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Budeme sa teraz zaoberat algoritmickou riesitelnostou vypoctovych problémov — teda existenciou
algoritmov pre dany problém. Obmedzime sa pritom na Speciadlnu triedu vypoctovych problémov —
takzvané rozhodovacie problémy — kde je pre kazdy vstup vystupom jedna z pravdivostnych hodnot
,»ano alebo ,,nie“. Pre dany vstup je teda nutné rozhodnait, ¢i pren plati nejaka vlastnost. Algoritmicky
riesitelné rozhodovacie problémy nazveme rozhodnutelnymi a v nasledujucom tak polozime zaklady
teorie algoritmickej rozhodnutelnosti.

Na doékaz rozhodnutelnosti vypoctového problému staci opisat algoritmus, ktory tento problém
riesi — rozhoduje. Nasim cieflom bude okrem iného najst problém, ktory rozhodnutelny nie je, a teda
prefi neexistuje Ziaden algoritmus. Ddkaz takéhoto tvrdenia sa uz nezaobide bez formalnej definicie
rozhodovacieho problému a formalnej definicie algoritmu. V nasledujiicom preto:

1. sformalizujeme pojem rozhodovacieho problému — vhodnou formalizéciou je jazyk;

2. sformalizujeme pojem algoritmu — tu sa vhodnou formalizaciou javi byt Turingov stroj zasta-
vugiici na kaZdom vstupe, ¢o je zaloZené na takzvanej Turingovej téze;

3. obidve formalizacie vyuZijeme na vybudovanie zakladov teoérie rozhodnutelnosti.

1 Rozhodovacie problémy

Pod rozhodovacim problémom rozumieme vypocétovy problém, ktorého vystupom je na kazdom vstupe
booleovska hodnota ,,ano* alebo ,,nie*. Vstup rozhodovacieho problému by mal byt reprezentovatelny
ako slovo nad nejakou abecedou ¥. Rozhodovaci problém je potom jednozna¢ne ureny mnozinou
— jazykom — tych vstupnych slov, pre ktoré je vystupom ,,4no“. Pomocou kédovania je v pripade
potreby mozné zarucit, aby islo o jazyk nad abecedou ¥ = {0,1}.

Formalizacia 1. Pojem rozhodovacieho problému formalizujeme ako jazyk nad nejakou abecedou X
obsahujici prave vsetky vstupy, pre ktoré je vystupom ,,ano“.

Priklad 1. Uvazujme rozhodovaci problém dany nasledovne.

Vstup: Prirodzené ¢islo n € N dané svojou binarnou reprezentaciou.
| Vystup: ,,Ano“ prave vtedy, ked je n prvoéislo.

Tomuto problému zodpoveda jazyk

L ={w€{0,1}" | w je binarny zapis prvo¢isla} = {10,11,101,111,1011,...}.

Priklad 2. Uvazujme rozhodovaci problém dany nasledovne.

Vstup: Prirodzené ¢islo n € N dané svojou dekadickou reprezentéciou; cifra d € {0,1,...,9}.
| Vystup: ,,Ano* prave vtedy, ked je n-ta cifra desatinného rozvoja &isla 7 rovna d.

Obidva vstupy tu musia byt reprezentované jedinym slovom — to moézeme docielit napriklad ich
oddelenim Specidlnym symbolom #. Uvedenému rozhodovaciemu problému tak zodpoveda jazyk

L ={w#d|weX"; de¥; dec(w)-ta cifra desatinného rozvoja 7 je rovna d},
kde ¥ = {0,1,...,9} a kde pre w € ¥* je dec(w) prirodzené ¢islo, ktorého dekadickou reprezentaciou
je slovo w. Kedze m = 3,14159.. ., je
L = {1441, 2444, 3441, 4445, 5449, .. ..

V obidvoch prikladoch ide iba o jedno z viacerych moznych kodovani vstupov. Pokial je kodovanie
vstupu zvolené ,aspoinl trochu rozumne®, obvykle z hl'adiska rozhodnutelnosti nehra Ziadnu rolu.



2 Turingova téza

Dospeli sme teda k formalnej definicii rozhodovacieho problému — ide o jazyk nad nejakou abecedou X..
V podobnom duchu este potrebujeme formalizovat aj pojem algoritmu rieSiaceho dany rozhodovaci
problém. Tu sa vhodnou formalizaciou javia byt deterministické Turingove stroje, ktoré sa zastavia
na kaZdom vstupe a ktoré akceptuju jazyk zodpovedajici uvazovanému rozhodovaciemu problému.

Alana Turinga viedla k definicii matematickej abstrakcie pocitacieho zariadenia dnes znamej
ako Turingov stroj prave potreba formalizacie pojmu algoritmus.! Turingova téza je — principialne
neoveritelné — tvrdenie, podla ktorého kazdy (v neformélnom zmysle) algoritmicky vypocet mozno
realizovat na Turingovom stroji. Turingovu tézu nemozno ani dokéazat, ani vyvratit —ide totiz o tvrde-
nie, ktoré hovori, ze Turingove stroje si vhodnou formalizaciou inak ¢isto intuitivne chdpaného pojmu
algoritmu. Turingov stroj teda mozno chépat ako formalnu definiciu algoritmu, pricom Turingova
téza vyjadruje presvedcenie, Ze tato definicia je odzrkadlenim skutoc¢nosti.

Napriek principialnej neoveritelnosti Turingovej tézy existuju viaceré argumenty na jej podporu.
Tym najdolezitejsim je skutoc¢nost, Ze prakticky v8etky pokusy Turingovych suc¢asnikov a naslednikov
o alternativnu definiciu algoritmu vyustili v model, ktory je z hladiska sily s Turingovymi strojmi
ekvivalentny. Jednou z takychto alternativnych formalizacii je napriklad A-kalkul Alonza Churcha,
vdaka ¢omu je Turingova téza v literattre znama aj ako Churchova-Turingova téza. Dalsimi for-
malizaciami st napriklad rekurzivne funkcie, Minského registrové stroje, Markovove algoritmy, atd.
V nasledujiicom prijmeme Turingovu tézu a Turingove stroje vyuzijeme ako prostriedok na vybudo-
vanie zékladov teodrie algoritmickej vypocitatelnosti.

