
Formálne jazyky a automaty (1)
Zimný semester 2025/26

Cvičenie č. 11
Rozhodnuteľnosť

Peter Kostolányi

4. decembra 2025

Budeme sa teraz zaoberať algoritmickou riešiteľnosťou výpočtových problémov – teda existenciou
algoritmov pre daný problém. Obmedzíme sa pritom na špeciálnu triedu výpočtových problémov –
takzvané rozhodovacie problémy – kde je pre každý vstup výstupom jedna z pravdivostných hodnôt
„áno“ alebo „nie“ . Pre daný vstup je teda nutné rozhodnúť, či preň platí nejaká vlastnosť. Algoritmicky
riešiteľné rozhodovacie problémy nazveme rozhodnuteľnými a v nasledujúcom tak položíme základy
teórie algoritmickej rozhodnuteľnosti.

Na dôkaz rozhodnuteľnosti výpočtového problému stačí opísať algoritmus, ktorý tento problém
rieši – rozhoduje. Naším cieľom bude okrem iného nájsť problém, ktorý rozhodnuteľný nie je, a teda
preň neexistuje žiaden algoritmus. Dôkaz takéhoto tvrdenia sa už nezaobíde bez formálnej definície
rozhodovacieho problému a formálnej definície algoritmu. V nasledujúcom preto:

1. sformalizujeme pojem rozhodovacieho problému – vhodnou formalizáciou je jazyk ;

2. sformalizujeme pojem algoritmu – tu sa vhodnou formalizáciou javí byť Turingov stroj zasta-
vujúci na každom vstupe, čo je založené na takzvanej Turingovej téze;

3. obidve formalizácie využijeme na vybudovanie základov teórie rozhodnuteľnosti.

1 Rozhodovacie problémy

Pod rozhodovacím problémom rozumieme výpočtový problém, ktorého výstupom je na každom vstupe
booleovská hodnota „áno“ alebo „nie“ . Vstup rozhodovacieho problému by mal byť reprezentovateľný
ako slovo nad nejakou abecedou Σ. Rozhodovací problém je potom jednoznačne určený množinou
– jazykom – tých vstupných slov, pre ktoré je výstupom „áno“ . Pomocou kódovania je v prípade
potreby možné zaručiť, aby išlo o jazyk nad abecedou Σ = {0, 1}.
Formalizácia 1. Pojem rozhodovacieho problému formalizujeme ako jazyk nad nejakou abecedou Σ
obsahujúci práve všetky vstupy, pre ktoré je výstupom „áno“ .

Príklad 1. Uvažujme rozhodovací problém daný nasledovne.

Vstup: Prirodzené číslo n ∈ N dané svojou binárnou reprezentáciou.

Výstup: „Áno“ práve vtedy, keď je n prvočíslo.

Tomuto problému zodpovedá jazyk

L = {w ∈ {0, 1}∗ | w je binárny zápis prvočísla} = {10, 11, 101, 111, 1011, . . .}.
Príklad 2. Uvažujme rozhodovací problém daný nasledovne.

Vstup: Prirodzené číslo n ∈ N dané svojou dekadickou reprezentáciou; cifra d ∈ {0, 1, . . . , 9}.
Výstup: „Áno“ práve vtedy, keď je n-tá cifra desatinného rozvoja čísla π rovná d.

Obidva vstupy tu musia byť reprezentované jediným slovom – to môžeme docieliť napríklad ich
oddelením špeciálnym symbolom #. Uvedenému rozhodovaciemu problému tak zodpovedá jazyk

L = {w#d | w ∈ Σ∗; d ∈ Σ; dec(w)-ta cifra desatinného rozvoja π je rovná d},
kde Σ = {0, 1, . . . , 9} a kde pre w ∈ Σ∗ je dec(w) prirodzené číslo, ktorého dekadickou reprezentáciou
je slovo w. Keďže π = 3,14159 . . ., je

L = {1#1, 2#4, 3#1, 4#5, 5#9, . . .}.
V obidvoch príkladoch ide iba o jedno z viacerých možných kódovaní vstupov. Pokiaľ je kódovanie

vstupu zvolené „aspoň trochu rozumne“ , obvykle z hľadiska rozhodnuteľnosti nehrá žiadnu rolu.

1

2 Turingova téza

Dospeli sme teda k formálnej definícii rozhodovacieho problému – ide o jazyk nad nejakou abecedou Σ.
V podobnom duchu ešte potrebujeme formalizovať aj pojem algoritmu riešiaceho daný rozhodovací
problém. Tu sa vhodnou formalizáciou javia byť deterministické Turingove stroje, ktoré sa zastavia
na každom vstupe a ktoré akceptujú jazyk zodpovedajúci uvažovanému rozhodovaciemu problému.

Alana Turinga viedla k definícii matematickej abstrakcie počítacieho zariadenia dnes známej
ako Turingov stroj práve potreba formalizácie pojmu algoritmus.1 Turingova téza je – principiálne
neoveriteľné – tvrdenie, podľa ktorého každý (v neformálnom zmysle) algoritmický výpočet možno
realizovať na Turingovom stroji. Turingovu tézu nemožno ani dokázať, ani vyvrátiť – ide totiž o tvrde-
nie, ktoré hovorí, že Turingove stroje sú vhodnou formalizáciou inak čisto intuitívne chápaného pojmu
algoritmu. Turingov stroj teda možno chápať ako formálnu definíciu algoritmu, pričom Turingova
téza vyjadruje presvedčenie, že táto definícia je odzrkadlením skutočnosti.

Napriek principiálnej neoveriteľnosti Turingovej tézy existujú viaceré argumenty na jej podporu.
Tým najdôležitejším je skutočnosť, že prakticky všetky pokusy Turingových súčasníkov a následníkov
o alternatívnu definíciu algoritmu vyústili v model, ktorý je z hľadiska sily s Turingovými strojmi
ekvivalentný. Jednou z takýchto alternatívnych formalizácií je napríklad λ-kalkul Alonza Churcha,
vďaka čomu je Turingova téza v literatúre známa aj ako Churchova-Turingova téza. Ďalšími for-
malizáciami sú napríklad rekurzívne funkcie, Minského registrové stroje, Markovove algoritmy, atď.
V nasledujúcom prijmeme Turingovu tézu a Turingove stroje využijeme ako prostriedok na vybudo-
vanie základov teórie algoritmickej vypočítateľnosti.

