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1. Introduction

The word problem for a semigroup S, finitely generated by A, is usually described
as an algorithmic problem, in which one is given two nonempty words u, v over A un-
derstood as an alphabet, and the task is to decide whether they evaluate to the same
element of S. Almost the same definition of a word problem can be given for finitely
generated monoids, except that the input words can now also be empty. Finally,
the word problem for a group G, finitely generated by A as a monoid, is precisely
the same as the word problem for G understood as a monoid; in this case, one often
considers the generating set A = X ∪ X−1, where G is finitely generated by X

as a group and X−1 = {a−1 | a ∈ X}.
Some of the deepest connections between group theory and formal languages

were uncovered by adopting a language-theoretic viewpoint on the word problem
for groups. The essence of this approach of A. V. Anisimov [1] lies in encoding
the word problem of a group G, generated by a finite set A as a monoid, into the lan-
guage of all u ∈ A∗ evaluating to the identity element of G. This language capturing
all the necessary information about the word problem is rational if and only if G
is finite, and the classical Muller–Schupp theorem [28,11] says that it is context-free
if and only if G is virtually free. See, e.g., [18, Chapter 11] for an exposition.
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Many additional results have been obtained in this direction since the seminal
work mentioned above – for instance, groups with word problems falling into several
other natural classes of languages were studied [4,12,13,15,17,21,23,25,26,36], other
problems related to the word problem were considered from a language-theoretic
perspective [25,27], and a deeper understanding of the class of context-free groups
and the Muller–Schupp theorem was achieved [2,8,9,24].

Given the richness of this theory obtained by viewing the word problem
of a group as a formal language, it is a natural endeavour to extend its scope
by studying similar questions for finitely generated semigroups and monoids. How-
ever, when trying to do so, one is faced with a problem that the language of all words
over the alphabet of generators evaluating to the identity element might no longer
capture the essential information about the word problem. One thus has to consider
a language that instead encodes all pairs of words over the alphabet of generators
evaluating to the same element of the semigroup or monoid in question.

Such a language can be defined in different ways. Under the most commonly used
definition due to A. Duncan and R. H. Gilman [10], it consists of all words u#vR

such that u, v are nonempty words over A evaluating to the same element of S; here,
vR denotes the reversal of v. The definition is almost the same for monoids, except
that the words u, v need not be nonempty. An alternative approach to defining these
languages appears in [33,3,5,6] – nevertheless, we stick with the above-described
definitions of A. Duncan and R. H. Gilman in this article.

A natural question raised by A. Duncan and R. H. Gilman [10] is whether
the characterisation of groups with a context-free word problem, provided
by the Muller–Schupp theorem, can be generalised to semigroups or monoids.
Although this still seems far from being answered [29], there has been con-
siderable progress in the understanding of word problem languages of semi-
groups and monoids. Several fundamental properties of semigroups and monoids
with a context-free word problem were explored by M. Hoffmann et al. [16]
and by T. Brough, A. J. Cain, and M. Pfeiffer [7]. Moreover, D. F. Holt,
M. D. Owens, and R. M. Thomas [17] studied the semigroups with a one-counter
word problem, and several new results on semigroups with a context-free word prob-
lem, as well as on semigroups with word problems from certain abstract families
of languages, were recently obtained by C.-F. Nyberg-Brodda [29,30,31].

T. Brough, A. J. Cain, and M. Pfeiffer [7] have asked whether it is possible
to characterise the (finitely generated) commutative semigroups whose word prob-
lem is context-free. We answer this question – and the same question for monoids
– in this article.

We show that the word problem of a finitely generated commutative monoidM is
context-free if and only ifM does not contain a submonoid isomorphic to (N×N,+),
i.e., the free commutative monoid on two generators. Similarly, a finitely generated
commutative semigroup S has a context-free word problem if and only if S does not
contain an isomorphic copy of the free commutative semigroup ((N×N)\{(0, 0)},+)

on two generators as a subsemigroup.
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These results fit well with the Muller–Schupp theorem, from which it follows
that the word problem of a finitely generated abelian group G is context-free if and
only if G does not contain a subgroup isomorphic to (Z×Z,+), i.e., the free abelian
group on two generators.

2. Preliminaries

We denote by N the set of all nonnegative integers and for each n ∈ N, we write
[n] = {1, . . . , n}. The reader is assumed to be familiar with the basics of formal
language theory, as presented, e.g., in [19,20,22]. Alphabets are always understood
to be finite, but they are not necessarily nonempty. Given an alphabet A, the free
semigroup on A is denoted by A+ and the free monoid on A by A∗. The reversal
of a word w ∈ A∗ over some alphabet A is denoted by wR, the length of w by |w|,
and the number of occurrences of a symbol a ∈ A in w by |w|a. The class of all
context-free languages is denoted by L (CF).

Given an alphabet A = {a1, . . . , an} and a word w ∈ A∗, we write Ψ(w)

for the Parikh vector [32,22] of w defined by

Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|an) .

We also use this notation when a1, . . . , an are not explicitly given; in such cases,
some arbitrary fixed ordering of symbols is implicitly assumed.

The usual componentwise partial order on Nn is denoted by ≤; we thus have
(p1, . . . , pn) ≤ (q1, . . . , qn) if and only if pk ≤ qk for k = 1, . . . , n. Dickson’s lemma
– see, e.g., [35, Theorem 5.1] – states that every subset of Nn has finitely many
minimal elements with respect to ≤.

