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1 Naco teodria zlozitosti zalozena na Turingovych strojoch?

Na minulom cvieni sme sa zaoberali zékladmi tedrie vypocitatelnosti — alebo presnejgie rozhod-
nutelnosti — taziskom ktorej je klasifikdcia vypoctovych problémov podla toho, ¢i st alebo nie si
algoritmicky riesitelné. Pokrocilejsie partie teorie vypocitatelnosti sa potom zaoberaju predovetkym
d'alsou klasifikdciou neriesitelngch problémov.

Okruh zéujmu teoérie vypoctovej zloZitosti naopak tvoria problémy, ktoré algoritmicky riegitelné
st. Tie s v tejto teorii klasifikované podla prostriedkov — predovsetkym casu a objemu pracovnej
pamdte — ktoré je potrebné vynaloZit na ich vyrieSenie.

Dvoma zakladnymi mierami zloZitosti st teda cas a priestor (alebo objem pamdte). Ich exaktné
uchopenie sa v8ak javi ako podstatne problematickejSie, nez tomu bolo pri pojme algoritmu, za kto-
rého formalizéciu sa vSeobecne povazuje na kazdom vstupe zastavujici deterministicky Turingov
stroj. Nie je totiz zndmy Ziaden univerzdlny spdsob, ako vypoctovému problému priradit jeho casova
alebo pamétovi zlozitost. Merat ¢asovi zlozitost problému pomocou fyzikalnej veli¢iny ¢asu je zjavny
nezmysel, pretoze takto definovana zloZitost by nutne zavisela od rychlosti procesora a ligila by sa
od pocitaca k pocitac¢u — o ruénom pocitani na papieri ani nehovoriac. Pri analyze algoritmov sa teda
zauzival pristup, pri ktorom sa za ¢asovu zloZitost problému povazuje pocet urcitych elementarnych
operacii nutnych na jeho vyrieSenie. Napriklad pri triedeniach sa zvykne skumat pocet porovnani,
pri ¢iselnych algoritmoch pocet elementarnych aritmetickych operécii a pod.

Predpokladom sktmania zloZitosti akéhokolvek vypoc&tového problému je teda model uréujtci
operacie povazované za elementarne. So zmenou modelu sa moéze podstatne zmenit aj zlozitost:
ak by sme napriklad pri niektorych &iselnych algoritmoch namiesto s¢itania a nasobenia povazovali
za elementérne iba bitové operécie, mohli by sme dospiet k drasticky odlisnym vysledkom. VolIba
vhodného modelu tak vacSinou zavisi od konkrétnych cielov danej analyzy.

V tedriv vijpoctove; zloZitosti sa takymto modelom najcastejSie rozumeja rézne varianty viacpas-
kovych Turingovijch strojov. Za mieru Casu sa tak povazuje pocet krokov vypoctu Turingovho stroja
a za mieru pamate — alebo priestoru — pocet zapisanych poli¢ok na pracovnych paskach. Napriklad
rézny pocet pracovnych pasok stroja ale opit moze mat za nasledok int ¢asovi zlozitost problému.!

Prednostou takéhoto pristupu k skiimaniu vypoctovej zloZitosti je predovSetkym jeho exaktnost,
vdaka ktorej je o Casove] a priestorovej zloZitosti mozné dokizat aj vysledky, ktoré by pre &isto
intuitivne chapané miery zloZitosti ¢asto nebolo mozné ani sformulovat. Jeho nevyhodou je naopak
skutocnost, Ze zlozitost problému na Turingovom stroji nemusi nutne zodpovedat zvycajnej predstave
o zlozitosti toho istého problému.?

Napriek tomu vsak existuju dobré dévody, preco sa tedriou zlozitosti zalozenou na Turingovych
strojoch zaoberat. Azda najpodstatnejsi z nich je vyjadreny tzv. tézou o invariancii |2]. Ide, podobne
ako v pripade Turingovej tézy, o principidlne neoveritelné tvrdenie, podla ktorého urcité triedy
zloZitosti ostavaju pre vSetky ,rozumné* modely nezmenené. Napriklad deterministicky Turingov
stroj s polynomialnou ¢asovou zloZitostou existuje pre vypoctovy problém prave vtedy, ked je tento
problém rieSitelny s pouzitim polynomialneho poc¢tu instrukcii sekvenéného procesora I'ubovolnej
,beznej“ architektury.