Formalizácia 2. Pod algoritmom rozhodujúcim daný rozhodovací problém budeme rozumieť deter-
ministický Turingov stroj, ktorý sa na každom vstupe zastaví a ktorý akceptuje jazyk zodpovedajúci
uvažovanému rozhodovaciemu problému.

3 Stroje zastavujúce na každom vstupe a rekurzívne jazyky

Požiadavka zastavenia Turingovho stroja na každom vstupe odzrkadľuje vlastnosť konečnosti výpoč-
tov, ktorá je spätá s intuitívnou predstavou o algoritme. Zamerajme sa na jej význam a dôsledky.

Uvažujme deterministický Turingov stroj A pracujúci na vstupe w. Bez ujmy na všeobecnosti
môžeme predpokladať, že stroj A neobsahuje žiadne prechody vedúce z akceptačných stavov. Stroj A
sa teda v akceptačnej konfigurácii vždy „zasekne“ . Výpočet stroja A na slove w tak môže prebiehať
nasledujúcimi troma spôsobmi.

1. Po nejakom počte krokov príde do akceptačnej konfigurácie a zastaví sa. Potom w ∈ L(A).

2. Po nejakom počte krokov sa zastaví v neakceptačnej konfigurácii. Potom w 6∈ L(A).

3. Nikdy sa nezastaví a všetky konfigurácie, cez ktoré prejde, sú neakceptačné. Potom w 6∈ L(A).

Uvažujme teraz pozorovateľa výpočtu stroja A na slove w, ktorý sa iba na základe neho snaží
zistiť, či w ∈ L(A). Jedinou informáciou, ktorú má pozorovateľ k dispozícii je, či výpočet skončil
a ak áno, tak s akým výsledkom. Ľahko vidieť, že pozorovateľ nedokáže v žiadnom bode výpočtu
odlíšiť prípad, keď je výpočet nekonečný – a teda w 6∈ L(A) – od prípadu, keď je nutné odsimulovať
ešte niekoľko krokov a výpočet sa zastaví – a teda môže platiť w ∈ L(A) aj w 6∈ L(A).

Požiadavka zastavenia Turingovho stroja A na každom vstupe zabezpečí, že výpočet stroja A
na slove w môže prebiehať iba nasledujúcimi dvoma spôsobmi.

1. Po nejakom počte krokov príde do akceptačnej konfigurácie a zastaví sa. Potom w ∈ L(A).

2. Po nejakom počte krokov sa zastaví v neakceptačnej konfigurácii. Potom w 6∈ L(A).

Jazyky akceptované takýmito strojmi nazveme rekurzívnymi.
1Spočiatku v jeho práci išlo predovšetkým o dôkaz algoritmickej neriešiteľnosti jedného konkrétneho problému

z matematickej logiky.

2

Definícia 1. Jazyk L je rekurzívny, ak existuje deterministický Turingov stroj A, ktorý sa na každom
vstupe zastaví a pre ktorý platí L(A) = L. Triedu všetkých rekurzívnych jazykov označujeme Lrec.

Neskôr ukážeme, že táto definícia má skutočne svoj význam – existuje Turingov stroj, ku ktorému
neexistuje žiaden ekvivalentný Turingov stroj zastavujúci na každom vstupe. Trieda Lrec je teda
vlastnou podtriedou LRE .

4 Rozhodnuteľné a nerozhodnuteľné problémy

Na základe Turingovej tézy sme pojem algoritmu rozhodujúceho daný rozhodovací problém sformali-
zovali ako deterministický Turingov stroj, ktorý sa na každom vstupe zastaví a ktorý akceptuje jazyk
zodpovedajúci tomuto rozhodovaciemu problému.

Rozhodovací problém nazveme rozhodnuteľným, ak existuje algoritmus, ktorý ho rozhoduje – čiže
ak existuje Turingov stroj, ktorý sa na každom vstupe zastaví a ktorý akceptuje jazyk k uvažovanému
rozhodovaciemu problému prislúchajúci. Táto situácia nastane práve vtedy, keď je jazyk prislúchajúci
k danému rozhodovaciemu problému rekurzívny.

Rozhodovací problém nazveme nerozhodnuteľným, ak nie je rozhodnuteľný. Existenciu nerozhod-
nuteľných problémov dokážeme neskôr.

Rozhodovací problém nazveme rekurzívne vyčísliteľným (niekde tiež čiastočne rozhodnuteľným),
ak existuje Turingov stroj, ktorý akceptuje jemu zodpovedajúci jazyk – pričom tento sa už nemusí
zastaviť na každom vstupe. To nastane práve vtedy, keď je jazyk zodpovedajúci danému rozhodo-
vaciemu problému rekurzívne vyčísliteľný. Rekurzívne vyčísliteľný problém môže byť rozhodnuteľný
(ak mu zodpovedá rekurzívny jazyk), alebo nerozhodnuteľný (v opačnom prípade).

5 Rozhodovacie problémy, algoritmy a ich formalizácie

Vzťahy intuitívne chápaných pojmov rozhodovacieho problému a algoritmu k ich formalizáciám sú
znázornené na obrázku 1.

Algoritmus
Turingov stroj

zastavujúci na každom vstupe

Rozhodovaćı problém Jazyk

rieši akceptuje

Obr. 1: Rozhodovacie problémy, algoritmy a ich formalizácie.

Ďalšie pojmy zavedené vyššie sú spoločne s ich formalizáciami zhrnuté v tabuľke 1.

Pojem Formalizácia
Rozhodovací problém Jazyk (nad nejakou abecedou Σ)
Algoritmus Turingov stroj zastavujúci na každom vstupe
Rozhodnuteľný problém Jazyk z triedy Lrec

Nerozhodnuteľný problém Jazyk mimo triedy Lrec

Rekurzívne vyčísliteľný problém Jazyk z triedy LRE

Tabuľka 1: Zhrnutie kľúčových pojmov teórie rozhodnuteľnosti a ich formalizácií.

3

6 Existencia jazykov mimo LRE

Rekurzívne vyčísliteľných jazykov nad abecedou Σ = {0, 1} existuje najviac toľko, čo všetkých kódov
Turingových strojov s binárnou vstupnou abecedou – každé zobrazenie, ktoré rekurzívne vyčísliteľ-
nému jazyku L priradí kód 〈A〉 niektorého deterministického Turingovho stroja A akceptujúceho L,
je totiž evidentne injektívne. Kód Turingovho stroja je (konečný) binárny reťazec a množina všetkých
takýchto reťazcov je spočítateľne nekonečná. Všetkých binárnych rekurzívne vyčísliteľných jazykov
je teda tiež len spočítateľne veľa. Všetkých jazykov nad abecedou Σ = {0, 1} je naopak nespočíta-
teľne veľa, lebo ide o podmnožiny spočítateľne nekonečnej množiny Σ∗. Musí preto existovať jazyk
nad abecedou Σ = {0, 1}, ktorý nie je rekurzívne vyčísliteľný.

