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Abstract. A deterministic finite automaton is called bideterministic
if its transpose is deterministic as well. The study of such automata
in a weighted setting is initiated. All trim bideterministic weighted au-
tomata over integral domains and positive semirings are proved to be
minimal. On the contrary, it is observed that this property does not
hold over finite commutative rings in general. Moreover, it is shown that
the problem of determining whether a given rational series is realised
by a bideterministic automaton is decidable over fields as well as over
tropical semirings.
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1 Introduction

It is well known that – in contrast to the classical case of automata without
weights – weighted finite automata might not always be determinisable. Partly
due to relevance of deterministic weighted automata for practical applications
such as natural language and speech processing [24] and partly due to the purely
theoretical importance of the determinisability problem, questions related to de-
terministic weighed automata – such as the decidability of determinisability,
existence of efficient determinisation algorithms, or characterisations of series
realised by deterministic weighted automata – have received significant atten-
tion. They were studied for weighted automata over specific classes of semirings,
such as tropical semirings or fields [1, 6, 18–21, 24, 25], as well as over strong
bimonoids [9], often under certain additional restrictions.

The questions mentioned above are known to be relatively hard. For in-
stance, despite some partial results [18–21], the decidability status of the gen-
eral determinisability problem for weighted automata is still open over tropical
semirings or over the field of rationals [21]. It thus makes sense to take a look at
stronger forms of determinism in weighted automata, which may be amenable to
a somewhat easier analysis.

? The work was supported by the grant VEGA 1/0601/20.
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One possibility is to study deterministic weighted automata with additional
requirements on their weights. This includes for instance the research on crisp-
deterministic weighted automata by M. Ćirić et al. [9]. Another possibility is to
examine the weighted counterpart of some particularly simple subclass of deter-
ministic finite automata without weights – that is, to impose further restrictions
not only on weights of deterministic weighted automata, but on the concept
of determinism itself. This is a direction that we follow in this article.

More tangibly, this article aims to initiate the study of bideterministic fi-
nite automata in the weighted setting. A finite automaton is bideterministic if
it is deterministic and its transpose – i.e., an automaton obtained by revers-
ing all transitions and exchanging the roles of its initial and terminal states –
is deterministic as well. Note that this implies that a bideterministic automaton
always contains at most one initial and at most one terminal state. Bidetermin-
istic finite automata have been first touched upon from a theoretical perspective
by J.-É. Pin [27], as a particular case of reversible finite automata. The funda-
mental properties of bideterministic finite automata have mostly been explored
by H. Tamm and E. Ukkonen [35, 36] – in particular, they have shown that
a trim bideterministic automaton is always a minimal nondeterministic automa-
ton for the language it recognises, minimality being understood in the strong
sense, i.e., with respect to the number of states.1 An alternative proof of this
fact was recently presented by R. S. R. Myers, S. Milius, and H. Urbat [26].

Apart from these studies, bideterministic automata have been – explicitly
or implicitly – considered in connection to the star height problem [22, 23, 14],
from the perspective of language inference [3], in the theory of block codes [33],
and in connection to presentations of inverse monoids [34, 16].

We define bideterministic weighted automata over a semiring by analogy to
their unweighted counterparts, and study the conditions under which the funda-
mental property of H. Tamm and E. Ukkonen [35, 36] generalises to the weighted
setting. Thus, given a semiring S, we ask the following questions: Are all trim
bideterministic weighted automata over S minimal? Does every bideterministic
automaton over S admit a bideterministic equivalent that is at the same time
minimal? We answer both these questions in affirmative when S is an integral
domain or a positive – i.e., both zero-sum free and zero-divisor free – semi-
ring. On the other hand, we show that the answer is negative for a large class
of commutative semirings including a multitude of finite commutative rings.

Finally, we consider the problem of deciding whether a weighted automaton
over a semiring S admits a bideterministic equivalent, and show that it is decid-
able when S is a field or a tropical semiring (of nonnegative integers, integers,
or rationals). This suggests that the bideterminisability problem for weighted
automata might be somewhat easier than the determinisability problem, whose
decidability status over fields such as the rationals and over tropical semirings
remains open [21].

