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1 Normálne tvary bezkontextových gramatík

Vetou o normálnom tvare bezkontextových gramatík možno nazvať prakticky ľubovoľné tvrdenie,
podľa ktorého ku každej alebo „skoro každej“ bezkontextovej gramatike G existuje ekvivalentná
alebo „takmer ekvivalentná“ gramatika G′ s nejakou špeciálnou vlastnosťou.

Poznámka 1. Normálne tvary možno, samozrejme, študovať aj pre iné objekty ako gramatiky.
Jediným predpokladom je, aby na danej triede objektov X bola definovaná relácia ekvivalencie ∼.
Veta o normálnom tvare potom vždy pre nejakú triedu Y ⊆ X hovorí, že pre každé x ∈ X existuje
y ∈ Y také, že y ∼ x.

V našom prípade je touto triedou X trieda všetkých bezkontextových gramatík, pričom pre dvo-
jicu bezkontextových gramatík G,G′ je G ∼ G′ práve vtedy, keď L(G) = L(G′).

Normálne tvary bezkontextových gramatík je užitočné skúmať predovšetkým z nasledujúcich
dvoch dôvodov.

• Predpoklad normálneho tvaru môže často uľahčiť dôkazy tvrdení o bezkontextových jazykoch.
Ak totiž namiesto všeobecných bezkontextových gramatík uvažujeme iba gramatiky v nor-
málnom tvare, môže sa podstatne zjednodušiť argumentácia. Dôležitá je pritom predovšetkým
skutočnosť, že ekvivalentná gramatika v normálnom tvare vždy existuje; algoritmus na prevod
do normálneho tvaru je tu menej podstatný, avšak zaručuje konštruktívnosť dôkazu.

• Viaceré užitočné algoritmy pracujúce s bezkontextovými gramatikami1 predpokladajú ako svoj
vstup gramatiku v nejakom normálnom tvare. Pri implementácii takýchto algoritmov sa preto
môže zísť aj procedúra na prevod do požadovaného normálneho tvaru.

V nasledujúcom sa zameriame na praktickú stránku prevodu gramatík do jednotlivých normál-
nych tvarov. Matematické zápisy týchto konštrukcií a dôkazy ich správnosti odzneli na prednáške.

2 Redukovaný normálny tvar

Bezkontextová gramatika je redukovaná alebo v redukovanom normálnom tvare, ak neobsahuje žiadne
pravidlo typu ξ → ξ a každý jej neterminál ξ je súčasne „terminujúci“ (teda existuje aspoň jedno
terminálne slovo odvoditeľné zo ξ) a dosiahnuteľný (v danej gramatike teda existuje vetná forma
obsahujúca ξ – tá musí byť z definície odvoditeľná z počiatočného neterminálu).

Definícia 1. Bezkontextová gramatika G = (N,T, P, σ) je v redukovanom normálnom tvare, ak sú
splnené nasledujúce tri podmienky:

(i) Množina pravidiel P neobsahuje pre žiadne ξ ∈ N pravidlo ξ → ξ.

(ii) Pre každé ξ ∈ N existuje terminálne slovo w ∈ T ∗ také, že ξ ⇒∗ w.

(iii) Pre každé ξ ∈ N existujú slová u, v ∈ (N ∪ T )∗ také, že σ ⇒∗ uξv.

O normálnom tvare tu môžeme hovoriť vďaka nasledujúcej vete z prednášky.

Veta 1. Nech G je bezkontextová gramatika taká, že L(G) 6= ∅. Potom existuje bezkontextová gra-
matika G′ v redukovanom normálnom tvare taká, že L(G′) = L(G).

1Príkladom môžu byť algoritmy, ktoré pre slovo x a gramatiku G rozhodujú, či x ∈ L(G).
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Predpoklad L(G) 6= ∅ je v predchádzajúcej vete naozaj nutný. Každá bezkontextová gramatika G
totiž musí mať počiatočný neterminál σ. Pre redukovanú gramatiku G tak podľa podmienky (ii)
definície 1 existuje terminálne slovo w také, že σ ⇒∗ w. Potom ale nutne w ∈ L(G).

Každá z podmienok (i) až (iii) definície 1 sama o sebe určuje normálny tvar bezkontextových gra-
matík. V nasledujúcom najprv zosumarizujeme algoritmy na prevod gramatík do týchto „pomocných“
normálnych tvarov a následne uvidíme, že použitie všetkých troch týchto algoritmov vo vhodnom
poradí garantuje ako výstup gramatiku v redukovanom normálnom tvare.

2.1 Odstránenie pravidiel typu ξ → ξ

Prevod bezkontextovej gramatiky do normálneho tvaru daného podmienkou (i) definície 1 spočíva
jednoducho vo „vypustení“ všetkých pravidiel typu ξ → ξ z množiny prepisovacích pravidiel P .

