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Označenia a definície

Nech ≡ ⊆ S × S je relácia ekvivalencie na množine S.

• Triedu ekvivalencie relácie ≡ obsahujúcu prvok x ∈ S označujeme [x]≡.

• Množinu všetkých tried ekvivalencie relácie ≡ označujeme S/≡. To znamená, že

S/≡ = {[x]≡ | x ∈ S}.

• Hovoríme, že relácia ≡ je konečného indexu, ak má konečne veľa tried ekvivalencie – čiže ak je
množina S/≡ konečná (množina S pritom môže byť aj nekonečná). V takom prípade nazývame
indexom relácie ≡ počet jej tried ekvivalencie, čiže počet prvkov množiny S/≡.

• Relácia ≡ nasycuje množinu T ⊆ S, ak je T zjednotením niekoľkých tried ekvivalencie relácie ≡
– čiže ak

T =
⋃
x∈T

[x]≡.

To je ekvivalentné požiadavke, aby každá trieda ekvivalencie relácie ≡ obsahovala buď výlučne
prvky T , alebo výlučne prvky S − T – a tiež platnosti inklúzií [x]≡ ⊆ T pre všetky x ∈ T .

1 Deterministické konečné automaty a pravé kongruencie

Nech A = (K,Σ, δ, q0, F ) je deterministický konečný automat (s úplnou prechodovou funkciou).
Automat A prirodzeným spôsobom určuje reláciu ≡A na Σ∗ takú, že pre dvojicu slov u, v ∈ Σ∗

je u ≡A v práve vtedy, keď automat A dočíta slová u a v v rovnakom stave – čiže

∀u, v ∈ Σ∗ : u ≡A v ⇐⇒ (∃q ∈ K : (q0, u) `∗A (q, ε) ∧ (q0, v) `∗A (q, ε)).

Je triviálnou úlohou overiť, že takto definovaná relácia ≡A je reflexívna (automat A slová w a w vždy
dočíta v rovnakom stave), symetrická (ak A dočíta slová u, v v rovnakom stave, tak dočíta v rov-
nakom stave aj slová v, u) a tranzitívna (ak A dočíta v rovnakom stave slová x, y a y, z, tak dočíta
v rovnakom stave aj slová x, z). Relácia ≡A je teda reláciou ekvivalencie na Σ∗.
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(a) Deterministický konečný automat A.
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(aa)∗
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(b) Rozklad Σ∗ určený reláciou ≡A.

Obr. 1: Deterministický konečný automat A nad Σ = {a, b} a k nemu prislúchajúca relácia ekvivalencie ≡A.
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Okamžite si možno všimnúť tri podstatné vlastnosti tejto relácie ekvivalencie ≡A, ktorej triedy
zodpovedajú jednotlivým dosiahnuteľným stavom automatu A:

1. Nech u, v ∈ Σ∗ sú slová také, že u ≡A v. Potom buď u, v ∈ L(A), alebo u, v 6∈ L(A). Slová
u a v totiž automat A dočíta v rovnakom stave – a ten buď je, alebo nie je akceptačný.
Každá trieda ekvivalencie relácie ≡A tak obsahuje výlučne slová z L(A), alebo výlučne slová
z komplementu L(A). Jazyk L(A) je preto zjednotením niekoľkých tried ekvivalencie relácie ≡A

– a relácia ≡A nasycuje L(A). Napríklad pre automat A na obrázku 1 je L(A) = Σ∗bΣ∗∪(aa)∗.

2. Keďže má automat A konečne veľa stavov, má relácia ≡A konečne veľa tried ekvivalencie.
Relácia ≡A je teda konečného indexu.

3. Ak automat A dočíta slová u, v v rovnakom stave, dočíta v rovnakom stave aj všetky dvojice
slov ux, vx, kde x ∈ Σ∗ – situácia je schematicky znázornená na obrázku 2. Pre všetky u, v ∈ Σ∗

teda
u ≡A v ⇒ ∀x ∈ Σ∗ : ux ≡A vx.

Hovoríme, že ≡A je sprava invariantná relácia ekvivalencie – alebo pravá kongruencia.

Definícia 1. Nech Σ je abeceda a ≡ ⊆ Σ∗ × Σ∗ je relácia ekvivalencie. Hovoríme, že ≡ je sprava
invariantná relácia ekvivalencie – alebo pravá kongruencia – ak pre všetky u, v, x ∈ Σ∗ je ux ≡ vx
kedykoľvek u ≡ v.

q0 p q

u

v

x

Obr. 2: Ak deterministický konečný automat A dočíta slová u a v v rovnakom stave, dočíta v rovnakom
stave aj slová ux a vx pre ľubovoľné slovo x.