Let S be a semigroup finitely generated by a set A ⊆ S. Then there is a unique
semigroup homomorphism ν : A+ → S such that ν(a) = a for all a ∈ A; note
that A+ denotes the free semigroup on A, rather than the subsemigroup of S
generated by A (that equals S). Given nonempty words u, v ∈ A+, we write u =S v

if and only if ν(u) = ν(v). Observe that the relation =S is a congruence on A+.
According to the definition of A. Duncan and R. H. Gilman [10], the word problem
of S with respect to the generating set A is the language

WPA(S) = {u#vR | u, v ∈ A+; u =S v},

where # 6∈ A is some fixed delimiter symbol.
Similarly, for M a monoid finitely generated by a set A ⊆M , there is a unique

monoid homomorphism η : A∗ → M such that η(a) = a for all a ∈ A; given
u, v ∈ A∗, we write u =M v if and only if η(u) = η(v), the relation =M being
a congruence on A∗. The word problem of M with respect to A is defined by

WPA(M) = {u#vR | u, v ∈ A∗; u =M v}

for a fixed delimiter # 6∈ A. Note that the word problem of a monoid M considered
as a semigroup is different from the language just defined; the correct meaning
of WPA(M) can, nevertheless, be always understood from the context.
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Given two finite generating sets A,B of a monoid M with # 6∈ A ∪B, clearly

WPA(M) = h−1(WPB(M))

for an arbitrary homomorphism h : (A ∪ {#})∗ → (B ∪ {#})∗ such that h(#) = #

and h(a) ∈ B∗ satisfies

h(a) =M a

for each a ∈ A. Moreover, existence of at least one homomorphism with this property
follows by the fact that B is a generating set ofM . Similar observations can be made
for semigroups as well.

It follows that if a class of languages C is closed under inverse homomorphisms,
then the word problem WPA(M) of a monoidM is in C either for all finite generating
sets A ⊆M , or for no such generating set – and the same holds for word problems
of semigroups [16,17]. This means that the property of a word problem being in C
does not depend on the generating set considered, provided C is closed under inverse
homomorphisms. One can thus simply say that “the word problem” of a semigroup
or a monoid is or is not in C, meaning that this holds with respect to all finite
generating sets or with respect to no such set.

As the class of all context-free languages is closed under inverse homomorphisms,
the convention described above applies in this setting as well, and it is used through-
out this article.

The classical Muller–Schupp theorem [28,11] says that the word problem
of a finitely generated groupa is context-free if and only if the group is virtually
free. A. Duncan and R. H. Gilman [10] asked whether this characterisation can be
generalised to semigroups. This still remains an open problem, which has a reputa-
tion of being relatively hard [29]. To gain at least some insight, the following weaker
question was raised by T. Brough, A. J. Cain, and M. Pfeiffer [7].

Question 2.1. Which finitely generated commutative semigroups have a context-
free word problem?

Note that it is a straightforward consequence of the Muller–Schupp theorem
and the Fundamental Theorem of Finitely Generated Abelian Groups that a finitely
generated abelian group has a context-free word problem if and only if it does not
contain a subgroup isomorphic to Z×Z, the free abelian group on two generators [7].
In what follows, we answer both Question 2.1 and a similar question for monoids
consistently with this observation – we show that the word problem of a finitely
generated commutative semigroup (monoid) is context-free if and only if the semi-
group (monoid) does not contain the free commutative semigroup (monoid) on two
generators as a subsemigroup (submonoid).

aAlthough the word problem is usually defined in a slightly different way in the setting of groups –
see the Introduction – the statement remains valid even when one interprets the group as a monoid
and uses the definition of the word problem described above [10, Theorem 5.3].
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3. Basic Observations

Let us first establish the easier implication of the above anticipated theorem charac-
terising finitely generated commutative monoids with a context-free word problem,
which amounts to the following proposition.

Proposition 3.1. Let M be a finitely generated commutative monoid that contains
an isomorphic copy of (N × N,+) as a submonoid. Then the word problem of M
is not context-free.

Proof. Let a, b ∈ M freely generate a commutative submonoid of M . Let A ⊆ M

be a finite generating set of M such that a, b ∈ A. Suppose for contradiction that
WPA(M) ∈ L (CF). Then, by closure of L (CF) under intersection with a rational
language, it follows that

WPA(M) ∩ a∗b∗#a∗b∗ = {aibj#aibj | i, j ∈ N}

is a context-free language, which is clearly false – a contradiction.

The rest of this section is mostly devoted to gathering observations leading
to the converse of the above proposition. The actual main results – i.e., the char-
acterisations of commutative monoids and semigroups with a context-free word
problem – are then proved in Section 4.

We start by recording the following simple fact that we use on multiple occasions
in this article, and that allows us to infer new pairs of words in the relation =M

from known ones.

Proposition 3.2. Let M be a finitely generated commutative monoid, A ⊆ M

a finite generating set of M , and u, v, x, y ∈ A∗. Then vx =M vy holds whenever
ux =M uy and Ψ(u) ≤ Ψ(v).