Formalizacia 2. Pod algoritmom rozhodujicim dany rozhodovaci problém budeme rozumiet deter-
manisticky Turingov stroj, ktory sa na kaZdom vstupe zastavi a ktory akceptuje jazyk zodpovedajuci
uvazovanému rozhodovaciemu problému.

3 Stroje zastavujice na kazdom vstupe a rekurzivne jazyky

Poziadavka zastavenia Turingovho stroja na kazdom vstupe odzrkadluje vlastnost kone¢nosti vypoc-
tov, ktoré je spita s intuitivnou predstavou o algoritme. Zamerajme sa na jej vyznam a dosledky.

Uvazujme deterministicky Turingov stroj A pracujici na vstupe w. Bez ujmy na vSeobecnosti
mozeme predpokladat, Ze stroj A neobsahuje Ziadne prechody vedice z akceptaénych stavov. Stroj A
sa teda v akceptacnej konfiguracii vzdy ,,zasekne“. Vypocet stroja A na slove w tak moze prebiehat
nasledujicimi troma spésobmi.

1. Po nejakom poéte krokov pride do akceptacnej konfiguracie a zastavi sa. Potom w € L(A).
2. Po nejakom poéte krokov sa zastavi v neakceptacnej konfiguracii. Potom w ¢ L(A).
3. Nikdy sa nezastavi a vSetky konfiguracie, cez ktoré prejde, si neakceptacné. Potom w ¢ L(A).

Uvazujme teraz pozorovatela vypoctu stroja A na slove w, ktory sa iba na zéklade neho snazi
zistit, ¢i w € L(A). Jedinou informéciou, ktorit méa pozorovatel k dispozicii je, ¢i vypocet skoncil
a ak 4ano, tak s akym vysledkom. Lahko vidiet, Ze pozorovatel nedokaZe v Ziadnom bode vypoctu
odlisit pripad, ked je vypocet nekoneény — a teda w ¢ L(A) — od pripadu, ked je nutné odsimulovat
este niekol'ko krokov a vypocet sa zastavi — a teda moze platit w € L(A) aj w & L(A).

Poziadavka zastavenia Turingovho stroja A na kazdom vstupe zabezpeci, Ze vypocet stroja A
na slove w moze prebiehat iba nasledujicimi dvoma sposobmi.

1. Po nejakom pocte krokov pride do akceptacnej konfiguracie a zastavi sa. Potom w € L(A).
2. Po nejakom pocte krokov sa zastavi v neakcepta¢nej konfiguracii. Potom w ¢ L(A).

Jazyky akceptované takymito strojmi nazveme rekurzivnymi.

1Spociatku v jeho praci islo predovietkym o dékaz algoritmickej neriesitelnosti jedného konkrétneho problému
z matematickej logiky.



Definicia 1. Jazyk L je rekurzivny, ak existuje deterministicky Turingov stroj A, ktory sa na kazdom
vstupe zastavi a pre ktory plati L(A) = L. Triedu vSetkych rekurzivnych jazykov oznac¢ujeme .%...

Neskor ukazeme, ze tato definicia mé skuto¢ne svoj vyznam — existuje Turingov stroj, ku ktorému
neexistuje ziaden ekvivalentny Turingov stroj zastavujici na kazdom vstupe. Trieda Z.. je teda
vlastnou podtriedou Lrg.

4 Rozhodnutelné a nerozhodnutelné problémy

Na zaklade Turingovej tézy sme pojem algoritmu rozhodujiceho dany rozhodovaci problém sformali-
zovali ako deterministicky Turingov stroj, ktory sa na kazdom vstupe zastavi a ktory akceptuje jazyk
zodpovedajici tomuto rozhodovaciemu problému.

Rozhodovaci problém nazveme rozhodnutelngm, ak existuje algoritmus, ktory ho rozhoduje — ¢ize
ak existuje Turingov stroj, ktory sa na kazdom vstupe zastavi a ktory akceptuje jazyk k uvazovanému
rozhodovaciemu problému prisltuchajici. Tato situacia nastane prave vtedy, ked je jazyk prisliuchajuci
k danému rozhodovaciemu problému rekurzivny.

Rozhodovaci problém nazveme nerozhodnutelngm, ak nie je rozhodnutelny. Existenciu nerozhod-
nutelnych problémov dokédZeme neskor.

Rozhodovaci problém nazveme rekurzivne vycislitelngm (niekde tiez c¢iastocne rozhodnutelngm),
ak existuje Turingov stroj, ktory akceptuje jemu zodpovedajici jazyk — pricom tento sa uz nemusi
zastavit na kazdom vstupe. To nastane prave vtedy, ked je jazyk zodpovedajuci danému rozhodo-
vaciemu problému rekurzivne vy¢islitelny. Rekurzivne vydcislitelny problém moéze byt rozhodnutelny
(ak mu zodpoveda rekurzivny jazyk), alebo nerozhodnutelny (v opa¢nom pripade).

5 Rozhodovacie problémy, algoritmy a ich formalizacie

Vztahy intuitivne chépanych pojmov rozhodovacieho problému a algoritmu k ich formalizaciam si
znézornené na obrazku 1.

. Turingov stroj
Algoritmus €—— astavujtici na kazdom vstupe

Tiest akceptuge

Rozhodovaci problém ¢———————p Jazyk

Obr. 1: Rozhodovacie problémy, algoritmy a ich formalizécie.

Dalgie pojmy zavedené vyssie su spoloc¢ne s ich formaliziciami zhrnuté v tabulke 1.

Pojem Formalizacia

Rozhodovaci problém Jazyk (nad nejakou abecedou X)

Algoritmus Turingov stroj zastavujici na kazdom vstupe
Rozhodnutelny problém Jazyk z triedy Zec

Nerozhodnutelny problém Jazyk mimo triedy Zec

Rekurzivne vyéislitelny problém | Jazyk z triedy Zrg

Tabul'ka 1: Zhrnutie kl'ai¢ovych pojmov teorie rozhodnutelnosti a ich formalizacii.