Priamym dôsledkom vyššie učinených pozorovaní je nasledujúce tvrdenie.

Tvrdenie 1. Nech L ⊆ Σ∗ je regulárny jazyk. Potom existuje pravá kongruencia ≡ ⊆ Σ∗ × Σ∗

konečného indexu nasycujúca jazyk L.

Uvažujme teraz naopak ľubovoľný jazyk L ⊆ Σ∗, ktorý je zjednotením niekoľkých tried ekviva-
lencie nejakej pravej kongruencie konečného indexu ≡ na Σ∗. Pravá kongruencia ≡ potom – spolu
s informáciou o tom, ktoré spomedzi jej tried ekvivalencie obsahujú slová z L – určuje nasledujúci
deterministický konečný automat A = (K,Σ, δ, q0, F ) akceptujúci L:

• Za množinu stavov K vezmime množinu tried ekvivalencie relácie ≡ – čiže K = Σ∗/≡. Táto
množina je konečná, pretože ≡ je konečného indexu.

• Pre všetky u ∈ Σ∗ a každé c ∈ Σ položme δ([u]≡, c) = [uc]≡. Aby sme dokázali korektnosť tejto
definície, potrebujeme ukázať, že výstup prechodovej funkcie je nezávislý na voľbe reprezentanta
triedy [u]≡. Ak ale pre u, v ∈ Σ∗ je [u]≡ = [v]≡, nutne u ≡ v; keďže je ≡ pravá kongruencia,
musí byť aj uc ≡ vc, z čoho [uc]≡ = [vc]≡.

• Za počiatočný stav vezmime triedu ekvivalencie obsahujúcu prázdne slovo: q0 = [ε]≡.

• Za množinu akceptačných stavov vezmime množinu tých tried ekvivalencie relácie ≡, ktoré
obsahujú slová z L; čiže F = {[w]≡ | w ∈ L}. Korektnosť uvedeného zápisu je dôsledkom
skutočnosti, že relácia ≡ nasycuje jazyk L – v každej triede ekvivalencie sú teda buď výlučne
slová z L, alebo výlučne slová z LC .
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Tvrdenie L(A) = L by sme ľahko dokázali s využitím pozorovania, že pre všetky w ∈ Σ∗ je
([ε]≡, w) `∗A ([w]≡, ε). Dôsledkom je nasledujúca obrátená implikácia k tvrdeniu 1.

Tvrdenie 2. Nech L ⊆ Σ∗ je jazyk nasýtený nejakou pravou kongruenciou konečného indexu na Σ∗.
Potom je jazyk L regulárny.

Ľahko možno overiť, že deterministický konečný automat zostrojený pomocou uvedenej konštruk-
cie k relácii ekvivalencie na obrázku 1b a k jazyku L = Σ∗bΣ∗ ∪ (aa)∗ je až na izomorfizmus (teda
premenovanie stavov) zhodný s konečným automatom na obrázku 1a. Čitateľa tak snáď netreba pre-
sviedčať o skutočnosti, že deterministické konečné automaty bez nedosiahnuteľných stavov a pravé
kongruencie konečného indexu sú iba „odlišnými pohľadmi na ten istý objekt“ . Toto prepojenie je
pre teóriu okolo Myhillovej-Nerodovej vety kľúčové.

2 Pravá syntaktická ekvivalencia

K ľubovoľnému (nie nutne regulárnemu) jazyku L ⊆ Σ∗ teraz kanonicky definujeme pravú kongruen-
ciu na Σ∗ – tzv. pravú syntaktickú ekvivalenciu ≡L – nasycujúcu L. Táto relácia ≡L je konečného
indexu práve vtedy, keď je jazyk L regulárny – a počet jej tried ekvivalencie je v takom prípade
rovný najmenšiemu možnému počtu stavov deterministického konečného automatu nad vstupnou
abecedou Σ akceptujúceho jazyk L.

Definícia 2. Nech Σ je abeceda a L ⊆ Σ∗ je jazyk. Pravá syntaktická ekvivalencia indukovaná
jazykom L nad Σ je binárna relácia ≡L na Σ∗ taká, že pre všetky u, v ∈ Σ∗ je

u ≡L v ⇐⇒ (∀z ∈ Σ∗ : uz ∈ L ⇐⇒ vz ∈ L).