1 In fact, H. Tamm and E. Ukkonen [35, 36] have shown a stronger property: a trim
bideterministic automaton is the only minimal nondeterministic finite automaton
recognising its language.
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2 Preliminaries

A semiring is a quintuple (S,+, ·, 0, 1) such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, multiplication distributes over addition both from
left and from right, and a · 0 = 0 · a = 0 holds for all a ∈ S; it is said to be
commutative when · is. A semiring S is zero-sum free [13, 15] if a+b = 0 for some
a, b ∈ S implies a = b = 0 and zero-divisor free [15], or entire [13], if a · b = 0
for some a, b ∈ S implies that a = 0 or b = 0. A semiring is positive [12, 17] if it is
both zero-sum free and zero-divisor free. A ring is a semiring (R,+, ·, 0, 1) such
that R forms an abelian group with addition. An integral domain is a nontrivial
zero-divisor free commutative ring. A field is an integral domain (F,+, ·, 0, 1)
such that F \ {0} forms an abelian group with multiplication.

We now briefly recall some basic facts about noncommutative formal power
series and weighted automata. More information can be found in [7, 10, 11, 29].
Alphabets are assumed to be finite and nonempty in what follows.

A formal power series over a semiring S and alphabet Σ is a mapping
r : Σ∗ → S. The value of r upon w ∈ Σ∗ is usually denoted by (r, w) and
called the coefficient of r at w; the coefficient of r at ε, the empty word, is
referred to as the constant coefficient. The series r itself is written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.
Given series r, s ∈ S⟪Σ∗⟫, their sum r + s and product r · s are defined by

(r + s, w) = (r, w) + (s, w) and

(r · s, w) =
∑

u,v∈Σ∗

uv=w

(r, u)(s, v)

for all w ∈ Σ∗. Every a ∈ S is identified with a series with constant coefficient a
and all other coefficients zero, and every w ∈ Σ∗ with a series with coefficient 1
at w and zero coefficients at all x ∈ Σ∗\{w}. Thus, for instance, r = 2ab+3abb is
a series with (r, ab) = 2, (r, abb) = 3, and (r, x) = 0 for every x ∈ Σ∗ \ {ab, abb}.
One may observe that (S⟪Σ∗⟫,+, ·, 0, 1) is a semiring again.

For I an index set, a family (ri | i ∈ I) of series from S⟪Σ∗⟫ is locally finite
if I(w) = {i ∈ I | (ri, w) 6= 0} is finite for all w ∈ Σ∗. The sum over the family
(ri | i ∈ I) can then be defined by∑

i∈I
ri = r,

where the coefficient (r, w) at each w ∈ Σ∗ is given by a finite sum

(r, w) =
∑
i∈I(w)

(ri, w).

The support of r ∈ S⟪Σ∗⟫ is the language supp(r) = {w ∈ Σ∗ | (r, w) 6= 0}.
The left quotient of r ∈ S⟪Σ∗⟫ by a word x ∈ Σ∗ is a series x−1r such that
(x−1r, w) = (r, xw) for all w ∈ Σ∗.



4 P. Kostolányi

A weighted (finite) automaton over a semiring S and alphabet Σ is a quadru-
ple A = (Q, σ, ι, τ), where Q is a finite set of states, σ : Q×Σ×Q→ S a transi-
tion weighting function, ι : Q → S an initial weighting function, and τ : Q → S
a terminal weighting function. We often assume without loss of generality that
Q = [n] = {1, . . . , n} for some nonnegative integer n; we write A = (n, σ, ι, τ)
instead of A = ([n], σ, ι, τ) in that case.