6 Existencia jazykov mimo Zrp

Rekurzivne vy¢islitelnych jazykov nad abecedou ¥ = {0, 1} existuje najviac tolko, ¢o vSetkych kodov
Turingovych strojov s binarnou vstupnou abecedou — kazdé zobrazenie, ktoré rekurzivne vydislitel-
nému jazyku L priradi kod (A) niektorého deterministického Turingovho stroja A akceptujuceho L,
je totiz evidentne injektivne. Kod Turingovho stroja je (kone¢ny) binarny retazec a mnozina vsetkych
takychto retazcov je spoéitatelne nekoneéné. Vietkych binarnych rekurzivne vyéisliteInych jazykov
je teda tiez len spocitatelne vela. VSetkych jazykov nad abecedou ¥ = {0, 1} je naopak nespocita-
telne vela, lebo ide o podmnoZiny spocitatelne nekonecnej mnoziny Y*. Musi preto existovat jazyk
nad abecedou X = {0, 1}, ktory nie je rekurzivne vy¢islitelny.

Rekurzivne vy¢islitelné jazyky zodpovedaju rekurzivne vyéislitelnym problémom. Z uvedeného
teda vyplyva, Ze existuje rozhodovaci problém, ktory nie je rekurzivne vycislitelny. Kazdy rozhod-
nutelny problém je nutne aj rekurzivne vydcislitelny. Z dokdzaného tvrdenia teda tieZ vyplyva, Ze
existuje rozhodovaci problém, ktory nie je rozhodnutelny.

Uvedeny dokaz je ¢isto existen¢ény. V nasledujicom ale najdeme aj konkrétny jazyk (rozhodovaci
problém), o ktorom dokéZeme, Ze nie je rekurzivne vy¢cislitelny.

7 Diagonalny problém a jeho nerozhodnutelnost

Diagondlny problém je rozhodovaci problém dany nasledovne:

Vstup: Kod (A) deterministického Turingovho stroja? A nad vstupnou abecedou {0, 1}.
| Vystup: ,,Ano“ prave vtedy, ked (A) € L(A).
Diagonalnemu problému zodpoveda diagondlny jazyk:
Lp ={(A) | A jedet. TS nad vstupnou abecedou {0,1}; (A) € L(A)}.
Podobne mozno uvazovat aj komplementdrny diagondlny problém, ktory je dany takto:

Vstup: Kod (A4) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
| Vystup: ,,Ano“ prave vtedy, ked (A) & L(A).
Komplementiarnemu diagonalnemu problému zodpovedéa komplement diagondlneho jazyka:
L% = {(A) | A je det. TS nad vstupnou abecedou {0,1}; (A) & L(A)}.

Poznamka 1. Skutoc¢nost, Ze komplementarnemu diagonalnemu problému zodpovedé jazyk Lg je
dosledkom toho, ze kaZdy binarny retazec povazujeme za kod nejakého Turingovho stroja.

Veta 1. Komplementdrny diagondlny problém nie je rekurzivne vycislitelny: Lg ¢ LrE.

Dékaz. Sporom — nech Lg € Zrr a M je deterministicky Turingov stroj taky, ze L(M) = Lg.
Ak (M) € L(M), z definicie diagonélneho jazyka je (M) € Lp. To je spor, pretoze L(M) = L%,
a teda L(M) nemoze obsahovat slovo (M) € Lp. Preto (M) ¢ L(M). V takom pripade ale z definicie
diagonalneho jazyka vyplyva (M) € Lg a vd'aka rovnosti L(M) = L% je (M) € L(M): spor. O

Veta 2. Diagondlny problém je rekurzivne vycislitelny, ale nie je rozhodnutelny: Lp € LrE — Lrec-

Doékaz. Zjavne Lp € Lrp — stroj akceptujuci jazyk Lp moze pracovat tak, ze pre kazdy vstup (A)
odsimuluje vypocet univerzalneho Turingovho stroja na vstupe (A)#(A).

f)alej sporom, nech Lp € %.... Potom existuje deterministicky Turingov stroj M zastavujuci
na kazdom vstupe taky, ze L(M) = Lp. Nech M’ pracuje ako M s rozdielom, ze M’ akceptuje prave
vtedy, ked M zamieta.? Zjavne L(M') = LS, z ¢oho Lg € Lree € LRrE — Spor. O

2Deterministickym Turingovym strojom rozumieme vZdy stroj v normélnom tvare bez prechodov vedtcich z akcep-
taénych stavov. Pod zapisom (A) navySe chapeme lubovolny z viacerych moznych kédov stroja A. Detaily moZzno najst
v poznamkach ku koédovaniu Turingovych strojov; viac uz na tieto skutocnosti upozoriovat nebudeme.

3Stroj M’ ziskame zo stroja M tak, Ze vSetky povodné stavy prehlasime za neakceptané a pridame jeden novy
akceptacény stav, do ktorého bude méct M’ prejst prave vtedy, ked by sa stroj M zastavil v neakcepta¢nej konfiguracii.



8 Vztah medzi triedami %... a ZrE

Nasli sme rekurzivne vy¢islitelny jazyk, ktory nie je rekurzivny; kedze je inkluzia Z.. C ZrE
zrejma, dokézali sme tym vlastni inklaziu % C ZLrEe. Nasli sme tiez priklad jazyka, ktory nie je
ani rekurzivne vy¢islitelny. Trieda ZrE je teda vlastnou podtriedou triedy vetkych jazykov.

Zavisime teraz nas obraz o tychto triedach jazykov dokazom tvrdenia charakterizujiceho triedu
rekurzivnych jazykov pomocou rekurzivne vyéislitelnych jazykov a ich komplementov. Najprv este
ale ukadZeme, Ze trieda % .. je uzavreta na komplement. To je vlastnost, ktoru trieda £rrp neméa —
napriklad kvoli jazyku Lp.

Veta 3. Trieda jazykov Zree je uzavretda na komplement.

Dékaz. Nech L € Z,e.. Potom existuje deterministicky Turingov stroj A, ktory sa na kazdom svo-
jom vstupe zastavi a pre ktory plati L(A) = L. Jazyk L€ je potom akceptovany deterministickym
Turingovym strojom A’, ktory simuluje vypocet stroja A az kym sa nezastavi a nasledne akceptuje
prave vtedy, ked stroj A vstup zamietne. ]

Veta 4. Nech L je jazyk. Potom L € Lo prave vtedy, ked L € Lre a L € LrE.
Doékaz. Dokézeme postupne jednotlivé implikacie:
=: Ak L € L., vdaka vete 3 je aj LE € ZLee. Tvrdenie potom vyplyva z inklizie Zee € LrE.