Prave tato nezmenenost — alebo invariancia — niektorych doélezitych tried ¢asovej a priestorovej
zlozitosti pri zmene uvazovaného modelu je dévodom, preco je vyskum v oblasti vypoctovej zlozitosti
zaujimavy a uzitocny aj z praktického hladiska.

"Miery éasovej zlozitosti sa obvykle definuji bez obmedzeni na pocet pasok.
2Pri beznej analyze algoritmov sa ako model va&inou neuvazuje Turingov stroj, o méze mat za nasledok ind
vysledni zloZitost problému, neZ pri analyze na Turingovych strojoch.



2 Zakladné definicie

Dohoda 1. V nasledujiicom pracujeme iba s deterministickymi Turingovymi strojmi, ktoré sa na kaz-
dom vstupe zastavia — vypocet stroja na kazdom slove je teda vzdy kone¢ny. Tento predpoklad uz
d'alej uvadzat nebudeme.

Dohoda 2. Ako model pre skimanie deterministickej Casovej zloZitosti budeme v nasledujicom
vZdy uvazovat viacpdskovy deterministicky Turingov stroj — Cize k-pdskovy deterministicky Turingov
stroj pre nejaké k € N — {0}.3 Mierou ¢asovej zlozitosti bude pocet krokov vypoétu takéhoto stroja.
Pri priestorovej zlozitosti budeme ako model uvazovat wviacpdskovy deterministicky Turingov stroj
s oddelenou vstupnou pdskou. Té sluZi iba na zadavanie vstupu a nie je mozné menit jej obsah. Zvys-
nych k € N — {0} pasok stroja st bezné pracovné pasky. Mierou priestorovej zloZitosti je maximalny
pocet pouzitych policok spomedzi vSetkych pracovngch pasok.

Dovodom, preco sa pri priestorovej zloZzitosti vyzaduje oddelend vstupné péska, je skutocnost,
7e v opac¢nom pripade by priestorovéi zloZitost musela byt vzdy aspon také, aka je dlzka vstupu.
Problémy so sublinedrnou priestorovou zloZitostou by tak nebolo mozné klasifikovat.

Definicia 1. Nech £ € N — {0} a A je k-paskovy deterministicky Turingov stroj. Nech
Vicol—ClF...FCn,

kde Cy, ..., C, su konfiguracie, je vypocet stroja A. Potom TIME(A, ) = n; ide teda o pocet krokov
vypoctu tvoriacich vypocet ~.

Definicia 2. Nech k € N — {0}, A je k-paskovy deterministicky Turingov stroj a w € ¥*. Potom
TIME(A,w) = TIME(A, 7), kde v je vypocet stroja A na slove w.

Definicia 3. Nech k € N — {0}, A je k-paskovy deterministicky Turingov stroj a n € N. Potom

TIME(A, n) = max TIME(A, w).

lw|<n

Definicia 4. Nech f: N — N je funkcia. Trieda DTIME(f(n)) je tvorena vSetkymi jazykmi L,
pre ktoré existuje k € N — {0} a k-paskovy deterministicky Turingov stroj A taky, ze L(A) = L
a TIME(A,n) = O(f(n)).

Definicia 5. Nech k € N—{0} a A je k-paskovy deterministicky Turingov stroj s oddelenou vstupnou
péaskou. Nech
’}/C()I_le_}—cn,

kde Cy,...,C), su konfiguracie, je vypocet stroja A. Potom SPACE(A, ) je maximalny pocet zapi-
sanych poli¢ok na niektorej z pracovnych pasok stroja A v niektorej z konfiguracii Cy, Cy, ..., C,.

Definicia 6. Nech & € N—{0}, A je k-paskovy deterministicky Turingov stroj s oddelenou vstupnou
paskou a w € ¥*. Potom SPACE(A,w) = SPACE(A, ), kde v je vypocet stroja A na slove w.

Definicia 7. Nech k € N— {0}, A je k-paskovy deterministicky Turingov stroj s oddelenou vstupnou
paskou a n € N. Potom
SPACE(A,n) = max SPACE(A, w).
|lw|<n
Definicia 8. Nech f: N — N je funkcia. Trieda DSPACE(f(n)) je tvorena vSetkymi jazykmi L,

pre ktoré existuje k € N — {0} a k-paskovy deterministicky Turingov stroj A s oddelenou vstupnou
paskou taky, ze L(A) = L a SPACE(A,n) = O(f(n)).

