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1 Načo teória zložitosti založená na Turingových strojoch?

Na minulom cvičení sme sa zaoberali základmi teórie vypočítateľnosti – alebo presnejšie rozhod-
nuteľnosti – ťažiskom ktorej je klasifikácia výpočtových problémov podľa toho, či sú alebo nie sú
algoritmicky riešiteľné. Pokročilejšie partie teórie vypočítateľnosti sa potom zaoberajú predovšetkým
ďalšou klasifikáciou neriešiteľných problémov.

Okruh záujmu teórie výpočtovej zložitosti naopak tvoria problémy, ktoré algoritmicky riešiteľné
sú. Tie sú v tejto teórii klasifikované podľa prostriedkov – predovšetkým času a objemu pracovnej
pamäte – ktoré je potrebné vynaložiť na ich vyriešenie.

Dvoma základnými mierami zložitosti sú teda čas a priestor (alebo objem pamäte). Ich exaktné
uchopenie sa však javí ako podstatne problematickejšie, než tomu bolo pri pojme algoritmu, za kto-
rého formalizáciu sa všeobecne považuje na každom vstupe zastavujúci deterministický Turingov
stroj. Nie je totiž známy žiaden univerzálny spôsob, ako výpočtovému problému priradiť jeho časovú
alebo pamäťovú zložitosť. Merať časovú zložitosť problému pomocou fyzikálnej veličiny času je zjavný
nezmysel, pretože takto definovaná zložitosť by nutne závisela od rýchlosti procesora a líšila by sa
od počítača k počítaču – o ručnom počítaní na papieri ani nehovoriac. Pri analýze algoritmov sa teda
zaužíval prístup, pri ktorom sa za časovú zložitosť problému považuje počet určitých elementárnych
operácií nutných na jeho vyriešenie. Napríklad pri triedeniach sa zvykne skúmať počet porovnaní,
pri číselných algoritmoch počet elementárnych aritmetických operácií a pod.

Predpokladom skúmania zložitosti akéhokoľvek výpočtového problému je teda model určujúci
operácie považované za elementárne. So zmenou modelu sa môže podstatne zmeniť aj zložitosť:
ak by sme napríklad pri niektorých číselných algoritmoch namiesto sčítania a násobenia považovali
za elementárne iba bitové operácie, mohli by sme dospieť k drasticky odlišným výsledkom. Voľba
vhodného modelu tak väčšinou závisí od konkrétnych cieľov danej analýzy.

V teórii výpočtovej zložitosti sa takýmto modelom najčastejšie rozumejú rôzne varianty viacpás-
kových Turingových strojov. Za mieru času sa tak považuje počet krokov výpočtu Turingovho stroja
a za mieru pamäte – alebo priestoru – počet zapísaných políčok na pracovných páskach. Napríklad
rôzny počet pracovných pások stroja ale opäť môže mať za následok inú časovú zložitosť problému.1

Prednosťou takéhoto prístupu k skúmaniu výpočtovej zložitosti je predovšetkým jeho exaktnosť,
vďaka ktorej je o časovej a priestorovej zložitosti možné dokázať aj výsledky, ktoré by pre čisto
intuitívne chápané miery zložitosti často nebolo možné ani sformulovať. Jeho nevýhodou je naopak
skutočnosť, že zložitosť problému na Turingovom stroji nemusí nutne zodpovedať zvyčajnej predstave
o zložitosti toho istého problému.2

Napriek tomu však existujú dobré dôvody, prečo sa teóriou zložitosti založenou na Turingových
strojoch zaoberať. Azda najpodstatnejší z nich je vyjadrený tzv. tézou o invariancii [2]. Ide, podobne
ako v prípade Turingovej tézy, o principiálne neoveriteľné tvrdenie, podľa ktorého určité triedy
zložitosti ostávajú pre všetky „rozumné“ modely nezmenené. Napríklad deterministický Turingov
stroj s polynomiálnou časovou zložitosťou existuje pre výpočtový problém práve vtedy, keď je tento
problém riešiteľný s použitím polynomiálneho počtu inštrukcií sekvenčného procesora ľubovoľnej
„bežnej“ architektúry.