2.2 Odstránenie „neterminujúcich“ neterminálov

Prevod bezkontextovej gramatiky do normálneho tvaru daného podmienkou (ii) definície 1 spočíva
v nájdení množiny S všetkých „terminujúcich “ neterminálov gramatiky a v následnom odstránení
zvyšných – čiže „neterminujúcich“ – neterminálov, ako aj všetkých pravidiel, v ktorých sa takéto
neterminály vyskytujú. Množinu S možno pre bezkontextovú gramatiku G = (N,T, P, σ) formálne
zapísať ako S = {ξ ∈ N | ∃w ∈ T ∗ : ξ ⇒∗ w} a dá sa nájsť nasledujúcim algoritmom.

1. Nech S0 = {ξ ∈ N | ∃u ∈ T ∗ : ξ → u ∈ P}.

2. Pre i = 1, 2, . . . iteruj predpis Si = Si−1 ∪ {ξ ∈ N | ∃u ∈ (T ∪ Si−1)∗ : ξ → u ∈ P}, až kým
pre nejaké k ∈ N− {0} nenastane Sk = Sk−1.

3. Polož S = Sk.

Množina S0 teda pozostáva z práve tých neterminálov ξ, ktoré možno pomocou nejakého pravidla
prepísať na rýdzo terminálne slovo. Pre i = 1, . . . , k následne množina Si obsahuje všetky neterminály
z množiny Si−1, ako aj tie neterminály ξ, ktoré možno pomocou nejakého pravidla prepísať na slovo
obsahujúce iba terminály a neterminály z Si−1. Akonáhle týmto spôsobom nepribudnú žiadne nové
neterminály, možno celú iteratívnu konštrukciu zastaviť.

Poznámka 2. Uvedený algoritmus sa na každom vstupe zastaví, pretože v kroku 2 sa do množiny Si
v každej iterácii okrem poslednej pridá oproti množine Si−1 aspoň jeden neterminál. Celkový počet
neterminálov je ale konečný.

Skutočnosť, že množina Sk je naozaj hľadaná množina „terminujúcich“ neterminálov, bola doká-
zaná na prednáške.

Poznámka 3. V kroku 2 horeuvedeného algoritmu by v skutočnosti bolo možné iterovať iba predpis
Si = {ξ ∈ N | ∃u ∈ (T ∪ Si−1)∗ : ξ → u ∈ P}. Ľahko totiž vidieť, že táto množina musí obsahovať
okrem iného aj všetky neterminály z Si−1.

Pre gramatiku G = (N,T, P, σ) takú, že L(G) 6= ∅, je nájdená množina S vždy neprázdna.
V takom prípade môžeme z gramatiky G odstrániť všetky neterminály z N − S, ako aj všetky
pravidlá z P , ktorých ľavá alebo pravá strana obsahuje neterminál z N − S. Vo výsledku dostaneme
gramatiku spĺňajúcu podmienku (ii) definície 1.

2.3 Odstránenie nedosiahnuteľných neterminálov

Prevod bezkontextovej gramatiky do normálneho tvaru daného podmienkou (iii) definície 1 spočíva
v nájdení množiny H všetkých dosiahnuteľných neterminálov a v následnom odstránení zvyšných
– čiže nedosiahnuteľných – neterminálov a prepisovacích pravidiel obsahujúcich nedosiahnuteľné
neterminály. Množinu H možno pre bezkontextovú gramatiku G = (N,T, P, σ) formálne zapísať ako
H = {ξ ∈ N | ∃u, v ∈ (N ∪ T )∗ : σ ⇒∗ uξv} a dá sa nájsť nasledujúcim algoritmom.
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1. Nech H0 = {σ}.

2. Pre i = 1, 2, . . . iteruj Hi = Hi−1 ∪ {ξ ∈ N | ∃η ∈ Hi−1 ∃u, v ∈ (N ∪ T )∗ : η → uξv ∈ P},
až kým pre nejaké k ∈ N− {0} nenastane Hk = Hk−1.

3. Polož H = Hk.

Množina H0 teda obsahuje iba počiatočný neterminál, ktorý je ako jediný dosiahnuteľný na nula
krokov. Pre i = 1, . . . , k následne množinaHi obsahuje všetky neterminály zHi−1, ako aj neterminály,
ktoré sa vyskytujú na pravej strane niektorého pravidla s ľavou stranou v Hi−1; ide tak o neterminály
dosiahnuteľné na najviac i krokov. Akonáhle takto nepribudnú žiadne nové neterminály, možno
iteratívnu konštrukciu ukončiť.

Poznámka 4. Zastavenie algoritmu na každom vstupe je zrejmé z rovnakých dôvodov, ako pri hľa-
daní „terminujúcich“ neterminálov. Správnosť algoritmu bola dokázaná na prednáške.

Poznámka 5. V kroku 2 je tentokrát zjednotenie s množinou Hi−1 naozaj podstatné.

MnožinaH nájdená pre gramatikuG = (N,T, P, σ) je vždy neprázdna. Možno teda z gramatikyG
odstrániť všetky neterminály z N −H a podobne aj všetky pravidlá z P , ktorých ľavá alebo pravá
strana obsahuje neterminál z N−H. Výsledkom tohto procesu je gramatika spĺňajúca podmienku (ii)
definície 1.

2.4 Redukovaný normálny tvar: algoritmus

Ľubovoľnú bezkontextovú gramatiku možno previesť do redukovaného normálneho tvaru použitím
nasledujúceho algoritmu.