A transition of A = (Q, σ, ι, τ) is a triple (p, c, q) ∈ Q × Σ × Q such that
σ(p, c, q) 6= 0. A run of A is a word γ = q0c1q1c2q2 . . . qn−1cnqn ∈ (QΣ)∗Q,
for some nonnegative integer n, such that q0, . . . , qn ∈ Q, c1, . . . , cn ∈ Σ,
and (qk−1, ck, qk) is a transition for k = 1, . . . , n; we also say that γ is a run
from q0 to qn. Moreover, we write λ(γ) = c1c2 . . . cn ∈ Σ∗ for the label of γ
and σ(γ) = σ(q0, c1, q1)σ(q1, c2, q2) . . . σ(qn−1, cn, qn) ∈ S for the value of γ.
The monomial ‖γ‖ ∈ S⟪Σ∗⟫ realised by the run γ is defined by

‖γ‖ = (ι(q0)σ(γ)τ(qn))λ(γ).

If we denote by R(A) the set of all runs of the automaton A, then the family
of monomials (‖γ‖ | γ ∈ R(A)) is obviously locally finite and the behaviour of A
can be defined by the infinite sum

‖A‖ =
∑

γ∈R(A)

‖γ‖.

In particular, ‖A‖ = 0 if Q = ∅. A series r ∈ S⟪Σ∗⟫ is rational over S if r = ‖A‖
for some weighted automaton A over S and Σ.

A state q ∈ Q of a weighted automaton A = (Q, σ, ι, τ) over S and Σ is said
to be accessible if there is a run in A from some p ∈ Q satisfying ι(p) 6= 0 to q.2

Dually, a state q ∈ Q is coaccessible if there is a run in A from q to some p ∈ Q
such that τ(p) 6= 0. The automaton A is trim if all its states are both accessible
and coaccessible [29].

Given a weighted automaton A = (Q, σ, ι, τ) and q ∈ Q, we denote by ‖A‖q
the future of q, i.e., the series realised by an automaton Aq = (Q, σ, ιq, τ) where
ιq(q) = 1 and ιq(p) = 0 for all p ∈ Q \ {q}.

Let Sm×n be the set of all m×n matrices over S. A linear representation of
a weighted automaton A = (n, σ, ι, τ) over S and Σ is given by PA = (n, i, µ, f),
where i = (ι(1), . . . , ι(n)), µ : (Σ∗, ·) → (Sn×n, ·) is a monoid homomorphism
such that for all c ∈ Σ and i, j ∈ [n], the entry of µ(c) in the i-th row and j-th
column is given by σ(i, c, j), and f = (τ(1), . . . , τ(n))T . The representation PA
describes A unambiguously, and (‖A‖, w) = iµ(w)f holds for all w ∈ Σ∗.

As a consequence of this connection to linear representations, methods of
linear algebra can be employed in the study of weighted automata over fields.
This leads to a particularly well-developed theory, including a polynomial-time
minimisation algorithm, whose basic ideas go back to M.-P. Schützenberger [32]
and which has been explicitly described by A. Cardon and M. Crochemore [8].
The reader may consult [7, 29, 30] for a detailed exposition.

2 Note that the value of this run might be zero in case S is not zero-divisor free.
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For our purposes, we only note that the gist of this minimisation algorithm
lies in an observation that given a weighted automaton A over a field F and al-
phabet Σ with PA = (n, i, µ, f), one can find in polynomial time a finite lan-
guage L = {x1, . . . , xm} of words over Σ that is prefix-closed, and the vectors
iµ(x1), . . . , iµ(xm) form a basis of the vector subspace Left(A) of F1×n gener-
ated by the vectors iµ(x) with x ∈ Σ∗. Such a language L is called a left basic
language of A. Similarly, one can find in polynomial time a right basic language
of A – i.e., a finite language R = {y1, . . . , yk} of words over Σ that is suffix-
closed, and the vectors µ(y1)f , . . . , µ(yk)f form a basis of the vector subspace
Right(A) of Fn×1 generated by the vectors µ(y)f with y ∈ Σ∗.

