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1 Bezkontextové a regulárne gramatiky

Bezkontextové gramatiky sú frázové gramatiky, v ktorých ľavá strana každého prepisovacieho pravidla
pozostáva z jediného neterminálu. Definície najdôležitejších pojmov súvisiacich s frázovými grama-
tikami boli zavedené na prednáške. V rámci ich rekapitulácie sa obmedzíme výhradne na špeciálny
prípad bezkontextových gramatík.

Definícia 1. Bezkontextová gramatika je štvorica G = (N,T, P, σ), kde N je abeceda1 neterminál-
nych symbolov, T je abeceda terminálnych symbolov, N ∩ T = ∅, P ⊆ N × (N ∪ T )∗ je konečná
množina prepisovacích pravidiel a σ ∈ N je počiatočný neterminál.

Prepisovacie pravidlá (ξ, x) ∈ P obyčajne zapisujeme ako ξ → x. Ide iba o špeciálny spôsob
zápisu usporiadanej dvojice používaný v tomto kontexte a symbol → sám o sebe nemá definovaný
žiaden význam. Zápis ξ → x1, ξ → x2, . . . , ξ → xk skracujeme aj ako ξ → x1 | x2 | . . . | xk.

Definícia 2. Nech G = (N,T, P, σ) je bezkontextová gramatika. Krok odvodenia v gramatike G je
binárna relácia ⇒G na (N ∪ T )∗ taká, že

∀u, v ∈ (N ∪ T )∗ : u⇒G v práve vtedy, keď
∃u1, u2, x ∈ (N ∪ T )∗ ∃ξ ∈ N : u = u1ξu2 ∧ v = u1xu2 ∧ ξ → x ∈ P.

V prípade, že je gramatika G zrejmá z kontextu, píšeme namiesto ⇒G iba ⇒.

Keďže je krok odvodenia ⇒ definovaný ako binárna relácia na (N ∪ T )∗, dajú sa naň aplikovať
všetky bežné operácie na takýchto reláciách. Pre k ∈ N tak napríklad môžeme hovoriť o k-tej mocnine
relácie⇒, označovanej symbolom⇒k. V relácii⇒k sú potom všetky dvojice slov u, v také, že slovo v
sa dá odvodiť zo slova u na práve k krokov odvodenia. Podobne možno uvažovať reflexívno-tranzitívny
uzáver⇒∗ a tranzitívny uzáver⇒+ relácie⇒. V týchto reláciách sú všetky dvojice slov u, v také, že
slovo v sa dá odvodiť zo slova u na ľubovoľný resp. ľubovoľný nenulový počet krokov. Relácia ⇒0

je identita, podobne ako nultá mocnina ľubovoľnej inej relácie.
Zneužívajúc notáciu často hovoríme o „odvodení σ ⇒ w1 ⇒ . . . ⇒ wn “ , o „odvodení σ ⇒n wn

(dĺžky n)“ , alebo o „odvodení σ ⇒∗ wn “ , aj keď každý z týchto zápisov vyjadruje iba reláciu medzi
slovami a ťažko tak hovoriť o „entite odvodenia“ . Žiaden z uvedených zápisov navyše neposky-
tuje kompletnú informáciu, ktorú od konceptu odvodenia intuitívne očakávame. Problém formálneho
uchopenia pojmu odvodenia sa však ukazuje ako pomerne delikátny a v literatúre sa často možno
stretnúť s chybnými definíciami neskôr kompenzovanými intuíciou. My sa k týmto záležitostiam
vrátime na nasledujúcom cvičení, kde sa pokúsime aj o presnú definíciu odvodení v bezkontextových
gramatikách. Väčšinou sa ale budeme pridŕžať zaužívaných zvyklostí z úvodu tohto odstavca.

Definícia 3. Nech G = (N,T, P, σ) je bezkontextová gramatika. Jazyk generovaný gramatikou G je
daný ako L(G) = {w ∈ T ∗ | σ ⇒∗ w}.

O slovách z jazyka L(G) tiež hovoríme, že sú generované gramatikou G. Z definície vyplýva, že
takéto slová pozostávajú výhradne z terminálnych symbolov. Slovo nad abecedou N ∪ T , pre ktoré
existuje v gramatike G odvodenie, nazývame vetnou formou v gramatike G. Pre jazyk všetkých
vetných foriem v gramatike G budeme pre účely týchto cvičení používať označenie F (G). Evidentne
musí vždy byť L(G) = F (G) ∩ T ∗.

