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Abstract

A recently introduced operation of geometrical closure on formal languages is investigated from the viewpoint
of algebraic language theory. Positive varieties V containing exclusively languages with regular geometrical
closure are fully characterised by inclusion of V in W , a known positive variety arising in the study of the
commutative closure. It is proved that the geometrical closure of a language from the intersection of W with
the variety of all star-free languages SF always falls into RLT , which is introduced as a subvariety of R,
the variety of languages recognised by R-trivial monoids. All classes between RLT and W ∩ SF are thus
geometrically closed: for instance, the level 3/2 of the Straubing-Thérien hierarchy, the DA-recognisable
languages, or the variety R. It is also shown that W∩SF is the largest geometrically closed positive variety
of star-free languages, while there is no largest geometrically closed positive variety of regular languages.
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1. Introduction

A geometrical closure is an operation on formal languages introduced recently by Dubernard, Guaiana,
and Mignot [11]. It is defined as follows: Take a language L over some k-letter alphabet and consider the set
called the figure of L, which consists of all elements of Nk corresponding to Parikh vectors of prefixes of words
from L. The geometrical closure of L is the language γ(L) of all words w over the same alphabet such that
the Parikh vectors of all the prefixes of w lie in the figure of L. This closure operator was inspired by
the previous works of Blanpain, Champarnaud, and Dubernard [4] and Béal et al. [3], in which geometrical
languages are studied – using the terminology of the later article [11], these can be described as languages
whose prefix closure is equal to their geometrical closure. Note that this terminology was motivated by
the fact that geometrical languages are completely determined, up to prefix closure, by their (geometrical)
figures. In the particular case of binary alphabets, these figures were illustrated by plane diagrams in [11].

The class of all regular languages is easily observed not to be geometrically closed – that is, one can find
a regular language such that its geometrical closure is not regular [11] (see also the end of Section 2). It is
thus natural to ask which regular languages have regular geometrical closures, or to describe some robust
classes of languages with this property. Another problem posed in [11] is to find some geometrically closed
subclasses of regular languages. We consider all these problems; the latter constitutes the main theme of this
article, while for the former two we obtain a complete characterisation at the level of positive varieties.

⋆A preliminary version [16] of this article appeared in the proceedings of the conference LATA 2020.
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A prominent position among subclasses of regular languages is held by varieties, and more generally
by positive varieties of languages, related via Eilenberg correspondence to pseudovarieties of finite monoids
and finite ordered monoids, respectively.3 Among (positive) varieties playing a significant role in this article,
let us mention the variety SF of all star-free languages, whose relationship with the pseudovariety of finite
aperiodic monoids A is probably the best-known instance of Eilenberg correspondence.4 The variety SF
can be classified into the Straubing-Thérien hierarchy based on polynomial and Boolean operations. In par-
ticular, the variety V1 (i.e., the variety of languages of level 1) consists of all piecewise testable languages
and the positive variety V3/2 is formed by polynomials built upon languages of level 1. In addition, let us
mention the variety R, corresponding to the pseudovariety R of all finite R-trivial monoids, and the positive
variety W introduced by Cano Gómez and Pin [8, 9], which is by definition the largest positive variety
of regular languages not containing the language (ab)∗. As shown by Cano, Guaiana, and Pin [7], W is
closed under commutation, and irregularity of the commutative closure of (ab)∗ implies that it is the largest
positive variety with this property.

It was proved by Dubernard, Guaiana, and Mignot [11] that the class of all binary languages from
the positive variety V3/2 is geometrically closed. They have obtained this result by decomposing the plane
diagram of the figure of a given language into specific types of basic subdiagrams, and using this decom-
position to construct a regular expression for the language γ(L). We prove a generalisation of that result
using a different strategy. We do not construct a specific regular expression for γ(L), but we determine
what kind of expression for γ(L) one may obtain. Moreover, we consider L from a larger class, namely from
the positive variety W ∩SF , which has a useful property that it is closed under commutation [7].

In particular, we introduce a variety of languages RLT , which is a subvariety of R. Note that there
is a transparent description of languages from R and also an effective characterisation via the so-called
acyclic automata (both are recalled in Subsection 5.1). The variety of languages RLT is then characterised
in the same manner: a precise description by specific regular expressions and also an automata-based
characterisation are given. The letters LT in the notation RLT refer to a characteristic property of acyclic
automata in which “loops are transferred” along paths. Moreover, we point out the Eilenberg correspondence
between RLT and the pseudovariety of finite monoids MK.

Utilising closure of W∩SF under commutation, we show that the geometrical closure γ(L) of a language L
from the positive variety W ∩SF always falls into the variety RLT . As a consequence, each class of regular
languages between RLT and W ∩ SF is geometrically closed. In particular, the positive variety V3/2 is
geometrically closed regardless of the alphabet, as well as is the variety R or the variety corresponding to DA.

We also prove a negative result showing that a positive variety containing the language (ab)∗ cannot
be geometrically closed, and in fact even contains a language with irregular geometrical closure. This
immediately yields a full characterisation of positive varieties V such that γ(L) is regular for all L in V :
a positive variety V has this property if and only if V ⊆ W . As another consequence of the negative result
mentioned above, we observe that W ∩ SF is the largest geometrically closed positive variety of star-free
languages and the largest geometrically closed variety of star-free languages corresponds to DA. Our main
results on star-free languages can be summarised as follows: A positive variety V of star-free languages can
be geometrically closed only if V ⊆ W ∩SF ; if moreover RLT ⊆ V , then V is geometrically closed. We leave
open a characterisation of geometrically closed positive varieties of star-free languages not containing RLT ,
but we prove that the variety V1 of piecewise testable languages is not geometrically closed.

When it comes to geometrically closed classes of regular languages not contained in SF , the situation
turns out to be far less satisfying. In particular, we prove that there is no geometrically closed positive variety
of languages containing the variety corresponding to DAb and no largest geometrically closed (positive)
variety. On the other hand, several varieties such as the variety of all group languages G, or the variety of
all commutative languages, are geometrically closed for trivial reasons.

A preliminary version of this article appeared in the proceedings of LATA 2020 [16]. This is extended
here by strengthening the main result for star-free languages (“upper bound” shifted from V3/2 to W ∩SF)

3We refer to the survey by Pin [19] for an introduction to varieties and the algebraic theory of regular languages in general.
4Standard notation for pseudovarieties of monoids is used throughout this paper. The reader might consult the Appendix

for its concise summary.
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and simplifying its proof, proving “optimality” of both RLT and W∩SF in this result, proving that V1 is not
geometrically closed, and identifying the largest geometrically closed (positive) variety of star-free languages.
The findings of Section 4 and most results for other than star-free languages are new as well. New material
(except strengthening of the result on star-free languages) comprises mostly (sub)sections 4, 5.3, 5.4, and 6.

2. Preliminaries

All automata considered in this article are understood to be deterministic and finite. An automaton
is thus a five-tuple A = (Q,Σ, ·, ι, F ), where Q is a finite set of states, Σ is a non-empty finite alphabet,
· : Q×Σ → Q is a complete transition function, ι ∈ Q is the unique initial state, and F ⊆ Q is the set of final
states. The transition function · of A extends naturally to a right action · : Q × Σ∗ → Q of the monoid Σ∗

on the set Q – hence q · w denotes the state reached from q ∈ Q upon “reading” w ∈ Σ∗. The minimal
automaton of a given language L is denoted by DL.

By a (positive) variety of languages, we always understand what is called a (positive) ∗-variety in [19].
Let us briefly recall this notion for convenience of the reader. A class of languages C is an operator, which
determines, for each finite non-empty alphabet Σ, a set C(Σ∗) of languages over Σ. A positive variety is
a class of regular languages V such that V(Σ∗) contains the languages ∅ and Σ∗ for every non-empty finite
alphabet Σ, while V(Σ∗) is closed under union, intersection, and (left and right) quotients (by words), and
the whole class V is closed under preimages in homomorphisms. A positive variety V is a variety if each
V(Σ∗) is closed under complementation.