Rekurzívne vyčísliteľné jazyky zodpovedajú rekurzívne vyčísliteľným problémom. Z uvedeného
teda vyplýva, že existuje rozhodovací problém, ktorý nie je rekurzívne vyčísliteľný. Každý rozhod-
nuteľný problém je nutne aj rekurzívne vyčísliteľný. Z dokázaného tvrdenia teda tiež vyplýva, že
existuje rozhodovací problém, ktorý nie je rozhodnuteľný.

Uvedený dôkaz je čisto existenčný. V nasledujúcom ale nájdeme aj konkrétny jazyk (rozhodovací
problém), o ktorom dokážeme, že nie je rekurzívne vyčísliteľný.

7 Diagonálny problém a jeho nerozhodnuteľnosť

Diagonálny problém je rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja2 A nad vstupnou abecedou {0, 1}.
Výstup: „Áno“ práve vtedy, keď 〈A〉 ∈ L(A).

Diagonálnemu problému zodpovedá diagonálny jazyk :

LD = {〈A〉 | A je det. TS nad vstupnou abecedou {0, 1}; 〈A〉 ∈ L(A)}.
Podobne možno uvažovať aj komplementárny diagonálny problém, ktorý je daný takto:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Výstup: „Áno“ práve vtedy, keď 〈A〉 6∈ L(A).

Komplementárnemu diagonálnemu problému zodpovedá komplement diagonálneho jazyka:

LC
D = {〈A〉 | A je det. TS nad vstupnou abecedou {0, 1}; 〈A〉 6∈ L(A)}.

Poznámka 1. Skutočnosť, že komplementárnemu diagonálnemu problému zodpovedá jazyk LC
D je

dôsledkom toho, že každý binárny reťazec považujeme za kód nejakého Turingovho stroja.

Veta 1. Komplementárny diagonálny problém nie je rekurzívne vyčísliteľný: LC
D 6∈ LRE.

Dôkaz. Sporom – nech LC
D ∈ LRE a M je deterministický Turingov stroj taký, že L(M) = LC

D.
Ak 〈M〉 ∈ L(M), z definície diagonálneho jazyka je 〈M〉 ∈ LD. To je spor, pretože L(M) = LC

D,
a teda L(M) nemôže obsahovať slovo 〈M〉 ∈ LD. Preto 〈M〉 6∈ L(M). V takom prípade ale z definície
diagonálneho jazyka vyplýva 〈M〉 ∈ LC

D a vďaka rovnosti L(M) = LC
D je 〈M〉 ∈ L(M): spor.

Veta 2. Diagonálny problém je rekurzívne vyčísliteľný, ale nie je rozhodnuteľný: LD ∈ LRE −Lrec.

Dôkaz. Zjavne LD ∈ LRE – stroj akceptujúci jazyk LD môže pracovať tak, že pre každý vstup 〈A〉
odsimuluje výpočet univerzálneho Turingovho stroja na vstupe 〈A〉#〈A〉.

Ďalej sporom, nech LD ∈ Lrec. Potom existuje deterministický Turingov stroj M zastavujúci
na každom vstupe taký, že L(M) = LD. Nech M ′ pracuje ako M s rozdielom, že M ′ akceptuje práve
vtedy, keď M zamieta.3 Zjavne L(M ′) = LC

D, z čoho LC
D ∈ Lrec ⊆ LRE – spor.

2Deterministickým Turingovým strojom rozumieme vždy stroj v normálnom tvare bez prechodov vedúcich z akcep-
tačných stavov. Pod zápisom 〈A〉 navyše chápeme ľubovoľný z viacerých možných kódov stroja A. Detaily možno nájsť
v poznámkach ku kódovaniu Turingových strojov; viac už na tieto skutočnosti upozorňovať nebudeme.

3Stroj M ′ získame zo stroja M tak, že všetky pôvodné stavy prehlásime za neakceptačné a pridáme jeden nový
akceptačný stav, do ktorého bude môcť M ′ prejsť práve vtedy, keď by sa stroj M zastavil v neakceptačnej konfigurácii.

4

8 Vzťah medzi triedami Lrec a LRE

Našli sme rekurzívne vyčísliteľný jazyk, ktorý nie je rekurzívny; keďže je inklúzia Lrec ⊆ LRE

zrejmá, dokázali sme tým vlastnú inklúziu Lrec (LRE . Našli sme tiež príklad jazyka, ktorý nie je
ani rekurzívne vyčísliteľný. Trieda LRE je teda vlastnou podtriedou triedy všetkých jazykov.

Zavŕšime teraz náš obraz o týchto triedach jazykov dôkazom tvrdenia charakterizujúceho triedu
rekurzívnych jazykov pomocou rekurzívne vyčísliteľných jazykov a ich komplementov. Najprv ešte
ale ukážeme, že trieda Lrec je uzavretá na komplement. To je vlastnosť, ktorú trieda LRE nemá –
napríklad kvôli jazyku LD.

Veta 3. Trieda jazykov Lrec je uzavretá na komplement.

Dôkaz. Nech L ∈ Lrec. Potom existuje deterministický Turingov stroj A, ktorý sa na každom svo-
jom vstupe zastaví a pre ktorý platí L(A) = L. Jazyk LC je potom akceptovaný deterministickým
Turingovým strojom A′, ktorý simuluje výpočet stroja A až kým sa nezastaví a následne akceptuje
práve vtedy, keď stroj A vstup zamietne.

Veta 4. Nech L je jazyk. Potom L ∈ Lrec práve vtedy, keď L ∈ LRE a LC ∈ LRE.

Dôkaz. Dokážeme postupne jednotlivé implikácie:

⇒: Ak L ∈ Lrec, vďaka vete 3 je aj LC ∈ Lrec. Tvrdenie potom vyplýva z inklúzie Lrec (LRE .