1Čiže neprázdna konečná množina.
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Definícia 4. Nech G = (N,T, P, σ) je bezkontextová gramatika. Vetná forma v gramatike G je
slovo x ∈ (N ∪ T )∗ také, že σ ⇒∗ x. Pre jazyk všetkých vetných foriem v gramatike G píšeme
F (G) = {x ∈ (N ∪ T )∗ | σ ⇒∗ x}.

Jazyk nazveme bezkontextovým, ak existuje bezkontextová gramatika, ktorá ho generuje.

Definícia 5. Bezkontextový jazyk je jazyk L taký, že L = L(G) pre nejakú bezkontextovú grama-
tiku G. Triedu všetkých bezkontextových jazykov označujeme LCF .

Skutočnosť, že hovoríme o triede bezkontextových jazykov a nie o množine bezkontextových
jazykov, nie je náhodná. Pokiaľ sa totiž neobmedzíme na nejakú konkrétnu množinu symbolov,
ktoré môžu byť prvkami abecied, množina všetkých bezkontextových jazykov neexistuje. Trieda sa
od množiny líši predovšetkým tým, že sama nie je množinou, a teda existuje napríklad aj trieda
všetkých množín a podobne.

Regulárne gramatiky sú bezkontextové gramatiky, v ktorých sa každý neterminál môže prepísať
iba na niekoľko (aj nula) terminálov nasledovaných najviac jedným neterminálom.

Definícia 6. Regulárna gramatika je bezkontextová gramatika G = (N,T, P, σ), pre ktorú platí2

P ⊆ N × (T ∗ ∪ T ∗N).

Keďže sme regulárne gramatiky definovali ako špeciálne bezkontextové gramatiky, vzťahuje sa
väčšina definícií a označení zavedených vyššie aj na regulárne gramatiky. V nasledujúcom sa budeme
zaoberať metódami dokazovania, že daná gramatika skutočne generuje zamýšľaný jazyk; aj keď
budeme hovoriť o bezkontextových gramatikách vo všeobecnosti, rovnaké metódy bude možné použiť
aj pre regulárne gramatiky, ktoré sú ich špeciálnym prípadom.

Poznámka 1. Lineárna gramatika je bezkontextová gramatika G = (N,T, P, σ) taká, že množina
pravidiel P je konečnou podmnožinou množiny N×(T ∗∪T ∗NT ∗) – na pravej strane každého pravidla
sa teda môže vyskytovať najviac jeden neterminál. Regulárne gramatiky sú očividne špeciálnym
prípadom lineárnych gramatík a niekedy sa preto nazývajú aj sprava lineárne gramatiky.

Poznámka 2. Regulárne gramatiky sú ďalším z radu konceptov teórie formálnych jazykov, ktorých
definícia nie je úplne ustálená. Kým niektorí autori napríklad týmto pojmom označujú sprava lineárne
gramatiky, ktorých pravidlá nemôžu na pravej strane obsahovať viac ako jeden terminál, inde sa zas
pod regulárnou gramatikou rozumie bezkontextová gramatika, ktorá je lineárna sprava alebo zľava –
množina prepisovacích pravidiel zľava lineárnej gramatiky G = (N,T, P, σ) je konečnou podmnožinou
množiny N × (T ∗ ∪NT ∗). Neskôr pochopíme, že tieto drobné odlišnosti v definíciách v skutočnosti
nie sú nijak podstatné.

2 Dokazovanie správnosti konštrukcie gramatiky

V úlohách nasledujúcich za týmto oddielom je väčšinou cieľom zostrojiť bezkontextovú gramatiku G
generujúcu daný jazyk L a dokázať správnosť konštrukcie vyjadriteľnú rovnosťou L(G) = L.

Po nájdení samotnej gramatiky, ktoré zvyčajne býva jedinou skutočne tvorivou časťou celej úlohy,
je teda ešte potrebné dokázať rovnosť jazyka L(G) generovaného zostrojenou gramatikou G a jazyka L
zo zadania úlohy.