<: Nech L € Zgrp a L € Zrp. Potom existuje deterministicky Turingov stroj A; taky, Ze
L(A;) = L a deterministicky Turingov stroj A, taky, ze L(As) = L. Na kazdom vstupe
zastavujici deterministicky Turingov stroj A akceptujuci jazyk L moze na vstupe w pracovat
tak, ze — napriklad s pouzitim dvojstopej pasky — striedavo simuluje vzdy jeden krok vypoctu
stroja A1 na vstupe w a jeden krok vypoctu stroja As na vstupe w. Jeden z tychto strojov svoj
vstup istotne po nejakom konednom pocte krokov akceptuje. Ak akceptuje stroj Ay, akceptuje
aj stroj A. Ak akceptuje stroj Ao, stroj A svoj vstup zamietne a zastavi sa. O

Ak teda definujeme triedu co--Zrg ako triedu vsetkych jazykov, ktorych komplement je v . %rp
(pozor: nejde o triedu XEE), mozno vetu 4 preformulovat aj ako % = ZLre N co-LrE. Vzajomné
vztahy tried Lee, LrE a co-LrE tak mozu byt znazornené ako na obrazku 2.

Univerzum jazykov

Obr. 2: Vzijomné vztahy medzi triedami Z..., LrEe a co-Lrg a priklady jazykov v jednotlivych triedach.
Trieda % zodpoveda rozhodnutelnym problémom, vSetko ostatné zodpoveda nerozhodnutelnym problé-
mom. Trieda ZrE zodpoveda rekurzivne vydéislitelnym problémom, ktoré mozu byt rozhodnutelné (prienik
S c0-ZRrE, t. j. trieda Z...) alebo nerozhodnutelné (zvysok triedy Lrg).



9 Redukcie: univerzalny problém a problém zastavenia

Castou metodou dokazovania vysledkov o nerozhodnutelnosti st redukcie. Redukciu rozhodovacieho
problému A na problém B si moZno — pri volnejsej interpretécii tohto pojmu — predstavit ako dokaz, ze
rozhodnutelnost (alebo rekurzivna vyé¢islitelnost) problému B implikuje rozhodnutelnost (rekurzivnu
vy¢islitelnost) problému A. Keby sme teda mali k dispozicii ,,¢iernu skrinku — hypoteticky Turingov
stroj — pre problém B, vedeli by sme skonstruovat Turingov stroj? aj pre problém A.°

V pripade, Ze o probléme A uz mame dokdzané, ze nie je rozhodnutelny (rekurzivne vy¢islitelny),
dostaneme takymto sposobom spor — ani problém B teda nemdZze byt rozhodnutelny (rekurzivne
vydcislitelny). Tato dokazovi schému mozno, samozrejme, sformulovat aj v terminologii rekurzivnych
a rekurzivne vyéislitelnych jazykov.

V nasledujicom pomocou redukcii dokdZzeme nerozhodnutelnost dvoch vyznamnych rozhodova-
cich problémov — univerzalneho problému a problému zastavenia.

Univerzdlny problém je dany nasledovne:
Vstup: Kod (A) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo w € {0, 1}".
Vystup: ,,Ano“ prave vtedy, ked w € L(A).

Univerzalnemu problému zodpoveda univerzdlny jazyk, ktory sme definovali uz v stuvislosti s uni-
verzalnym Turingovym strojom:

Ly = {{A)#w | A je det. TS nad vstupnou abecedou {0,1}; w € {0,1}"; w € L(A)}.

Je intuitivne zrejmé, Ze univerzalny problém nebude rozhodnutelny — potrebujeme totiz simulovat
Turingov stroj dany na vstupe, a ten sa nemusi vzdy zastavit. To vSak pravdepodobne nep6jde urobit
pomocou Turingovho stroja, ktory sa zastavit ma. Na ozajstny dokaz tohto tvrdenia pouZijeme
redukciu diagonéalneho problému na univerzalny problém.

Veta 5. Univerzdlny problém je rekurzivne vycislitelny, no nie je rozhodnutelny: Ly € Lre — Lree.

Dékaz. Univerzalny jazyk je akceptovany univerzalnym Turingovym strojom — univerzalny problém
je preto rekurzivne vy¢islitelny; v nasledujucom dokdZeme, Ze nie je rozhodnutelny.

(4) ano ano

Transf. () _ )
ﬁ nie nie
/Lo|

Obr. 3: Schéma redukcie diagonalneho problému na univerzalny problém. ,Krabi¢ka“ pre Ly zodpoveda
stroju M a vysledna ,krabicka® pre Lp zodpoveda stroju M’.

y

\J

Sporom — nech je problém rozhodnutelny. Potom existuje deterministicky Turingov stroj M,
ktory sa na kazdom vstupe zastavi a pre ktory plati L(M) = Ly. UkadZeme, Ze s pouZzitim stroja M
— Cize ,Ciernej skrinky* rozhodujicej univerzalny problém — by sme vedeli skonStruovat na kazdom
vstupe zastavujtci deterministicky Turingov stroj M’ taky, ze L(M’') = Lp. To bude spor s vyssie
dokézanou skuto¢nostou, ze diagonalny problém nie je rozhodnutelny.

40d tychto dvoch strojov pozadujeme zastavenie na kazdom vstupe podla toho, & sa zaujimame o rozhodnutelnost
(vtedy sa na kazdom vstupe zastavit musia), alebo iba o rekurzivnu vyéislitelnost (vtedy sa zastavit nemusia).

5Na ttito konstrukciu sa &asto kladu aj viaceré dalsie poziadavky, na zaklade ktorych potom mozno rozlisovat
viacero druhov redukcii umoziujucich okrem iného aj klasifikdciu nerozhodnutelnych problémov. Takéto tvahy su
pre nas nateraz nepodstatné — redukcie teda budeme chapat na ¢isto intuitivnej trovni ako dokazova techniku.



Stroj M’ moze pracovat tak, Ze svoj vstup (A) — kod nejakého Turingovho stroja A — upravi
na (A)#(A) a nésledne na tomto slove odsimuluje vypocet stroja M. Ten sa v kone¢nom ¢ase zastavi,
pricom bud akceptuje alebo zamietne. Ak akceptuje, je (A) € L(A) a stroj M’ svoj vstup taktiez
akceptuje. Ak stroj M svoj vstup zamietne, je (A) € L(A) — stroj M’ teda svoj vstup tiez zamietne.
Zrejme L(M') = Lp. Schéma redukcie je na obrazku 3. O

Problém zastavenia je dany nasledovne:

Vstup: Kod (A) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo w € {0,1}".