Proof. By commutativity of M and Ψ(u) ≤ Ψ(v), surely v =M v′u for some
v′ ∈ A∗. As =M is a congruence, ux =M uy gives v′ux =M v′uy, and v =M v′u

gives vx =M v′ux and v′uy =M vy. Thus vx =M vy by transitivity of =M .

We now focus on finitely generated commutative monoids that do not contain
a submonoid isomorphic to (N×N,+), and gather several observations concerning
their structure. When such a monoid M is generated by a finite set A, every word
w ∈ A∗ determines an ideal of M generated by an element η(w) ∈ M , to which w
evaluates in M . Our aim is to show that the elements a ∈ A with sufficiently
many occurrences in w can be classified into three simple classes based upon how
multiplication by a behaves in the ideal of M generated by η(w).
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Let us first consider the submonoids generated by two elements a, b of a finitely
generated commutative monoid M not containing an isomorphic copy of the free
commutative monoid (N×N,+). We show that in case at least one of the functions

(q, s) 7→ (aqbq) as

or

(q, t) 7→ (aqbq) bt

does not become periodic in the second argument for some sufficiently large fixed q,
the element a is “essentially equivalent” to b or to an inverse of b when multiplying
elements of the ideal generated by aqbq.

Proposition 3.3. Let M be a commutative monoid, generated by a finite set
A ⊆M , that does not contain a submonoid isomorphic to (N×N,+). Let a, b ∈ A.
Then there is q = qa,b ∈ N such that at least one of the following holds:

(i) (aqbq) as =M (aqbq) for some s ∈ N \ {0};
(ii) (aqbq) bt =M (aqbq) for some t ∈ N \ {0};

(iii) (aqbq) as =M (aqbq) bt for some s, t ∈ N \ {0};
(iv) (aqbq) asbt =M (aqbq) for some s, t ∈ N \ {0}.

Proof. As the submonoid of M generated by {a, b} ⊆ A cannot be isomorphic
to (N× N,+), there have to be i1, j1, i2, j2 ∈ N such that (i1, j1) 6= (i2, j2) and

ai1bj1 =M ai2bj2 .

For i = min{i1, i2} and j = min{j1, j2}, this rewrites as(
aibj

)
ai1−ibj1−j =M

(
aibj

)
ai2−ibj2−j

using commutativity of M . Here, at least one of the exponents i1 − i, j1 − j, i2 − i,
j2 − j is positive, while neither i1 − i and i2 − i, nor j1 − j and j2 − j can be both
nonzero. Thus, setting

q = max{i, j}

and using Proposition 3.2, a relation

(aqbq) ai1−ibj1−j =M (aqbq) ai2−ibj2−j

is obtained, which takes one of the forms (i) – (iv) modulo symmetry of =M .
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By virtue of Rédei’s theorem [34] – see also [14,35] – every commutative
monoid M generated by a finite set A is actually finitely presented, i.e.,b

M = 〈A | %〉 = 〈A | u1 = v1, . . . , un = vn〉

for some u1, . . . , un, v1, . . . , vn ∈ A∗ and % = {(u1, v1), . . . , (un, vn)}. We then write
`(M,A, %) for the length of the longest word appearing in the defining relations,
i.e.,

`(M,A, %) = max{|u1|, |v1|, |u2|, |v2|, . . . , |un|, |vn|}

if n > 0 and `(M,A, %) = 0 otherwise.
Given a commutative monoid M finitely generated by A and m ∈ N, we call

any mapping Φ: A → {0, . . . ,m} an (A,m)-vector. Moreover, for every w ∈ A∗,
we define Φ

(m)
A,w : A→ {0, . . . ,m} for all a ∈ A by

Φ
(m)
A,w(a) =

{
|w|a if |w|a ≤ m,
m otherwise.

This (A,m)-vector can be viewed as a “capped Parikh vector” of w, in which one
is only interested in occurrence numbers of letters up to m, and thus all numbers
greater than or equal to m are identified with m.

Conversely, for A = {a1, . . . , ak} and an (A,m)-vector Φ, let

zΦ = a
Φ(a1)
1 a

Φ(a2)
2 . . . a

Φ(ak)
k ∈ A∗;

this word corresponds canonically to the (A,m)-vector Φ and satisfies Φ
(m)
A,zΦ

= Φ.
Clearly Ψ(zΦ) ≤ Ψ(w) for all w ∈ A∗ such that Φ

(m)
A,w = Φ. Moreover, let

V (Φ) = {a ∈ A | Φ(a) = m}

be the alphabet of letters from A, for which the maximum possible value m

of the (A,m)-vector Φ is actually attained.

Definition 3.4. Let M be a finitely generated commutative monoid that does not
contain a submonoid isomorphic to (N× N,+), and A ⊆ M a finite generating set
of the monoid M . Then for every m ∈ N and (A,m)-vector Φ, let:

(i) The set A×(Φ) consist of all a ∈ A such that was =M wat for some w ∈ A∗
with Φ

(m)
A,w = Φ and some s, t ∈ N such that s > t;

(ii) The set V×(Φ) consist of all a ∈ V (Φ) such that was =M w for some w ∈ A∗
with Φ

(m)
A,w = Φ and some s ∈ N \ {0};

(iii) V±(Φ) = V (Φ) \ V×(Φ).

bAll presentations in this article should be understood as presentations of monoids, as opposed to
presentations of commutative monoids. In other words, the relations ab = ba for all a, b ∈ A have
to follow as a consequence of the relations u1 = v1, . . . , un = vn.
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Some explanation of the above-defined concepts is in order. In what follows,
we show that when m is large enough and Φ

(m)
A,u = Φ

(m)
A,v = Φ for some u, v ∈ A∗

and some (A,m)-vector Φ, then the ideals of M generated by the images η(u), η(v)

of u, v in M share certain common properties. The (A,m)-vector Φ itself is thus
perhaps best thought of as a representation of this class of ideals.