Dokázať rovnosť L(G) = L znamená overiť platnosť obidvoch inklúzií L(G) ⊆ L a L(G) ⊇ L.
Pri dôkaze inklúzie L(G) ⊆ L pre bezkontextovú gramatiku G = (N,T, P, σ) uvažujeme ľubo-

voľné slovo w ∈ L(G) a ukazujeme, že toto slovo patrí do jazyka L. Predpoklad w ∈ L(G) znamená,
že w ∈ T ∗ a súčasne σ ⇒∗ w, v dôsledku čoho σ ⇒n w pre nejaké n ∈ N. O slove w v tomto
momente nevieme nič ďalšie a potrebujeme ukázať, že w ∈ L. Ako dôkazová metóda sa teda ponúka
matematická indukcia vzhľadom na dĺžku n uvažovaného odvodenia slova w.

2Keďže má ísť o špeciálny prípad bezkontextových gramatík, musí byť množina pravidiel P konečná.
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V rámci indukčného kroku takéhoto dôkazu predpokladáme platnosť tvrdenia pre n = k a doka-
zujeme jeho platnosť pre n = k + 1. Ak teda σ ⇒k+1 w, môžeme sa pokúsiť prepísať toto odvodenie
napríklad ako

σ ⇒k y ⇒ w

a aplikovať indukčný predpoklad na odvodenie σ ⇒k y. Tu však narážame: indukčný predpoklad
nám o slove y nehovorí nič, pretože slovo y nepatrí do jazyka L(G); ide iba o vetnú formu v gra-
matike G, ktorá nutne obsahuje aspoň jeden neterminál. Oplatí sa teda dokazované tvrdenie zosilniť
tak, aby sme do úvah zahrnuli všetky vetné formy. Napríklad môžeme nájsť jazyk všetkých vetných
foriem v gramatike G a vyjadriť ho v bežnej množinovej notácii podobne ako pri jazyku L. Ak tento
jazyk vetných foriem označíme F , malo by platiť F ∩ T ∗ = L. Namiesto inklúzie L(G) ⊆ L potom
môžeme dokazovať inklúziu F (G) ⊆ F – z nej pôvodne dokazovaná inklúzia L(G) ⊆ L vyplynie ako
dôsledok, pretože za predpokladu F (G) ⊆ F je L(G) = F (G) ∩ T ∗ ⊆ F ∩ T ∗ = L.

Pri dôkaze inklúzie L(G) ⊇ L naopak uvažujeme ľubovoľné slovo w ∈ L a ukazujeme, že pre toto
slovo v gramatike G existuje odvodenie. Obvykle tak robíme indukciou vzhľadom na nejakú štruk-
turálnu vlastnosť slova w, ktorú volíme na základe jazyka L a skonštruovanej gramatiky G pre tento
jazyk. Ak napríklad L = {a, b}∗, je prirodzené tvrdenie dokazovať indukciou na dĺžku slova; pri ja-
zyku L = {anbn | n ∈ N} sa ponúka dôkaz indukciou vzhľadom na n a napríklad pri jazyku
L = {abu | u ∈ {a, b}∗} je prirodzeným prístupom indukcia vzhľadom na dĺžku slova u. Často
je potrebných aj viacero indukcií, ako čoskoro uvidíme na príklade.

Nech ale túto štrukturálnu vlastnosť zvolíme akokoľvek, je často žiadúce vedieť na odvoditeľnosť
slova v gramatike usúdiť z indukčného predpokladu o odvoditeľnosti nejakého iného slova. Preto
môže byť aj tu užitočné dokazované tvrdenie zosilniť. Opäť môžeme napríklad identifikovať jazyk F
všetkých vetných foriem v G a namiesto inklúzie L(G) ⊇ L dokázať inklúziu F (G) ⊇ F .

Rovnosť L(G) = L pre bezkontextovú gramatiku G = (N,T, P, σ) tak typicky môžeme dokázať
nasledovne.

1. Identifikujeme jazyk F všetkých vetných foriem v gramatike G; preň by, samozrejme, vždy
malo platiť F ∩ T ∗ = L.

2. Namiesto inklúzie L(G) ⊆ L dokážeme silnejšie tvrdenie F (G) ⊆ F – čiže „ak x ∈ (N ∪ T )∗

a σ ⇒∗ x, tak x ∈ F “ . Obyčajne tak robíme indukciou vzhľadom na dĺžku uvažovaného
odvodenia slova x.

