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Deterministické konečné automaty, nedeterministické konečné automaty a regulárne gramatiky sú
– ako už dobre vieme – rovnako silné modely opisujúce rovnakú triedu jazykov. Jazyky z tejto triedy
nazývame regulárnymi. Na definíciu regulárnych jazykov tak môžeme použiť ľubovoľný z uvedených
troch ekvivalentných modelov.

Definícia 1. Regulárny jazyk je jazyk L, pre ktorý existuje deterministický konečný automat A taký,
že L(A) = L. Triedu všetkých regulárnych jazykov označujeme R.

Veta 1. Nech L je jazyk. Nasledujúce tvrdenia sú ekvivalentné:

(i) Jazyk L je regulárny.

(ii) Existuje nedeterministický konečný automat A taký, že L(A) = L.

(iii) Existuje regulárna gramatika G taká, že L(G) = L.

1 Pumpovacia lema pre regulárne jazyky

Nech L ⊆ Σ∗ je ľubovoľný regulárny jazyk. Určite potom existuje deterministický konečný automat
A = (K,Σ, δ, q0, F ) taký, že L(A) = L. Ten má nejaký počet stavov |K| =: p. Nech w ∈ L je
ľubovoľné slovo z jazyka L také, že |w| ≥ p. Z Dirichletovho princípu vyplýva, že počas výpočtu
automatu A na tomto slove sa niektorý jeho stav qop musí „vyskytnúť“ aspoň dvakrát. Existujú teda
slová u, v ∈ Σ∗ a x ∈ Σ+ také, že w = uxv a

(q0, uxv) `∗ (qop, xv) `+ (qop, v) `∗ (q, ε),

kde q ∈ F je akceptačný stav. Nech teraz i ∈ N je ľubovoľné prirodzené číslo. Ľahko vidieť, že existuje
akceptačný výpočet automatu A na slove uxiv: stačí namiesto jedného podvýpočtu z qop do qop, počas
ktorého sa prečíta slovo x, vykonať presne i takýchto podvýpočtov. Inými slovami:

(q0, ux
iv) `∗ (qop, x

iv) `+ (qop, x
i−1v) `+ . . . `+ (qop, v) `∗ (q, ε).

Pre i = 0 uvedený zápis zodpovedá vynechaniu uvažovaného podvýpočtu. Je navyše zrejmé, že prvý
opakovaný výskyt nejakého stavu musí prísť po najviac p krokoch výpočtu, takže možno pridať
obmedzenie |ux| ≤ p.

Pomocou takýchto jednoduchých úvah možno odvodiť pumpovaciu lemu pre regulárne jazyky,
pričom správne poradie kvantifikátorov je dané poradím slov, ktoré sme zvýrazňovali italikou.

Veta 2. Nech Σ je abeceda a L ⊆ Σ∗ regulárny jazyk. Potom existuje p ∈ N také, že pre všetky w ∈ L
s |w| ≥ p existujú slová u, x, v ∈ Σ∗ také, že:

(i) w = uxv,

(ii) |ux| ≤ p,

(iii) |x| ≥ 1,

(iv) ∀i ∈ N : uxiv ∈ L.

Namiesto memorovania znenia pumpovacej lemy je lepšie túto vetu vždy „na počkanie“ odvodiť.
Priestor na chyby (predovšetkým v poradí kvantifikátorov) je v takom prípade omnoho menší.

1



1.1 Riešené úlohy

Keďže je pumpovacia lema sformulovaná ako tvrdenie platné pre každý regulárny jazyk, platnosť
podmienok z nej vyplývajúcich je pre jazyk L nutnou podmienkou jeho regulárnosti. Ak teda nejaký
jazyk nespĺňa podmienky vyplývajúce z pumpovacej lemy, nemôže byť regulárny. Táto skutočnosť
je základom metódy dokazovania negatívnych výsledkov o regulárnosti jazykov, ktorú teraz demon-
štrujeme na príklade jazyka všetkých palindrómov nad abecedou {a, b}.

Úloha 1. Dokážte, že jazyk L = {w ∈ {a, b}∗ | w = wR} nie je regulárny.