Tvrdenie 3. Nech L ⊆ Σ∗ je jazyk. Pravá syntaktická ekvivalencia ≡L je pravá kongruencia na Σ∗

nasycujúca L.

Dôkaz. Dôkaz, že ≡L je relácia ekvivalencie, je triviálny a prenechaný čitateľovi. Ak u ≡L v, z de-
finície relácie ≡L pre z = ε dostávame u ∈ L práve vtedy, keď v ∈ L; relácia ≡L teda nasycuje L.
Dokážeme, že ≡L je pravá kongruencia. Nech u, v ∈ Σ∗ sú slová také, že u ≡L v a x ∈ Σ∗. Z definí-
cie ≡L vyplýva, že pre všetky z ∈ Σ∗ je uz ∈ L ⇐⇒ vz ∈ L. Špeciálne je táto vlastnosť splnená
pre všetky z také, že z = xy pre nejaké y ∈ Σ∗. Pre všetky y ∈ Σ∗ teda uxy ∈ L ⇐⇒ vxy ∈ L,
z čoho podľa definície relácie ≡L vyplýva ux ≡L vx.

Význam pravej syntaktickej ekvivalencie spočíva predovšetkým v skutočnosti, že ide – ako doká-
žeme v tvrdení 4 – o najhrubšiu pravú kongruenciu na Σ∗ nasycujúcu L. To znamená, že ľubovoľná
pravá kongruencia ≡ na Σ∗ nasycujúca L vznikne z relácie ≡L „rozbitím“ jej tried ekvivalencie
(≡ je teda zjemnením relácie ≡L).

Tvrdenie 4. Nech L ⊆ Σ∗ je jazyk a ≡ je pravá kongruencia na Σ∗ nasycujúca L. Nech u, v ∈ Σ∗

sú slová také, že u ≡ v. Potom u ≡L v.

Dôkaz. Keďže je ≡ pravá kongruencia, pre všetky x ∈ Σ∗ musí byť ux ≡ vx – a keďže ≡ nasycuje L,
nutne buď ux, vx ∈ L, alebo ux, vx 6∈ L. Pre všetky x ∈ Σ∗ je teda ux ∈ L ⇐⇒ vx ∈ L, z čoho
u ≡L v.

Ako sme dokázali vyššie, jazyk L ⊆ Σ∗ je regulárny práve vtedy, keď na Σ∗ existuje pravá
kongruencia konečného indexu nasycujúca L. Je zrejmé, že ak nie je konečného indexu najhrubšia
pravá kongruencia nasycujúca L, tak nemôže byť konečného indexu ani žiadna iná takáto relácia.
Dostávame tak nasledujúci dôsledok.

Dôsledok 1. Nech L ⊆ Σ∗ je jazyk. Jazyk L je regulárny práve vtedy, keď je relácia ≡L konečného
indexu.
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V prípade, že je jazyk L ⊆ Σ∗ regulárny, má relácia ≡L nad Σ najmenší počet tried ekvivalencie
spomedzi všetkých pravých kongruencií konečného indexu na Σ∗ nasycujúcich L – všetky takéto
relácie sú totiž zjemnením relácie ≡L. Ľahko tiež vidieť, že ≡L je jediná pravá kongruencia na Σ∗

s touto vlastnosťou; jediným zjemnením ≡L s rovnakým počtom tried je totiž sama relácia ≡L.
Ak sa v zmysle predchádzajúceho oddielu na toto tvrdenie pozrieme z perspektívy konečných

automatov, zistíme, že relácia ≡L nad Σ zodpovedá deterministickému konečnému automatu nad Σ
akceptujúcemu jazyk L s najmenším možným počtom stavov. Tento automat je navyše – až na izo-
morfizmus, t. j. premenovanie stavov – určený jednoznačne a nazývame ho minimálnym automatom
pre jazyk L nad abecedou Σ.

Dôsledok 2. Nech L ⊆ Σ∗ je regulárny jazyk. Potom existuje až na izomorfizmus jediný determi-
nistický konečný automat A = (K,Σ, δ, q0, F ) taký, že L(A) = L a súčasne pre každý deterministický
konečný automat A′ = (K ′,Σ, δ′, q′0, F

′) s L(A′) = L je |K ′| ≥ |K|. Automat A sa nazýva minimálny
automat pre jazyk L nad Σ a platí ≡A = ≡L.