We say that a language L is in a (positive) variety V if L ∈ V(Σ∗) for some non-empty finite alphabet Σ.
Furthermore, given two (positive) varieties of languages U ,V , it is easy to prove that the class U ∩V , defined
for all Σ by (U ∩ V)(Σ∗) = U(Σ∗) ∩ V(Σ∗), is again a (positive) variety of languages.

Note that among our results, those showing that certain classes are geometrically closed could also be
obtained with an alphabet being fixed. Homomorphisms between different alphabets thus play no role there,
and we could equally well consider lattices of languages [13] instead of (positive) varieties of languages for
such positive results. However, we prefer to stay in the frame of the theory of (positive) varieties of languages
as a primary aim of this article is to describe robust classes of languages closed under geometrical closure.

It is well known that varieties of languages are linked to pseudovarieties of finite monoids – i.e., classes of
finite monoids closed under taking homomorphic images, submonoids, and finite products – via the so-called
Eilenberg correspondence [12]. The pseudovariety of finite monoids corresponding to a variety of languages V
is generated by syntactic monoids of languages from V . Conversely, the variety of languages corresponding
to a pseudovariety of finite monoids V consists of precisely all languages with syntactic monoids in V.
Pseudovarieties of monoids appear in this article as instances of the correspondence described.5

Given two words u, v over an alphabet Σ, we write u ≤ v if u is a prefix of v. We also write, for each
language L ⊆ Σ∗,

pref↑(L) := {u ∈ Σ∗ | ∃v ∈ L : u ≤ v} =
⋃

w∈Σ∗

Lw−1,

pref↓(L) := {v ∈ Σ∗ | ∀u ∈ Σ∗ : u ≤ v =⇒ u ∈ L}.

We call these languages the prefix closure and the prefix reduction of L, respectively. Both are prefix-closed,
while pref↑(L) ⊇ L and pref↓(L) ⊆ L.

Proposition 2.1. Each positive variety V is closed under the operator pref↑.

Proof. It is well known that each regular language has finitely many right quotients by words. Thus, for
each non-empty finite alphabet Σ and each L ∈ V(Σ∗), the language

pref↑(L) =
⋃

w∈Σ∗

Lw−1

5Algebraic descriptions of these pseudovarieties are summarised in the Appendix for convenience of the reader.
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is a finite union of right quotients of L, and its membership to V(Σ∗) follows.

Let Σ = {a1, . . . , ak} be a linearly ordered alphabet. The Parikh vector of a word w in Σ∗ is then
given by Ψ(w) = (|w|a1

, . . . , |w|ak
), where |w|a denotes the number of occurrences of the letter a in w. This

notation extends naturally to languages: we write Ψ(L) = {Ψ(w) | w ∈ L} for L ⊆ Σ∗. We denote by [w]
the equivalence class of the kernel relation of Ψ containing w, i.e.,

[w] = {u ∈ Σ∗ | Ψ(u) = Ψ(w)}.

Then we also write, for each L ⊆ Σ∗,

[L] =
⋃

w∈L

[w] = {u ∈ Σ∗ | Ψ(u) ∈ Ψ(L)}

and we call the language [L] the commutative closure of L. A language L such that L = [L] is called
commutative. A class of languages C is said to be closed under commutation if for each non-empty finite
alphabet Σ, one has [L] ∈ C(Σ∗) whenever L ∈ C(Σ∗).

In the previous paragraph we consider the mapping Ψ: Σ∗ → N
k, where N is the set of all non-negative

integers. Following the ideas of [11], we introduce some technical notations concerning N
k, whose elements

are called vectors. We denote by 0 the null vector of N
k. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be

vectors and s ∈ {1, . . . , k} be an index. We write x →s y if ys − xs = 1 and, at the same time, yi = xi

for all i 6= s. Moreover, x → y means that x →s y for some index s. A path in N
k is a finite sequence

π = [x0, . . . ,xn] of vectors from N
k such that x0 = 0 and xi−1 → xi for i = 1, . . . , n; more specifically, we

say that π is a path leading to xn. This means that a path always begins in 0 and each other vector of the
path is obtained from the previous one by incrementing exactly one of its coordinates by one. If in addition
x0, . . . ,xn all belong to a set F ⊆ N

k, we say that π is a path in F and write π ⊑ F .
Given a word w = ai1 . . . ain in Σ∗, we write π(w) for the unique path [x0, . . . ,xn] in N

k such that
0 = x0 →i1 x1 →i2 . . . →in xn. Conversely, for each path π = [x0, . . . ,xn] in N

k, there is a unique word w
such that π(w) = π. We denote this unique word w by ‖π‖. For each F ⊆ N

k, we denote by ‖F‖ the set
{‖π‖ | π ⊑ F}. Note that the language ‖F‖ is prefix-closed.

Moreover, we define fig(L) = Ψ(pref↑(L)) for each L ⊆ Σ∗. The set fig(L) ⊆ N
k is a connex figure

in the sense of [11], i.e., for each x ∈ fig(L), there is a path π leading to x such that π ⊑ fig(L).
Finally, the geometrical closure of L is the language γ(L) = ‖ fig(L)‖. A class of languages C is said to

be geometrically closed if γ(L) belongs to C(Σ∗) whenever L does, for each non-empty finite alphabet Σ.
Note that the class of all regular languages is not geometrically closed, as observed in [11]. For instance,

the language L = a∗(ab)∗ is regular, while its geometrical closure

γ(L) = {w ∈ {a, b}∗ | ∀u ≤ w : |u|a ≥ |u|b}

is the prefix closure of the Dyck language.

3. A Characterisation of the Geometrical Closure

We now characterise the operation of geometrical closure in terms of three simpler operations on lan-
guages: the prefix closure, the commutative closure, and the prefix reduction. This characterisation is a key
to our later considerations.

Proposition 3.1. If L is a language over Σ, then γ(L) = pref↓
([

pref↑(L)
])

.

Proof. By definition,
γ(L) = ‖fig(L)‖ =

∥

∥Ψ(pref↑(L))
∥

∥ .

If w ∈ γ(L), then there is a path π = [x0, . . . ,xn] ⊑ Ψ(pref↑(L)) such that w = ‖π‖. For an arbitrary prefix
u of w, we have π(u) = [x0, . . . ,xm] for some m ≤ n. It follows that Ψ(u) = xm belongs to Ψ(pref↑(L)).
Hence u ∈ [pref↑(L)] and w belongs to pref↓([pref↑(L)]).
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On the other hand, if w belongs to pref↓([pref↑(L)]), then all prefixes u of w belong to [pref↑(L)]. Thus
Ψ(u) is in Ψ(pref↑(L)) for each u ≤ w, and π(w) is a path in Ψ(pref↑(L)). As a result, we observe that w
is in ‖Ψ(pref↑(L))‖ = γ(L).

As a direct consequence of Proposition 2.1 and Proposition 3.1, we obtain the following sufficient condi-
tion, under which a positive variety of languages is geometrically closed.

Corollary 3.2. Each positive variety of regular languages closed under prefix reduction and commutation
is geometrically closed.

4. The Basic Negative Result and Positive Varieties with Regular Geometrical Closures

Let us now prove a simple sufficient condition under which a positive variety contains a language with
irregular geometrical closure, and thus is not geometrically closed. The following lemma is used repeatedly
in this article, as a tool for obtaining negative results.

Lemma 4.1. Let V be a positive variety containing the language (ab)∗. Then V contains a language L such
that γ(L) is not regular. In particular, V is not geometrically closed.

Proof. First, if (ab)∗ ∈ V({a, b}∗), then also {a, b}∗ ∈ V({a, b, c}∗), as {a, b}∗ = h−1
1 ((ab)∗) for a homomor-

phism h1 : {a, b, c}
∗ → {a, b}∗ given by h1(a) = h1(b) = ab and h1(c) = aa.