Práve táto nezmenenosť – alebo invariancia – niektorých dôležitých tried časovej a priestorovej
zložitosti pri zmene uvažovaného modelu je dôvodom, prečo je výskum v oblasti výpočtovej zložitosti
zaujímavý a užitočný aj z praktického hľadiska.

1Miery časovej zložitosti sa obvykle definujú bez obmedzení na počet pások.
2Pri bežnej analýze algoritmov sa ako model väčšinou neuvažuje Turingov stroj, čo môže mať za následok inú

výslednú zložitosť problému, než pri analýze na Turingových strojoch.
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2 Základné definície

Dohoda 1. V nasledujúcom pracujeme iba s deterministickými Turingovými strojmi, ktoré sa na kaž-
dom vstupe zastavia – výpočet stroja na každom slove je teda vždy konečný. Tento predpoklad už
ďalej uvádzať nebudeme.

Dohoda 2. Ako model pre skúmanie deterministickej časovej zložitosti budeme v nasledujúcom
vždy uvažovať viacpáskový deterministický Turingov stroj – čiže k-páskový deterministický Turingov
stroj pre nejaké k ∈ N− {0}.3 Mierou časovej zložitosti bude počet krokov výpočtu takéhoto stroja.
Pri priestorovej zložitosti budeme ako model uvažovať viacpáskový deterministický Turingov stroj
s oddelenou vstupnou páskou. Tá slúži iba na zadávanie vstupu a nie je možné meniť jej obsah. Zvyš-
ných k ∈ N−{0} pások stroja sú bežné pracovné pásky. Mierou priestorovej zložitosti je maximálny
počet použitých políčok spomedzi všetkých pracovných pások.

Dôvodom, prečo sa pri priestorovej zložitosti vyžaduje oddelená vstupná páska, je skutočnosť,
že v opačnom prípade by priestorová zložitosť musela byť vždy aspoň taká, aká je dĺžka vstupu.
Problémy so sublineárnou priestorovou zložitosťou by tak nebolo možné klasifikovať.

Definícia 1. Nech k ∈ N− {0} a A je k-páskový deterministický Turingov stroj. Nech

γ : C0 ` C1 ` . . . ` Cn,

kde C0, . . . , Cn sú konfigurácie, je výpočet stroja A. Potom TIME(A, γ) = n; ide teda o počet krokov
výpočtu tvoriacich výpočet γ.

Definícia 2. Nech k ∈ N − {0}, A je k-páskový deterministický Turingov stroj a w ∈ Σ∗. Potom
TIME(A,w) = TIME(A, γ), kde γ je výpočet stroja A na slove w.

Definícia 3. Nech k ∈ N− {0}, A je k-páskový deterministický Turingov stroj a n ∈ N. Potom

TIME(A,n) = max
|w|≤n

TIME(A,w).

Definícia 4. Nech f : N → N je funkcia. Trieda DTIME(f(n)) je tvorená všetkými jazykmi L,
pre ktoré existuje k ∈ N − {0} a k-páskový deterministický Turingov stroj A taký, že L(A) = L
a TIME(A,n) = O(f(n)).

Definícia 5. Nech k ∈ N−{0} a A je k-páskový deterministický Turingov stroj s oddelenou vstupnou
páskou. Nech

γ : C0 ` C1 ` . . . ` Cn,

kde C0, . . . , Cn sú konfigurácie, je výpočet stroja A. Potom SPACE(A, γ) je maximálny počet zapí-
saných políčok na niektorej z pracovných pások stroja A v niektorej z konfigurácií C0, C1, . . . , Cn.

Definícia 6. Nech k ∈ N−{0}, A je k-páskový deterministický Turingov stroj s oddelenou vstupnou
páskou a w ∈ Σ∗. Potom SPACE(A,w) = SPACE(A, γ), kde γ je výpočet stroja A na slove w.

Definícia 7. Nech k ∈ N−{0}, A je k-páskový deterministický Turingov stroj s oddelenou vstupnou
páskou a n ∈ N. Potom

SPACE(A,n) = max
|w|≤n

SPACE(A,w).

Definícia 8. Nech f : N → N je funkcia. Trieda DSPACE(f(n)) je tvorená všetkými jazykmi L,
pre ktoré existuje k ∈ N − {0} a k-páskový deterministický Turingov stroj A s oddelenou vstupnou
páskou taký, že L(A) = L a SPACE(A,n) = O(f(n)).