The alphabet A×(Φ) contains all a ∈ A such that multiplication by a becomes
periodic in the ideal generated by the image η(w) of some w ∈ A∗ with Φ

(m)
A,w = Φ

in M . However, it turns out that the choice of w actually does not matter when
m is sufficiently large: we prove in Lemma 3.5 that in this case, the same property
always holds for w = zΦ – and thus, by virtue of Proposition 3.2, also for all other
w ∈ A∗ such that Φ

(m)
A,w = Φ. This means that A×(Φ) essentially contains all a ∈ A

such that multiplication by a is periodic in the ideals represented by Φ.
Similarly, the role of V×(Φ) is better understood in the light of its charac-

terisation for sufficiently large m, provided by Lemma 3.5: we show there that
V×(Φ) = A×(Φ)∩V (Φ) when m is large enough. The set V×(Φ) thus consists of all
a ∈ A such that Φ(a) = m and multiplication by a is periodic in the ideals rep-
resented by Φ. Moreover, we prove in Lemma 3.5 that w can be replaced by zΦ

in the defining relation was =M w when m is large enough, and s can be replaced
by some α that is the same for all (A,m)-vectors Φ.

Finally, V±(Φ) consists of the remaining a ∈ A such that Φ(a) = m. For every
(A,m)-vector Φ, the set V (Φ) can thus be written as a disjoint union

V (Φ) = V±(Φ) ∪ V×(Φ).

When m is sufficiently large, the set V±(Φ) contains precisely all a ∈ A such that
Φ(a) = m, and multiplication by a is not periodic in the ideals represented by Φ.
As we observe later in this section, V±(Φ) can be decomposed into two subsets
V+(Φ) and V−(Φ) in this case, such that any two elements from any of these sets
behave in “essentially the same way” when used to multiply elements of ideals rep-
resented by Φ, while the behaviour of elements of V+(Φ) can be seen as “inverse”
to the behaviour of elements of V−(Φ). One can thus classify the elements of V±(Φ)

as being “positive” or “negative”, which is the reason behind the notation V±(Φ).
Nevertheless, we first need to establish the above-anticipated properties

of A×(Φ) and V×(Φ) for sufficiently large m. The qa,b for a, b ∈ A in the state-
ment of the following lemma are as in Proposition 3.3.

Lemma 3.5. Let M be a commutative monoid, finitely presented by M = 〈A | %〉
for some A ⊆ M and % ⊆ A∗ × A∗, that does not contain a submonoid isomorphic
to (N × N,+). Then there exists m ∈ N and α ∈ N \ {0} with m ≥ qa,b for all
a, b ∈ A and α ≥ `(M,A, %) such that for every (A,m)-vector Φ:

(i) V×(Φ) = A×(Φ) ∩ V (Φ);
(ii) For every a ∈ V×(Φ), one has zΦa

α =M zΦ;
(iii) For every a ∈ A×(Φ), there are s, t ∈ N such that s > t and zΦa

s =M zΦa
t.
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Proof. For every B = {b1, . . . , br} ⊆ A and n ∈ N, let

zB,n = bn1 b
n
2 . . . b

n
r ,

and let B× consist of all a ∈ A such that

zB,nwa
s =M zB,nwa

t (3.1)

for some n ∈ N, some w ∈ (A \B)∗, and some s, t ∈ N such that s > t. For a ∈ B×
fixed, let La be the language of all w ∈ (A\B)∗ such that (3.1) holds for some n ∈ N
and s, t ∈ N such that s > t. The set of minimal Parikh vectors of words from La
is finite by Dickson’s lemma, hence La contains a finite sublanguage L′a ⊆ La such
that for every w ∈ La, there is some x ∈ L′a with Ψ(x) ≤ Ψ(w).

For each x ∈ L′a, let

n(B, a, x) = min{n ∈ N | zB,nxas =M zB,nxa
t for some s > t} (3.2)

and

t(B, a, x) = min{t ∈ N | zB,n(B,a,x)xa
s =M zB,n(B,a,x)xa

t for some s > t}. (3.3)

Moreover, let s(B, a, x) ∈ N be such that s(B, a, x) > t(B, a, x) and

zB,n(B,a,x)xa
s(B,a,x) =M zB,n(B,a,x)xa

t(B,a,x). (3.4)

Define

mB = max{n(B, a, x) | a ∈ B×; x ∈ L′a}+max{t(B, a, x) | a ∈ B×; x ∈ L′a} (3.5)

(with maximum of the empty set understood as zero) and

m = max ({mB | B ⊆ A} ∪ {qa,b | a, b ∈ A}) . (3.6)

Let us now consider an arbitrary (A,m)-vector Φ and any a ∈ A×(Φ), so that
Proposition 3.2 gives a ∈ B× for B = V (Φ). Moreover, let A \B = {c1, . . . , cr} and

w = c
Φ(c1)
1 c

Φ(c2)
2 . . . cΦ(cr)

r .