Next, let us observe that we also have {a, b}∗c ∈ V({a, b, c}∗) under the assumption of V containing (ab)∗.
Indeed, closure of V under quotients implies that (ab)∗b−1 = (ab)∗a ∈ V({a, b}∗). Let h2 : {a, b, c}∗ → {a, b}∗

be a homomorphism such that h2(a) = h2(b) = ab and h2(c) = a. Clearly, h−1
2 ((ab)∗a) = {a, b}∗c.

These two observations jointly imply that the positive variety V contains the language (ab)∗c, as

(ab)∗c = h−1
3 ((ab)∗) ∩ {a, b}∗c,

where the homomorphism h3 : {a, b, c}∗ → {a, b}∗ is given by h3(a) = a, h3(b) = b, and h3(c) = ε.
We may finally conclude that the positive variety V contains the language

L = {a, b}∗ ∪ (ab)∗c.

The geometrical closure of L is not regular, as

γ(L)c−1 = {w ∈ {a, b}∗ | |w|a = |w|b}.

This finishes the proof of the lemma.

Recall that W is by definition the largest positive variety not containing (ab)∗ [8, 9]. Moreover, it is
known that W is closed under commutation [7]. Lemma 4.1 thus can be used to obtain the following full
characterisation of positive varieties V such that γ(L) is regular for all L in V .

Theorem 4.2. Let V be a positive variety languages. The following conditions are equivalent:

(i) The language γ(L) is regular for every L in V.

(ii) The positive variety V is contained in W.

(iii) The positive variety V does not contain the language (ab)∗.

Proof. The equivalence of (ii) and (iii) is merely a restatement of the fact that W is the largest positive
variety that does not contain (ab)∗. Now, if V ⊆ W , then [L] is regular for all L in V , as W is closed under
commutation. As the class of all regular languages is obviously closed both under pref↑ and pref↓, it follows
by the characterisation of Proposition 3.1 that γ(L) is regular for all L from V . Conversely, if V 6⊆ W , then
V contains (ab)∗ and Lemma 4.1 implies that (i) does not hold.
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5. Geometrically Closed Classes of Star-Free Languages

We turn our attention to the problem of identifying robust geometrically closed classes of languages. Let
us first focus on geometrically closed positive varieties of star-free languages. In Subsection 5.2, we prove our
main result on star-free languages showing that many important (positive) varieties of star-free languages
are geometrically closed. To formulate this result, we need a variety of languages RLT , which we introduce
in Subsection 5.1, providing its language-theoretic, automata-theoretic, and algebraic description. We touch
upon the case of classes not covered by our main result in Subsection 5.4.

5.1. LT-Acyclic Automata and the Variety RLT

We now introduce the class of languages RLT , which plays a central role in our main result. Despite being
defined simply as a class of languages, RLT is actually a variety, as we observe later below. The letters LT
refer to a characteristic property of the corresponding class of automata, explained below as well.

Definition 5.1. We denote by RLT the class of languages such that RLT (Σ
∗) consists, for every non-empty

finite alphabet Σ, of all finite unions of languages of the form

L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n, (1)

where n is a natural number, Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn ⊆ Σ, and ai ∈ Σ \ Σi−1 for i = 1, . . . , n.

This definition is similar to definitions of some other classes of languages that have already been studied
in literature. First of all, if we omit the condition Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn, we get a definition of languages from
the variety R corresponding to R-trivial monoids, which we recall in more details later.6 Let us point out
here that RLT ⊆ R. Secondly, if we also require ai ∈ Σi in Definition 5.1 for i = 1, . . . , n, then we obtain
a variety of languages considered by Pin, Straubing, and Thérien [20] and corresponding to a pseudovariety
of finite monoids denoted R1. Finally, if we drop the condition ai 6∈ Σi−1 in Definition 5.1 and then we
generate a variety, we obtain the variety of languages corresponding to the pseudovariety JMK considered
by Almeida [1, p. 236].

As our next aim is to characterise languages from RLT in terms of automata, we recall the characterisation
of languages from R first. An automaton A = (Q,Σ, ·, ι, F ) is acyclic if every cycle in A is a self-loop at some
of its states. In other words, if p · w = p for some p ∈ Q and w ∈ Σ∗, then also p · a = p for every letter
a occurring in w. This condition is equivalent to a possibility of numbering the states in Q as 1, . . . , |Q|
in such a way that the state p · a, with p ∈ Q and a ∈ Σ, always has a number greater than or equal to
the number of p. For this reason, these automata are called extensive in [18, p. 93]. It is known that they
recognise precisely the languages from R [6].

We say that an acyclic automaton A = (Q,Σ, ·, ι, F ) has a loop transfer property, if p · a = p implies
(p · b) ·a = p · b for every p ∈ Q and a, b ∈ Σ. We then call A an LT-acyclic automaton for short. This means
that if there is an a-labelled loop at a state p of an LT-acyclic automaton, then there also is an a-labelled loop
at each state reachable from p. We may thus equivalently take b ∈ Σ∗ in the definition of the loop-transfer
property. Our first aim in what follows is to show that languages recognised by LT-acyclic automata are
precisely those from RLT . We do so via a series of elementary lemmas.

Lemma 5.2. The minimal automaton DL for a language L of the form (1) is LT-acyclic.

Proof. Let L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n for some natural number n, alphabets Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn ⊆ Σ, and

letters ai ∈ Σ \Σi−1 for i = 1, . . . , n. Let us denote Γi−1 = Σ \ (Σi−1 ∪ {ai}) for i = 1, . . . , n and let us take
Γn = Σ \ Σn. Then it is an easy exercise to show that the automaton in Fig. 1 is the minimal automaton
for L and that it is an LT-acyclic automaton.

6The notion of R-trivial monoids is based upon Green’s relations, a fundamental concept of semigroup theory. Let us recall
their definitions on a monoid M : for x, y ∈ M , one writes xLy if Mx = My, xRy if xM = yM , and xJy if MxM = MyM .
Next H = L ∩ R and D = L ◦R = R ◦ L is the smallest relation containing both L and R. It is a standard fact that D and J

coincide for finite monoids [15]. A monoid M is said to be X-trivial for X ∈ {L,R, J,H,D} if X is an identity relation on M .
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. . .

Σ0 Σ1 Σn−1 Σn

Σ

a1 a2 an−1 an

Γ0

Γ1
Γn−1

Γn

Figure 1: An LT-acyclic automaton for a language of the form (1).

Lemma 5.3. Let L and K be languages over an alphabet Σ recognised by LT-acyclic automata. Then L∪K
is recognised by an LT-acyclic automaton as well.

Proof. The language L ∪ K can be recognised by the direct product of a pair of automata that recognise
the languages L and K, respectively. A routine check shows that a finite direct product of LT-acyclic
automata is an LT-acyclic automaton.

The two lemmas above together show that every language from RLT is recognised by an LT-acyclic
automaton. The following lemma strengthens this observation by showing that the minimal automaton
of a language from RLT is LT-acyclic.

Lemma 5.4. Let L be a language recognised by an LT-acyclic automaton. Then the minimal automaton DL

for the language L is LT-acyclic as well.

Proof. Let A = (Q,Σ, ·, ι, F ) be an LT-acyclic automaton recognising L. The minimal automaton DL is
a homomorphic image of the subautomaton of A [21] consisting of all states reachable from ι.7 It is clear
that a subautomaton of an LT-acyclic automaton is LT-acyclic. Thus we may assume that all states of A
are reachable from the initial state ι.

Let ϕ : Q → P be a surjective homomorphism from the automaton A onto some other automaton
B = (P,Σ, •, ϕ(ι), ϕ(F )). We claim that B is necessarily acyclic. To prove this claim, let p ∈ P and w ∈ Σ∗

be such that p • w = p. Then we choose some state q′ from ϕ−1(p). For that q′, we have q′ · wm ∈ ϕ−1(p)
for every natural number m. As the sequence q′, q′ · w, q′ · w2, . . . contains only finitely many states, there
are natural numbers n and m ≥ 1 such that

q′ · wn+m = q′ · wn = q.