3Čitateľ by iste dokázal sformulovať definíciu takéhoto výpočtového modelu.
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3 Veta o kompresii pásky

Veta 1. Nech f : N → N je funkcia, k ∈ N − {0} a A je k-páskový deterministický Turingov stroj
s oddelenou vstupnou páskou taký, že SPACE(A,n) = f(n). Potom existuje k-páskový determinis-
tický Turingov stroj A′ s oddelenou vstupnou páskou taký, že L(A′) = L(A) a pre všetky n ∈ N je
SPACE(A′, n) ≤ df(n)/2e.

Dôkaz. Idea konštrukcie spočíva v reprezentovaní dvojíc pracovných symbolov jediným symbolom
z abecedy Γ2. To možno realizovať viacerými spôsobmi; formálne detaily jednotlivých konštrukcií
prenechávame čitateľovi.

Iteráciou naznačenej konštrukcie možno konštantu 2 v znení predchádzajúcej vety nahradiť ľu-
bovoľnou kladnou konštantou.

Poznámka 1. Veta o kompresii pásky je viazaná na konkrétny model, ktorým sú k-páskové deter-
ministické Turingove stroje s oddelenou vstupnou páskou. Jej dôkaz totiž využíva špeciálnu črtu
Turingových strojov, ktorou je ľubovoľne veľká pracovná abeceda – veľkosť tejto abecedy pritom
na priestorovú zložitosť (z definície) nemá žiaden vplyv. Vetu preto napríklad nemožno aplikovať
v realistickejšej situácii, keď je potrebné odhadnúť potrebný počet bitov pamäte. Napriek tomu však
má veľký teoretický význam – vďaka nej by sme napríklad v definícii 8 mohli nahradiť podmienku
SPACE(A,n) = O(f(n)) o niečo silnejšou požiadavkou SPACE(A,n) ≤ f(n) pre všetky dostatočne
veľké n ∈ N.

4 Veta o lineárnom zrýchlení

Veta 2. Nech f : N → N je funkcia taká, že f(n) = ω(n), nech k ≥ 2 je prirodzené číslo a nech A
je k-páskový deterministický Turingov stroj taký, že TIME(A,n) = f(n). Potom existuje n0 ∈ N
a k-páskový deterministický Turingov stroj A′ taký, že L(A′) = L(A) a pre všetky n ≥ n0 je
TIME(A′, n) ≤ df(n)/2e.

Dôkaz. Stroj A′ najprv skomprimuje svoj vstup do blokov o veľkosti m, kde m ∈ N−{0} je vhodná
konštanta. Pokiaľ bol pôvodný vstup na prvej páske, skomprimovaný vstup možno na druhú pásku
vypísať v čase lineárnom od veľkosti vstupu, t. j. cn pre vhodné c. Stroj A′ bude následne prvú pásku
využívať ako pracovnú a druhá páska bude zohrávať úlohu vstupnej pásky, pričom aj na pracovných
páskach bude pracovať s blokmi o veľkosti m. Bude sa teda narábať so symbolmi z abecedy Γm

obohatenými o indikátor pozície hlavy.
Stroj A′ bude simulovať výpočet pôvodného stroja A po úsekoch pozostávajúcich z m krokov

výpočtu stroja A. V rámci simulácie každého takéhoto úseku najprv na každej páske prečíta blok
čítaný hlavou a bloky s ním susedné, pričom si všetky tieto informácie zapamätá v stave. Táto
procedúra zaberie 4 kroky. Je zrejmé, že v nasledujúcichm krokoch výpočtu pôvodného stroja sa bude
pracovať iba s políčkami v týchto blokoch. To znamená, že stroj A′ vie z informácií zapamätaných
v stave vypočítať nový obsah inkriminovaných troch blokov, ako aj novú pozíciu hlavy. Následné
zapísanie obnovených blokov na pásku zaberie ďalšie 4 kroky. To znamená, že m krokov pôvodného
stroja A dokáže stroj A′ odsimulovať pomocou ôsmich krokov.