3. Namiesto inklúzie L(G) ⊇ L dokážeme silnejšie tvrdenie F (G) ⊇ F – čiže „ak x ∈ F , tak
σ ⇒∗ x“ . Obyčajne tak robíme indukciou vzhľadom na určité štrukturálne vlastnosti slova x.

Uvedený postup je pri konštrukcii gramatík pre „učebnicové“ bezkontextové jazyky použiteľný skoro
univerzálne, ale občas môže byť zbytočne prácny. V rámci nasledujúcich riešených úloh si preto okrem
príkladov použitia tohto postupu ukážeme aj ďalšie možnosti dokazovania správnosti konštrukcie
bezkontextových gramatík.

3 Riešené úlohy

Pri riešení prvých dvoch spomedzi nasledujúcich úloh sa budeme verne pridŕžať postupu opísaného
v predchádzajúcom oddiele.

Úloha 1. Zostrojte bezkontextovú gramatiku generujúcu jazyk L = {w ∈ {a, b}∗ | w = wR}
a dokážte správnosť svojej konštrukcie.

Riešenie. Ukážeme, že L = L(G) pre gramatiku G = (N,T, P, σ), kde N = {σ}, T = {a, b} a

P = {σ → aσa | bσb | a | b | ε}.

Dokážeme, že F (G) = F pre jazyk F = {usuR | u ∈ T ∗; s ∈ {ε, a, b, σ}}. Rovnosť L(G) = L z tohto
vyplynie ako bezprostredný dôsledok, keďže evidentne F ∩ T ∗ = L.
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⊆: Uvažujme ľubovoľné slovo x ∈ F (G). To je vetnou formou gramatiky G – existuje teda n ∈ N
také, že σ ⇒n x. Indukciou vzhľadom na n dokážeme, že x ∈ F .
Pre n = 0 musí byť x = σ ∈ F – evidentne totiž σ = usuR pre u = ε a s = σ.

Predpokladajme teda platnosť tvrdenia pre n = k a dokážme ho pre n = k + 1. Ak σ ⇒k+1 x,
pre nejaké slovo y nutne σ ⇒k y ⇒ x. Na odvodenie σ ⇒k y sa vzťahuje indukčný predpoklad,
a teda y ∈ F . To znamená, že y = vtvR pre nejaké v ∈ T ∗ a t ∈ {ε, a, b, σ}.
Keďže y ⇒ x, musí slovo y obsahovať aspoň jeden neterminál, z čoho t = σ – čiže y = vσvR

pre nejaké v ∈ T ∗. Slovo x musí zo slova y vzniknúť prepísaním neterminálu σ podľa niektorého
z pravidiel v množine P . V prípade, že ide o niektoré z pravidiel σ → aσa alebo σ → bσb,
dostávame x = vaσavR = (va)σ(va)R resp. x = vbσbvR = (vb)σ(vb)R; v oboch prípadoch
je x ∈ F .3 Pre pravidlá σ → a, σ → b a σ → ε postupne dostávame x = vavR, x = vbvR

a x = vvR; vo všetkých prípadoch opäť x ∈ F .4

⊇: Nech x ∈ F – čiže x = usuR pre nejaké u ∈ T ∗ a s ∈ {ε, a, b, σ}. Indukciou vzhľadom na |u|
dokážeme, že x ∈ F (G) – čiže σ ⇒∗ x.

Pre |u| = 0 je x ∈ {ε, a, b, σ}. Avšak σ ⇒ ε, σ ⇒ a, σ ⇒ b a σ ⇒0 σ – teda iste σ ⇒∗ x.

Nech tvrdenie platí pre |u| = k; dokážme ho pre |u| = k+1. Nech x = usuR pre nejaké u ∈ T k+1

a s ∈ {ε, a, b, σ}. Položme u = vc pre v ∈ T k a c ∈ T – čiže x = vcscvR.

Z indukčného predpokladu je σ ⇒∗ vσvR. Použitím prepisovacieho pravidla σ → cσc ∈ P
dostávame σ ⇒∗ vσvR ⇒ vcσcvR. To je pre s = σ už postačujúce. Pre zvyšné s obsahuje
množina P pravidlo σ → s, použitím ktorého dostávame σ ⇒∗ vσvR ⇒ vcσcvR ⇒ vcscvR.

Úloha 2. Zostrojte bezkontextovú gramatiku generujúcu jazyk L = {aibjcjdi | i, j ∈ N} a dokážte
správnosť svojej konštrukcie.