Then, using the notation of the previous paragraph, w ∈ La, and there has to be
some x ∈ L′a such that Ψ(x) ≤ Ψ(w). By definition of the language L′a, it follows
that

zB,nxa
s =M zB,nxa

t

holds for some n ∈ N and s, t ∈ N with s > t, so that by (3.2), (3.3), and (3.4) we
obtain

zB,n(B,a,x)xa
s(B,a,x) =M zB,n(B,a,x)xa

t(B,a,x),

and by (3.5) and (3.6) together with Proposition 3.2, we get

zB,m−t(B,a,x)xa
s(B,a,x) =M zB,m−t(B,a,x)xa

t(B,a,x).
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As we know that Ψ(x) ≤ Ψ(w), it follows by Proposition 3.2 that for s = s(B, a, x)

and t = t(B, a, x), we also have

zB,m−twa
s =M zB,m−twa

t.

Moreover, as clearly Ψ(zB,m−t) ≤ Ψ(zB,m) and Ψ(zB,m−ta
t) ≤ Ψ(zB,m) for every

a ∈ V (Φ) = B, using Proposition 3.2 we obtain (with w, s, t as above)

zB,mwa
s =M zB,mwa

t

for all a ∈ A×(Φ) and

zB,mwa
s−t =M zB,mw

for all a ∈ A×(Φ) ∩ V (Φ). As in addition clearly Ψ(zB,mw) = Ψ(zΦ), we finally
obtain

zΦa
s =M zΦa

t (3.7)

for all a ∈ A×(Φ) and some s, t ∈ N such that s > t, and

zΦa
q =M zΦ (3.8)

for all a ∈ A×(Φ)∩ V (Φ) and some q ∈ N \ {0}. For each a ∈ A×(Φ)∩ V (Φ), let us
denote the smallest such q by q(Φ, a).

Now, (iii) follows directly by (3.7). Furthermore, the inclusion

V×(Φ) ⊆ A×(Φ) ∩ V (Φ)

is evident, and (3.8) gives the opposite inclusion

V×(Φ) ⊇ A×(Φ) ∩ V (Φ),

proving (i). Finally, let α denote the least common multiple of max{`(M,A, %), 1}
and of q(Φ, a) over allc (A,m)-vectors Φ and all a ∈ V×(Φ). Then obviously

zΦa
α =M zΦ

for all (A,m)-vectors Φ and a ∈ V×(Φ), and (ii) is proved as well. At the same time,
the definition of m implies m ≥ qa,b for all a, b ∈ A and the definition of α implies
α ≥ `(M,A, %).

Recall once again that every finitely generated commutative monoid is finitely
presented thanks to Rédei’s theorem. This means that Lemma 3.5 actually applies to
all finitely generated commutative monoids not containing a submonoid isomorphic
to (N× N,+). The statement of the following corollary makes sense as a result.

cThe set of all (A,m)-vectors for fixed A and m is clearly finite.
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Corollary 3.6. Let M be a finitely generated commutative monoid that does not
contain a submonoid isomorphic to (N× N,+), and A ⊆M a finite generating set
of M . Let m,α be as in Lemma 3.5. Then:

(i) For every w ∈ A∗ and a ∈ A×(Φ
(m)
A,w), there are s, t ∈ N such that s > t

and was =M wat;
(ii) For every w ∈ A∗ and a ∈ V×(Φ

(m)
A,w), one has waα =M w.

Proof. Follows by Lemma 3.5, by Proposition 3.2, and by noting that every w ∈ A∗

clearly satisfies the inequality Ψ
(
z

Φ
(m)
A,w

)
≤ Ψ(w).

We are now ready to prove that when M and m are as above and Φ

is an (A,m)-vector, then V±(Φ) can be decomposed into two disjoint sets
V+(Φ) and V−(Φ) such that each of them contains elements behaving
“essentially in the same way” when multiplying elements of the ideals of M cap-
tured by Φ, while elements of V+(Φ) behave “inversely” to the elements of V−(Φ).
More precisely, this means that there is an exponent β(Φ, a) ∈ N \ {0} for each
a ∈ V±(Φ) such that one has zΦa

β(Φ,a) =M zΦb
β(Φ,b) for all a, b ∈ V+(Φ), as well

as for all a, b ∈ V−(Φ) – while on the other hand, one has zΦa
β(Φ,a)bβ(Φ,b) =M zΦ

for all a ∈ V+(Φ) and b ∈ V−(Φ). Here, the exponents β(Φ, a) can be thought of
as “exchange rates” between particular elements of V±(Φ).

In fact, we actually prove a slightly more general statement, in which the word
zΦ is replaced by zΦ′ for an arbitrary (A,m)-vector Φ′ such that V±(Φ′) ⊆ V±(Φ)

and a, b ∈ V±(Φ′). This generalisation is essential for our later construction
of a pushdown automaton recognising the word problem of M .

Similarly as above, Rédei’s theorem guarantees that the following lemma applies
to all finitely generated commutative monoids not containing the free commutative
monoid on two generators as a submonoid.