Riešenie. Sporom, nech L ∈ R. Jazyku L potom podľa pumpovacej lemy prislúcha číslo p ∈ N.
Vezmime slovo w = apbap – zjavne w ∈ L a |w| ≥ p. Existujú preto slová u, x, v ∈ {a, b}∗, pre ktoré
sú splnené podmienky (i) až (iv) pumpovacej lemy.

Podľa (i) je w = uxv. Z podmienok (ii) a (iii) teda vyplýva, že existujú r, s ∈ N také, že s ≥ 1,
u = ar, x = as, a v = ap−s−rbap.

Z podmienky (iv) pumpovacej lemy pre i = 2 napokon vyplýva, že slovo

ux2v = ara2sap−s−rbap = ap+sbap

patrí do jazyka L. To je ale spor, pretože s ≥ 1 a slovo ap+sbap teda nie je palindróm.

Pri nasledujúcej „písomkovej“ úlohe uvádzame okrem jej správneho riešenia aj nesprávne riešenie,
s ktorého variáciami prichádzali menej úspešní študenti pomerne často.

Úloha 2. Zistite, či je jazyk L = {a2n | n ∈ N} regulárny. Svoje tvrdenie dokážte.

Nesprávne riešenie. Dokážeme, že jazyk L nie je regulárny. Sporom, nech L ∈ R. Nech p ∈ N
je konštanta zodpovedajúca jazyku L podľa pumpovacej lemy. Bez ujmy na všeobecnosti môžeme
predpokladať, že p ≥ 1. Vezmime slovo w = a2

p . Potom w = uxv, kde u = ε, x = a a v = a2
p−1.

Nech i = 2. Potom z podmienky (iv) pumpovacej lemy vyplýva ux2v = a2
p+1 ∈ L, čo je spor, pretože

2p + 1 nemôže byť mocninou čísla 2.
Toto riešenie je chybné, pretože pumpovacia lema nám nedovoľuje zvoliť si slová u, x, v úplne

ľubovoľne. Jediné, čo nám dovoľuje o týchto slovách predpokladať, sú podmienky (i) až (iii).

Správne riešenie. Dokážeme, že jazyk L nie je regulárny. Sporom, nech L ∈ R. Nech p ∈ N je
konštanta zodpovedajúca jazyku L podľa pumpovacej lemy. Vezmime teraz ľubovoľné slovo w = a2

m

také, že 2m > p – očividne w ∈ L a |w| ≥ p. Potom existujú slová u, x, v, pre ktoré sú splnené
podmienky (i) až (iv) pumpovacej lemy.

Z podmienky (i) máme w = uxv. Z podmienok (ii) a (iii) vyplýva, že existujú čísla r, s ∈ N
také, že s ≥ 1, r + s ≤ p, u = ar, x = as a v = a2

m−r−s. Z podmienky (iv) pumpovacej lemy potom
vyplýva ux2v = a2

m+s ∈ L. Keďže ale s ≥ 1 a s ≤ r + s ≤ p < 2m, je 2m < 2m + s < 2m+1, a teda
2m + s nie je mocnina dvoch, čo je spor.

Poznámka 1. Vyvarovať sa chýb podobných tej vyššie je možné len pri správnom pochopení toho,
čo sa pri dôkazoch s použitím pumpovacej lemy deje.

Typický takýto dôkaz je dôkazom sporom – za účelom sporu predpokladáme, že jazyk L ⊆ Σ∗,
o ktorom chceme ukázať, že nie je regulárny, regulárny je. Pumpovacia lema je zárukou, že za tohto
predpokladu platí pre L určité tvrdenie. K sporu prídeme tak, že dokážeme negáciu tohto tvrdenia
– teda, že pre všetky p ∈ N existuje w ∈ L s |w| ≥ p také, že pre žiadne u, x, v ∈ Σ∗ nemôže súčasne
platiť (i) až (iv).