Pre čas výpočtu stroja A′ potom pre každé n ∈ N platí

TIME(A′, n) ≤ c′n+ 8

⌈
f(n)

m

⌉
,

kde c′ je vhodná konštanta. Vďaka predpokladu f(n) = ω(n) teda evidentne možno zvoliť kon-
štantu m tak, aby pre nejaké n0 ∈ N a všetky n ≥ n0 skutočne bolo

TIME(A′, n) ≤ df(n)/2e.
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Ako je zrejmé z dôkazu, podmienka f(n) = ω(n) je v znení predchádzajúcej vety kvôli kompresii
vstupu, ktorá na stroji s k ≥ 2 páskami zaberie lineárny čas. Na jednopáskovom stroji vyžaduje
kompresia vstupu kvadratický čas, čo je dôvod, prečo je v znení vety podmienka k ≥ 2.

Podobne ako pri vete o kompresii pásky, iteráciou možno konštantu 2 v znení vety nahradiť
ľubovoľnou kladnou konštantou.

5 Veta o redukcii počtu pások z k na 1 pre priestor

Veta 3. Nech f : N→ N je funkcia, k ∈ N−{0} a A je k-páskový deterministický Turingov stroj s od-
delenou vstupnou páskou taký, že SPACE(A,n) = f(n). Potom existuje jednopáskový deterministický
Turingov stroj A′ s oddelenou vstupnou páskou taký, že L(A′) = L(A) a pre všetky n ∈ N je

SPACE(A′, n) ≤ f(n).

Dôkaz. Štandardná simulácia k-páskového deterministického Turingovho stroja na jednopáskovom
s k-stopou páskou zjavne zachováva priestorovú zložitosť.

6 Veta o redukcii počtu pások z k na 1 pre čas

Veta 4. Nech f : N → N je funkcia spĺňajúca f(n) = Ω(n), nech k ∈ N − {0} a A je k-páskový
deterministický Turingov stroj taký, že TIME(A,n) = f(n). Potom existuje n0 ∈ N a jednopáskový
deterministický Turingov stroj A′ taký, že L(A′) = L(A) a pre všetky n ≥ n0 je

TIME(A′, n) ≤ c(f(n))2,

kde c > 0 je reálna konštanta nezávislá na n.

Dôkaz. Opäť uvažujme simuláciu k-páskového deterministického Turingovho stroja na jednopásko-
vom s k-stopou páskou. Počet krokov potrebný na odsimulovanie jedného kroku výpočtu pôvodného
stroja A je v tejto konštrukcii zjavne zhora ohraničený konštantným násobkom maximálneho počtu
zapísaných políčok na niektorej z pások stroja A. Ľahko ale vidieť, že počas výpočtu na vstupe
dĺžky n môže byť na ľubovoľnej páske stroja A najviac n + TIME(A,n) = O(f(n)) zapísaných
políčok. Celkovo tak simulácia zaberie najviac O((f(n))2) krokov, čo bolo treba dokázať.

7 Veta o redukcii počtu pások z k na 2 pre čas

Veta 5 (Hennie, Stearns [1]). Nech f : N → N je funkcia spĺňajúca f(n) = Ω(n), nech k ∈ N − {0}
a A je k-páskový deterministický Turingov stroj taký, že TIME(A,n) = f(n). Potom existuje n0 ∈ N
a dvojpáskový deterministický Turingov stroj A′ taký, že L(A′) = L(A) a pre všetky n ≥ n0 je

TIME(A′, n) ≤ cf(n) log2 f(n),

kde c > 0 je reálna konštanta nezávislá na n.4

Základná myšlienka konštrukcie. Cieľom je skonštruovať stroj A′ tak, aby na svojich dvoch
páskach dokázal odsimulovať k-páskový stroj A s časovou zložitosťou zhoršenou nanajvýš o logarit-
mický faktor. Prvá páska stroja A′ bude sofistikovane štruktúrovaná a bude na nej uložený obsah
všetkých k pások stroja A. Štruktúrovanie prvej pásky má za cieľ minimalizovať priemerný počet po-
hybov hlavy potrebných pri simulácii jedného kroku výpočtu stroja A. Druhá páska stroja A′ nebude
mať žiadnu špeciálnu štruktúru a bude slúžiť iba ako pomocná páska pri úpravách prvej pásky.