3Citatel by iste dokazal sformulovat definiciu takéhoto vypo&tového modelu.



3 Veta o kompresii pasky

Veta 1. Nech f: N — N je funkcia, k € N — {0} a A je k-pdskovy deterministicky Turingov stroj
s oddelenou vstupnou pdskou taky, Ze SPACE(A,n) = f(n). Potom existuje k-pdskovy determinis-
ticky Turingov stroj A s oddelenou vstupnou pdskou taky, ze L(A") = L(A) a pre vietky n € N je
SPACE(A’,n) < [f(n)/2].

Doékaz. Idea konstrukcie spociva v reprezentovani dvojic pracovnych symbolov jedinym symbolom
z abecedy I'2. To mozno realizovat viacerymi sposobmi; formalne detaily jednotlivych konstrukeii
prenechavame citatelovi. O

Iteraciou naznacenej kongtrukcie mozno kongtantu 2 v zneni predchadzajucej vety nahradit Tu-
bovolnou kladnou konstantou.

Poznamka 1. Veta o kompresii pasky je viazand na konkrétny model, ktorym sa k-paskové deter-
ministické Turingove stroje s oddelenou vstupnou péskou. Jej dékaz totiz vyuziva Specidlnu Crtu
Turingovych strojov, ktorou je I'ubovolne velka pracovni abeceda — velkost tejto abecedy pritom
na priestorovu zlozitost (z definicie) nema Zziaden vplyv. Vetu preto napriklad nemozno aplikovat
v realistickejsej situacii, ked je potrebné odhadnut potrebny podet bitov paméte. Napriek tomu v8ak
ma velky teoreticky vyznam — vdaka nej by sme napriklad v definicii 8 mohli nahradit podmienku
SPACE(A,n) = O(f(n)) o nieco silnejsou poziadavkou SPACE(A,n) < f(n) pre vietky dostato¢ne
velké n € N.

4 Veta o lineArnom zrychleni

Veta 2. Nech f: N — N je funkcia takd, Ze f(n) = w(n), nech k > 2 je prirodzené cislo a nech A
je k-pdskovy deterministicky Turingov stroj taky, Ze TIME(A,n) = f(n). Potom existuje ng € N
a k-pdskovy deterministicky Turingov stroj A’ taky, Ze L(A") = L(A) a pre vSetky n > ng je
TIME(A’,n) < [f(n)/2].

Dokaz. Stroj A’ najprv skomprimuje svoj vstup do blokov o velkosti m, kde m € N — {0} je vhodna
konstanta. Pokial bol pévodny vstup na prvej péaske, skomprimovany vstup moZno na druht pasku
vypisat v ¢ase linedrnom od vel'kosti vstupu, t. j. en pre vhodné c. Stroj A’ bude nasledne prvi pasku
vyuzivat ako pracovnu a druhé paska bude zohravat tlohu vstupnej pasky, pri¢om aj na pracovnych
paskach bude pracovat s blokmi o velkosti m. Bude sa teda narabat so symbolmi z abecedy I'
obohatenymi o indikator pozicie hlavy.

Stroj A’ bude simulovat vypocet povodného stroja A po tsekoch pozostévajtcich z m krokov
vypoctu stroja A. V ramci simulécie kazdého takéhoto tiseku najprv na kazdej péaske precita blok
Citany hlavou a bloky s nim susedné, pricom si vSetky tieto informécie zapaméti v stave. Téato
procedtra zaberie 4 kroky. Je zrejmé, Ze v nasledujtcich m krokoch vypoc¢tu poévodného stroja sa bude
pracovat iba s polickami v tychto blokoch. To znamené, Ze stroj A’ vie z informécii zapamatanych
v stave vypocitat novy obsah inkriminovanych troch blokov, ako aj novia poziciu hlavy. Nasledné
zapisanie obnovenych blokov na pasku zaberie dalgie 4 kroky. To znamena, ze m krokov pévodného
stroja A dokaZe stroj A’ odsimulovat pomocou 6smich krokov.