Kým teda s konštantou p musíme pracovať vo všeobecnosti, slovo w si môžeme zvoliť ako ľubovoľné
slovo z jazyka L dĺžky aspoň p. Slová u, x, v ale opäť musíme uvažovať vo všeobecnosti – potrebu-
jeme totiž ukázať, že pre žiadne prípustné u, x, v nemôžu byť súčasne splnené podmienky (i) až (iv).
To väčšinou dokazujeme tak, že predpokladáme platnosť podmienok (i) až (iii) a dokazujeme, že ne-
platí (iv). Slová u, x, v teda predsa len nemusíme uvažovať úplne ľubovoľné – môžeme predpokladať,
že sú pre ne splnené podmienky (i) až (iii). Žiaden ďalší predpoklad si ale dovoliť nemôžeme.
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2 Uzáverové vlastnosti triedy regulárnych jazykov

Trieda jazykov L je uzavretá na nejakú k-árnu operáciu Φ, ak Φ(L1, . . . , Lk) ∈ L kedykoľvek
L1, . . . , Lk ∈ L . Napríklad trieda regulárnych jazykov R je teda uzavretá na zjednotenie, pretože
pre všetky L1, L2 ∈ R je L1 ∪ L2 ∈ R.

Dokázať uzavretosť triedy regulárnych jazykov na k-árnu operáciu Φ teda znamená pre všetky
regulárne jazyky L1, . . . , Lk ukázať, že aj jazyk Φ(L1, . . . , Lk) musí byť regulárny. To možno urobiť
napríklad konštrukciou konečného automatu alebo regulárnej gramatiky pre jazyk Φ(L1, . . . , Lk),
pričom pri konštrukcii vychádzame z konečných automatov alebo regulárnych gramatík, ktorých
existenciu predpokladáme pre jazyky L1, . . . , Lk.

Vyvrátiť uzavretosť triedy R na operáciu Φ naopak znamená nájsť konkrétny príklad jazykov
L1, . . . , Lk ∈ R takých, že Φ(L1, . . . , Lk) 6∈ R.

2.1 Riešené úlohy

Definujme najprv na jazykoch operáciu, ktorá sa zvykne nazývať „shuffle “ .

Definícia 2. Nech Σ je abeceda a L1, L2 ⊆ Σ∗ sú jazyky. Jazyk L1 � L2 potom definujeme ako

L1 � L2 = {u1v1u2v2 . . . unvn | n ∈ N; u1, . . . , un, v1, . . . , vn ∈ Σ∗; u1 . . . un ∈ L1; v1 . . . vn ∈ L2}.

Do jazyka L1�L2 teda patria všetky slová, ktoré vzniknú z nejakého slova u ∈ L1 a slova v ∈ L2

ich „premiešaním“ zachovávajúcim relatívne poradie písmen v oboch slovách. Nejakým ľubovoľným
spôsobom tieto dve slová vyjadríme ako zreťazenia n ∈ N faktorov – položíme teda u = u1u2 . . . un
a v = v1v2 . . . vn, kde u1, . . . , un ∈ Σ∗ a v1, . . . , vn ∈ Σ∗ sú slová. Do jazyka L1 � L2 potom bude
patriť slovo u1v1u2v2 . . . unvn. Faktory u1, . . . , un a v1, . . . , vn tu môžu byť aj prázdne, čo okrem
iného znamená, že slovo z jazyka L1 � L2 sa môže začínať aj faktorom slova z L2.
Príklad 1. Nech L1 = {aa, ba} a L2 = {bb}. Potom

L1 � L2 = {aabb, abab, abba, baab, baba, bbaa, babb, bbab, bbba}.

Úloha 3. Zistite, či je trieda R uzavretá na operáciu „shuffle“. Svoje tvrdenie dokážte.

Riešenie. Dokážeme, že trieda R je uzavretá na túto operáciu. Nech L1, L2 sú regulárne jazyky
a nech Σ je ľubovoľná abeceda taká, že L1 ⊆ Σ∗ a zároveň L2 ⊆ Σ∗.1 Nech A1 = (K1,Σ, δ1, q0,1, F1)
a A2 = (K2,Σ, δ2, q0,2, F2) sú deterministické konečné automaty také, že L(A1) = L1 a L(A2) = L2.
Zostrojíme nedeterministický konečný automat A = (K,Σ, δ, q0, F ) taký, že L(A) = L1 � L2.