V nasledujúcom najprv opíšeme organizáciu prvej pásky a invarianty, ktoré pre ňu budú splnené.
Následne opíšeme spôsob, akým sa realizuje simulácia jedného kroku výpočtu stroja A na stroji A′

a opis konštrukcie zavŕšime analýzou časovej zložitosti stroja A′.
4Hodnota c však závisí od k, ktoré takisto považujeme za konštantu.
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Organizácia prvej pásky. Prvú pásku stroja A′, slúžiacu na uloženie obsahov všetkých k pások
stroja A, rozdelíme na k stôp, pričom obsah každej z nich bude zodpovedať obsahu jednej z pások
stroja A. Každú z týchto k stôp ďalej vertikálne rozdelíme na dve úrovne. Slová zapísané na prvej
páske teda budú pozostávať z vhodných 2k-poschodových symbolov. Táto situácia je znázornená
na obrázku 1.
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Úroveň 1
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Obr. 1: Vertikálne členenie prvej pásky stroja A′.

Okrem opísaného vertikálneho členenia zavedieme aj horizontálne členenie pásky, ktoré ju rozdelí
na bloky5 exponenciálne sa zväčšujúcej šírky. Jeden špeciálny stĺpec bude tvoriť samostatný blok B0

zodpovedajúci symbolom pod čítacími hlavami jednotlivých pások stroja A. Napravo od bloku B0

sa budú nachádzať bloky B1, B2, B3, . . ., pričom šírka bloku Bi bude pre všetky i ∈ N−{0} rovná 2i−1.
Podobne sa naľavo od bloku B0 budú nachádzať bloky B−1, B−2, B−3, . . ., pričom šírka bloku B−i
bude pre všetky i ∈ N− {0} takisto rovná 2i−1. Horizontálne členenie jednej konkrétnej stopy prvej
pásky je znázornené na obrázku 2.
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. . .

B0 B1B−1

B−2B−3 B2 B3

Stopa

Obr. 2: Horizontálne členenie jednej zo stôp prvej pásky stroja A′.

Jedna takáto dvojúrovňová stopa prvej pásky stroja A′ slúži na štruktúrované uchovanie obsahu
jednej pásky strojaA. Políčko ľubovoľnej z oboch úrovní môže byť plné (ak je na ňom zapísaný symbol
z pásky stroja A) alebo prázdne (v opačnom prípade). Špeciálne treba upozorniť na skutočnosť, že
ak takéto políčko obsahuje symbol B, je považované za plné. V priebehu simulácie bude mať každý
z blokov Bi jednu z nasledujúcich vlastností:

• Blok Bi obsahuje na obidvoch vertikálnych úrovniach iba plné políčka. V takom prípade budeme
hovoriť, že blok Bi je plný.

• Blok Bi obsahuje na obidvoch vertikálnych úrovniach iba prázdne políčka. V takom prípade
budeme hovoriť, že blok Bi je prázdny.

• Blok Bi obsahuje na spodnej úrovni iba plné políčka a na hornej úrovni iba prázdne políčka.
V takom prípade budeme hovoriť, že blok Bi je poloprázdny.

5Takéto bloky nebudú (ako napríklad pri vete o kompresii pásky) realizované jedným symbolom, ale pôjde iba
o „virtuálne“ členenie stĺpcov do logických celkov.
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Počas simulácie budú navyše splnené nasledujúce invarianty:

(I1) Blok B0 je vždy poloprázdny, pričom plné políčko na spodnej úrovni obsahuje symbol čítaný
na príslušnej páske hlavou stroja A. (Z tohto dôvodu je na obrázku 2 políčko na hornej úrovni
preškrtnuté.)

(I2) Pre i = 1, 2, . . . sú bloky Bi a B−i buď obidva poloprázdne, alebo je jeden z nich prázdny
a druhý plný.

Slovo, ktoré je obsahom s-tej pásky stroja A dostaneme z obsahu s-tej dvojúrovňovej stopy prvej
pásky stroja A′ nasledujúcim procesom:

1. Pre každý blok Bi je k nemu prislúchajúce slovo wi definované nasledovne:

• Ak i = 0, je slovom wi symbol na spodnej úrovni bloku B0.