⇐: Nech L ∈ LRE a LC ∈ LRE . Potom existuje deterministický Turingov stroj A1 taký, že
L(A1) = L a deterministický Turingov stroj A2 taký, že L(A2) = LC . Na každom vstupe
zastavujúci deterministický Turingov stroj A akceptujúci jazyk L môže na vstupe w pracovať
tak, že – napríklad s použitím dvojstopej pásky – striedavo simuluje vždy jeden krok výpočtu
stroja A1 na vstupe w a jeden krok výpočtu stroja A2 na vstupe w. Jeden z týchto strojov svoj
vstup istotne po nejakom konečnom počte krokov akceptuje. Ak akceptuje stroj A1, akceptuje
aj stroj A. Ak akceptuje stroj A2, stroj A svoj vstup zamietne a zastaví sa.

Ak teda definujeme triedu co-LRE ako triedu všetkých jazykov, ktorých komplement je v LRE

(pozor: nejde o triedu L C
RE), možno vetu 4 preformulovať aj ako Lrec = LRE ∩ co-LRE . Vzájomné

vzťahy tried Lrec, LRE a co-LRE tak môžu byť znázornené ako na obrázku 2.

LRE

co-LRE

Lrec

Univerzum jazykov

LD

LC
D

Obr. 2: Vzájomné vzťahy medzi triedami Lrec, LRE a co-LRE a príklady jazykov v jednotlivých triedach.
Trieda Lrec zodpovedá rozhodnuteľným problémom, všetko ostatné zodpovedá nerozhodnuteľným problé-
mom. Trieda LRE zodpovedá rekurzívne vyčísliteľným problémom, ktoré môžu byť rozhodnuteľné (prienik
s co-LRE , t. j. trieda Lrec) alebo nerozhodnuteľné (zvyšok triedy LRE).

5

9 Redukcie: univerzálny problém a problém zastavenia

Častou metódou dokazovania výsledkov o nerozhodnuteľnosti sú redukcie. Redukciu rozhodovacieho
problému A na problémB si možno – pri voľnejšej interpretácii tohto pojmu – predstaviť ako dôkaz, že
rozhodnuteľnosť (alebo rekurzívna vyčísliteľnosť) problému B implikuje rozhodnuteľnosť (rekurzívnu
vyčísliteľnosť) problému A. Keby sme teda mali k dispozícii „čiernu skrinku“ – hypotetický Turingov
stroj – pre problém B, vedeli by sme skonštruovať Turingov stroj4 aj pre problém A.5

V prípade, že o probléme A už máme dokázané, že nie je rozhodnuteľný (rekurzívne vyčísliteľný),
dostaneme takýmto spôsobom spor – ani problém B teda nemôže byť rozhodnuteľný (rekurzívne
vyčísliteľný). Túto dôkazovú schému možno, samozrejme, sformulovať aj v terminológii rekurzívnych
a rekurzívne vyčísliteľných jazykov.

V nasledujúcom pomocou redukcií dokážeme nerozhodnuteľnosť dvoch významných rozhodova-
cích problémov – univerzálneho problému a problému zastavenia.

Univerzálny problém je daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo w ∈ {0, 1}∗.
Výstup: „Áno“ práve vtedy, keď w ∈ L(A).

Univerzálnemu problému zodpovedá univerzálny jazyk, ktorý sme definovali už v súvislosti s uni-
verzálnym Turingovým strojom:

LU = {〈A〉#w | A je det. TS nad vstupnou abecedou {0, 1}; w ∈ {0, 1}∗; w ∈ L(A)}.
Je intuitívne zrejmé, že univerzálny problém nebude rozhodnuteľný – potrebujeme totiž simulovať

Turingov stroj daný na vstupe, a ten sa nemusí vždy zastaviť. To však pravdepodobne nepôjde urobiť
pomocou Turingovho stroja, ktorý sa zastaviť má. Na ozajstný dôkaz tohto tvrdenia použijeme
redukciu diagonálneho problému na univerzálny problém.

Veta 5. Univerzálny problém je rekurzívne vyčísliteľný, no nie je rozhodnuteľný: LU ∈ LRE −Lrec.

Dôkaz. Univerzálny jazyk je akceptovaný univerzálnym Turingovým strojom – univerzálny problém
je preto rekurzívne vyčísliteľný; v nasledujúcom dokážeme, že nie je rozhodnuteľný.

LD

LU

〈A〉
〈A〉

áno

nie

áno

nie
Transf.

〈A〉

Obr. 3: Schéma redukcie diagonálneho problému na univerzálny problém. „Krabička“ pre LU zodpovedá
stroju M a výsledná „krabička“ pre LD zodpovedá stroju M ′.

Sporom – nech je problém rozhodnuteľný. Potom existuje deterministický Turingov stroj M ,
ktorý sa na každom vstupe zastaví a pre ktorý platí L(M) = LU . Ukážeme, že s použitím stroja M
– čiže „čiernej skrinky“ rozhodujúcej univerzálny problém – by sme vedeli skonštruovať na každom
vstupe zastavujúci deterministický Turingov stroj M ′ taký, že L(M ′) = LD. To bude spor s vyššie
dokázanou skutočnosťou, že diagonálny problém nie je rozhodnuteľný.

4Od týchto dvoch strojov požadujeme zastavenie na každom vstupe podľa toho, či sa zaujímame o rozhodnuteľnosť
(vtedy sa na každom vstupe zastaviť musia), alebo iba o rekurzívnu vyčísliteľnosť (vtedy sa zastaviť nemusia).

5Na túto konštrukciu sa často kladú aj viaceré ďalšie požiadavky, na základe ktorých potom možno rozlišovať
viacero druhov redukcií umožňujúcich okrem iného aj klasifikáciu nerozhodnuteľných problémov. Takéto úvahy sú
pre nás nateraz nepodstatné – redukcie teda budeme chápať na čisto intuitívnej úrovni ako dôkazovú techniku.

6

Stroj M ′ môže pracovať tak, že svoj vstup 〈A〉 – kód nejakého Turingovho stroja A – upraví
na 〈A〉#〈A〉 a následne na tomto slove odsimuluje výpočet strojaM . Ten sa v konečnom čase zastaví,
pričom buď akceptuje alebo zamietne. Ak akceptuje, je 〈A〉 ∈ L(A) a stroj M ′ svoj vstup taktiež
akceptuje. Ak stroj M svoj vstup zamietne, je 〈A〉 6∈ L(A) – stroj M ′ teda svoj vstup tiež zamietne.
Zrejme L(M ′) = LD. Schéma redukcie je na obrázku 3.

Problém zastavenia je daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo w ∈ {0, 1}∗.
Výstup: „Áno“ práve vtedy, keď sa stroj A na vstupe w zastaví.

