st teda dlzky aspoii 2. Uvazujme kombinatorick triedu oznacenych objektov D pozostavajtcu
zo vSetkych dismutacii mnozin [n] pre n € N. Velkostou dismutacie opat rozumieme pocet prvkov
permutovanej mnoziny.

Pre Tubovolnii kombinatorickt triedu oznaenych objektov C spliiajicu Cy = ) mozeme uvazovat
kombinatoricku triedu

Cyes1(C) = Y Cyap(0),
k=2

ktorej exponencidlna vytvarajuca funkcia Csi(z) je evidentne dané ako

z:mlkz:n#— z
Corls) = 3 C12) =1 (=)~

Triedu D potom mozno vyjadrit pomocou Specifikacie
D = SET(CYC>1(2)),

z ¢oho pre exponencialnu vytvarajucu funkciu D(z) triedy D dostavame

D(z) = exp (Ln <1iz> - z> _ 16::




Kapitola 4

Lagrangeova veta o inverzii

Enumerac¢né alohy ¢asto veda k vyjadreniu oby¢ajnej alebo exponencialnej vytvarajucej funkcie C(z)
uvazovanej kombinatorickej triedy C neoznalenych resp. oznafenych objektov v podobe formélneho
mocninového radu, ktory je vzhladom na skladanie radov inverzng k nejakému znamemu radu — vytva-
rajuca funkcia C'(z) teda moze byt dané ako z = R(C(z)) pre nejaky znamy formalny mocninovy rad
R(z) € C[z]. Hoci v takom pripade nemusi byt vZdy mozné prejst od takéhoto implicitného vyjadrenia
vytvarajucej funkcie C(z) k jej explicitnému vyjadreniu, mozno pomocou koeficientov radu R(z) vyjad-
rit koeficienty radu C(z). O vztahu koeficientov tychto dvoch radov hovori Lagrangeova veta o inverzii,
ktorti v nasledujicom dokaZeme a aplikujeme na rieSenie niekol’kych kombinatorickych aloh. Niektoré
Casti tejto kapitoly vychadzaju z knihy [23].

4.1 Formalne Laurentove rady

Hoci moZno Lagrangeovu vetu o inverzii dokazat napriklad aj analyticky alebo kombinatoricky, my tito
vetu dokédZzeme — podobne ako vSetky ostatné fundamentalne vlastnosti formalnych mocninovych radov
— Cisto algebraicky. Takyto dokaz si ale vyzaduje rozsirit obor integrity C[z] formalnych mocninovych
radov s komplexnymi koeficientmi na jeho podielové pole C((z)) pozostavajice zo vsetkych formdlnych
Laurentovyjch radov o jednej premennej z s komplexnymi koeficientmi. Formélne Laurentove rady
pritom definujeme ako zlava konecné, ¢o v komplexnej analyze zodpoveda existencii polu v bode 0;
rady, ktoré by zodpovedali podstatnej izolovanej singularite v bode 0, prvkami C((z)) nie su.

Definicia 4.1.1. Formdlny Laurentov rad o jednej premennej z s komplexnymi koeficientmi je po-
stupnost R = (a,)52 kde pre vSetky n € Z je a, € C a existuje N € Z také, ze pre vsetky celé

n=—oo’
¢isla n < N je a, = 0. Pre lubovolné takéto N potom namiesto R = (an)5>_ ., piSeme

o0
R=R(z) = anz + aN+1zN+1 + aN+22N+2 +...= Z an2"
n=N
a prvky postupnosti (a, )52 _ . nazyvame koeficientmi radu R. Koeficient pri z™ oznac¢ujeme pre vietky

n € 7 ako
[2"R(z) := ay,.

Koeficient ag radu R nazyvame konstantnym a Koeficient a_1 nazyvame formdlnym reziduom radu R.
Mnozinu vSetkych forméalnych Laurentovych radov o jednej premennej z s komplexnymi koeficientmi
oznacujeme C((z)).

Kazdy forméalny mocninovy rad R(z) zaroven povazujeme aj za formalny Laurentov rad taky, ze
pre vietky celé ¢isla n < 0 je [2"]R(z) = 0. Dostavame tak inklaziu C[z] C C(2).
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Dve najdélezitejsie operacie na formalnych Laurentovych radoch — sicet a Cauchyho sucin — defi-
nujeme obdobnym spdésobom ako pre forméalne mocninové rady.

Definicia 4.1.2. Nech R(z),S(z) € C(z) st formalne Laurentove rady. Sictom radov R(z) a S(z)
nazyvame formalny Laurentov rad (R + S)(z) = R(z) + S(z) taky, Ze pre vietky n € Z je

[Z"](R + 5)(2) = [z"]R(2) + [2"]5(2).

Cauchyho sicinom radov R(z) a S(z) nazyvame formalny Laurentov rad (R-S)(z) = R(z)-S(z) taky,
ze pre vsetky n € Z je

RS =S (IM1R) (1"18(2))

k=N
kde N € Z je Tubovolné celé ¢islo také, Ze pre vSetky celé ¢isla n < N je [2"]|R(z) = [z"]S(z) = 0.

Pre vietky n € N\ {0} dalej ozna¢ime ako z~" formalny Laurentov rad R(z) € C(z) taky, ze
[27"|R(2) = 1 a [¢¥]R(2) = 0 pre vietky k € Z\ {—n}.

Podobnym spdsobom ako pre formélne mocninové rady by sme Tahko dokazali, ze (C((z) ,+,,0,1)
je obor integrity. Z uvedenej definicie operacii stuc¢tu a Cauchyho sitc¢inu formalnych Laurentovych
radov navyse lahko vidiet, Ze obor integrity (C[z],+,-,0,1) je podokruhom C(z)). DokaZeme teraz, Ze
(C(2),+,-,0,1) tvori v skuto¢nosti pole.

Tvrdenie 4.1.3. Nech R(z) € C((z) \ {0} je nenulovy formdlny Laurentov rad. Potom existuje prdve
jeden formdlny Laurentov rad R=Y(z) taky, e R(z)R™'(2) =1 a (C(2),+,-,0,1) je pole.

Dokaz. Rad R(z) je nenulovy — nech je teda N najmensie n € Z také, ze [2"|R(z) # 0. To znamena,
ze

R(z) = i anz",
n=N

kde an # 0. Potom

[e.o]

S(z) :=2NR(z) = Z an+nz" € Cl7]

n=0
je formalny mocninovy rad s nenulovym konstantnym koeficientom a podla tvrdenia 2.3.2 tak k nemu
existuje multiplikativny inverzny prvok S—!(z) € C[z]. Pre rad

R7Y2):=2N57(2)
ale v takom pripade dostéavame
R(z2)R7Y2) = 2V 5(2)2 NS 1(2) = S(2)S71(2) = 1.

Obor integrity (C(2)),+,-,0,1) tak musi byt polom, z ¢oho vyplyva aj jedine¢nost multiplikativneho
inverzného prvku R~1(z). O

Formadalnu derivdciu formélneho Laurentovho radu definujeme podobne ako pre formalne mocninové
rady, ¢o vychidza zo skutoCnosti, Ze aj Laurentove rady analytickych funkcii mozno derivovat c¢len
po ¢lene.

Definicia 4.1.4. Nech R(z) = > \ ap2" € C(2) je forméalny Laurentov rad. Formdinou derivdciou
radu R(z) nazveme formalny Laurentov rad

d o0
R'(z) = &R(z) = Z (n+ 1Dapy12™.
n=N-1
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4.2 Lagrangeova veta o inverzii

Zagnime dokazom jednoduchého tvrdenia charakterizujiceho tie forméalne mocninové rady R(z) € C[z],
ku ktorym existuje rad inverzny vzhladom na skladanie — ¢ize forméalny mocninovy rad S(z) € C[z]
taky, ze R(S(z)) = S(R(z)) = z. Kedze su tieto zlozené rady R(S(z)) a S(R(z)) definované iba
za predpokladu [2Y]S(z) = 0 resp. [z°] R(z) = 0, obmedzime sa v zneni tvrdenia iba na rady s nulovymi
konStantnymi koeficientmi.

Tvrdenie 4.2.1. Nech R(z) € C[z] je formdiny mocninovy rad taky, Ze [2°|R(z) = 0. Formdiny
mocninovy rad S(z) € C[z] spliajici [2°]S(z) = 0 a R(S(2)) = S(R(z)) = z potom eristuje prdve
vtedy, ked [2*|R(z) # 0; v takom pripade je rad S(z) dany jednoznacéne. Ak navyse [2°]S(z) = 0 a je
splnend aspon jedna z rovnosti R(S(z)) = z alebo S(R(z)) = z, nutne R(S(z)) = S(R(z)) = z.

Dékaz. Nech (an)o2; je postupnost komplexnych koeficientov takych, ze
R(z) = i anz".
n=1
Ak a1 = [2']R(z) = 0, musi pre vietky S(z) € C[z] splhajice [z°]S(z) = 0 byt
[']R(S(2)) =[] ianS"(Z) =[] ianS”(Z) =0,
n=1 n=2

a teda R(S(z)) # z.
Uvazujme teda pripad, ked a; = [2!]R(z) # 0. Predpokladajme, Ze formalny mocninovy rad
S(z) € C[z], dany ako

S(z) = i b 2"
n=1

[e.9]

o 1, vyhovuje rovnosti R(S(2)) = z. Z definicie zlozenia

pre postupnost komplexnych koeficientov (by,)
formalnych mocninovych radov potom

Z ap,S"(z) = al(blzl + b9z + b33 + .. )+ ag(blzl +bo2? + .. .)2 + a3(b121 +bo2? + .. .)3 +... .=z
n=1

7 toho vyplyva, Ze

arby =1,
ai1by + agb% =0,
a1bs + 2a9b1by + agb? =0,

Ak pritom pre nejaké n € N pozname koeficienty by, . .., by, mozeme z (n + 1)-tej z uvedenych rovnic
— vdaka predpokladu a; # 0 — jednoznac¢ne vyjadrit aj hodnotu koeficientu b,,11. Pre l'ubovolny rad
S(2) = >0 bp2™ s koeficientmi splitajicimi uvedeny systém rovnic naopak evidentne R(S(z)) = z.
Existuje teda prave jeden rad S(z) € C[z] taky, ze [2°]S(z) = 0 a R(S(z)) = 2. Z rovnosti a;b; = 1
navyse vyplyva [2!]S(z) # 0 a z horeuvedenych tivah dostaneme existenciu jediného radu T'(z) € C[[2]
spliajiceho [20]T(2) = 0a S(T(z)) = 2. Kedze pritom (RoS)(z) = z, musi byt aj (RoS)(T(2)) = T(z),
a teda R(z) = R(S(T'(z))) = T(z). Dostavame tak aj druha rovnost S(R(z)) = z.

Keby napokon pre nejaky rad T(z) € C[z] rézny od S(z) bolo [2°]T(z) = 0 a T(R(z)) = z,
z uvedeného by vyplyvalo aj R(T(z)) = z, ¢o by odporovalo dokézanej jednozna¢nosti radu S(z)
spliajiceho [20]S(z) = 0 a R(S(z)) = =. O
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Mozeme teraz sformulovat a dokazat samotni Lagrangeovu vetu o inverzii, pomocou ktorej mozno
pre formalne mocninové rady R(z),S(z) € C[z] spliajice [z°]R(z) = [z"]S(z) = 0 a S(R(2)) = z -
a podla tvrdenia 4.2.1 teda aj R(S(z)) = z — vyjadrit koeficienty R(z) pomocou koeficientov S(z).

Veta 4.2.2 (Lagrangeova veta o inverzii). Nech R(z),S(z) € C[z] su formdine mocninové rady take,
Ze [2°]R(2) = [2°]S(2) = 0 a S(R(2)) = z. Pre vsetky n € N\ {0} potom

2"R(2) = ~[+7Y]

T (4.1)

Specidlne v pripade, ked S(z) = z/¢(z) pre nejaky formdlny mocninovy rad ¢(z) € C[z] splitajici
[2°)6(2) # 0 a R(2) = 2¢(R(2)), je pre vsetky n € N\ {0}

2"IR(z) = ~[" 116" (2) (12)
a pre vietky n € N\ {0} a k € N je!
"R () = S Hn o) (4.3

Poznamka 4.2.3. Pri vztahu (4.2) sa niekedy zvykne hovorit o inverzii v Lagrangeovom tvare, kym
vztah (4.3) sa nazyva Birmannovym tvarom Lagrangeovej vety o inverzii.

Dékaz vety 4.2.2. Podla tvrdenia 4.2.1 musi byt aj R(S(z)) = z. Ak teda

pre nejaké postupnosti komplexnych koeficientov (a,)5%; a (by)22,, je

R(S(2)) =Y apS¥(2) = 2. (4.4)
k=1

Poktuisme sa pre dané n € N z tohto vztahu vyjadrit koeficient a,. VyuZzijeme pritom o¢ividnt vlastnost
formalnych Laurentovych radov: pre reziduum derivacie lubovolného L(z) € C((2) plati [z~ L/(z) = 0.
Derivovanim rovnosti (4.4) dostavame

i kapS*1(2)8'(z) = 1.
k=1

Rad S(z) je vdaka tvrdeniu 4.2.1 nenulovy a rovnost tak mozeme predelit radom S™(z):

1

B = kap d o,
Sn(z)

> kapSF(2)S(2) = —SF(2) 4+ na,STY(2)8'(2) +
k=1

kak d Sk_n

k—ndz k—ndz (2).

k=1 k=n+1

Vo vieobecnosti nemusi byt k < n, takze koeficient [2"~*]¢™(2) treba na pravej strane nasledujiicej rovnosti inter-
pretovat v zmysle definicie pre Laurentove rady; kedze je ale ¢™(z) formalny mocninovy rad, bude v pripade k > n vidy

[""*)¢" () = 0.



Lagrangeova veta o inverzii 73

KedZe je teda reziduum formalnej derivicie kazdého formalneho Laurentovho radu nulové a kedze
podla tvrdenia 4.2.1 musi byt b; # 0, nutne

_ 1 _ _ _ S/(Z) _1.01 + 2b2z + 3b3,z2 + ...

1 1 1 / 1 1

[z ]S”(z) (27 na (2)S'(2) = nay[z"7] S(2) nap|z ]blz T b T

[ 71] <b1+2b22—|—3b322+... 1 )
= Nnanl|z : = Nan,
b1z 1+(b2/b1)2+(b3/b1)22+...
¢im je dokdzana rovnost (4.1):
n _ l -1 1
an = [2"|R(z) = n[z ]S”(z)'

Nech dalej S(z) = z/¢(z) pre ¢(z) € C[2] take, Ze [2°]¢(z) # 0. Potom

S(R(z)) =

a rovnosti R(S(z)) = S(R(z)) = z st tak ekvivalentné rovnosti R(z) = z¢(R(2)). V takom pripade je

o = IRG) = 2l s = 2 e = w T IEC)

¢o dokazuje rovnost (4.2).
Pri dokaze rovnosti (4.3) napokon moézeme postupovat podobne ako vyssie. Predpokladajme, ze
pre k € N\ {0} je

RF(2) = i cnz"
n=1

pre nejaki postupnost koeficientov (c,)2 ;. Kedze R(S(z)) = z, musi byt RF(S(z)) = 2* - ¢ize

o

RF(S(2)) = chSj(z) = 2",

=1

Derivovanim tejto rovnosti dostavame

> iei ST (2)8 () = k2
j=1

Z toho
S s 980 = 3 29 ) s s+ 3 29 g
Sn(z) 4 J — j —ndz " j—ndz
7j=1 7=1 j=n+1
a rovnakym sposobom ako vysSie tak zistujeme, Ze
k—1
[z_l]l;i(z) = [z ne, ST (2)S(2) = nep.
Skutocne teda
1 k2F1 & Zktn k k
— [, pk _ .1 — Min — Minykn _ My n—kyn
Cn = [Z ]R (2) - n[z ]Sn(Z) n[z ]S”(z) n[z ]Z ¢ (Z) n[z ]¢ (Z)

Pre k = 0 je rovnost (4.3) trividlna — veta je teda dokdzana. O
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Ukézme si teraz priklad kombinatorickej aplikicie Lagrangeovej vety o inverzii — pdjde o zovSeobec-
nenie tlohy o poc¢te plnych binarnych stromov z prikladov 1.3.1 a 3.5.3.

Priklad 4.2.4. Uvazujme kombinatoricki triedu 7(*) neoznacenych objektov pozostavajicu zo viet-

kych pingch t-drnych stromov pre nejaké t € N\ {0} — ¢iZe zo vSetkych usporiadanych zakorenenych

stromov, ktorych vnitorné vrcholy maji vzdy presne ¢ synov. Velkost stromu je dan& po¢tom vrcholov.
Triedu 7® moézeme opisat pomocou rekurzivnej specifikicie

TO = 2, + 2, x (T“))t,

kde Z, = {e} je atomicka trieda. Pre oby¢ajnt vytvarajucu funkciu T;(z) triedy T® tak dostavame
vztah
Ti(2) = 2(1+ TH(2).

Pre rad ¢ (z) = 1+ 2% je teda Ty(2) = 2¢4(Ty(z)) a z Lagrangeovej vety o inverzii preto vyplyva, Ze
pre vietky n € N\ {0} je

7;1(0‘ = ["Tu(2) = %[zn_l]@?(z) = %[zn_l](l + 2" = { gz((n—nl)/t) ak n =1 (mod t),

inak,

kde v rdmci posledného kroku sme pouzili binomicka vetu. V§imnime si, ze v stlade s prikladom 1.3.1
a prikladom 3.5.3 pre t = 2 a vSetky n € N dostéavame

(2) ‘: iy ) - b (Zntl) (2n +1)! _ Ly

4.3 Enumeracia oznacenych stromov: Cayleyho vzorec

Odvodime teraz znamy Cayleyho vzorec, podla ktorého existuje presne n"~2 stromov o n € N\ {0}
oznacenych vrcholoch; alternativne ho mozno formulovat ako tvrdenie hovoriace, Ze existuje presne
n"~! zakorenenych stromov o n € N\ {0} oznacenych vrcholoch. Prave tito druht verziu tvrdenia

teraz dokdzeme s pouzitim symbolickej metody a Lagrangeovej vety o inverzii.

Veta 4.3.1. Pre vsetkyn € N\{0} ezistuje presne n™ ! zakorenengjch stromov o n vrcholoch oznacenyjch
prvkami mnoZiny [n).

Dékaz. Kombinatorickt triedu oznacenych objektov T, pozostavajicu zo vSetkych zakorenenych stro-
mov s velkostou danou po¢tom vrcholov, moZzno vyjadrit pomocou rekurzivnej Specifikacie

T =Z*SET(T);

kazdy zakoreneny strom totiZz pozostéva z koreifia a niekolkych podstromov, ktoré mozno povazovat
za zakorenené vo vrcholoch spojenych hranou s korenom pévodného stromu. Pre exponencialnu vytva-
rajucu funkciu 7'(2) triedy T tak dostavame vztah

T(z) = ze"®).

Z Lagrangeovej vety o inverzii preto vyplyva, Ze pre vietky n € N\ {0} je

1 n—1

|7:7,’ = n![z”]T(z) =nl. *[Znil]enz — n

O 0
n n (n—1)!
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Désledok 4.3.2 (Cayleyho vzorec). Pre vietky n € N\ {0} ezistuje presne n" =2 stromov o n vrcholoch
oznacenych prvkami mnoZiny [n].

Dokaz. Nech U je kombinatoricka trieda v8etkych takychto oznacenych stromov s velkostou danou
po¢tom vrcholov. Kombinatoricka trieda 7 z dékazu predchadzajtcej vety je k nej potom vo vztahu

ou="T.

Z toho vyplyva, 7e pre vietky n € N je |T,| = [(OU),| = n|Uy,|. KedZe teda z vety 4.3.1 mame
|7n| = n"~1, prichddzame k vysledku |U,| = n"~2. -

Existuje aj viacero inych dékazov Cayleyho vzorca, z ktorych mnohé vyuzivaju omnoho elementar-
nejSie nastroje, nez si vytvarajuce funkcie, symbolickd metoda a Lagrangeova veta o inverzii. Na ukazku
teraz uvedme bijektivny dokaz zaloZeny na tzv. Priferovijch kédoch.

Bijektivny dokaz Cayleyho vzorca. Pre n = 1 existuje prave jeden strom o n oznacenych vrcholoch,
pricom n™ 2 = 1. Predpokladajme teda, ze n > 2. Ku kazdému stromu 7 o n vrcholoch oznacenych
prvkami mnoziny [n] potom mozno priradit postupnost prvkov tejto mnoziny [n] dizky (n — 2) —
tzv. Priiferov kéd stromu T — definovant nasledujicim spdésobom: nech T7,...,T,_1 st stromy také,
ze T' = T a strom Tj4q vznikne pre k = 1,...,n — 2 zo stromu T} odstranenim listu s najmensou
znackou; nech vg € [n] je znacka vrcholu, s ktorym list odstraneny v k-tom kroku susedi. Priiferovym
kédom stromu T' potom nazveme postupnost (vi,. .., v,—2).

Dokazeme, Ze kaZdd postupnost prvkov [n] dlzky n — 2 je Priiferovym koédom nejakého stromu.
Nech (vq,...,v,_2) € [n]" 2. Ak je tato postupnost Priiferovym kédom nejakého stromu 7', musi byt
pre k=1,...,n — 2 jeho k-tym odstranenym listom vrchol so znackou

U, =min ([n] \ ({f1,..., l—1} U{vk, ..., vn—2})); (4.5)

Gisla £1, ..., 0,1 s totiz prave vSetky znacky vrcholov odstranenych v predchadzajucich krokoch a spo-
medzi zvysnych vrcholov so znackami z [n]\ {1, ..., lk_1} si listmi stromu T}, prave tie z tychto vrcho-
lov, ktoré sa nevyskytuji medzi vrcholmi so znackami vg, ..., v,—2. Keby bol totiz listom stromu T}
vrchol s niektorou zo znaciek vy, ..., v,—2 — napriklad v; pre j € {k,...,n — 2} — v j-tom kroku by
sme odstranili s nim susedny list a strom 741 by pozostaval z prave jedného vrcholu; to je spor,
pretoze kazdy zo stromov T17,...,T,_1 obsahuje aspon dva vrcholy. Keby bol naopak niektory vrchol
so znackou z [n] \ ({f1,...,€e—1} U {vg, ..., vp—2}) vnitornym vrcholom stromu Tj, museli by sme
pre nejaké j € {k,...,n — 2} odstranit v j-tom kroku celého procesu jeho suseda, pretoze vo vy-
sledku musime ziskat strom 7;,_1 bez vniatornych vrcholov; to ale znamené, Ze ide o vrchol so znac-
kou v; & [n]\ ({€1,... . lp—1} U{vk,...,vn—2}), Co je opét spor. V ramci (4.5) teda naozaj vyberame
najmensiu znacku listu v strome Tj.

Tychto n — 2 postupne odstranenych listov jednoznacne uréuje n — 2 hran stromu 7', ktoré musia
pre k = 1,...,n — 2 spajat vrcholy so znackami f; a vg. ZvySna hrana stromu 7T spéja jediné dva
vrcholy so znackami z [n] \ {¢1,...,lh—2}.

K Tubovolnej postupnosti (v1,...,v,_2) € [n]"~2 teraz moézeme skonstruovat graf tak, Ze zaéneme
s grafom (G1 o n vrcholoch so znackami 1, ..., n a s jedinou hranou spéjajucou dvojicu réznych vrcholov
so znackami z [n] \ {¢1,...,0ln—2} — kedZe ¢1,...,0,_o st evidentne po dvoch rézne, je tato dvojica
vrcholov dané jednoznacne. Pre k = 2,...,n — 1 teraz graf Gy vznikne z grafu G_1 pridanim hrany
spajajuacej vrcholy so znackami ¢, j a v, . Musime dokazat, ze graf G,_1, ktory tymto postupom
nakoniec dostaneme, bude stromom.

KedZe ma G,,_1 presne n—1 hran, stac¢i dokazat acyklickost grafov G1, ..., G,_1. DokdZeme o nieco
silnejgie tvrdenie: pre £ = 1,...,n — 1 je graf acyklicky a neobsahuje Ziadnu hranu incidentnu s vr-
cholom s niektorou zo znaciek {1, ...,0,_r_1}. Graf G; obsahuje jedina hranu, takze urcite acyklicky

je; priamo z jeho definicie navySe vyplyva, Ze jeho jedina hrana nie je incidentné so ziadnym vrcho-
lom s niektorou zo znaciek {¢i,...,¢,_2}. Nech je dalej graf Gy pre k € [n — 2] acyklicky a nech
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neobsahuje Ziadnu hranu incidentnt s vrcholom s niektorou zo znaciek {f1,...,¢,_r_1}. Graf Gpiq
vznikne z grafu G pridanim hrany incidentnej s vrcholom so znackou ¢, _;_1, pri¢om s tymto vrcho-
lom nie je incidentnéd ziadna hrana grafu Gj — acyklicky teda musi byt aj graf Gj41. Novopridana
hrana navySe spaja vrchol so znackou ¢, 1 s vrcholom so znackou v,_x_1 a zo (4.5) vyplyva, Ze
Un—k—1 & {l1,...,ln_g—2}. Graf Gpi1 teda neobsahuje Ziadnu hranu incidentna s vrcholom s niekto-
rou zo znaciek {¢1,...,0,_k—2}.

Zostava dokazat, Ze zobrazenie priradujice stromu jeho Priiferov koéd a zobrazenie priradujice
postupnostiam z [n]""2 pre n € N\ {0,1} prislusny strom G,_; st vzajomné inverzné bijekcie.
Z nasej argumentéacie v suvislosti s definiciou stromu G,_; vyplyva, ze ak k Priiferovmu kodu Tu-
bovolného stromu 7' opisanym sposobom zostrojime strom G,_1, bude G,,_1 = T. Potrebujeme este
dokazat, ze Priiferovym kédom stromu G, _1 zostrojeného vyssie opisanym sposobom k postupnosti

(v1,...,vn—2) € [n]""2 je opit postupnost (v1,...,v,_2).
Nech teda T = G,,_1 opisanym sposobom prisliicha k nejakej postupnosti (vy,...,v,_2) € [n]" 2

a nech Ty,...,T,_1 st stromy ziskané zo stromu 7T ako v definicii Priiferovho kédu. Potrebujeme
dokézat, ze pre k = 1,...,n — 2 je list s najmenSou znackou v strome T}, susedny vrcholu v. VysSie
sme ale uz videli, Ze najmensia znacka £ listu v strome T} je dané ako

f, = min ([n] \ ({51, . ,gk—l} @) {Uk, e Un_g})) .
Strom T}, pritom pozostava z vrcholov so znackami [n]\ {¢1,...,¢x_1} a obsahuje vSetky hrany stromu
T = G, _1 spajajuce dvojice takychto vrcholov. KedZe navySe pre j = 1,...,k — 1 je

Ej = min ([n] \ ({61, R ,éj_l} U {Uj, e ,'Un_g})) ,
nutne vy & {l1,...,0x_1}. Strom T} teda obsahuje vrcholy so znackami ¢y aj v, a teda musi obsahovat
aj hranu medzi tymito dvoma vrcholmi, ktora je suc¢astou stromu T = G, _1 — vrchol s minimélnou
znackou v strome T} teda naozaj musi susedit s vrcholom so znackou vy. O

Vel'ké mnozstvo dalsich roznorodych dokazov Cayleyho vzorca je zozbieranych v knihe Matouska
a Nesetfila [16].



Kapitola 5

Zaklady analytickej kombinatoriky

Vytvarajtuce funkcie kombinatorickych tried sme doposial chapali vyhradne ako formdine mocninové
rady — neslo teda o funkcie v pravom slova zmysle, nedavalo zmysel hovorit o dosadzovani hodnot
za premennt z a otazky konvergencie radov pri takomto pohl'ade nehrali Ziadnu rolu. V naom ponimani
st napriklad dobre definovanymi aj obycajné vytvarajuce funkcie ako napriklad

A(z) = i 92" n
n=0

alebo
B(z) = Z nlz"
n=0

— hoci ide o mocninové rady s nulovym polomerom konvergencie, ktoré tak nie st reprezentaciami
ziadnej funkcie analytickej v bode 0.

V nasledujucich partiach tohto textu sa budeme zaoberat predovSetkym analyzou asymptotickych
vlastnosti koeficientov vytvéarajucich funkcii — jednym z najdolezitejsich problémov enumerativnej kom-
binatoriky. Tu sa naopak analyticky pohlad na vytvarajuce funkcie ukazuje ako rozhodujaci. Uvidime,
ze pokial je vytvarajuca funkcia dand mocninovym radom s nenulovym polomerom konvergencie —
a teda reprezentuje funkciu analytickat v bode 0 — moZno na analyzu asymptotickych vlastnosti jej ko-
eficientov aplikovat nastroje komplexnej analyzy, ako napriklad Cauchyho integralny vzorec; kltacova
tlohu pritom budu zohravat singularity takto analyticky chapanych vytvarajucich funkcii. Vstupime
tak na podu analytickej kombinatoriky.

Namiesto oboru integrity formélnych mocninovych radov sa teda poviacsine budeme pohybovat
v jeho podokruhu tvorenom komplexnymi funkciami analytickymi v bode 0. Symbolickd metdéda — ako aj
vietky dalsie techniky vybudované na ¢isto formalnej trovni — v8ak vdaka pozorovaniam ucinenym
v druhej a tretej kapitole zostani pouZiteIné aj nad’alej. Ak sa napriklad vytvarajtca funkcia nejakej
kombinatorickej triedy, vyjadrend pomocou elementarnych radov a € C a z a Standardnych operacii
na forméalnych mocninovych radoch ukéze byt konvergentnou na okoli bodu 0, méZeme ihned prejst
do komplexnej analyzy a tento novy pohlad na vytvarajtcu funkciu vyuzit na analyzu jej koeficientov.

V tejto kapitole sa budeme zaoberat najzékladnejSimi analytickymi vlastnostami — obyc¢ajnych
aj exponencialnych — vytvarajucich funkcii. Budeme teda sktimat vlastnosti holomorfnych funkeii,
ktorych Maclaurinov rad mé nezaporné realne koeficienty (¢o je pripad vSetkych vytvarajucich funkeii)
a Specialne prirodzené koeficienty (ktorymi sa vyznacuju obycajné vytvarajiuce funkcie). Péjde pritom
o matematicky zaklad potrebny na skimanie asymptotickych vlastnosti koeficientov vytvarajicich
funkcii metddou analyzy singularit, ktorou sa budeme zaoberat v nasledujicej kapitole.
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5.1 Polomer konvergencie radu a asymptotické vlastnosti koeficientov

Na uvod nasho skamania radov z podokruhu Hy oboru integrity C[z] dokdzme jednoduché tvrdenie
dévajice do sivisu polomer konvergencie Maclaurinovho radu analytickej funkcie s asymptotickym
spravanim jej koeficientov, ktoré okrem iného poskytuje aj velmi jednoduchtu charakterizaciu pod-
okruhu Hy okruhu C[z]. Pojde pritom o variant vety o polomere konvergencie mocninového radu
znamej z komplexnej analyzy.
Tvrdenie 5.1.1. Nech R(z) € C[z] je formdlny mocninovy rad. Potom R(z) € Hy prdve vtedy, ked
existuge redlne ¢islo r > 0 také, Ze pren — oo je |[z"|R(z)| = O(r™). Polomer konvergencie funkcie R(z)
v bode 0 je v takom pripade dang ako

B 1

~inf{r >0 [ [[z"]R(2)] = O(r)}’

kde pre 1cely tohto tvrdenia je 1/0 = oo.