• Ak i < 0 a blok Bi je plný, vznikne wi zreťazením symbolov na spodnej úrovni bloku
Bi (v poradí zľava doprava) so symbolmi na hornej úrovni bloku Bi (tiež v poradí zľava
doprava). Ak je blok Bi poloprázdny, obsahuje wi iba symboly zo spodnej úrovne. Ak je
blok Bi prázdny, wi = ε.

• Ak i > 0 a blok Bi je plný, vznikne wi zreťazením symbolov na hornej úrovni bloku Bi

(v poradí zľava doprava) so symbolmi na spodnej úrovni bloku Bi (tiež v poradí zľava
doprava). Ak je blok Bi poloprázdny, obsahuje wi iba symboly zo spodnej úrovne. Ak je
blok Bi prázdny, wi = ε.

2. Nech Bi je prvý a Bj je posledný blok obsahujúci nejaký symbol rôzny od B. Obsahom s-tej
pásky je potom slovo wi . . . wj (s prípadným odignorovaním niekoľkých symbolov B na začiatku
a na konci).

Príklad takejto reprezentácie je na obrázku 3.

. . .

. . . . . .

. . .

B0 B1B−1

B−2B−3 B2 B3

Stopa
Z L E T E L

I O R L

Y Z TB R Y

A T

B B B

Obr. 3: Dvojúrovňová stopa prvej pásky stroja A′ reprezentujúca slovo ZLETELIORLYZTATRY, pričom hlava
zodpovedajúcej pásky stroja A číta druhý výskyt písmena Z.

Na začiatku simulácie sú všetky bloky všetkých stôp prvej pásky stroja A′ poloprázdne. To zna-
mená, že na spodnej úrovni prvej stopy je uložené vstupné slovo a zvyšné stopy obsahujú na spodných
úrovniach symboly B. Horné úrovne všetkých stôp obsahujú iba prázdne políčka.

Poznamenajme ešte, že samozrejme nie je možné v konečnom čase upraviť na takýto tvar celú
prvú pásku stroja A′. Na začiatku simulácie sa preto na uvedený tvar upraví iba časť tejto pásky tak,
aby bolo možné na prvej stope reprezentovať kompletné vstupné slovo a aby bol pre každý blok Bi

na upravenej časti pásky aj blok B−i. Na zvyšku pásky budú symboly B (stroja A′; tieto symboly si
netreba mýliť so symbolmi B stroja A, ktoré sa vyskytujú už v upravenej časti prvej pásky stroja A′),
až kým nebude potrebné na daných pozíciách zapisovať. V takom prípade sa vytvoria nové bloky
a simulácia pokračuje ďalej.

Princíp simulácie kroku výpočtu stroja A. V nasledujúcom opíšeme kľúčovú časť celej kon-
štrukcie – spôsob, ktorým sa realizuje simulácia jedného kroku výpočtu stroja A. Táto simulácia
prebieha postupne pre jednotlivé pásky stroja A, pričom vždy sa upraví zodpovedajúca stopa prvej
pásky stroja A′. Keďže je procedúra pre každú z pások stroja A rovnaká, postačí upriamiť pozornosť
na jednu konkrétnu pásku stroja A a príslušnú stopu prvej pásky stroja A′.
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Uvažujme napríklad situáciu na obrázku 3, kde hlava číta symbol Z. Predpokladajme, že podľa
prechodovej funkcie stroja A je treba prepísať tento symbol na X, pričom hlava ostáva na mieste.
Takáto situácia je jednoduchá a simulácia sa realizuje iba prepísaním daného symbolu. Výsledný
obsah stopy je na obrázku 4.

. . .

. . . . . .

. . .

B0 B1B−1

B−2B−3 B2 B3

Stopa
Z L E T E L

I O R L

Y X TB R Y

A T

B B B

Obr. 4: Situácia po simulácii kroku výpočtu, v ktorom sa Z prepísalo na X a hlava ostala na mieste.

. . .

. . . . . .

. . .

B0 B1B−1

B−2B−3 B2 B3

Stopa
Z L E T E L

I O R L

TB R Y

A T

B B B

U

Y

Obr. 5: Situácia po simulácii kroku výpočtu, v ktorom sa X prepísalo na U a hlava sa pohla doľava. Repre-
zentované slovo treba čítať ako ZLETELIORLYUTATRY.

