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1 Deterministické a nedeterministické konečné automaty

Začnime stručným zopakovaním základných definícií súvisiacich s konečnými automatmi v podobe,
v akej odzneli na prednáške. Rovno pritom upozornime na fakt, že ide len o jeden z množstva prístupov
k definícii konečných automatov a nimi rozoznávaných jazykov; pri štúdiu literatúry je teda potrebné
počítať s určitými rozdielmi v týchto definíciách, ktoré sú však – ako pochopíme neskôr – spravidla
relatívne nepodstatné.

Definícia 1. Deterministický konečný automat je pätica A = (K,Σ, δ, q0, F ), kde K je konečná
množina stavov, Σ je vstupná abeceda, δ : K × Σ→ K je prechodová funkcia, q0 ∈ K je počiatočný
stav a F ⊆ K je množina koncových (alebo akceptačných) stavov.

Všimnime si, že dôsledkom existencie počiatočného stavu q0 je neprázdnosť množiny stavov K.

Definícia 2. Konfigurácia deterministického konečného automatu A = (K,Σ, δ, q0, F ) je dvojica
(q, w), kde q ∈ K je stav a w ∈ Σ∗ je slovo (reprezentujúce nedočítanú časť vstupu).

Definícia 3. Krok výpočtu deterministického konečného automatu A = (K,Σ, δ, q0, F ) je binárna
relácia `A na množine konfigurácií automatu A taká, že pre p, q ∈ K a u, v ∈ Σ∗ je (p, u) `A (q, v)
práve vtedy, keď existuje c ∈ Σ také, že u = cv a δ(p, c) = q.

V prípade, že je uvažovaný automat A zrejmý z kontextu, píšeme namiesto `A často iba `.
Ide pritom o reláciu; pre každé k ∈ N sú teda v relácii `k tie dvojice konfigurácií, medzi ktorými
možno „prejsť“ na k krokov výpočtu. V relácii `∗, reflexívno-tranzitívnom uzávere relácie `, sú tie
dvojice konfigurácií, medzi ktorými možno „prejsť“ na nejaký počet krokov a v tranzitívnom uzávere,
relácii `+, sú tie dvojice konfigurácií, medzi ktorými možno „prejsť“ na nejaký nenulový počet krokov.
Relácia `0 je identita.

Definícia 4. Nech A = (K,Σ, δ, q0, F ) je deterministický konečný automat. Jazyk akceptovaný
(alebo rozoznávaný) automatom A je daný ako L(A) = {w ∈ Σ∗ | ∃q ∈ F : (q0, w) `∗ (q, ε)}.

Poznámka 1. V literatúre sa deterministické konečné automaty niekedy definujú aj s čiastočnou
prechodovou funkciou, čo znamená, že hodnota δ(q, c) nemusí byť definovaná pre všetky stavy q
a symboly c.1 Na tomto predmete však pracujeme s definíciou s úplnou prechodovou funkciou –
pri zadávaní deterministického konečného automatu je teda potrebné špecifikovať výstupy jeho pre-
chodovej funkcie pre všetky stavy a všetky písmená.

Nedeterministický konečný automat sa oproti deterministickému líši hlavne tým, že v ňom z jed-
ného stavu môže viesť aj viacero prechodov na ten istý symbol (prípadne nemusí existovať žiaden
takýto prechod). To bolo na prednáške sformalizované pomocou prechodovej funkcie, ktorá pre každý
stav q a symbol c vráti množinu stavov δ(q, c). Výpočet automatu tak môže zo stavu q na písmeno c
pokračovať do všetkých stavov z množiny δ(q, c), v dôsledku čoho môže na vstupnom slove w existovať
viacero rôznych výpočtov. Automat pritom slovo w akceptuje práve vtedy, keď existuje aspoň jeden
jeho výpočet na slove w, ktorý sa skončí v akceptačnom stave. Pri definícii z prednášky majú navyše
nedeterministické konečné automaty možnosť vykonávať aj prechody na prázdne slovo, pri ktorých
nič neprečítajú zo vstupu.