Lemma 3.7. Let M be a commutative monoid, finitely presented by M = 〈A | %〉
for some A ⊆ M and % ⊆ A∗ × A∗, that does not contain a submonoid isomorphic
to (N× N,+). Let m,α be as in Lemma 3.5, and Φ an (A,m)-vector. Then V±(Φ)

can be written as a disjoint union V±(Φ) = V+(Φ) ∪ V−(Φ) such that the following
holds for some β(Φ, a) ∈ N\{0} satisfying β(Φ, a) ≥ `(M,A, %) for each a ∈ V±(Φ),
and for all (A,m)-vectors Φ′ with V±(Φ′) ⊆ V±(Φ):

(i) For every a, b ∈ V+(Φ) ∩ V±(Φ′), one has

zΦ′a
β(Φ,a) =M zΦ′b

β(Φ,b).

(ii) For every a, b ∈ V−(Φ) ∩ V±(Φ′), one has

zΦ′a
β(Φ,a) =M zΦ′b

β(Φ,b).

(iii) For every a ∈ V+(Φ) ∩ V±(Φ′) and b ∈ V−(Φ) ∩ V±(Φ′), one has

zΦ′a
β(Φ,a)bβ(Φ,b) =M zΦ′ .
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Proof. Given a, b ∈ A, let us write aEb if

(ambm) as =M (ambm) bt (3.9)

for some s, t ∈ N \ {0}, and aIb if

(ambm) asbt =M (ambm) (3.10)

for some s, t ∈ N \ {0}. This gives us two binary relations E and I on A. Let us
begin by collecting a few basic properties of these two relations.

Claim 1. Every pair of elements a, b ∈ V±(Φ) is in precisely one of the relations
E and I.

Proof. Consider an arbitrary (A,m)-vector Φ and the set V±(Φ). Let a, b ∈ V±(Φ),
and q = qa,b be as in Proposition 3.3, so thatm ≥ q. An equality (aqbq) as =M (aqbq)

for s ∈ N \ {0} would imply zΦa
s =M zΦ by Proposition 3.2, and in the same

way, an equality (aqbq) bt =M (aqbq) would imply zΦb
t =M zΦ. In both cases, we

would have a ∈ V×(Φ) or b ∈ V×(Φ), contradicting a, b ∈ V±(Φ) = V (Φ) \ V×(Φ).
As a result, it follows by Proposition 3.3 that aEb or aIb has to hold.

Observe that by Proposition 3.2,

zΦa
s =M zΦb

t (3.11)

holds for some s, t ∈ N \ {0} whenever aEb and

zΦa
pbr =M zΦ (3.12)

holds for some p, r ∈ N\{0} whenever aIb. Moreover, the equalities (3.11) and (3.12)
cannot hold simultaneously for a, b ∈ V±(Φ), as otherwise we obtain

zΦa
prst =M zΦ,

contradicting the assumption a ∈ V±(Φ). It thus follows that every pair of ele-
ments a, b ∈ V±(Φ) indeed is in precisely one of the relations E and I.

Claim 2. The restriction of E to V±(Φ)× V±(Φ) is an equivalence relation.

Proof. Reflexivity and symmetry of E are evident. For transitivity, note that
for each a, b, c ∈ V±(Φ),

zΦa
s =M zΦb

t and zΦb
p =M zΦc

r

for p, r, s, t ∈ N \ {0} give

zΦa
ps =M zΦc

rt,

which, in the same way as in the proof of Claim 1, implies that aIc cannot hold.
We can thus conclude that aEc.
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Claim 3. If aEbIcEd for some a, b, c, d ∈ V±(Φ), then aId.

Proof. By Claim 1, we would have aEd otherwise. This would imply bEc by tran-
sitivity and symmetry of E, contradicting bIc.

Claim 4. If aIbIc for some a, b, c ∈ V±(Φ), then aEc.

Proof. The assumption aIbIc for a, b, c ∈ V±(Φ) means that

zΦa
sbt =M zΦ and zΦb

pcr =M zΦ

for some p, r, s, t ∈ N \ {0}. We thus get

zΦa
sp =M zΦa

spbtpctr =M zΦc
tr,

and aIc cannot hold for the same reason as in the proof of Claim 1. As a result, we
obtain aEc by Claim 1.

We are now prepared to define the sets V+(Φ) and V−(Φ). If V±(Φ) is empty,
take V+(Φ) = V−(Φ) = ∅, and we are done. Otherwise take an arbitrary element
aΦ ∈ V±(Φ), and set

V+(Φ) = {b ∈ V±(Φ) | aΦEb} and V−(Φ) = V±(Φ) \ V+(Φ).

It follows by Claims 1 to 4 that aEb holds for all a, b ∈ V+(Φ) and all a, b ∈ V−(Φ),
while aIb holds for all a ∈ V+(Φ) and b ∈ V−(Φ). Thus by (3.11) and (3.12), there
are exponents s(b), t(b) ∈ N \ {0} for each b ∈ V±(Φ) \ {aΦ} such that

zΦa
s(b)
Φ =M zΦb

t(b)

holds for all b ∈ V+(Φ) \ {aΦ} and

zΦa
s(b)
Φ bt(b) =M zΦ

holds for all b ∈ V−(Φ). Let γ(Φ, aΦ) be the least common multiple of s(b) over all
b ∈ V±(Φ) \ {aΦ}, and for all b ∈ V±(Φ) \ {aΦ}, let

γ(Φ, b) =
t(b) γ(Φ, aΦ)

s(b)
.