1. Odstráň pravidlá typu ξ → ξ.

2. Odstráň „neterminujúce“ neterminály (a pravidlá, ktoré ich obsahujú).

3. Odstráň nedosiahnuteľné neterminály (a pravidlá, ktoré ich obsahujú).

Správnosť uvedeného algoritmu je založená na nasledujúcich dvoch jednoduchých pozorovaniach.

a) Po odstránení „neterminujúcich“ a nedosiahnuteľných neterminálov algoritmami z predchádza-
júcich pododdielov nemôže vzniknúť žiadne nové pravidlo typu ξ → ξ.

b) Po odstránení nedosiahnuteľných neterminálov algoritmom z pododdielu 2.3 nemôže vzniknúť
žiaden nový „neterminujúci“ neterminál.

Dôkaz obidvoch týchto tvrdení je priamočiary a prenechávame ho čitateľovi.

Poznámka 6. Poradie odstraňovania „neterminujúcich“ a nedosiahnuteľných neterminálov vo vše-
obecnosti nemožno vymeniť. Uvažujme napríklad gramatiku G = (N,T, P, σ) s N = {σ, α, β},
T = {a} a P = {σ → α | a, α → αβ, β → a}. Táto neobsahuje žiadne pravidlo typu ξ → ξ –
odstraňovaním takýchto pravidiel sa teda zapodievať nemusíme.

Použitím horeuvedeného algoritmu dostávame redukovanú gramatiku G′ = (N ′, T ′, P ′, σ′), kde
N ′ = {σ}, T ′ = T , P ′ = {σ → a} a σ′ = σ.

Skúsme teraz aplikovať opačný postup a uvažujme najprv dosiahnuteľnosť neterminálov. Dostá-
vame H0 = {σ}, H1 = {σ, α} a H2 = {σ, α, β} = H3 = H – všetky neterminály sú teda dosiahnu-
teľné. Zamerajme sa teraz na „terminujúce“ neterminály. Dostávame S0 = {σ, β} = S1 = S. Na konci
celého procesu teda prichádzame ku gramatike s množinou neterminálov N ′ = {σ, β} a množinou
pravidiel P ′ = {σ → a, β → a}. Tá celkom očividne nie je v redukovanom normálnom tvare. Po od-
stránení „neterminujúcich“ neterminálov sa totiž môžu niektoré pôvodne dosiahnuteľné neterminály
stať nedosiahnuteľnými.

Odstraňovanie pravidiel typu ξ → ξ naopak možno robiť aj uprostred alebo na konci celého
algoritmu, ako by čitateľ istotne ľahko dokázal.

3



2.5 Riešená úloha

Úloha 1. Nech G = (N,T, P, σ) je bezkontextová gramatika s N = {σ, α, β, γ}, T = {a, b} a

P = {σ → αα | σ | aσ
α→ γb | aa | ε
β → bβ | b
γ → aγ | aγγ}.

Štandardnou konštrukciou preveďte gramatiku G do redukovaného normálneho tvaru.

Riešenie. Jediným pravidlom typu ξ → ξ je v gramatike G pravidlo σ → σ. Po jeho odstránení
dostávame gramatiku s prepisovacími pravidlami

σ → αα | aσ,
α→ γb | aa | ε,
β → bβ | b,
γ → aγ | aγγ.

Nájdeme teraz množinu „terminujúcich“ neterminálov S:

1. S0 = {α, β},

2. S1 = S0 ∪ {σ, α, β} = {σ, α, β},

3. S2 = S1 ∪ {σ, α, β} = {σ, α, β} = S1.

Teda S = S2 = {σ, α, β}. Po odstránení „neterminujúcich“ neterminálov – v tomto prípade iba
neterminálu γ – a pravidiel, ktoré tento neterminál obsahujú, dostávame gramatiku s prepisovacími
pravidlami

σ → αα | aσ,
α→ aa | ε,
β → bβ | b.

Pre túto gramatiku nakoniec nájdeme množinu dosiahnuteľných neterminálov H:

1. H0 = {σ},

2. H1 = H0 ∪ {σ, α} = {σ, α},

3. H2 = H1 ∪ {σ, α} = {σ, α} = H1.

Teda H = H2 = {σ, α}. Po odstránení nedosiahnuteľných neterminálov – v tomto prípade iba
neterminálu β – dostávame gramatiku G′ = (N ′, T, P ′, σ) s N ′ = {σ, α} a

P = {σ → αα | aσ
α→ aa | ε}.

Gramatika G′ je v redukovanom normálnom tvare.

3 Chomského normálny tvar

Chomského normálny tvar umožňuje bez ujmy na všeobecnosti predpokladať, že sa v každom kroku
odvodenia bezkontextovej gramatiky prepíše niektorý neterminál na dva neterminály, na jeden ter-
minál, alebo na prázdne slovo.

Definícia 2. Nech G = (N,T, P, σ) je bezkontextová gramatika. Gramatika G je v Chomského
normálnom tvare, ak P ⊆ N × (N2 ∪ T ∪ {ε}).
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O normálnom tvare môžeme hovoriť vďaka nasledujúcej vete, ktorá bola dokázaná na prednáške.