Ako hlavné posolstvo tohto a predchádzajúceho oddielu ešte raz zdôraznime skutočnosť, že exis-
tuje korešpondencia medzi deterministickými konečnými automatmi nad abecedou Σ bez nedosiahnu-
teľných stavov a pravými kongruenciami konečného indexu na Σ∗. Špeciálny prípad takejto pravej
kongruencie – pravá syntaktická ekvivalencia ≡L indukovaná jazykom L – navyše zodpovedá špeciál-
nemu deterministickému konečnému automatu – minimálnemu automatu pre jazyk L.

3 Myhillova-Nerodova veta

Tvrdenie známe ako Myhillova-Nerodova veta – aj keď pri tomto jeho znení by bolo presnejšie hovoriť
iba o „Nerodovej vete“ – sme už v podstate dokázali v predchádzajúcich dvoch oddieloch.

Veta 1 (A. Nerode). Nech L ⊆ Σ∗ je jazyk. Nasledujúce tvrdenia sú ekvivalentné:

(i) Jazyk L je regulárny.

(ii) Existuje pravá kongruencia konečného indexu na Σ∗ nasycujúca L.

(iii) Pravá syntaktická ekvivalencia ≡L nad Σ je konečného indexu.

Dôkaz. Vyplýva z tvrdenia 1, tvrdenia 2 a dôsledku 1.

4 Riešené úlohy

Zamerajme sa teraz na možnosti použitia teórie z predchádzajúcich oddielov. Začnime úlohami na zo-
strojenie minimálneho automatu rozoznávajúceho daný regulárny jazyk.

Vo všeobecnosti možno povedať, že deterministický konečný automat A rozoznávajúci regulárny
jazyk L ⊆ Σ∗ je minimálny práve vtedy, keď sú všetky jeho stavy dosiahnuteľné a zároveň ≡A = ≡L;
inklúzia ≡A ⊆ ≡L je pritom splnená kedykoľvek L(A) = L. Na dôkaz minimálnosti automatu A
bez nedosiahnuteľných stavov rozoznávajúceho L tak stačí dokázať inklúziu ≡A ⊇ ≡L. Tá je ekvi-
valentná nasledujúcemu tvrdeniu: ak automat A dočíta slová u, v ∈ Σ∗ v rôznych stavoch, nemôže
platiť u ≡L v – čiže existuje slovo z ∈ Σ∗ také, že práve jedno zo slov uz, vz patrí do L.

Úloha 1. Pre všetky n ∈ N uvažujme jednoprvkový jazyk Ln = {an} nad unárnou abecedou Σ = {a}.
Dokážte, že minimálny deterministický konečný automat rozoznávajúci jazyk Ln má presne n + 2
stavov.

Riešenie. Nech n ∈ N je dané. Označme Kn = {0, . . . , n + 1} a uvažujme deterministický konečný
automat An = (Kn,Σ, δ, 0, {n}) na obrázku 3. To znamená, že pre q = 0, . . . , n je δ(q, a) = q + 1
a δ(n+ 1, a) = n+ 1.

4



0 1 . . . n− 1 n n+ 1
a a a a a

a

Obr. 3: Deterministický konečný automat An.

Je zrejmé, že L(An) = Ln a že automat An neobsahuje žiadne nedosiahnuteľné stavy; zostáva
dokázať minimálnosť automatu An. Za týmto účelom uvažujme slová u, v ∈ Σ∗ také, že pre nejaké
i, j ∈ Kn s i < j je (0, u) `∗ (i, ε) a (0, v) `∗ (j, ε). Pre k = n− i potom evidentne (0, uak) `∗ (n, ε),
kým (0, vak) `∗ (n + 1, ε). Preto uak ∈ Ln a vak 6∈ Ln, v dôsledku čoho nemôže platiť u ≡Ln v.
Nutne teda ≡An = ≡Ln a automat An je minimálny.

Pri hľadaní minimálneho automatu pre regulárny jazyk L možno postupovať aj tak, že najprv
zdola odhadneme počet tried pravej syntaktickej ekvivalencie ≡L. Ak pritom dokážeme, že táto
relácia má aspoň n tried ekvivalencie a podarí sa nám nájsť n-stavový deterministický konečný
automat A rozoznávajúci L, musí byť automat A nutne minimálny. Túto metódu použijeme pri riešení
nasledujúcej úlohy.