Problému zastavenia zodpovedá jazyk

LHALT = {〈A〉#w | A je det. TS nad vstupnou abecedou {0, 1}; w ∈ {0, 1}∗; A sa na w zastaví}.

Veta 6. Problém zastavenia je rekurzívne vyčísliteľný, ale nie je rozhodnuteľný: LHALT ∈ LRE−Lrec.

Dôkaz. Problém je rekurzívne vyčísliteľný, pretože stačí simulovať výpočet stroja A na slove w a ak
sa zastaví, akceptovať.

LU

LHALT

〈A〉

nie

áno

nie

w

áno

(štart)

áno

U nie

Obr. 4: Schéma redukcie univerzálneho problému na problém zastavenia.

Nerozhodnuteľnosť problému zastavenia dokážeme redukciou univerzálneho problému na problém
zastavenia – keby sme mali k dispozícii „čiernu skrinku“ rozhodujúcu problém zastavenia, vedeli by
sme skonštruovať Turingov stroj rozhodujúci univerzálny problém, ktorý by pracoval nasledovne:

1. Na vstupe dostane kód 〈A〉 Turingovho stroja A a slovo w.

2. Zavolá na týchto vstupoch „čiernu skrinku“ pre problém zastavenia.

3. Ak „čierna skrinka“ vráti ako svoj výstup hodnotu „áno“ , stroj A sa na slove w v konečnom čase
zastaví. Univerzálny problém teda možno rozhodnúť simuláciou výpočtu stroja A na vstupe w
s použitím univerzálneho Turingovho stroja U .

4. Ak „čierna skrinka“ vráti „nie“ , stroj A sa na slove w nezastaví, a teda ho nemôže akceptovať.
Stroj rozhodujúci univerzálny problém teda môže svoj vstup zamietnuť.

Konštrukciu stroja pre univerzálny problém na základe stroja pre problém zastavenia možno
znázorniť diagramom na obrázku 4.

Obrázok 2 teraz môžeme doplniť o pozíciu jazykov LU a LHALT a ich komplementov. Výsledná
situácia je znázornená na obrázku 5. Treba si ale uvedomiť, že jazyky LC

U resp. LC
HALT nezodpovedajú

„komplementárnemu problému“ tak ako pri diagonálnom probléme – obsahujú totiž aj všetky slová
nad abecedou {0, 1,#}, ktoré neobsahujú práve jeden výskyt symbolu #.

7

LRE

co-LRE

Lrec

Univerzum jazykov

LD

LC
D LC

U

LU

LHALT

LC
HALT

Obr. 5: Situácia z obrázku 2 doplnená o pozíciu jazykov LU , LHALT a ich komplementov.

10 Jednoduchšie riešené úlohy

Úloha 1. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; slovo x ∈ {0, 1}∗.
Výstup: „Áno“ práve vtedy, keď x = ww pre nejaké w ∈ L(A).

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Problému zo zadania zodpovedá jazyk

L = {〈A〉#x | A je det. TS nad vstupnou abecedou {0, 1}; ∃w ∈ L(A) : x = ww}.

LU

L

〈A〉 áno

nie

áno

nie
Transf.

w

〈A〉

ww

Obr. 6: Schéma redukcie univerzálneho problému na problém zo zadania.

Dokážeme, že problém zo zadania nie je rozhodnuteľný, ale je rekurzívne vyčísliteľný – jazyk L
teda patrí do LRE , ale nepatrí do Lrec.

Problém je zjavne rekurzívne vyčísliteľný – Turingov stroj akceptujúci jazyk L najprv overí, či je
vstup tvaru 〈A〉#ww pre nejaké w ∈ {0, 1}∗. Ak nie, môže tento vstup rovno zamietnuť. V opačnom
prípade stroj nájde slovo w a spustí univerzálny Turingov stroj na vstupe 〈A〉#w.

Nerozhodnuteľnosť dokážeme redukciou univerzálneho problému na problém zo zadania. Keby
sme mali k dispozícii „čiernu skrinku“ rozhodujúcu problém zo zadania, vedeli by sme skonštruovať
aj Turingov stroj rozhodujúci univerzálny problém – ten upraví vstup 〈A〉#w na 〈A〉#ww a na ňom
spustí „čiernu skrinku“ pre L. Tá vráti odpoveď „áno“ práve vtedy, keď 〈A〉#ww ∈ L. To nastane
práve vtedy, keď w ∈ L(A) – čiže práve vtedy, keď 〈A〉#w ∈ LU . Výstup „čiernej skrinky“ teda možno
priamo použiť ako výstup stroja pre univerzálny problém. Schéma redukcie je na obrázku 6.

8

Redukcia z predchádzajúcej úlohy patrí k tým úplne najjednoduchším, pretože nevyžaduje žiaden
zásah do kódu 〈A〉 a transformuje sa pri nej iba zvyšný vstup. V nasledujúcich úlohách dokážeme
nerozhodnuteľnosť ďalších rozhodovacích problémov. Redukcie už však budú vyžadovať aj transfor-
máciu kódu 〈A〉 zo vstupu redukovaného rozhodovacieho problému.

Úloha 2. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; kód 〈c〉 nejakého
pracovného symbolu c stroja A; slovo w ∈ {0, 1}∗.

Výstup: „Áno“ práve vtedy, keď A počas výpočtu na vstupe w aspoň raz zapíše na pásku symbol c.

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Nech L je jazyk zodpovedajúci danému rozhodovaciemu problému. Redukciou univerzál-
neho problému najprv dokážeme, že problém zo zadania nie je rozhodnuteľný – čiže L 6∈ Lrec.
Za účelom sporu predpokladajme, že problém je rozhodnuteľný. Ukážeme, že v takom prípade by bol
rozhodnuteľný aj univerzálny problém (spor).

Pokúsme sa teda za uvedeného predpokladu skonštruovať deterministický Turingov stroj, ktorý
sa na každom vstupe zastaví a ktorý akceptuje jazyk LU (zodpovedajúci univerzálnemu problému).
Vstupom takéhoto stroja je kód 〈A〉 nejakého Turingovho stroja A nad vstupnou abecedou {0, 1}
a slovo w ∈ {0, 1}∗.

Stroj pre LU musí rozhodnúť, či w ∈ L(A), pričom pri rozhodovaní môže použiť stroj pre L.
Môžeme sa teda pokúsiť upraviť vstupy 〈A〉, w stroja pre LU na vhodné vstupy stroja pre L tak,
aby stroj pre LU mohol zmysluplne využiť výstup stroja pre L.