Automat A dostane slovo w = a1a2 . . . am pre nejaké m ∈ N a písmená a1, . . . , am ∈ Σ. Toto slovo
má akceptovať práve vtedy, keď w ∈ L1�L2 – to znamená, keď možno indexovú množinu [m] rozložiť
na dve disjunktné podmnožiny I = {i1, . . . , is} a J = {j1, . . . , jt} s i1 < . . . < is a j1 < . . . < jt tak, že
ai1 . . . ais ∈ L1 a aj1 . . . ajt ∈ L2. Každý výpočet automatu A na slove w bude zodpovedať nejakému
takémuto „rozdeleniu písmen“ tvoriacich slovo w podľa toho, či prislúchajú slovu z L1 alebo slovu
z L2; naopak pre každé takéto prípustné „rozdelenie písmen“ bude v automate A existovať jeden
výpočet na slove w. Na písmenách „priradených“ jazyku L1 bude automat A simulovať príslušný
výpočet automatu A1 a na zvyšných písmenách bude simulovať výpočet automatu A2. Automat A
napokon slovo w akceptuje práve vtedy, keď po jeho dočítaní budú pre aspoň jedno „rozdelenie
písmen“ obidva simulované automaty A1 a A2 v akceptačnom stave.

Stavmi automatu A teda budú dvojice [p, q], kde p je stav automatu A1 a q je stav automatu A2.
Na každé písmeno c sa automat A bude môcť zo stavu [p, q] pohnúť dvoma spôsobmi: odsimulovaním
kroku výpočtu automatu A1 prechodom do stavu [δ1(p, c), q] – to zodpovedá prípadu, keď je príslušný
výskyt písmena c „priradený“ jazyku L1 – a odsimulovaním kroku výpočtu automatu A2 prechodom
do stavu [p, δ2(q, c)] – čo zodpovedá prípadu, keď je výskyt písmena c „priradený“ jazyku L2.

Formálne teda automat A = (K,Σ, δ, q0, F ) skonštruujeme nasledovne: K = K1 ×K2,

δ([p, q], c) = {[δ1(p, c), q], [p, δ2(q, c)]} pre všetky p ∈ K1, q2 ∈ K2 a c ∈ Σ,

δ([p, q], ε) = ∅ pre všetky p ∈ K1 a q ∈ K2, q0 = [q0,1, q0,2] a F = F1 × F2.
1Ak Σ1,Σ2 sú abecedy také, že L1 ⊆ Σ∗1 a L2 ⊆ Σ∗2, možno vziať napríklad Σ = Σ1 ∪ Σ2.
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Indukciou by sme ľahko dokázali, že pre p ∈ K1, q ∈ K2 a w ∈ Σ∗ je ([q0,1, q0,2], w) `∗A ([p, q], ε)
práve vtedy, keď existuje n ∈ N a slová u1, . . . , un, v1, . . . , vn ∈ Σ∗ také, že w = u1v1u2v2 . . . unvn,
pričom (q0,1, u1 . . . un) `∗A1

(p, ε) a (q0,2, v1 . . . vn) `∗A2
(q, ε). Jednoduchým dôsledkom tohto pozoro-

vania je, že w ∈ L(A) – čiže ([q0,1, q0,2], w) `∗A ([p, q], ε) pre [p, q] ∈ F = F1 × F2 – práve vtedy, keď
w ∈ L(A1)� L(A2) = L1 � L2, z čoho vyplýva správnosť našej konštrukcie.

Definícia 3. Nech Σ je abeceda a L ⊆ Σ∗ je jazyk. Rotáciou jazyka L nazveme jazyk

rot(L) = {vu | u, v ∈ Σ∗; uv ∈ L}.

Úloha 4. Zistite, či je trieda R uzavretá na rotáciu. Svoje tvrdenie dokážte.

Riešenie. Dokážeme, že trieda R je uzavretá na rotáciu. Nech L ∈ R je regulárny jazyk. Potom exis-
tuje deterministický konečný automat A taký, že L(A) = L. Zostrojíme nedeterministický konečný
automat A′ taký, že L(A′) = rot(L).