Úloha 2. Pre všetky prirodzené čísla n ≥ 2 uvažujme jazyk Ln = {ak | k ∈ N; k ≡ 0 (mod n)}.
Dokážte, že minimálny deterministický konečný automat akceptujúci Ln má presne n stavov.

Riešenie. Nech i, j ∈ {0, . . . , n − 1} a i 6= j. Pre z = an−i potom aiz ∈ Ln, kým ajz 6∈ Ln. Slová
ai a aj teda nemôžu byť v rovnakej triede pravej syntaktickej ekvivalencie ≡Ln , ktorá tak musí mať
aspoň n tried. V dôsledku toho musí mať aj minimálny deterministický konečný automat rozoznáva-
júci Ln aspoň n stavov. Keďže je navyše jazyk Ln očividne rozoznávaný n-stavovým deterministickým
konečným automatom, musí mať minimálny automat pre jazyk Ln presne n stavov.

V každej z predchádzajúcich dvoch úloh sme okrem iného dokázali aj dôležitú skutočnosť, že
neexistuje žiadne N ∈ N také, že všetky regulárne jazyky možno akceptovať deterministickým ko-
nečným automatom s najviac N stavmi.

Na nasledujúcej úlohe si ukážeme ešte jeden spôsob hľadania minimálneho automatu pre jazyk L,
pri ktorom najprv identifikujeme samotnú pravú syntaktickú ekvivalenciu≡L a následne k tejto pravej
kongruencii zostrojíme deterministický konečný automat štandardnou konštrukciou predchádzajúcou
tvrdeniu 2; výsledný automat rozoznávajúci L bude nutne minimálny.

Úloha 3. Nech L = {w ∈ {a, b}∗ | #a(w) ≡ 7 (mod 11) ∧ #b(w) ≡ 19 (mod 23)}. Nájdite
minimálny deterministický konečný automat pre jazyk L.

Riešenie. Nech Σ = {a, b}; definujme na Σ∗ binárnu reláciu ≡ nasledovne:

∀u, v ∈ Σ∗ : u ≡ v ⇐⇒ (#a(u) ≡ #a(v) (mod 11) ∧ #b(u) ≡ #b(v) (mod 23)) .

Ľahko možno overiť, že ≡ je pravou kongruenciou na Σ∗ s 11 · 23 = 253 triedami ekvivalencie
(relácia ≡ je teda konečného indexu). Navyše L = [a7b19]≡, a teda ≡ nasycuje L. Dôkaz uvedených
tvrdení prenechávame čitateľovi (ktorému je silno odporúčané chopiť sa tejto príležitosti).

Relácia ≡ je zjemnením ≡L – pre všetky u, v ∈ Σ∗ teda u ≡L v kedykoľvek u ≡ v. Na dôkaz
rovnosti ≡ = ≡L teda stačí ukázať, že ak pre nejaké u, v ∈ Σ∗ platí u ≡L v, tak nutne aj u ≡ v.

Nepriamo. Nech u 6≡ v, čiže #a(u) 6≡ #a(v) (mod 11) alebo #b(u) 6≡ #b(v) (mod 23). Ak teraz
vezmeme slovo z ∈ Σ∗ také, že #a(uz) ≡ 7 (mod 11) a #b(uz) ≡ 19 (mod 23), tak tieto dve vlastnosti
nemôžu byť súčasne splnené pre slovo vz. Dostávame teda uz ∈ L a vz 6∈ L, z čoho u 6≡L v.

Skutočne teda ≡ = ≡L. Na základe korešpondencie medzi pravými kongruenciami konečného
indexu a deterministickými konečnými automatmi tak môžeme uzavrieť, že minimálny automat pre L
je daný ako A = (K,Σ, δ, q0, F ), kde K = Z11×Z23, Σ = {a, b}, q0 = [0, 0], F = {[7, 19]} a funkcia δ
je pre každé [i, j] ∈ K daná ako δ([i, j], a) = [i+ 1, j] a δ([i, j], b) = [i, j + 1].
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Myhillovu-Nerodovu vetu možno využiť aj ako efektívny nástroj na dokazovanie negatívnych
výsledkov o regulárnosti jazykov, ako ukážeme na nasledujúcej úlohe.

Úloha 4. Dokážte, že jazyk L = {an2 | n ∈ N} nie je regulárny.