LU

L

〈A〉 áno

nie

áno

nie
Transf.

w

〈B〉

w

〈c〉

Obr. 7: Schéma redukcie univerzálneho problému na problém zo zadania.

Za týmto účelom zjavne postačí prerobiť kód 〈A〉 na kódy 〈B〉, 〈c〉 stroja B a nejakého jeho
pracovného symbolu c s nasledujúcou vlastnosťou: w ∈ L(A) práve vtedy, keď B na vstupe w
zapíše na pásku aspoň raz symbol c. Potom totiž 〈B〉#〈c〉#w ∈ L práve vtedy, keď 〈A〉#w ∈ LU

– ako výstup stroja pre univerzálny problém tak možno priamo použiť výstup „čiernej skrinky“
rozhodujúcej problém zo zadania.

Stroj B s požadovanou vlastnosťou ale môže pracovať napríklad tak, že bude simulovať výpočet
stroja A a ak ten akceptuje, zapíše na pásku nejaký nový symbol c.

Ukážeme, že na základe kódu stroja A vieme kódy stroja B a symbolu c algoritmicky skonštruovať.
Nech A = (K,Σ,Γ, δ, q0, F). Stroj B bude daný ako B = (K ′,Σ,Γ′, δ′, q0, F

′), pričom K ′ = K ∪ {q},
kde q je nový stav, Γ′ = Γ ∪ {c}, kde c je nový symbol a prechodová funkcia δ′ je daná nasledovne:

∀p ∈ K − F ∀a ∈ Γ ∪ {B} : δ′(p, a) = δ(p, a),

∀p ∈ F ∀a ∈ Γ ∪ {B} : δ′(p, a) = (q, c, 0);

zo stavu q nebudú definované žiadne prechody, rovnako ako zo stavov p ∈ K na symbol c. Ďalej
môžeme vziať napríklad F ′ = ∅.

9

Na prerobenie kódu 〈A〉 na kód 〈B〉 teda v zásade stačí zakomponovať do 〈A〉 jeden nový stav,
jeden nový pracovný symbol (ktorého kódom bude 〈c〉) a niekoľko nových prechodov, spolu s úpravou
množiny akceptačných stavov. To však zrejme ide urobiť algoritmicky (tzn. na Turingovom stroji).

Stroj rozhodujúci univerzálny problém teda bude pracovať tak, že svoje vstupy 〈A〉, w prerobí
na 〈B〉, 〈c〉, w, na ktorých spustí stroj pre problém zo zadania. Výstup tohto stroja potom bude aj
výstupom pre univerzálny problém. Schéma redukcie je na obrázku 7.

Ostáva teda dokázať alebo vyvrátiť rekurzívnu vyčísliteľnosť problému zo zadania. Dokážeme,
že problém je rekurzívne vyčísliteľný. Turingov stroj akceptujúci jazyk L zodpovedajúci problému
zo zadania totiž môže pracovať tak, že pomocou univerzálneho Turingovho stroja simuluje výpočet
stroja A na slove w a ak stroj A zapíše na pásku symbol c, stroj pre jazyk L akceptuje.

Úloha 3. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}; kód 〈q〉 nejakého
stavu q stroja A; slovo w ∈ {0, 1}∗.

Výstup: „Áno“ práve vtedy, keď sa stroj A na vstupe w dostane aspoň raz do konfigurácie so stavom q.

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Problém je rekurzívne vyčísliteľný, pretože stačí pomocou univerzálneho Turingovho stroja
simulovať výpočet stroja A na vstupe w a v prípade, že sa tento výpočet dostane do stavu q,
akceptovať.

Nech L označuje jazyk zodpovedajúci problému zo zadania. Redukciou univerzálneho problému
na problém zo zadania dokážeme, že problém zo zadania nie je rozhodnuteľný. Za účelom sporu pred-
pokladajme, že existuje deterministický Turingov stroj, ktorý sa na každom vstupe zastaví a ktorý
akceptuje jazyk L. Ukážeme, že v tom prípade vieme takýto stroj skonštruovať aj pre univerzálny
jazyk LU , čo bude spor.

Vstupom stroja pre univerzálny problém je kód 〈A〉 nejakého Turingovho stroja A a slovo w;
treba pritom rozhodnúť, či w ∈ L(A). Pri konštrukcii stroja rozhodujúceho univerzálny problém
potrebujeme nejakým spôsobom využiť stroj rozhodujúci problém zo zadania (jazyk L). Môžeme
teda skúsiť upraviť vstupy 〈A〉, w stroja pre LU na vhodné vstupy stroja pre L tak, aby stroj pre LU

mohol zmysluplne využiť výstup stroja pre L.
Za týmto účelom stačí prerobiť kód 〈A〉 stroja A na kód 〈B〉 nejakého iného stroja B a kód 〈q〉

nejakého jeho stavu q tak, aby bolo w ∈ L(A) práve vtedy, keď sa stroj B počas výpočtu na slove w
dostane do konfigurácie so stavom q.

Stroj pre LU totiž môže v takom prípade pracovať nasledovne: transformuje svoje vstupy 〈A〉, w
na 〈B〉, 〈q〉, w, na ktorých spustí stroj pre L. Ten sa v konečnom čase zastaví, pričom jeho odpoveď
je „áno“ práve vtedy, keď sa stroj B na vstupe w dostane do konfigurácie so stavom q. To je ale
podľa vyššie uvedenej vlastnosti práve vtedy, keď w ∈ L(A), čo znamená, že výstup stroja pre L je
aj výstupom stroja pre LU . Schéma redukcie je na obrázku 8.

LU

L

〈A〉 áno

nie

áno

nie
Transf.

w

〈B〉

w

〈q〉

Obr. 8: Schéma redukcie univerzálneho problému na problém zo zadania.

10

Zostáva špecifikovať stroj B a nejaký jeho stav q tak, aby platila vyššie uvedená vlastnosť a aby
sa kódy 〈B〉, 〈q〉 dali z kódu stroja A algoritmicky – to jest na Turingovom stroji – skonštruovať.