Veta 2. Nech G je bezkontextová gramatika. Potom existuje bezkontextová gramatika G′ v Chomského
normálnom tvare taká, že L(G′) = L(G).

Vstupom nasledujúceho algoritmu na prevod do Chomského normálneho tvaru je ľubovoľná bez-
kontextová gramatika G = (N,T, P, σ).

1. Pre každý terminál c ∈ T zaveď nový2 neterminál ξc a pravidlo ξc → c.

2. Nahraď vo všetkých pravidlách α → x ∈ P – teda v tých pravidlách, ktoré sa vyskytovali
aj v pôvodnej gramatike G – všetky terminály c ∈ T neterminálom ξc. Nech G1 = (N1, T, P1, σ)
je výsledná gramatika.

Pravá strana každého pravidla gramatiky G1 pozostáva z jedného terminálu, z prázdneho slova,
alebo z neprázdneho slova zloženého iba z neterminálov. V nasledujúcich krokoch už iba zabezpečíme,
aby v prípade neprázdneho slova zloženého z neterminálov bola jeho dĺžka rovná dvom.

3. Zaveď nový neterminál ξε a pravidlo ξε → ε. Všetky pravidlá α → β ∈ P1, kde α, β ∈ N1,
nahraď pravidlom α→ βξε. Nech G2 = (N2, T, P2, σ) je výsledná gramatika.

Gramatika G2 obsahuje iba prepisovacie pravidlá, ktoré majú na pravej strane jeden terminál,
prázdne slovo, alebo slovo dĺžky aspoň dva pozostávajúce iba z neterminálov. V záverečnom kroku
teda stačí ošetriť „príliš dlhé“ slová na pravej strane.

4. Pre každé pravidlo π = (α→ β1β2 . . . βk) ∈ P2 s k > 2 a α, β1, . . . , βk ∈ N2:

4.1 Zaveď nové neterminály ψπ,1, . . . , ψπ,k−2.

4.2 Odober pôvodné pravidlo α→ β1β2 . . . βk.

4.3 Pridaj nové pravidlá α→ β1ψπ,1, ψπ,1 → β2ψπ,2, . . . , ψπ,k−2 → βk−1βk.

Nech G′ = (N ′, T, P ′, σ) je výsledná gramatika.

Výsledná gramatika G′ je evidentne vždy v Chomského normálnom tvare a na prednáške bolo
dokázané, že L(G′) = L(G).

Poznámka 7. Uvedený algoritmus nie je optimálny: napríklad všetky pravidlá α → c pôvodnej
gramatiky, kde c ∈ T (ktoré Chomského normálny tvar neporušujú) sa nahradia trojicou pravidiel
α → ξcξε, ξc → c a ξε → ε. Poznamenajme však, že toto neplatí pre pravidlá α → ε pôvodnej
gramatiky, ktoré sú vo výsledku nezmenené.

3.1 Riešená úloha

Úloha 2. Nech G = (N,T, P, σ) je bezkontextová gramatika s N = {σ, α, β}, T = {a, b} a

P = {σ → aαbβ | ββ | α
α→ αbα | aa
β → bββ | ε}.

Štandardnou konštrukciou preveďte gramatiku G do Chomského normálneho tvaru.
2Práve zavedený neterminál ξc teda nepatrí do N ani do T .
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Riešenie. Pre všetky c ∈ T zaveďme nový neterminál ξc a pravidlo ξc → c; následne nahraďme
všetky terminály c na pravých stranách pôvodných pravidiel neterminálom ξc. Po tejto transformácii
dostaneme gramatiku s pravidlami

σ → ξaαξbβ | ββ | α,
α→ αξbα | ξaξa,
β → ξbββ | ε,
ξa → a,

ξb → b.

Zaveďme ďalej nový neterminál ξε s pravidlom ξε → ε a predĺžme neterminálom ξε všetky „príliš
krátke“ pravé strany pravidiel. Získame tak gramatiku s pravidlami

σ → ξaαξbβ | ββ | αξε,
α→ αξbα | ξaξa,
β → ξbββ | ε,
ξa → a,

ξb → b,

ξε → ε.

Zaveďme ešte označenia pravidiel

π1 := (σ → ξaαξbβ),

π2 := (α→ αξbα),

π3 := (β → ξbββ)

a „rozbime“ príliš dlhé pravé strany pravidiel pomocou nových neterminálov, čím dostaneme bez-
kontextovú gramatiku G′ = (N ′, T, P ′, σ) s N ′ = {σ, α, β, ξa, ξb, ξε, ψπ1,1, ψπ1,2, ψπ2,1, ψπ3,1} a

P ′ = {σ → ξaψπ1,1 | ββ | αξε
α→ αψπ2,1 | ξaξa
β → ξbψπ3,1 | ε

ψπ1,1 → αψπ1,2

ψπ1,2 → ξbβ

ψπ2,1 → ξbα

ψπ3,1 → ββ

ξa → a

ξb → b

ξε → ε}.