Then clearly

zΦa
γ(Φ,aΦ)
Φ =M zΦb

γ(Φ,b)

holds for all b ∈ V+(Φ) \ {aΦ}, and transitivity of =M gives

zΦa
γ(Φ,a) =M zΦb

γ(Φ,b) (3.13)

for all a, b ∈ V+(Φ). Similarly,

zΦa
γ(Φ,aΦ)
Φ bγ(Φ,b) =M zΦ
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has to hold for all b ∈ V−(Φ), and =M being a congruence together with (3.13)
gives

zΦa
γ(Φ,a)bγ(Φ,b) =M zΦ (3.14)

for all a ∈ V+(Φ) and b ∈ V−(Φ). Finally, for all a, b ∈ V−(Φ), we have

zΦa
γ(Φ,a) =M zΦa

γ(Φ,a)a
γ(Φ,aΦ)
Φ bγ(Φ,b) =M zΦb

γ(Φ,b).

Transitivity of =M thus implies

zΦa
γ(Φ,a) =M zΦb

γ(Φ,b) (3.15)

for all a, b ∈ V−(Φ).
To conclude the proof, recall that (3.9) or (3.10) has to hold for each a, b ∈ V±(Φ)

and some s, t ∈ N \ {0} by virtue of Claim 1. Let σ be the least common multiple
of such s, t ∈ N \ {0} over all a, b ∈ V±(Φ) and of max{`(M,A, %), 1}. For all
a, b ∈ V+(Φ), we have aEb, so (3.9) gives

(ambm) aσ γ(Φ,a) =M (ambm) bτ

for some τ ∈ N \ {0}. By the preceding equality, Proposition 3.2, and (3.13), we
have both

zΦa
σ γ(Φ,a) =M zΦb

τ and zΦa
σ γ(Φ,a) =M zΦb

σ γ(Φ,b),

which in turn implies

zΦb
τ =M zΦb

σ γ(Φ,b).

As b ∈ V±(Φ), necessarily τ = σ γ(Φ, b). We thus obtain the equality

(ambm) aσ γ(Φ,a) =M (ambm) bσ γ(Φ,b). (3.16)

The same reasoning using (3.15) instead of (3.13) can be applied to prove that

(ambm) aσ γ(Φ,a) =M (ambm) bσ γ(Φ,b) (3.17)

holds for all a, b ∈ V−(Φ). Finally, given a ∈ V+(Φ) and b ∈ V−(Φ), we have aIb,
so that (3.10) gives

(ambm) aσ γ(Φ,a)bτ =M (ambm)

for some τ ∈ N \ {0}. Together with Proposition 3.2 and (3.14), this implies that
we have both

zΦa
σ γ(Φ,a)bτ =M zΦ and zΦa

σ γ(Φ,a)bσ γ(Φ,b) =M zΦ.

Hence

zΦa
σ γ(Φ,a)bτ =M zΦa

σ γ(Φ,a)bσ γ(Φ,b),

and as b ∈ V±(Φ), surely τ = σ γ(Φ, b). As a consequence, we obtain

(ambm) aσ γ(Φ,a)bσ γ(Φ,b) =M (ambm). (3.18)
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It now suffices to take

β(Φ, a) = σ γ(Φ, a)

for each a ∈ V±(Φ). Then, given an (A,m)-vector Φ′ with V±(Φ′) ⊆ V±(Φ),
the equality (3.16) together with Proposition 3.2 implies

zΦ′a
β(Φ,a) =M zΦ′b

β(Φ,b)

for all a, b ∈ V+(Φ) ∩ V±(Φ′), proving (i). Similarly, (3.17) gives

zΦ′a
β(Φ,a) =M zΦ′b

β(Φ,b)

for all a, b ∈ V−(Φ) ∩ V±(Φ′), proving (ii). Finally, (3.18) gives

zΦ′a
β(Φ,a)bβ(Φ,b) =M zΦ′

for every a ∈ V+(Φ)∩V±(Φ′) and b ∈ V−(Φ)∩V±(Φ′), hence (iii) is proved as well.
At the same time, all exponents β(Φ, a) ≥ 1 with a ∈ V±(Φ) are divisible by σ, and σ
is divisible by max{`(M,A, %), 1}. Thus β(Φ, a) ≥ `(M,A, %) for all a ∈ V±(Φ).

We now prove that in case two words u, v ∈ A∗ evaluate to the same element
of a commutative monoid M finitely generated by A as above, the sets A×(Φ

(m)
A,u),

A×(Φ
(m)
A,v ) corresponding to the respective (A,m)-vectors coincide.

Proposition 3.8. Let M be a commutative monoid, generated by a finite set
A ⊆ M , that does not contain a submonoid isomorphic to (N × N,+); let m be
as in Lemma 3.5. Then

A×(Φ
(m)
A,u) = A×(Φ

(m)
A,v )

for all u, v ∈ A∗ such that u =M v.

Proof. If a ∈ A×(Φ
(m)
A,u), then Corollary 3.6 implies that uas =M uat for some

s, t ∈ N with s > t, and thus

vas =M uas =M uat =M vat,

so that a ∈ A×(Φ
(m)
A,v ). By interchanging the roles of the words u, v, one obtains

the remaining inclusion as well.