Pre ¢as vypoctu stroja A’ potom pre kazdé n € N plati

TIME(A',n) < dn+38 PB(”)—‘ ,

m

kde ¢’ je vhodna konstanta. Vdaka predpokladu f(n) = w(n) teda evidentne mozno zvolit kon-
Stantu m tak, aby pre nejaké ng € N a vSetky n > ng skuto¢ne bolo

TIME(A',n) < [f(n)/2]. O



Ako je zrejmé z dokazu, podmienka f(n) = w(n) je v zneni predchadzajucej vety kvoli kompresii
vstupu, ktord na stroji s k > 2 paskami zaberie linearny c¢as. Na jednopéaskovom stroji vyzaduje
kompresia vstupu kvadraticky ¢as, ¢o je dévod, preco je v zneni vety podmienka k > 2.

Podobne ako pri vete o kompresii pasky, iterdciou mozno konStantu 2 v zneni vety nahradit
Tubovolnou kladnou konstantou.

5 Veta o redukcii poc¢tu pasok z k£ na 1 pre priestor

Veta 3. Nech f: N — N je funkcia, k € N—{0} a A je k-pdskovy deterministicky Turingov stroj s od-
delenou vstupnou paskou taky, Ze SPACE(A,n) = f(n). Potom existuje jednopdskovy deterministickiyj
Turingov stroj A" s oddelenou vstupnou pdskou taky, Ze L(A") = L(A) a pre vSetky n € N je

SPACE(A4’,n) < f(n).

Dokaz Standardné simulacia k-paskového deterministického Turingovho stroja na jednopéskovom
s k-stopou paskou zjavne zachovava priestorovi zloZitost. O

6 Veta o redukcii poc¢tu pasok z £ na 1 pre cCas

Veta 4. Nech f: N — N je funkcia spliiajica f(n) = Q(n), nech k € N — {0} a A je k-pdskovy
deterministicky Turingov stroj taky, Ze TIME(A,n) = f(n). Potom existuje ng € N a jednopdskovy
determanisticky Turingov stroj A" taky, Ze L(A") = L(A) a pre vSetky n > ny je

TIME(A',n) < ¢(f(n))?,
kde ¢ > 0 je redlna konstanta nezdvisld na n.

Dékaz. Opat uvazujme simulaciu k-paskového deterministického Turingovho stroja na jednopéasko-
vom s k-stopou paskou. Pocet krokov potrebny na odsimulovanie jedného kroku vypocétu pévodného
stroja A je v tejto konsStrukeii zjavne zhora ohrani¢eny konstantnym nasobkom maximélneho pocétu
zapisanych policok na niektorej z pasok stroja A. Lahko ale vidiet, Ze pocas vypoc¢tu na vstupe
dlzky n moze byt na Iubovolnej paske stroja A najviac n + TIME(A,n) = O(f(n)) zapisanych
policok. Celkovo tak simuldcia zaberie najviac O((f(n))?) krokov, ¢o bolo treba dokézat. O

7 Veta o redukcii poc¢tu pasok z £ na 2 pre cas

Veta 5 (Hennie, Stearns [1]). Nech f: N — N je funkcia spliiajica f(n) = Q(n), nech k € N — {0}
a A je k-paskovy deterministicky Turingov stroj taky, Ze TIME(A,n) = f(n). Potom existuje ng € N
a dvogpdskovy deterministicky Turingov stroj A’ taky, Ze L(A") = L(A) a pre vSetky n > ng je

TIME(A',n) < c¢f(n)logy f(n),

kde ¢ > 0 je redlna kondtanta nezdvisld na n.*

Zakladna myslienka konstrukcie. Cielom je skonstruovat stroj A’ tak, aby na svojich dvoch
paskach dokéazal odsimulovat k-paskovy stroj A s ¢asovou zlozitostou zhorSenou nanajvys o logarit-
micky faktor. Prvd pdska stroja A’ bude sofistikovane Struktirovana a bude na nej uloZeny obsah
vSetkych k péasok stroja A. Struktarovanie prvej pasky ma za ciel minimalizovat priemerny pocet po-
hybov hlavy potrebnych pri simulacii jedného kroku vypoctu stroja A. Druhd pdska stroja A’ nebude
mat ziadnu Specialnu Struktaru a bude sluzit iba ako pomocna paska pri apravach prvej pasky.