4 „Bezepsilonový“ normálny tvar

Hovoríme, že bezkontextová gramatika je „bezepsilonová“ alebo v „bezepsilonovom“ normálnom tvare,
ak neobsahuje vymazávajúce pravidlá typu ξ → ε. V tomto prípade ide o plnohodnotný normálny tvar
len pre gramatiky generujúce neprázdne slová. Gramatika bez pravidiel typu ξ → ε totiž nikdy nemôže
vygenerovať prázdne slovo ε, a teda nie každá bezkontextová gramatika sa dá do „bezepsilonového“
tvaru v pravom slova zmysle previesť. Ako však bolo dokázané na prednáške, ku každej bezkontextovej
gramatike G existuje bezkontextová gramatika G′ v „bezepsilonovom“ normálnom tvare taká, že
L(G′) = L(G)− {ε}.
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Definícia 3. Nech G = (N,T, P, σ) je bezkontextová gramatika. Hovoríme, že gramatika G je
v „bezepsilonovom“ normálnom tvare, ak P ⊆ N × (N ∪ T )+.

Veta 3. Nech G = (N,T, P, σ) je bezkontextová gramatika. Potom existuje bezkontextová gramatika
G′ = (N ′, T ′, P ′, σ′) v „bezepsilonovom“ normálnom tvare taká, že L(G′) = L(G)− {ε}.

Správnosť nasledujúceho algoritmu na prevod gramatiky do „bezepsilonového“ normálneho tvaru
bola dokázaná na prednáške. Jeho vstupom je bezkontextová gramatika G = (N,T, P, σ) a výstu-
pom je bezkontextová gramatika G′ = (N ′, T ′, P ′, σ′) v „bezepsilonovom“ normálnom tvare taká, že
L(G′) = L(G)− {ε}.

1. Nájdi množinu E = {ξ ∈ N | ξ ⇒∗ ε} vymazávajúcich neterminálov v gramatike G:

1.1 Nech E0 = {ξ ∈ N | ξ → ε ∈ P} (ide o neterminály „vymazávajúce na jeden krok“).

1.2 Pre i = 1, 2, . . . iteruj Ei = Ei−1 ∪ {ξ ∈ N | ∃u ∈ E∗i−1 : ξ → u ∈ P}, až kým pre nejaké k
nenastane Ek = Ek−1.

1.3 Polož E = Ek.

2. Pre každé pôvodné pravidlo ξ → u ∈ P s ξ ∈ N a u ∈ (N ∪ T )+ pridaj do množiny prepisovacích
pravidiel všetky pravidlá ξ → v0v1 . . . vj s j ∈ N a v0, . . . , vj ∈ (N ∪ T )∗ také, že pre nejaké
α1, . . . , αj ∈ E je u = v0α1v1α2 . . . vj−1αjvj . (Čiže pridáme všetky pravidlá, ktoré vzniknú
z pravidla ξ → u vypustením niektorých výskytov vymazávajúcich neterminálov v slove u.)

3. Odober z množiny prepisovacích pravidiel všetky pravidlá ξ → ε, kde ξ ∈ N . Vráť výslednú
gramatiku G′ = (N ′, T ′, P ′, σ′) ako výstup.

V kroku 2 by, samozrejme, bolo možné pridávať iba také pravidlá ξ → v0v1 . . . vj , pre ktoré
v0v1 . . . vj 6= ε. V opačnom prípade sa totiž pravidlo hneď v nasledujúcom kroku z gramatiky odstráni.

4.1 Riešená úloha

Úloha 3. Nech G = (N,T, P, σ) je bezkontextová gramatika s N = {σ, α, β, γ}, T = {a, b} a

P = {σ → aσ | bα | bb
α→ β | aa
β → bββaασ | ε
γ → αα | aγ | a}.

Štandardnou konštrukciou preveďte gramatiku G do „bezepsilonového“ normálneho tvaru.

Riešenie. Nájdeme najprv množinu vymazávajúcich neterminálov E:

1. E0 = {β},

2. E1 = E0 ∪ {α, β} = {α, β},

3. E2 = E1 ∪ {α, β, γ} = {α, β, γ},

4. E3 = E2 ∪ {α, β, γ} = {α, β, γ} = E2.
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Teda E = E3 = {α, β, γ}. Z pravidiel gramatiky G následne získame nasledujúce nové pravidlá:

σ → aσ  σ → aσ,

σ → bα  σ → bα | b,
σ → bb  σ → bb,

α→ β  α→ β | ε,
α→ aa  α→ aa,

β → bββaασ  β → bββaασ | bββaσ | bβaασ | bβaσ | baασ | baσ,
β → ε  β → ε,

γ → αα  γ → αα | α | ε,
γ → aγ  γ → aγ | a,
γ → a  γ → a.

Po odstránení duplikátov a pravidiel s prázdnym slovom na pravej strane tak dostávame výslednú
gramatiku G′ = (N,T, P ′, σ) s

P ′ = {σ → aσ | bα | b | bb
α→ β | aa
β → bββaασ | bββaσ | bβaασ | bβaσ | baασ | baσ
γ → αα | α | aγ | a}.