As A is acyclic, we have q · a = q for every letter a occurring in w. Consequently,

p • a = ϕ(q) • a = ϕ(q · a) = ϕ(q) = p

and B is acyclic.
Let finally p ∈ P and a ∈ Σ be such that p • a = p. It follows from the previous paragraph that there is

a state q ∈ ϕ−1(p) such that q · a = q. As A is LT-acyclic, we see that (q · b) · a = q · b for every b ∈ Σ. Thus

p • ba = ϕ(q · ba) = ϕ(q · b) = p • b.

As a result, B is an LT-acyclic automaton. In particular, this property holds for DL.

Let us now prove a converse to the statements established above.

7Here we understand a homomorphism from a (deterministic) automaton A = (Q,Σ, ·, ι, F ) to a (deterministic) automaton
B = (P,Σ, •, ν, G) to be a mapping ϕ : Q → P such that ϕ(ι) = ν, ϕ(p) • a = ϕ(p · a) for all p ∈ Q and a ∈ Σ, and ϕ(F ) = G.
The automata A and B are equivalent under these assumptions.
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Lemma 5.5. If A is an LT-acyclic automaton over Σ, then it recognises a language from RLT (Σ
∗).

Proof. Let A = (Q,Σ, ·, ι, F ) and R be the set of all valid runs in the automaton A, which do not use loops:

R = {(q0, a1, q1, a2, . . . , an, qn) | n ∈ N; q0, . . . , qn ∈ Q; a1, . . . , an ∈ Σ;

q0 = ι; qn ∈ F ; ∀j ∈ {1, . . . , n} : qj−1 6= qj ∧ qj−1 · aj = qj}.

We see that the set R is finite. Moreover, for each q in Q, let Σq denote the alphabet Σq = {c ∈ Σ | q ·c = q},
and let us denote by L the language recognised by A. Then

Lw := Σ∗
q0a1Σ

∗
q1a2 . . . anΣ

∗
qn ⊆ L

is a language of the form (1) for each w = (q0, a1, q1, a2, . . . , an, qn) in R and

L =
⋃

w∈R

Lw.

Hence the language L recognised by A belongs to RLT (Σ
∗).

The following theorem, which is a summary of the previous lemmas, thus gives an automata-theoretic
characterisation of the class RLT .

Theorem 5.6. The following statements are equivalent for a language L ⊆ Σ∗:

(i) L belongs to RLT (Σ
∗).

(ii) L is recognised by an LT-acyclic automaton.

(iii) The minimal automaton of L is LT-acyclic.

Proof. The statement (i) implies (ii) by Lemma 5.2 and Lemma 5.3. The statement (ii) implies (iii) by
Lemma 5.4. Finally, (iii) implies (i) by Lemma 5.5.

One may prove that RLT is a variety of languages in several different ways. It is possible to prove
directly that the class RLT is closed under basic language operations. It is also possible to prove that
the class of LT-acyclic automata forms a variety of actions in the sense of [10]. Here we take an approach,
in which we identify the algebraic counterpart of the class RLT – namely, we characterise the corresponding
pseudovariety of finite monoids by pseudoidentities. We do not want to recall the notion of pseudoidentities
in general. Let us only recall the implicit operation xω here. If we substitute for x some element s in a finite
monoid M , then the image of xω is sω, which is the unique idempotent in the subsemigroup of M generated
by s. It could be useful to know that, for a fixed finite monoid M , there always exists a natural number m
such that sω = sm for each s ∈ M .

Theorem 5.7. Let Σ be an alphabet, L ⊆ Σ∗, and ML the syntactic monoid of L. The following statements
are equivalent:

(i) L belongs to RLT (Σ
∗).

(ii) ML satisfies the pseudoidentity xωyx = xωy.

Proof. Let DL = (Q,Σ, ·, ι, F ) be the minimal automaton of the language L. Then ML can be viewed as
the transition monoid of DL (see [19, p. 692]). The elements of ML can thus be viewed as changes in states
of DL determined by words from Σ∗. More formally, for u ∈ Σ∗, we denote by fu the mapping given by
the rule p 7→ p · u for each p ∈ Q. Let m be a natural number such that sω = sm for each s in ML.

Let us prove that (i) implies (ii). Suppose that L belongs to RLT (Σ
∗). Then DL is an LT-acyclic

automaton by Theorem 5.6. Let x, y be mapped to elements of ML corresponding to words v, w ∈ Σ∗.
To prove (ii), we need to check that fvmfwfv = fvmfw holds. As DL is acyclic, we have (p · vm) · a = p · vm
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for every p ∈ Q and a ∈ Σ occurring in v. Moreover, DL is an LT-acyclic automaton, which means that
a loop labelled by a at a state p ·vm is transferred to every state reachable from p ·vm. In particular, for every
letter a occurring in v, there is a loop labelled by a at the state (p · vm) ·w. The equality fvmfwfv = fvmfw
follows.

Now, let us show that (ii) implies (i). First of all, we deduce some useful consequences of the pseu-
doidentity xωyx = xωy. Let M be a finite monoid satisfying xωyx = xωy, and let m be such that sω = sm

for each s ∈ M . Thus, for each pair of elements s, t ∈ M , we have smts = smt. If we take x, y ∈ M and put
s = xy and t = x in smts = smt, we get (xy)mxxy = (xy)mx, which may be written as

(xy)ωxxy = (xy)ωx. (2)

Since x, y in (2) are arbitrary elements of M , we get that (2) holds in M as a pseudoidentity. In this way
one may deduce a pseudoidentity from another pseudoidentity, but it is usual to skip the details concerning
substitutions used. Moreover, we often interpret variables x, y in pseudoidentities also as elements of M .

Using (2) from right to left repeatedly, we obtain

(xy)ωx = (xy)ωx(xy) = (xy)ωx(xy)2 = . . . = (xy)ωx(xy)m = (xy)ωx(xy)ω . (3)

By setting y = 1 in xωyx = xωy, we deduce the defining pseudoidentity xω+1 = xω of finite aperiodic
monoids. Using this pseudoidentity and (3), we get

(xy)ω = (xy)ωxy = (xy)ωx(xy)ωy. (4)

Next, we apply the pseudoidentity (4) on its right-hand side, where the second occurrence of (xy)ω is
replaced. Iterating this replacement m− 1 times, we get

(xy)ω = (xy)ωx(xy)ωy = ((xy)ωx)2(xy)ωy2 = · · · = ((xy)ωx)m(xy)ωym = ((xy)ωx)ω(xy)ωyω. (5)

Multiplying this pseudoidentity by y from the right, the right-hand side does not change, because yω+1 = yω.
The original and the new left-hand side thus form the pseudoidentity (xy)ω = (xy)ωy valid in M . Combining
this pseudoidentity with (4) and (3), we finally obtain

(xy)ω = (xy)ωx(xy)ωy = (xy)ωx(xy)ω = (xy)ωx.

We proved that the defining pseudoidentity (xy)ωx = (xy)ω of finite R-trivial monoids is a consequence of
the pseudoidentity from (ii).

Finally, in order to prove that (ii) implies (i), suppose that the monoid ML satisfies the pseudoidentity
xωyx = xωy. Hence, the monoid ML is R-trivial and the minimal automaton DL of the language L is
acyclic. Moreover, let p ∈ Q and a ∈ Σ be such that p · a = p, and take arbitrary b ∈ Σ. Then fω

a fb in ML

maps p to p · b. Similarly, fω
a fbfa in ML maps p to p · ba. However, taking x 7→ fa, y 7→ fb in xωyx = xωy

gives us fω
a fbfa = fω

a fb. Therefore, p · ba = p · b and we see that there is a loop labelled by a at the state
p · b. As a result, DL is an LT-acyclic automaton and L belongs to RLT (Σ

∗) by Theorem 5.6.