Vystup: ,,Ano“ prave vtedy, ked sa stroj A na vstupe w zastavi.
Problému zastavenia zodpoveda jazyk
Luarr = {{A)#w | A je det. TS nad vstupnou abecedou {0,1}; w € {0,1}"; A sa na w zastavi}.
Veta 6. Problém zastavenia je rekurzivne vycislitelny, ale nie je rozhodnutelny: Luair € Lrie—Lree.

Doékaz. Problém je rekurzivne vy¢cislitelny, pretoze staci simulovat vypocet stroja A na slove w a ak
sa zastavi, akceptovat.

L» ano
U |nie 4no
(A) ano
(8tart) nie _
‘ >

@ {
U

Obr. 4: Schéma redukcie univerzalneho problému na problém zastavenia.

Nerozhodnutelnost problému zastavenia dokdZeme redukciou univerzalneho problému na problém
zastavenia — keby sme mali k dispozicii ,,¢iernu skrinku* rozhodujtcu problém zastavenia, vedeli by
sme skonstruovat Turingov stroj rozhodujtci univerzalny problém, ktory by pracoval nasledovne:

1. Na vstupe dostane kod (A) Turingovho stroja A a slovo w.
2. Zavolé na tychto vstupoch ,iernu skrinku“ pre problém zastavenia.

3. Ak ,¢ierna skrinka‘ vrati ako svoj vystup hodnotu ,,ano‘, stroj A sa na slove w v kone¢nom ¢ase
zastavi. Univerzalny problém teda moZno rozhodnit simuléciou vypoctu stroja A na vstupe w
s pouzitim univerzalneho Turingovho stroja U.

4. Ak ,cdierna skrinka“ vrati ,nie“; stroj A sa na slove w nezastavi, a teda ho nemoze akceptovat.
Stroj rozhodujtci univerzalny problém teda moéze svoj vstup zamietnut.

Konstrukciu stroja pre univerzalny problém na zaklade stroja pre problém zastavenia mozno
znézornit diagramom na obréazku 4. O

Obrazok 2 teraz modzeme doplnit o poziciu jazykov Ly a Lyarr a ich komplementov. Vysledna
situacia je znézornené na obrazku 5. Treba si ale uvedomit, ze jazyky Lg resp. Lg ArT hezodpovedaju
»komplementarnemu problému‘ tak ako pri diagonalnom probléme — obsahuju totiz aj vSetky slova
nad abecedou {0, 1, #}, ktoré neobsahuju prave jeden vyskyt symbolu #.



Univerzum jazykov

Obr. 5: Situacia z obrazku 2 doplnené o poziciu jazykov Ly, Lyarr a ich komplementov.

10 Jednoduchsie rieSené ulohy

Uloha 1. Uvazujme rozhodovaci problém dany nasledovne:

*

Vstup: Kod (A) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo = € {0,1}".
Vystup: ,,Ano“ prave vtedy, ked x = ww pre nejaké w € L(A).
Zistite, ¢ je uvedeny problém rozhodnutelny. Ak nie, je aspon rekurzivne vyé¢islitelny?
Riesenie. Problému zo zadania zodpoveda jazyk

L = {(A)#x | A je det. TS nad vstupnou abecedou {0,1}; Jw € L(A) : x = ww}.

(A) (A) 4no 4no

Transf. _ )

w ww nie nie
f

ﬁ

Obr. 6: Schéma redukcie univerzalneho problému na problém zo zadania.
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Dokazeme, Ze problém zo zadania nie je rozhodnutelny, ale je rekurzivne vycislitelny — jazyk L
teda patri do LrE, ale nepatri do Lyee.

Problém je zjavne rekurzivne vyé¢islitelny — Turingov stroj akceptujtci jazyk L najprv overi, ¢&i je
vstup tvaru (A)#ww pre nejaké w € {0,1}". Ak nie, moZze tento vstup rovno zamietnut. V opac¢nom
pripade stroj najde slovo w a spusti univerzalny Turingov stroj na vstupe (A)#w.

Nerozhodnutelnost dokéZeme redukciou univerzalneho problému na problém zo zadania. Keby
sme mali k dispozicii ,,éiernu skrinku* rozhodujtucu problém zo zadania, vedeli by sme skonStruovat
aj Turingov stroj rozhodujtci univerzalny problém — ten upravi vstup (A)#w na (A)#ww a na hom
spusti ,¢ernu skrinku® pre L. T4 vrati odpoved ,,ano“ prave vtedy, ked (A)#ww € L. To nastane
prave vtedy, ked w € L(A) — ¢ize prave vtedy, ked (A)#w € Ly. Vystup ,Ciernej skrinky* teda mozno
priamo pouzit ako vystup stroja pre univerzalny problém. Schéma redukcie je na obrazku 6. O



Redukcia z predchadzajucej ulohy patri k tym tplne najjednoduchsim, pretoZze nevyzaduje ziaden
zasah do kodu (A) a transformuje sa pri nej iba zvysny vstup. V nasledujicich tlohach dokazeme
nerozhodnutelnost d’alsich rozhodovacich problémov. Redukcie uz v8ak buda vyzadovat aj transfor-
méciu kodu (A) zo vstupu redukovaného rozhodovacieho problému.

Uloha 2. Uvazujme rozhodovaci problém dany nasledovne:

Vstup: Kod (A) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; kod (c) nejakého
pracovného symbolu ¢ stroja A; slovo w € {0,1}".

Vystup: ,,Ano“ prave vtedy, ked A pocas vypo¢tu na vstupe w aspoil raz zapiSe na pasku symbol c.
Zistite, ¢i je uvedeny problém rozhodnutelny. Ak nie, je aspon rekurzivne vycislitelny?

Riesenie. Nech L je jazyk zodpovedajici danému rozhodovaciemu problému. Redukciou univerzal-
neho problému najprv dokéZzeme, Ze problém zo zadania nie je rozhodnutelny — Cize L € Lrec.
Za uc¢elom sporu predpokladajme, Ze problém je rozhodnutelny. UkdZeme, Ze v takom pripade by bol
rozhodnutelny aj univerzalny problém (spor).