The actual minimisation algorithm then consists of two reduction steps.
The original weighted automaton A with representation PA = (n, i, µ, f) is first
transformed into an equivalent automaton B with PB = (k, i′, µ′, f ′). Here, k ≤ n
is the size of the right basic language R = {y1, . . . , yk} of A with y1 = ε,

i′ = iY, µ′(c) = Y −1` µ(c)Y for all c ∈ Σ, and f ′ = (1, 0, . . . , 0)T , (1)

where Y ∈ Fn×k is a matrix of full column rank with columns µ(y1)f , . . . , µ(yk)f
and Y −1` ∈ Fk×n is its left inverse matrix. The automaton B is then transformed
into a minimal equivalent automaton C with PC = (m, i′′, µ′′, f ′′). Here, m ≤ k
is the size of the left basic language L = {x1, . . . , xm} of B with x1 = ε,

i′′ = (1, 0, . . . , 0), µ′′(c) = Xµ′(c)X−1r for all c ∈ Σ, and f ′′ = Xf ′, (2)

where X ∈ Fm×k is a matrix of full row rank with rows i′µ′(x1), . . . , i′µ′(xm)
and X−1r is its right inverse matrix. As the vector space Left(B) – which is
the row space of X – is invariant under µ′(c) for all c ∈ Σ, it follows that

i′′X = i′, µ′′(c)X = Xµ′(c) for all c ∈ Σ, and f ′′ = Xf ′, (3)

showing that the automaton C is conjugate [4, 5] to B by the matrix X. Thus
i′′µ′′(x)X = i′µ′(x) for all x ∈ Σ∗, so that the vector i′′µ′′(x) represents the co-
ordinates of i′µ′(x) with respect to the basis (i′µ′(x1), . . . , i′µ′(xm)) of Left(B).
In particular, note that (i′′µ′′(x1), . . . , i′′µ′′(xm)) is the standard basis of Fm.

Finally, let us mention that any weighted automaton A over F and Σ with
PA = (n, i, µ, f) gives rise to a linear mapping Λ[A] : Left(A)→ F⟪Σ∗⟫, uniquely
defined by

Λ[A] : iµ(x) 7→
∑
w∈Σ∗

(iµ(x)µ(w)f) w = x−1‖A‖ (4)

for all x ∈ Σ∗. This mapping is always injective when A is a minimal automaton
realising its behaviour [30].

3 Bideterministic Weighted Automata over a Semiring

In the same way as for finite automata without weights [35, 36], we say that
a weighted automaton A is bideterministic if both A and its transpose are de-
terministic; in particular, A necessarily contains at most one state with nonzero
initial weight and at most one state with nonzero terminal weight. This is made
more precise by the following definition.



6 P. Kostolányi

Definition 1. Let S be a semiring and Σ an alphabet. A weighted automaton
A = (Q, σ, ι, τ) over S and Σ is bideterministic if all of the following conditions
are satisfied:

(i) There is at most one state p ∈ Q such that ι(p) 6= 0.
(ii) If σ(p, c, q) 6= 0 and σ(p, c, q′) 6= 0 for p, q, q′ ∈ Q and c ∈ Σ, then q = q′.

(iii) There is at most one state q ∈ Q such that τ(q) 6= 0.
(iv) If σ(p, c, q) 6= 0 and σ(p′, c, q) 6= 0 for p, p′, q ∈ Q and c ∈ Σ, then p = p′.

The conditions (i) and (ii) assure that the automaton A is deterministic,
while the conditions (iii) and (iv) assure the same property for its transpose.

It has been shown by H. Tamm and E. Ukkonen [35, 36] that a trim bide-
terministic automaton without weights is always a minimal nondeterministic
automaton for the language it recognises. As a consequence, every language
recognised by some bideterministic automaton also admits a minimal automaton
that is bideterministic. Moreover, by uniqueness of minimal deterministic finite
automata and existence of efficient minimisation algorithms, it follows that it is
decidable whether a language is recognised by a bideterministic automaton.

In what follows, we ask whether these properties generalise to bideterministic
weighted automata over some semiring S. That is, given a semiring S, we are
interested in the following three questions.3

Question 1. Is every trim bideterministic weighted automaton over S neces-
sarily minimal?