Riešenie. Dokážeme, že jazyk L je generovaný bezkontextovou gramatikou G = (N,T, P, σ), kde
N = {σ, α}, T = {a, b, c, d} a

P = {σ → aσd | α
α→ bαc | ε}.

Namiesto rovnosti L(G) = L dokážeme silnejšie tvrdenie F (G) = F , kde F je jazyk obsahujúci práve

(i) všetky slová aiσdi, kde i ∈ N;

(ii) a všetky slová aibjscjdi, kde i, j ∈ N a s ∈ {α, ε}.

Zrejme pritom F ∩ T ∗ = L, takže z rovnosti F (G) = F naozaj vyplynie aj L(G) = L.

⊆: Nech x ∈ F (G), čiže σ ⇒n x pre nejaké n ∈ N. Indukciou vzhľadom na n dokážeme, že x ∈ F .
Pre n = 0 je x = σ, čo je slovo tvaru (i). Nech teraz tvrdenie platí pre n = k; uvažujme
n = k + 1. Odvodenie σ ⇒k+1 x vieme v takom prípade prepísať ako σ ⇒k y ⇒ x, kde
na odvodenie σ ⇒k y sa vzťahuje indukčný predpoklad. To znamená, že slovo y je jedného
z tvarov (i) alebo (ii).

Ak y = aiσdi pre nejaké i ∈ N, musí slovo x vzniknúť zo slova y použitím niektorého z pravidiel
σ → aσd alebo σ → α na jediný výskyt neterminálu σ v slove y. V prvom prípade dostávame
x = ai+1σdi+1, čo je slovo tvaru (i). V zostávajúcom prípade zas x = aiαdi, čo je slovo tvaru (ii).
V oboch prípadoch je teda x ∈ F .
Ak y = aibjscjdi pre nejaké i, j ∈ N a s ∈ {α, ε}, musí slovo y vďaka vzťahu y ⇒ x obsahovať
aspoň jeden neterminál – z čoho dostávame s = α a y = aibjαcjdi pre nejaké i, j ∈ N. Slovo
x teraz musí vzniknúť zo slova y použitím niektorého z pravidiel α → bαc alebo α → ε
na neterminál α. V prvom prípade dostávame x = aibj+1αcj+1di a v druhom x = aibjcjdi.
V oboch prípadoch ide o slovo tvaru (ii), a teda x ∈ F .

3Stačí totiž vziať s = σ a u = va resp. u = vb.
4Stačí vziať u = v a s = a, s = b, resp. s = ε.
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⊇: Dokážeme, že všetky slová v jazyku F – čiže všetky slová tvaru (i) alebo (ii) – sú vetnými
formami v gramatike G.

Urobme tak najprv pre slová tvaru (i) a indukciou vzhľadom na i dokážme, že pre všetky i ∈ N
je σ ⇒∗ aiσdi. Pre i = 0 je skutočne σ ⇒0 σ. Nech teraz tvrdenie platí pre i = k a uvažujme
i = k+1. Z indukčného predpokladu potom σ ⇒∗ akσdk ⇒ ak+1σdk+1, kde v poslednom kroku
bolo použité pravidlo σ → aσd.

Pre slová tvaru (ii) teraz najprv indukciou vzhľadom na j dokážme, že pre všetky i, j ∈ N je
σ ⇒∗ aibjαcjdi. Pre j = 0 z tvrdenia dokázaného v predchádzajúcom odstavci pre všetky i ∈ N
dostávame σ ⇒∗ aiσdi ⇒ aiαdi = aib0αc0di, kde v poslednom kroku bolo použité pravidlo
σ → α. Nech ďalej tvrdenie platí pre j = ` a uvažujme j = ` + 1. Z indukčného predpokladu
potom pre všetky i ∈ N vyplýva σ ⇒∗ aib`αc`di ⇒ aib`+1αc`+1di, kde v poslednom kroku
odvodenia bolo použité pravidlo α→ bαc.

Zostáva dokázať, že pre všetky i, j ∈ N je σ ⇒∗ aibjcjdi. Z dokázaného ale σ ⇒∗ aibjαcjdi

a použitím pravidla α→ ε dostávame σ ⇒∗ aibjαcjdi ⇒ aibjcjdi.