Poktisme sa teda za uvedeného predpokladu skonstruovat deterministicky Turingov stroj, ktory
sa na kazdom vstupe zastavi a ktory akceptuje jazyk Ly (zodpovedajici univerzédlnemu problému).
Vstupom takéhoto stroja je kod (A) nejakého Turingovho stroja A nad vstupnou abecedou {0,1}
a slovo w € {0,1}".

Stroj pre Ly musi rozhodnit, ¢ w € L(A), pricom pri rozhodovani méze pouzit stroj pre L.
Mobzeme sa teda pokusit upravit vstupy (A), w stroja pre Ly na vhodné vstupy stroja pre L tak,
aby stroj pre Ly mohol zmysluplne vyuzit vystup stroja pre L.

(4) (B) ano 4no

Transf.
w w nie nie
ﬁ
ﬁ

Obr. 7: Schéma redukcie univerzalneho problému na problém zo zadania.
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Za tymto ucelom zjavne postaci prerobit kod (A) na kody (B), (c) stroja B a nejakého jeho
pracovného symbolu ¢ s nasledujacou vlastnostou: w € L(A) prave vtedy, ked B na vstupe w
zapiSe na pasku aspon raz symbol c. Potom totiz (B)#(c)#w € L prave vtedy, ked (A)#w € Ly
— ako vystup stroja pre univerzalny problém tak mozno priamo pouzit vystup ,ciernej skrinky*
rozhodujtcej problém zo zadania.

Stroj B s pozadovanou vlastnostou ale mdze pracovat napriklad tak, Ze bude simulovat vypocet
stroja A a ak ten akceptuje, zapiSe na péasku nejaky novy symbol c.

Ukazeme, Ze na zaklade kddu stroja A vieme kody stroja B a symbolu ¢ algoritmicky skonstruovat.
Nech A = (K, %,T,6,qo, F). Stroj B bude dany ako B = (K', %, T, ¢, qo, F'), pricom K' = K U{q},
kde ¢ je novy stav, I = T'U {c}, kde ¢ je novy symbol a prechodova funkcia ¢’ je dana nasledovne:

Vpe K — FVaeTU{B}:d(p,a)=4dp,a),
Vpe FVYaeTU{B}:d(p,a)=(qc0);

zo stavu ¢ nebudu definované Zziadne prechody, rovnako ako zo stavov p € K na symbol c. Dalej
mozeme vziat napriklad F’ = ().



Na prerobenie kodu (A) na kéd (B) teda v zasade staci zakomponovat do (A) jeden novy stav,
jeden novy pracovny symbol (ktorého koédom bude (c)) a niekol'ko novych prechodov, spolu s tpravou
mnoziny akceptaénych stavov. To vSak zrejme ide urobit algoritmicky (tzn. na Turingovom stroji).

Stroj rozhodujuci univerzalny problém teda bude pracovat tak, Ze svoje vstupy (A), w prerobi
na (B), (c), w, na ktorych spusti stroj pre problém zo zadania. Vystup tohto stroja potom bude aj
vystupom pre univerzalny problém. Schéma redukcie je na obrazku 7.

Ostéava teda dokazat alebo vyvratit rekurzivnu vydcislitelnost problému zo zadania. DokaZeme,
Ze problém je rekurzivne vycislitelny. Turingov stroj akceptujuci jazyk L zodpovedajtci problému
zo zadania totiz moze pracovat tak, ze pomocou univerzalneho Turingovho stroja simuluje vypocet
stroja A na slove w a ak stroj A zapiSe na pasku symbol ¢, stroj pre jazyk L akceptuje. O

Uloha 3. Uvazujme rozhodovaci problém dany nasledovne:

Vstup: Kod (A4) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; kod (g) nejakého
stavu ¢ stroja A; slovo w € {0,1}".

Vystup: ,,Ano“ prave vtedy, ked sa stroj A na vstupe w dostane aspoii raz do konfiguracie so stavom g¢.
Zistite, ¢ je uvedeny problém rozhodnutelny. Ak nie, je aspon rekurzivne vyé¢islitelny?

Riesenie. Problém je rekurzivne vycislitelny, pretoze sta¢i pomocou univerzalneho Turingovho stroja
simulovat vypocet stroja A na vstupe w a v pripade, Ze sa tento vypocet dostane do stavu g,
akceptovat.

Nech L oznacuje jazyk zodpovedajici problému zo zadania. Redukciou univerzalneho problému
na problém zo zadania dokaZeme, Ze problém zo zadania nie je rozhodnutelny. Za uéelom sporu pred-
pokladajme, Ze existuje deterministicky Turingov stroj, ktory sa na kazdom vstupe zastavi a ktory
akceptuje jazyk L. UkdZeme, Ze v tom pripade vieme takyto stroj skonStruovat aj pre univerzélny
jazyk Ly, ¢o bude spor.

Vstupom stroja pre univerzalny problém je kod (A) nejakého Turingovho stroja A a slovo w;
treba pritom rozhodnut, ¢i w € L(A). Pri konstrukcii stroja rozhodujiceho univerzalny problém
potrebujeme nejakym spdsobom vyuzit stroj rozhodujuci problém zo zadania (jazyk L). Mozeme
teda skusit upravit vstupy (A), w stroja pre Ly na vhodné vstupy stroja pre L tak, aby stroj pre Ly
mohol zmysluplne vyuzit vystup stroja pre L.

Za tymto ucelom staci prerobit kod (A) stroja A na kod (B) nejakého iného stroja B a kod (g)
nejakého jeho stavu g tak, aby bolo w € L(A) prave vtedy, ked sa stroj B pocas vypo¢tu na slove w
dostane do konfiguracie so stavom gq.

Stroj pre Ly totiz moze v takom pripade pracovat nasledovne: transformuje svoje vstupy (A), w
na (B), (¢), w, na ktorych spusti stroj pre L. Ten sa v kone¢nom ¢ase zastavi, pricom jeho odpoved
je ,ano* prave vtedy, ked sa stroj B na vstupe w dostane do konfiguricie so stavom ¢. To je ale
podla vyssie uvedenej vlastnosti prave vtedy, ked w € L(A), ¢o znamena, Ze vystup stroja pre L je
aj vystupom stroja pre Ly. Schéma redukcie je na obrazku 8.