Poznámka 8. Už sme spomenuli, že „bezepsilonový“ normálny tvar nie je normálnym tvarom v pra-
vom slova zmysle: „bezepsilonové“ gramatiky nedokážu vygenerovať prázdne slovo a veta o normál-
nom tvare tak zaručuje iba ekvivalenciu „až na ε“ . Tento drobný nedostatok sa občas zvykne riešiť
alternatívnou definíciou „bezepsilonového“ normálneho tvaru, pri ktorej sa toleruje prepisovacie pra-
vidlo σ → ε v prípade, že sa počiatočný neterminál σ nevyskytuje na pravej strane žiadneho pravidla.
Množina prepisovacích pravidiel P teda musí byť v tvare P ⊆ {σ → ε} ∪ N × ((N − {σ}) ∪ T )+.
Na prevod do tohto variantu „bezepsilonového“ normálneho tvaru stačí použiť horeuvedený algorit-
mus, pridať nový počiatočný neterminál σ′, pravidlo σ′ → σ a ak σ ∈ E, tak aj pravidlo σ′ → ε.

5 Formálna definícia pojmu odvodenia

Odvodenie v bezkontextovej gramatike je pomerne intuitívny pojem, ktorého definícii sa v literatúre
nevenuje veľká pozornosť. Zvyčajne sa narába iba s predstavou o „odvodení σ ⇒ w1 ⇒ . . . ⇒ wn “ ,
pričom sa toleruje, že takýto zápis v skutočnosti reprezentuje výrok a nie „entitu odvodenia“ . V litera-
túre sa miestami objavujú pokusy o zmiernenie tejto nepresnosti podaním formálnej definície pojmu
odvodenia, ktorá má zápisom ako ten vyššie priradiť určitý význam. Tieto definície sú však často
chybné a nesúhlasia napríklad s teóriou okolo stromov odvodenia, kde je čitateľ znova prenechaný
napospas intuícii.

Hovoriť o „odvodení σ ⇒ w1 ⇒ . . .⇒ wn “ je účelné z hľadiska prehľadnosti a intuitívnosti zápisu
a budeme tak robiť aj my. Na správne pochopenie konceptu stromov odvodenia je však nutné mať
adekvátnu predstavu o tom, čo sa takýmto zápisom v skutočnosti myslí. Potrebujeme teda definíciu
pojmu odvodenia, ktorá bude „v pozadí“ za každým zápisom typu σ ⇒ w1 ⇒ . . . ⇒ wn a ktorá
zároveň bude v súlade s neskoršie zavedenými pojmami.

Uvedomme si najprv, že odvodenie nemôžeme definovať iba ako postupnosť slov (w0, w1, . . . , wn)
takých, že w0 ⇒ w1 ⇒ . . . ⇒ wn, ba ani ako striedavú postupnosť takýchto slov a pravidiel použí-
vaných pri ich odvodzovaní. V bezkontextovej gramatike G = (N,T, P, σ) s N = {σ, α}, T = {a}
a P = {σ → αα, α→ αα | a} totiž napríklad existujú dve fundamentálne odlišné odvodenia vetnej
formy ααα, ktoré obidve môžeme zapísať ako

σ ⇒ αα⇒ ααα.
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Pri oboch týchto odvodeniach najprv na počiatočný neterminál aplikujeme pravidlo σ → αα a ná-
sledne pokračujeme použitím pravidla α→ αα. Rozdiel medzi nimi spočíva v tom, na ktorý z výsky-
tov neterminálu α aplikujeme pravidlo α→ αα. Ak teda vo vetných formách podčiarkneme výskyty
neterminálov prepisovaných v nasledujúcom kroku, môžeme tieto dve odvodenia zapísať nasledovne:

σ ⇒ αα⇒ ααα,

σ ⇒ αα⇒ ααα.

Ako vhodný prístup k definícii pojmu odvodenia sa javí práve zahrnutie „podčiarknutých neter-
minálov“ použitých vyššie. Zo zápisu uαv ⇒ uxv je totiž zrejmý výskyt prepisovaného neterminálu
a aj použité prepisovacie pravidlo je ním určené jednoznačne.

Pre naše neskoršie účely je postačujúce pamätať si, že pod odvodením rozumieme postupnosť
vetných foriem s vyznačenými výskytmi prepisovaných neterminálov. Nasledujúcu formálnu definíciu
uvádzame viac-menej len pre úplnosť a s cieľom presvedčiť nedôverčivého čitateľa o možnosti pojem
odvodenia plne sformalizovať.

Definícia 4. Nech G = (N,T, P, σ) je bezkontextová gramatika. Nech N = {α | α ∈ N} je abeceda
„podčiarknutých neterminálov“ ; predpokladajme, že je táto abeceda disjunktná s abecedou N ∪ T .
Nech h : (N ∪N ∪ T )∗ → (N ∪ T )∗ je homomorfizmus taký, že pre všetky α ∈ N je h(α) = h(α) = α
a pre všetky c ∈ T je h(c) = c. Odvodenie v gramatike G je konečná postupnosť slov (w0, w1, . . . , wn)
taká, že:

(i) Pre i = 0, . . . , n− 1 je wi = uiαivi, kde ui, vi ∈ (N ∪ T )∗ a αi ∈ N ; ďalej wn ∈ (N ∪ T )∗.