Question 2. Does every bideterministic automaton over S admit an equivalent
minimal weighted automaton over S that is bideterministic?

Question 3. Is it decidable whether a weighted automaton over S admits a bide-
terministic equivalent?

An affirmative answer to Question 1 clearly implies an affirmative answer
to Question 2 as well. We study the first two questions in Section 4 and the last
question in Section 5.

4 The Minimality Property of Bideterministic Automata

We now study the conditions on a semiring S under which the trim bidetermin-
istic weighted automata over S are always minimal, and answer the Question 1,
as well as the related Question 2, for three representative classes of semirings.
In particular, we show that every trim bideterministic weighted automaton over
a field – or, more generally, over an integral domain – is minimal. The same prop-
erty is observed for bideterministic weighted automata over positive semirings,
including for instance the tropical semirings and semirings of formal languages.
On the other hand, we prove that both questions have negative answers over
a large class of commutative semirings other than integral domains, which also
includes numerous finite commutative rings.

3 Minimality of an automaton is understood with respect to the number of states
in what follows.
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4.1 Fields and Integral Domains

The minimality property of trim bideterministic weighted automata over fields
follows by the fact that the Cardon-Crochemore minimisation algorithm for these
automata, described in Section 2, preserves both bideterminism and the number
of useful states of a bideterministic automaton, as we now observe.

Theorem 2. Let A be a bideterministic weighted automaton over a field F. Then
the Cardon-Crochemore minimisation algorithm applied to A outputs a bideter-
ministic weighted automaton C. Moreover, if A trim, then C has the same number
of states as A.

Proof. Let P = (n, i, µ, f) be a linear representation of some bideterministic
weighted automaton D. Then there is at most one nonzero entry in each row
and column of µ(c) for each c ∈ Σ, and at most one nonzero entry in i and f .

Moreover, the words x1, . . . , xm of the left basic language of D correspond bi-
jectively to accessible states of D and the vector iµ(xi) contains, for i = 1, . . . ,m,
exactly one nonzero entry at the position determined by the state corresponding
to xi. Similarly, the words y1, . . . , yk of the right basic language of D correspond
to coaccessible states and the vector µ(yi)f contains, for i = 1, . . . , k, exactly
one nonzero entry. Thus, using these vectors to form the matrices X and Y as
in Section 2, we see that one obtains monomial matrices after removing the zero
columns from X and the zero rows from Y . As a result, a right inverse X−1r
of X can be obtained by taking the reciprocals of all nonzero entries of X and
transposing the resulting matrix, and similarly for a left inverse Y −1` of Y .

The matrices Xµ(c)X−1r and Y −1` µ(c)Y for c ∈ Σ∗ clearly contain at most
one nonzero entry in each row and column, and the vectors iY and Xf contain
at most one nonzero entry as well. This means that the reduction step (1) ap-
plied to a bideterministic automaton A yields a bideterministic automaton B,
and that the reduction step (2) applied to the bideterministic automaton B yields
a bideterministic minimal automaton C as an output of the algorithm.

When A is in addition trim, then what has been said implies that the words
of the right basic language of A correspond bijectively to states of A, so that
the automaton B obtained via (1) has the same number of states as A. This
automaton is obviously trim as well, and the words of the left basic language
of B correspond bijectively to states of B. Hence, the automaton C obtained
via (2) also has the same number of states as A. ut

As every integral domain can be embedded into its field of fractions, the prop-
erty established above holds for automata over integral domains as well.

Corollary 3. Every trim bideterministic weighted automaton over an integral
domain is minimal.

4.2 Other Commutative Rings

We now show that the property established above for automata over integral do-
mains cannot be generalised to automata over commutative rings, by exhibiting
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a suitable class of commutative semirings S such that bideterministic weighted
automata over S do not even always admit a minimal bideterministic equivalent.

Theorem 4. Let S be a commutative semiring with elements s, t ∈ S such that
st = 0 and s2 6= 0 6= t2. Then there is a trim bideterministic weighted automaton
A over S such that none of the minimal automata for ‖A‖ is bideterministic.