1Ekvivalencia oboch definícií je priamym dôsledkom ekvivalencie deterministických a nedeterministických konečných
automatov, ktorej sa budeme venovať nižšie.
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Definícia 5. Nedeterministický konečný automat je pätica A = (K,Σ, δ, q0, F ), kde K je konečná
množina stavov, Σ je vstupná abeceda, δ : K × (Σ ∪ {ε}) → 2K je prechodová funkcia, q0 ∈ K je
počiatočný stav a F ⊆ K je množina koncových (alebo akceptačných) stavov.

Definícia 6. Konfigurácia nedeterministického konečného automatu A = (K,Σ, δ, q0, F ) je dvojica
(q, w), kde q ∈ K je stav a w ∈ Σ∗ je slovo (reprezentujúce nedočítanú časť vstupu).

Definícia 7. Krok výpočtu nedeterministického konečného automatu A = (K,Σ, δ, q0, F ) je binárna
relácia `A na množine konfigurácií automatu A taká, že pre p, q ∈ K a u, v ∈ Σ∗ je (p, u) `A (q, v)
práve vtedy, keď existuje z ∈ Σ ∪ {ε} také, že u = zv a q ∈ δ(p, z).

Podobne ako pri deterministických konečných automatoch píšeme v prípadoch, keď je uvažovaný
automat A zrejmý z kontextu, namiesto `A často iba `.

Definícia 8. Nech A = (K,Σ, δ, q0, F ) je nedeterministický konečný automat. Jazyk akceptovaný
(alebo rozoznávaný) automatom A je daný ako L(A) = {w ∈ Σ∗ | ∃q ∈ F : (q0, w) `∗ (q, ε)}.

Častým spôsobom ako zadať konečný automat je tzv. prechodový diagram, v ktorom sú stavy
znázornené „kolečkami“ , prechodová funkcia šípkami medzi stavmi, počiatočný stav krátkou šípkou
do zodpovedajúceho „kolečka“ a akceptačné stavy „zdvojenými kolečkami“ .

Príklad 1. Uvažujme nedeterministický konečný automat A = (K,Σ, δ, q0, F ) s K = {q0, q1, q2},
Σ = {a, b, c}, F = {q2} a prechodovou funkciou danou nasledovne:

δ(q0, a) = {q0}, δ(q0, b) = {q0, q1}, δ(q0, c) = ∅, δ(q0, ε) = ∅,
δ(q1, a) = ∅, δ(q1, b) = ∅, δ(q1, c) = {q0}, δ(q1, ε) = {q2},
δ(q2, a) = ∅, δ(q2, b) = {q2}, δ(q2, c) = ∅ δ(q2, ε) = ∅.

Ľahko vidieť – a pri troche úsilia aj dokázať – že tento automat rozoznáva jazyk L(A) = {a, b, bc}∗b+.
Prechodový diagram automatu A je na obrázku 1a. Násobné prechody medzi rovnakými stavmi

niekedy pre prehľadnosť kreslíme ako jedinú šípku s viacerými ohodnoteniami, tak ako v prípade
slučky v diagrame na obrázku 1b.

q0 q1 q2

a

b

b

c

ε

b

(a) Diagram automatu A.

q0 q1 q2

a, b

b

c

ε

b

(b) Ekvivalentný diagram toho istého automatu.

Obr. 1: Prechodový diagram nedeterministického konečného automatu A.

Nasledujúce jednoduché tvrdenie, ktorého dôkaz prenechávame ako jednu z úloh na nasledujúce
cvičenie, budeme často používať bez toho, aby sme to explicitne uvádzali (platí pre deterministické
aj pre nedeterministické konečné automaty):

Tvrdenie 1. Nech A = (K,Σ, δ, q0, F ) je konečný automat. Potom:

a) Pre všetky p, q ∈ K a u, v ∈ Σ∗ je (p, uv) `∗ (q, v) práve vtedy, keď (p, u) `∗ (q, ε),

b) Pre všetky p, q, r ∈ K a u, v ∈ Σ∗ také, že (p, u) `∗ (q, ε) a (q, v) `∗ (r, ε) je aj (p, uv) `∗ (r, ε).
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2 Dokazovanie správnosti konštrukcie automatu

Dokazovanie tvrdenia L(A) = L pre konečný automat A a jazyk L je v mnohom podobné dokazovaniu
takýchto tvrdení pre bezkontextové gramatiky. Hlavným spoločným znakom je matematická indukcia,
ktorou sa obyčajne dokáže o niečo silnejšie tvrdenie, než to pôvodne zamýšľané. Pre konečné automaty
sú takýmto vhodným silnejším tvrdením väčšinou invarianty pre jednotlivé stavy: pre každý stav q
sa charakterizujú slová w dočítané2 automatom v stave q – čiže slová w, pre ktoré je (q0, w) `∗ (q, ε).
Tvrdenie L(A) = L potom obyčajne vyplýva z invariantov pre akceptačné stavy.