Corollary 5.8. The class RLT is a variety of languages corresponding to the pseudovariety of finite monoids

Jxωyx = xωyK.

Let us also note that the pseudoidentity xωyx = xωy is known to describe the pseudovariety of fi-
nite monoids MK. By definition, this is a pseudovariety generated by monoids of the form S1, where S
is a semigroup from K, a pseudovariety of finite semigroups, in which all idempotents act as left zeros.
The characterisation via the pseudoidentity xωyx = xωy is due to Pin [17]; cf. also Almeida [1, p. 212].
Therefore, RLT consists of precisely all MK-recognisable languages. This observation strengthens the one
from the conference version of this article by taking into account the fact that MK is contained in R, as
observed by Pin [17] (in an article that we have discovered after the conference version was published).
The inclusion MK ⊆ R is also established in the proof of Theorem 5.7.
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5.2. The Main Results for Star-Free Languages

Let us now return to the operation of geometrical closure on languages and prove our main result for
star-free languages (Theorem 5.13): Each class of languages lying between the variety of languages RLT

and the positive variety W ∩ SF is geometrically closed. As V3/2 lies in between these two classes, our
result strengthens the one from [11], in which geometrical closure of binary languages from V3/2 is proved.
Moreover, we show here that W∩SF is the largest geometrically closed positive variety of star-free languages,
while the largest geometrically closed variety of star-free languages corresponds to DA.

The route that we take to arrive at Theorem 5.13 consists of three steps:

1. We recall that the class W∩SF is closed under commutation [7]. In particular, a commutative closure
of each language from W ∩ SF is a commutative star-free language.

2. We observe that each commutative star-free language belongs to RLT .

3. We prove that the variety RLT is closed under prefix reduction.

These three observations imply that the geometrical closure of a language from W∩SF belongs to RLT ,
from which our main result follows easily.

Lemma 5.9. The positive variety W ∩ SF is closed under commutation.

Proof. Follows directly by a more general result of Cano, Guaiana, and Pin [7, Theorem 6.2], by which [L]
belongs to W(Σ∗) for an alphabet Σ whenever L ∈ W(Σ∗), while the period of [L] divides the period of L.
Here, the period of a language K is the smallest positive integer p such that the syntactic monoid MK

satisfies the pseudoidentity xω+p = xω. Hence, star-free languages are precisely languages of period 1, and
the result of [7] mentioned above implies that the commutative closure of a star-free language from W is
again a star-free language from W .

In particular, it follows by Lemma 5.9 that the commutative closure of a language from the positive
variety W ∩ SF is always star-free, while it is trivially commutative. This observation slightly strengthens
the one from the conference version of this article, where we have noticed a similar property of V3/2, which is
contained in W ∩SF . We return to this result for V3/2, which can be obtained using tools more elementary
in nature than the theorem of [7], in Remark 5.18 below.

We now prove that each commutative star-free language belongs to RLT . The proof given here is algebraic
in nature and relies mostly on manipulating pseudoidentities.

Lemma 5.10. Every commutative star-free language is in RLT .

Proof. First observe that if L is a commutative language, i.e., if L = [L], then the syntactic monoid ML

of L is commutative as well – that is, ML ∈ Com. This is a well-known fact, which can be established,
for instance, via the minimal automaton DL = (Q,Σ, ·, ι, F ) of L. Given q ∈ Q and u, v ∈ Σ∗, we see that
q · uv = q · vu, as commutativity of L implies that for each w ∈ Σ∗ one has wuv ∈ L if and only wvu ∈ L.
This implies that ML, which is the transition monoid of DL, is commutative.

If L is commutative and star-free, then ML is commutative and aperiodic. The claim can then be
easily proved algebraically, as the pseudovariety of commutative monoids satisfies Com = Jxy = yxK,
the pseudovariety of aperiodic monoids is given by A = Jxω+1 = xωK, and we have seen in Corollary 5.8
that RLT corresponds to MK = Jxωyx = xωyK. The pseudoidentity xωyx = xωy follows from xy = yx and
xω+1 = xω – if a monoid M satisfies the latter two pseudoidentities, then we see for all x, y ∈ M that

xωyx = xωxy = xω+1y = xωy.

Thus ML ∈ A ∩Com implies ML ∈ MK, and hence L ∈ RLT (Σ
∗).

Finally, let us observe that the variety RLT is closed under prefix reduction. We note that by an absorbing
state we mean a state p satisfying p · a = p for every a ∈ Σ.
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Lemma 5.11. Let L ∈ RLT (Σ
∗) for some alphabet Σ. Then pref↓(L) ∈ RLT (Σ

∗) as well.

Proof. Let L be in RLT (Σ
∗), which means that this language is recognised by some LT-acyclic automaton

A = (Q,Σ, ·, ι, F ). If ι 6∈ F , then L does not contain the empty word, and consequently pref↓(L) = ∅, which
belongs to RLT (Σ

∗). We may thus assume that ι ∈ F .
Now, roughly stated, we claim that the language pref↓(L) is recognised by the automaton A′ constructed

from A by replacing all non-final states with a single absorbing non-final state τ . More precisely, we construct
an automaton A′ = (F ∪{τ},Σ, •, ι, F ), where τ is a new state, for which we define τ •a = τ for each a ∈ Σ.
Furthermore, for each p ∈ F and a ∈ Σ, we define p • a = p · a if p · a ∈ F , and p • a = τ otherwise.
As A contains no cycles other than loops, the constructed automaton A′ has the same property. Moreover,
any state of A′ reachable in A′ from some p in F ∪ {τ} is either reachable from p in A, or it is equal to τ .
As τ • c = τ for each c in Σ, this implies that A′ is an LT-acyclic automaton and the language pref↓(L)
belongs to RLT (Σ

∗) by Theorem 5.6.

As a consequence of the three lemmas above, we obtain the following theorem, from which our main
result follows easily.

Theorem 5.12. Let Σ be an alphabet and L ∈ (W ∩ SF)(Σ∗). Then γ(L) ∈ RLT (Σ
∗).

Proof. It follows by Proposition 3.1 that the geometrical closure can be written as γ(L) = pref↓
([

pref↑(L)
])

.
As W ∩ SF is a positive variety of languages, Proposition 2.1 tells us that the language pref↑(L) belongs
to (W ∩ SF)(Σ∗) whenever L does. The language

[

pref↑(L)
]

is thus a commutative star-free language by

Lemma 5.9 (which is a restatement of a result from [7]). Thus,
[

pref↑(L)
]

∈ RLT (Σ
∗) by Lemma 5.10 and

γ(L) = pref↓
([

pref↑(L)
])

∈ RLT (Σ
∗) by Lemma 5.11.

We are now prepared to state the main result of this section, which is a direct consequence of the theorem
above.

Theorem 5.13. Let C be a class of languages containing RLT and at the same time contained in W ∩SF .
Then C is geometrically closed.

There are many important varieties and positive varieties of languages studied in the literature, for which
this result can be applied.

Corollary 5.14. The following classes are geometrically closed:

1. The positive variety W ∩ SF ;

2. The positive variety V3/2;

3. The variety of all DA-recognisable languages;

4. The variety R;

5. The variety of all JMK-recognisable languages;

6. The variety RLT .

Remark 5.15. Note that the six classes from Corollary 5.14 form a strictly descending chain in the order
as listed there. Most of these inclusions are widely known (or can be found in [1]). The only point that
requires some attention is the fact that the inclusion between V3/2 and W ∩ SF is strict: a language from
W ∩ SF that is not in V3/2 is recognised, e.g., by the automaton in Fig. 2. To prove that this language
is not in V3/2, one can use an algebraic characterisation via the system of inequalities xωyxω ≥ xω for all
x, y interpreted as words such that all letters of y do also occur in x [19, p. 725].8 After using standard
techniques to prove that the language recognised by the automaton is star-free, one can prove that it is
in W using the algebraic characterisation [9], by which this positive variety corresponds to a pseudovariety
of ordered monoids M satisfying the following property: for any two mutually inverse elements s, t of M
and any element z of the minimal ideal of the submonoid of M generated by s, t, one has (stzst)ω ≥ st.