V nasledujicom najprv opiSeme organizaciu prvej pasky a invarianty, ktoré pre fiu budu splnené.
Nésledne opiseme sposob, akym sa realizuje simuldcia jedného kroku vypoétu stroja A na stroji A’
a opis konstrukcie zavigime analyzou ¢asovej zlozitosti stroja A’.

“Hodnota c vsak zavisi od k, ktoré takisto povazujeme za konstantu.



Organizacia prvej pasky. Prvi pasku stroja A’, sluziacu na uloZenie obsahov vsetkych k pasok
stroja A, rozdelime na k stop, pricom obsah kazdej z nich bude zodpovedat obsahu jednej z pasok
stroja A. Kazdu z tychto k stop dalej vertikalne rozdelime na dve trovne. Slova zapisané na prvej
péske teda budu pozostavat z vhodnych 2k-poschodovych symbolov. Tato situécia je znazornené

na obrazku 1.
/V Policko
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Obr. 1: Vertikilne ¢lenenie prvej pasky stroja A’.

Okrem opisaného vertikalneho ¢lenenia zavedieme aj horizontélne ¢lenenie péasky, ktoré ju rozdeli
na bloky® exponencialne sa zvicsujucej sirky. Jeden &pecialny stlpec bude tvorit samostatny blok By
zodpovedajuci symbolom pod ¢&itacimi hlavami jednotlivych pasok stroja A. Napravo od bloku By
sa budi nachadzat bloky By, Ba, Bs, . . ., pricom §irka bloku B; bude pre vietky i € N—{0} rovna 2¢~1.
Podobne sa nalavo od bloku By budt nachadzat bloky B_1, B_9, B_3,..., pricom 8irka bloku B_;
bude pre vietky i € N — {0} takisto rovna 2°~!. Horizontélne ¢lenenie jednej konkrétnej stopy prvej
pasky je znazornené na obréazku 2.

_ 1 Stopa

Obr. 2: Horizontalne ¢lenenie jednej zo stop prvej pasky stroja A’.

B_1 By By

<+ p><—> <> ><t—>
B_3 B_o Bs B3

Jedna takato dvojuroviiova stopa prvej pasky stroja A’ sluzi na $truktirované uchovanie obsahu
jednej pasky stroja A. Poli¢ko Tubovolnej z oboch trovni méze byt piné (ak je na fiom zapisany symbol
z pasky stroja A) alebo prdzdne (v opa¢nom pripade). épecialne treba upozornit na skutoc¢nost, Ze
ak takéto policko obsahuje symbol B, je povazZované za plné. V priebehu simulacie bude mat kazdy
z blokov B; jednu z nasledujtcich vlastnosti:

e Blok B; obsahuje na obidvoch vertikalnych trovniach iba plné policka. V takom pripade budeme
hovorit, Ze blok B; je piny.

e Blok B; obsahuje na obidvoch vertikdlnych drovniach iba prazdne policka. V takom pripade
budeme hovorit, Ze blok B; je prdzdny.

e Blok B; obsahuje na spodnej tirovni iba plné poli¢ka a na hornej trovni iba prazdne policka.
V takom pripade budeme hovorit, Zze blok B; je poloprdzdny.

5Takéto bloky nebudi (ako napriklad pri vete o kompresii pasky) realizované jednym symbolom, ale pdjde iba
o ,virtualne“ ¢lenenie stlpcov do logickych celkov.



Pocas simulédcie budt navyse splnené nasledujtice invarianty:

(I1) Blok By je vzdy poloprazdny, pricom plné policko na spodnej trovni obsahuje symbol ¢itany
na prislusnej paske hlavou stroja A. (Z tohto dévodu je na obrazku 2 policko na hornej drovni
preskrtnuté.)

(I2) Pre i = 1,2,... st bloky B; a B_; bud obidva poloprazdne, alebo je jeden z nich prazdny
a druhy plny.