2.1 Riešené úlohy

Úloha 1. Zostrojte deterministický konečný automat akceptujúci jazyk

L = {w ∈ {a, b}∗ | #a(w) ≡ 1 (mod 3) ∧ #b(w) ≡ 3 (mod 7)}

a dokážte správnosť svojej konštrukcie.

Riešenie. Dokážeme, že jazyk L je akceptovaný automatom A = (K,Σ, δ, q0, F ), kde K = Z3 × Z7,
Σ = {a, b}, q0 = [0, 0], F = {[1, 3]} a

δ([s, t], a) = [s+ 1, t], ∀s ∈ Z3 ∀t ∈ Z7,

δ([s, t], b) = [s, t+ 1], ∀s ∈ Z3 ∀t ∈ Z7,

kde operácie sčítania sú – keďže ich aplikujeme na prvky grupy Z3 resp. Z7 – vždy modulo 3 resp. 7.
Rovnosť L(A) = L vyplynie z nasledujúceho tvrdenia o invariantoch pre jednotlivé stavy:

∀[s, t] ∈ K ∀w ∈ Σ∗ : ([0, 0], w) `∗ ([s, t], ε) ⇐⇒ #a(w) ≡ s (mod 3) ∧ #b(w) ≡ t (mod 7).

Dokážme teraz jednotlivé implikácie, vždy naraz pre všetky stavy [s, t] a slová w.

⇒: Indukciou vzhľadom na n ∈ N dokážeme, že pre všetky stavy [s, t] ∈ K a všetky w ∈ Σ∗

spĺňajúce ([0, 0], w) `n ([s, t], ε) musí byť #a(w) ≡ s (mod 3) a zároveň #b(w) ≡ t (mod 7).

1. Nech n = 0. Potom [s, t] = [0, 0] a w = ε. Tvrdenie teda platí.
2. Predpokladajme, že tvrdenie platí pre n = k a uvažujme n = k + 1.

Nech [s, t] ∈ K a w ∈ Σ∗ sú také, že ([0, 0], w) `k+1 ([s, t], ε). Potom w = uc pre nejaké
u ∈ Σ∗ a c ∈ Σ také, že pre nejaký stav [s′, t′] ∈ K je

([0, 0], uc) `k ([s′, t′], c) ` ([s, t], ε)

(posledný krok výpočtu musí byť na písmeno, pretože automat A je deterministický).
a) Ak c = a, nutne δ([s′, t′], a) = [s, t]. Z definície prechodovej funkcie δ vyplýva, že

s′ = s−1 a t′ = t a vďaka indukčnému predpokladu dostávame #a(u) ≡ s−1 (mod 3)
a #b(u) ≡ t (mod 7). Preto naozaj #a(w) = #a(ua) = #a(u) + 1 ≡ s (mod 3)
a #b(w) = #b(ua) = #b(u) ≡ t (mod 7).

b) Ak c = b, možno argumentovať analogicky.

⇐: Keďže je automat A deterministický, je možné dokázať opačnú implikáciu aj bez ďalšej indukcie.
Stačí si všimnúť, že dokazované invarianty pre jednotlivé stavy sú „disjunktné“ – nemôže sa
teda stať, že by niektoré slovo súčasne vyhovovalo invariantom pre dva rôzne stavy – a každé
slovo nad abecedou Σ súčasne vyhovuje invariantu pre niektorý zo stavov.

Z úplnosti prechodovej funkcie deterministického konečného automatu A vyplýva, že pre každé
slovo w ∈ Σ∗ existuje stav q ∈ K taký, že ([0, 0], w) `∗ (q, ε). Nech slovo w vyhovuje invariantu
pre nejaký stav [s, t] ∈ K, t. j. #a(w) ≡ s (mod 3) a #b(w) ≡ t (mod 7). Potom nutne
q = [s, t], pretože v opačnom prípade by podľa predchádzajúcej implikácie muselo slovo w
vyhovovať invariantu pre stav q 6= [s, t], čo sa vylučuje s platnosťou invariantu pre stav [s, t].