Dokazovanie správnosti konštrukcie bezkontextovej gramatiky G možno často zjednodušiť tým,
že namiesto tvrdenia F (G) = F dokážeme predsa len o niečo slabšie tvrdenie – ktoré je však,
samozrejme, stále dostatočne silné na to, aby z neho vyplynula rovnosť L(G) = L.

Inklúzia L(G) ⊆ L totiž vyplynie z príslušnosti všetkých vetných foriem v G do nejakého jazyka
X ⊆ (N ∪ T )∗ takého, že X ∩ T ∗ = L. Podobne inklúziu L(G) ⊇ L získame dôkazom odvoditeľnosti
všetkých slov z nejakého jazyka X ⊆ (N ∪ T )∗ takého, že X ∩ T ∗ = L.

Nie je teda vždy nutné charakterizovať všetky vetné formy v gramatike G. Na dôkaz inklúzie
L(G) ⊆ L stačí o vetných formách v gramatike G dokázať, že patria do nejakého jazyka, ktorého
terminálne slová patria do jazyka L. Pokojne pritom môže ísť aj o nadjazyk jazyka F (G). Pri dôkaze
inklúzie L(G) ⊇ L sa naopak stačí presvedčiť o tom, že sú v gramatike G odvoditeľné všetky slová
z nejakého nadjazyka jazyka L, ktorý zvolíme tak, aby sa dobre robil dôkaz indukciou. Tento nadjazyk
jazyka L ale nemusí nutne obsahovať všetky vetné formy v gramatike G.

Pri riešení nasledujúcej úlohy aplikujeme obidve tieto pozorovania. Úlohu je však stále možné –
v princípe celkom jednoducho – vyriešiť aj pomocou postupu z oddielu 2.

Úloha 3. Zostrojte bezkontextovú gramatiku generujúcu jazyk L = {w ∈ {a, b}∗ | #a(w) = #b(w)}
a dokážte správnosť svojej konštrukcie.

Riešenie. Nech G = (N,T, P, σ) je bezkontextová gramatika taká, že N = {σ}, T = {a, b} a

P = {σ → σaσbσ | σbσaσ | ε}.

Dokážeme, že L(G) = L.

⊆: Namiesto samotnej inklúzie dokážeme nasledujúce silnejšie tvrdenie: pre všetky vetné formy x
v gramatike G je #a(x) = #b(x). Keďže každé w ∈ L(G) je zároveň aj vetnou formou v G,
vyplynie z uvedeného tvrdenia aj dokazovaná inklúzia L(G) ⊆ L.5

Uvažujme preto ľubovoľnú vetnú formu x v gramatike G. Iste existuje n ∈ N také, že σ ⇒n x.
Indukciou vzhľadom na n dokážeme, že #a(x) = #b(x).

Tvrdenie platí pre n = 0 – v takom prípade totiž x = σ. Predpokladajme teda, že tvrdenie platí
pre n = k a uvažujme n = k + 1. Ak σ ⇒k+1 x, tak pre nejaké y ∈ (N ∪ T )∗ je σ ⇒k y ⇒ x.
Na odvodenie σ ⇒k y sa vzťahuje indukčný predpoklad, takže #a(y) = #b(y). Slovo x vznikne
zo slova y použitím niektorého z pravidiel v P . V prípade použitia pravidla σ → σaσbσ alebo
σ → σbσaσ je zjavne #a(x) = #a(y) + 1 = #b(y) + 1 = #b(x); v prípade použitia pravidla
σ → ε je #a(x) = #a(y) = #b(y) = #b(x).

5Nejde ale o dôkaz inklúzie F (G) ⊆ F z oddielu 2, pretože nie každé slovo x ∈ (N ∪ T )∗ spĺňajúce #a(x) = #b(x)
je vetnou formou v G. To je ale pre účely tejto inklúzie vedľajšie.
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⊇: Indukciou vzhľadom na n najprv dokážme, že pre všetky n ∈ N sú v gramatike G odvoditeľné
všetky slová σa1σa2σ . . . σa2nσ také, že a1, . . . , a2n ∈ {a, b} a #a(a1 . . . a2n) = #b(a1 . . . a2n).
Pre n = 0 je jediným takýmto slovom slovo σ, pričom σ ⇒0 σ. Predpokladajme teda, že
tvrdenie platí pre n = k a uvažujme n = k + 1. Nech a1, . . . , a2k+2 ∈ {a, b} sú také, že
#a(a1 . . . a2k+2) = #b(a1 . . . a2k+2). Potom nutne existuje6 i ∈ [2k + 1] také ai = a a ai+1 = b
alebo ai = b a ai+1 = a. Z indukčného predpokladu tak dostávame

σ ⇒∗ σa1σa2σ . . . σai−1σai+2σ . . . σa2k+2σ ⇒ a1σa2σ . . . σai−1σaiσai+1σai+2σ . . . σa2k+2,

kde v poslednom kroku odvodenia aplikujeme niektoré z pravidiel σ → σaσbσ alebo σ → σbσaσ
na podčiarknutý výskyt neterminálu σ.