Proof. Consider a trim bideterministic weighted automaton A over S depicted
in Fig. 1. Clearly, ‖A‖ = s2 · aba+ t2 · bb. The automaton A is not minimal, as
the same series is realised by a smaller automaton B in Fig. 2:

‖B‖ = s2 · aba+ t2 · bb = ‖A‖.

The answer to Question 1 of Section 3 is thus negative over S.

1

2 3

45

a:s
2

b:1
a:1

b:t
2

b:11 1

Fig. 1: The trim bideterministic weighted automaton A over S.

1 2 3 4
a:s b:1

b:t

a:s

b:t

1 1

Fig. 2: The four-state weighted automaton B over S equivalent to A.

We show that ‖A‖ is actually not realised by any bideterministic weighted
automaton over S with less than five states. This implies that A is a counterex-
ample to Question 2 of Section 3, and eventually completes the proof.

Indeed, consider a bideterministic weighted automaton C = (Q, σ, ι, τ) such
that ‖C‖ = ‖A‖. At least one state with nonzero initial weight is needed to
realise ‖A‖ by C, as ‖A‖ 6= 0. Let us call this state 1.

As (‖A‖, aba) = s2 6= 0, there is a transition on a in C leading from 1. This
cannot be a loop at 1, as otherwise ba would have a nonzero coefficient in ‖C‖,
contradicting ‖C‖ = ‖A‖. It thus leads to some new state, say, 2.

There has to be a transition on b leading from 2 and in the same way as above,
we observe that it can lead neither to 1, nor to 2, as otherwise a or aa would
have a nonzero coefficient in ‖C‖. It thus leads to some new state 3.
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Exactly the same reasoning gives us existence of another state 4, to which
a transition on a leads from 3, and which has a nonzero terminal weight τ(4).

Existence of one more state has to be established in order to finish the proof.
To this end, observe that (‖A‖, bb) = t2 6= 0, so that C has a transition from 1
on b, which cannot be a loop at 1, as otherwise b would have a nonzero coefficient
in ‖C‖. This transition cannot lead to 2 either, as there already is a transition on b
from 2 to 3, so that bb would have coefficient 0 in ‖C‖. Likewise, it cannot lead
to 3, as there already is a transition on b from 2 to 3 and C is supposed to be
bideterministic. Finally, it also cannot lead to 4, as otherwise there would have
to be a loop labelled by b at 4 and b would have a nonzero coefficient in ‖C‖.
The transition on b from 1 thus indeed leads to some new state 5. ut

Note that the class of commutative semirings from Theorem 4 also includes
many finite commutative rings. In particular, the ring Zm of integers modulo m
falls into this class whenever m has at least two distinct prime factors. The char-
acterisation of commutative rings, over which all trim bideterministic weighted
automata are minimal, remains open. It would have been nice to know at least
what the situation is over finite rings Zpn for p prime and n ≥ 2.

4.3 Positive Semirings

We now observe that the minimality property does hold for trim bideterministic
weighted automata over positive semirings. Recall that a semiring is positive if
it is both zero-sum free and zero-divisor free. This class includes for instance
the tropical semirings, semirings of formal languages, and the Boolean semiring.

Theorem 5. Every trim bideterministic weighted automaton over a positive
semiring is minimal.

Proof. Let A be a trim bideterministic weighted automaton over a positive semi-
ring S. By positivity of S, the language supp(‖A‖) is recognised by a trim bide-
terministic finite automaton A′ obtained from A by “forgetting about weights”.
This is a minimal nondeterministic automaton for supp(‖A‖) by the minimality
property of trim bideterministic automata without weights [35, 36].