Stroj B ale napríklad môže na každom vstupe w pracovať ako stroj A s tým rozdielom, že
z akceptačného stavu stroja A ešte vždy prejde do nejakého nového stavu q, v ktorom sa zastaví.
Takto definovaný stroj B má spolu s novopridaným stavom q evidentne požadovanú vlastnosť – jeho
výpočet na slove w sa dostane do stavu q práve vtedy, keď w ∈ L(A). Od stroja A sa navyše stroj B
líši iba množinou akceptačných stavov6 a pridaním jedného nového stavu a niekoľkých prechodov.
Preto je transformácia kódu 〈A〉 na kódy 〈B〉, 〈q〉 algoritmicky realizovateľná.

11 Zložitejšie riešené úlohy

V redukciách z predchádzajúcich dvoch úloh bola transformácia kódu 〈A〉 Turingovho stroja A
zo vstupu rovnaká pre všetky vstupné slová w. V nasledujúcich dvoch úlohách použijeme reduk-
cie, ktoré túto vlastnosť nemajú a transformácia kódu Turingovho stroja závisí od jeho vstupu.

Úloha 4. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Výstup: „Áno“ práve vtedy, keď ε ∈ L(A).

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Dokážeme najprv, že problém nie je rozhodnuteľný. Budeme postupovať redukciou univer-
zálneho problému na problém zo zadania.

Za účelom sporu predpokladajme, že problém zo zadania – reprezentovaný nejakým jazykom Lε

– je rozhodnuteľný, a teda existuje deterministický Turingov stroj akceptujúci jazyk Lε, ktorý sa
na každom vstupe zastaví. K sporu dospejeme tým, že na základe tohto stroja skonštruujeme stroj
rozhodujúci univerzálny problém.

Ten dostane na vstupe kód 〈A〉 nejakého Turingovho stroja A nad vstupnou abecedou {0, 1}
a slovo w ∈ {0, 1}∗. Aby sme pomocou stroja rozhodujúceho Lε vedeli rozhodnúť univerzálny problém,
stačí na základe kódu 〈A〉 a slova w vyrobiť kód 〈B〉 Turingovho stroja B, ktorý má nasledujúcu
vlastnosť: w ∈ L(A) práve vtedy, keď ε ∈ L(B). Je zrejmé, že takýto stroj B musí závisieť nielen
od A, ale aj od w. Presnejšie by sme teda namiesto B mohli písať aj B(A,w).

Stroj B, ktorý skonštruujeme, bude v prípade w ∈ L(A) akceptovať jazyk {0, 1}∗ (a teda aj ε)
a v opačnom prípade bude akceptovať prázdny jazyk. Pracovať bude nasledovne: dostane na vstupe
slovo x, ktoré ihneď zahodí a nahradí ho slovom w, ktoré má „pevne zadrôtované v prechodovej
funkcii“ . Následne odsimuluje výpočet stroja A na vstupe w a akceptuje práve vtedy, keď akceptuje
stroj A. Schéma stroja B je na obrázku 9.

B

A

accept acceptx

w

w

Obr. 9: Schematické znázornenie konštrukcie stroja B.

6Ak má aj výsledný Turingov stroj B ostať v normálnom tvare bez prechodov z akceptačných stavov, nemôžu
akceptačné stavy stroja A ostať akceptačnými aj v stroji B.

11

Čitateľovi dostatočne zbehlému v písaní prechodových funkcií Turingových strojov by malo byť
zrejmé, že transformácia kódu 〈A〉 stroja A a slova w na kód 〈B〉 stroja B je iba otázkou vytrvalosti
a „programátorskej zručnosti“ . Malo by teda byť očividné, že sa táto transformácia dá zrealizovať
na Turingovom stroji.

Stroj rozhodujúci univerzálny problém teda môže pracovať tak, že prerobí svoje vstupy 〈A〉, w
na 〈B〉 a následne „zavolá“ stroj pre problém zo zadania so vstupom 〈B〉. Výstup tohto stroja je aj
výstupom pre univerzálny problém. Schéma redukcie je na obrázku 10.

LU

Lε

〈A〉 áno

nie

áno

nie
Transf.

w

〈B〉

Obr. 10: Schéma redukcie univerzálneho problému na problém zo zadania.

Je očividné, že problém je rekurzívne vyčísliteľný, keďže tu stačí „zavolať“ univerzálny Turingov
stroj so vstupmi 〈A〉 a ε.

Úloha 5. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Výstup: „Áno“ práve vtedy, keď 10011 6∈ L(A).

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Dokážeme, že tento problém nie je rekurzívne vyčísliteľný (a teda nemôže byť ani roz-
hodnuteľný). To je intuitívne zrejmé z nasledujúcej úvahy: pri simulácii prípadného nekonečného
výpočtu stroja A na slove 10011 nikdy nemáme istotu, že je výpočet naozaj nekonečný a netreba
na jeho skončenie čakať ešte o niečo dlhšie. V prípade nekonečného výpočtu na slove 10011 ale platí
10011 6∈ L(A), pričom po prípadnom skončení výpočtu môže nastať aj situácia, keď 10011 ∈ L(A).
To znamená, že v rozhodovacom probléme zo zadania pravdepodobne nevieme s istotou povedať
odpoveď „áno“ , t. j. problém pravdepodobne nebude ani rekurzívne vyčísliteľný.

Uvedené odôvodnenie však nie je naozajstným dôkazom. Ten spravíme redukciou z komplemen-
tárneho diagonálneho problému. Nech problému zo zadania zodpovedá jazyk L. Dokážeme, že ak
by existoval deterministický Turingov stroj akceptujúci jazyk L – teda keby bol problém zo zadania
rekurzívne vyčísliteľný – existoval by aj Turingov stroj akceptujúci jazyk LC

D, čo je spor (pretože
máme dokázané, že LC

D 6∈ LRE).
Vstupom komplementárneho diagonálneho problému je kód 〈A〉 nejakého Turingovho stroja A,

pričom treba akceptovať ak 〈A〉 6∈ L(A). Stroj akceptujúci jazyk LC
D môže pracovať tak, že tento

vstup transformuje na kód 〈B〉 Turingovho stroja B s vlastnosťou, že 10011 6∈ L(B) práve vtedy, keď
〈A〉 6∈ L(A). Na vstupe 〈B〉 potom už len spustí Turingov stroj pre jazyk L, ktorý akceptuje práve
vtedy, keď 10011 6∈ L(B), čo je podľa uvedenej vlastnosti stroja B práve vtedy, keď 〈A〉 6∈ L(A).
Schéma redukcie je na obrázku 11.