Dokaz. Podla vety o polomere konvergencie [12, veta 3.2.3| je polomer konvergencie ¢ mocninového
radu s koeficientmi rovnakymi ako v R(z) € C[z] dany vztahom

1

*" limsup, . VIR

)

kde 1/0 = o0 a 1/00 = 0. Polomer konvergencie g je teda nenulovy prave vtedy, ked je horna limita

limsup {/|[2"|R(z)]

n—oo

kone¢na. Za tohto predpokladu v8ak zaroven plati rovnost

limsup v/|[z?|R(z)| =inf {r >0 | |[z"]R(2)| = O(r") }, (5.1)

n—oo

o Com sa moZeme presvedcit nasledovne:

limsup /|Z]R(=)] = lim sup {/E7R(:)] =

n—o0 m—00 n>m

= lim inf{rZO

m—00

sup /RG] < 7 | =

n>m

m—ro0

= lim inf{rzo ’Vnzm: V|[z"R(2)| gr}:

= ligl inf{r >0 |Vn>m:|[z"|R(z)| <"} =

2 it {r>0 | Yn 2 m: |[RG) <) =
me

=inf{r>0|3ImeNVn>m:|}z"|R(z)| <r"} ()

() inf{r>0[3C>03ImeNVn>m:|["|R(z)| <Cr"} =

=inf{r >0 [ [[z"|R(z)| = O(r") }.
Rovnost s oznacenim (*) tu vyplyva z toho, Ze ide o limitu postupnosti infim rasticeho retazca mnozin,

ktora je nutne nerasttica. Predposlednt rovnost (x*) mozno dokazat nasledovne: kedZe je mnozina
na pravej strane rovnosti nadmnozinou mnoziny na lavej strane, nutne

inf{r >0 | ImeNVn>m:|"|R(z)| <r"}>
>inf{r>0 [3C >03ImeNVn>m:|["|R(z)| <Cr"}.
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Za ucelom sporu predpokladajme, Ze je tato nerovnost ostra a oznacme
ro=inf{r>0 |3C >03Im e NVn>m:|[z"|R(z)| < Cr"}.

Pre Tubovolné € > 0 potom existuje r € [rg, o + €] také, Ze pre nejaké C' > 0, nejaké m € N a vSetky
n > m je |[z"]|R(z)] < Cr"; sucasne vSak musi existovat § > 0 také, ze pre ziadne s € [rg, 79 + 0]
neexistuje m’ € N také, ze pre vietky n > m/ je |[2"]|R(z)| < s™. To v8ak nie je mozné — ak napriklad
vezmeme £ = §/2 a k nemu prislachajtce r € [rg,ro + €] a C > 0, mdZeme uvazovat

s=r+0/2€[rg,ro+ 9.

Pre dostato¢ne velké n potom musi byt s > Cr™ — existuje teda aj m’ € N také, ze pre vietky n > m’
je |[z"]R(2)| < s™: spor. To dokazuje rovnost (xx) a tym padom aj rovnost (5.1).

Pre rady s nenulovym polomerom konvergencie ¢ teda existuje r > 0 také, Ze pre n — oo je
[[z"]R(z)] = O(r™) a samotny polomer konvergencie g je dany ako v zneni tvrdenia. Zostava dokazat,
Ze existencia realneho ¢isla r > 0 splhajiceho |[z"]R(z)| = O(r") pre n — oo implikuje nenulovost
polomeru konvergencie uvazovaného radu. V takom pripade ale existuju C' > 0 a m € N také, ze
pre v8etky prirodzené ¢isla n > m je |[z"]|R(2)| < Cr™, v désledku ¢oho pre polomer konvergencie o

dostavame
o ! =limsup {/|[z"]R(z)| < limsup V/|Crn| =r < oo,
n—0o0 n—oo

takze skutocne o > 0. O

Dosledok 5.1.2. Nech R(z) € R>o[z] je formdlny mocninovy rad. Potom R(z) € Hy prdve vtedy, ked
existuje redlne ¢islo r > 0 také, Ze pre n — oo je [2"]R(z) = O(r™). Polomer konvergencie funkcie R(z)
v bode 0 je v takom pripade dany ako

1
O T (>0 | R() = 0™}’

kde pre tcely tohto tvrdenia je 1/0 = oo.

Polomer konvergencie funkcie analytickej v bode 0 teda tizko sivisi s asymptotickymi vlastnostami
koeficientov jej Maclaurinovho radu. Pozorovania u¢inené v ramci tohto oddielu uz onedlho preformu-
lujeme do podoby prvého principu asymptotiky koeficientov — ziskame tak néastroj na ,hrubozrnnu“
analyzu koeficientov vytvarajucich funkcii a sticasne aj nas prvy jednoduchy vysledok z oblasti analy-
tickej kombinatoriky.

5.2 Pringsheimova veta

Dokazeme teraz dalsie dolezité tvrdenie o funkciach, ktorych Maclaurinov rad ma nezaporné realne
koeficienty. Vieme, 7e kazda funkcia, ktorej Maclaurinov rad mé polomer konvergencie o splhajuci
0 < o < oo, musi mat aspon jednu singularitu s absolitnou hodnotou o [12, veta 13.2.1] — kazdu
takuto singularitu budeme nazyvat dominantnou. Takzvana Pringsheimova veta je spresnenim tohto
tvrdenia pre funkcie z Hy N R>o[2] s nenulovym koneénym polomerom konvergencie p: hovori, ze
singularitou kazdej takejto funkcie musi byt aj samotny polomer konvergencie p. Ak mé teda funkcia
z Hyo NR>q[#] singularitu, je medzi jej dominantnymi singularitami vzdy aj nejaké kladné reélne ¢islo.
Dokaz Pringsheimovej vety moZno najst napriklad aj v [26].
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Veta 5.2.1 (Pringsheimova veta). Nech R(z) € Ho N Rx>o[z] je funkcia s polomerom konvergencie o
Maclaurinovho radu spliiajicim 0 < o < 0o. Potom je bod o singularitou funkcie R(z).

Dékaz. Predpokladajme, Ze pre z € D(0, o) je

R(z) = i anz",
n=0

kde pre vietky n € N je a,, nezaporné realne ¢islo. Na D(0, g) st potom holomorfné aj vietky derivacie
R(™)(z) funkcie R pre m € N [12, désledok 6.3.4], pricom pre vietky z € D(0, o) je

RM™(z) = Z n™anz""™, (5.2)

ide tu o dosledok tvrdenia 2.4.2 a skutoc¢nosti, ze formélna derivacia sa pre rady z Hy spriava rovnako
ako bezna analyticka derivacia.

Za ucelom sporu teraz predpokladajme, Ze bod g nie je singularitou funkcie R(z). To znamena, Ze
existuje priame analytické predizenie (S(z), D(o,r)) analytického prvku (R(z), D(0, 0)) v bode o, kde
r > 0 je redlne ¢islo. Tato situacia je znazornené na obréazku 5.1.

(1(2), D(0, 0))

Obr. 5.1: Analytické predizenie funkcie R(z) v bode .

7 definicie priameho analytického predizenia vyplyva R(z) = S(z) pre vietky z € D(0, 0)N D(p,7).
MoéZeme teda obor definicie funkcie R(z) rozsirit na D(0, o) U D(p,r) a namiesto S(z) pre z € D(p,r)
pisat opat len R(z).

Zvolme teraz realne h spliajice 0 < h < o a redlne € > h tak, aby pre nejaké § > 0 platilo
D(o— h,e +6) C D(p,7).! Této situdcia je znazornena na obrazku 5.2.

Obr. 5.2: Vol'ba hodnédt h a €.

1Za predpokladu r < p, nesposobujiiceho ujmu na vieobecnosti, mozno vziat napriklad h < r/3 a e = 2h.
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Funkcia R(z) je v (nezdpornom realnom) bode ¢ — h analytickdi — mozno ju tam teda rozvinut
do Taylorovho radu

R(2) = bn(z — o0+ h)™. (5.3)

Nk

0

Kedze je R(z) analytickd na D(g¢ — h,e + ) C D(p,r), z vety o Taylorovych radoch [12, veta 7.2.1]

vyplyva konvergencia tohto radu pre vietky z € D(o — h, €). Podla tej istej vety a podla (5.2) navyse
pre koeficienty b, pre vSetky m € N dostavame vztah

R™ (g — h) > /n m
b= L0 LS gy m:;<m>“"(9‘h)n |

n=m

3
|

KedZe su vsetky koeficienty a,, nezaporné realne a kedze o — h > 0, st vietky koeficienty by, takisto
nezaporné realne.
Vyhodnotme teraz rad (5.3) v bode z = ¢ — h + . Zistujeme, Ze

Rlo—h+e)= i be™ = i (i <;>an(g— h)”m> e —

n=m

_ZZ<> (o — h)"—mem — Zan<z< >(Q_h)n—m6m>:

m=0

kde v8etky rady konverguju a zdmena nekoneénych suétov je odévodnend nezapornostou vsetkych
¢lenov. Maclaurinov rad pre R(z) teda konverguje v bode 9 —h+e > p, pricom podla vety o polomere
konvergencie musi v tomto bode divergovat: spor. O

5.3 Prvy princip asymptotiky koeficientov

Tvrdenie 5.1.1 vyjadruje polomer konvergencie analytickej funkcie pomocou asymptotickych vlastnosti
koeficientov jej Maclaurinovho radu. MoZno ho v8ak chapat aj ,naopak® — ako tvrdenie opisujice
asymptotické spravanie koeficientov pomocou polomeru konvergencie.

V 8pecidlnom pripade vytvarajucich funkcii teda ide o jednoduchy nastroj na ,hrubozrnni“ ana-
lIyzu ich koeficientov na zaklade polomeru konvergencie, alebo ekvivalentne — podla Pringsheimovej
vety — na zéklade kladnej dominantnej singularity. Tento ekvivalentny pohlad na tvrdenie 5.1.1 expli-
citne sformulujeme vo vete 5.3.5, ktora sa tak stane nasim prvym jednoduchym vysledkom z oblasti
analytickej kombinatoriky, umoznujicim skiamat ,,exponencidlny rast hornej hranice koeficientov vy-
tvarajucich funkcii, pricom akakolvek ,subexponencidlna zlozka* bude takouto analyzou zanedbana.
Téato idea je sformalizovand v nasledujtcej definicii.

Definicia 5.3.1. Nech (ay)52 je postupnost komplexnych ¢isel. Hovorime, ze (a, )5 je exponencidl-
neho rddu g > 0 — a piSeme a, > g™ — ak

g=1inf{r >0 | |ap| = O(r") pre n — o0 }.

Namiesto a, 1 1" budeme pisat a, > 1 a namiesto a,, > (q_l)n budeme pisat a, < g~

Takto definovany pojem exponencidlneho radu moZno zachytit roznymi ekvivalentnymi sposobmi,
ako ukazuju napriklad nasledujtce tri tvrdenia.



82 5.3 Prvy princip asymptotiky koeficientov

Tvrdenie 5.3.2. Nech (a,), je postupnost komplexnijch cisel a ¢ > 0. Potom ay > ¢ prdve vtedy,
ked
g = limsup V/|an|.
n—oo

Dékaz. 7 tvrdenia 5.1.1 vyplyva, Ze za uvedenych predpokladov je ¢ = o~!, kde o je polomer konver-
gencie mocninového radu

o
R(z) = Z anz".
n=0
Vdaka vete o polomere konvergencie ale stcasne aj
o ! =limsup ¥/|ay|
n—oo
a tvrdenie je dokazané. O

Tvrdenie 5.3.3. Nech (a,), je postupnost komplexnijch cisel a ¢ > 0. Potom ay > ¢" prdve vtedy,
ked si pre vsetky € > 0 splnené nasledugice podmienky:

(i) Pre nekonecne vela roznych n € N je |ap| > (¢ — &)™
(13) Pre skoro vietky n € N je |a,| < (¢ +¢)".

Dokaz. Platnost podmienky (i) pre vetky € > 0 je o¢ividne ekvivalentna s vyrokom ,pre ziadne p < g
nie je |a,| = O(p™)“. Podobne platnost podmienky (ii) pre vSetky € > 0 je ekvivalentna s vyrokom
spre vietky p > ¢ je |a,| = O(p™)“. Priamo z definicie exponencialneho radu uz potom vyplyva, Ze
obidva tieto vyroky su pravdivé prave vtedy, ked a, > ¢™. O

Tvrdenie 5.3.4. Nech (a,)5, je postupnost komplexnijch ¢isel a ¢ > 0. Potom ay > ¢" prdve vtedy,
ked pre vSetky n € N je
an = q"a(n),

kde a: N — C je funkcia spliiajica a(n) >a 1.2

Dékaz. Polozme a(n) := a,/q". Potom

1
limsup {/|a(n)| = limsup {/ Jan| = — limsup V/|ay|.
n—00 n—00 q" q

n—0o0
Z tvrdenia 5.3.2 teda vyplyva, Ze a,, > ¢" prave vtedy, ked a(n) > 1. O]

Veta 5.3.5. Nech R(z) € Hy je analytickd funkcia s polomerom konvergencie o Maclaurinovho radu
spliiagicim 0 < o < co. Potom
[2"]R(z) b 07"

Dékaz. Vyplyva bezprostredne z tvrdenia 5.1.1 a definicie exponenciadlneho radu. O

Ak §pecialne R(z) € Hyo NRx>o[z] — ¢o je pripad vSetkych vytvarajucich funkeii — je ¢ v predché-
dzajucej vete rovné kladnej dominantnej singularite funkcie R(z) a exponencidlny rad hovori, namiesto
o ich absolutnej hodnote, o samotnych koeficientoch tejto vytvarajicej funkcie. Vetu 5.3.5 vysloveni
v tomto kontexte Flajolet a Sedgewick [9] nazyvaja prvgm principom asymptotiky koeficientov. Slovne
mozno tento princip zhrndt tak, ze absolitna hodnota dominantnych singularit vytvarajicej funkcie
udéava exponencidlny rdd jej koeficientov.

2Funkcia a(n) sa v tomto kontexte nazyva aj subexponencidlny faktor. Ide o funkciu, ktorej horna hranica rastie
pomalsie, nez lubovolna rastica exponencialna funkcia (av8ak pre nekone¢ne vela n sa da zdola ohrani¢it l'ubovolnou
klesajicou exponencialnou funkciou). Do tejto triedy patria napriklad vSetky polynomické alebo logaritmické funkcie.
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Omnoho hlb§im tvrdenim je druhy princip asymptotiky koeficientov, podla ktorého je subexponen-
cialny faktor vytvarajucich funkcii v uréitych (¢asto nastavajicich) pripadoch dany charakterom tychto
singularit — napriklad funkcie, ktorych jedinad dominantné singularita je polom, vetky vykazuji velmi
podobné asymptotické vlastnosti koeficientov; podobne aj vSetky funkcie, ktorych jedind dominantné
singularita je algebraickym bodom vetvenia a podobne. Tento druhy princip asymptotiky koeficientov
je uzko spaty s metddou analyjzy singularit, ktorou sa budeme zaoberat v nasledujticej kapitole.

5.4 Hankelova integralna reprezentacia funkcie 1/T'(2)

Funkciu gama mozno pre vietky z € C spliajice Re z > 0 definovat prostrednictvom (vo vieobecnosti
obojstranne) nevlastného Fulerovho integrdlu

I'(2) ::/ et at,
0

ktory konverguje pre vSetky z s kladnou realnou zlozkou a reprezentuje tak funkciu, ktora je na svojom
defini¢nom obore holomorfna [12]. V ramci tohto oddielu dokédZeme alternativnu integralnu reprezen-
taciu pre funkciu 1/I'(z), pomocou ktorej mozno tuto funkciu vyjadrit vo vsetkiych bodoch komplexnej
roviny. Tato tzv. Hankelova integrdlna reprezentdcia funkcie 1/T'(z) uz viac nebude nevlastnym in-
tegralom komplexnej funkcie redlnej premennej, ale pojde o nevlastny krivkovy integrdl komplexnej
funkcie komplexnej premennej — ¢o je typ integralu, s ktorym sme sa doposial nestretli. Tento vysle-
dok neskér vyuzijeme pri dokazoch tvrdeni, na ktorych je zaloZena metdda analyzy singularit — jeden
zo stredobodov analytickej kombinatoriky. Citatela odkazujeme aj na [9, 11].

Funkcia gama: opakovanie. Na tivod si pripomenime niekol'ko zékladnych poznatkov o funkeii gama
[12]. Vieme, 7e pre vietky z € C s Rez > 0 funkcia I'(2) splia rekurentny vztah I'(z + 1) = 2T'(2);
dolezitymi hodnotami funkcie gama sia I'(1) = 1 a I'(1/2) = /. V dosledku uvedeného rekurentného
vztahu a hodnoty funkcie gama v bode 1 zistujeme, Ze pre vietky n € N je I'(n 4+ 1) = n! — funkciu
gama tak mozno chépat ako spojité rozsirenie faktorialu.

Pomocou rekurentného vztahu

I'(z+n)
2(z+1)...(z+n—-1)

I'(z) =

ktory ocividne plati pre vSetky z z jej povodného definiéného oboru S = {z € C | Rez > 0}, moZno
funkciu gama analyticky predlzit na defini¢ny obor C \ {0,—1,—-2,...}. Body 0, —1,—2, ... st potom
jednoduchymi pélmi funkcie gama.

Délezity je navySe stuvis funkcie gama so sinusom: pre vietky z € C\ Z je

(D1 —2) = —~

sinmz’ (54)
Napriklad odtialto mozno vidiet, ze funkcia I'(2) je na C\Z — a teda v ddsledku jej stuvisu s faktorialom
ajna C\{0,—1,—2,...} — nenulova. Funkcia 1/T'(2) je teda po odstraneni jej odstranitelnych singularit
— ¢o je sposob, akym budeme tato funkciu v nasledujucom vzdy chapat — celd, t. j. holomorfné na C:
vd'aka nenulovosti funkcie gama je holomorfna na C\ {0, —1, -2, ...}, pricom jednoduché pdly funkcie
I'(z) v bodoch 0, —1,—2, ... sa premietnu do jednoduchych korefiov funkcie 1/T'(z).

Integraly pozdiz nevlastnych kriviek. V komplexnej analyze obvykle uvazujeme koneéné krivky,
dané nejakym spojitym zobrazenim ~: [a, 8] — C, kde a < [ su redlne ¢isla. Doélezitymi triedami
takychto kriviek st hladké a po castiach hladké krivky [12].
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Budeme teraz nuteni uvazovat o nieco vSeobecnejsi pojem krivky, zahifiajuci tzv. nevlastné — alebo
ynekonefné” — krivky. Pod (vlastnou alebo nevlastnou) krivkou budeme rozumiet 'ubovolné spojité
zobrazenie v: I — C, kde I je neprazdny uzavrety interval realnej osi. Interval I teda moéze byt typu
[, B, [ev, 00), (—00, B], alebo (—o0, 00), kde av < 3 st redlne ¢isla; v prvom pripade hovorime o vlastnej
krivke a vo zvysnych pripadoch o (jednostranne resp. obojstranne) nevlastnej krivke.

Rovnako ako pre vlastné krivky moZno pre nevlastné krivky definovat aj opa¢nu krivku a zuZenie
krivky na podinterval; ak si navySe v1: I — C a v5: J — C vlastné alebo nevlastné krivky také, ze
intervaly I resp. J st ohranicené sprava resp. zlava, mozno podobne ako pre dvojice vlastnych kriviek
definovat aj spojenie 1 4+ 2. Pojmy hladkej a po Castiach hladkej krivky moZno na nevlastné krivky
taktiez rozsirit prirodzenym sposobom. Integraly pozdlz nevlastnych po ¢astiach hladkych kriviek
definujeme rovnako ako v pripade koneénych kriviek [12, definicia 4.3.1]; ide vSak v tomto pripade
o nevlastné integraly. Tie nemusia vzdy existovat — staci si uvedomit, Ze Specidlnym pripadom nevlastnej
po castiach hladkej krivky je napriklad aj realna os alebo polos, a teda kazdy nevlastny integral funkcie
realnej premennej mozno chépat aj ako integral pozdlZ nevlastnej krivky.

Citatelovi prenechavame dokaz obdoby tvrdenia o reparametrizacii [12, tvrdenie 4.4.5] pre integraly
pozdlz nevlastnych kriviek, vdaka ktorej nie je nutné nevlastné krivky vzdy parametrizovat explicitne.

Hankelova integralna reprezentacia. Pod Hankelovou integrdlnou reprezentdciou funkcie 1/T'(z)
rozumieme jej vyjadrenie pre vietky z € C pomocou integralu pozdlz nevlastnej krivky ako napriklad
v nasledujucich dvoch vetach, ktoré budeme po zvySok tohto oddielu dokazovat.?

(a) Hankelova krivka H. (b) Hankelova krivka G.

Obr. 5.3: Hankelove krivky z viet 5.4.1 a 5.4.3. ,,Ciarkovane® je znazorneny uvazovany rez komplexnej roviny.

Veta 5.4.1. Pre vsetky z € C je

1 1 w, —z
S d
() 27ri/He .

kde H je krivka na obrdzku 5.3a. Pri funkcii w™? pritom uvaZujeme jej hlavna vetvu na C\ (—oo,0];
t. 3. pre vSetky w € C\ (—o0,0] je

wF = €_Zan _ e(ln\w\—i-zargw)(—z)7

kde Ln je hlavnd vetva prirodzeného logaritmu, In je redlny prirodzeny logaritmus a argument vyberdame
z intervaly (—m,7).4

3Skér nez o jedno konkrétne tvrdenie ide o skupinu podobnych tvrdeni, pri¢om nevlastné krivky v nich pouZivané
st vzdy — aZ na drobné detaily — velmi podobné; takéto krivky sa niekedy zvyknu nazyvat Hankelovgmi krivkami alebo
krivkami Hankelovho typu.

4Mozno tiez povedat, Ze ide o vetvu funkcie w™* taku, ze 177 = 1.
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Formalne moézeme krivku H definovat ako
H:=H +H°+H",

kde H™: (—00,0] — C je dana pre vsetky ¢t € (—o0, 0] predpisom H™ (t) =t —1, H°: [-7/2,7/2] - C
je dand pre vietky t € [—7/2,7/2] predpisom H°(t) = e a H: [0,00) — C je dana pre vietky
t € [0,00) predpisom H™T(t) = —t + 1.

Poznamka 5.4.2. Hlavna vetvu funkcie w™* uvazujeme v rozrezanej rovine C\ (—oo, 0]. Vieme ale, 7Ze
singularitou tejto funkcie moze byt iba bod w = 0; v bodoch w € (—o00,0) naopak mozno tuto funkciu
analyticky predlzit, pricom ale toto predlzenie méze byt rézne v zavislosti od toho, z ktorej strany
polpriamky (—o0, 0] sa k bodu w blizime. V nasledujacom bude uZzito¢né uvazovat hodnoty funkcie w=*
aj na reze (—o00,0), pricom budeme rozlisovat medzi hodnotami ,na vrchnej a spodnej strane“ rezu
— pre vietky w € (—00,0) definujeme (w + 0i)~* ako hodnotu funkcie w™*
analytickym predizenim v nejakom bode w +&i pre £ > 0; podobne pre vietky w € (—o0, 0) definujeme
(w — 0i)~* ako hodnotu w™? ziskant priamym analytickym predizenim tejto funkcie v nejakom bode
w — ei pre € > 0. Pre vietky w € (—o0,0) teda

ziskanu jej priamym

(w o O’L)_Z — ‘w|—zei7rz’

(w + 0i) 7% = |w| Fe™™,

Injw[)(

pri¢om hodnota |w|~* je dana hlavnou vetvou w2, t. j. |w|~* = el —2) kde logaritmus je reélny.

Nasledujicu formulaciu Hankelovej integralnej reprezentécie budeme pouzivat pri dokazovani tvr-
deni, na ktorych je zalozend metéda analyzy singularit. Ide o jednoduchy désledok vety 5.4.1.

Veta 5.4.3. Pre vsetky z € C je

1 1
— —u )% d
T~ 2mi )¢ (W dw

kde G je krivka na obrazku 5.3b. Pri funkcii (—u)™% pritom uvaZujeme jej hlavna vetvu na C\ [0, 00);
t. 3. pre vSetky u € C\ [0,00) je

i

(—u)™ = e* Ln(—u) , (Infu|+i arg(—u))(~2)

kde Ln je hlavnd vetva prirodzeného logaritmu, In je redlny prirodzeny logaritmus a argument vyberame
z intervalu (—m, ).

Doékaz. Staci na reprezentaciu z vety 5.4.1 pouzit substiticiu w = —u. Z du sa potom stane —dw
a pre u opisujice krivku G opise w krivku H. 0

Dokaz Hankelovej integralnej reprezentacie. Budeme teraz postupne dokazovat vetu 5.4.1 —
a tym padom aj vetu 5.4.3. Najprv ukdzeme, Ze nevlastny integral

— | emw7d 5.5
omi Ju O Y (5:5)

z vety 5.4.1 konverguje pre vietky z € C. To nam o¢ividne zaruéi nasledujica lema.? Vo zvysku tohto
oddielu pre vietky n € N kladieme H,, := H~ | [-n,0] a H,/ :== H* | [0,n].

®Na dokaz existencie integralu (5.5) by nam v nasledujtcej leme stacilo ukazat bodova konvergenciu — vlastnost
lokalne rovnomernej konvergencie ale vyuzijeme neskor.
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Lema 5.4.4. Pre vsetky n € N polozZme
I, (2):= / e“w % dw a I (2) ::/ eYw™* dw.
" Hif

Potom si postupnosti funkcii (I, (2))22, a (I7(2))22, premennej z na C lokdlne rovnomerne konver-
gentné, a teda pre n — oo je
/ ew? dw :;loc/ ew ? dw,

/ ew ? dw jloc/ ew ? dw,
H;f H+

kde nevlastné integrdly na pravej strane konverguju pre vsetky z € C.

Dékaz. Lemu dokazeme pre integral pozdlz Ht — pre krivku H~ by sme mohli argumentovat analo-
gicky. Z definicie je

IT(2) = /H+ eYw* dw :/0 e (—t ) F(—1)dt = —/0 e (—t 4-4) 77 dt.

Potrebujeme ukazat, ze postupnost funkcii (1,7 (2))%, pre n — oo na C lokalne rovnomerne konverguje.
Zafixujme preto a € C a lubovolnu ohraniceni oblast S taku, ze a € S. UkadZzeme, Ze postupnost funkcii
(I (2))22, na S konverguje rovnomerne. Budeme pritom v skuto¢nosti dokazovat, ze tato postupnost
funkcii je na S ,rovnomerne cauchyovska: pre vSetky € > 0 existuje ng € N také, Ze pre vSetky

prirodzené n > m > ng a vSetky z € S je
I (z) — Lh(2)| <e.

Pocitajme teda:

|1 (2) = L (2)] =

m

Pre Tubovolné ¢t € R ale, pri vybere argumentov z intervalu (—, ),

‘E_H_i(—t—{—l —t+z ( z)(In|—t+i|+i arg(—t+1))

’ —t+i ( Re z)(In|—t+i|+i arg(— t+i))€(7i Im 2)(In|—t+i[+i arg(—t+i)) | _
) — Re z) In|—t+i] z( Rez) arg(—t—l—i)e—i(lm z) ln\—t+i|e(lm z)arg(—t+i)| _

_ ‘ t—i—l’ Rez arg(—t—i—i)Imz < €_t‘—t—|—i’_ReZ€ﬂ|Imz‘.

Z (5.6) preto
n n
LT (2) = Ih(2)] < / et |—t 4 i ReFerlmal g — eﬂmzl/ et—t+i RF A (57)

m m

Cislo ng € N teraz mozeme zvolit tak, aby pre vietky z € S a vetky ¢ > ng bolo
(- R
’—t—l—l‘ ez < et/2;

Specidlne bude tato vlastnost splnené aj pre vsetky ¢ € [m, n] a z nerovnosti (5.7) dostaneme

}I;(Z) - Ig(z)} < eTr|Imz|/ eft/2 dt < €7T|Imz/ eft/2 dt =

m m

n
— orlmzl i [_264/2} — genlim=lg=m/2 <
n—oo m

w|Ilm z| ,—ng/2
< gemltmlg—no/2,

pri¢om tuto hodnotu moZno vhodnou volbou ng stlac¢it pod Tubovolné € > 0.
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Z dokéazane] ,rovnomernej cauchyovskosti“ postupnosti funkeif (I;F(2))22, na S vyplyva aj jej rov-
nomerna konvergencia na S. Specidlne je totiz pre kazdé z € S postupnost &fsel (IF ()52, cauchyovska,
a teda existuje funkcia I (z2), ku ktorej postupnost (1,7 (2))%, na S konverguje bodovo. Pre dané e > 0
teda existuje ng(z) € N take, Ze pre vietky prirodzené &isla n > ng(2) je |I7(2) — IT(2)| < €/2. Z do-
kadzaného vyplyva, Ze stiCasne existuje ng € N také, Ze pre vSetky prirodzené n > m > ng a vSetky
z € Sje|Lt(z) — I} (2)| <e/2. V dosledku toho teda pre vietky m > ng a vietky z € S existuje
n > m také, ze |7 (z) — I} (2)| < e/2 a |[F(2) — I (2)| < e/2, z €oho |} () — IT(2)| < e. O

Z lemy 5.4.4 tak dostavame aj konvergenciu integralu (5.5), kedZe o konvergencii integralu funkcie
w™? pozdlz koneénej krivky H° nemozu byt najmensie pochybnosti.

Nasim najbliz§im cielom teraz bude dokéazat, Ze funkcia premennej z dana integralom (5.5) je cela.
Popri leme 5.4.4 bude kIi¢om k dokazu tejto skuto¢nosti nasledujtica lema 5.4.5.

Lema 5.4.5. Nech v s v* C C\ (—o0,0] je po castiach hladkd vlastna (t. j. koneénd) krivka. Potom
je funkcia

ew

F(z):= /eww_z dw
g

celd (t. 3. holomorfnd na C).