8Note that these inequalities are actually reversed in [19], as syntactic order is understood there dually to our definition.

11



0 1 2 3 4

a

b

a
a

b

a

b b a, b

Figure 2: An automaton recognising a language from the difference of W ∩ SF and V3/2.

The variety of all DA-recognisable languages, mentioned in the previous corollary, coincides with the in-
tersection of V3/2 and its dual. This class has a natural interpretation in terms of logical descriptions of levels
in the Straubing-Thérien hierarchy (see Section 5 of [22]).

Using Theorem 5.13 and Lemma 4.1, it is easy to identify the largest geometrically closed positive variety
and variety of star-free languages.

Theorem 5.16. The largest geometrically closed positive variety of star-free languages is W ∩SF .

Proof. The positive variety W ∩ SF is geometrically closed by Corollary 5.14. Suppose for contradiction
that there is a geometrically closed positive variety of star-free languages V not contained in W ∩SF . Such
positive variety V is necessarily not contained in W . As W is the largest positive variety of languages not
containing (ab)∗, it follows that V contains (ab)∗. Thus V is not geometrically closed by Lemma 4.1, which
contradicts our original assumption.

Theorem 5.17. The largest geometrically closed variety of star-free languages consists of precisely all
DA-recognisable languages.

Proof. It is well known that the largest variety of languages not containing the language (ab)∗ corresponds
to the pseudovariety of finite monoids DS [1, 9]. The pseudovariety DA is an intersection of DS with
the pseudovariety A of all aperiodic monoids. Hence, it corresponds to the largest variety of star-free
languages not containing (ab)∗. Now, the variety of DA-recognisable languages is geometrically closed by
Corollary 5.14. On the other hand, any variety of star-free languages not contained in it necessarily contains
the language (ab)∗, and is not geometrically closed by Lemma 4.1.

Remark 5.18. We have seen above that the commutative closure [L] of a language L from W ∩ SF is
always a commutative star-free language. This is actually equivalent to saying that [L] is commutative and
piecewise testable: commutativity of the syntactic monoid M[L] implies that its H-classes coincide with
J-classes and aperiodicity is equivalent to H-triviality [15]. The monoid M[L] is J-trivial as a result, and [L]
is a commutative piecewise testable language.

Instead of W ∩ SF , we have worked with its subclass V3/2 in the conference version of this article, for
which the above mentioned result can be obtained in a more elementary way. One possibility would be
to invoke a known result on partial commutations of Guaiana, Restivo, and Salemi [14], or of Bouajjani,
Muscholl, and Touili [5]. However, it can also be seen from a simple direct language-theoretic construction
that the commutative closure of a language from V3/2 is piecewise testable (while it is trivially commutative).
We now briefly describe this construction, which we have used to obtain our main results in the conference
version of this article.

Recall the result of Arfi [2], according to which a language belongs to V3/2(Σ
∗) if and only if it is given

by a finite union of languages Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n, where a1, . . . , an are letters from Σ and Σ0, . . . ,Σn are

subalphabets of Σ. It suffices to describe the construction for languages of the form L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n,

as for finite unions of languages L1, . . . , Lm ⊆ Σ∗ we have
[

m
⋃

i=1

Li

]

=

m
⋃

i=1

[Li].

For L of this form, let Σ′ = Σ0 ∪ . . . ∪ Σn and x = a1 . . . an. Then it is not hard to see that

[L] = {w ∈ Σ∗ | ∀a ∈ Σ′ : |w|a ≥ |x|a; ∀b ∈ Σ \ Σ′ : |w|b = |x|b } .
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This language is piecewise testable, as can be seen from its alternative representation

[L] =
⋂

a∈Σ′

(Σ∗a)|x|aΣ∗ ∩
⋂

b∈Σ\Σ′

(

(Σ∗b)|x|bΣ∗ ∩
(

(Σ∗b)|x|b+1Σ∗
)C

)

. (6)

This construction gives rise to an alternative proof of Lemma 5.10, which does not make use of pseu-
doidentities: by what we have noted above, it is sufficient to show that every commutative piecewise testable
language L belongs to the variety RLT . As V1 is contained in V3/2 and as commutativity of L implies L = [L],
it follows that L is a finite union of languages of the form (6). For each a ∈ Σ and k ∈ N, we may write
(Σ∗a)kΣ∗ = ((Σ\{a})∗a)kΣ∗. This shows that the language (Σ∗a)kΣ∗ belongs to RLT . As RLT is a variety,
it is closed under finite intersection and complementation, which implies that each language of the form (6)
is in RLT . Finally, RLT being a variety also implies its closure under finite union, by which it follows that
L is in RLT as well.

5.3. No Positive Variety Smaller than RLT Works

Theorem 5.16 tells us that W∩SF is “optimal” in the statement of both Theorem 5.12 and Theorem 5.13,
as no larger positive variety of star-free languages can be geometrically closed, which also means that no
larger positive variety contained in SF can exhibit the property of W ∩ SF from Theorem 5.12. Perhaps
it is not surprising that the variety RLT is not the smallest geometrically closed positive variety of star-
free languages – in fact, it is easy to see that the trivial variety I, given for all non-empty finite Σ by
I(Σ∗) = {∅,Σ∗}, is geometrically closed. However, also RLT can be seen as “optimal” for Theorem 5.12:
we now prove that the variety RLT is the smallest positive variety of languages V such that the geometrical
closure of every language from W ∩ SF falls into V . This is equivalent to saying that RLT is the positive
variety generated by the languages γ(L) for L ∈ W∩SF . In fact, we prove a stronger statement: the variety
RLT is the positive variety generated by γ(L) for L ∈ RLT . However, we first need the following simple
lemma showing that the geometrical closure boils down to the prefix closure for languages of the form (1).

Lemma 5.19. Let L be of the form
L = Σ∗

0a1Σ
∗
1a2 . . . anΣ

∗
n,

for some natural number n, subsets Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn of some non-empty finite alphabet Σ, and letters
ai ∈ Σ \ Σi−1 for i = 1, . . . , n. Then γ(L) = pref↑(L).

Proof. The inclusion γ(L) ⊇ pref↑(L) holds trivially for all languages L. It thus remains to prove the opposite
inclusion γ(L) ⊆ pref↑(L).

For L from the statement of the lemma, clearly

pref↑(L) =

n
⋃

i=0

Li,

where Li is given by Li = Σ∗
0a1Σ

∗
1a2 . . . aiΣ

∗
i for i = 0, . . . , n. Then, similarly as in Remark 5.18,

[

pref↑(L)
]

=

[

n
⋃

i=0

Li

]

=

n
⋃

i=0

[Li], (7)

where
[Li] = {w ∈ Σ∗ | ∀a ∈ Σi : |w|a ≥ |a1 . . . ai|a; ∀b ∈ Σ \ Σi : |w|b = |a1 . . . ai|b } .

The commutative languages [L0], . . . , [Ln] are pairwise disjoint: given [Li] and [Lj] with i < j, we clearly
have ai+1 6∈ Σi, which in turn implies that |u|ai+1

= |a1 . . . ai|ai+1
for all u ∈ [Li]. On the other hand, each

v ∈ [Lj ] has to satisfy |v|ai+1
≥ |a1 . . . aj |ai+1

≥ |a1 . . . ai+1|ai+1
> |a1 . . . ai|ai+1

.
Let us now suppose for contradiction that γ(L) 6⊆ pref↑(L). Then there exists at least one word

w ∈ γ(L) = pref↓([pref↑(L)]) that does not belong to pref↑(L). Let us assume that this w is of minimal
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possible length. Existence of this w guarantees nonemptiness of L, from which it follows that ε ∈ pref↑(L).
As a result, w = xc for some x ∈ pref↑(L) and c ∈ Σ.