Now, if A was not minimal, there would be a smaller weighted automaton B
over S such that ‖B‖ = ‖A‖. By “forgetting about its weights”, we would obtain
a nondeterministic finite automaton B′ recognising supp(‖B‖) = supp(‖A‖).
However, B′ is smaller than A′, contradicting the minimality of A′. ut

5 Decidability of Bideterminisability

Let us now consider the problem of deciding whether a given weighted automa-
ton admits a bideterministic equivalent. While the decidability status of the de-
terminisability problem is open both over fields such as the rationals and over
tropical semirings [21], we prove that the bideterminisability problem is decidable
both over effective fields and over tropical semirings (of nonnegative integers, in-
tegers, and rationals).
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5.1 Fields

We prove decidability of the bideterminisability problem for automata over fields
by strengthening Theorem 2 – we show that the Cardon-Crochemore minimi-
sation algorithm outputs a bideterministic automaton not only when applied
to a bideterministic automaton, but also when applied to any bideterminisable
automaton. To decide bideterminisability, it thus suffices to run this algorithm
and find out whether its output is bideterministic.

Lemma 6. Let A be a weighted automaton over a field F such that some of the
minimal automata equivalent to A is deterministic. Then the Cardon-Crochemore
algorithm applied to A outputs a deterministic automaton.

Proof. Let C with PC = (m, i, µ, f) be the output of the Cardon-Crochemore
algorithm upon A and L = {x1, . . . , xm} with x1 = ε the left basic language
used in reduction step (2). Then iµ(x) represents, for all x ∈ Σ∗, the coor-
dinates of the series x−1‖A‖ with respect to the basis (x−11 ‖A‖, . . . , x−1m ‖A‖)
of the vector space Q(‖A‖) generated by left quotients of ‖A‖ by words.

To see this, recall that (iµ(x1), . . . , iµ(xm)) is the standard basis of Fm
and that the linear mapping Λ[C] given as in (4) is injective by minimality of C.
As the image of Λ[C] spans Q(‖C‖) = Q(‖A‖), we see that(

x−11 ‖A‖, . . . , x−1m ‖A‖
)

= (Λ[C](iµ(x1)), . . . , Λ[C](iµ(xm)))

is indeed a basis of Q(‖A‖). Moreover, given an arbitrary word x ∈ Σ∗ with
iµ(x) = (a1, . . . , am) ∈ Fm, we obtain

x−1‖A‖ = Λ[C](iµ(x)) = Λ[C](a1iµ(x1) + . . .+ amiµ(xm)) =

= a1Λ[C](iµ(x1)) + . . .+ amΛ[C](iµ(xm)) =

= a1x
−1
1 ‖A‖+ . . .+ amx

−1
m ‖A‖,

from which the said property follows.

Now, assume for contradiction that C is not deterministic. By minimality
of C, there is some x ∈ Σ∗ such that iµ(x) contains at least two nonzero entries.
However, by our assumptions, there also is an m-state deterministic automaton
D such that ‖D‖ = ‖A‖. Linear independence of x−11 ‖A‖, . . . , x−1m ‖A‖ implies
that the m states of D can be labelled as q1, . . . , qm so that x−1i ‖A‖ is a scalar
multiple of ‖D‖qi for i = 1, . . . ,m. By determinism of D, every x−1‖A‖ with
x ∈ Σ∗ is a scalar multiple of some ‖D‖qi with i ∈ [m], and hence also of some
x−1i ‖A‖. It thus follows that there is some x ∈ Σ∗ such that x−1‖A‖ has two
different coordinates with respect to (x−11 ‖A‖, . . . , x−1m ‖A‖): a contradiction. ut

Theorem 7. Let A be a weighted automaton over a field. If A has a bideter-
ministic equivalent, then the Cardon-Crochemore algorithm applied to A outputs
a bideterministic automaton.
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Proof. Let A admit a bideterministic equivalent B, and assume that it is trim.
Then B is minimal by Corollary 3, so Lemma 6 implies that the algorithm applied
to A yields a deterministic automaton D. If D was not bideterministic, then
there would be u, v ∈ Σ∗ such that u−1‖D‖ is not a scalar multiple of v−1‖D‖
and supp(u−1‖D‖)∩ supp(v−1‖D‖) 6= ∅. On the other hand, bideterminism of B
implies4 supp(u−1‖B‖)∩supp(v−1‖B‖) = ∅ when u−1‖B‖ is not a scalar multiple
of v−1‖B‖. This contradicts the assumption that ‖B‖ = ‖D‖ = ‖A‖. ut

Corollary 8. Bideterminisability of weighted automata over effective fields is
decidable in polynomial time.