Indukciou vzhľadom na s teraz môžeme dokázať, že sú v gramatike G pre všetky n ∈ N
a všetky a1, . . . , a2n ∈ {a, b} také, že #a(a1 . . . a2n) = #b(a1 . . . a2n) odvoditeľné aj slová
a1 . . . asσ(as+1σ)(as+2σ) . . . (a2nσ) pre s = 0, . . . , 2n. Pre s = 0 totiž z vyššie dokázaného vy-
plýva σ ⇒∗ σ(a1σ) . . . (a2nσ) a z platnosti dokazovaného tvrdenia pre s = k < 2n dostávame aj
σ ⇒∗ a1 . . . akσ(ak+1σ)(ak+2σ) . . . (a2nσ)⇒ a1 . . . akak+1σ(ak+2σ) . . . (a2nσ), kde v poslednom
kroku odvodenia sme použili pravidlo σ → ε na najľavejší výskyt neterminálu σ; to dokazuje
platnosť tvrdenia pre s = k + 1.

Zisťujeme teraz, že v gramatike G sú odvoditeľné aj všetky slová z jazyka L – pre w ∈ L totiž
w = a1 . . . a2n pre nejaké n ∈ N a a1, . . . , a2n ∈ {a, b} také, že #a(a1 . . . a2n) = #b(a1 . . . a2n).
Z dokázaného pritom dostávame

σ ⇒∗ a1a2 . . . a2nσ ⇒ a1a2 . . . a2n = w,

kde v poslednom kroku aplikujeme na jediný výskyt neterminálu σ pravidlo σ → ε.

Pre niektoré gramatiky G môže byť jazyk vetných foriem F (G) pomerne komplikovaný a dôkaz
tvrdenia L(G) = L môže byť prirodzenejší s využitím „rekurzívnej štruktúry“ jazyka L. Kým doteraz
zohrával pri induktívnych dôkazoch oboch inklúzií L(G) ⊆ L a L(G) ⊇ L kľúčovú úlohu posledný
krok odvodenia, môže byť niekedy výhodnejšie zamerať sa na prvý krok odvodenia a aplikovať na-
sledujúce – intuitívne pomerne zrejmé – tvrdenie, ktorého dôkaz je prenechaný ako jedna z úloh
na najbližšie cvičenia.

Tvrdenie 1. Nech G = (N,T, P, σ) je bezkontextová gramatika, ξ1, . . . , ξk ∈ N , u0, . . . , uk ∈ T ∗

a n ∈ N. Pre slovo w ∈ (N ∪ T )∗ je potom u0ξ1u1ξ2u2 . . . uk−1ξkuk ⇒n w práve vtedy, keď existujú
x1, . . . , xk ∈ (N ∪ T )∗ a n1, . . . , nk ∈ N také, že w = u0x1u1x2u2 . . . uk−1xkuk, n1 + . . . + nk = n
a pre i = 1, . . . , k je ξi ⇒ni xi.

V dôsledku toho u0ξ1u1ξ2u2 . . . uk−1ξkuk ⇒∗ w práve vtedy, keď existujú x1, . . . , xk ∈ (N ∪ T )∗

také, že w = u0x1u1x2u2 . . . uk−1xkuk a pre i = 1, . . . , k je ξi ⇒∗ xi.

Opísaný prístup teraz v rámci riešenia nasledujúcej úlohy demonštrujeme na ďalšej gramatike G
generujúcej jazyk L = {w ∈ {a, b}∗ | #a(w) = #b(w)}. Inklúziu L(G) ⊆ L by sme aj pre túto
gramatiku mohli dokázať prakticky rovnako ako v úlohe 3; výhodnosť alternatívneho prístupu sa
však naplno ukáže pri dôkaze opačnej inklúzie.