Slovo, ktoré je obsahom s-tej pasky stroja A dostaneme z obsahu s-tej dvojuroviiovej stopy prvej
pasky stroja A’ nasledujicim procesom:

1. Pre kazdy blok B; je k nemu prislichajice slovo w; definované nasledovne:

e Ak i =0, je slovom w; symbol na spodnej arovni bloku By.

e Ak i < 0 a blok B; je plny, vznikne w; zretazenim symbolov na spodnej trovni bloku
B; (v poradi zlava doprava) so symbolmi na hornej trovni bloku B; (tiez v poradi zlava
doprava). Ak je blok B; poloprazdny, obsahuje w; iba symboly zo spodnej urovne. Ak je
blok B; prazdny, w; = €.

e Ak ¢ > 0 a blok B; je plny, vznikne w; zretazenim symbolov na hornej trovni bloku B;
(v poradi zlava doprava) so symbolmi na spodnej trovni bloku B; (tiez v poradi zlava
doprava). Ak je blok B; poloprazdny, obsahuje w; iba symboly zo spodnej urovne. Ak je
blok B; prazdny, w; = €.

2. Nech B; je prvy a B; je posledny blok obsahujtci nejaky symbol rozny od B. Obsahom s-tej
pasky je potom slovo w; ... w; (s pripadnym odignorovanim niekolkych symbolov B na zaciatku
a na konci).

Priklad takejto reprezentécie je na obrazku 3.

B_1 By By
IJO|/R|L AT
Stopa
B|Z|L|E|T|E|L Y|Z|T|IR|Y B/ B/ B| -
- <> <« >
B,3 B,Q BQ BS

Obr. 3: Dvojuroviiova stopa prvej pasky stroja A’ reprezentujica slovo ZLETELIORLYZTATRY, pri¢om hlava
zodpovedajucej péasky stroja A ¢ita druhy vyskyt pismena Z.

Na zaciatku simulacie su vSetky bloky vSetkych stop prvej pasky stroja A’ poloprazdne. To zna-
mené, Ze na spodnej drovni prvej stopy je uloZzené vstupné slovo a zvysné stopy obsahuji na spodnych
drovniach symboly B. Horné trovne vSetkych stop obsahuja iba préazdne policka.

Poznamenajme eSte, Ze samozrejme nie je mozné v kone¢nom Case upravit na takyto tvar cela
prvi pasku stroja A’. Na zaciatku simul4cie sa preto na uvedeny tvar upravi iba cast tejto pasky tak,
aby bolo moZné na prvej stope reprezentovat kompletné vstupné slovo a aby bol pre kazdy blok B;
na upravenej Casti pasky aj blok B_;. Na zvysku péasky budt symboly B (stroja A’; tieto symboly si
netreba mylit so symbolmi B stroja A, ktoré sa vyskytuja uz v upravenej Casti prvej pasky stroja A’),
az kym nebude potrebné na danych poziciach zapisovat. V takom pripade sa vytvoria nové bloky
a simulécia pokracuje dalej.

Princip simulacie kroku vypoc¢tu stroja A. V nasledujucom opiSeme klacovu ¢ast celej kon-
Strukcie — spdsob, ktorym sa realizuje simulacia jedného kroku vypoctu stroja A. Tato simulécia
prebieha postupne pre jednotlivé pasky stroja A, pricom vzdy sa upravi zodpovedajica stopa prvej
pasky stroja A’. KedZe je procedtira pre kazdi z pasok stroja A rovnaka, postaci upriamit pozornost
na jednu konkrétnu pasku stroja A a prislusni stopu prvej pasky stroja A’.



Uvazujme napriklad situaciu na obrazku 3, kde hlava &ta symbol Z. Predpokladajme, Ze podla
prechodovej funkcie stroja A je treba prepisat tento symbol na X, pricom hlava ostédva na mieste.
Takato situécia je jednoducha a simulacia sa realizuje iba prepisanim daného symbolu. Vysledny
obsah stopy je na obrazku 4.

B_1 By B
I/|O|R|L AT
Stopa
B|Z|L|E|T|E|L Y|X|TIR|Y B/ B/ B| -
- > <« >
B_; B_, By B3

Obr. 4: Situacia po simulacii kroku vypoctu, v ktorom sa Z prepisalo na X a hlava ostala na mieste.

B_1 By By
IJO|R|L UlA|T
Stopa
B/ Z|L|E|T|E|L Y|T|IR|Y B BB
-« pa—»> <«——r>a—»
B,3 B,Q B2 B3

Obr. 5: Situacia po simulécii kroku vypoctu, v ktorom sa X prepisalo na U a hlava sa pohla dol'ava. Repre-
zentované slovo treba ¢itat ako ZLETELIORLYUTATRY.