5.2 Tropical Semirings

We now establish decidability of the bideterminisability problem for weighted
automata over the tropical (min-plus) semirings Nmin = (N∪{∞},min,+,∞, 0),
Zmin = (Z ∪ {∞},min,+,∞, 0), and Qmin = (Q ∪ {∞},min,+,∞, 0).

Theorem 9. Bideterminisability of weighted automata over the semirings Nmin,
Zmin, and Qmin is decidable.

Proof. By positivity of tropical semirings, the minimal deterministic finite au-
tomaton B for supp(‖A‖) is bideterministic whenever a tropical automaton A
is bideterminisable. Given A, we may thus remove the weights and minimise
the automaton to get B. If B is not bideterministic, A is not bideterminisable.
If B is empty, A is bideterminisable. If B is bideterministic and nonempty, A
is bideterminisable if and only if it is equivalent to some B′ obtained from B
by assigning weights to its transitions, its initial state, and its terminal state.

We show that existence of such B′ is decidable given A and B. Denote the un-
known weights by x1, . . . , xN , and let x = (x1, . . . , xN ). Here, x1 corresponds
to the unknown initial weight, x2, . . . , xN−1 to the unknown transition weights,
and xN to the unknown terminal weight. Moreover, for each w ∈ supp(‖A‖),
let Ψ(w) = (1, η2, . . . , ηN−1, 1), where ηi denotes, for i = 2, . . . , N − 1, the num-
ber of times the unique successful run of B upon w goes through the transition
corresponding to the unknown weight xi.

In order for B′ to exist, the unknown weights have to satisfy the equations
Ψ(w) · xT = (‖A‖, w) for all w ∈ supp(‖A‖). If this system has a solution, then
its solution set coincides with the one of a finite system of equations

Ψ(wi) · xT = (‖A‖, wi) for i = 1, . . . ,M, (5)

where w1, . . . , wM ∈ supp(‖A‖) are such that (Ψ(w1), . . . , Ψ(wM )) is a basis
of the vector space over Q generated by Ψ(w) for w ∈ supp(‖A‖). This basis can
be effectively obtained, e.g., from the representation of {Ψ(w) | w ∈ supp(‖A‖)}
as a semilinear set. Hence, w1, . . . , wM can be found as well.

4 This is a slight extension of a well-known property of bideterministic automata
without weights – see, e.g., L. Polák [28, Section 5].
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We may thus solve the system (5) over N, Z, or Q depending on the semiring
considered. While Gaussian elimination is sufficient to solve the system over Q,
the solution over Z and N requires more sophisticated methods, namely an algo-
rithm for solving systems of linear Diophantine equations in the former case [31],
and integer linear programming in the latter case [31].

If there is no solution, A is not bideterminisable. Otherwise, any solution x
gives us a bideterministic tropical automaton Bx obtained from B by assigning
the weights according to x. By what has been said, either all such automata Bx
are equivalent to A, or none of them is. Equivalence of a deterministic tropical
automaton with a nondeterministic one is decidable [2], so we may take any of
the automata Bx and decide whether ‖Bx‖ = ‖A‖. If so, we may set B′ = Bx
and A is bideterminisable. Otherwise, A is not bideterminisable. ut

Note that the decision algorithm described makes use of deciding equiva-
lence of a nondeterministic tropical automaton with a deterministic one, which
is PSPACE-complete [2]. Nevertheless, we leave the complexity of the bideter-
minisability problem open.

Finally, let us note that it can be shown that the decidability result just
established does not generalise to all effective positive semirings.
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8. Cardon, A., Crochemore, M.: Détermination de la représentation standard d’une
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