From x ∈ pref↑(L) it follows that x ∈ Lk for some k ∈ {0, . . . , n}, which is determined uniquely, since
pairwise disjointness of [L0], . . . , [Ln] implies pairwise disjointness of L0, . . . , Ln. As w = xc 6∈ pref↑(L), we
have c 6∈ Σk and if k < n, then also c 6= ak+1. Similarly, w ∈ γ(L) = pref↓([pref↑(L)]) ⊆ [pref↑(L)] implies
that there is a unique m ∈ {0, . . . , n} such that w ∈ [Lm]. We claim that all these assumptions cannot be
satisfied at the same moment. We show this by distinguishing following three cases, all of which lead to
a contradiction:

1. If m < k, then ak 6∈ Σm and |w|ak
≥ |x|ak

≥ |a1 . . . ak|ak
> |a1 . . . am|ak

= |w|ak
– a contradiction.

2. If m = k, then c 6∈ Σk and |w|c = |xc|c > |x|c = |a1 . . . ak|c – a contradiction with w ∈ [Lk].

3. If m > k, then ak+1 6∈ Σk and ak+1 6= c give |w|ak+1
≥ |a1 . . . am|ak+1

> |a1 . . . ak|ak+1
= |x|ak+1

=
|xc|ak+1

= |w|ak+1
– a contradiction again.

Theorem 5.20. The variety RLT is generated, as a positive variety of languages, by the class γ(RLT )
defined for every non-empty finite alphabet Σ by γ(RLT )(Σ

∗) = {γ(L) | L ∈ RLT (Σ
∗)}.

Proof. It follows by Corollary 5.14 that γ(RLT )(Σ
∗) ⊆ RLT (Σ

∗). It thus remains to prove that every
positive variety V containing the class γ(RLT ) also contains all languages from RLT .

Let us first show, for each non-empty finite alphabet Σ, that V(Σ∗) contains all languages of the form (1),
i.e., all languages

L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n,

where n is a natural number, Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn ⊆ Σ, and ai ∈ Σ \ Σi−1 for i = 1, . . . , n. For any fixed L
given like this, let us define the language L′ by

L′ = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
ncΣ

∗,

where c 6∈ Σ is a new symbol. It is obvious that L′ ∈ RLT ((Σ ∪ {c})∗). In fact, L′ is of the form (1) in case
Σ ∪ {c} is used as an alphabet instead of Σ. It thus follows by Lemma 5.19 that

γ(L′) = pref↑(L′).

As a consequence, pref↑(L′) ∈ γ(RLT )((Σ ∪ {c})∗) ⊆ V((Σ ∪ {c})∗). But V is a positive variety and thus
V((Σ ∪ {c})∗) also contains the language

pref↑(L′)c−1 = L.

Since L is a language over Σ and V is a positive variety, it follows that L (which is a preimage of itself
under the embedding of Σ∗ into (Σ ∪ {c})∗) also belongs to V(Σ∗). The set V(Σ∗) thus indeed contains all
languages of the form (1). Finally, V being a positive variety implies that it is closed under finite unions,
and it follows that V(Σ∗) contains all languages from RLT (Σ

∗).

5.4. Classes of Star-Free Languages Not Containing RLT

It follows from what has been said above that a positive variety of star-free languages containing RLT is
geometrically closed if and only if it is contained in W ∩ SF . Although we leave a similar characterisation
of geometrically closed positive varieties of star-free languages not containing RLT open, we now resolve
the question of geometrical closure for several particular classes of this kind. We have already made an easy
observation that the trivial variety I, given for each non-empty finite alphabet Σ by I(Σ∗) = {∅,Σ∗},
is geometrically closed. Let us now prove that the variety V1 of all piecewise testable languages, which is
incomparable with RLT ,9 is not geometrically closed.

9For instance, it is easy to prove that for Σ = {a, b} one has aΣ∗ ∈ RLT (Σ∗) \ V1(Σ∗) and ab∗a ∈ V1(Σ∗) \ RLT (Σ∗).
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Proposition 5.21. The variety V1 of all piecewise testable languages is not geometrically closed.

Proof. Consider the language L = {ε, a, b} ∪ {aa, bb}a∗b∗ over Σ = {a, b}. A routine verification shows that
this language is piecewise testable. Moreover, we have pref↑(L) = L, [pref↑(L)] = [L] = Σ∗ \ {ab, ba}, and

γ(L) = pref↓
([

pref↑(L)
])

= pref↓ (Σ∗ \ {ab, ba}) = {ε, a, b} ∪ {aa, bb}Σ∗.

This language is easily shown not to be in V1.

The following simple lemma goes beyond the scope of star-free languages. Nevertheless, let us state it
already at this point, as it can also be used to construct examples of geometrically closed positive varieties
of star-free languages.

Lemma 5.22. Every positive variety V of commutative languages is geometrically closed.

Proof. Let L ∈ V(Σ∗) for some non-empty finite alphabet Σ. By Proposition 2.1, pref↑(L) ∈ V(Σ∗) as
well. The language pref↑(L) is clearly commutative if L is, so we have [pref↑(L)] = pref↑(L). Finally, this
language is prefix-closed and thus not changed by prefix reduction:

γ(L) = pref↓([pref↑(L)]) = pref↑(L) ∈ V(Σ∗).

The positive variety V is geometrically closed.

In particular, it follows by Lemma 5.22 that the variety of languages corresponding to the pseudovariety
of semilattices Sl = Jxy = yx, x2 = xK, the smallest non-trivial variety of star-free languages [19], is
geometrically closed. Another example is the variety of languages corresponding to A ∩Com = J ∩Com.

6. Geometrically Closed Classes Beyond Star-Free Languages

Let us now consider positive varieties of languages that are not necessarily star-free. It turns out that
interesting geometrically closed classes are much rarer here than in the star-free case. This is demonstrated
mainly by the following theorem, which is our main negative result on other than star-free languages. Recall
that DAb is the pseudovariety of all finite monoids M such that each regular D-class of M is a commutative
group; note that M itself does not have to be commutative.

Theorem 6.1. There is no geometrically closed positive variety of languages containing the variety of all
DAb-recognisable languages.

Proof. Let V be a geometrically closed positive variety containing the variety corresponding to DAb. We
present a DAb-recognisable language L such that γ(L) is not in W . Since V is geometrically closed, this
means that V is not contained in W and hence V contains some non-regular language by Theorem 4.2, which
is a contradiction. It is thus enough to give an example of a DAb-recognisable language L with the promised
property.

Let us take
L = {a, b}∗ ∪ {wc | w ∈ {a, b}∗; |w|a − |w|b 6≡ 2 (mod 3)}.

The minimal automaton DL for the language L is shown in Fig. 3a.
The syntactic monoid ML of L is given by the transition monoid of this automaton – we thus have

ML = 〈a, b, c | a = a4, b = a2, c = a3c, ca = 0, cb = 0, cc = 0〉. The egg-box diagram of the monoid ML

is shown in Fig. 3b. We see that all regular D-classes of ML are commutative groups: the monoid ML is
in DAb and L is DAb-recognisable.

It remains to show that γ(L) 6∈ W . As L is obviously prefix-closed, we have γ(L) = pref↓([L]). The lan-
guage [L] is given by

[L] = {a, b}∗ ∪ {ucv | u, v ∈ {a, b}∗; |uv|a − |uv|b 6≡ 2 (mod 3)}

with its minimal automaton shown in Fig. 4.
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It follows that the minimal automaton for γ(L) = pref↓([L]) is given as in Fig. 5. In particular, under the
assumption that γ(L) is in W , we see that c−1γ(L)a−1 = (ab)∗ ∈ W({a, b, c}∗), as W is a positive variety.
This implies that (ab)∗ ∈ W({a, b}∗), which contradicts the definition of W . Thus γ(L) 6∈ W as claimed.