Dokaz. Dokazeme najprv, ze funkcia F(z) je spojitd na C. Zvolme teda a € C pevne; ukadzeme spoji-
tost funkcie F(z) v bode a. Polozme g(z,w) := e”w™?. Takto definovana funkcia je oc¢ividne spojita
na mnozine C x (C\ (—o0, 0]).® KedZe je mnozina v* kompaktna, existuji ohrani¢ené oblasti Ty, Ty C C
také, Ze:

(Z) a € T,
(ii) v* CTh aTy CC\ (—00,0].
Funkcia g(z,w) je teda spojitd na kompaktnej mnozine 77 x Tb, a preto musi byt na tejto mnoZzine
rovnomerne spojitd. To znamena, Ze pre vSetky € > 0 existuje § > 0 také, ze pre v8etky 21,29 € T
a vSetky wi,wo € Th plati
|21 — 22| <& A |wr —wa| <0 = |g(z1,w1) — g(z2,w2)| < e. (5.8)
Uvazujme teraz ubovolnt postupnost (a,)>, prvkov mnoziny T takd, Ze a, — a pre n — oo.
Pre v8etky § > 0 teda existuje ng € N také, Ze pre vSetky prirodzené n > ng je
lan, —al < 6. (5.9)
Z (5.8) a (5.9) dohromady vyplyva, Ze pre vSetky € > 0 existuje ng € N také, ze pre vSetky prirodzené
¢isla n > ng a vsetky w € T3 je
‘g(anvw) - g(a’w)‘ <Eé.
Postupnost funkcii g(a,,w) premennej w teda na Ty pre n — oo konverguje rovnomerne k funkcii
g(a,w). S pouzitim zameny krivkového integralu s rovnomernou limitou [12, veta 7.1.8] teda dostavame

lim F(a,) = lim [ e“w " dw= lim [ g(an,w)dw =

:/ lim g(ay,w)dw = /g(a,w) dw = /eww_a dw = F(a).
y o0 gl gl

KedZe je (an)2%, Tubovolnou postupnostou prvkov Ty konvergujicou k a € Ty, z Heineho definicie
limity dostavame

lim F(z) = F(a)

zZ—ra

a funkcia F(z) je skutofne spojitd v bode a. Tym je dokdzana spojitost funkcie F'(z) na C.

6Spojitost funkcie g(z,w) bude jedinym predpokladom na tuto funkciu, ktory potrebujeme na dékaz spojitosti fun-
kcie F'(z). Rovnako by sme teda vedeli dokazat aj spojitost d'alsich funkcii definovanych krivkovymi integralmi.
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Zostava dokazat holomorfnost funkcie F'(z) na C. Vieme uz, ze funkcia F(z) je spojita a ze funkcia
g(z,w) = e®w™* je spojitd na C x (C\ (—o00,0]). Pre fixné w € C\ (—o0,0] je navyse funkcia

ePwF = eWe™? Lnw
premennej z o¢ividne holomorfna na C. Z Cauchyho integralnej vety pre trojuholnik tak pre Tubovolny
trojuholnik yA s yA € C dostéavame

/ F(z)dz:/ /eww_zdwdz:// eww_zdzdw:/Odw:(),
2N va Ty v v

kde zamena integralov je odévodnena spojitostou e”w™* na C x (C \ (—o0,0]) [12, tvrdenie 10.4.3|.
Z Morerovej vety teda vyplyva, Ze funkcia F(z) je holomorfna na C, t. j. cela. O

Dosledok 5.4.6. Integrdl (5.5) definuge celi funkciu

1
I(z) := o e“w™* dw.
™ Jg

Doékaz. Podla lemy 5.4.5 st nasledujice funkcie premennej z celé pre vietky n € N:

1 _ 1 B 1 _
— ew ? dw, — e“w % dw, — ew ?dw.
27 Sy 21t J o 21l S+

KedZe lokalne rovnomerna limita holomorfnych funkcii je holomorfna [12, veta 7.1.9], musia byt vdaka
leme 5.4.4 celé funkcie
1 1

. eYw ?dw a — ew ? dw,
27 Jy- 27 S+

v doésledku ¢oho je cela aj funkcia I(z). O

Zostava ukazat, ze cela funkcia I(z) z predchadzajaceho dosledku je v skuto¢nosti rovna 1/T'(z).
N4&s postup bude nasledovny: dokadZeme tuto rovnost funkcii pre vsetky realne z < —1 rozne od celého
¢isla a nésledne ju rozsirime na v8etky z € C pomocou vety o jednoznacnosti.

V nasledujicom budeme uvazovat pre kazdé € > 0 modifikiciu Hankelovej krivky H, ktort ozna-
¢ime H[e]. Pojde o krivku v komplexnej rovine rozrezanej pozdlz (—oo,0], ktort viak chapeme ako
v poznamke 5.4.2 — budeme rozlisovat medzi vrchnou a spodnou stranou zapornej reélnej osi (—oo, 0),
pricom pre kazdé realne &islo z < 0 budeme jeho ,vrchnu stranu® oznacovat = + 0i a jeho ,,spodnu
stranu® x — 0i. Samozrejme ide v oboch pripadoch o rovnaky bod komplexnej roviny; vyznam tejto

L2 <
CHO[1/2]

(a) Krivka #H[1]. (b) Krivka H[1/2].

Obr. 5.4: Krivky H[1] a H[1/2].
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notécie spociva v tom, Ze sa pri vyhodnocovani integralu podla w obsahujiceho v integrande w™*

(pripadne int funkciu premennej w, ktort mozno v tomto bode povazovat za analyticka v zmysle po-
znamky 5.4.2), pozdlz krivky prechadzajicej cez bod w = x + 0i, pouZije hodnota (z + 0i)~%. Podobne
pre w = x — 0i sa pouZije hodnota (z — 07)~*. Formélnu definiciu kriviek v takto ,obohatenej“ rozre-
zanej rovine prenechdvame Citatelovi. Je vSak dolezité si uvedomit, Ze cely tento koncept nie je ni¢im
inym, nez skratkou pre inak pomerne zlozitd, avSak presnii, konstrukciu.

Krivku H[e] v duchu prave zavedenych konvencii definujeme pre kazdé € > 0 takto:

Hle] :=H [e] + HO[e] + H T [e],
kde krivka H ™ [g]: (—o0, —¢] — C je dana pre vSetky ¢ € (—oo,—¢] predpisom H~[e](t) = t — 0i,
krivka H°[e]: [-m, 7] — C je dand pre vietky ¢ € [—m, 7] predpisom” H°[¢](t) = ee® a napokon krivka
HT[e]: [e,00) — C je dana pre vietky t € [, 00) predpisom H*[e](t) = —t + 0i. Krivky H[1] a H[1/2]

st znézornené na obrazku 5.4.
Pre vSetky € > 0 a z € C také, Ze Re z < 0, teraz dokdZeme konvergenciu integralu

/ ew * dw.
Hle]

Sta&i pritom dokézat konvergenciu integralov pozdiz H~[¢] a HT[e]. Avsak

/ e’w*dw = / et — 0i) " dt = / e H(—t—0i) Fdt =
H[e] —o0 €

o0 . i o0
= / e it dt = e”z/ e 't dt,
& &g

o
/ el de
13

konverguje vd'aka elementarnej teorii okolo funkcie gama z minulého semestra. Od Eulerovho integralu
pre funkciu I'(1 — z) — ktory je dobre definovany, kedZe predpoklad Re z < 0 implikuje Re(1 — z) > 0
— sa totiz tento integral 1isi iba dolnou hranicou € namiesto 0. Podobne dostavame

pri¢om integrél

o0 i oo
/ eYwFdw = / et 4 0i) A (—1)dt = / e H(—t+0i)*dt =
Ht[e] € 5

x . . o
= —/ e e ™t = —e_”rz/ et dt.
€ €

Aproximacie Eulerovho integralu k funkcii gama konverguju lokélne rovnomerne [12, lema 14.4.2] —
zo vztahov ziskanych vyssie teda pre e = 1/n, n — 0o a z € C s Rez < 0 dostavame

/ eYw ™ dw See € (1 — 2), (5.10)

H=[1/n]

/ eYw ™ dw Soe —e (1 — 2). (5.11)
HE[1/n]

(Bude nam ale stacit aj bodova konvergencia.) DokaZeme teraz, Ze pre z ako vyssie su hodnoty integ-
ralov funkcie e”w~* premennej w pozdlz kriviek [e] pre rozne £ > 0 vizdy tie isté.

"Pri konvencidch ee ™" = —e — 0i a ge'™ = —e + 0.



90 5.4 Hankelova integralna reprezentacia funkcie 1/T'(z)

(a) Krivka H]e]. (b) Krivka H*[e].

A <

(c) Krivka H'[e].

Obr. 5.5: Rozdelenie krivky H[e] na krivky H*[e] a H[e].

Lema 5.4.7. Nech 1,69 > 0 a z € C je také, Ze Rez < 0. Potom

/ ewFdw = / eYw™* dw.
Hleq] Hlez]

Dokaz. Kazdu z kriviek H|e] pre € > 0 rozdelme na dve casti Ht[] a HT[e], tak ako na obrazku 5.5.
Pre vsetky € > 0 potom mozno integral

/ ew*dw
Ht[e]

bezo zmeny jeho hodnoty interpretovat aj tak, ze integrandom je funkcia e”w™% pre vetvu funkcie w™
dani ako

z

wF = e(ln|w|+i argw)(—z)

)

kde arg w vyberame z intervalu (—3m /2, 7/2) — moéZeme teda pracovat aj v komplexnej rovine rozrezanej
ako na obrazku 5.6a. Podobne integral

/ ew Fdw
H[e]

mozno interpretovat aj tak, Ze jeho integrandom je funkcia e”w™* pre vetvu w™* danu ako

wF = e(ln|w|+i arg w)(—z)7

kde arg w vyberame z intervalu (—m/2,37/2); to zodpoveda rezu komplexnej roviny na obrazku 5.6b.
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(a) Argument z intervalu (—37/2,7/2) pri H'[e]. (b) Argument z intervalu (—m/2, 37/2) pri H'[e].

Obr. 5.6: Mo7néa zmena rezu komplexnej roviny (,éiarkovane®) pri integraloch pozdiz kriviek H*[e] a H[e].

Integrandy sa potom v obidvoch pripadoch holomorfné na celej ,,novorozrezanej“ komplexnej ro-
vine, ktora je jednoducho stvisla. Integraly pozdlz H¥[e1] resp. H'[e1] teda moZeme bezo zmeny ich
hodnoty premenit na integraly pozdlz H¥[e2] + [e2, 1] resp. [e1, £2] +H T [e2], pretoze v oboch pripadoch
nahréddzame nejaku ,,vlastna podkrivku® inou vlastnou krivkou s rovnakym poc¢iatoénym aj koncovym
bodom [12, désledok 5.6.2]. Teda

/ eYwFdw = / eYw *dw + / ePwFdw =

7'[[61] 7‘“’[61 ’HT[el]

/ eYw *dw + / ewFdw =
M [ea]+[e2.61] [e1,e2]+H[e2]

/ eYw *dw + / eVw *dw + / eYw *dw + / ewFdw =
Hileo] H[e2] [e2,e1] e1,e2]

/ e’w™* dw,
Hlez]

¢o bolo treba dokézat. O

Vrafme sa teraz k povodne uvazovanému integralu pozdlz Hankelovej krivky H — dokadZeme, Ze
pre z € C s Rez < 0 v iom mozno krivku H nahradit ubovolnou z kriviek #[e].

Lema 5.4.8. Nech z € C je také, Ze Rez < 0. Potom pre vSetky € > 0 je

/ ewFdw = / ew * dw.
H Hle]

Dékaz. Vdaka leme 5.4.7 staci tvrdenie dokézat len pre e = 1. Z tvaru kriviek H a H[1] — znédzornenych
aj na obrazku 5.7 — l'ahko vidiet, Ze staci dokazat rovnosti

/ ePwFdw = / eYw *dw
- H=[AH+-(He 1) [[-m,—7/2])

/ ewFdw = / ew % dw.
H+ (He [ /2,7])+HT[1]

Dokazeme druht z tychto rovnosti — prva by sa dokazovala analogicky.
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A

Y

Obr. 5.7: Krivky H (plné sipky na krivke) a H[1] (jednoduché sipky vedla krivky).

Podobne ako v dokaze lemy 5.4.7 moZzeme pri krivkach HT a (H°[1] | [r/2, 7]) +HT[1] bezo zmeny
hodnoty integralov zmenit uvazovany rez komplexnej roviny — napriklad na [0, 00), pri¢om integrand
V% = ewe(ln\w\—l—i argw)(—z)

)

interpretujeme ako dany vetvou, v ktorej arg w vyberame z intervalu (0, 27).8 Této situdcia je znazor-
nené na obrazku 5.8a.

A A
_ . —n+i %
< //‘ D A (
ST > . 0T

(a) Zmena rezu komplexnej roviny. (b) Uzavreta krivka ;.
Obr. 5.8: Dokaz rovnosti integralov pre krivky H* a (H°[1] | [7/2,7]) + HT[1].

Pre vsetky prirodzené n > 2 teraz oznacme H; [1] := HT[1] | [1,n] = [-1 + 04, —n + 0i]; pripo-
mefime si tiez, ze H,” = H' | [0, n]

[i, —n + i]. Definujme uzavreta krivku
Yo i= (M) | [7/2, 7)) + Hyy [1] + [=n 4 00, —n + 4] + (=

HI).
T4 je znazornené na obrazku 5.8b.

n

Z Cauchyho integralnej vety pre jednoducho suvisla oblast pre vietky n € N\ {0, 1} dostéavame

0= / ewFdw =
Tn

= / eVw ? dw + / ewFdw — / eVw™* dw.
(He [l [m/2,m])+Ht [1] [—n+0i,—n+] Hi
Avsak

1
/ eYwFdw = / e " (—n 4 ti)Fidt,
[—n+40i,—n+] 0

pri¢om pre dostatocne velké n a fixné z je

(5.12)

[(—n+ti)*| < en/?

8Pre krivky H™ a H™[1] + (H°[1] | [-7, —7/2]) by sme mohli pouzit rovnaky rez, ktory by viak v tomto pripade
zodpovedal vyberu argumentu z intervalu (—2, 0).
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pre vietky ¢ € [0, 1]. Preto

1 1 1
/ e " (—n 4 ti) % dt‘ < / }6_”"’“‘(771 + ti)_zi} dt < / e e At = e 2,
0 0 0

z ¢oho vdaka (5.12) dostavame

1
lim eYw*dw = lim e " (—n 4 ti)"*dt = 0.
n—oo [_n_,’_o,i,_n_,’_ﬂ n—o0 0

V désledku toho

0= lim / ewwzdw+/ ew* dw—/ ewFdw | =
=00 \ J(He[1)[r/2,7])+HA (1] [—n+0i,—n+i] H;F

= lim ew *dw — lim ewFdw =
00 S (Ho[][m/2,m]) +Hit [1] =0 Sy

:/ e“w  dw —/ ew™? dw,
(R[]l /2,m])+H 1] H*

/ ew Fdw = / ew* dw,
HF (R[]Il /2,m])+HF[1]

¢o bolo treba dokazat.
Mobzeme teraz pristupit k dokazu samotnej Hankelovej integralnej reprezentécie funkcie 1/I'(z).

Dokaz vety 5.4.1. Predpokladajme najprv, ze z < —1. Vdaka leme 5.4.8 je pre vSetky n € N\ {0}

/ e“w Fdw = / ew ? dw,
H H[1/n]

v dosledku ¢oho aj

/ ewFdw = lim ew Fdw =
H =00 J3[1/n)

= lim </ eVw* dw +/ eVw* dw +/ ePw? dw> .
O\ JH[1/n] He[1/n] HF[1/n]

Kedze ale z < —1, s pouzitim vety o odhade pre vietky n € N\ {0} dostavame

/ w. —z 2me
ewFdw| < —,
He[1/n] n
a teda
lim eVw *dw = 0.
n—oo ’Ho[l/n}
Podl'a (5.10), (5.11) a (5.4) potom pre z € Z je
/ ew*dw = lim eYw *dw 4+ lim eYw*dw+ lim ePwFdw =
H =00 J3—[1/n] =00 J3q0[1/n) =00 JH+[1/n]

Tz —imz e =T R
=e™T'(l1—2)—e Nl1—-2)=2 — I'(1 —2) =2isin(7m2)[(1 — 2) = T
i
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Pre vsetky realne ¢isla z < —1 také, ze z ¢ Z teda

1 Y 1
— dw = ——.
ori Ju© Y T I

KedZze st navyse funkcie na oboch stranach celé, z vety o jednoznacnosti dostavame platnost uvedeného
vztahu aj pre vSetky z € C, ¢im je dokaz Hankelovej integralnej reprezentéacie dokonceny. O



Kapitola 6

Metoda analyzy singularit

Metdda analyzy singularit — dielo P. Flajoleta a A. Odlyzka [8] z roku 1990 — tvori samotné jadro analy-
tickej kombinatoriky: umoznuje totiz prejst, pomocou jednoduchého mechanického postupu, od singu-
larnych rozvojov analyticky chapanej vytvarajucej funkcie k velmi presnému asymptotickému odhadu
pre jej koeficienty. V tejto kapitole sa najprv budeme zaoberat zdkladnym variantom tejto metddy
pre vytvarajtce funkcie s jedinou dominantnou singularitou, ktorou podla Pringsheimovej vety musi
byt kladné reélne ¢islo. UZ v tejto svojej najjednoduchsej podobe metdda analyzy singularit nachéa-
dza velké mnozstvo roznych kombinatorickych aplikacii — tym sa budeme venovat vzapati. Neskor
v hrubych rysoch nazna¢ime moznosti zovieobecnenia metdédy analyzy singularit na funkcie s viace-
rymi dominantnymi singularitami a preskimame niektoré vyznamné triedy funkcii, ktorych koeficienty
mozno pomocou tejto metdody analyzovat.

6.1 Metoda analyzy singularit v skratke

V nasledujicom sa budeme zaoberat funkciami R(z) € Ho N Rx>o[z] — ¢ize funkciami analytickymi
v bode 0, ktorych Maclaurinov rozvoj mé vietky koeficienty nezaporné realne. Ttto podmienku spliaji
okrem iného vSetky obycCajné aj exponencidlne vytvarajuce funkcie, ktoré st v bode 0 analytické.
Spociatku tiez budeme predpokladat existenciu jedinej dominantnej singularity funkcie R(z), ktorou
podla Pringsheimovej vety musi byt realne ¢islo o > 0 rovné polomeru konvergencie Maclaurinovho
radu funkcie R(z).

Metoda analyjzy singularit ndm pre Siroka triedu takychto funkcii umozni prejst pomocou mechanic-
kého procesu od singuldrneho rozvoja funkcie R(z) v bode ¢ k asymptotickému rozvoju pre koeficienty
jej Maclaurinovho radu. Asymptotické vlastnosti koeficientov tak budi dané vlastnostami singularneho
rozvoja funkcie R(z) v bode g, ¢ize v konetnom désledku najmé hodnotou a charakterom singularity o.
K prvému principu asymptotiky koeficientov, davajicemu do stavisu hodnotu dominantnej singularity o
s exponencidlnym radom postupnosti koeficientov Maclaurinovho radu funkcie, tak pridame aj druhy
princip asymptotiky koeficientov P. Flajoleta a R. Sedgewicka [9], podla ktorého st subexponenciilne
vlastnosti koeficientov Maclaurinovho radu funkcie dané charakterom dominantnych singularit.

Idea metédy analyzy singularit spociva v kombinacii dvoch ingrediencii: asymptotickych odha-
dov pre koeficienty Maclaurinovych radov istej Standardnej triedy funkcii, ktoré budeme pripustat ako
mozné ¢leny singularnych rozvojov funkcie R(z) a takzvanych viet o transfere, podla ktorych zanedba-
telné ¢leny singularneho rozvoja za istych podmienok zodpovedaji zanedbatelnym ¢lenom asympto-
tického rozvoja pre koeficienty. Asymptoticky odhad pre koeficienty funkcie R(z) potom ¢asto mozno
ziskat nasledujtacim spésobom: funkciu R(z) lokdlne rozvinieme do jej singularneho rozvoja v bode o,
ktorym je nejaky rad funkcii

R(z) = c1fi1(z) + cafa(z) + c3f3(z) + ...,
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kde c1, 2, c3, . . . st komplexné koeficienty! a zanedbame vietky aZ na koneéne vela élenov tohto rozvoja.
Funkciu R(z) teda napriklad vyjadrime ako

R(z) = c1fi(2) + cafa(2) + c3f3(2) + O (9(2))

kde funkcia g je na okoli bodu g oproti funkciam f1, fo, f3 zanedbatelna. Ak teraz funkcie fi, f2, f3 a g
patria do $tandardnej triedy funkcii a ak st splnené nevelmi obmedzujiice podmienky vety o transfere,
mozno koeficienty funkcie R(z) pre n — oo vyjadrit ako

[2"R(2) = c1[2"]f1(2) + ca[2"] fa(2) + e3[2"] f3(2) + O ([2"]g(2)) ,

pricom presné asymptotické odhady koeficientov [2"]f1(2), [2"]f2(2), [2"]f3(2) a [2"]g(2) pre n — oo
mozno ziskat z ,katalogu® takychto odhadov pre Standardnu triedu funkcii. V kone¢nom désledku tak
ziskame presny asymptoticky odhad pre koeficienty Maclaurinovho radu samotnej funkcie R(z).

Za Standardni triedu funkcii pritom budeme povaZovat triedu pozostavajicu z funkcii typu

(1—Z>a (i’LnliZ)B (6.1)

pre a, 3 € C a p > 0, pri¢om pre mocninové funkcie w®, w® a prirodzeny logaritmus vzdy uvazujeme
ich hlavna vetvu. Defini¢nym oborom tychto funkcii je teda C\ [g, 00) — pracujeme preto v komplexnej
rovine narezanej pozdlZ polpriamky [, c0).

Poznamka 6.1.1. U¢elom faktora o/z je v (6.1) vyrobit z Ln(1/(1 — z/p)) € C[z] formalny moc-
ninovy rad s konstantnym koeficientom rovnym jednej, na ktory tak moZno aplikovat umociiovanie
na exponent § € C. V pripade, Ze 8 € N, bude asymptoticky odhad pre funkciu (6.1) rovnaky ako

pre funkciu
B
« 1
(1 - z> <Ln 7 Z) .
0 e

Poznamka 6.1.2. V povodnom ¢lanku P. Flajoleta a A. Odlyzka [8] sa uvazuje o nie¢o vieobecnejsia
Standardna trieda funkcii, zahfhajica aj iterované logaritmy.

Kedze B € C moze byt aj nulové, bude nam takto umoZnené analyzovat napriklad funkcie, kto-
rych jedind dominantnd singularita ¢ je polom alebo algebraickym bodom vetvenia a moZno ich tak
v bode p rozvinit do Laurentovho resp. Puiseuxovho radu. Okrem toho st vytvéarajice funkcie ¢asto uz
priamo alebo ,takmer priamo* dané poZadovanym singuldrnym rozvojom, ktory moze byt aj konecny
— ukazkovym prikladom je vytvarajuca funkcia pre posunuté Catalanove ¢&isla

T(z)zl_i Vl_llz':}_lm
2 2 2
s dominantnou singularitou ¢ = 1/4, ktora je algebraickym bodom vetvenia.

Vety o transfere mozno sformulovat v réznych podobéch, vyuZivajuc rézne asymptotické notécie
ako napriklad O, o, alebo ~. Spoloénym menovatelom tychto viet je predpoklad na funkcie, pre ktoré
st tieto vety pouzitelné: musia byt definované a analytické na urcitej Specialnej oblasti — tzv. A-obore
— neobsahujicej bod ¢ a ,,0 nieco vacsej*, nez D(0, o).

!Tieto koeficienty by samozrejme bolo mozné zahrnut do funkcii fi(z), f2(2), f3(2), ... Ak ale jednotlivé cleny radu
maji patrit do uvazovanej Standardnej triedy funkcii, je uzito¢nejsie vyjadrenie v uvedenom tvare.
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6.2 Koeficienty Standardnej triedy funkcii

Nech f(z) € Ho NR>o[#] je funkcia dana Maclaurinovym radom o polomere konvergencie o > 0 taka,
ze o je jej jedind dominantna singularita. Maclaurinov rad funkcie g(z) := f(0z) ma potom ocividne
polomer konvergencie rovny jednej, pricom bod 1 je jedinou dominantnou singularitou tejto funkcie.
Maclaurinov rozvoj funkcie g(z) navyse ziskame dosadenim pz za premennt z v Maclaurinovom rozvoji
funkcie f(z); z toho je zrejmé, Ze pre vietky n € N je

[2"]f(z) = 07 "["]9(2). (6.2)

V nasledujiicom sa preto bez ujmy na vSeobecnosti obmedzime na funkcie s jedinou dominantnou

singularitou ¢ = 1; pre ostatné ¢ > 0 bude stacit v zavere analyzy pouzit vztah (6.2). Nami uvazovana
Standardné trieda bude pri tejto volbe o pozostavat z funkcii

(1—2)° (iLnliZ)B

pre a, 5 € C, kde pri umociiovani na komplexny exponent uvazujeme jeho hlavnu vetvu. Nasim prvym
cielom bude najst asymptoticky rozvoj pre koeficienty Maclaurinovych radov funkcii

(1-2)"

Pre @ € N je (1 — 2)” polynomickou funkciou — koeficienty Maclaurinovho radu takejto funkcie
st teda poc¢nic nejakym ng € N v8etky nulové. Tento trividlny pripad uz teda nemusime dalej uva-
zovat a moZeme predpokladat, ze a € C\ N. V ramci nasledujuceho tvrdenia a jeho dékazu pritom
uvidime, Ze pomerne presny asymptoticky odhad koeficientov [2"] (1 — 2) pre n — oo mozno ziskat
aj pomocou relativne elementarnych metoéd. V zneni tohto tvrdenia pre jednoduchost predpokladame
redlnost ¢isla a; neskodr vo vete 6.2.2 totiz dokdZzeme o nieCo presnejsi odhad aj pre komplexné expo-
nenty. Aj nasledujice tvrdenie by ale bolo mozné dokazat pre vsetky o € C\ N v pripade, Ze by sme
pouzili vhodné zov8eobecnenie Stirlingovej aproximécie redlnej funkcie gama.

Tvrdenie 6.2.1. Nech a € R\ N. Pre n — oo potom
—a—1 —a—1

n
(1 — %) = 1 -1\ )
)1 =2 = ey 10 (7)) ~
Doékaz. Pre vSetky n € N je

Vdaka rekurentnému vztahu pre funkciu I'(z) potom
Z)a _ F(TL — O[)
 T(—a)(n+1)
a zo Stirlingovej aproximécie pre realnu funkciu gama [12, veta 14.7.7| tak pre n — oo dostavame
S (m2) T (140 (7))

[2"](1—2)* = (- ) x/Tr (n+1)”+1(1—|—0(n_1)) -

[2"](1 -

= n=o et (1—a/n)" 2 (14 1/m) P (140 (7)) =

1 o n+1/2
= Ta) (1 —a/n)™ <1 - :[ 1) (140 (nY) =

—a—1 n+1
_n at1 (;_atl -1
_I‘(—a)e <1 n+1) (1+O(n ))
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Predposledny faktor vysledného vyrazu pritom pre dostatocne vel'ké n € N splha [12, lema 14.5.2]

1 n+l1 —a—1
0<eol_(1-2F <(a+1)25
n+1 n

7 ¢oho

n+1
() -t

a teda naozaj

nfafl

I'(—a)

O nieco presnejSiu verziu asymptotického odhadu z predchédzajuceho tvrdenia teraz pre vSetky
a € C\N dokazeme metodou P. Flajoleta a A. Odlyzka [8] zaloZenou na pouziti Cauchyho integralneho
vzorca pre derivacie a Hankelovej integralnej reprezentacie funkcie 1/T'(2).

21— ) =

(1+0 (nY)). 0

Ziskame tak asymptoticky rozvoj? pre koeficienty [2"](1 — 2)® a n — oo, ktory ich umozni asymp-
toticky odhadnit s chybou O(n=%)[2"](1 — 2)® pre Tubovolné k € N\ {0}. Najpodstatnejsou vyhodou
metody zaloZenej na Hankelovej integralnej reprezentacii je ale jej priamociara adaptovatelnost na vse-
obecnejsie triedy funkeii, ¢o ocenime akonahle do nasich tivah zahrnieme logaritmické faktory.

Veta 6.2.2. Nech a € C\ N. Pre n — oo potom

n-ol > «
[Zn](l - Z)a ~ F(—a) (1 + Z ngfk )> )

k=1

kde ei(«) je, pre vSetky k € N\ {0}, polynomickd funkcia premennej o stupria 2k. Prvych niekolko
clenov tohto asymptotického rozvoja je

n o not ala+1) ala+1)(a+2)(3a+1) _
-2 = I'(—a) (1 o 24n2 +0 (n 3)) :

Dokaz. Predpokladajme, Ze n > 2 a oznaéme
an = [2"](1 —2)“.
Podl'a Cauchyho integralneho vzorca pre koeficienty Maclaurinovho radu potom

1 1—2)*
Ap = -— 7( n+2'1) dz.
211 x(0,1/2) z

Kedze je hlavna vetva funkcie (1 — 2)® holomorfna na C \ [1, 00), méZzeme v Cauchyho integralnom
vzorci vymenit kruznicu x(0,1/2) za Tubovolna kladne orientovana jednoducht uzavreta po castiach
hladka krivku v €\ [1, 00) taki, Ze bod 0 leZi v jej vnitri. Specialne mozeme vziat Tubovolni z kriviek
K,[R] pre realne R > 1, danych nasledovne:

KTL[R] = |:R€ 0’ 1- TL:| — Kn/2,37/2] <17 n) + |:1 + ﬁ?Re 6:| + Kio,2n—0) (07 R) )

kde 0 € (0,7/2) je také, ze Rsin @ = 1/n. Typické krivky K,[R] st zndzornené na obrazkoch 6.1a a 6.1b.

2Vo vSeobecnosti rozumieme asymptotickym rozvojom postupnosti (an)nZo pre n — oo vyjadrenie jej ¢lenov v tvare
an ~ > po o ¢r(n), pricom tento zapis treba chapat ako an =Y ;_, ¢r(n) + O(psy1(n)) pre vietky prirodzené ¢isla s.
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(a) Krivka K4[3/2]. (b) Krivka K4[2]. (c) Hankelovska krivka K4[o0].

Obr. 6.1: Krivky z dokazu vety 6.2.2. Ciarkovane je znazorneny uvazovany rez komplexnej roviny pozdlz [1,00).