Predpokladajme teraz, že sa v ďalšom kroku výpočtu symbol X prepíše na U a hlava sa pohne
doľava. Prepísanie symbolu X na Umôžeme zjavne realizovať rovnako ako v predchádzajúcom prípade.
Posun hlavy však musíme realizovať posunutím obsahu pásky doprava. Vidíme ale, že na hornej úrovni
bloku B1 je voľné miesto pre symbol U, ktorý tak môže uvoľniť miesto symbolu Y – ten presunieme
z bloku B−1 do bloku B0. Výsledná situácia je na obrázku 5.

Uvažujme teraz ďalší krok výpočtu, v ktorom je treba prepísať symbol Y na symbol Ä a pohnúť
hlavu znova o jedno políčko doľava. Tu narážame na problém: na páske nie je miesto na „upratanie“
symbolu Ä tak, aby mohol uvoľniť miesto pod čítacou hlavou ďalšiemu symbolu zľava. Táto situácia
sa rieši tak, že plné bloky B1 a B2 sa upravia na poloprázdne, pričom zvyšné symboly sa uložia
na spodnú úroveň bloku B3; keby bol blok B3 poloprázdny, použila by sa horná úroveň bloku B3.
Všimnime si, že symboly na spodných úrovniach blokov B1 až B3 akurát postačujú na uskladnenie
všetkých symbolov z blokov B1 a B2 a symbolu Ä odsunutého spod čítacej hlavy. To vysvetľuje
zvolenú šírku jednotlivých blokov – pre každé i ∈ N− {0} je totiž

i∑
j=1

2j−1 = 1 + 2 ·
i−1∑
j=1

2j−1.

Pri opísanej úprave blokov B1, B2 a B3 je potrebné myslieť na to, aby zostalo zachované poradie
symbolov. Nakoniec treba upraviť aj bloky B−1, B−2 a B−3 tak, aby bol splnený invariant (I2).
To znamená presunúť hornú úroveň bloku B−3 na spodné úrovne blokovB−2 aB−1 (okrem symbolu L,
ktorý sa posunie pod čítaciu hlavu). Výsledná situácia je znázornená na obrázku 6.

. . .

. . . . . .

. . .

B0 B1B−1

B−2B−3 B2 B3

Stopa
Z L E T E LB B B BR YA TTUÄI O R L

Obr. 6: Situácia po simulácii kroku výpočtu, v ktorom sa Y prepísalo na Ä a hlava sa pohla doľava.
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Myšlienka simulácie by už z uvedeného príkladu mala byť zrejmá. Môžeme preto pristúpiť k vše-
obecnému opisu pravidiel pre simuláciu jedného kroku výpočtu. Je zrejmé, že postačí opísať pravidlá
pre simuláciu kroku výpočtu, v ktorom sa hlava pohne doľava. Pohyb hlavy doprava sa totiž rieši
symetricky a krok výpočtu bez pohybu hlavy sa ošetrí triviálnym spôsobom tak, ako je uvedené
vyššie. Procedúra pre simuláciu kroku výpočtu s pohybom hlavy doľava je teda nasledovná:

1. Prepíš symbol pod čítacou hlavou (v bloku B0) tak, ako je potrebné v simulovanom kroku
výpočtu.

2. Nájdi prvý blok Bi napravo od B0, ktorý nie je plný.

3. Ak je blok Bi prázdny, preusporiadaj symboly v blokoch B0, B1, . . . , Bi−1 tak, aby boli uložené
na spodných úrovniach blokov B1, B2, . . . , Bi a aby reprezentované slovo ostalo nezmenené.

4. Ak je blok Bi poloprázdny, preusporiadaj symboly v blokoch B0, B1, . . . , Bi−1 tak, aby boli
uložené na spodných úrovniach blokov B1, B2, . . . , Bi−1 a na hornej úrovni bloku Bi a aby
reprezentované slovo ostalo nezmenené.

5. Nájdi prvý blok B−i naľavo od B0, ktorý nie je prázdny.

6. Ak je blok B−i plný, preusporiadaj symboly na hornej úrovni bloku B−i tak, aby boli ulo-
žené na spodných úrovniach blokov B−(i−1), B−(i−2), . . . , B0 a aby reprezentované slovo ostalo
nezmenené.