(ii) Pre i = 0, . . . , n− 1 je h(wi+1) = uixivi pre nejaké xi ∈ (N ∪ T )∗ také, že αi → xi ∈ P .

Odvodenie slova w v gramatike G je odvodenie (w0, w1, . . . , wn) také, že h(w0) = σ a wn = w.

6 Stromy odvodenia, jednoznačnosť a viacznačnosť

Uvažujme opäť bezkontextovú gramatiku G z predchádzajúceho oddielu. Slovo aa sa v nej dá odvodiť
dvoma spôsobmi:

σ ⇒ αα⇒ aα⇒ aa,

σ ⇒ αα⇒ αa⇒ aa.

Tieto odvodenia sa líšia iba poradím prepísania jednotlivých výskytov neterminálu α; „štruktúra“
odvodenia je v oboch prípadoch rovnaká. Podobná situácia nastane vždy, keď sa v odvodení vyskytne
vetná forma s viac ako jedným neskôr prepísaným neterminálom – poradie ich prepisovania možno
zvoliť ľubovoľne, čo znamená viacero formálne rôznych odvodení.

Aj z tohto dôvodu je často namieste považovať odvodenia s rovnakou „štruktúrou“ , líšiace sa
iba poradím prepisovania neterminálov, za ekvivalentné. Formalizáciou tejto myšlienky je koncept
stromu odvodenia, čo je stromová štruktúra jedinečná pre každé odvodenie. Stromu odvodenia môže
naopak zodpovedať aj viacero odvodení, ktoré sa však líšia iba poradím prepisovania neterminálov
a možno ich tak považovať za ekvivalentné.

Prv než uvedieme jeho formálnu definíciu, ilustrujeme pojem stromu odvodenia na príklade.

Príklad 1. Uvažujme gramatiku G = (N,T, P, σ) s N = {σ}, T = {a, b} a P = {σ → σσ | a | b | ε}
a odvodenia

σ ⇒ σσ ⇒ σσσ ⇒ aσσ ⇒ abσ ⇒ aba

σ ⇒ σσ ⇒ σσσ ⇒ σσσσ ⇒ aσσσ ⇒ aσσ ⇒ abσ ⇒ aba.

Príslušné stromy odvodenia sú na obrázku 1.
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(b) Strom druhého odvodenia.

Obr. 1: Stromy odvodení v gramatike G.

Stromy odvodenia zodpovedajúce daným dvom odvodeniam slova aba sú rôzne, čo znamená, že
tieto dve odvodenia nepovažujeme za ekvivalentné. Naopak, napríklad odvodenie

σ ⇒ σσ ⇒ σa⇒ σσa⇒ σba⇒ aba

má rovnaký strom odvodenia ako prvé odvodenie. Tieto dve odvodenia teda v určitom zmysle možno
považovať za ekvivalentné.

Formálna definícia stromu odvodenia zvyčajne pozostáva z dvoch častí. V prvej sa definujú všetky
korektné stromy odvodení v danej gramatike. V druhej časti sa potom definuje, kedy strom odvo-
denia prislúcha k nejakému odvodeniu. V nasledujúcom pod stromom rozumieme zakorenený strom
s ohodnotenými uzlami a s pevným usporiadaním potomkov.

Definícia 5. Nech G = (N,T, P, σ) je bezkontextová gramatika. Strom odvodenia v gramatike G je
strom, pre ktorý sú splnené nasledujúce podmienky.

(i) Každý vnútorný uzol je ohodnotený nejakým neterminálom ξ ∈ N .

(ii) Každý list je ohodnotený buď nejakým symbolom d ∈ N ∪ T , alebo prázdnym slovom ε. Listy
ohodnotené prázdnym slovom nemajú súrodencov.

(iii) Ak sú ohodnotenia všetkých synov uzla ohodnoteného neterminálom ξ ∈ N postupne dané ako
d1, . . . , dn ∈ N ∪ T ∪ {ε} (v tomto poradí), tak P obsahuje pravidlo ξ → d1 . . . dn.

Zreťazenie ohodnotení všetkých listov (v poradí zľava doprava) určuje vetnú formu vygenerovanú
daným odvodením z neterminálu, ktorým je ohodnotený koreň.

Definícia 6. Nech G = (N,T, P, σ) je bezkontextová gramatika a ξ ⇒n w je odvodenie v G,3 kde
n ∈ N, ξ ∈ N a w ∈ (N ∪ T )∗. Strom odvodenia ξ ⇒n w je strom odvodenia v gramatike G definovaný
induktívne vzhľadom na n:

1. Pre n = 0 nutne w = ξ; strom odvodenia ξ ⇒0 ξ je potom strom pozostávajúci z jediného uzla
ohodnoteného ξ.

2. Strom odvodenia ξ ⇒n uαv ⇒ uxv = w vznikne zo stromu odvodenia ξ ⇒n uαv pridaním
synov jeho (|u|+ 1)-ému „neepsilonovému“ listu tak, aby zreťazenie ich ohodnotení bolo x.

Stromom odvodenia slova w ∈ L(G) v gramatike G ďalej nazveme strom ľubovoľného z odvodení
σ ⇒∗ w slova w v tejto gramatike.