Pre integral pozdlz ,velkej takmer-kruznice
K/n(R) = Kig,2r—0] (07 R)

teraz z vety o odhade vyplyva

1 1—2) 1 1—2)
2/ il < o / il <
™ nn(R) z ™ (0 R) z
Re a Re «
< 2 R(R—i—l) :(R+1) '
o Rn+1 Rn
Pre dostatocne velké n teda
1 1—2)¢
A=2"4, _o.

im -_—
R—o0 271 fin(R) zntl

V dosledku toho pre krivky K, (R) definované ako

o . ) 1 ) .
Kn(R) = |:_R€_z97 1-— ’lffL:| - Ii[ﬂ./g’gﬂ-/g] <1, n> + |:1 + %, R610:|

zistujeme, Ze

kde K, [oo] je nevlastna krivka hankelovského typu znazornena na obrazku 6.1c. Forméalne je tato krivka
definované nasledovne:

Knloo] = K, [00] + K [00] + K, [od],

[oo]: (—o0,1] — C je pre vietky t € (—oo, 1] dana ako K, [c0](t) = —t —i/n,
je dand ako Kj[oo] = —K[z/2.37/2/(1,1/n) a polpriamka K [oo]: [1,00) — C je
) dana ako K*[ 1(t) =t +i/n.

kde polpriamka K
polkruznica K. [oo]
pre vietky ¢ € [1, 00
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Zostava teda najst asymptoticky rozvoj pre nevlastné integraly

1 (1—2)”
= — A2 .
“ 210 Sy jo] 2" : (6:3)

v pripade, Ze n — oco. Aplikujme substitticiu u := n(z —1). KedZe pre vietky n € N\ {0} a z € C\ {0}
je Ln(z/n) = Lnz — Inn — z ¢oho pre hlavni vetvu mocninovej funkcie vyplyva (z/n)® = n=%z%

integral (6.3) sa tym zmeni na

1 a —n—11
= (-5 (1+2) " du=
2 J_g\ n n n

—a—1

n N uy —n—1
- / (=) (1+5) du, (6.4)

21

kde —G, znazornené aj na obrazku 6.2, je opacne orientované Hankelova krivka G z vety 5.4.3, podla
ktorej

1 oo gy L
(—u) d F—a)’

211 -G

Z toho mozno ziskat ur¢ita intuiciu o povode faktora 1/I'(—a) v asymptotickom rozvoji zo znenia vety
—vyraz (1 +u/n)"""! totiz pre n — oo konverguje k e~“ a integral z (6.4) tak ,napadne pripomina“
prave uvedeny Hankelov integral pre 1/T'(—a). Ozajstny dokaz vSak vyzaduje o nie¢o technickejsi
pristup.

Obr. 6.2: Hankelova krivka —G.

V&imnime si najprv, ze v integrali (6.4) je prispevok ziskany integrovanim pozdiz ¢asti krivky —G,
na ktorych plati Reu > (Inn)?, zanedbatelny (t. j. nema Ziaden vplyv na asymptoticky rozvoj pre a,).
Pre takéto u je totiz

n

‘(1+ 71;)”/2 < <1+ (lnn)2)—n/2 _ e_(n/z)ln(u%).

Kedze pre vietky dostatocne velké n je (Inn)2/n < 1, mozeme vonkajsi logaritmus v exponente
rozvinut do Mercatorovho radu, ¢im dostaneme

0™

pre vhodnii kongtantu C' > 0. Ak teda oznacime ako I ziiZenie krivky —G na u také, ze Reu > (Inn)?,

n (lnn)2 (lnn)4
(o)) _ (-1/2)((nn)2+0(1) < ~Cnn)?
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mozeme integral pozdlz I' odhadnit ako?

n_o‘_l u\ —n—1
—u)e (1 7) dul <
2mi /F( v) ( +n 4=

n/Real+1
2w

<

/F(—u)a (1 + %)_n_l du

[Re or|+1 —n/2 —n/2—1
n U U
- —u)® — — <
- 27 /p( v) (1+n> <1+n> du) <
|Re o +1 0o —n/2—-1
< "/ (t + 1)Te=Clnn) (1 n t> dt <
™ (Inn)2 n
00 " —n/2—-1
< nDln"/ t+1)" <1 + ) dt (6.5)
(Inn)2 n

pre nejaké vhodné konstanty r, D > 0 a dostatocne velké n. Nevlastny integral
o0 t 771/27].
/ (t+ 1) (1 + ) d (6.6)
(Inn)2 n

ale pre dostatotne velké n konverguje k nejakej kladnej hodnote zhora ohrani¢enej polynomickou
funkciou premennej n, pretoZze po substiticii © = t/n pre nejaké s > r nezavislé od n dostéavame

/ (t+1)" 14t dt:/ (zn+1)" (1+2)"* T nde <
(Inn)?2 n (Inn)2/n

< / (zn)* (1 +2) > Inde =
(

Inn)2/n

=St / 2 (1+2) " dg =
(Inn)?/n

1 oo
=t (/ * (14 2)"* ! o +/ 2 (14 )~ daz) :
(Inn)2/n 1

Ked7ze pre z € [(Inn)2/n,1] je z° (1 + 2) ™71 < 1, nutne

1
/ 2*(1+2)? Ve < 1;
(1

nn)?/n

pre dostatocne velké n tiez

/ 2 (14+2) " de < / 7 2dz =1.
1 1

Hodnota integralu (6.6) je teda zhora ohrani¢ena polynomickou funkciou 2n", z ¢oho vyplyva, ze (6.5)
skuto¢ne klesa rychlejsie, nez n=* pre Iubovolné k& € N. V désledku toho sa teda v integrali (6.4)
moZzeme obmedzit na koneént krivku zodpovedajicu u takym, Ze Reu < (Inn)? — prispevok ziskany
integrovanim pozdlz zvysnych ¢asti tejto krivky je totiz zanedbatelny.

Ozna¢me tito konec¢nu cCast krivky —G ako v — teda

s+1

v=9"+1"+9T,
kde

v =1nn)? =i, =i, 7%= —Kppse0,1)  a AT =[i,(Inn)? + .

Krivka v je znézornena na obrazku 6.3.

3Takto definované I' nie je krivka, ale ide o retaz pozostavajicu z dvoch disjunktnych nevlastnych kriviek. Integral
pozdiz T’ definujeme ako studet integralov pozdiz tychto dvoch kriviek.
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Obr. 6.3: Krivka ~.

Doposial dokazané vysledky tak mozno zhrnat do nasledujiceho vztahu: pre a, = [2"](1 — 2)®

an— oo je
n—a—l

n =~ [y(—u)o‘ (1 + %>_n_1 du+ O (n_dn") (6.7)

pre nejaku konstantu ¢ > 0. Na najdenie asymptotického rozvoja pre a,, teda staci najst takyto rozvoj
pre uvedeny integral.

Pre vietky u € v* ale evidentne |u| < (Inn)2 4 1. Pre dostatocne velké n je potom |u/n| < 1
a z Maclaurinovho rozvoja funkcie Ln(1 4+ u/n) do Mercatorovho radu a nasledného Maclaurinovho
rozvoja exponencialnej funkcie pre vSetky takéto u dostavame

(1 + %)7n71 — e—(n+1) Ln(1+u/n) _ 6—(n+1)(u/n—u2/(2n2)+u3/(3n3)—u4/(4n4)+...) _

—ueu—(n—i—l)(u/n—u2/(2n2)+u3/(3n3)—u4/(4n4)+...)

= e =
_ e—ueu—(n+1)u/n+(n+1)u2/(2712)—(n+1)u3/(3n3)+... _
_ u? —2u  3ut — 20ud + 24u?
_u (1 2y s 5 ) . (6.8)
Uvedeny vztah mozno pisat aj ako
uy—n-t —u -1 -2 -3
(1 + E) =e (1 + p1(u)n™" + @a(u)n™ + ps(u)n™> + .. ) , (6.9)

kde ¢i(u) je pre vsetky k& € N\ {0} polynomicka funkcia premennej u stupiia 2k a kostupia k.
Kazdy mocninovy rad s polomerom konvergencie ¢ navyse musi konvergovat rovnomerne na D(0,r)
pre Tubovolné r < p [12, cvifenie 7.3]. Preto aj rad funkcii (6.9), ktory konverguje na D(0,n), musi
konvergovat rovnomerne na oblasti obsahujtucej v*. V désledku toho moézeme tento rad integrovat ¢len
po ¢lene [12, veta 7.1.8] a vd'aka (6.7) dostavame

—a—1

ay = ”2m (L(—u)ae“ du + ;L(_u)aeu@k(u)nk du) +0 (nfcmn) . (6.10)

Vztahom (6.10) je dany aj asymptoticky rozvoj pre a, a n — oco:

—a—1

~ —u)%e “du Oon_k —u)% Yo (u)du | .
an (/vm ity [ @kmd)

Pre vSetky ¢t € N\ {0} a vSetky dostato¢ne velké n € N totiz z (6.10) dostavame

—a—1

t—1
I = oni </7(_u)ae_u du + ; nk A(—U)ae_u@k(u) du + Xt(n)> ,
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kde -
=2 / (—u)e pp(u) du+ O (n7").
k=t v

Treba dokézat, ze pre n — oo je xt(n) = O(n™'). Pre dostato¢ne velké n € N je ale

=nt (i n kit /(—u)“e_“gok(u) du+ O (n_dn">> =
k=t v
— ot (/ Zn*’”t(—u)ae*“@k(u) du+ O (ndnn>> ;
7 k=t

kde nekone¢ny rad konverguje absolutne pre vetky u € v* podla vety o polomere konvergencie moc-
ninového radu [12, veta 3.2.3]. Postupnost suc¢tov

> ittt

k=t

je pritom pre n — oo nerasttca, a teda

/Zn_k+t )Ye g (u) du = O(1).
Y k=t

V doésledku toho naozaj x¢(n) = O(n™").

Vsimnime si dalej, ze

L(—u)ae_" du = /_G(—u)ae_” du+ O (n_ln") (6.11)

a pre vietky k € N\ {0} je
[y(—u)ae“gok(u) du = /G(—u)“e“gok(u) du+ O (n* hm) . (6.12)

Ide tu o jednoduchy désledok toho, Ze absolttnu hodnotu mocninovej funkcie (—u)®, ako aj polyno-
mickych funkcii o, (u), mozno pre dostatoéne velké n a u € (—G)* s Reu > (Inn)? zhora odhadnif
napriklad funkciou eR¢%/4. V dosledku toho mozno absoltatnu hodnotu rozdielu integralov na lavej
a pravej strane (6.12) zhora odhadnit napriklad integralom

2/ e t2dt = 4e~0M)* — 0 (niln">
(Inn)?

a podobne pre (6.11).
V kone¢nom dosledku teda zistujeme, ze asymptoticky rozvoj pre a, a n — oo je dany ako

Nn_a_l —u)%e “du oonfk —u)%e “pp(u) du
i~ (/_GH dut 3ot [ m)d).

Z Hankelovej integralnej reprezentécie funkcie 1/I'(z) ale

1 1
- )% % du =
omi | LW = e

a kazdy z integralov

1, /G(—u)ae“cpk(u) du

2mink
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mozno — po roznasobeni polynomu ¢y (u) zvyskom integrandu a integrovani vysledku ¢len po ¢lene —
vyjadrit ako kone¢ny sucet integralov typu

1 i (—1)Y¢; 1 - d; 1
—w)% Yo du = J .~ ) e Q=2+ . — - —
2mink /G( u)teeu’ du nk 2mi /G( u)* e du nk T(—a—j)
_ di(—a—1)(—a—2)...(—a—j)
I'(—a)nk

pre j = k,...,2k, kde cg,...,cor € Q a dg,...,doy, € Q st konStanty. Opatovnym pozbieranim
jednotlivych ¢lenov

di(—a—1)(-a—2)...(—a—j)

pre kazdé k € Na j=k,...,2k do polynomu e () tak dostavame existenciu asymptotického rozvoja
n—a—l

an = [2"](1 — 2)% ~ I'(—a) (1 + Z 8";1(]?)>
k=1

zo znenia vety. Priamym vypoc¢tom zaloZenym na (6.8) dalej Tahko vyjadrime e (o)) pre Tubovolné

k € N\ {0} — napriklad

ala+1
(o) = 20D,
ala+1)(a+2)(3a+1)
e2(a) = 51 :
atd. Tym je veta dokdzana. O

Pri dékaze asymptotickych odhadov pre zvysné funkcie z nami uvaZovanej Standardnej triedy
sa nam zide tzv. Leibnizovo pravidlo umoziujice za urcitych okolnosti vymenit derivaciu s integralom.

Tvrdenie 6.2.3 (Leibnizovo pravidlo). Nech a < b a ¢ < d si redlne ¢isla. Pre lubovolni funkciu f(s,t)
dvoch redlnych premennych s,t, ktord je na [a,b] X [c,d] spojitd a spojite diferencovatelnd podla s, je
na intervale [a, b]

d [ ‘9

— t)ydt = — t) dt.

5[ rena= [

Dokaz. Pre Tubovolné pevne dané sy € [a,b] je pre vetky s € [a, b]

d d d d d d s 8
& ] rena= 5 e -seoma=L [ [ 2=
d S d 8 d a

kde zdmenu integralov mozno od6vodnit spojitostou funkcie %f(m, t) [12, tvrdenie 10.4.2]. O
Podobne ako pri zamene integralov [12, tvrdenie 10.4.3] moZno Leibnizovo pravidlo evidentne pria-
modiaro rozsirit aj na pripad krivkovych integralov pozdlz koneénych kriviek.

Zahrnieme teraz do naSich tivah aj logaritmické faktory a postupne dokazeme asymptotické odhady
koeficientov Maclaurinovych radov pre vSetky funkcie z nami uvazovanej Standardnej triedy. Za¢neme

funkciami 5
1 1
1—2)*(-L
( ”(ZH_J’
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kde a, 8 € C su cisla také, Ze o € N. Asymptoticky rozvoj z nasledujucej vety umoziuje odhadnut
koeficienty Maclaurinovych radov tychto funkcii pre n — oo s chybou

0 ((mn)™*) 2" ((1 e <i In- ! z)ﬂ)
pre lubovolné k € N\ {0}.

Veta 6.2.4. Pre vietky a € C\N a 8 € C je

—

B n—a—l n_a_l
(1 — 2)° C In 112> = ey (mm)” (140 ((mm) ™) ~ s (mm)”

Pre tieto koeficienty navysSe existuje asymptoticky rozvoj

B nfafl o a
2"](1 — 2)° <iLn ! ) N (Inn)? <1+ZM),

-z = (In n)k

kde pre vsetky k € N\ {0} je

s = (J)reaias]

Dokaz. Metoda dokazu je z velkej Casti prakticky identickd ako pri vete 6.2.2. Koeficient

ap = [2"](1 — 2)° <1Ln 1 )/3

z 1—2z

moZno pomocou Cauchyho integréalneho vzorca pre derivacie vyjadrit ako

1 1—2) /1 1\
an = — 7( Zl) ( Ln ) dZ.
2mi Ju,/2) 2T z 1-—z

Rovnakymi metédami ako v dékaze vety 6.2.2 potom moZno tento vzorec transformovat na nevlastny
integral pozdiz hankelovskej krivky K, [co]:

a B
1 1-— 1 1
Ay = — ﬂ (Ln ) dz.

27 Knjoo] 2T z 1—2z

Substittciou u := n(z — 1) nasledne dostavame, pre Hankelovu krivku —G a dostato¢ne velké n € N,
1 a —n—1 -1
e 02 (02 () S
2 J_g\ n n n U n

_ ”2;1 /_G(_u)a (1 + %)*H <<1 + %)*1 (Inn — Ln(—u)))ﬂ du;

vyuzili sme, ze pre vietky n € N\ {0} a z € C\ {0} je Ln(n/z) =lnn—Lnz a Ln(z/n) =Lnz—Inn,
v dosledku ¢oho pre hlavna vetvu mocninovej funkcie dostavame aj (z/n)® = n=%z%.
Podobne ako v dokaze vety 6.2.2 nésledne zistujeme, Ze pre krivku v na obrazku 6.3 a n — oo je

—a—1 B

an =" /7(—u)a (1+ %)_H <(1 + %)_1 (Inn — Ln(—u))> du+0 (nemm) =

_ n_ ! L(_u)a (1 + %)_n_l_ﬁ (Inn — Lo(—u))? du+ O (nfclnn> =

21

—a—1

= (lnn)ﬁ/w(—u)a (1 + g)-n—l—ﬁ <1 — Ln(—u))ﬁ du+ O (niClML) , (6.13)

271 n Inn
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kde ¢ > 0 je vhodna konStanta; vyuzili sme pritom skutocnost, Ze pre n — oo a u € y* sa argumenty
¢isel (14 u/n)~t a (Inn — Ln(—u)) blizia k nule, v désledku ¢oho je

Ln <(1 n %)71 (lnn — Ln(—u))) ~Ln ((1 + Z)l> + Ln(Inn — Lo(—u)),

a teda aj
B

((1+2) " tan—ta-w)) = (14 2) ™ Gan - La(-)?,

taktiez sme pre z = Inn vyuzili rovnost (zz)? = 2727 platni pre vietky > 0a z € C\ {0}.
Tym istym postupom ako v dokaze vety 6.2.2 d'alej mozno ukézat, Ze sa nedopustime velkej chyby?,
ak faktor (1 4+ u/n)™"" '8 v (6.13) nahradime za e~". Pre n — oo tak dostavame

ay = ”;Z_l <(ln n)? / (—u)%e (1 - LIL(MU)>B du+0 <(1“:)ﬁ)> . (6.14)
v

Zostava najst odhad pre integral

A (—u)*e ™" (1 - LIL;“))B du.

Pre dostato¢ne velké n a u € v* ale pre nejaké r < 1 musi byt

‘Ln(—u)

Inn

v dosledku ¢oho binomicky rozvoj

<><>

konverguje na y* rovnomerne, a teda

e
—Z( ) m;;L Je (Lo(—u))* du. (6.15)

7 Leibnizovho pravidla teraz pre vSetky k € N a komplexnti premennii s mame

(St e ()l oo

_ <£>(lnln)k . i;/v(—u)_se_“du.

Preto

(&) e [ o

Il
N
™~ ™
N—
—
B
: —_
=
.
o;v\ o
4\..
|
e
S—
:
®
IS
o,
=
—_
Il

— <£> (lnln)k :i:k /_G(—u)—se—“ du} S:_a+0 <n—1nn> —

_ </]j> (11217:)k (f;r(ls)] _+o (n7),

4Chyba teda bude mensieho radu, nez (Inn)~* pre Tubovolné k € N.
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kde prechod od integrac¢nej krivky v k Hankelovej krivke —G moZno odévodnit podobne ako v dékaze
vety 6.2.2. Z (6.14) a (6.15) teda pre n — oo vyplyva existencia asymptotického rozvoja

o (2 5 (0) 2 ] )

k=1

to je to isté ako

n-a-t L (A\T(—a) [d¥ 1
Qp, ~ Inn)? |1+ < ) [ ] ,
INGe) (Inn) ( ; k) (nn)k [ds*T(s) ],
¢o bolo treba dokézat. O

Zostava asymptoticky odhadnut koeficienty Maclaurinovych radov funkcii

1 1 \*
1—2)%(-L
(1-2) ( “1_z> |

kde a e Na g eC.

Veta 6.2.5. Pre vsetky a € N a g€ C\ {0} je

2")(1 - 2)° (i In— Z>B = 1~ (lnn)1 Li‘f‘(s)} _ro(mm )~
~n 1 (Inn)’ 1 g [;8 r(ls)} -

Pre tieto koeficienty navyse existuje asymptotickyj rozvoj
1 1 \* — &l )
2" 1—zo‘<Ln ) ~n~ 1 (Inn)’ ’ ,
"1 2)" (S e (35

kde pre vsetky k € N\ {0} je

e = () [,

Dékaz. Pre a € N je bod —a jednoduchym pélom funkcie gama. Ak ale budeme, rovnako ako v ramci
oddielu 5.4, pracovat s konvenciou 1/T'(—a) = 0, dospejeme rovnako ako v dokaze vety 6.2.4 k vyjad-

o (255 () 2 [ ] ).

k=1

pre n — o0, ¢o je to isté ako
an ~n~* (Inn)? i <5> o [dkl ] O
" — \k/ (In n)k LdsPT(s) = o)

V pripade, Ze o, € N, je obvykle oproti pouZitiu predchadzajtcej vety vyhodnejsie aplikovat
analyzu zaloZzend na elementarnych metédach.
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Poznamka 6.2.6. V pripade, ze a € C a € N\ {0}, uvazuje sa ¢asto v kontexte predchadzajicich

dvoch viet namiesto funkcie 5
1 1
1—2)*(-L
(1-2) (z . z)

(1—2)° <Ln1iz>ﬁ.

Pre n — oo totiz v takom pripade evidentne

101 - )7 (o g Z)ﬂ =0 (Lot >6 _

1—2z

_ ([z"](l ) C Ln— >6> (1+0(n7")),

1—2z

funkcia

z ¢oho vyplyva, ze asymptotické rozvoje dané vetami 6.2.4 a 6.2.5 zostanti nezmenené.
Désledok 6.2.7. Nech ¢ > 0. Pre vSetky o € C\ N a n — oo potom
2\ ¢ nfafl
Zn 1-2 ~ Q—n;
1(-3) ~ s
pre vetky a € C\N, 5 € C an — oo dalej
B
e (1-2) (L to] o (Inn) o
0 z 1-2 I'(—a)

pre vietky o € N, g € C\ {0} a n — oo napokon

)ty e o]

Doékaz. Vyplyva z viet 6.2.2, 6.2.4 a 6.2.5 a zo skuto¢nosti, ze pre vetky funkcie f(z) € Hy a vsetky
n €N je [z"]f(2) = 07"["]f(02). O

6.3 Vety o transfere

Budeme sa teraz zaoberat wvetami o transfere, ktoré — spolo¢ne s asymptotickymi odhadmi pre ko-
eficienty Maclaurinovych radov funkcii standardnej triedy odvodenymi v predchadzajicom oddiele —
tvoria zéklad metédy analyzy singularit. Stale pritom zostavame pri zakladnom variante, kde skiimané
funkcie f(z) € Ho N R>p[z] maju jedint dominantnu singularitu, nutne rovna polomeru konvergencie
Maclaurinovho radu. Dokazanim viet o transfere ziskame posledny nastroj potrebny na plnohodnotné
pouzitie metdédy analyzy singularit pre takéto vytvarajiace funkcie.

Pod wvetou o transfere rozumieme, v kontexte analytickej kombinatoriky a v pripade jedinej do-
minantnej singularity, tvrdenie umoznujice asymptoticky odhadnut koeficienty Maclaurinovho radu
funkcie f(z) koeficientmi Maclaurinovho radu nejakej inej funkcie g(z), ktora patri do Standardnej
triedy. Mozno tak urobit za predpokladu, ze funkciu f(z) samotnii mozno asymptoticky odhadnat fun-
kciou g(z), a to na nejakej vhodnej ¢asti okolia dominantnej singularity o > 0 funkcie g(z) pre z — o.
Pouzitie takejto vety v procese analyzy singularit sme si uz vysvetlili v oddiele 6.1: zanedbatelny ¢len
singularneho rozvoja analyzovanej funkcie sa — v pripade, Ze spliia predpoklady vety o transfere —
priamo , prelozi“ na zanedbatelny ¢len asymptotického rozvoja pre koeficienty analyzovanej funkcie.
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Obr. 6.4: A-obor A(g, R, ¢).

Postacujicou podmienkou pouzitelnosti viet o transfere je analytickost uvazovanej funkcie f(z)
na rozrezanej komplexnej rovine C\ [, 00). Tieto vety vSak mozno sformulovat aj za omnoho slabsieho
predpokladu na funkciu f(z) — staci jej analytickost na tzv. A-obore, ktory si teraz definujeme. Typicky
A-obor je znazorneny na obrazku 6.4 — ide o mierne ,zvicSené“ okolie D(0, p) neobsahujice bod p,
ktoré mozno vytvorit odstranenim vhodného vyseku z okolia D(0, Rp) pre nejaké R > 1.

Definicia 6.3.1. Nech g, R, ¢ st realne ¢isla také, ze o > 0, R > 1 a 0 < ¢ < w/2. Pod A-oborom
A(o, R, ) potom rozumieme oblast

Ao, R,¢) :={2 € C | |z| < Ro; arg(z — o) € (¢,21 — §) }.
Pod A-oborom v bode ¢ > 0 rozumieme lubovolny A-obor A(g, R, ¢) pre nejaké R >1a0 < ¢ < 7/2.

Podobne ako v oddiele 6.2 budeme bez ujmy na v8eobecnosti predpokladat, ze o = 1. M6Zeme si
to dovolit, pretoze pre Tubovolna funkciu f(z) € Hy s Maclaurinovym radom o polomere konvergencie
0 > 0 ma funkcia f(pz) polomer konvergencie rovny jednej, pricom pre vietky n € N je

[2"]f(z) = 07"["]f (02). (6.16)

Specialne teda pre dvojicu funkcii f(z),g(z) € Ho N Rxo[z] plati [2"]f(z) = O ([2"]g(z)) prave vtedy,
ked [z"]f(0z) = O ([z"]g(0z)) — a podobne pre o a ~.

Pripomenme si v zjednoduSenej podobe hlavné vysledky oddielu 6.2, ktorymi st asymptotické
odhady pre koeficienty Maclaurinovych radov funkeii standardnej triedy: pre vsetky a € C\ N, vsetky
BeCan— ooje

"](1 — 2)° <iLn ! )B T

a pre vietky a € N, € C\ {0} an — oo je

[2"](1 — 2)® (i Ln 7 ! )ﬁ ~n 1 (nn)? 1 g [ir(ls)} -

—z

Nie je preto nahoda, Ze prave funkcie typu n="! (In n)ﬁ budu vystupovat aj vo vetach o transfere.
Najdolezitejsim tvrdenim tohto oddielu je nasledujica veta o O-transfere, v ktorej sa horny asymp-

toticky odhad spominany vyssie formalizuje pomocou notécie O.
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Veta 6.3.2 (O O-transfere). Nech o, 3 € R.5 Nech f(z) je funkcia analytickd na nejakom A-obore
A(1,R,¢) vbode 1 pre R>1 a ¢ € (0,7/2). Ak potom pre z € A(1,R,¢) a z — 1 je

f(z)=0 <(1 e (iLn 1 ! 2)6) , (6.17)

[2"]f(z) = O (n—a—l (In n)ﬂ) .

Doékaz. Nech r, 0 st redlne &isla také, ze 1 < r < R a ¢ < 0 < 7/2. Mdzeme predpokladat, ze n je
dostato¢ne velké nato, aby bolo 1/n < r — 1. Nech v je uhol 0 < v < 7/2 taky, Ze arg(re®” — 1) = 6
a nech ~ je krivka dana ako 7 := 1 + 2 + v3 + 4, kde

tak pre n — oo je

M= _K[9,27r79](17 1/”)7

Yo = [1+ (1/n)e®, ret],

V3 = Kly,2r—v] (O7T)7

ya 1= [re'®T) 1+ (1/n)e! 0],

Tato krivka v je znazornena aj na obrazku 6.5.

Obr. 6.5: Krivka « (plnou ¢iarou) v A-obore A(1, R, ¢) (¢iarkovane). Polomer malého obliku kruznice je 1/n.
Usecky 72 resp. 4 zvieraju s kladnou realnou osou uhol 6, tsecky hranice A-oboru s fiou zvieraji uhol ¢.

Zjavne 0 € I() a v* C A(1, R, ¢). Z Cauchyho integralneho vzorca pre koeficienty Maclaurinovho
radu tak dostdvame ) 2)
z
() = o a

= z.
2mi J, zntl

Inymi slovami: [2"]f(z) =11 + Io + I3+ Iy, kde pre k = 1,...,4 je

1 [ f(2)
Iy = — dz.
" om ), 2l

Na dokaz vety sta¢i vhodne zhora odhadnit tieto Styri integraly.

5Predpoklad realnosti &isel «, 8 tu nie je obmedzujuci, pretoze pri asymptotickych odhadoch sa berie do uvahy len
absolutna hodnota funkcie.
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Zagnime integralom pozdlz malého obliku 7;. Dlzka tohto obltku je urcite nanajvys 2z /n, pricom
pre vietky z € 7] je

12 ==

1 —n—1
g(l—) — e.
n

Z vety o odhade preto pre vhodné C' > 0 a vSetky dostato¢ne velké n dostavame

o r
ulyg;ﬂ.f.c-(i) .<1+ ! ) (nn)® - (e + 1)

n—1

a pre n — oo je
1
n+l

a pre n — oo tak
L] =0 (n*afl (In n)’8> . (6.18)

Uvazujme teraz tsecku 7o (pri¢om rovnakt argumentaciu by sme mohli pouZit aj pre tsecku 7y).
Predpoklad (6.17) znamené, Ze existuju ¢isla § > 0 a C' > 0 také, Ze pre vietky z € A(1, R, ¢)ND(1,96)

je
1 1 \*
1—2)*(-L .
(1-2) (z nl—z)

Bez ujmy na v8eobecnosti budeme predpokladat, Zze 6 < min{l,r — 1}. Cislo 6 d'alej nezévisi od n,
pricom mozeme predpokladat, Ze n je dostatocne velké nato, aby platila nerovnost 1/n < §. Pre takéto
dostato¢ne velké n mozno tsecku -y, rozdelit na dve Casti ako v = 2.1 + 722, kde Y51 C D(1,6)
a 759 CA(L R,¢)\ D(1,6). Absolitna hodnota analytickej — a tym padom aj nutne spojitej — fun-
kcie f(z) musi byt na kompaktnej mnozine 73 5 zhora ohrani¢end nejakou konstantou M > 0. KedZze
na tejto tsecke je |z| > 1 + ¢ pre nejaké € > 0 nezavislé od n, z vety o odhade pre integral

RO

27 zntl

e <C (6.19)

Iy :=

)

2,2

ihned dostavame

LofoIe)

y n+1
21 yap 2

2%(1 +)7" L (y92) < ‘7;4—(1 +e) =0 (n—“—l (1nn)5> . (6.20)

22| =

Usetka 79,1 je dana ako vo1 = [1+ (1/n)e?, 1+ 6] a mozno ju parametrizovat ako v21: [1,n] — C,
kde pre vietky t € [1,nd] je y2.1(t) = 1 + (t/n)e?. Preto

1 f(2) 1o t i t o) " e
Iy = dz = — 1+ —¢ 1+ —¢ —dt.
217 o yaq 27F1 “ T o 1 A nt + nt n

,1

7 vety o odhade teda

1 no
< —
27

( e
1 n
1 [me t . t N\
— f <1 + 619> Re <1 + ew> —dt =
2 Jy n n n
2

IN

1 nd

t . tecosf\ "1
— 1+e“’> <1+ cos > Zdt=
2 n n n

—1211+I21
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kde — za predpokladu, Ze n je dostatocne velké nato, aby bolo (Inn)? < nd —

1 [on)? t tcos@) "1
1211;:/ f(l—l—e’e)’(l—l— o8 ) =t
T 2 )4 n n n

1 m t tcos\ "1
f <1+ew> <1+ o8 > = dt.
n n n
Odhadneme teraz tieto dva integrély.