(A) (B) 4no ano
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Obr. 8: Schéma redukcie univerzalneho problému na problém zo zadania.
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Zostéava Specifikovat stroj B a nejaky jeho stav ¢ tak, aby platila vyssie uvedena vlastnost a aby
sa kody (B), (q) dali z kodu stroja A algoritmicky — to jest na Turingovom stroji — skonstruovat.

Stroj B ale napriklad méZze na kazdom vstupe w pracovat ako stroj A s tym rozdielom, Ze
z akceptacného stavu stroja A eSte vzdy prejde do nejakého mového stavu ¢, v ktorom sa zastavi.
Takto definovany stroj B mé spolu s novopridanym stavom ¢ evidentne pozadovani vlastnost — jeho
vypocet na slove w sa dostane do stavu ¢ prave vtedy, ked w € L(A). Od stroja A sa navySe stroj B
1581 iba mnozinou akcepta¢nych stavov® a pridanim jedného nového stavu a niekolkych prechodov.
Preto je transformacia kodu (A) na kody (B), (¢) algoritmicky realizovatelna. O

11 ZlozitejSie rieSené tlohy

V redukcidch z predchadzajicich dvoch tloh bola transformécia kédu (A) Turingovho stroja A
7o vstupu rovnaka pre vSetky vstupné slovd w. V nasledujtcich dvoch tlohach pouZijeme reduk-
cie, ktoré tuto vlastnost nemaja a transformécia kodu Turingovho stroja zavisi od jeho vstupu.

Uloha 4. Uvazujme rozhodovaci problém dany nasledovne:

Vstup: Kod (A4) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Vystup: ,,Ano“ prave vtedy, ked ¢ € L(A).

Zistite, ¢i je uvedeny problém rozhodnutelny. Ak nie, je aspon rekurzivne vy¢islitelny?

Riesenie. Dokadzeme najprv, Ze problém nie je rozhodnutelny. Budeme postupovat redukciou univer-
zélneho problému na problém zo zadania.

Za ucelom sporu predpokladajme, Zze problém zo zadania — reprezentovany nejakym jazykom L.
— je rozhodnutelny, a teda existuje deterministicky Turingov stroj akceptujuaci jazyk L., ktory sa
na kazdom vstupe zastavi. K sporu dospejeme tym, Ze na zaklade tohto stroja skonstruujeme stroj
rozhodujtci univerzalny problém.

Ten dostane na vstupe kod (A) nejakého Turingovho stroja A nad vstupnou abecedou {0, 1}
aslovow € {0,1}*. Aby sme pomocou stroja rozhodujticeho L. vedeli rozhodnit univerzéalny problém,
sta¢i na zéklade kodu (A) a slova w vyrobit kod (B) Turingovho stroja B, ktory ma nasledujticu
vlastnost: w € L(A) prave vtedy, ked ¢ € L(B). Je zrejmé, ze takyto stroj B musi zavisiet nielen
od A, ale aj od w. Presnejsie by sme teda namiesto B mohli pisat aj B(A, w).

Stroj B, ktory skonstruujeme, bude v pripade w € L(A) akceptovat jazyk {0,1}* (a teda aj €)
a v opacnom pripade bude akceptovat prazdny jazyk. Pracovat bude nasledovne: dostane na vstupe
slovo z, ktoré ihned zahodi a nahradi ho slovom w, ktoré ma ,,pevne zadrdtované v prechodovej
funkcii“. Nasledne odsimuluje vypocet stroja A na vstupe w a akceptuje prave vtedy, ked akceptuje
stroj A. Schéma stroja B je na obréazku 9.

T w accept accept iy
L

1 LA
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Obr. 9: Schematické znézornenie konstrukcie stroja B.

SAk ma aj vysledny Turingov stroj B ostat v norméalnom tvare bez prechodov z akceptacnych stavov, nemézu
akceptacné stavy stroja A ostat akceptaénymi aj v stroji B.
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Citatelovi dostato¢ne zbehlému v pisani prechodovych funkcii Turingovych strojov by malo byt
zrejmé, Ze transformécia kodu (A) stroja A a slova w na kod (B) stroja B je iba otédzkou vytrvalosti
a ,,programatorskej zrucnosti“. Malo by teda byt oCividné, Ze sa tato transformacia déa zrealizovat
na Turingovom stroji.

Stroj rozhodujici univerzalny problém teda moze pracovat tak, Ze prerobi svoje vstupy (A), w
na (B) a nasledne ,zavola“ stroj pre problém zo zadania so vstupom (B). Vystup tohto stroja je aj
vystupom pre univerzalny problém. Schéma redukcie je na obrazku 10.

(4) 4no 4no
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Obr. 10: Schéma redukcie univerzalneho problému na problém zo zadania.
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Je o€ividné, Ze problém je rekurzivne vycislitelng, kedze tu staci ,zavolat* univerzalny Turingov
stroj so vstupmi (A4) a e. O

Uloha 5. Uvazujme rozhodovaci problém dany nasledovne:

Vstup: Kod (A4) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Vystup: ,,Ano“ prave vtedy, ked 10011 ¢ L(A).

Zistite, ¢i je uvedeny problém rozhodnutelny. Ak nie, je asponi rekurzivne vycislitelny?

RieSenie. Dokazeme, Ze tento problém nie je rekurzivne vydcislitelny (a teda nemodze byt ani roz-
hodnutelny). To je intuitivne zrejmé z nasledujtcej tvahy: pri simulécii pripadného nekonecného
vypoctu stroja A na slove 10011 nikdy nemame istotu, Ze je vypocet naozaj nekonetny a netreba
na jeho skoncenie Cakat eSte o nieco dlhsie. V pripade nekonecného vypoctu na slove 10011 ale plati
10011 ¢ L(A), pricom po pripadnom skonéeni vypoc¢tu moze nastat aj situacia, ked 10011 € L(A).
To znamend, Ze v rozhodovacom probléme zo zadania pravdepodobne nevieme s istotou povedat
odpoved ,,4no“, t. j. problém pravdepodobne nebude ani rekurzivne vy¢islitelny.

Uvedené oddvodnenie vSak nie je naozajstnym dokazom. Ten spravime redukciou z komplemen-
tarneho diagonalneho problému. Nech problému zo zadania zodpovedé jazyk L. Dokadzeme, ze ak
by existoval deterministicky Turingov stroj akceptujuci jazyk L — teda keby bol problém zo zadania
rekurzivne vy¢islitelny — existoval by aj Turingov stroj akceptujici jazyk L%, ¢o je spor (pretoze
méame dokazané, Ze Lg ¢ LRrE).