Predpokladajme teraz, Ze sa v dalSom kroku vypoc¢tu symbol X prepiSe na U a hlava sa pohne
dol'ava. Prepisanie symbolu X na U mo6zeme zjavne realizovat rovnako ako v predchadzajicom pripade.
Posun hlavy viak musime realizovat posunutim obsahu pasky doprava. Vidime ale, Ze na hornej tirovni
bloku Bj je volné miesto pre symbol U, ktory tak moéZe uvolnit miesto symbolu Y — ten presunieme
z bloku B_; do bloku By. Vysledné situacia je na obrazku 5.

Uvazujme teraz daldi krok vypoétu, v ktorom je treba prepisat symbol Y na symbol A a pohnit
hlavu znova o jedno policko dolava. Tu nardZzame na problém: na péaske nie je miesto na ,upratanie®
symbolu A tak, aby mohol uvolnit miesto pod &itacou hlavou dal§iemu symbolu zlava. Této situacia
sa riesi tak, Ze plné bloky B; a Bs sa upravia na poloprazdne, pricom zvysné symboly sa ulozia
na spodnu droven bloku Bs; keby bol blok B3 poloprizdny, pouzila by sa horna droven bloku Bs.
Vsimnime si, Ze symboly na spodnych trovniach blokov B; aZz Bjs akurat postac¢uji na uskladnenie
vietkych symbolov z blokov B a Bs a symbolu A odsunutého spod &itacej hlavy. To vysvetluje
zvolent 8irku jednotlivych blokov — pre kazdé ¢ € N — {0} je totiz

. -
izﬂ'—l =1+2. Zsz—l.
j=1 j=1

Pri opisanej uprave blokov By, Bs a Bs je potrebné mysliet na to, aby zostalo zachované poradie
symbolov. Nakoniec treba upravit aj bloky B_j, B_y a B_j3 tak, aby bol splneny invariant ([2).
To znamena presunut hornt troven bloku B_3 na spodné tirovne blokov B_s a B_1 (okrem symbolu L,
ktory sa posunie pod ¢itaciu hlavu). Vysledna situécia je zndzornené na obrazku 6.

B_1 By By
- Stopa
B|Z|LIE|T|E|L|I|O|R|L|A|JU|T|A|T|R|Y|B|B|B| ---
- > <« >
B,3 Bfg B2 B3

Obr. 6: Situicia po simulacii kroku vypoétu, v ktorom sa Y prepisalo na A a hlava sa pohla dolava.



Myslienka simulécie by uz z uvedeného prikladu mala byt zrejmé. MoZeme preto pristupit k ve-
obecnému opisu pravidiel pre simulaciu jedného kroku vypoctu. Je zrejmé, Ze postaci opisat pravidla
pre simulaciu kroku vypoc¢tu, v ktorom sa hlava pohne dolava. Pohyb hlavy doprava sa totiZ riesi
symetricky a krok vypocétu bez pohybu hlavy sa oSetri trividlnym spésobom tak, ako je uvedené
vysSie. Procedira pre simulaciu kroku vypoc¢tu s pohybom hlavy dolava je teda nasledovné:

1. Prepis symbol pod ¢itacou hlavou (v bloku By) tak, ako je potrebné v simulovanom kroku
vypoctu.

2. Najdi prvy blok B; napravo od By, ktory nie je plny.

3. Ak je blok B; prazdny, preusporiadaj symboly v blokoch By, By, ..., B;_1 tak, aby boli ulozené
na spodnych turovniach blokov By, Bo, ..., B; a aby reprezentované slovo ostalo nezmenené.

4. Ak je blok B; poloprazdny, preusporiadaj symboly v blokoch By, B1,...,B;_1 tak, aby boli
uloZené na spodnych trovniach blokov Bi, Bs,...,B;_1 a na hornej drovni bloku B; a aby
reprezentované slovo ostalo nezmenené.

5. Najdi prvy blok B_; nalavo od By, ktory nie je prazdny.

6. Ak je blok B_; plny, preusporiadaj symboly na hornej trovni bloku B_; tak, aby boli ulo-
zené na spodnych trovniach blokov B_(;_1), B_(j_g), ..., Bo a aby reprezentované slovo ostalo
nezmeneneé.