Automat A′ dostane vstup w, ktorý má akceptovať v prípade, že existujú slová u, v, pre ktoré
je w = vu a zároveň uv ∈ L. Ak uv ∈ L, musí existovať akceptačný výpočet automatu A na slove uv –
tento výpočet bude „základom“ pre výpočet automatuA′. AutomatA′ teda najprv „nedeterministicky
uhádne“ stav q, v ktorom automat A dočíta slovo u – správnosť tohto „tipu“ overí na konci výpočtu.
Následne spustí simuláciu automatu A na vstupe w – ktoré má v prípade akceptácie zodpovedať
slovu vu – so začiatkom simulácie v stave q. Automat A′ bude simulovať automat A, až kým sa
„nedeterministicky rozhodne“ , že prečítal slovo v.

Ak táto simulácia skončila v neakceptačnom stave automatu A, buď na začiatku nešlo o správny
„nedeterministický tip“ stavu q, alebo automat A slovo uv neakceptuje. V oboch prípadoch auto-
mat A′ svoj vstup zamietne. Ak naopak simulácia skončila v akceptačnom stave, automat A′ overí
svoj „nedeterministický tip“ stavu q. To znamená, že na zvyšku svojho vstupu – ten má zodpovedať
slovu u – spustí simuláciu automatu A so začiatkom simulácie v stave q0 a overí, či po jeho dočítaní
bude automat A naozaj v stave q. Ak áno, automat A′ svoj vstup akceptuje.

Nech teda A = (K,Σ, δ, q0, F ). Potom A′ = (K ′,Σ, δ′, q′0, F
′), kde K ′ = {q′0} ∪K × {1, 2} ×K,

δ′(q0, ε) = {[q, 1, q] | q ∈ K},
∀p, q ∈ K ∀c ∈ Σ : δ′([p, 1, q], c) = {[δ(p, c), 1, q]},
∀p ∈ F ∀q ∈ K : δ′([p, 1, q], ε) = {[q0, 2, q]},
∀p, q ∈ K ∀c ∈ Σ : δ′([p, 2, q], c) = {[δ(p, c), 2, q]},

ostatné výstupy prechodovej funkcie sú prázdne množiny a množina akceptačných stavov F ′ je

F ′ = {[q, 2, q] | q ∈ K}.

Dôkaz správnosti tejto konštrukcie je možné založiť na nasledujúcich invariantoch: pre všetky p, q ∈ K
a v ∈ Σ∗ je (q′0, v) `∗A′ ([p, 1, q], ε) práve vtedy, keď (q, v) `∗A (p, ε); ďalej (q′0, w) `∗A′ ([p, 2, q], ε)
práve vtedy, keď existujú slová u, v ∈ Σ∗ také, že w = vu a pre nejaký akceptačný stav qF ∈ F
je (q, v) `∗A (qF , ε) a (q0, u) `∗A (p, ε). Z toho vyplýva, že w ∈ L(A′) – čiže (q′0, w) `∗A′ ([q, 2, q], ε)
pre nejaké q ∈ K – práve vtedy, keď existujú slová u, v ∈ Σ∗ také, že w = vu a pre nejaký akceptačný
stav qF ∈ F je (q0, u) `∗A (q, ε) a (q, v) `∗A (qF , ε), t. j. uv ∈ L(A) = L. To znamená, že naozaj
w ∈ L(A′) práve vtedy, keď w ∈ rot(L).

Úloha 5. Nech Σ je abeceda a L ⊆ Σ∗ je jazyk. Položme

pal(L) := {w ∈ L | w = wR}.

Zistite, či je trieda R uzavretá na operáciu pal. Svoje tvrdenie dokážte.

Riešenie. Dokážeme, že trieda R nie je uzavretá na túto operáciu. Uvažujme napríklad regulárny
jazyk L = {a, b}∗. Potom zrejme pal(L) = {w ∈ {a, b}∗ | w = wR}, čo je jazyk, o ktorom z úlohy 1
vieme, že nie je regulárny.
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