Zostáva už len opísať konštrukciu stroja B a zdôvodniť, že je algoritmicky realizovateľná. Stroj B
skonštruujeme tak, že v prípade 〈A〉 ∈ L(A) bude L(B) = {0, 1}∗ a v prípade 〈A〉 6∈ L(A) bude
L(B) = ∅. Zrejme potom bude splnená aj vlastnosť, že 10011 6∈ L(B) práve vtedy, keď 〈A〉 6∈ L(A).

Stroj B bude pracovať tak, že svoj vstup x hneď na začiatku zahodí a nahradí ho slovom 〈A〉,
ktoré má „pevne zadrôtované v prechodovej funkcii“ . Na tomto slove potom spustí simuláciu stroja A,
ktorého prechodovú funkciu má tiež „pevne zadrôtovanú“. Ak A akceptuje, akceptuje aj stroj B.

12

LC
D

L

〈A〉 accept acceptTransf.
〈B〉

Obr. 11: Schéma redukcie komplementárneho diagonálneho problému na problém zo zadania.

B

A

accept acceptx

〈A〉

〈A〉

Obr. 12: Schematické znázornenie konštrukcie stroja B.

Schéma konštrukcie stroja B je na obrázku 12. Vzťah jazyka akceptovaného strojom B k jazyku
akceptovanému strojom A je zjavne taký, ako je uvedené vyššie. Navyše je zrejmé, že transformá-
cia kódu 〈A〉 na kód 〈B〉 je síce trochu komplikovaná, ale každopádne algoritmicky realizovateľná.
Tvrdenie je dokázané.

12 Ešte jedna riešená úloha

V nasledujúcej úlohe bude problém zo zadania rozhodnuteľný – na dôkaz tejto skutočnosti stačí
opísať na každom vstupe zastavujúci deterministický Turingov stroj akceptujúci príslušný jazyk.

Úloha 6. Uvažujme rozhodovací problém daný nasledovne:

Vstup: Kód 〈A〉 deterministického Turingovho stroja A nad vstupnou abecedou {0, 1}.
Výstup: „Áno“ práve vtedy, keď sa vo výpočte stroja A na vstupe ε vyskytne niektorý stav aspoň dvakrát.

Zistite, či je uvedený problém rozhodnuteľný. Ak nie, je aspoň rekurzívne vyčísliteľný?

Riešenie. Problém je rozhodnuteľný. Každý Turingov stroj A má totiž konečný počet stavov kA.
Každý výpočet stroja A dĺžky aspoň kA pozostáva z aspoň kA + 1 konfigurácií, čo znamená, že
nejaký stav sa nutne musel vyskytnúť aspoň dvakrát.

Stroj rozhodujúci problém zo zadania preto môže pracovať napríklad tak, že bude simulovať
prvých kA krokov výpočtu Turingovho stroja A na vstupe ε – ak sa tento výpočet zastaví ešte
pred vykonaním kA-teho kroku, stačí overiť, či sa nejaký stav vyskytol dvakrát a podľa toho vrátiť
odpoveď na výstup. V opačnom prípade sa nejaký stav dvakrát určite vyskytol, takže stačí na výstup
vrátiť odpoveď „áno“ .

13

13 Jazyk, ktorý nie je v LRE ani v co-LRE (*)

Uvažujme teraz jazyk Lkatastrofa definovaný takto:

Lkatastrofa = {0u | u ∈ {0, 1}∗; u ∈ LD} ∪
{

1v | v ∈ {0, 1}∗; v ∈ LC
D

}
.

Dokážeme, že on ani jeho komplement nie sú rekurzívne vyčísliteľné. Jazyk Lkatastrofa teda nebude
ani v LRE , ani v co-LRE .

LC
D

Lkatastrofa

w accept accept
Transf.

1w

Obr. 13: Redukcia komplementárneho diagonálneho problému na problém reprezentovaný jazykom Lkatastrofa.

LC
D

LC
katastrofa

w accept accept
Transf.

0w

Obr. 14: Redukcia komplementárneho diagonálneho problému na problém reprezentovaný jazykom LC
katastrofa.

Redukciou komplementárneho diagonálneho problému najprv dokážeme, že Lkatastrofa 6∈ LRE .
Keby bolo Lkatastrofa ∈ LRE , existoval by deterministický Turingov stroj M akceptujúci tento jazyk.
Na základe stroja M by sme ale mohli skonštruovať Turingov stroj akceptujúci LC

D, ktorý najprv
vstup w upraví na 1w a na tomto vstupe odsimuluje strojM . Ten akceptuje práve vtedy, keď w ∈ LC

D,
čo sme chceli dosiahnuť. Schéma tejto redukcie je znázornená na obrázku 13.

Dokážeme ešte, že jazyk

LC
katastrofa =

{
0u | u ∈ {0, 1}∗; u ∈ LC

D

}
∪ {1v | v ∈ {0, 1}∗; v ∈ LD} ∪ {ε}

nie je v LRE . Aj na k nemu prislúchajúci rozhodovací problém redukujeme komplementárny diago-
nálny problém. Keby bolo LC

katastrofa ∈ LRE , existoval by deterministický Turingov stroj M taký,
že L(M) = LC

katastrofa. Potom by sme ale vedeli skonštruovať Turingov stroj akceptujúci jazyk LC
D,

ktorý najprv vstup w upraví na 0w a na tomto vstupe odsimuluje strojM . StrojM zrejme akceptuje
práve vtedy, keď w ∈ LC

D. Schéma redukcie je na obrázku 14.
Jazyk Lkatastrofa teda skutočne nie je v LRE ani v co-LRE . Situácia z obrázku 5 doplnená o pozíciu

jazyka Lkatastrofa je na obrázku 15.

14

LRE

co-LRE

Lrec

Univerzum jazykov

LD

LC
D LC

U

LU

LHALT

LC
HALT

Lkatastrofa

Obr. 15: Situácia z obrázku 5 doplnená o pozíciu jazyka Lkatastrofa.

15

	Rozhodovacie problémy
	Turingova téza
	Stroje zastavujúce na každom vstupe a rekurzívne jazyky
	Rozhodnuteľné a nerozhodnuteľné problémy
	Rozhodovacie problémy, algoritmy a ich formalizácie
	Existencia jazykov mimo LRE
	Diagonálny problém a jeho nerozhodnuteľnosť
	Vzťah medzi triedami Lrec a LRE
	Redukcie: univerzálny problém a problém zastavenia
	Jednoduchšie riešené úlohy
	Zložitejšie riešené úlohy
	Ešte jedna riešená úloha
	Jazyk, ktorý nie je v LRE ani v co-LRE (*)