2Podobne by bolo možné pre každý stav q charakterizovať aj tie slová, pre ktoré existuje výpočet začínajúci v stave q
a končiaci v akceptačnom stave. Takýto prístup je však väčšinou o niečo menej intuitívny.
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Rovnosť L(A) = L je už bezprostredným dôsledkom dokázaného:

⊆: Nech w ∈ L(A). Keďže [1, 3] je jediný akceptačný stav, musí platiť ([0, 0], w) `∗ ([1, 3], ε).
Z invariantu pre [1, 3] ale vyplýva #a(w) ≡ 1 (mod 3) a #b(w) ≡ 3 (mod 7), a teda w ∈ L.

⊇: Nech w ∈ L. Potom #a(w) ≡ 1 (mod 3) a #b(w) ≡ 3 (mod 7) a z dokázaných invariantov
vyplýva, že ([0, 0], w) `∗ ([1, 3], ε). Preto w ∈ L(A).

Úloha 2. Nech Σ = {a, b}. Zostrojte nedeterministický konečný automat akceptujúci jazyk

L = Σ∗aaΣ∗

a dokážte správnosť svojej konštrukcie.

Riešenie. Ukážeme, že jazyk L je akceptovaný automatom A = (K,Σ, δ, q0, F ), kde K = {q0, q1, q2},
F = {q2} a

δ(q0, a) = {q0, q1}, δ(q1, a) = {q2}, δ(q2, a) = {q2},
δ(q0, b) = {q0}, δ(q1, b) = ∅, δ(q2, b) = {q2},
δ(q0, ε) = ∅, δ(q1, ε) = ∅, δ(q2, ε) = ∅.

Prechodový diagram automatu A je na obrázku 2.

q0 q1 q2
a a

a, b a, b

Obr. 2: Prechodový diagram nedeterministického konečného automatu A.

Pre stavy automatu A dokážeme nasledujúce invarianty:

I0 : ∀w ∈ Σ∗ : (q0, w) `∗ (q0, ε) ⇐⇒ w ∈ Σ∗,

I1 : ∀w ∈ Σ∗ : (q0, w) `∗ (q1, ε) ⇐⇒ w ∈ Σ∗a,

I2 : ∀w ∈ Σ∗ : (q0, w) `∗ (q2, ε) ⇐⇒ w ∈ Σ∗aaΣ∗.

⇒: Matematickou indukciou vzhľadom na n dokážeme, že pre všetky n ∈ N:

I ′0 : ∀w ∈ Σ∗ : (q0, w) `n (q0, ε)⇒ w ∈ Σ∗,

I ′1 : ∀w ∈ Σ∗ : (q0, w) `n (q1, ε)⇒ w ∈ Σ∗a,

I ′2 : ∀w ∈ Σ∗ : (q0, w) `n (q2, ε)⇒ w ∈ Σ∗aaΣ∗.

1. Pre n = 0 môže byť ľavá strana pravdivá iba pri implikácii I ′0. V takom prípade tiež nutne
w = ε, čo je slovo zo Σ∗.

2. Predpokladajme platnosť implikácií I ′0 až I ′2 pre n = k a uvažujme n = k + 1.
I ′0: Pre každé w ∈ Σ∗ spĺňajúce (q0, w) `k+1 (q0, ε) je triviálne w ∈ Σ∗.
I ′1: Nech w ∈ Σ∗ je slovo také, že (q0, w) `k+1 (q1, ε). Potom (q0, uz) `k (q, z) ` (q1, ε)

pre nejaké q ∈ K, u ∈ Σ∗ a z ∈ Σ ∪ {ε} také, že w = uz.
V takom prípade q1 ∈ δ(q, z) a z definície prechodovej funkcie δ ľahko vidieť, že z = a.
Preto naozaj w = ua ∈ Σ∗a.