Riešenie. Dokážeme, že pravá syntaktická ekvivalencia ≡L indukovaná jazykom L nie je konečného
indexu, z čoho podľa Myhillovej-Nerodovej vety vyplynie L 6∈ R.

Stačí ukázať, že pre žiadne dve prirodzené čísla n < m nemôže byť an2 ≡L a
m2 . Predpokladajme

opak a vezmime z = a2n+1. Potom an
2
z = an

2+2n+1 = a(n+1)2 ∈ L, ale am2
z = am

2+2n+1 6∈ L, keďže
(m+ 1)2 = m2 + 2m+ 1 > m2 + 2n+ 1 > m2. To je spor s definíciou relácie ≡L.

Charakterizáciu regulárnych jazykov nad abecedou Σ ako jazykov nasýtených pravými kongruen-
ciami konečného indexu na Σ∗ možno využiť aj na relatívne elegantné dôkazy viacerých uzáverových
vlastností triedy R – čo si ukážeme na nasledujúcich dvoch úlohách.

Úloha 5. Pomocou Myhillovej-Nerodovej vety dokážte uzavretosť triedy R na booleovské operácie
(zjednotenie, prienik a komplement).

Riešenie. Nech L je regulárny jazyk nad abecedou Σ. Podľa Myhillovej-Nerodovej vety potom na Σ∗

existuje pravá kongruencia ≡ konečného indexu nasycujúca L. Relácia ≡ ale nasycuje aj jazyk LC

– inak by niektorá jej trieda ekvivalencie musela súčasne obsahovať slovo z LC a slovo z (LC)C = L
a relácia by nenasycovala ani jazyk L. Podľa Myhillovej-Nerodovej vety tak musí byť jazyk LC

regulárny.
Nech teraz L1, L2 sú regulárne jazyky nad abecedou Σ, pričom L1 je nasýtený pravou kongru-

enciou konečného indexu ≡1 a L2 je nasýtený pravou kongruenciou konečného indexu ≡2. Nie je
ťažké dokázať, že relácia ≡ = ≡1∩≡2 musí byť tiež pravá kongruencia konečného indexu. Pre všetky
w ∈ Σ∗ ďalej

[w]≡ = [w]≡1 ∩ [w]≡2 ,

pričom [w]≡1 ⊆ L1 kedykoľvek w ∈ L1 a tiež [w]≡2 ⊆ L2 kedykoľvek w ∈ L2. V dôsledku toho
[w]≡ ⊆ L1∩L2 kedykoľvek w ∈ L1∩L2 a [w]≡ ⊆ L1∪L2 kedykoľvek w ∈ L1∪L2. Pravá kongruencia
konečného indexu ≡ tak nasycuje ako jazyk L1 ∩L2, tak aj jazyk L1 ∪L2 – a obidva tieto jazyky sú
preto podľa Myhillovej-Nerodovej vety regulárne.

Úloha 6. Pomocou Myhillovej-Nerodovej vety dokážte, že je trieda R uzavretá na pravý kvocient
ľubovoľným jazykom – ak je teda Σ abeceda, L,L′ ⊆ Σ∗ a jazyk L je regulárny, musí byť regulárny
aj jazyk

L/L′ = {w ∈ Σ∗ | ∃x ∈ L′ : wx ∈ L}.

Riešenie. Nech L je regulárny jazyk nad abecedou Σ a ≡ je pravá kongruencia konečného indexu
na Σ∗ nasycujúca L. Ukážeme, že rovnaká kongruencia nasycuje aj všetky jazyky L/L′, kde L′ ⊆ Σ∗.
Za účelom sporu predpokladajme, že existuje jazyk L′ ⊆ Σ∗ taký, že L/L′ nie je nasýtený kongru-
enciou ≡. Potom existujú slová u, v ∈ Σ∗ také, že u ≡ v, u ∈ L/L′ a v 6∈ L/L′. Keďže u ∈ L/L′,
existuje x ∈ L′ také, že ux ∈ L. Relácia ≡ je pravá kongruencia, takže z u ≡ v dostávame ux ≡ vx.
Keďže teda ux ∈ L a relácia ≡ nasycuje L, musí byť aj vx ∈ L. To ale znamená, že v ∈ L/L′, čo je
spor s naším predpokladom v 6∈ L/L′. Jazyk L/L′ je teda nasýtený pravou kongruenciou konečného
indexu ≡, a teda musí byť regulárny podľa Myhillovej-Nerodovej vety.
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