Vstupom komplementarneho diagonéalneho problému je kod (A) nejakého Turingovho stroja A,
pricom treba akceptovat ak (A) ¢ L(A). Stroj akceptujici jazyk L% moze pracovat tak, 7e tento
vstup transformuje na kod (B) Turingovho stroja B s vlastnostou, ze 10011 ¢ L(B) prave vtedy, ked
(A) € L(A). Na vstupe (B) potom uz len spusti Turingov stroj pre jazyk L, ktory akceptuje préave
vtedy, ked 10011 ¢ L(B), ¢o je podla uvedenej vlastnosti stroja B prave vtedy, ked (A) ¢ L(A).
Schéma redukcie je na obrazku 11.

Zostéava uz len opisat konstrukciu stroja B a zdévodnit, Ze je algoritmicky realizovatelna. Stroj B
skonstruujeme tak, ze v pripade (A) € L(A) bude L(B) = {0,1}" a v pripade (A) ¢ L(A) bude
L(B) = 0. Zrejme potom bude splnena aj vlastnost, ze 10011 ¢ L(B) prave vtedy, ked (A) & L(A).

Stroj B bude pracovat tak, Ze svoj vstup x hned na zaciatku zahodi a nahradi ho slovom (A),
ktoré mé ,,pevne zadrotované v prechodovej funkcii“. Na tomto slove potom spusti simul4ciu stroja A,
ktorého prechodovii funkciu ma tiez ,,pevne zadrotovana“. Ak A akceptuje, akceptuje aj stroj B.

12
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Obr. 11: Schéma redukcie komplementarneho diagonalneho problému na problém zo zadania.
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Obr. 12: Schematické znézornenie konstrukcie stroja B.

Schéma konstrukcie stroja B je na obrazku 12. Vztah jazyka akceptovaného strojom B k jazyku
akceptovanému strojom A je zjavne taky, ako je uvedené vysSie. NavySe je zrejmé, Ze transformé-
cia kodu (A) na kod (B) je sice trochu komplikované, ale kazdopadne algoritmicky realizovatelna.
Tvrdenie je dokézané. O

12 Este jedna rieSena tiloha

V nasledujiicej tlohe bude problém zo zadania rozhodnutelny — na dodkaz tejto skutocnosti staci
opisat na kazdom vstupe zastavujtci deterministicky Turingov stroj akceptujuici prislusny jazyk.

Uloha 6. Uvazujme rozhodovaci problém dany nasledovne:

Vstup: Kod (A) deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.

Vystup: ,,Ano“ prave vtedy, ked sa vo vypoéte stroja A na vstupe e vyskytne niektory stav aspon dvakrat.
Zistite, ¢ je uvedeny problém rozhodnutelny. Ak nie, je aspon rekurzivne vyé¢islitelny?

Riesenie. Problém je rozhodnutelny. Kazdy Turingov stroj A mé totiZz koneény pocet stavov k4.
Kazdy vypocet stroja A dlzky asponi k4 pozostéava z aspon k4 + 1 konfigurécii, ¢o znamena, Ze
nejaky stav sa nutne musel vyskytnat aspon dvakrat.

Stroj rozhodujuci problém zo zadania preto moéze pracovat napriklad tak, Ze bude simulovat
prvych k4 krokov vypocétu Turingovho stroja A na vstupe £ — ak sa tento vypocet zastavi eSte
pred vykonanim k4-teho kroku, sta¢i overit, ¢ sa nejaky stav vyskytol dvakrat a podla toho vratit
odpoved na vystup. V opa¢nom pripade sa nejaky stav dvakrat urcite vyskytol, takze staéi na vystup
vratit odpoved ,,4no*. O
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13 Jazyk, ktory nie je v %gp ani v co-Zrp (*)
Uvazujme teraz jazyk Lyatastrofa definovany takto:
Liatastrofa = {O0u | u € {0,1}"; we Lp} U {lv|v € {0,1}"; v e Lg} .

Dokézeme, Ze on ani jeho komplement nie st rekurzivne vycislitelné. Jazyk Liatastrofa t€da nebude
ani v Zre, ani v co-ZLRrEg.

w Transf. 1w accept accept

\J

L katastrofa

L%

Obr. 13: Redukcia komplementarneho diagonalneho problému na problém reprezentovany jazykom Liatastrofa-

L Transf. 0w accept accept

\J

C
L katastrofa

L%

C

Obr. 14: Redukcia komplementarneho diagonélneho problému na problém reprezentovany jazykom L. i ofa-

Redukciou komplementarneho diagonéalneho problému najprv dokdzeme, Ze Liatastrofa & -ZRE-
Keby bolo Liatastrofa € -ZRE, existoval by deterministicky Turingov stroj M akceptujici tento jazyk.
Na zaklade stroja M by sme ale mohli skonstruovat Turingov stroj akceptujici L%, ktory najprv
vstup w upravi na lw a na tomto vstupe odsimuluje stroj M. Ten akceptuje préave vtedy, ked w € L%,
¢o sme chceli dosiahnut. Schéma tejto redukcie je znazornena na obrazku 13.

Dokéazeme este, ze jazyk

ng;tastrofa = {Ou |ue {0,1} ue Lg} U{lv|ve{0,1}*; ve Lp}U{e}

nie je v .Zgre. Aj na k nemu prislachajuci rozhodovaci problém redukujeme komplementarny diago-
nalny problém. Keby bolo Lgtastrofa € ZLRrE, existoval by deterministicky Turingov stroj M taky,
ze L(M) = Ll%tastrofa' Potom by sme ale vedeli skonstruovat Turingov stroj akceptujici jazyk L%,
ktory najprv vstup w upravi na Ow a na tomto vstupe odsimuluje stroj M. Stroj M zrejme akceptuje
prave vtedy, ked w € Lg. Schéma redukcie je na obrazku 14.

Jazyk Liatastrofa teda skutocne nie je v .%grg ani v co--ZLrg. Situacia z obrazku 5 doplnena o poziciu

jazyka Liatastrofa je Na obrazku 15.
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Univerzum jazykov

.Lkat astrofa

Obr. 15: Situacia z obrazku 5 doplnené o poziciu jazyka Lyatastrofa-
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