I ′2: Nech w ∈ Σ∗ je slovo také, že (q0, w) `k+1 (q2, ε). Potom (q0, uz) `k (q, z) ` (q2, ε)
pre nejaké q ∈ K, u ∈ Σ∗ a z ∈ Σ ∪ {ε} také, že w = uz.
Preto q2 ∈ δ(q, z), a teda buď q = q1 a z = a, alebo q = q2 a z ∈ {a, b}. V prvom
prípade z indukčného predpokladu dostávame u ∈ Σ∗a, z čoho w = ua ∈ Σ∗aaΣ∗.
V druhom je z indukčného predpokladu u ∈ Σ∗aaΣ∗, a teda aj w = uz ∈ Σ∗aaΣ∗.
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⇐: Nech w ∈ Σ∗. Dokážme najprv implikáciu

I ′′0 : w ∈ Σ∗ ⇒ (q0, w) `∗ (q0, ε).

Indukciou vzhľadom na dĺžku slova w.

1. Ak |w| = 0, je w = ε a (q0, ε) `∗ (q0, ε).
2. Predpokladajme platnosť implikácie pre slová dĺžky k a uvažujme w ∈ Σ∗ s |w| = k + 1.

Nech w = uc, kde u ∈ Σk a c ∈ Σ. Na slovo u sa vzťahuje indukčný predpoklad, a teda
(q0, u) `∗ (q0, ε). Keďže ale q0 ∈ δ(q0, a) a q0 ∈ δ(q0, b), nutne (q0, c) ` (q0, ε). V dôsledku
toho skutočne (q0, w) = (q0, uc) `∗ (q0, c) ` (q0, ε).

Dokážeme teraz druhú implikáciu

I ′′1 : w ∈ Σ∗a⇒ (q0, w) `∗ (q1, ε).

Každé slovo w ∈ Σ∗a môžeme napísať ako w = ua, kde u ∈ Σ∗. Podľa implikácie I ′′0 teda
(q0, u) `∗ (q0, ε). Keďže ale q1 ∈ δ(q0, a), dostávame (q0, w) = (q0, ua) `∗ (q0, a) ` (q1, ε).

Zostáva dokázať poslednú implikáciu

I ′′2 : w ∈ Σ∗aaΣ∗ ⇒ (q0, w) `∗ (q2, ε).

Slovo w ∈ Σ∗aaΣ∗ napíšme ako w = uaav pre nejaké slová u, v ∈ Σ∗. Implikáciu I ′′2 dokážeme
indukciou vzhľadom na dĺžku slova v.

1. Pre |v| = 0 je v = ε a w = uaa. Podľa implikácie I ′′1 je (q0, ua) `∗ (q1, ε). Keďže ale
q2 ∈ δ(q1, a), dostávame (q0, w) = (q0, uaa) `∗ (q1, a) ` (q2, ε).

2. Predpokladajme platnosť tvrdenia pre |v| = k a uvažujme v ∈ Σ∗ také, že |v| = k + 1.
Potom w = uaaxc, kde x ∈ Σk a c ∈ Σ. Z indukčného predpokladu (q0, uaax) `∗ (q2, ε).
Keďže ale q2 ∈ δ(q2, a) a q2 ∈ δ(q2, b), dostávame (q0, w) = (q0, uaaxc) `∗ (q2, c) ` (q2, ε).

Keďže je q2 jediným akceptačným stavom, w ∈ Σ∗ patrí do L(A) práve vtedy, keď (q0, w) `∗ (q2, ε).
To ale vďaka invariantu I2 nastane práve vtedy, keď w ∈ Σ∗aaΣ∗ = L. Skutočne teda L(A) = L.

3 „Odepsilonovanie“ nedeterministických konečných automatov

Na prednáške bolo dokázané, že prechody na prázdne slovo nie sú pre nedeterministické konečné
automaty nevyhnutné – každý nedeterministický konečný automat možno prerobiť na ekvivalentný,
ktorý žiadne takéto prechody nemá.

Veta 1. Nech A = (K,Σ, δ, q0, F ) je nedeterministický konečný automat. Potom existuje nedeter-
ministický konečný automat A′ = (K ′,Σ′, δ′, q′0, F

′) taký, že L(A′) = L(A) a pre všetky q ∈ K ′ je
δ′(q, ε) = ∅.