Io10:= —
Pre integral I, vdaka (6.19) pre dostato¢ne velké n dostavame

2w (Inn)2
1 [on)? t o\ 1 n o\ teosf\ "1
Iy < — ——e?) (g o (-2e) ) | (1 Sdt <
2,1,1 < 271/1 C ( e > <1+t619 n(-—e +

n

1 (nn)? @ feosf\ L
< — C‘() (1+6) (lnn—lnt—i—i(ﬂ—ﬁ))ﬁ‘(l—l- cos ) —dt <

2 Jq n n n

c . 3 (Inn)? tcosO —n—1
< — « « .
<5 (Inn) /1 t <1 + - ) dt, (6.21)

kde C’ > 0 je vhodna konstanta. Podobne integral I ; » mézeme odhadnat ako

1 [me t oo\ 1 n _\\? tcosO\ "1
Ipio < — ) (L (—f *19) 1 Sdt<
212 S 5 (1nn)2c'< € ) <1+ R +— Sdi s

n
no «
L2
27 (Inn)?2 n

—n—1
t <1+t0089> ldtﬁ
" nd 1
t 0
< (;na/ e (1 n CZS ) dt, (6.22)
Q (Inn)?

n
o
kde C” > 0 je vhodna konstanta. Pre n — oo teraz asymptoticky odhadneme integraly na pravych
stranach (6.21) a (6.22).
Za u¢elom asymptotického odhadu oboch tychto integralov méZeme bez ujmy na vSeobecnosti
predpokladat, ze § < 1/(4cosf). Pre vSetky ¢ € [1,dn]| totiz v takom pripade

tcosf  dncosf 1
< < -,
- n n 4

pri¢om pre vietky u € [0,1/4] je 1 +u > e*/?, a teda aj In(1 + u) > u/2. To znamena, e pre vietky

t €[1,0n] je
tcosf tcosf
In(1+ > ,
n 2n

7 ¢oho

—n—1 -n
(1+tC089> <(1+9) <1+tC089> §(1+5)exp<—nln<1+tcose>> <
n n n

(14 6)exp (—nt‘;osa) = (1+8)exp (—“359) . (6.23)
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Ked7e na pravej strane (6.22) integrujeme cez t € [(Inn)?, 6n], musi pre takéto t vdaka (6.23) byt

—n—1
(1 N tcos@) < (1+8)exp <_00280(1nn)2>

n

a pre n — oo mozeme integral z (6.22) odhadnat ako

nd —-n—1 né
/ t <1 + tcos@) dt < / nl®l(1+ 8) exp <—Cose(lnn)2> dt =
(Inn)? n (Inn)? 2

= (né — (In n)Q) nl® (1 + §) exp <— (In n)2> =0 (n_2) .

Pre integral Is 12 a n — oo teda dostavame

ol né ¢ 0 —n—1
Iy12 < n_o‘/ e <1 + = > dt =0 (n=*7?%).
2 (Inn)? n

™ Inn

Odhadnime este integral na pravej strane (6.21). Tu vdaka (6.23) pre n — oo dostavame

2

(Inn)? —n—1 (Inn)
/ 4o <1 n tCOSe> dt < (1 + 5)/ t|a|67(tcos9)/2 dt =
1 1

n
(lnn)Q(COSQ)/2< 20 >Ot| B 9
e

=(149)

cos 0 cos

(cosh)/2

lal4+1  (Inn)2(cosh)/ ‘ |
146 e P dr <
( - ) (COSH> /COSH ‘ t=

|a|+1
(cos 0

)
1+5( )MH I (Ja| +1) = O(1),
o)

e Pdx =

z ¢oho pre integral I5 11 vyplyva odhad

l (lnn)2 t 0
I, < gn—a—l (lnn)B/ < Ccos
1y 27_[_ 1

MozZeme teda uzavriet, Ze

(n_o‘_l (lnn)ﬁ) .

| = [To| + Too] < T + oz + [T = O (n7°7" (lnn)”) (6.24)
a obdobnym sposobom moZno dokazat aj odhad
I =0 (n—a—l (In n)ﬁ) (6.25)
Zostava odhadnit integral pozdlz velkého obltiku 3. Pre vietky 2 € 73 ale

pricom 7 > 1. Spojita funkcia f(z) musi navySe byt na kompaktnej mnozine v; v absolatnej hodnote
ohrani¢ena nejakou konstantou M’ > 0 a dlzku krivky 3 mozno zhora odhadnit konstantou 27r.
7 vety o odhade preto pre n — oo dostavame

’1—3|: f(Z) dz

2mi 4y 2711
V tomto momente uZ len staci s¢itat dohromady jednotlivé odhady (6.18), (6.24), (6.25) a (6.26) —
veta je dokdzané. O

< %M/rfnfl%rr =0(r™™) =0 (n"*"!(lnn)?). (6.26)
m
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Analogicky k vete o O-transfere mozno vyslovit aj vetu o o-transfere, ktorej dékaz je len drobnou
varidciou dokazu vety 6.3.2.

Veta 6.3.3 (O o-transfere). Nech o, € R. Nech f(z) je funkcia analytickd na nejakom A-obore
A(1,R,¢) vbode 1 pre R>1 a ¢ € (0,7/2). Ak potom pre z € A(1,R,¢) a z — 1 je

f(z) =0 ((1 e <i Ln- ! z)ﬁ) , (6.27)

[z"]f(z) =0 <n_a_1 (In n)ﬂ) .

tak pre n — oo je

Doékaz. Stadi jemne pozmenit argumentaciu z dokazu vety 6.3.2. Pri analyze integralov pozdiz kriviek
V2,2 & 73 sta¢i len zmenit O na o. Pri krivkach v; a 72,1 sa namiesto odhadu (6.19), podl'a ktorého je

oo ()

pre nejaké C > 0 pouZzije ten isty odhad pre vSetky C > 0, ktory je désledkom predpokladu (6.27).
Pri krivke 1 potom rovnakym postupom ako v dokaze vety 6.3.2 pre n — oo dostaneme

lf(z) <C

I =o (n*afl (lnn)’g) .

1 f(2)
i / L ¥

Pri krivke 791 ziskame

<11+ 12102,

e 1 [Onn)? t oo\ 1 n _, A tecosO\ "1
Ir11 < %/1 C <—ne’9) <1+f1€i9 Ln (—tele>> (1 + - ) - dt
) d o B8 n—1
Ii2 < % /(IZn)Q C (—2&9) (1—}-1;61'9 Ln (—?ew)) <1 + tCsz) %dt
pre vsetky C > 0. ZvySok argumentacie je obdobny ako v dokaze vety 6.3.2. O

Nasledujtca veta o ~-transfere plati iba za o nieco silnejsich predpokladov, nez vyssie — na rozdiel
od predchadzajacich dvoch viet sa totiZz v tejto vete nepripista moznost o € N. To je dané skutoc-
nostou, Ze pre takéto a sa — ako sme videli v rdmci oddielu 6.2 — koeficienty Maclaurinovych radov

funkeii 5
1 1
(1—2)” ( Ln )
z 1—2z

spravaju trochu odlisne ako pre zvysné a € R.

Veta 6.3.4 (O ~-transfere). Nech o« € R\ N a g € R. Nech f(z) je funkcia analytickd na nejakom
A-obore A(1,R,¢) vbode 1 pre R>1 a ¢ € (0,7/2). Ak potom pre z € A(1,R,¢) a z — 1 je

e~ (P ) (6.29)

tak pre n — oo je




Metéda analyzy singularit 115

Dékaz. Odhad (6.28) plati prave vtedy, ked

Fe =2 (S0 )B T9(2),

z 1—2

kde pre z € A(1,R,¢) a z — 1 je

Pre vetky n € N teraz

B
2"1() = 2] ((1 o (S ) +[02). (6.29)

7 vety o koeficientoch Maclaurinovych radov funkcii Standardnej triedy ale pre n — oo vyplyva

) ((1 e (;Lnl_lz)ﬁ) I

¢o je to isté ako

[2"] ((1 —2) <1Ln ! >B> = g—a—l (Inn)’ + o <n_0‘_1 (lnn)ﬁ> .

Z vety 6.3.3 dalej

[2"]g(z) =0 <n_a_1 (In n)ﬁ> :

Dosadenim do (6.29) teda dostavame

(2] f(2) = ?:al) (nn)” +o (n~" (nn)?),
Cize
15(e) ~ T ()’
¢o bolo treba dokdzat. O

Pre tplnost este sformulujme désledok viet 6.3.2, 6.3.3 a 6.3.4, ktory je adaptéaciou prave dokazanych
viet o transfere na pripad funkcii s kladnym realnym polomerom konvergencie réznym od 1.

Dosledok 6.3.5. Nech o, € R a o > 0. Nech f(z) je analytickd na nejakom A-obore A(o, R, @)
v bode p pre R >1 a ¢ € (0,7/2). Potom:

(1) Ak pre z € Ao, R, ¢) a z — o je

tak pre n — oo je
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(13) Ak pre z € Ao, R, ) a z — p je

tak pre n — oo je

tak pre n — oo je

“"p=o~l(lnn

I'(—a)

),3

2" f(2) ~ &

Doékaz. Vyplyva z viet 6.3.2, 6.3.3 a 6.3.4, vztahu (6.16) a skuto¢nosti, Ze funkcia f(z) je analyticka
na A(p, R, ¢) prave vtedy, ked f(pz) je analyticka na A(1, R, ¢). O

6.4 Jednoduché aplikidcie metédy analyzy singularit

Méme teraz k dispozicii vSetky tvrdenia, na ktorych je zalozend metdda analjzy singularit v pripade
funkcii R(z) € Ho N R>¢[z] s jedinou dominantnou singularitou. Pouzitie tejto met6dy mozno zhrnut
do nasledujucich niekolkych krokov:

1. Néajdenie realneho polomeru konvergencie ¢ > 0 Maclaurinovho radu funkcie R(z), ktory je nutne
dominantnou singularitou tejto funkcie. V pripade, Ze o = 0o, metdédu analyzy singularit nemozno
pouzit.

2. Overenie, 7e ¢ je jedinou dominantnou singularitou funkcie R(z) a funkcia R(z) je analyticka
na nejakom A-obore A(g, R, ¢). Ak tieto podmienky nie st splnené, tento zékladny variant®
metody analyzy singularit nemozno aplikovat.

3. Najdenie singularneho rozvoja funkcie R(z) v bode p, ktorého ¢lenmi st konstantné nasobky
funkcif standardnej triedy. Specidlne moéze ist napriklad o Laurentov alebo Puiseuxov rad.

4. Vyuzitie viet o koeficientoch Maclaurinovych radov funkcii §tandardnej triedy na ,preklad* naj-
vyznamnejsieho ¢lena (resp. niekolkych najvyznamnejsich ¢lenov) singularneho rozvoja na asymp-
toticky najvyznamnejsiu ¢ast rozvoja pre koeficienty [z"]|R(z).

5. Vyuzitie viet o transfere na ,preklad“ zvySku singularneho rozvoja na zvySok asymptotického
rozvoja pre koeficienty [2"|R(z).

5Neskor sa budeme zaoberat aj metédou analyzy singularit pre funkcie s koneénym poétom dominantnych singularit.
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Pouzitie metédy analyzy singularit pre funkcie s jedinou dominantnou singularitou teraz demon-
Strujeme na niekolkych prikladoch.

Priklad 6.4.1. V priklade 3.5.1 sme nasli oby¢ajnua vytvarajicu funkciu kombinatorickej triedy W
vietkych slov nad abecedou ¥ = {a,b} s obvykle definovanou dlzkou: bola dana ako

Pocet vietkych slov dizky n € N nad abecedou X je teda v stlade s ocakavanim [z"]W (z) = 2".
To je konzistentné s vysledkom, ktory je mozné pre vytvarajicu funkciu W(z) ziskat pomocou metody
analyzy singularit: dominantna singularita funkcie W(z) je 0 = 1/2; z vety 6.2.2 preto pre n — oo
dostavame

1 n?
"W (z) = [z"}l_i% ~ Z"W =2"

Vyuzili sme, ze funkcia W(z) je priamo dana svojim Laurentovym radom v bode ¢ = 1/2, ktory
pozostava z jediného Clena. V doésledku toho sme si pri aplikacii metody analyzy singularit vystadili
s asymptotickymi odhadmi pre koeficienty Maclaurinovych radov funkcii Standardnej triedy a nemuseli
sme pouzit vetu o transfere.

Priklad 6.4.2. Z prikladov 1.1.1, 1.3.1, 3.5.3, 3.5.4, 3.5.5 a 3.5.6 vyplyva, Ze pre vSetky n € N je pocet
vietkych slov dlzky 2n v Dyckovom jazyku D1, pocet vietkych neprazdnych plnych binarnych stromov
o n vnatornych vrcholoch, pocet vSetkych binarnych stromov o n vrcholoch, ako aj pocet vSetkych
triangulacii konvexného (n + 2)-uholnika dany n-tym Catalanovgm éislom

1 2n
C, = .
" n41 < n >
Vo vete 1.4.2 sme uz pomocou Stirlingovej aproximacie ad hoc odvodili aj asymptoticky odhad pre C,,
a n — 0o. Rovnaky asymptoticky odhad teraz odvodime pomocou metody analyzy singularit.

Zo spominanych prikladov 3.5.3, 3.5.5 a 3.5.6 uz vieme, Ze oby¢ajna vytvarajuca funkcia C(z)
postupnosti Catalanovych ¢isel je dana ako

1—-+v1-4z

Clz) = 2z

Jedinou dominantnou singularitou tejto funkcie je evidentne p = 1/4; funkcia C'(2) je navySe analyticka
na C\ [, 00), a teda aj na nejakom A-obore v bode p.

Funkcia C'(z) mé v bode o = 1/4 algebraicky bod vetvenia prvého radu a Puiseuxov rozvoj

1

C(z):2(1—\/1—4z):1_(12_4)(1—m):

= (2421 —42) +2(1 - 42)* + 0 (1 - 42)*)) 1 - V1 —42) =
=221 — 4z 4 2(1 — 42) — 2(1 — 42)*2 4 2(1 — 42)? — 2(1 — 42)7? + 2(1 — 42)°+
+0 ((1 —42)7/2>.
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Koeficienty [2"](1 — 42)* st pre k € N evidentne nulové pre vietky dostatoéne velké n € N. Vdaka
vetam 6.2.2 a 6.3.2 teda pre n — oo dostavame

[2"C(2) = —2[z"]V1 — 4z — 2[2"](1 — 42)%/% — 2[z"](1 — 42)°? + O (4nn—9/2) _

4372 3 25 5 4np=5/2 15 )
S Yo LR [ (U S ) ot (142 -2))
T(—1/2) < T80 1oz TO )> T(—3/2) < T tob )>

4nn77/2 . 0
9 - n,—9/2\ _
2y (1O ))+O<4n )
4nn =312 3 25 34mn =5/ 15
=7 (1 5t et > (1+8+O( )>+
15470~ 7/2 0
1 A =9/2) —
Sy (R ( )
g 9 145
=\ 8 T 1as2 T

Ak by nam stacil odhad s o nie¢o menSou presnostou, vypocet sa podstatne zjednodusi — dostaneme
pritom

10() = 2T T+ 0 (4m752) = 227 <1 ‘o (;)) +0 (4n7572) =

T(—1/2)
e (1o (3))

¢o sa zhoduje s odhadom z vety 1.4.2.

Priklad 6.4.3. V priklade 3.5.7 sme nasli oby¢ajni vytvarajicu funkciu U(z) kombinatorickej triedy
vSetkych neprazdnych undrno-bindrnych stromov s velkostou danou poc¢tom vrcholov:
1—2—+V1—2z— 322

U(z) = =24+ 22423 420 4.
2z

Koeficient [z"*t1]U(z) pre n € N sa nazyva aj n-tym Motzkinovijm ¢islom M,,. Obycajna vytvarajica
funkcia M (z) postupnosti Motzkinovych &isel je tak dana ako
1—2z—+vV1—2z—322

M(z) = 5,2 =14+2+222 44234 ...

Faktorizovanim polynému 1 — 2z — 322 prichddzame k vyjadreniam

1—2—+/(1-32)(1+2)
2z

U(z) =

1—2z—/(1-32)(1+2)

222 ’
Vidime teda, Ze jedinou dominantnou singularitou obidvoch tychto funkcii analytickych v bode 0 je
bod ¢ = 1/3. V oboch pripadoch pritom ide o algebraicky bod vetvenia, pricom Puiseuxove rozvoje
uvazovanych funkcii v bode p st dané ako

l—z—v1-32v1+2
2z -

M(z) =

U(z) =
- <g+0(1—3z)> <§+0<1—3z>—m<2\;§+0(1_32>>> =

=1-V3V1-32+0(1-3z)
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resp.
M(z) = 1—z—\/;z—2732\/1+22
= <Z+O(1—3z)) <§+O(1—3Z)—m<2\f+0(1—%)>> =

=3-3V3VI-324+0(1-32).

Obe funkcie st navyse analytické na C\ ((—oo, —1] U [1/3,00)), a teda aj na nejakom A-obore v bode p.
Pouzitim viet 6.2.2 a 6.3.2 teda zistujeme, Ze pre n — oo je pocet vSetkych unarno-binérnych stromov
o n vrcholoch dany ako

3ny,—3/2 gn+1/2

v (110(2)) ot 2 o)

a Motzkinove ¢isla moZno pre n — oo odhadnut ako

M, = [z"]M(z) = —3@% (1 +0 <i>) +0 (3% = ;;;2/2 (1 +0 <\}ﬁ)> .

Priklad 6.4.4. V ramci prikladu 3.8.4 sme prisli k pozorovaniu, ze pre vSetky n € N je celkovy pocet
vietkych surjektivnych zobrazeni z [n] do ktorejkolvek z mnozin [r]| pre r € N\ {0} dany ako n![z"]S(z),
kde S(z) je exponencialna vytvéarajica funkcia

S(z) = —

2

Dominantnou singularitou tejto funkcie je evidentne jednoduchy pél ¢ = In2, pri¢om funkcia S(z) je
analytickd na C\ {o} a Laurentovym rozvojom funkcie S(z) v bode p je

1 _ 1 ' 1 :i -
2126010 0%) 20 —z/g) 15001 /g 2" 9 +OW

Vdaka vetam 6.2.2 a 6.3.2 teda pre pocet uvazovanych surjekcii a n — oo dostéavame

nl[="]S(2) = n! <25F:1) <1+0 <i>> 10 (é’nn» _ 2(1117”;')%1 <1+o (i)) .

Priklad 6.4.5. Pocet vietkych permutacii mnoziny [n] pre n € N rozlozitelnych na prave r € N\ {0}
disjunktnych cyklov — ¢ize tzv. Stirlingovo ¢islo prvého druhu — sme v ramci prikladu 3.8.7 vyjadrili
ako

S() = 5—

[n} = nl[2"|P.(2),

”
kde P,(z) je exponencidlna vytvarajica funkcia

P(z) = % (Ln <1iz>>

7 vety 6.2.5 a pozorovania z poznamky 6.2.6 teda pre n — oo dostédvame

P (2) = %[z"] (Ln (1 ! Z)) _ %n_l (nn)"r Lfsr(ls)} B (1+0 () )).

Vdaka vztahu (5.4) teraz pre vsetky s € C\ Z je
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z ¢oho i1 .
ST = (-T'(1 — s)sinms 4+ al'(1 — s) coss) ,
a teda
a1 = lim 1 (—-T'(1 = s)sinms + 7T'(1 — s) cosws) = I'(1) cos0 = 1
dsT(s)|,_, s>0T B -
Zistujeme teda, ze pre n — oo a pevné r € N\ {0} je
1
[2"|P-(2) = o= 1)!11_1 (Inn)"* (1 +0 ((lnn)_1)>
a

{n} = H (lnn)r_1 (1 +0 <(lnn)_1)) )

r

Iné odvodenie tohto asymptotického odhadu mozno najst v [28|.

Priklad 6.4.6. V ramci prikladu 3.8.8 sme sktimali pocet vSetkych dismutdcii — ¢iZze permutécii
bez pevného bodu — na mnozine [n] pre n € N. Prisli sme k pozorovaniu, Ze exponencialna vytvarajica
funkcia kombinatorickej triedy D vietkych dismutécii, s velkostou danou poé¢tom prvkov permutovane;j

mnoziny, je dané ako
—Zz

e
D(z) = .

() =1
Jedinou dominantnou singularitou tejto funkcie je evidentne p = 1, pricom z Laurentovho rozvoja
funkcie D(z) v bode ¢ dostavame

r e !
-2 1-z
Funkcia D(z) je analytickd na C\ {1}. Pre n — oo preto mozno pocet vietkych dismutéacii na [n]
odhadnut ako

nl[2"]D(z) = n! ([111 ‘o (n_1)> ) (F(ll) (1 e (;)) Lo (i)) _
=e Inl <1 +0 (;)) .

Priklad 6.4.7. Odvodme teraz asymptoticky odhad pre pocet 2-requldrnych grafov o n € N oznace-
nych vrcholoch v pripade, ze n — oco. Uvazujme najprv kombinatorickd triedu X vSetkych oznacenych
neorientovanych kruznic roznych od slucky, kde velkost kruznice je dana poctom vrcholov, ktoré tito
kruZnicu tvoria. Pre tito triedu X', neutralnu triedu £ a atomickd triedu Z potom plati

X+ XZXK(E4E)= CY023(Z),

D(z) = (6_1 +0(1-2)) +0(1).

kde -
CYCZg(Z) = Z CYCk(Z);
k=3

existencia izomorfizmu medzi prvou dvojicou tried je zrejmé a existencia izomorfizmu s CyCx>3(2)
vyplyva zo skuto¢nosti, ze kazda neorientovana kruznica rozna od slucky musi byt dlzky n > 3, pricom
kazda orientovana kruznica dlzky n je dana neorientovanou kruznicou dlzky n a orientéciou, ktora
nema vplyv na velkost vysledného kombinatorického objektu. Exponenciélna vytvarajica funkcia X (z)
triedy X je teda dané vztahom

X _n 2
1
2X(z) = SIS ,
n 2 1—-2
n=3
£, j. ;
1 1
X(z)——f—z— —Ln



Metéda analyzy singularit 121

Kombinatoricka triedu G vSetkych oznacenych 2-regularnych grafov s velkostou danou poctom
vrcholov potom moZno Specifikovat ako

G = SET(X),
z ¢oho pre exponencialnu vytvarajucu funkciu G(z) triedy G dostavame
e—2/2—2%/4
Vi-z

Jedinou dominantnou singularitou analytickej funkcie G(z) je jej jednoduchy pél o = 1, v ktorom ma
Laurentov rozvoj

G(z) = eX(2) —

1 —3/4

Ge) = o (e—3/4 +O(1 - z)) - to(WI=2).

1—=z2 —Z

7

Funkcia G(z) je navyse analytickd na C\ [1, 00). Pocet vSetkych 2-regularnych grafov o n € N vrcholoch
teda pre n — oo mozno asymptoticky odhadnit ako

n![z"]|G(z) = n! <e_3/4[z"]1 +0 (n_3/2)) =

1—2
=n! <€_3/41?(11//22) <1 +0 <71L>> +0 (n_3/2>) = ej;inm (1 +0 (i)) .

6.5 Pripad viacerych dominantnych singularit

Doposial sme sa zaoberali iba zakladnym variantom metédy analyzy singularit, pri ktorom sme pred-
pokladali, ze skimana vytvéarajica funkcia ma prave jednu dominantnt singularitu rovnu jej polomeru
konvergencie. Teraz sa v kratkosti pristavime pri vytvarajucich funkciach s viacerymi dominantnymi
singularitami — stale vSak budeme predpokladat existenciu konecného poétu dominantnych singularit
— a opiSeme metédu analyzy singularit v plnej vSeobecnosti.

Uvazujme funkciu R(z) € Ho N R>p[z] s konetnym polomerom konvergencie p > 0. V pripade, ze
mé funkcia R(z) jedind dominantnt singularitu — ktorou podla Pringsheimovej vety musi byt bod o —
mozno za ur¢itych predpokladov pouzit vety z predchadzajtcich oddielov tejto kapitoly na odvodenie
velmi presného asymptotického odhadu pre koeficienty [2"]|R(z) a n — co. Najvyznamnejsim ¢lenom
asymptotického rozvoja pre [z"]|R(z) je pritom vzdy nejakd monoténna funkcia.

Existencia viac ako jednej dominantnej singularity sa typicky prejavi porusenim tejto monotén-
nosti — koeficienty Maclaurinovych radov funkcii s kone¢nym poc¢tom dominantnych singularit mézu
oscilovat, ako napriklad pri nasledujucich funkciach:

1
:1—|—z2—|—z4+z6—|—...,
1— 22
1
— =14+ 454+
1—23
1 1
+ =24 2241322 +82% + 9721 + 3225 + 79325 + ... (6.30)

1—-922  1-22

Dominantné singularity prvej z tychto funkeif st +1, pri druhej funkeii ide o hodnoty 1, e2™/3, ¢4mi/3

a tretia z uvedenych funkcii ma dominantné singularity +1/3. Vo vSetkych troch pripadoch teda ide
vyluéne o singularity typu ow, kde w je niektora prirodzené komplexna odmocnina jednej. Singularity
takéhoto typu sa prejavuja, podobne ako pri trojici funkcii vyssie, periodickym spravanim koeficientov,
pricom periéda je dana rddom odmocniny w; pri vacgine funkcii vyznamnych z hladiska kombinato-
rickych aplikacii narazame prave na tento pripad. Existencia singularit, ktoré nie st uvedeného typu,
vytsti v oscilacie, ktoré s o poznanie tazsie predvidatelné.
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Rozsirenie metédy analyzy singularit na pripad vytvarajtacich funkcii s koneénym poc¢tom domi-
nantnych singularit je z hladiska jeho pouzitia velmi jednoduché — spociva v lokalizacii vSetkych
dominantnych singularit (i, ..., (x a naslednom néjdeni singularnych rozvojov uvazovanej funkcie f(z)
v tychto bodoch. V pripade, Ze su ¢leny tychto singuldrnych rozvojov konstantnymi nasobkami funkcii
Standardnej triedy, najdeme pre niekol'ko asymptoticky najvyznamnejsich ¢lenov kazdého z nich odhad
pre ich koeficienty. Tieto odhady nasledne pre j = 1,...,k scitame, ¢im — za nie prili§ obmedzuja-
ceho predpokladu analytickosti funkcie f(z) na prieniku A-oborov v jednotlivych jej dominantnych
singularitach — ziskame asymptoticky odhad pre koeficienty funkcie f(z).

Poznamka 6.5.1. Je délezité si uvedomit, Ze pri takomto s¢itani asymptotickych odhadov pre ko-
eficienty niekolkych najvyznamnejsich ¢lenov moéze niekedy dojst k ich vyruSeniu, ¢o znamené, Ze
pre niektoré n moéze byt asymptoticky najvyznamnejsia ¢ast odhadu pre [2"]f(z) ukryta v chybovom
¢lene. Uvazujme napriklad funkciu (6.30): metodou analyzy singularit ziskame — vdaka vete 6.5.2, ktora
zakratko vyslovime — odhad

B (1 _1922 + 7 _122) ~ % (3" +(=3)")+0(3"n7").

Lahko vidiet, Ze pre neparne n st koeficienty rovné 2"; avSak tato informécia je zahrnuta v chybovom
Clene.

Presnejsie je princip metody analyzy singularit, v pripade vytvarajucich funkcif s koneénym poctom
dominantnych singularit, sformulovany v nasledujtcej vete.

Veta 6.5.2. Nech f(z) € HyNCJ[z] je funkcia s konecngm polomerom konvergencie o > 0 a konecngm
poctom dominantnyjch singularit (1, ..., Cx.” Predpokladajme navyse, Ze existuje A-obor A := A(1, R, ¢)
taky, Ze f(z) je analytickd na oblasti

k
D=4,
j=1

kde pre j =1,...,k je (- A ={(jz | z € A}. Ak potom pre j =1,...,k, z€ D a z— (; je

e ) B
f(2) = 041 (2/G) + - - + Clp0jip, (2/¢5) + O (1 - g) (iﬂ Ln _1z> ’
J G

kde pj € N\ {0}, Cj1,...,Cjp, €C, pres=1,...,p; je

(1 1\
0js(2) = (1 —2)%* <2 Ln —— z>

funkcia Standardnej triedy s o s, Bjs € C a o, B € C si cisla nezdvislé od j, tak pre n — oo je

k Dy
217(2) = 30D CiG " ([12M100(2) + O (07"~ (mm))

j=1s=1

Doékaz. Uvedieme len hrubu ideu dékazu, ktory je — podobne ako v pripade jedinej dominantnej singu-
larity — zaloZeny na pouZiti Cauchyho integralneho vzorca pre koeficienty Maclaurinovho radu, podla

ktorého )
1[G
2mi J, zntl

an = [2"]f(2)

kde « je kladne orientovana jednoduché uzavreta krivka s v* C D obsahujica vo svojom vnutri bod 0.
Konkrétne pre potreby dékazu uvazujeme krivky ~ podobné tym na obrazku 6.6.

"Z definicie dominantnej singularity nutne |¢1] = |G| = ... = |¢k| = 0. Ak navyse f(z) € Ho N Rx>o[z], ¢o je okrem
iného pripad v8etkych vytvéarajucich funkcii analytickych v bode 0, musi byt jedno z ¢&isel (1, ...,k rovné o.
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Obr. 6.6: Typicka integracna krivka v uvaZovana v dokaze vety 6.5.2 v pripade, Ze k = 4.

Kazdéa takato krivka v sleduje kruznicu so stredom v bode 0 o polomere r > p, pricom kazdd z domi-
nantnych singularit vhodnym spésobom obide. Podobnymi metédami ako v predchadzajtcich oddieloch
sa da dokazat, ze prispevok k a, ziskany integrovanim pozdlz ¢asti krivky v leZiacich na spominanej
kruznici je zanedbatelny. Pre j = 1,. ..,k dalej mozeme ako v) oznacit ¢ast krivky ~ ,,obchadzajacu®
singularitu ¢;, od odpojenia od kruznice s polomerom r po jej opétovné pripojenie (krivka ’y(j) teda
pozostava z dvoch tsec¢iek a malého kruhového obliuku).

Ak teraz pre j = 1,..., k ozna¢ime

0j(2) = Cj101(2) + ... + Cjp,0jp, (2),
je

2mi Jyo) 27T 2mi

Zn+1 271 Zn—i—l

1 f(2) 1 i (2/¢) 1 f(z) = 0(2/G)
dz Lm J J dz—i—,[yw - 12 dz.

Prvy z tychto integralov mézeme odhadnit podobne ako vo vetach o koeficientoch Maclaurinovych
radov funkeii Standardnej triedy: krivka 4() sa predlzi do nekone¢na a vhodne sa vyuzije Hankelova
integralna reprezentécia funkcie 1/I'(z). Tym ziskame najvyznamnejsie ¢leny asymptotického odhadu
pre a, zo znenia vety. Chybovy ¢len naopak ziskame tak, Zze druhy z oboch integralov odhadneme
podobne ako v dokaze vety o O-transfere. O

Priklad 6.5.3. Uvazujme funkciu

1-vI—z
T

Dominantnymi singularitami tejto funkcie st zrejme body +1/2, pricom funkcia f(z) je analyticka
na C\ ({1/2,—1/2} U[1,00)); z toho vyplyva jej analytickost na oblasti (A/2) N (—=A/2) pre nejaky
A-obor A v bode 1.