Úloha 4. Nech G = (N,T, P, σ) je bezkontextová gramatika taká, že N = {σ}, T = {a, b} a

P = {σ → aσbσ | bσaσ | ε}.

Dokážte, že L(G) = {w ∈ {a, b}∗ | #a(w) = #b(w)}.

Riešenie. Položme L := {w ∈ {a, b}∗ | #a(w) = #b(w)}. Dokážme najprv, že

ak w ∈ L, tak w = ε, alebo existujú x, y ∈ L také, že w = axby alebo w = bxay. (∗)
6V opačnom prípade by bolo buď a1 = . . . = a2k+2 = a, alebo a1 = . . . = a2k+2 = b, pričom v ani jednom prípade

zjavne nemôže byť #a(a1 . . . a2k+2) = #b(a1 . . . a2k+2).
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Pre u ∈ {a, b}∗ označme ∆(u) = #a(u)−#b(u); je pritom jasné, že pre všetky v ∈ {a, b}∗ a c ∈ {a, b}
je ∆(vc) = ∆(v)±1, pričom v ∈ L práve vtedy, keď ∆(v) = 0. Pre ľubovoľné neprázdne slovo w ∈ L
uvažujme jeho najkratší neprázdny prefix u taký, že u ∈ L. Nech u = a1 . . . ak pre a1, . . . , ak ∈ {a, b}.
Ak a1 = a, z uvedeného vyplýva, že pre i = 1, . . . , k − 1 je ∆(a1 . . . ai) > 0; keďže ale ∆(u) = 0,
nutne ak = b, a teda w = axby pre x = a2 . . . ak−1 a nejaké slovo y ∈ {a, b}∗. Z príslušnosti slova
u = axb do L potom dostávame x ∈ L. Keďže ďalej w = uy a u,w ∈ L, nutne aj y ∈ L. Podobne by
sme pre a1 = b ukázali, že w = bxay pre nejaké x, y ∈ L.

Môžeme teraz dokázať samotnú rovnosť L(G) = L.

⊆: Indukciou vzhľadom na n ∈ N dokážeme, že w ∈ L kedykoľvek w ∈ T ∗ a σ ⇒n w.

Ak n = 0, neexistuje žiadne w ∈ T ∗ také, že σ ⇒n w; tvrdenie teda platí. Predpokladajme
teraz platnosť tvrdenia pre n = 0, . . . , k a uvažujme n = k + 1. Odvodenie σ ⇒k+1 w potom
môžeme prepísať ako σ ⇒ u⇒k w pre nejaké u ∈ (N∪T )∗. Keďže σ ⇒ u, je σ → u ∈ P , a teda
u ∈ {ε, aσbσ, bσaσ}. Ak u = ε, nutne k = 0 a w = ε ∈ L; tvrdenie teda platí. Pre u = aσbσ
z tvrdenia 1 vyplýva, že w = axby pre nejaké x, y ∈ T ∗ také, že pre nejaké prirodzené k1, k2 ≤ k
je σ ⇒k1 x a σ ⇒k2 y. Z indukčného predpokladu teda x, y ∈ L, a teda aj w = axby ∈ L.
Pre u = bσaσ možno argumentovať analogicky.

⊇: Evidentne σ ⇒ ε, a teda ε ∈ L(G). Ak teraz x, y ∈ L sú také, že x, y ∈ L(G), tak σ ⇒∗ x
a σ ⇒∗ y, v dôsledku čoho vďaka tvrdeniu 1 aj σ ⇒ aσbσ ⇒∗ axby a σ ⇒ bσaσ ⇒∗ bxay.
Z tvrdenia (∗) teda vyplýva, že musia byť v L(G) všetky slová z jazyka L.

Pri riešení predchádzajúcej úlohy sme do veľkej miery využili skutočnosť, že jediným neterminá-
lom gramatikyG bol počiatočný neterminál σ. V prípade, že gramatikaG obsahuje viacero užitočných
neterminálov, môžu sa aj niektoré z nich objaviť vo vetnej forme odvoditeľnej z počiatočného neter-
minálu na jeden krok. Pre takúto gramatiku by sme teda opäť museli dokazovať silnejšie tvrdenie,
ktoré by tentokrát charakterizovalo jazyky slov odvoditeľných z jednotlivých neterminálov gramatiky
(a nie iba z počiatočného neterminálu σ).
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