7. Ak je blok B_; poloprazdny, preusporiadaj symboly na spodnej tirovni bloku B_; tak, aby
boli uloZené na spodnych trovniach blokov B_;_1), B_(;_g), ..., By a aby reprezentované slovo
ostalo nezmenené.

Vsimnime si, Ze invarianty (I1) a (12) ostavaju v platnosti aj po tejto transformacii.

Technické detaily simulacie kroku vypoétu stroja A. Isté technické detaily ostali nedorieSené.
Napriklad je potrebné si uvedomit, Ze preusporiadavanie blokov v procedtre opisanej vyssie je mozné
urobif v ¢ase linearnom od dlzky bloku iba s pouzitim druhej pracovnej pasky stroja A’. Ak by bol
stroj A’ jednopaskovy, kopirovanie by zabralo ¢as kvadraticky od dizky bloku, ¢o by pokazilo analyzu
celkovej casovej zlozitosti (uvedent nizsie).

V poloformalnom opise simulacie kroku vypoctu uvedenom vysgie dalej pracujeme s paskou
na drovni blokov. Pritom v8ak treba mat na mysli skuto¢nost, Ze ide iba o ,virtualne“ bloky, z ¢oho
vyplyva, Ze ich hranice je potrebné na paske oznacovat Specidlnymi symbolmi. Ak navySe niekedy
pocas simulacie nastane situacia, Ze je potrebné ,vytvorit® novy blok, je v ramci zodpovedajtcej
procedury nutné vypocitat a oznacit jeho koniec. VSetky tieto detaily sa daju oSetrit tak, aby pri si-
mulécii nezabrali prili§ vela ¢asu. Podrobnejsie rozpracovanie takychto ivah mozno najst v pévodnom
¢lanku Hennieho a Stearnsa [1].

Casova zlozitost stroja A’. Pristapme teraz k analyze Gasovej zlozitosti stroja A’. Uvazujme
najprv pevne zvolenu pasku s stroja A.

V nasledujucom budeme hovorit o kroku i-teho rddu, ak pri simulacii daného kroku vypoctu
stroja A potrebujeme v suvislosti s s-tou péaskou pracovat s blokmi B; a B_;, no nepotrebujeme
pracovat s blokmi B;i1 a B_(;;1). Ak implementujeme preusporiadavanie blokov pomocou kopirova-
nia na druhi pracovnu pasku stroja A, mozno krok i-teho radu zrejme odsimulovat v ¢ase nanajvys
c1 - 2%, kde ¢; je konstanta nezavisla od i. To vyplyva zo skutocnosti, Ze po¢et symbolov v prvych i
blokoch je

> 2t =0(2)
j=1

a na preusporiadanie jedného bloku sta¢i vd'aka druhej pracovnej paske ¢as linearny od dizky daného
bloku.



Dalej mozno Tahko nahliadnut, Ze medzi kazdymi dvoma krokmi radu vacsieho ako ¢ je nutné
vykonat aspon jeden krok radu i. Z toho mozno pomocou jednoduchej indukcie odvodit, Ze medzi
kazdymi dvoma krokmi i-teho radu je potrebné vykonat aspoini 2°~! — 1 krokov radu mensieho ako 1.
Dosledkom je skuto¢nost, Ze pocas simuldcie T(n) krokov vypoétu stroja A je nanajvys T'(n)/2i72
tychto krokov réadu 1.

Celkovy pocet T krokov stroja A’, zodpovedajicich paske s a nutnych na odsimulovanie T'(n)
krokov stroja A, teda mozno zhora ohranic¢it nasledujicou sumou cez rady jednotlivych krokov:

log T'(n)+c2

A
T < Z Cy 2" QZ(TLQ) =3 T(TL) 10g T(n)v
=1

kde c2 a c3 st vhodné konstanty. Hornou hranicou sumécie je logT'(n) + co, pretoze pocas T'(n)
krokov je mozné pouzit iba T'(n) poli¢ok, ¢omu zodpoveda log T'(n) + co blokov.

Celkova casova zlozitost stroja A’ po zapocitani krokov zodpovedajicich vSetkym & paskam
a linedrneho ¢asu nutného na inicializciu vypoctu, je teda urcite nanajvys

c3-k-T(n)logT(n)+ O(n) <c-T(n)logT(n),

kde ¢ je vhodna konstanta. To dokazuje vetu 5.
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