Mobzeme teda néajst Laurentove rozvoje funkcie f(z) v bodoch +1/2:

10 =220 20 o207,

26
8

f(2) (1+22)2+0((1+22)7h).
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Podla vety 6.5.2 tak pre n — oo dostéavame

_ nl _ nl _
19t = 2o 4 2 o ~ 222

712”4—2_\/6

- n(-2)".

Priklad 6.5.4. Pokusme sa pre n — oo asymptoticky vy¢islit pocet vsetkych permutacii mnoziny [n],
ktorych rozklad na disjunktné cykly pozostéva iba z cyklov nepdrnej dizky. Prislusna kombinatoricka
triedu oznacenych objektov P mozno Specifikovat ako

P =SET (i CYC2k+1(Z)> )

k=0

kde Z je atomicka trieda. Pre exponencidlnu vytvarajicu funkciu P(z) triedy P teda dostavame

0 2k+1
z 1 1 1 1 142 142
P(z):exp(E 2k+1>—exp< (Ln Z_Ln1+z>):eXp<2Lnlz>: o
k=0

Dominantnymi singularitami funkcie P(z) st evidentne body +1. Puiseuxov rozvoj funkcie P(z) v bode
z =1 je dany ako

P(2) m,/ 1_Z< 112 ((1—z)2))_

—=V1-2+0((1-2)"?)

\/1—z \f

a jej Puiseuxovym rozvojom v bode z = —1 je

VITz VITz
V2 V2

Pre n — oo tak vdaka vete 6.5.2 pre pocet hladanych permutéacii dostavame

VT E 40 (1) ) =
Ve aavas | o/ _5/2)>
— nl (\/\% + 14\_/;(/;% +0 (n_5/2>> .

Priklad 6.5.5. Uvazujme jednoznac¢nii bezkontextova gramatiku s pravidlami

P(z) = 1+0(1+2) = +0 ((1+z)3/2>.

nl["]P(2) = n! <\f2[z"]\/11_iz - 2\1/5[2"]\/1 -

:n!<\/§ 1 (—1)n

e
o (n

o — aoo | ba

a — caa | d,

kde o, a st neterminaly, o je poCiatoény neterminal a a, b, ¢, d si terminaly. Pre n — oo asymptoticky
vy¢islime pocet W, vietkych slov dlzky n v jazyku generovanom touto gramatikou.

Vdaka jednoznacnosti uvedenej gramatiky je kombinatoricka Specifikacia triedy ), vSetkych nou
generovanych slov dana ako

N=ZxXWN XN +ZxV
Vo=2ZXYVo X I+ Z,
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kde Z oznacuje atomickt triedu. Obyc¢ajné vytvarajtuce funkcie prislichajtce k triedam ), Vs st teda
rieSenim systému rovnic

Yi(z) = 2Y1(2)? + 2Ya(2)
Ya(z) = 2Ya(2)? + 2
o neznamych Y (2), Y2(2). Tento systém ma prave jedno riesenie v N[z]%:

11224221 — 422 1— V11— 422
B 22 2z '

Yl(z) YQ(Z) =

Nami hladané vytvarajica funkcia je teda dana ako

11224 22V/1 — 422
N 2z

Yi(z)

a pre hladany pocet slov dlzky n, generovanych nasou gramatikou, plati W, = [2"]Y1(2).

Asymptoticky odhad tejto veli¢iny pre n — oo najdeme metodou analyzy singularit. Lahko vidiet,
ze funkcia Yj(z) ma dve dominantné singularity v bodoch +1/2, pri¢om je splnena aj podmienka jej
analytickosti na (A/2)N(—A/2) pre nejaky A-obor A v bode 1. M6zeme teda najst Puiseuxove rozvoje
funkcie Y7(z) v bodoch 1/2 a —1/2:

Yi(z) =1-V2(1 -2 10 (1= 22)4) =1 - V201 - 22)4 4 0 (1 - 22)"2),
Yi(z) = -1+ V2 + %(1 +2)2 4+ 0(1422) = —14+V2+0 ((1 - 22)1/2> _

Kedze 1 aj —1 + /2 st kongtantné funkcie, z hl'adiska asymptotiky nehraji Ziadnu rolu; z vety 6.5.2
teda dostdvame odhad

n 4 n n_5/4 - n _\4& - n
W, = [2"Yi(2) = —v22 m+o(n 3/29 ) ~ Feun” 5/49m,

kde I'(—1/4) je priblizne —4,902.

6.6 Racionilne a meromorfné vytvarajice funkcie

Délezitou triedou funkcii, na ktoré mozno aplikovat metédu analyzy singularit si raciondlne funkcie
analytické v bode 0. Ak je takito funkcia f(z) polynomicka, pre dostato¢ne velké n € N je nutne
[2"]f(z) = 0. V opa¢nom pripade ma funkcia f(z) konecne vela dominantnych singularit o > 0,
ktoré musia byt vSetky polmi funkcie f(z). Z Laurentovych radov v dominantnych singularitach tak
mozno lahko odvodit asymptoticky rozvoj pre [2"]f(z) a n — oo. To nie je nijak prekvapivé vo svetle
pozorovani z oddielu 2.6, podla ktorych moZno koeficienty [2"]f(z) dokonca vyjadrit v uzavretom
tvare.

Podobné asymptotické vlastnosti ako koeficienty racionalnych funkcif maja aj koeficienty vSetkych
dalsich meromorfnych funkcii analytickych v bode 0 s nenulovym koneénym poc¢tom dominantnych
polov. V knihe P. Flajoleta a R. Sedgewicka [9] sa asymptotickym odhadom koeficientov takychto
funkcii venuje pomerne velkd pozornost a pristupuje sa k nim elementarnymi metédami komplexne;j
analyzy, ktoré nepredpokladaji znalost metody analyzy singularit.

V ramci tohto kratkeho oddielu si predstavime novy Specifikaény mechanizmus kombinatorickych
tried s racionalnymi vytvarajucimi funkciami — jednoznacné requldarne vijrazy, ktoré tu budeme nazyvat
jednoznac¢nymi raciondlnymi vyrazmi. UkdZeme, ze kazdy takyto racionalny vyraz mozno mechanicky
prelozit na obycCajni vytvarajicu funkciu kombinatorickej triedy vSetkych slov v jazyku opisanom
danym vyrazom. Pripomenime si najprv definiciu syntaxe a sémantiky racionalnych vyrazov.
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Definicia 6.6.1. Mnozina vsetkych raciondlnych vyjrazov nad abecedou ¥ je dana nasledovne:

(1) Pre vietky = € ¥ U {e} je x racionalny vyraz nad ¥; navySe aj 0 je racionalny vyraz.

(i7) Pre vetky racionélne vyrazy E, F nad ¥ st aj (E+F), (E-F) a (E*) racionalnymi vyrazmi nad X.
(737) Ni¢ iné nie je racionalny vyraz nad X.
Definicia 6.6.2. Jazyk ||G|| C ¥* reprezentovany racionalnym vyrazom G nad abecedou ¥ definujeme
nasledovne:

(i) Ak G = x pre nejaké x € X U {e}, tak ||G|| = {z}; ak G =0, tak ||G|| = 0.

(73) Nech E,F st racionalne vyrazy nad 3. Ak G = (E+F), tak |G| = ||[E||U||F||; ak G = (E - F), tak
IGIl = [IE[| - IF[l; ak G = (E), tak ||G|| = [[E*.

Pri zépisoch racionalnych vyrazov budeme, v stulade s beznou konvenciou, vic8inou vynechéavat
zétvorky, ktoré nemaju ziaden vplyv na ich sémantiku — napriklad namiesto (E+ (F+ G)) teda budeme
pisat len E+ F 4+ G.

Definicia 6.6.3. Mnozina v8etkych jednoznacéniych raciondlnych vyrazov nad abecedou X je dana
nasledovne:

(1) Pre vietky x € ¥ U {e} je x jednozna¢ny racionalny vyraz nad ¥; navySe aj 0 je jednoznalny
racionalny vyraz.

(7i) Nech E,F su jednozna¢né racionélne vyrazy nad 3. Potom:

a) (E+F) je jednozna¢ny raciondlny vyraz nad X, ak ||E|| N [|F|| = 0;

b) (E-F) je jednozna¢ny racionalny vyraz nad 3, ak pre vietky u,u’ € ||E|| a vSetky v,v" € ||F||
jeu=u"av =1 kedykolvek uv = u'v'.

c) (E*) je jednozna¢ny racionédlny vyraz nad 3, ak pre vsetky n,m € N a vSetky slova
Wi, .oy Wy, W, ... wy, € ||E[| jen=m awy =w), pre k=1,...,n kedykol'vek pre zretaze-

nia tychto slov plati w; ... w, = w] ... w),.

(747) Ni¢ iné nie je jednoznacény racionalny vyraz nad X.
Je zrejmé, ze kazdy jednozna¢ny racionalny vyraz je konecnou reprezentaciou nejakého racionalneho

—t. j. regularneho — jazyka. Aj naopak ale mozno kazdy racionélny jazyk opisat nejakym jednozna¢nym
racionalnym vyrazom.

Veta 6.6.4. KazZdy raciondlny jazyk mozno opisat nejakym jednoznacnym raciondlnym vyrazom.

Dokaz. Nech L je Tubovolny racionalny jazyk a nech A je deterministicky koneény automat rozozna-
vajuci jazyk L. Predpokladajme, Ze mnoZina stavov automatu A je @ = [n] pre nejaké n € N; dalej
predpokladajme, Ze 1 € Q je pociato¢ny stav a F' C ) je mnozina koncovych stavov automatu A.
Pre vSetky ¢ € QQ a w € ¥* oznacme ako ¢-w stav, do ktorého sa automat A dostane zo stavu ¢ po pre-
¢itani slova w. McNaughtonov-Jamadov algoritmus skonstruuje k automatu A ekvivalentny racionalny
vyraz tak, ze pre vSetky i,7 € [n] a k € {0,...,n} postupne zostroji vyrazy RZ(»S-) také, ze

|

Pre vsetky i,j € [n] pritom

REIE)H ={w € ¥* | i - w = j; pre vSetky prefixy x slova w rozne od € a w je q -z € [k]}.

X1+ ...+%xs ak{xeXU{e}|i-v=j}={x1,...,25} pre nejaké s € N\ {0}
a po dvoch rozne z1,...,x5 € U {e}, (6.31)
0 inak

R =

1,]
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aprek=1,...,n avsetky i,j € [n] je

k k—1 k—1 E—1)\* k—1
R =R+ RATY - (REY) R (6.32)

Racionalny vyraz R ekvivalentny automatu A je napokon dany ako

R@l +...t R&Z{ ak F' = {j1,...,j¢} pre nejaké t € N\ {0}
R= a po dvoch rozne jy,...,J; € [n], (6.33)
0 inak.

Kazdy racionalny vyraz (6.31) pre i, € N je pritom zrejme jednoznacny. Navyse je zrejmé, ze keby
niektory z vyrazov (6.32) pre i,j,k € [n] alebo (6.33) nebol jednozna¢ny, museli by na nejaké slovo
w € ¥ existovat dva rézne behy automatu A medzi rovnakou dvojicou stavov — spor s predpokladom,
7e automat A je deterministicky. Racionalny vyraz R teda musi byt jednoznacny. O

Pre kazdy jednoznacnyg racionalny vyraz G nad abecedou 3 je teraz Specifikicia kombinatorickej
triedy neoznacenych objektov W g, pozostavajiicej zo vietkych slov jazyka ||G|| s obvykle definovanou
dlzkou, dana nasledujtcim spoésobom:

e Ak G =0, je W)g prazdna trieda.

e Ak G = a pre nejaké a € %, je W)g| = 24, kde Z, = {a} je atomicka trieda.

e Ak G=¢, je Wg| = &, kde & = {e} je neutralna trieda.

e Ak G = E + F pre nejaké jednozna¢né racionalne vyrazy E,F, je Wg| = Wg| + WF-
e Ak G = E - F pre nejaké jednozna¢né racionalne vyrazy E,F, je W g = Wjg| X WF||-
e Ak G = E” pre nejaky jednozna¢ny racionalny vyraz E, je Wg| = SEQ (W”E”).

Z toho vyplyva, Ze kazdy jednoznacny raciondlny vyraz G mozno priamo prelozit aj na obycajnu
vytvarajucu funkciu pre postupnost (an,)52, taki, ze pre vetky n € N je a,, = |[|G|| N X™|. Staci prelozit
jeho racionalne podvyrazy 0 na 0, racionalne podvyrazy a pre a € X na z, racionalne podvyrazy &
na 1, operaciu 4+ na 4+, operaciu - na - a iteraciu racionélneho podvyrazu E na

1

Wig(2)" = WHEH(Z)’

kde Wg (z) je oby€ajna vytvarajuca funkcia skonstruované takymto spésobom pre podvyraz E.

Priklad 6.6.5. Uvazujme jednozna¢ny raciondlny vyraz G = (ab + bb)*c(aa)* + ac(a)* + ¢ a vy¢is-
lime pocet slov dizky n € N v jazyku ||G||. Spésobom uvedenym k vyssie prichadzame k oby¢ajnej
vytvarajicej funkcii

1 1 22 1 1 1 1

1—22221—z2+1—z+1:—z+2(1—z)+2(1+z)+\/§(1—ﬂz)_ﬂ(1+\/§z)'

Metddou z oddielu 2.6 tak zistujeme, Ze pre vSetky n € N existuje presne

Wie(2) =

Wit (2) = 51+ (1)) + =22 = (<1727 =5,

slov dizky n v jazyku ||G||. Alternativne mézeme pre n — oo prist pomocou vety 6.5.2 k asymptotickému
odhadu

IWe () = 75 (272 = (-17272) 0 (22071
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6.7 Algebraické vytvarajice funkcie

V kratkosti sa eSte zmietime o niekolkych najpodstatnejsich vysledkoch stuvisiacich s doélezitou triedou
algebraickych vytvdrajicich funkcii. Dokazy tychto tvrdeni ¢asto vyrazne presahuji ramec tohto textu
a preto ich neuviddzame.

Definicia 6.7.1. Nech F je podpole C. Forméalny mocninovy rad R(z) € C[z] nazveme algebraickym
nad F(z), ak pre nejaké n € N\ {0} existuja polynomy Py(2), ..., P,(z) € F[z] také, ze P,(z) #0 a

P,(2)R(2)" + ...+ Pi(2)R(z) + Py(z) = 0.

Rad R(z) je teda korefiom nejakého nenulového polynému s koeficientmi v okruhu F[z] — alebo ekvi-
valentne v poli F(z).

Lahko vidiet, Zze Maclaurinov rad kazdej vetvy algebraickej funkcie analytickej v bode 0 je al-
gebraicky aj ako formélny mocninovy rad a naopak kazdy algebraicky mocninovy rad s nenulovym
polomerom konvergencie definuje na okoli bodu 0 vetvu nejakej algebraickej funkcie.

Vsimnime si tiez, ze kazdy raciondlny formdlny mocninovy rad R(z) € C[z] je stcasne aj algeb-
raicky — ak totiz R(z) = P(z)/Q(z) pre nejaké polynoémy P(z), Q(z) € C[z], je aj Q(2)R(z)— P(z) = 0.
Prikladom algebraického radu je dalej napriklad oby¢ajna vytvarajtca funkcia

1—-+v1—-14z

Clz) = 2z

postupnosti Catalanovych &isel, vyhovujica rovnici 2C(z)% — C(z) + 1 = 0.

Veta 6.7.2. Algebraickd funkcia moéze mat najviac koneéne vela singularit, pricom kaZdd z nich je
alebo polom, alebo algebraickym bodom vetvenia.

Existuji dokonca aj algoritmy pocitacovej algebry umoziiujice spocitat prvych niekolko ¢lenov
Puiseuxovho rozvoja algebraickej funkcie spliajticej danti alebraicki rovnicu — detaily mozno najst v [9].
Tieto Puiseuxove rozvoje nasledne mozno pomocou metdédy analyzy singularit prelozit na asymptoticky
rozvoj pre koeficienty Maclaurinovho radu uvazovanej funkcie. O tvare tohto asymptotického rozvoja
hovori nasledujica veta z [9], ktora je jednoduchym désledkom predchadzajicej vety.

Veta 6.7.3. Nech f(z) je vetva algebraickej funkcie analytickd v bode 0. Ak md funkcia f(z) jedini
dominantni singularitu ¢ € C\ {0}, je pre n — oo

(2" f(2) ~ ¢ dgn M

k=ko

kde ko € Z, k € N\ {0} a (di)72y, Jje postupnost kompleznyjch cisel. V pripade, Ze md funkcia f(z)
dominantné singularity Ci,...,CGn € C\ {0} pre nejaké m € N\ {0} s |(1| = ... |G| = 0, pre nejaké
e>0an— o0 je

[2"1£(z) =) ¢ () + O ((e+2)"),

7j=1
kde pre j =1,...,m je
¢(])(n) -~ C;n Z d](g)n_k/ﬁj_l
=k

pre nejaké k:(()j) € Z, k; € N\ {0} a postupnost komplexnyjch cisel (d,(fj))k L)
=k;
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Uvazujme dalej l'ubovolnt jednoznacni® bezkontextovii gramatiku s neterminalmi &4, ..., &, a pra-
vidlami
SEnd IR T IR
§o = w1 | mop | .o | 22
Em = Tma | Tma | -0 | Tmsi,-
Nahradme teraz pre j = 1,...,m neterminél ¢; komutativnou neznamou Yj, vSetky terminaly na-

hradme komutativnou komplexnou premennou z, znak — nahradme rovnostou a znak | nahradme
sCitanim formélnych mocninovych radov. Vo vysledku tak dostaneme systém algebraickych rovnic

nad C[z],

Yi :Pl(Ylv"‘7Ym)Z)
}/QZPQ(Yla"‘7Ym7Z)

Ym:Pm(Yl,...,Ym,Z),

kde Pi,..., Py st polynébmy o m + 1 premennych Yi,...,Y,,, 2z s prirodzenymi koeficientmi — ho-
vorime teda o tzv. N-algebraickom systéme. Nie je tazké vidiet, Ze jednym z rieSeni tohto systému
musi vzdy byt vektor (Ry(z),..., Rm(2))T, kde pre j = 1,...,m je Rj(z) € N[z] oby¢ajna vytvara-
juca funkcia kombinatorickej triedy vSetkych slov vygenerovanych danou gramatikou z neterminalu &;.
D4 sa navyse dokazat,” Ze ak uvazovana gramatika neobsahuje Ziadne pravidlo s prazdnym slovom e
na pravej strane, ani ziadne retazové pravidlo s pravou stranou pozostavajicou z jediného neterminalu,
je vektor (R1(2),..., Rm(2))T jedinym rieSenim uvazovaného systému takym, Ze pre j = 1,...,m je
[2Y]R;(2) = 0 — hovorime v takom pripade o jeho kanonickom riesent.

Je dalej zname, ze pre kazdy N-algebraicky systém — alebo vSeobecnejsie aj kazdy Q-algebraicky
systém, v ktorom moézu mat polynémy P, ..., P, racionalne koeficienty — a I'ubovoIné jeho rieSenie
(R1(2),..., Rn(2))T € C[2]™ mozno pre j = 1,...,m najst n € N\ {0} a Py(2),...,Pu(2) € Q[¢]
také, ze P,(z) # 0 a R;(2) je rieSenim rovnice

P,(2)Y"+ ...+ Pi(2)Y + Py(2) =0

o neznamej Y. V dosledku toho st vSetky zlozky rieseni N-algebraickych systémov algebraickymi radmi.
Dokaz tejto skutocnosti je zaloZeny na tedrii algebraickej eliminécie — ¢i uz na baze rezultantov alebo
pomocou Grobnerovych béaz [9, 5, 10]. Jej dosledkom je nasledujica veta, v ktorej sa pod obycajnou
vytvdrajicou funkciou bezkontextového jazyka rozumie obycajni vytvarajuca funkcia kombinatorickej
triedy vietkych slov v tomto jazyku s velkostou danou ich dlzkou.

Veta 6.7.4 (Chomského-Schiitzenbergerova veta o enumeracii). Obycajnd vytvdrajica funkcia kazZdého
jednoznacného bezkontextového jazyka je algebraickd.

Ak teda nejaky bezkontextovy jazyk nema algebraick obyc¢ajni vytvarajicu funkciu, ide o znamku
toho, Ze uvazovany jazyk je vnutorne viacznatny — toto pozorovanie umoznilo P. Flajoletovi rela-
tivne jednoduchym sposobom dokazat vnutornt viacznaénost niekol’kych bezkontextovych jazykov [7].
Ak je naopak bezkontextovy jazyk jednoznaény, mozno na asymptoticki analyzu poctu jeho slov
dlzky n pre n — oo vizdy pouzit metoédu analyzy singularit.

8V silnom slova zmysle, kde pozadujeme jednoznaénost pre Tubovolni volbu poéiatoéného neterminalu. Pre reduko-
vané gramatiky je tato poziadavka evidentne ekvivalentna beznej jednoznacénosti.

9Elegantny dokaz tohto tvrdenia je napriklad zaloZeny na pouziti Banachovej vety o pevnom bode pre vhodna metriku
na m-ticiach formalnych mocninovych radov.
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Oby¢ajnou vytvarajicou funkciou bezkontextového jazyka v skutocnosti nemoze byt I'ubovolna
algebraicka funkcia, ale iba urc¢ité algebraické funkcie $pecidlneho druhu — struktara bezkontextovej
gramatiky mé pritom velky vplyv na druh dominantnych singularit tejto vytvarajiacej funkcie. Po-
merne dlho je uz napriklad znama tzv. Drmotova-Lalleyova- Woodsova veta |9, 6, 14, 30|, podla ktorej
mé oby¢ajna vytvarajica funkcia jazyka generovaného nelinedrnou silne sivislou'® jednoznacnou bez-
kontextovou gramatikou (s aspon jednym pravidlom s terminélnou pravou stranou a bez retazovych
pravidiel ¢i pravidiel s prazdnym slovom na prazdnej strane) v kladnej redlnej dominantnej singularite o
vzdy Puiseuxov rozvoj s najvyznamnejsim nekonstantnym ¢lenom C'\/1 — zp pre nejaku konstantu C.
C. Banderier a M. Drmota [1| neskor charakterizovali mozné Puiseuxove rozvoje v kladnych dominant-
nych singularitidch aj pre vSeobecné jednozna¢né bezkontextové gramatiky.

10Nelinearnost znamena, Ze na pravej strane aspoil jedného z pravidiel st asponi dva neterminaly. Silna suvislost
znamena, Ze z kazdého neterminalu moZno vygenerovat slovo obsahujtce Tubovolny iny z neterminalov.



Kapitola 7

Vytvarajuce funkcie viacerych
premennych

Klaéom k mnohym aplikidciam analytickej kombinatoriky sa techniky zaloZené na pouZiti vytvaraju-
cich funkcif viacerych premennych. Tie umoznuji zahrntat do analyzy okrem wvelkosti kombinatorickych
objektov aj d'alsie ich parametre — mozno takto napriklad skiimat pocet vyskytov k nejakého pismena
v slovach dlzky n, pocet cyklov k v permutaciach n-prvkovej mnoziny, atd. Kedze takéto kombina-
torické parametre mozno chapat aj ako ndhodné premenné, stavaju sa vytvarajuce funkcie viacerych
premennych uzitoénym nastrojom na asymptotickdt analyzu rozdeleni pravdepodobnosti, strednych
hodnot a réznych Statistickych ukazovatelov. Tieto techniky st okrem iného aj zakladom pre aplikacie
analytickej kombinatoriky pri analyze ¢asovej zlozZitosti algoritmov v priemernom pripade.

Tato kapitola je len jemnym tvodom do pomerne rozsiahlej problematiky vytvarajacich funkcif
viacerych premennych a niektorych ich aplikicii — omnoho hlbsie spracovanie tohto materidlu mozno
najst v knihe P. Flajoleta a R. Sedgewicka [9]. V sualade s [9] nebudeme vytvéarajtce funkcie viacerych
premennych chapat ako analytické objekty — to by si okrem iného vyZzadovalo vyuZivat techniky z te-
orie funkeii niekolkych komplexnych premennych. Namiesto toho budeme s vytvarajucimi funkciami
viacerych premennych pracovat len na symbolickej irovni formalnych mocninovych radov, pricom na-
sim ciefom zvycajne bude dospiet k vhodnej vytvarajicej funkcii jednej premennej, na ktori bude
nasledne mozné aplikovat analytické metddy. Existuje ale aj relativne nova oblast viacrozmernej ana-
lytickej kombinatoriky, ktoré je v tomto zmysle , plnohodnotnym* rozsirenim analytickej kombinatoriky
na pripad vytvarajucich funkcii niekolkych premennych. Ako tivod do tejto znacne netrivialnej oblasti
vyskumu moéze posluzit kniha R. Pemantla a M. C. Wilsona [18].

7.1 Formalne mocninové rady o niekol'kych premennych

Podobnym sposobom, ako sme definovali formélne mocninové rady o jednej premennej z, tvoriace obor
integrity C[[z], mozno definovat aj formalne mocninové rady o niekol'kych komutativnych! premennych
21, ..+, 2m 8 komplexnymi koeficientmi. Rovnako ako st formalne mocninové rady o jednej premennej
len odlisnym zapisom pre postupnost ich koeficientov, st aj formélne mocninové rady o viacerych
premennych odlidne zapisanym (viacrozmernym) systémom ich koeficientov, pricom dévodom odlisného
zapisu je ina uvazovana multiplikativna operacia. Takyto rad R je dany zobrazenim, ktoré pre kazda
m-ticu exponentov ki, ...,k vrati koeficient pri zlfl . sz{n; ide teda o funkciu exponentov. Rovnako
ako pri radoch o jednej premennej v8ak budeme na posilnenie intuicie pouZzivat zapis evokujuci, Ze R
je funkciou premennych z1, ..., zm; budeme teda pisat R = R(z1,. .., 2m).

'Komutativnost premennych znamené, 7e ako obvykle pre kazd dvojicu premennych z,., zs plati z,.zs = 2s2,. Na tomto
mieste ju zdoéraziiujeme najma kvoli odliSeniu od radov o niekol'kych nekomutativnych premennych, ktoré st prirodzenym
zovSeobecnenim formalnych jazykov. V nasledujicom budeme komutativnost premennych povaZovat za samozrejmu
a nebudeme na fiu explicitne upozorhovat.
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Definicia 7.1.1. Formdlnym mocninovym radom o m € N\ {0} premennych 21, ..., 2, s komplexnymi
koeficientmi nazveme Tubovolné zobrazenie R: N™ — C. Ak je pre vsetky ki,..., %k, € N vystupna
hodnota zobrazenia R pri argumentoch (ki,...,ky,) rovna ag, . k., piSeme rad R ako
R=R(z1,...,2m) = Z akl,m,kmz]fl...zﬁ{".
ki,....km €N
Pre v8etky ki, ..., ks, € N navySe kladieme
k m R
{211 . zfn } R(z1,...,2m) = Qky ...k

a tuto hodnotu nazyvame koeficientom radu R(z1, . . ., 2m,) pri z]f Lo zﬁ{”. MnozZinu v8etkych formélnych
mocninovych radov o premennych z1, ..., z,, ozna¢ujeme C[zy, ..., zp] a pre vietky S C C ozna¢ujeme

ako S[z1, . .., zm] mnozinu vsetkych R(z1,...,2zmy) € C[z1, ..., zm] takych, Ze pre vSetky k1, ..., k, € N
je [ZM . 2EmIR(21,. .., 2m) €.

Véésinu operéacii na formalnych mocninovych radoch z C[z1, . . ., 2, ] moZno zaviest aplne rovnakym
sposobom ako pre rady z C[z], pricom aj ich vlastnosti si podobné ako v jednorozmernom pripade —
tito dlohu teda prenechévame ¢itatelovi ako jednoduché cvicenie. Specialne plati, ze spolo¢ne so stctom
radov (definovanym po zlozkach) a Cauchyho st¢inom radov tvori C[z1, ..., z,,] obor integrity.

Z hladiska operacii na formalnych mocninovych radoch sa rozdiel medzi pripadom jednej a viace-
rych premennych najmarkantnejsie prejavi v pripade formélnej derivécie, kde je pri radoch s m > 2
premennymi nutné uvazovat formalne parcidglne derivacie: pre vSetky

R(z1,. .. 2m) = Z akh“_,kmzfl .. .zfi{” € Clz1,-- -y 2m]

ki,....,km€N
aj=1,...,m definujeme
9 R ) = oyl = (k; + 1) b =
6,2' Z]."' . 7Zm - Zj Zl?"'?’zm A ] akl,...,kj_l,(kj+1),kj+1,...,kmZl “’Zm -
J kl?"'vk"LeN
k ki1 ki—1 k'+1 k
= kia 2t 22 2 Zm
JUk1,km 1 R Fj J+1 - m -
ki,kj—1,kj41,..,km>€EN
k;eN\{0}

V nasledujicom sa budeme zaoberat najmé formalnymi mocninovymi radmi dvoch premennych.
V takom pripade budeme vé¢S8inou pouZivat oznadenia z, u pre premenné, n pre exponent premennej z
a k pre exponent premennej u. Typicky forméalny mocninovy rad dvoch premennych teda mozno zapisat

ako
R(z,u) = E an k2" Ul
n,keEN

7.2 Kombinatorické triedy s parametrom

Zameriame sa teraz na vytvarajace funkcie dvoch premennijch — podobne by sme ale mohli skumat vy-
tvarajuce funkcie lubovolného kone¢ného po¢tu premennych. Tak ako (oby¢ajné alebo exponencialne)
vytvarajuce funkcie jednej premennej z prirodzene zodpovedajt kombinatorickym triedam (neozna-
¢enych alebo oznacenych objektov), st vytvarajuce funkcie dvoch premennych neoddelitelne spété
s kombinatorickymi triedami s parametrom.? Ide o kombinatorické triedy, na ktorych je okrem funkcie
urcujucej velkost jednotlivych objektov definované este jedno zobrazenie y priradujtce kazdému ob-
jektu nejaké iné prirodzené &islo, tzv. parameter (napr. pocet vyskytov daného symbolu v slove, pocet
cyklov permutacie, atd.). Koeficient prislusnej vytvarajicej funkcie pri z"u* potom zéavisi od poctu
objektov velkosti n s hodnotou parametra k.

2Vytvarajuce funkcie m premennych by potom zodpovedali kombinatorickym triedam s m — 1 parametrami.
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Definicia 7.2.1. Kombinatorickd trieda s parametrom je trojica (C, |-|, x), kde (C, |-|) je kombinatoricka
trieda a x: C — N je Tubovolné zobrazenie.