The construction used in the proof of the previous theorem in fact implies a slightly stronger statement:
there is no geometrically closed positive variety of languages containing the variety corresponding to DV for
any pseudovariety of semigroups V containing the three-element cyclic group.10 The same property holds
for pseudovarieties V containing the cyclic group of arbitrary order n > 1 – for n > 2, this can be proved
using a simple modification of the construction above; for n = 2, the reasoning is slightly more technical.
This happens whenever V contains a nontrivial group.

Corollary 6.2. None of the following (positive) varieties is geometrically closed:

1. The positive variety W;
2. The variety of all DS-recognisable languages;
3. The variety of all DG-recognisable languages;
4. The variety of all DAb-recognisable languages.

On the other hand, some positive varieties of languages V are geometrically closed for trivial reasons –
for instance all V such that γ(L) = Σ∗ for all non-empty L ∈ V(Σ∗). In particular, this is the case for L
whenever pref↑(L) = Σ∗. The proof of the following lemma is easy to see.

Lemma 6.3. Let L be a regular language over an alphabet Σ and DL be the minimal automaton of L. Then
the following conditions are equivalent:

(i) pref↑(L) = Σ∗;

(ii) for each state p in DL, there exists a final state reachable from p;

(iii) every absorbing state p in DL is final.

The conditions of Lemma 6.3 are satisfied in particular for all non-empty group languages. The variety G,
consisting of all languages L such that the syntactic monoid ML is a group, is thus geometrically closed.
This result can be extended to languages of the form L = L0a1L1 . . . aℓLℓ, where each ai is a letter, and each
Li is a non-empty group language. Indeed, for every u ∈ Σ∗, there is some w ∈ L0 such that u ≤ w, and one
can find at least one wi ∈ Li for every i = 1, . . . , ℓ. Then u is a prefix of the word wa1w1 . . . aℓwℓ ∈ L. This
implies that pref↑(L) = Σ∗. We may thus conclude that the positive variety G1/2, consisting of languages of
level 1/2 in the group hierarchy, is geometrically closed. (The reader not familiar with the group hierarchy
is referred to [19].) Moreover, every positive subvariety of G1/2 is geometrically closed as well. It follows
as a particular case of this observation that also the positive variety V1/2, forming the level 1/2 of the
Straubing-Thérien hierarchy, is geometrically closed. We have thus proved the following statement.

Corollary 6.4. The following classes are geometrically closed:

1. The variety G of all group languages;
2. The positive variety G1/2;
3. The positive variety V1/2.

In addition to the negative result of Theorem 6.1, let us also prove that contrary to the case of star-free
languages, there is no largest geometrically closed positive variety or variety of languages.

Proposition 6.5. There is no largest geometrically closed positive variety of languages, as well as no largest
geometrically closed variety of languages.

Proof. Suppose that V is either the largest geometrically closed positive variety, or the largest geometrically
closed variety. In both cases, V has to contain both G and the variety corresponding to DA. It follows that
V contains the language

10The definition of the operator D is reviewed in the Appendix.
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L = {a, b}∗ ∪ {wc | w ∈ {a, b}∗; |w|a − |w|b 6≡ 2 (mod 3)},

since this can be written as

L = {a, b}∗ ∪ ({a, b}∗c ∩ {w ∈ {a, b, c}∗ | |w|a − |w|b 6≡ 2 (mod 3)}) ,

where {a, b}∗ and {a, b}∗c are DA-recognisable, and {w ∈ {a, b, c}∗ | |w|a − |w|b 6≡ 2 (mod 3)} is in G.
However, we have seen in the proof of Theorem 6.1 that there is no geometrically closed positive variety
containing L, as such positive variety would also contain (ab)∗, which is impossible by Lemma 4.1.

Finally, let us note that there also is no smallest non-trivial geometrically closed variety or positive variety,
as all (positive) varieties of commutative languages are geometrically closed by Lemma 5.22, and there is no
smallest non-trivial (positive) variety of commutative languages.

7. Conclusions

We have characterised the recently introduced operation of geometrical closure on formal languages [11]
in terms of three simple operations – the prefix closure, the commutative closure, and the prefix reduction –
and used this characterisation to study the properties of the geometrical closure when applied to members
of various classes of regular languages. We have fully characterised positive varieties all of whose languages
have regular geometrical closures: a positive variety has this property if and only if it is contained in W .

The main question that we have considered is that of identifying robust geometrically closed classes
of regular languages. On the positive side, we have introduced a variety of languages RLT , corresponding
to the pseudovariety of finite monoids MK, and we have proved that geometrical closures of languages from
the intersection of W with the variety SF of all star-free languages always fall into RLT . As a consequence,
we have seen that many natural classes of star-free languages are geometrically closed – examples of such
classes include V3/2, R, and the variety corresponding to DA. Moreover, we have seen that W ∩ SF
is the largest geometrically closed positive variety of star-free languages and that DA-recognisable languages
form the largest geometrically closed variety of star-free languages.

We have also seen that interesting geometrically closed classes are much rarer outside the universe of all
star-free languages – this is demonstrated mainly by a result, according to which there is no geometrically
closed positive variety of regular languages containing the variety corresponding to DAb. We have only
slightly touched upon classes of languages not containing RLT or the DAb-recognisable languages. We
leave a more systematic study of geometrically closed classes of this kind open for future research.

Another open problem stems from the fact that the counterexamples used in our two main negative
results – that is, Lemma 4.1 and Theorem 6.1 – make use of a three-letter alphabet. It would be interesting
to know if a two-letter alphabet can be used instead, or if the landscape of binary languages is richer with
geometrically closed classes.

Finally, one may ask how to effectively construct a regular expression (of the form characteristic for RLT

or V3/2) for the geometrical closure γ(L) of a given language L from W ∩ SF , or at least from V3/2, given
a deterministic finite automaton A recognising L. Note that both the positive variety W [9] (and thus also its
intersection with SF) and the positive variety V3/2 [19, p. 725] are known to be decidable, but it is not even
clear to us whether there is an efficient algorithm that, given a deterministic finite automaton recognising
a language L from V3/2, computes a regular expression for this language L (of the form characteristic
for the positive variety V3/2).
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Appendix A. Summary of Pseudovarieties Used

The table below briefly summarises, for convenience of the reader, the notation used for different pseu-
dovarieties of finite monoids, as well as their characterisations in terms of pseudoidentities. The reader might
consult [1] for a more comprehensive account.

Pseudovariety Description Pseudoidentities

A Aperiodic finite monoids. xω+1 = xω

Com Commutative finite monoids. xy = yx
DA Finite monoids such that all their regular

D-classes are aperiodic semigroups.
xω+1 = xω, (xy)ω(yx)ω(xy)ω = (xy)ω

DAb Finite monoids such that all their regular
D-classes are Abelian groups.

(xy)ω = (yx)ω , (xy)ωxy = (xy)ωyx

DG Finite monoids such that all their regular
D-classes are groups.

(xy)ω = (yx)ω

DS Finite monoids such that all their regular
D-classes are semigroups.

((xy)ω(yx)ω(xy)ω)ω = (xy)ω

J Finite J-trivial monoids. xω+1 = xω, (xy)ω = (yx)ω

JMK See [1, p. 236]. See [1, p. 236].
MK A pseudovariety generated by monoids S1

for finite semigroups S, in which all idem-
potents act as left zeros.

xωyx = xωy

R Finite R-trivial monoids. (xy)ωx = (xy)ω

R1 Finite idempotent R-trivial monoids [20]. xyx = xy
Sl Finite semilattices. xy = yx, x2 = x

Table A.1: Pseudovarieties of finite monoids used in this article and their characterisations by pseudoidentities.
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Several pseudovarieties listed in the table above are of the form DV, where V is some pseudovariety
of semigroups. The pseudovariety DV consists of all finite monoids M such that all regular D-classes of M
are subsemigroups of M that belong to V.
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