Indukciou by sme ľahko dokázali, že zreťazením ohodnotení listov stromu odvodenia ξ ⇒n w
vždy dostaneme slovo w.

3Pod nepresným zápisom ξ ⇒n w sa tu ukrýva odvodenie v zmysle definície 4.
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Ľavé krajné odvodenie je také odvodenie (w0, w1, . . . , wn), kde vo všetkých vetných formách
w0, . . . , wn−1 je podčiarknutý prvý výskyt neterminálu (zľava) a pravé krajné odvodenie je také
odvodenie, kde sú podčiarknuté posledné výskyty neterminálov. Inými slovami: v ľavom krajnom
odvodení sa v každom kroku odvodenia prepisuje prvý neterminál zľava a v pravom krajnom od-
vodení sa v každom kroku prepisuje prvý neterminál sprava. Krok ľavého krajného odvodenia sa
niekedy zvykne označovať ako ⇒lm a krok pravého krajného odvodenia ako ⇒rm.

Ľahko vidieť, že existuje vzájomne jednoznačná korešpondencia medzi stromami odvodenia a ľa-
vými (resp. pravými) krajnými odvodeniami.

Definícia 7. Nech G = (N,T, P, σ) je bezkontextová gramatika. Gramatika G sa nazýva jedno-
značná, ak pre každé slovo w ∈ L(G) existuje práve jedno ľavé krajné odvodenie v gramatike G.
Gramatika, ktorá nie je jednoznačná, sa nazýva viacznačná.

Definícia 8. Nech L ∈ LCF je bezkontextový jazyk. Jazyk L sa nazýva jednoznačný, ak existuje jed-
noznačná bezkontextová gramatika G taká, že L(G) = L. Jazyk, ktorý nie je jednoznačný, sa nazýva
vnútorne viacznačný.

Čitateľ si už istotne uvedomil, že jednoznačnosť gramatiky je ekvivalentná existencii práve jedného
pravého krajného odvodenia pre každé slovo w ∈ L(G), čo je ďalej ekvivalentné tomu, že pre každé
slovo w ∈ L(G) existuje práve jeden strom jeho odvodenia v gramatike G.

7 Uzáverové vlastnosti triedy bezkontextových jazykov

Hovoríme, že trieda jazykov L je uzavretá na nejakú k-árnu operáciu, ak táto operácia pre každú
k-ticu jazykov z triedy L vždy opäť vráti jazyk z triedy L .

Uzáverovými vlastnosťami tried jazykov sa na tomto predmete budeme hlbšie zaoberať neskôr.
Na prednáške však už bolo pomocou bezkontextových gramatík dokázaných niekoľko uzáverových
vlastností triedy LCF všetkých bezkontextových jazykov. Tri z nich si teraz pripomenieme – za-
každým sa pritom obmedzíme iba na opis príslušnej konštrukcie bezkontextovej gramatiky; dôkazy
správnosti týchto konštrukcií odzneli na prednáške.

Veta 4. Trieda LCF je uzavretá na zjednotenie: pre všetky L1, L2 ∈ LCF je aj L1 ∪ L2 ∈ LCF .

Nech G1 = (N1, T1, P1, σ1) a G2 = (N2, T2, P2, σ2) sú ľubovoľné bezkontextové gramatiky také,
že N1 ∩ N2 = ∅, L(G1) = L1 a L(G2) = L2. Jazyk L1 ∪ L2 je potom generovaný bezkontextovou
gramatikou G = (N,T, P, σ), kde σ 6∈ N1 ∪ T1 ∪ N2 ∪ T2 je nový neterminál, N = N1 ∪ N2 ∪ {σ},
T = T1 ∪ T2 a P = P1 ∪ P2 ∪ {σ → σ1 | σ2}.

Veta 5. Trieda LCF je uzavretá na zreťazenie: pre všetky L1, L2 ∈ LCF je aj L1 · L2 ∈ LCF .

Nech G1 = (N1, T1, P1, σ1) a G2 = (N2, T2, P2, σ2) sú ľubovoľné bezkontextové gramatiky také,
že N1 ∩ N2 = ∅, L(G1) = L1 a L(G2) = L2. Jazyk L1 · L2 je potom generovaný bezkontextovou
gramatikou G = (N,T, P, σ), kde σ 6∈ N1 ∪ T1 ∪ N2 ∪ T2 je nový neterminál, N = N1 ∪ N2 ∪ {σ},
T = T1 ∪ T2 a P = P1 ∪ P2 ∪ {σ → σ1σ2}.

Veta 6. Trieda LCF je uzavretá na iteráciu: pre všetky L ∈ LCF je aj L∗ ∈ LCF .

Nech G = (N,T, P, σ) je ľubovoľná bezkontextová gramatika taká, že L(G) = L. Jazyk L∗

je potom generovaný bezkontextovou gramatikou G′ = (N ′, T, P ′, σ′), kde σ′ 6∈ N ∪ T je nový
neterminál, N ′ = N ∪ {σ′} a P ′ = P ∪ {σ′ → σσ′ | ε}.
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