Z definicie kombinatorickej triedy vyplyva, Ze pre vSetky n € N je vzor &isla n pri zobrazeni |-,
dany mnozinou

Ch={x€C ||z|=n},

kone¢ny. Pre vSetky n, k € N je teda kone¢na aj mnozina
Cop ={z €C [ |z[ =n; x(x) =k},
¢im je zarucend zmysluplnost nasledujucich dvoch definicii.

Definicia 7.2.2. Obycajnou vytvdrajicou funkciou dvoch premenngch kombinatorickej triedy s para-
metrom (C, |-|, x) nazyvame formalny mocninovy rad

C(z,u) = Zzlx‘uX(x) = Z Cn k2" U,

zeC n,keN
kde pre vietky n,k € N je ¢, 1 := |Cp -

Definicia 7.2.3. Exponencidlnou vytvdrajicou funkciou dvoch premenngch kombinatorickej triedy
s parametrom (C, ||, x) nazyvame formalny mocninovy rad

2l Cn.k

i = D
X

zeC

kde pre vietky n,k € N je ¢, 1 := |Cp k-

Vzhl'adom na to, Ze pre kazda kombinatoricki triedu s parametrom (C, |-, x) je (C,|]) bezna kom-
binatorickd trieda, méze pre vietky n € N existovat iba kone¢ne vela roznych k € N takych, Ze
cnk = |Cn k| je nenulové. Existuje preto aj stcet

00
Cp = g Cn,k»
k=0

ktory je dany koneénym suctom vSetkych nenulovych ¢, . V dosledku toho mézeme pre obycajné
aj exponencialne vytvarajice funkcie dvoch premennych uvazovat dosadenie hodnoty 1 za premenni w:
ak je C(z,u) obyCajna vytvarajica funkcia triedy (C, |-, x) a E(z,u) je jej exponencialna vytvarajica
funkcia, kladieme

[e.o]

C(z Zch B2 chz",

n=0 n=0

o0 [e.9] [e.9]
=X =
n:

Lahko vidiet, ze C(z) := C(z,1) je oby¢ajnou vytvarajicou funkciou triedy (C,|-|) a E(z) := E(z,1)
je jej exponencialnou vytvarajicou funkciou.
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7.3 Symbolickd metéda pre kombinatorické triedy s parametrom

Na pripad kombinatorickych tried s parametrami a vytvarajicich funkcii dvoch premennych mozno roz-
sirit ako symbolickti metodu pre neoznacené objekty, tak aj symbolickt metédu pre oznacené objekty.
V oboch pripadoch sa atomické a neutralne triedy interpretuju ako jednoprvkové kombinatorické triedy
s nulovym parametrom — atomickou triedou teda rozumieme triedu Z = ({zz}, ||, x), kde |zz| =1
a x(zz) = 0 a neutrdlnou triedou rozumieme triedu € = ({1¢}, ||, x), kde |1g| = 0 a x(1g) = 0. Okrem
nich ale navySe uvazujeme aj takzvané znacky, ¢o su triedy

U= {oul: [, x)

kde |oy| = 0 a x(¢y) = 1. Oby¢ajné aj exponencialne vytvarajiuce funkcie dvoch premennych s
pre atomické triedy, neutralne triedy resp. znacky dané ako z, 1, resp. u.

Operéacie na kombinatorickych triedach s parametrami, z ktorych mozno budovat Specifikacie (na-
priklad sucet, kartezidnsky stucin, prechod k triede vSetkych postupnosti, atd.), st pre neoznacené
aj oznacené objekty velmi podobné ako pri kombinatorickych triedach bez parametrov. Nosnd mnozina,
ako aj funkcia velkosti, st zakazdym definované rovnako ako pre operacie na triedach bez parametrov.
Jediny rozdiel teda spociva v nutnosti vysledni kombinatoricka triedu parametrizovat. Pri operaciach,
ktoré budeme uvazovat, bude na vyslednej triede vzdy definovany tzv. zdedeny parameter: pri operacii
disjunktného zjednotenia kombinatorickych tried C = (C,||¢c, xc), D = (D, |-|p, xp) — €1 uz neoznace-
nych alebo oznacenych objektov — je hodnota parametra x(x) kazdého prvku z triedy C+D definovana
ako x(x) = xc(2') ak x = (2, 1) pre nejaké 2/ € C a ako x(z) = xp(2') ak z = (2/,2) pre nejaké 2’ € D;
pri multiplikativnych operaciach C x D (pre triedy neoznacenych objektov) resp. CxD (pre triedy ozna-
¢enych objektov) je zdedenou hodnotou x(z,y) resp. x(z,y, f) hodnota x¢(x)+xp(y); pre postupnosti
objektov 1, ...,z triedy C = (C,|-|c, xc) je — pre neoznacené aj oznacené objekty — tato hodnota
dané ako xc¢(z1)+. ..+ xc(xm); pre zvysné operacie, ktoré mozno vyjadrit pomocou relécii ekvivalencie
na postupnostiach, vychadza tato hodnota z hodnoty pre postupnosti. Napriklad trieda U? x Z tak
pozostava z jediného prvku velkosti 1 s hodnotou parametra 2.

Nasledujice dve vety hovoria o vztahoch medzi operaciami na kombinatorickych triedach s para-
metrami a prisluSnymi operaciami na vytvarajacich funkciach dvoch premennych; prva z nich sa pritom
zameriava na triedy neoznacenych objektov a nim zodpovedajice obycajné vytvarajice funkcie a druha
na triedy oznacenych objektov a nim zodpovedajice exponencialne vytvéarajice funkcie. V oboch pri-
padoch st dokazy prakticky rovnaké ako pre kombinatorické triedy bez parametra; prenechdvame ich
teda citatelovi ako cvicenie. Relaciu prislichajicej oby¢ajnej resp. exponencialnej vytvarajucej funkcie
dvoch premennych budeme v oboch vetach oznacovat ako +—.

Veta 7.3.1. Nech C = (C,|-|¢,xc) a D = (D, |-|p,xp) st kombinatorické triedy neoznacengch objek-
tov s parametrom, pricom triede C prislicha obycajnd vytvdragica funkcia dvoch premennich C(z,wu)
a triede D prislicha obycajnd vytvdrajica funkcia dvoch premennych D(z,u). Potom platia nasledujice
vztahy medzi kombinatorickymi triedami s parametrom a ich obycajnymi vytvdrajicimi funkciamsi dvoch
premenngjch:

C+D <+— C(C(z,u)+ D(z,u),
CxD <+— C(z,u)D(z,u),
1

SEQ(C) 1-C(z,u)

(ak Co = 0),

=1

(“ (=D )
PSET(C) <+— exp ZTC(’Z’U) (ak Co = 0),

MSET(C) <— exp ( 3 1C(zt,ut)> (ak Co = 0).



Vytvarajace funkcie viacerych premennych 135

Veta 7.3.2. Nech C = (C,||¢c,xc) a D = (D, ||p,xp) si kombinatorické triedy oznacenych objektov
s parametrom, pricom triede C prislicha exponencidlna vytvdrajica funkcia dvoch premennych E(z,u)
a triede D prislicha exponencidlna vytvdrajica funkcia dvoch premenngch F(z,u). Potom platia na-
sledujice vztahy medzi kombinatorickymi triedami s parametrom a ich exponencidlnymi vytvdrajicimi
funkciami dvoch premennyjch.:

C+D <+— E(z,u)+ F(z,u),
CxD <+— E(z,u)F(z,u),

SEQ(C) - El(z m (ak Co = 0),
SET(C) <+— exp(E(z,u)) (ak Co = 0),
Cyc(C) +— Ln 1—El(zu) (ak Co = 0).

7.4 Kumulativne vytvarajice funkcie a stredné hodnoty

Vyssie sme videli, Ze ak k triede s parametrom (C, |-|, x) prislucha oby¢ajna vytvarajuca funkcia C'(z,u)
a exponencialna vytvarajica funkcia F(z,u), tak C(z) = C(z,1) je oby¢ajna vytvarajiuca funkcia
triedy bez parametra (C,|-|) a E(z) = E(z,1) je jej exponencialna vytvarajica funkcia. Lahko to vidiet
aj z kombinatorického tvaru vytvarajicich funkcii, pretoze

3 leux(w)] =Y el = 37kl = o),

0(27 1) = [C(Zﬂu)]uzl =

zeC zeC zeC
|| |z \ ||
z . z z
E(z,1) = [E(z,u)],oy = [Z WUX( )] Z mu Z |5L‘"
zeC zeC

dosadenim u = 1 teda kazdy objekt x triedy A zapomtame prave raz.
Ak teraz vytvarajuce funkcie C(z,u) a E(z,u) najprv formélne zderivujeme podla u a az nasledne
za u dosadime hodnotu 1, dostaneme pre C' = {x € C | x(x) # 0} formalne mocninové rady

Z X(ZL‘)ZMHX(I)_I] — Z y(z)2l®1x@)=1 = Zx(x)zlw\,
u=1

C°(2) = [aauC(z,u)]

u=1

zel’ zel’! zeC
6 le‘ Z|I‘ zlxl
ciy.— | Y _ Z o x(@)=1 — 2 qx(@)-1 ot
B = Bl = |5 @) = Y @) = S
u=1 zeC’! u=1 zel’ eC

Lahko vidiet, Ze
n C n C 1
O =T 4 I = 5 3 e
x€Cn eCp

Koeficientom pri 2" v C°(z) je teda kumulativna hodnota parametra y obJektov velkosti n v triede C;
v koeficientoch radu E°(z) je tato hodnota este predelena n!. Rad C¢(z) resp. E¢(z) teda nazyvame
oby¢ajnou resp. exponencialnou kumulativnou vytvdrajicou funkciou triedy (C, ||, x).

Kumulativne vytvarajice funkcie mozno pouzit na vyjadrenie strednej hodnoty parametra y pri rov-

nomerne ndhodnom vybere objektov triedy C,. Ak tuto stredni hodnotu pre dané n € N oznacime

ako E,(x), o¢ividne
n CC n EC
B  E1C°C) _ [IEG)
[z"]C(z)  [2"]E(2)
Na najdenie asymptotického odhadu pre koeficienty vytvarajucich funkcii C(z), C°(z), E(z) a E°(z)
mozno ¢asto pouzit metdédu analyzy singularit. V takom pripade moZno tuto informéciu vyuzit na ana-

lyzu strednej hodnoty parametra y pre rovhomerne nadhodne vybrané objekty velkosti n a n — oo.
To je uzito¢né napriklad pri analyze zlozitosti algoritmov v priemernom pripade.
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Podobnym spdsobom moZno analyzovat aj d'alsie ukazovatele parametra y povazovaného za na-
hodnt premenni, napriklad jeho disperziu. Podrobnosti mozno najst v [9].

7.5 Pravdepodobnostné vytvarajiace funkcie

Nech (C,|-|,x) je kombinatoricka trieda s parametrom. Podobne ako stredné hodnoty parametra yx
mozno z vytvarajucich funkcii dvoch premennych ziskat aj kompletni informéaciu o distribucii nahodne;j
premennej x v pripade, Ze objekty danej velkosti n vyberame rovnomerne nahodne.

Pre Tubovolny formalny mocninovy rad dvoch premennych F'(z, u) a vSetky n € N mézeme uvazovat
formalny mocninovy rad [2"|F(z,u) o jednej premennej u definovany ako

oo
[2"F(z,u) = Z ([z”uk]F(z,u)) uk.
k=0
Ak teraz k triede (C, |-|, x) prislucha oby¢ajna vytvarajtuca funkcia C(z,u) a exponencialna vytvarajica
funkcia F(z,u) a ak ako P,[x = k] ozna¢ime pravdepodobnost, Ze hodnota parametra rovnomerne
ndhodne vybraného objektu triedy C, je rovna k, evidentne
> "C(z,u)  [2"E(z,u)
Pa(u) i= S Pafx = KJut = ECE el
0 = BB b= = Tel) = e

Takto definovany formalny mocninovy rad P,(u) € Clu] nazyvame n-tou pravdepodobnostnou vytvd-
rajicou funkciou triedy (C,|-|, x)-

7.6 Priklady aplikacii
Pouzitie vytvarajucich funkcii dvoch premennych v kombinatorickych aplikacidch si teraz predvedieme
na niekol'kych prikladoch.

Priklad 7.6.1. Jednoduchym prikladom vytvérajicej funkcie dvoch premennych, vhodnym najma
na lepsie zzitie sa s tymto konceptom, je obyCajna vytvarajica funkcia pre binomické koeficienty,

B(zyu)= Y <Z>z”uk

n,keN

Kedze pre vsetky n € N je podl'a binomickej vety

i (Z)M = i (Z)uk = (1+u)",

k=0 k=0
zistujeme, Ze
= 1
B = E 1 "=
(z,u) n:O( tu)z 1—2(14u)

Téato vytvarajica funkcia zodpoveda napriklad kombinatorickej triede W v8etkych slov nad dvoj-
prvkovou abecedou {a, b} s parametrom udéavajucim pocet vyskytov symbolu a. K tomuto pozorovaniu
moZno lahko prist priamym kombinatorickym néhladom; v nasledujicom ho ale odvodime pomocou
symbolickej metddy. Triedu W mozno Specifikovat ako

W:SEQ(Z/[ X Za—l—Zb),
kde Z, a Zj, st atomické triedy a U je znacka. Obycajné vytvarajica funkcia dvoch premennych Wz, u)
triedy W je teda skuto¢ne dana ako

1 1
1—(zu+2) 1—2(1+u)

W(z,u) = = B(z,u).
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Priklad 7.6.2. Exponenciadlna vytvarajica funkcia pre binomické koeficienty je dana ako

k

~ n\ z"u Nt n?" (14
B(z,u) = Z (k) o :Z(1+u) H:e(l‘*' ),

n,keN n=0

Priklad 7.6.3. Pre n — oo teraz asymptoticky vycislime ocakidvany pocet cyklov v rovnomerne
nédhodne zvolenej permutacii mnoziny [n| pre n € N. Kombinatoricku triedu P vSetkych takychto
permutécii (chapanych ako oznafené objekty) s parametrom udavajicim pocet cyklov moZno zjavne
Specifikovat ako

P = SET (U % CyC(2)),

kde Z je atomicka trieda a U je znacka. Prislusna exponencialna vytvarajica funkcia dvoch premennych
je teda dané ako

P2 u) = exp (uLn 1 ! Z) e

Exponencialna vytvarajtica funkcia P(z) triedy vSetkych permutécii bez parametra je tak podla

oCakavania dané ako )

1—2z
Zaujimavejsim pozorovanim je, Ze exponencialnou kumulativnou vytvarajtcou funkciou P¢(z) triedy P
je

P(z)=P(z,1) =

Pe(z) = [;up(z,u)} - [(1 —2)"%Ln

1 1 1
L

= n .
1—2z|,, 1-2 1—-2

Pomocou metédy analyzy singularit — alebo v tomto jednoduchom pripade aj elementarnymi metédami
— l'ahko dospejeme k asymptotickym odhadom

[2"1P(2) ~

m(ln n) =lInn

pre n — oo. Pre ofakidvany pocet cyklov E, rovnomerne nahodne zvolenej permutacie mnoziny [n]
teda pre n — oo dostéavame

[2"]1P%(2)
[27]P(2)

MéZzeme teda uzavriet, Ze priemernéd permutacia n-prvkovej mnoziny mé pre dostato¢ne velké n pri-
blizne Inn cyklov.

FE, = ~ Inn.

Priklad 7.6.4. Predavacka rovnomerne nahodne vydava jednokorunové, dvojkorunové a patkorunové
mince. Pre n — oo skimajme priemerny pocet jednokorunovych minci vydanych touto predavackou
v pripade, ze celkova vydéavané Ciastka je n kortin. Kombinatorickd triedu M vSetkych sad vydanych
minci (chapanych ako neoznacené objekty), s velkostou danou celkovou vydanou ¢iastkou a s paramet-
rom udavajicim pocet jednokorunovych minci, moézeme zadat Specifikaciou

M = SEQ(U x Z) x SEQ(Z?) x SEQ(Z?),

kde Z je atomicka trieda a U je znacka. Obycajnou vytvarajicou funkciou dvoch premennych triedy

M je teda
1

(1 —wu2)(1—22)(1—25"

M(z,u) =
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Obycajna vytvarajtca funkcia M (z) prislusnej triedy bez parametra preto spliia

1
(1—2)(1—22)(1— 25

M(z) = M(z,1) =

a kumulativna vytvarajiaca funkcia M€(z) triedy M je dana ako

z z

MA(z) = [%M(z,u)] w1 - {(1 —uz)?(1 — 22)(1 — 25) - (1—2)2(1—22)(1—2°%)°

u=1

Obidve tieto funkcie maji az Sest dominantnych singularit. Lahko ale vidiet, ze pre funkciu M(z)
resp. M¢(z) je bod z = 1 pélom tretieho resp. stvrtého radu, kym zvysné singularity si pri oboch
funkciach jednoduchymi polmi. Z toho vidiet, Ze prispevok singularit réznych od 1 bude pri aplikacii
metody analyzy singularit (pre funkcie s viacerymi dominantnymi singularitami) zanedbatelny a staci
sa tak sustredit na singularity v bode z = 1. Pre z — 1 pritom

1

AM(Z):m-i-O((l—Z)Q)7

1 4—}—0((1—2)_3).

M= Toa—ay

Metodou analyzy singularit tak pre n — oo dostdvame odhady

7'L2 n2
n M ~ = —
M) ~ 0rE) ~ 207
n3 n3

n] —

[z

o

M (z) ~ ———
)~ 0T ~ 6
V désledku toho pre ocakavany pocet E,, vydanych jednokorunovych minci pre n — co dostavame

g oo FIMz)
"M (z) 3
Priklad 7.6.5. Pre n — oo teraz vy¢islime ocakivany pocet listov v rovnomerne ndhodne vybranom
(neprazdnom) binarnom strome s n vrcholmi. Kombinatoricka trieda B vSetkych takychto stromov
(chapanych ako neoznacené objekty), s velkostou danou po¢tom vrcholov a s parametrom udavajicim
pocet listov, je dana Specifikiciou

B=UXZ+ZxB+ZxB+2ZxBxDB,

kde Z je atomickéa trieda a U je znacka. Kazdy neprazdny binarny strom je totiz bud samotny list, alebo

pozostava z korena a dvoch podstromov, z ktorych musi byt minimalne jeden neprazdny; druhy pripad

pritom moZno rozloZzit na tri jednoduchsie pripady podla toho, ktoré z podstromov st neprazdne.
Pre obyc¢ajnu vytvarajicu funkciu dvoch premennych prislachajacu k triede B teda dostdvame

B(z,u) = uz + 22B(z,u) + zB(z,u)?,

pricom tato rovnica ma v N[z, u] jediné rieSenie

1—22—/1—4z+4(1 —u)2?
2z '

B(z,u) =

Pre oby¢ajna vytvarajucu funkciu B(z) zodpovedajucej triedy bez parametra tak podla ocakavania

dostavame
B 1—22—+/1—-4z B 1—-+1—-14z

B
(2) 2z 2z

1
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a kumulativna vytvarajica funkcia B¢(z) triedy B je dané ako

z z

¢ = 2 zZ, U = [ —
B = [%B(’ ):|u:1 [\/1—42+4(1—u)22 1 V1—dz

Jedinou dominantnou singularitou oboch tychto funkcii je bod 1/4, pri¢om pre z — 1/4 je

B(z) =1-2V1—42+4 0(1 — 42),
BS(2) = 4\/11_W +0 (V1-4z).

Metodou analyzy singularit tak pre n — oo prichddzame k odhadom

N 2n73/24n 4n
FNBGE) ~ —F oy = Jmn3/2’
—-1/24n n
Be(e) ~ e

AT(1)2)  4/mn

Pre n — oo je teda ocakdvany pocet listov F, v rovnomerne ndhodne vybranom bindrnom strome

dany ako 2B (2)
2" B¢(z n
En= "B ~ 1

Priklad 7.6.6. Pre n — oo odhadnime priemerny pocet vyskytov pismena a v slovach dlzky n jazyka
generovaného jednoznac¢nou bezkontextovou gramatikou s pravidlami

o —aoo | bo | c.

Kombinatorickd trieda S vsetkych takychto slov (chdpanych ako neoznacené objekty), s velkostou
danou dl7kou slova a s parametrom udavajicim pocet vyskytov pismena a, je dana Specifikiciou

S=UXZxS*+ZxS+2Z,

kde Z je atomické trieda a U je znacka. Oby¢ajnd vytvarajiaca funkcia dvoch premennych S(z,u)
triedy S tak vyhovuje vztahu

S(z,u) = uzS(z,u)? + 28(z,u) + 2.

Jedinym rieSenim tejto rovnice v N[z, u] je rad

1—2z—+/1—22+(1— 4u)z?
2uz ’

S(z,u) =

Vidime teda, Ze oby¢ajna vytvarajuca funkcia S(z) prislusnej triedy bez parametra je dana ako

_1—2—\/1—22—322

S =
(2) 5,
a kumulativna vytvarajica funkcia S¢(z) je dana ako
1—2z—4/1-2 1 —4u)z2
S¢(z) = [OS(z,u)} = c _ = 2Z+ ( u)z _
ou we1 |uy/1 =22+ (1 — 4u)2? 2u2z -

B z 1—2—+vV1—22—322
V1—2z—322 2z ‘
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Dominantnou singularitou oboch funkcii S(z) a S¢(z) je bod 1/3, pricom pre z — 1/3 je

S(z)=1—V3/1=32+0(1—32),
o 1
S(z)_72\/§m+0(1).

Pomocou metody analyzy singularit teda zistujeme, Ze pre n — oo je

V3n~323m /33"
TT(=1/2) 2y /mnd/?’
n—1/23n _ \/§3n
T oV3T(1/2) 6y

Pre n — oo teda moZno priemerny pocet vyskytov E, pismena a v slovach dlzky n generovanych
uvedenou gramatikou odhadnut ako

[2"]5(2) ~

[2"15°(2)

s
B =5 (s)

e

Priklad 7.6.7. Analytickd kombinatorika nachiddza vyznamné uplatnenie pri analyze zloZitosti al-
goritmov a datovych Struktar v priemernom pripade — o mnozZstve aplikicii tohto druhu sa mozno
do¢itat napriklad v [22, 27]. Na tomto mieste si ukdZeme jednu z najjednoduchsich aplikécii analytickej
kombinatoriky v oblasti analyzy algoritmov: odhadneme priemerny pocet krokov Euklidovho algoritmu
na hladanie najvacsieho spolo¢ného delitela dvoch polyndmov nad konecnym polom F,, kde p je prvo-
¢islo. Priklad je prebraty z knihy P. Flajoleta a R. Sedgewicka [9].

Uvazujme najprv kombinatoricki triedu P vSetkych normovangch polynémov z F,[x] chapanych
ako neoznacené objekty, s velkostou danou stupiiom polynému. Kazdy normovany polynom

ao+ a1z + asx® + ...+ ap_12" 2" € Fp ]

stupfia n € N mozno stotoznit s postupnostou koeficientov (ao,...,an—1). Ak teda A, = (A, |-|) je
kombinatoricka trieda taka, ze A, = IF,, a pre vietky a € A, je |a] = 1, je oby¢ajné vytvarajica funkcia
Ap(z) triedy A, dana ako Ap(z) = pz a kombinatoricki triedu P mozeme Specifikovat ako

P = SEQ(Ap).
Pre oby¢ajna vytvarajicu funkciu P(z) triedy P tak prichadzame ku vztahu

_ 1 1
S 1-Ay(2)  1-pz

P(z)

Dalej uvazujme kombinatoricka triedu Q vsetkych nie nutne normovanych polynémov z Fp[z]
stupna aspon 1 — opat podjde o triedu neoznacenych objektov s velkostou polynému danou jeho stup-
nom. Podobne ako vysSie tu prichadzame k Specifikacii

Q= SEQZl(.Ap) X Ep,
kde £, = (£,,]|-]) je kombinatoricka trieda taka, ze £, = F, \ {0} a pre vietky a € L, je |a| = 0.

Obycajna vytvarajuca funkcia Ly(z) triedy £, je dana ako L,(z) = p — 1. Pre oby¢ajna vytvarajicu
funkciu Q(z) triedy Q tak dostavame

Ap(z)Lp(Z) . p(p—1)z
1—A,(2) 1—pz

Q(z) =
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Zavedme napokon aj kombinatoricka triedu D v8etkych dvojic polynémov (f(x),g(z)), kde po-
lyném g(x) € Fpylz] je normovany a polynéom f(x) € Fplz] je bud nulovy, alebo mensieho stupia,
nez polynom g(z). Opét pojde o triedu neoznacenych objektov, pricom za velkost dvojice budeme
povazovat stupeil polynému g(z). Evidentne potom

D = SEQ(B), x Ap),

kde B, = (B,,|-|) je kombinatoricka trieda taka, ze B, = F, a pre vietky a € B, je |a| = 0; oby¢ajna
vytvarajica funkcia B, (z) triedy B, je teda dana ako B,(z) = p. Pre oby¢ajnt vytvarajiacu funkciu
D(z) triedy D tak dostavame

1 1
1= By(2)Ap(z)  1-p2z

D(z)

Pripomenme si teraz, ze delenim so zvyskom mozno pre Tubovolné dva polynomy f(x), g(z) € Fp[z],
kde g(x) # 0, najst ich podiel ¢(z) € Fp[z] a zvysok r(x) € F,[x] tak, ze

f(x) = q(x)g(x) + r(z),

kde degr(z) < deg g(z); pre r(x) = 0 tu pracujeme s konvenciou degr(x) = —oo.
Vstupmi Fuklidovho algoritmu s polynomy fo(z), fi(z) € Fpz]\{0} také, ze deg fi(z) < deg fo(x).
Samotny algoritmus potom pozostéva z nasledujticej postupnosti deleni so zvyskom:

fo(z)
fi(z)

q1(x) fi(z) + fa(x),
¢ (x) f2(x) + f3(x),

frn—2(®) = qn-1(x) fo_1(x) + fr(2),
fo-1(x) = qn () fu(x) + 0,

kde pre k = 2,...,h je fr(x) nenulovy polynom z F,[z] taky, ze deg fi(x) < deg fr—1(x). Vystupom al-
goritmu je polyném f,(x), ktory je najvaésim spolo¢nym delitelom vstupnych polynémov fo(x), fi(z);
¢islo h € N'\ {0} udava pocet krokov Euklidovho algoritmu vykonanych pre dant dvojicu vstupnych
polynémov.

Zavedme konvenciu, podla ktorej pre lubovolny nenulovy polyném fy(x) a fi(x) = 0 je h =0;
najvacsim spolo¢nym delitelom je v takom pripade polyném fy(x). Ako vstupy Euklidovho algoritmu
tak Speciadlne modzeme uvazovat aj lubovolnt dvojicu polynémov (fi(z), fo(x)) € D.

Nech fh(ac) € Fp[z] je normovany polynom taky, ze f(z) = afh(x) pre nejaké a € F, — polynom
fh(:r:) je potom prvkom kombinatorickej triedy P. Polynémy qi(x),...,qn(z) sa dalej vietky stupna
aspon 1, a teda ich méZzeme povaZzovat za prvky kombinatorickej triedy Q.

Pre Tubovolna dvojicu vstupnych polynéomov (f1(x), fo(z)) € D je teraz jednoznacne uréeny po-
et krokov h € N Euklidovho algoritmu, ako aj polynémy qi(z),...,qn(z) a fu(z). Pre Tubovolné
@1(x),....qn(z) € Qa fh(x) € P naopak Tahko spétne identifikujeme dvojicu vstupnych polynémov
Euklidovho algoritmu (fi(x), fo(x)) € D. Dostavame teda izomorfizmus kombinatorickych tried

D = SEQ(Q) x P.

Interpretujme teraz triedu D ako kombinatorick triedu s parametrom (D, ||, x) taka, Ze pre vSetky
(fi(x), fo(z)) € D je x(fi(x), fo(z)) rovné poctu krokov h, ktoré vykona Euklidov algoritmus na vstu-
poch (f1(z), fo(x)). Z uvedeného vyplyva, Ze tuto triedu s parametrom mozno Specifikovat ako

D =8SEQ(U x Q) x P,
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kde triedy P a Q chapeme ako triedy s parametrom konStantne rovnym nule a i/ je znacka. Pre obycajni
vytvarajucu funkciu dvoch premennych D(z,u) triedy s parametrom D preto dostavame

P(z) 1 1
D = = . .
ST TR T e T
7 toho
(p=1)z

0 pl_ o 1 p(p—1)z
D¢ (z)=|=—D = P . ==
(=) [8u (Z’U)] — pr—1z\? 1—pz (1—p22)?

Metddou analyzy singularit tak pre n — oo l'ahko prichddzame k odhadom

[="]D(2) ~ p*"

-1
[2"]D(z) ~ b np*".
p

Pre n — oo teda mozno priemerny pocet krokov E, Kuklidovho algoritmu pre ndhodné vstupné
polynémy fo(z), fi(x) — kde fo(x) je normovany a stupiia n a fi1(z) je nulovy alebo mensieho stupiia

ako fo(x) — odhadnut ako
2" | D(z -1
g D) -1
[2"]D(2) p
Priklad 7.6.8. Metody analytickej kombinatoriky sa podarilo aplikovat aj pri skiimani niektorych
otazok suvisiacich s opisnou zloZitostou racionalnych jazykov. V rameci tohto prikladu prevzatého z |2]
sa zameriame na analyzu stavovej zlozitosti jednej z moznych konstrukcii nedeterministického konec-

ného automatu k danému racionalnemu vyrazu v priemernom pripade.

Akonéhle sa za¢ne hovorit o ndhodnom vybere racionalnych vyrazov, stani sa rozne inokedy nepod-
statné detaily ich definicie razom zasadnymi. V snahe zbavit sa niektorych nadbyto¢nych podvyrazov
sa tak v [2| skamal jazyk racionalnych vyrazov nad abecedou ¥y = {ai,...,ar} pre k € N\ {0}
generovany bezkontextovou gramatikou s pravidlami

c—=0]1]|a«
a—ai| ... la|(a+a)](a-a)|a|a
a pociatoénym neterminalom o, kde pre vSetky vyrazy E generované touto gramatikou je sémantika
vyrazu E’ definovana ako ||E’|| = ||E||U{e}. Aby nedoslo k zamene prazdneho slova a symbolu pre vyraz
reprezentujici prazdne slovo, pouzivame teraz pre vyraz e oznacenie 1. Do dizky raciondlneho vijrazu za-
pocitavame symboly ay,...,ag,0,1 a vietky symboly reprezentujiice operatory; nezapocitavame do nej
ale zatvorky.