Konštrukcií zbavujúcich nedeterministický konečný automat prechodov na prázdne slovo existuje
viacero. V nasledujúcom si pripomenieme algoritmus, ktorého správnosť bola dokázaná na prednáške.
Jeho vstupom je nedeterministický konečný automat A = (K,Σ, δ, q0, F ).

1. Pre všetky q ∈ K nájdi (napríklad prehľadávaním do hĺbky) „epsilonový chvost stavu q“ , čo je
množina [q]ε stavov dosiahnuteľných z q na prázdne slovo: [q]ε = {p ∈ K | (q, ε) `∗ (p, ε)}.

2. Odstráň všetky prechody na ε.

3. Pre každý stav q ∈ K okrem q0 a každé c ∈ Σ pridaj prechody zo stavu q na písmeno c
do všetkých stavov p ∈ K takých, že pre nejaké q′ ∈ K je q′ ∈ δ(q, c) a p ∈ [q′]ε.

4. Pre každé c ∈ Σ pridaj prechody zo stavu q0 na písmeno c do všetkých stavov p ∈ K takých,
že pre nejaké q, q′ ∈ K je q ∈ [q0]ε, q′ ∈ δ(q, c) a p ∈ [q′]ε.

5. Ak [q0]ε obsahuje aspoň jeden akceptačný stav, pridaj q0 do množiny akceptačných stavov.
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Poznámka 2. V krokoch 3 a 4 uvedeného algoritmu označuje δ prechodovú funkciu pôvodného
automatu A. Napríklad v kroku 4 teda netreba uvažovať prechody pridané v kroku 3.

3.1 Riešená úloha

Úloha 3. Uvažujme nedeterministický konečný automat A = (K,Σ, δ, q0, F ) s K = {q0, q1, q2, q3},
Σ = {a, b}, F = {q1, q3} a prechodovou funkciou δ danou prechodovým diagramom na obrázku 3.
Štandardnou konštrukciou zbavte automat A prechodov na ε.

q3 q0

q1

q2

ε

a

ε

a

b

Obr. 3: Prechodový diagram nedeterministického konečného automatu A.

Riešenie. Pre každý stav q ∈ K najprv nájdeme jeho „epsilonový chvost“ [q]ε:

[q0]ε = {q0, q1}, [q1]ε = {q1},
[q2]ε = {q2, q0, q1}, [q3]ε = {q3}.

V kroku 2 odstránime prechody na ε vedúce z q0 do q1 a z q2 do q0. Pokračujme krokom 3. Keďže
q2 ∈ δ(q1, a) a q0, q1 ∈ [q2]ε, vo výslednom automate budú prechody zo stavu q1 na písmeno a vedúce
do stavov q0 a q1. V kroku 3 nepribudnú žiadne ďalšie prechody. Keďže q1 ∈ [q0]ε, q2 ∈ δ(q1, a)
a q0, q1, q2 ∈ [q2]ε, v kroku 4 pribudnú prechody zo stavu q0 na písmeno a do stavov q0, q1 a q2.

q3 q0

q1

q2a

a

a

a a

a

a

b

Obr. 4: Prechodový diagram nedeterministického konečného automatu A′.

V poslednom kroku sa stane akceptačným aj stav q0, pretože q1 ∈ [q0]ε ∩ F . Výsledný automat
A′ = (K ′,Σ′, δ′, q′0, F

′) je potom znázornený diagramom na obrázku 4.

Poznámka 3. Algoritmus z prednášky je v zásade založený na nahradzovaní postupností precho-
dov typu „jeden prechod na písmeno a niekoľko prechodov na ε“ jedným prechodom na písmeno.
Existuje aj duálny algoritmus, v ktorom sa jedným prechodom na písmeno nahradzujú postupnosti
typu „niekoľko prechodov na ε a jeden prechod na písmeno“ . Takýto prístup umožňuje spracovať
počiatočný stav q0 konzistentne s ostatnými stavmi – nie je teda nutná analógia kroku 4. Krok 5 by
ale naopak bolo nutné vykonať pre všetky stavy (a nielen pre počiatočný stav q0).

Obidva tieto varianty „odepsilonovacieho“ algoritmu možno upraviť aj pre nedeterministické ko-
nečné automaty s viac ako jedným počiatočným stavom, kde ich možno interpretovať azda najpriro-
dzenejším a najelegantnejším spôsobom.
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