7. Ak je blok B−i poloprázdny, preusporiadaj symboly na spodnej úrovni bloku B−i tak, aby
boli uložené na spodných úrovniach blokov B−(i−1), B−(i−2), . . . , B0 a aby reprezentované slovo
ostalo nezmenené.

Všimnime si, že invarianty (I1) a (I2) ostávajú v platnosti aj po tejto transformácii.

Technické detaily simulácie kroku výpočtu stroja A. Isté technické detaily ostali nedoriešené.
Napríklad je potrebné si uvedomiť, že preusporiadavanie blokov v procedúre opísanej vyššie je možné
urobiť v čase lineárnom od dĺžky bloku iba s použitím druhej pracovnej pásky stroja A′. Ak by bol
stroj A′ jednopáskový, kopírovanie by zabralo čas kvadratický od dĺžky bloku, čo by pokazilo analýzu
celkovej časovej zložitosti (uvedenú nižšie).

V poloformálnom opise simulácie kroku výpočtu uvedenom vyššie ďalej pracujeme s páskou
na úrovni blokov. Pritom však treba mať na mysli skutočnosť, že ide iba o „virtuálne“ bloky, z čoho
vyplýva, že ich hranice je potrebné na páske označovať špeciálnymi symbolmi. Ak navyše niekedy
počas simulácie nastane situácia, že je potrebné „vytvoriť“ nový blok, je v rámci zodpovedajúcej
procedúry nutné vypočítať a označiť jeho koniec. Všetky tieto detaily sa dajú ošetriť tak, aby pri si-
mulácii nezabrali príliš veľa času. Podrobnejšie rozpracovanie takýchto úvah možno nájsť v pôvodnom
článku Hennieho a Stearnsa [1].

Časová zložitosť stroja A′. Pristúpme teraz k analýze časovej zložitosti stroja A′. Uvažujme
najprv pevne zvolenú pásku s stroja A.

V nasledujúcom budeme hovoriť o kroku i-teho rádu, ak pri simulácii daného kroku výpočtu
stroja A potrebujeme v súvislosti s s-tou páskou pracovať s blokmi Bi a B−i, no nepotrebujeme
pracovať s blokmi Bi+1 a B−(i+1). Ak implementujeme preusporiadavanie blokov pomocou kopírova-
nia na druhú pracovnú pásku stroja A, možno krok i-teho rádu zrejme odsimulovať v čase nanajvýš
c1 · 2i, kde c1 je konštanta nezávislá od i. To vyplýva zo skutočnosti, že počet symbolov v prvých i
blokoch je

i∑
j=1

2j−1 = O(2i)

a na preusporiadanie jedného bloku stačí vďaka druhej pracovnej páske čas lineárny od dĺžky daného
bloku.
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Ďalej možno ľahko nahliadnuť, že medzi každými dvoma krokmi rádu väčšieho ako i je nutné
vykonať aspoň jeden krok rádu i. Z toho možno pomocou jednoduchej indukcie odvodiť, že medzi
každými dvoma krokmi i-teho rádu je potrebné vykonať aspoň 2i−1− 1 krokov rádu menšieho ako i.
Dôsledkom je skutočnosť, že počas simulácie T (n) krokov výpočtu stroja A je nanajvýš T (n)/2i−2

týchto krokov rádu i.
Celkový počet T krokov stroja A′, zodpovedajúcich páske s a nutných na odsimulovanie T (n)

krokov stroja A, teda možno zhora ohraničiť nasledujúcou sumou cez rády jednotlivých krokov:

T ≤
log T (n)+c2∑

i=1

c1 · 2i ·
T (n)

2i−2
= c3 · T (n) log T (n),

kde c2 a c3 sú vhodné konštanty. Hornou hranicou sumácie je log T (n) + c2, pretože počas T (n)
krokov je možné použiť iba T (n) políčok, čomu zodpovedá log T (n) + c2 blokov.

Celková časová zložitosť stroja A′, po započítaní krokov zodpovedajúcich všetkým k páskam
a lineárneho času nutného na inicializáciu výpočtu, je teda určite nanajvýš

c3 · k · T (n) log T (n) +O(n) ≤ c · T (n) log T (n),

kde c je vhodná konštanta. To dokazuje vetu 5.
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