Kombinatoricka trieda R*) vBetkych racionélnych vyrazov nad ¥y = {ai,...,a}, chdpanych ako
neoznacené objekty s velkostou danou dlzkou vyrazu, je tak dana Specifikaciou

R®) = 25+ 2, + SW),
SH =z, +.. .+ 25, + (S(k) X Z4i X S(k)) + (S(k) X Zy X S(k)) + (S(k) X Z7) + (S(k) X Z*> ,
kde Zo, 21, 2Za,,..., 24, 24, Zx, 22, Z, st atomické triedy. Pre obycajni vytvarajacu funkciu Ry(z)

triedy R® tak dostavame vztah
Ry(z) = 22 + Sk(2),

kde
Si(2) = kz + 228,(2)? + 225 (2).
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V réamci jediného kombinatoricky vyznamného rieSenia tohto systému rovnic tak dostavame

 1-22+482% — /1 —4z+ (4 —8k)z?
- 4z '

Funkcia

Ti(z) = 42R(z) — 822 + 22 =1 — /1 — 4z + (4 — 8k)22
mé jedint dominantnid singularitu

1
Ok = 77—

2(vV2k+1)

Ti(2) = 1 — 2V2k\/ar\/1 — 2/ 05 + O ((1 - z/gk)3/2> .

Metodou analyzy singularit teda pre n — oo zistujeme, ze

(2" Te(2) ~ \/le%/@@;;nngm

Pre z — o pritom

)

v dosledku ¢oho

m\/ﬁg—(n+1)(n+1)73/z
4w °F '

Jednou z najznamejsich konstrukcii nedeterministického kone¢ného automatu k danému racionéal-
nemu vyrazu je tzv. Thompsonova konstrukcia [25]. T4 raciondlnemu vyrazu 0, 1 resp. a; pre j € [k]
priradf automat Ap, Aj resp. A,, na obrazku 7.1.

-0 O OO0 -O——0-

(a) Automat Ay. (b) Automat A;. (c) Automat A,;.

[2") Ry (2) ~

Obr. 7.1: Automaty zodpovedajtce racionalnym vyrazom 0, 1 a a; pre j € [k].

Ak su teraz E,F racionalne vyrazy, ku ktorym v ramci Thompsonovej konStrukcie prislichaji
automaty Ag resp. Ag, skonstruuje sa k vyrazu (E+F) automat Agf na obrazku 7.2 a k vyrazu (E-F)
automat Ag.F na obrazku 7.3.

Ag

Ar

Obr. 7.2: Automat Ag .

Ak je napokon E racionalny vyraz s automatom Ag, priradi Thompsonova konstrukcia vyrazu E*
automat Ag« na obrazku 7.4. Vyrazu E?, ktory v origindlnej Thompsonovej konstrukcii nebol uvazo-
vany, mozno priradit automat Ag» na obrazku 7.5.
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Obr. 7.3: Automat Ag.fr.

3

3

Obr. 7.4: Automat Ag-.

3

& &
Ag

Obr. 7.5: Automat Ag:.

Pri vSetkych tychto konstrukcidch sa k automatom skonStruovanym pre podvyrazy pridava iba
konstantne vela novych stavov — konkrétne pri konstrukeii automatov Ag4f, Ag+ a Ag sa pridaji dva
nové stavy a pri konstrukcii automatu Ag.f sa nepridéa Ziaden novy stav.

Triedu R®*) vietkych uvaZovanych racionélnych vyrazov nad ¥ tak mézeme interpretovat ako
kombinatoricka triedu (R®*),|-|,x) s parametrom y udavajicim velkost automatu prislichajiceho
k danému vyrazu v Thompsonovej konstrukeii. Specifikiciou tejto triedy je potom

RE) =12 x Zo+U* x 2, +SW,
Sk =12 x 25, +o U x Z,, + <Z/{2 x S Zy xS(k)) +
+ (S(k) X Zy X S(k)) + (u2 x S) x ng) + (u2 x S) x Z*> ,

kde U je znacka. Obyc¢ajnou vytvarajiucou funkciou dvoch premennych Si(z,u) kombinatorickej triedy
s parametrom S tak je

1—2u?z — /(1 — 2u22)? — 4ku2(u? + 1)z2
2(u? +1)z

Sk(z,u) =

a kumulativnou vytvarajicou funkciou triedy S*) je preto

5¢(2) = 2+ (8k — 8)22 — (2 + 42)\/1 — 42 + (4 — 8k)z2
K 82\/1— 4z + (4 — 8k)22 '
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V dosledku toho je obycajnéa vytvarajuca funkcia dvoch premennych Ry (z,u) kombinatorickej triedy

s parametrom R*) dana ako
Ri(z,u) = 2zu® + Si(z,u)

a kumulativnou vytvarajicou funkciou tejto triedy je

Ri(z) =42+ 5°(2) =

2+ (8k — 8)22 — (2 + 4z — 3222)\/1 — 4z + (4 — 8k)22

82+/1 — 4z + (4 — 8k)22
Funkcia
2 + (8k — 8)22

X¢(2) 1= 82R$(2) + 2 + 42 — 322% =
) (2) V1= 4z + (4 - 8k)22

mé jedint dominantnd singularitu
1

T Vak+ 1)

pricom Puiseuxov rozvoj funkcie X (z) v bode g, je dany ako

. _2+(8k—8)g%' 1 —
T ﬁ_Z/ka(\/l Jor)

a metdédou analyzy singularit tak pre n — oo dostavame asymptoticky odhad

2+ (8k — S)Qk o n-1/2.

IXEG) ~ o — e

V dosledku toho pre n — oo je

2+ (8k — 8)Qk —(n+1)
16V/2k/opy/7 "

[2"] R, (2) ~ (n+1)7"2

Priemerny pocet stavov E, nedeterministického kone¢ného automatu zostrojeného Thompsonovou
konstrukciou k rovnomerne nahodne vybranému raciondlnemu vyrazu dlzky n teda mozno pre n — oo

odhadnuat ako

_ [2"R5(2) N 2+ (8k — 8)@% i B
b= LRy (2) Wk, Y=

2v2(3k + 2v/2k)
4(vV2k + V)

(n+1).
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Kapitola 8
Poélyova teodria

V ramci tejto zavereénej kapitoly sa vratime na podu klasickej enumerativnej kombinatoriky a v krat-
kosti si predstavime algebraickti enumera¢nti metédu historicky predchédzajacu analytickej kombi-
natorike aj symbolickej metdéde a spdtid predovSetkym s menom Georgea Poélyu a s jeho ¢lankom
z roku 1937 [19] (anglicky preklad vysiel o polstorocie neskor ako [20]).! Tento pristup ku kombina-
torickej enumeréacii je zaloZzeny predovSetkym na pozorovani, Ze neoznaCené kombinatorické objekty
mozno ¢asto stotoznit s triedami ekvivalencie vhodnych relacii ekvivalencie pochadzajucich zo skiima-
nia symetrii prislusnych oznac¢enych objektov. Do kombinatoriky tak vstupuje teéria grap ako nastroj
na skimanie takychto symetrif.

Nagim cielom tu bude len utvorenie predstavy o najzakladnejsich vysledkoch a aplikaciach Polyovej
teorie a o ich stvise so symbolickou metodou. Citatela odkazujeme aj na prislusné kapitoly v [4, 3].

8.1 Akcie grupy na mnoZine

Za¢nime definiciou (pravych) akcii monoidu na mnoZzine, ktoré nas budu zaujimat predovsetkym v pri-
pade, ked je uvazovany monoid M v skuto¢nosti grupa.

Definicia 8.1.1. Akcia monoidu M = (M,-,1) na mnoZine X je zobrazenie : X x M — X také, ze:
(1) Pre vietky = € X je d(x,1) = z.
(ii) Pre vietky z € X a f,g € M je 6(0(x, f),g) = d(x, fg).

Pre x € X a f € M obvykle namiesto d(x, f) piSeme z - f.

Priklad 8.1.2. Prechodové funkcia kazdého deterministického konecného automatu nad abecedou X
s mnozinou stavov ) urcuje akciu § volného monoidu ¥* na mnozine ) — pre vietky ¢ € Q a w € ¥*
je d(q,w) = q - w stav, v ktorom automat docita slovo w, ak ho za¢ne &itat v stave q.

Kazdu grupu G permutacii na mnozine X — s grupovou operéciou - danou pre vietky f,g € G ako
f-9= fg=gof— mozno sicasne chapat aj ako akciu tejto grupy na X taku, Zze pre vsetky f € G
ax € X jex- f= f(x). DokdZeme teraz, Ze aj naopak kazda akcia grupy na mnoZzine X urcuje grupu
permutéacii na X.

Tvrdenie 8.1.3. Nech 6: X x G — X je akcia grupy G = (G, -, 1) na mnoZine X. Pre vietky f € G
je potom zobrazenie 05: X — X, dané pre vietky v € X ako

o7 (x) = o(z, f),

permutdciou mnoZiny X, pricom pre vietky f,g € G je 60y = dy4.

1V skuto¢nosti bola podstatna ¢ast Pélyovych vysledkov znama uz o desat rokov skor J. Howardovi Redfieldovi [21].
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Doékaz. Zobrazenie ¢ musi byt pre vetky f € G bijektivne — ¢ize musi byt permutaciou X — pretoze
zobrazenie d7-1: X — X pre vietky v € X splia

3p-1(0p(x)) = 8(8(z, f), f1) = d(a, ff1) = d(z,1) =2

5f(5f*1($)) = 5(5(177 f_l)a f) = 5($7 f_lf) = (S(l‘, 1) =T
dp-10f aj 0p0r-1 je teda identickym zobrazenim na X. Rovnost d70, = d¢4 potom pre vSetky f,g € G
vyplyva zo skuto¢nosti, ze pre vietky = € X je

Je teraz zrejmé, Ze mnozina vSetkych permutécii d; pre f € G tvori spolu so skladanim grupu
permutécii na mnozine X a zobrazenie priradujice prvku f permutéciu §¢ je homomorfizmom grip.
Na kazdu akciu grupy na mnoZine sa tak z uréitého pohladu mézeme divat ako na grupu permutacii
na tejto mnozine.

8.2 Orbity a stabilizatory

Uvazujme Tubovolnu pevne dant akciu 0: (z, f) — x- f grupy G na mnozine X a pre z,y € X polozme
x ~g y prave vtedy, ked existuje f € G také, ze x - f = y. Lahko vidiet, Ze ~¢g musi byt relaciou
ekvivalencie na X.

Definicia 8.2.1. Nech G je grupa urcujica akciu na mnozine X . Orbitou v grupe G nazveme lubovolnu
triedu ekvivalencie relécie ~g a orbitou prvku x € X v G nazveme triedu ekvivalencie

orbg(x) :==[z]oy =2-G={x- f| f € G}

Definicia 8.2.2. Nech G je grupa urcujica akciu na mnozine X. Stabilizdtorom prvku x € X potom
nazveme mnozinu

stabg(z) :={f e G|z f =z}

Pre vietky x € X je stabilizator stabg(z) podgrupou grupy G — z definicie akcie grupy G na X totiz
vyplyva, Ze neutralny prvok 1 grupy G splia z-1 = z, a teda 1 € stabg(z); pre vietky f, g € stabg(z)
jeteraz - (fg) = (v -f)-g=x-g=zazc-f =@ -f)-fl=2 - (f-fY)=2-1=ux zho
fg € stabg(z) a f~! € stabg(z).

Veta 8.2.3 (O orbite a stabilizatore). Nech G je kone¢na grupa urcujica akciu na mnoZine X.
Pre vsetky x € X je potom

G|

lorbe (@) = T @

=[G : stabg(z)].

Dokaz. Rovnost |G|/ |stabg(x)| = [G : stabg(x)] vyplyva z Lagrangeovej vety — ide pritom o pocet
vSetkych pravych tried rozkladu grupy G podla stabg(z). Zostéava opisat bijekciu medzi mnozinou
tychto pravych tried a orbitou orbg(z). Definujme zobrazenie ¢ pre vietky f € G predpisom

¢ (stabg (x) f) =z - f.

Tato definicia nezéavisi od volby reprezentanta f triedy stabg(x) f — ak totiz pre fi,fs € G je
stabg () fi = stabg(x) fa, nutne f1f, * € stabg(z), z Coho

- fo=(-(fifs)) o=z fifs ' o=@ f) fi' o=z fi.

Vidime tiez, Ze zobrazenie @ je injektivne: ak fi, fo € G st také, Ze x - fi = x - fo, nutne x - flfgl =z
— teda f1f2_1 € stabg(z) a stabg(z) fi = stabg(x) f2. Surjektivnost zobrazenia ¢ napokon vyplyva
zo skuto¢nosti, ze pre vSetky y € orbg(z) z definicie orbity existuje f € G také, Ze x - f = y; potom
ale p(stabg(x) f) = v. O
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8.3 Burnsidova lema

DokéZeme teraz prvy vysledok umoziujtci v niektorych jednoduchsich pripadoch vy¢islit pocet ne-
oznacCenych objektov urcitého typu na zéklade skimania symetrii prislusnych oznacenych objektov.
V literatire je znamy najmé pod historicky nepresnym nazvom Burnsidova lema — mozno sa ale tiez
stretnut s presnejsimi pomenovaniami Cauchyho-Frobeniova lema a veta o pocitani orbit.

Definicia 8.3.1. Nech G je grupa urcujica akciu na mnozine X a f € G. MnoZina pevnych bodov
prvku f je potom dana ako
fix(f) ={rx e X |x- f=u}

Veta 8.3.2 (Burnsidova lema). Nech G je konetna grupa urcujica akciu na koneénej mnozine X.
Pocet orbit prvkov X v G je potom dany ako

X/~a fix(f
X/l = 17 3 lfx(s

fe@

Dokaz. 7 definicie mnozin fix(f) dostavame

Z|ﬁx = Z|{x€X|xf_x}\

fEG feG

Zﬁl{(f,w)leG; reX;a-f=a} =

‘G,Z\{feGlrv =2} =

zeX

|G| Z |stabg (z

zeX

Podla Vety o orbite a stabilizatore teda

|G\
|G’ Z| ’G| Z ]0r Z lorbG )| - Z Z | rb| X/~al. 0

fea orbeX /~g x€orb

Priklad 8.3.3. Vycislime pocet vSetkych ndhrdelnikov pozostavajucich z n > 3 koralok po dvoch
roznych farieb z pevne danej n-prvkovej mnoziny F' — ide o tlohu, ktoru by rovnako dobre bolo mozné
vyrieSit aj elementdrnymi metédami. Keby mali koradlky pevne dané pozicie 1,...,n, mohli by sme
za takyto nahrdelnik povazovat Tubovolni n-prvkovi postupnost z mnoZziny

Xn=A{(c1,...,cn) e F" | Vi, k€ n]:cj=cr = j=k}.

Kedze ale koralky takéto pozicie dané nemajt, budeme povaZovat za ekvivalentné tie dvojice kone¢nych
postupnosti z X,,, ktoré vzniknu jedna z druhej postupnostou rotacii a obrateni postupnosti. Ekviva-
lentne moZno tieto symetrie opisat ako rotacie a osové simernosti pravidelného n-uholnika, do vrcholov
ktorého jednotlivé koralky umiestnime. Tieto symetrie tvoria tzv. dihedrdlnu grupu D,, —ide o podgrupu
symetrickej grupy S, v8etkych permutécii na [n] generovani rotéciou (234 ...n1) a osovou simernostou
(In)(2(n—1))...((n/2)(n/241)) pre n parne resp. (In)(2(n—1))...(((n—1)/2)((n+3)/2))((n+1)/2)
pre n neparne. Dihedrélna grupa D,, je radu 2n a pozostéva z presne n rotacii a n osovych stmernosti.
Na X,, ur¢uje dihedralna grupa D,, akciu danu pre vSetky (c1,...,¢,) € X, a f € D, ako

(01, ey Cn) . f = (Cffl(l), co ,Cffl(n))
a za nahrdelniky mozeme povaZovat orbity prvkov X, v grupe D, vzhladom na tuto akciu. Pocet
vSetkych nahrdelnikov je tak podla Burnsidovej lemy dany ako

=5 3 Ix(f)

|Xn/ Dn -
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Identickd permutécia 1 zachovava vSetky postupnosti z X,, a zvySné permutécie nezachovavaja
ziadnu postupnost z X,,. Dostavame preto |fix(1)| = n! a [fix(f)| = 0 pre vietky f € D, \ {1}. Hladany
pocet ndhrdelnikov je teda dany ako

1 (n—1)!
[Xn/~D] an 2

Priklad 8.3.4. UvaZujme teraz lubovolné prvocislo p a vy¢islime pocet vSetkych cyklickijch slov
dlzky p nad abecedou ¥ = {a,b} — to znamena pocet vietkych takychto slov po stotozneni tych
z nich, ktoré mozno jedno z druhého ziskat rotaciou. Grupa Z, urcuje akciu na ¥? danid pre vsetky
ai,...,ap € X a f € Z, ako

ap...ap- f=app1...apa1...a5

(kde scitanie je v N) a za cyklické slovd mozeme povazovat orbity prvkov ¥P v Z, vzhladom na tito
akciu. KedZe je p prvocislo, lahko vidiet, ze 0 € Z, zachovava vSetky slovad zo ¥P, kym nenulové
prvky Z, zachovavaju jedine slova OP a 17. Hladany pocet cyklickych slov je teda podla Burnsidove;
lemy dany ako

2P )~z | = ’Z | > Ifix(f (2p+2( ~1)).

fEZy

8.4 Poélyova veta o enumericii

Nech G je grupa permutécii kone¢nej mnoziny X; uvazujme akciu grupy G na X taku, Ze pre vSetky
r€XafeGjex-f= f(zx). Nechje dalej F Tubovolna mnozina. Na mnozine FX vietkych zobrazeni
z X do F potom uvazovana akcia grupy G na X indukuje akciu taku, zZe pre vSetky ¢: X — F, f € G
axeXje

(@ f)(@) = oz f7).

Tito akciu budeme nazyvat kanonickou akciou grupy G na mnozine FX.

Kazdé zobrazenie z FX mozno interpretovat ako kombinatoricky objekt, ktory vznikne z jedného
fixného objektu pozostavajuceho z koneéného pocétu oznacengch atbmov z mnoziny X dosadenim prvku
mnoziny F' za kazdy atém. Ak je G grupou symetrii uvazovaného fixného ,,zakladného* objektu, zod-
povedaji orbity prvkov FX v grupe G neoznaenym objektom prislichajiicim k oznac¢enym objektom
z mnoziny FX.

Zacneme relativne jednoduchym pripadom, ked je F' konefnd mnozina farieb — ide teda o po-
dobnu situaciu ako v prikladoch z minulého oddielu. Nasledujica zjednoduSené verzia Polyovej vety
o enumerécii umoziiuje vy¢islit pocet orbit grupy G urcujicej akciu na FX jednoduchsim sposobom,
neZ pomocou priameho pouzitie Burnsidovej lemy.

Veta 8.4.1 (ZjednoduSena Polyova veta o enumerécii). Nech G je grupa permutdcii konecnej mno-
Ziny X a F je koneénd mnozZina. Pocet orbit prukov FX v grupe G vzhladom na kanonicki akciv G
na FX je potom dany ako

fea

kde c(f) oznacuge pocet cyklov rozkladu permutdcie f € G na disjunktné cykly.

Doékaz. Ide o bezprostredny dosledok Burnsidovej lemy — pre Tubovolné f € G je totiZz zobrazenie
¢: X — F prvkom fix(f) prave vtedy, ked ¢(x1) = ¢(z2) kedykolvek st z1, z2 € X stucastou rovnakého
cyklu permutécie f. Pocet prvkov mnoziny fix(f) je preto dany volbou jednej farby z F' pre kazdy
cyklus permutacie f — teda |fix(f)| = |F|<(). O
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Priklad 8.4.2. Uvazujme mnozinu farieb F' taku, ze |F| = k € N\ {0} a predpokladajme, ze z kazdej
farby ¢ € F mame k dispozicii neobmedzene vela koralok. Vyéislime pocet vietkych ndhrdelnikov dlzky
n > 3, ktoré z tychto koralok mozno vytvorit.

Podobne ako v priklade 8.3.3 mozeme za nahrdelnik povazovat orbitu prvkov mnoziny FIM = fn
v dihedralnej grupe D,, vzhladom na jej akciu na FI" danu pre vietky (c1,...,¢,) € F™ a f € D, ako

(cryevesen) - f=(cr101) - Cr-1(n))-

Skimajme teraz pocty cyklov jednotlivych permutécii z dihedralnej grupy D,,. MéZeme pritom rozlisit
medzi nasledujicimi druhmi permutécii z Dy,:

e Kazdu spomedzi n rotécii mozno vyjadrit ako g-tu mocninu cyklu (234...n1) pre nejaké ¢ € [n].
Nie je tazké nahliadnut, Ze ak d je najvacsi spolo¢ny delitel &sel g a n, pozostéava permutécia
(234...n1)9 z presne d disjunktnych cyklov dizky n/d. Vietkych ¢ € [n] takych, Ze najvicsi
spolo¢ny delitel g a n je d, je rovnako vela ako vSetkych ¢’ € [n/d] takych, Ze najvacsi spolo¢ny
delitel ¢’ a n/d je 1 — &ize presne ¢(n/d), kde ¢ je Eulerova funkcia.?

e Ak je n neparne, pozostava kazda z osovych sumernosti v D, z prave jedného pevného bodu
a prave (n — 1)/2 transpozicii — celkovy pocet cyklov je teda (n +1)/2.

e Ak je m parne, existuje presne n/2 osovych stmernosti s n/2 transpoziciami a n/2 osovych
stmernosti s (n — 2)/2 transpoziciami a dvoma pevnymi bodmi — v prvom pripade je pocet
cyklov n/2, v druhom n/2 + 1.

Zo zjednodusenej Poélyovej vety o enumeréacii teda dostéavame, Zze hladany pocet ndhrdelnikov je dany
ako

‘F["]/ND,L

2n

1 c 1 . : "
- m Z |F‘ )= % § ¢(n/d)kd+nk( /2 = — E cp(d)k‘ /d+ 5/{:( +1)/2
" teD, dn =

pre n neparne a

n 1 1 n. ., n, .,
‘F[ Ve | = N S = o [ S eln/d)k! + SR 4 D) =
"l feDn djn
_ > p(d)k? + lk"/2(1 + k)
2n p 4

pre n parne.

Uvazujme teraz vSeobecny pripad, ked su za prvky mnoziny X dosadzované prvky nejakej kombi-
natorickej triedy F = (F, |-|#) — tymto dosadzovanym objektom z triedy F sa oby¢ajne hovori obrazce.
Je pritom dana obyc¢ajna vytvarajuca funkcia

F(z) = Z anz"
n=0
triedy F. Velkost zobrazenia ¢: X — F je dana ako

6l =D é(@)] -

zeX

2Pre vietky n € N\ {0} je ¢(n) definované ako pocet vietkych &isel k € [n] nestdelitelnych s n.
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Cielom je vy¢islit pocet takychto zobrazeni ¢: X — F danej velkosti za predpokladu, Ze stotoZnime
tie spomedzi zobrazeni, ktoré si prvkami rovnakej orbity v grupe G. Takéto stotoznenie je pripustné,
pretoze prvkom jednej orbity moézu evidentne byt iba zobrazenia rovnakej velkosti. Pojde nam teda
o najdenie obyCajnej vytvarajucej funkcie

Px.ra(z an ;

kde pre vietky n € N je p, pocet vietkych orbit v grupe G pozostéavajucich z prvkov FX velkosti n.
Definicia 8.4.3. Nech G je grupa permutacii konecnej mnoziny X s |X| = m. Cyklovym indexom
grupy G nazveme polyném
Cm(ﬁ
=@ G

fea@

Za(ut, ..., Up)

kde pre k =1,...,m je cx(f) pocet cyklov dizky k v rozklade permutécie f € G na disjunktné cykly.
Veta 8.4.4 (Polyova veta o enumeréacii). Nech G je grupa permutdcii konecnej mnoziny X s |X| =

a F je kombinatorickd trieda s obycajnou vytvdrajicou funkciou F(z). Obycajnd vytvdragica funkcia
Px r.c(z) postupnosti poctov orbit v G pozostdavajicich z prokov FX wvelkostin € N je potom dand ako

Px ra(z) =2 (F(2),F(2%),...,F(z™)).

Dokaz. Uvazujme najprv pevné f € G a pre vietky n € N oznatme ako r, pocet vietkych funkecii
¢: X — F velkosti n, ktoré zaroven patria do fix(f) — je teda ¢- f = ¢. Najdeme obyc¢ajna vytvarajicu

funkciu
Rx r (2 Z 2"

postupnosti (r,)52,. Zrejme ¢ € fix(f) prave Vtedy, ked d(x1) = P(x2) kedykolvek st zj,z0 € X
stucastou rovnakého cyklu permutacie f. VSetky zobrazenia ¢ € fix(f) teda ziskame tak, Ze si vetkymi
moznymi sposobmi zvolime pre kazdy cyklus permutécie f jeden obrazec z triedy F. Ak je pritom
dany cyklus dizky k € [m] a zvoleny obrazec je velkosti ¢ € N, pojde o prispevok kq k celkovej velkosti
zobrazenia. Lahko teda vidiet, Ze

Rx r¢(2) = F(2)2 N R pzm)ef),
Z Burnsidovej lemy teda vyplyva, Ze pre vsetky n € N je

(2" Px F,c(z |G\ Z |Rx.7¢(%
feGg
7 ¢oho
Px ra(z Z xF.f(2) = Zc (F(z), F(z%),...,F(z™)),
fGG
¢o bolo treba dokézat. O

Poznamka 8.4.5. Zjednoduseny variant Polyovej vety o enumerécii je jednoduchym désledkom jej vSe-
obecného variantu. Konecénit mnoZzinu farieb F' totiz moéZeme povaZovat aj za konecni kombinatoricka
triedu A so vSetkymi prvkami velkosti 0 a s oby¢ajnou vytvéarajicou funkciou A(z) = |F|. Z Polyovej
vety o enumerécii potom vyplyva, Ze pocet orbit prvkov FX v grupe G vzhladom na kanonicku akciu G
na FX je dany ako

[°]Px.ac(2) = [2 O]ZG (A=), A(22)7-~-7A(2m)) =["12c (|F),....|F|) =
2|F|C1 LR = Z|F|C(f)
fEG fEG

¢o sa zhoduje so znenim zjednoduSenej Polyovej vety o enumeracii.
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8.5 Podlyova tedria a symbolickd metéda

Spomedzi najvyznamnejsich vysledkov ziskanych pomocou Polyovej teodrie tvoria velka ¢ast rozne
vztahy pre obycajné vytvarajice funkcie kombinatorickych tried neoznacenych objektov, ktoré mozno
odvodit aj pomocou omnoho neskér objavenej symbolickej metody P. Flajoleta a R. Sedgewicka [9],
zékladom ktorej sme sa uz v tomto texte venovali. V uréitom zmysle teda mozno symbolickd metédu
povazovat za prekonanie Polyovej teorie.

V skutonosti st uz mnohé spomedzi viet o operdciach na oby¢ajnych vytvarajicich funkcidch
zodpovedajucich Standardnym pripustnym konstrukciam na kombinatorickych triedach — akymi sa
napriklad PSET alebo MSET — prikladmi tvrdeni, ktoré boli historicky po prvy raz sformulované
v ramci Polyovej tedrie — P. Flajolet a R. Sedgewick [9] preto v tejto stvislosti hovoria o Pdélyovijch
operdtoroch na kombinatorickych triedach.

Na tomto mieste vyuZijeme Polyovu vetu o enumeracii na preskiimanie pripustnej konstrukcie
na kombinatorickych triedach neoznacenych objektov, ktorej sme sa doposial v nagich tvahach neveno-
vali: prechodu od triedy C k triede orientovanych kruznic Cyc(C). Tymto skompletizujeme ,zédkladné*
pripustné konstrukcie symbolickej metody z knihy P. Flajoleta a R. Sedgewicka [9].

Nech C = (C,|-|¢) je kombinatoricka trieda taka, ze Cop = ). Na nosnej mnozine kombinatorickej
triedy (SEQ(C), |-|seq(c)) definujme reldciu ekvivalencie = taku, ze pre Iubovolné dve postupnosti
(1, xk), (Y1,...,y¢) € SEQ(C) je (x1,...,2%) = (y1,...,ye) prave vtedy, ked k = ¢ a sacasne
existuje ¢ € {0,...,k — 1} také, ze (y1,...,9%) = (Tg41,...,Tk, 21,...,2q). Kombinatoricka triedu
Cyc(C) = (Cyc(C), |-|) vsetkych orientovanych kruznic zlozenych z objektov triedy C teraz definujeme
ako

Cyc(C) := SEQ(C) /=,
kde pre kazda postupnost (x1,...,x;) € SEQ(C) je velkost triedy [(x1,...,2r)]= € Cyc(C) dana ako
e a2l = 1@ 7)o@ = l71le + - + [ale.

Veta 8.5.1. Prechod k triede orientovanych kruznic je pripustnou konsStrukciou na kombinatorickijch
triedach. Ak je navySe C kombinatorickd trieda s Co = 0 a s obycajnou vytvdrajicou funkciou C(z),
je obycajnou vytvdragicou funkciou kombinatorickej triedy Cyc(C) formdlny mocninovy rad

— ¢ (k) 1
kzl kTSGR

kde ¢ je Eulerova funkcia.

Dokaz. Uvazujme pre pevné n € N\ {0} mnozinu vSetkych zobrazeni ¢: [n] — C. Grupa vsetkych
rotacii na [n] je izomorfna cyklickej grupe Z,, ktora tak na cl"l =~ ¢" uréuje kanonicka akciu dana
pre vsetky (z1,...,2,) € C" a q € Z,, ako

(@1, xn) ¢ = (Tgg1s -, Tny T1,5 -+, Tyg),s

kde s¢itanie je v N. Orientované kruznice dlzky n zloZené z objektov triedy C potom moéZzeme chapat
ako orbity prvkov C!" v grupe Z, vzhladom na jej kanonicki akciu na C™.

Rovnako ako v priklade 8.4.2 teraz zistujeme, Ze pre vSetky delitele k Cisla n existuje v permutacne;j
grupe izomorfnej Z, presne o(n/k) rotécii rozlozitelnych na k disjunktnych cyklov dlzky n/k. Cyklovy
index grupy Z, je tak dany ako

1 1 n
Zg,(ur, . un) = = 7 p(n/k)ufy = — 3 p(k)uy’"
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7 Polyovej vety o enumeracii preto vyplyva, ze oby¢ajnou vytvarajicou funkciou triedy orientova-
nych kruznic dlzky n pozostavajacich z prvkov C je formalny mocninovy rad

Za(C(2),... ng kyn/k

k’\n

a obyCajna vytvarajica funkcia triedy Cyc(C) je naozaj dana ako

S Z6(C(e), - CEM) = 30 SR BCEE = S (k) Z%
n=1 k|n t=1

n=1 | k=1
ek =1 e e (k) 1
_; p ;t(}'(z) _; p Lnl_C(Zk). ]

Podobne ako pre zvysné spomedzi Standardnych pripustnych konstrukcii symbolickej met6dy pre ne-
oznacené objekty, mozno aj prave dokazani vetu pre konstrukciu CyC dokazat bez pouzitia Pélyovej
tedrie — v knihe P. Flajoleta a R. Sedgewicka [9, dodatok A.4] mozno néjst dokaz zaloZeny na vytva-
rajucich funkcidch dvoch premennych.
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