Let us finally prove that with M as above and for w ∈ A∗ fixed, one can
find an (A,m)-vector Φ such that V±(Φ

(m)
A,x) is contained in V±(Φ) for all x ∈ A∗

that evaluate to the same element of M as w. This means that by Lemma 3.7,
we can classify the elements of the alphabet V±(Φ

(m)
A,x) consistently for all such x

as “positive” or “negative” based on whether they belong to V+(Φ) or to V−(Φ).
This observation is essential for our later construction of a pushdown automaton
recognising the language WPA(M) for an arbitrary finitely generated monoid M

not containing the free commutative monoid on two generators as a submonoid.
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Lemma 3.9. Let M be a commutative monoid, generated by a finite set
A ⊆M , that does not contain a submonoid isomorphic to (N × N,+); let m be
as in Lemma 3.5. Then for every w ∈ A∗, there exists an (A,m)-vector Φ such that

V±(Φ
(m)
A,x) ⊆ V±(Φ)

for all x ∈ A∗ satisfying x =M w.

Proof. Let x1, . . . , xn ∈ A∗ be words such that xk =M w for k = 1, . . . , n,
and for all x ∈ A∗ satisfying x =M w, one has

V±(Φ
(m)
A,x) ⊆

n⋃
k=1

V±(Φ
(m)
A,xk

) =: V±. (3.19)

Let V± = {a1, . . . , ar}, and for k = 1, . . . , n and j = 0, . . . , r, let

y
(j)
k = xka

m
1 . . . amj .

For j = 0, . . . , r, obviously

y
(j)
1 =M y

(j)
2 =M . . . =M y(j)

n . (3.20)

Moreover, for each j ∈ [r], the letter aj is contained in V±(Φ
(m)
A,xi(j)

) for some
i(j) ∈ [n], so that

Φ
(m)

A,y
(j)

i(j)

= Φ
(m)

A,y
(j−1)

i(j)

. (3.21)

Let y = y
(r)
1 and Φ = Φ

(m)
A,y . By (3.20), (3.21), x1 =M . . . =M xn =M w,

and Proposition 3.8, it follows that

A×(Φ) = A×(Φ
(m)
A,x)

for every x ∈ A∗ such that x =M w. In particular,

V± ∩A×(Φ) = ∅, (3.22)

as otherwise there would be a ∈ A and k ∈ [n] such that

a ∈ V±(Φ
(m)
A,xk

) ∩A×(Φ
(m)
A,xk

) = V±(Φ
(m)
A,xk

) ∩ V (Φ
(m)
A,xk

) ∩A×(Φ
(m)
A,xk

),

which, by Lemma 3.5, rewrites as

a ∈ V±(Φ
(m)
A,xk

) ∩ V×(Φ
(m)
A,xk

) = ∅.

Finally, again by Lemma 3.5,

V±(Φ) = V (Φ) \ V×(Φ) = V (Φ) \ (A×(Φ) ∩ V (Φ)) = V (Φ) \A×(Φ). (3.23)

At the same time, as Φ = Φ
(m)
A,y , we clearly have V± ⊆ V (Φ), so (3.22) and (3.23)

give

V± ⊆ V±(Φ).

Thus by (3.19), indeed V±(Φ
(m)
A,x) ⊆ V±(Φ) for all x ∈ A∗ satisfying x =M w.
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4. The Main Results

We now proceed towards the proof of the remaining implication of the characterisa-
tion of finitely generated commutative monoids with a context-free word problem:
if a commutative monoidM , finitely generated by A, does not contain a submonoid
isomorphic to (N× N,+), then WPA(M) ∈ L (CF).

To show that WPA(M) ∈ L (CF), it suffices to construct a pushdown automa-
ton that recognises a word u#vR with u, v ∈ A∗ if and only if u and v belong to
the same congruence class of =M . One might attempt to construct this automa-
ton such that it first saves the prefix u on its pushdown store and then compares
this information with the suffix vR to see whether u =M v or not. However, such
a straightforward approach might not always be possible. Consider, for instance,
the monoid M = 〈a, b | ab = ba, ab = 1〉 isomorphic to Z. Then each word aibj#ak,
for some nonnegative integers i, j, k ≥ 0 such that i ≥ j, should be recognised
by the pushdown automaton if and only if i− j = k. If aibj was stored on the push-
down upon reading the delimiter #, then this information could hardly be used
to decide the equality i− j = k, as one only has access to the top of the pushdown
store. It seems that one should maintain some information “equivalent” to ai−j

on the pushdown instead.
To make this idea work over any finitely generated commutative monoid M

not containing the free commutative monoid on two generators, let m ∈ N
be as in Lemma 3.5, and recall that given any u ∈ A∗, Lemma 3.9 guarantees
existence of an (A,m)-vector Φ such that V±(Φ

(m)
A,x) ⊆ V±(Φ) for all x ∈ A∗ satisfy-

ing x =M u. Let

AΦ = {w ∈ A∗ | V±(Φ
(m)
A,w) ⊆ V±(Φ)};

all x ∈ A∗ such that x =M u are then contained in this set. We now introduce
an equivalence relation ∼Φ on AΦ that refines =M on this subset of A∗ – i.e., words
x, y ∈ AΦ satisfying x ∼Φ y always represent the same element of M . This is done
such that the language WPA(M) can be recognised by a pushdown automaton that
first nondeterministically guesses an (A,m)-vector Φ and whose configurations upon
reading the delimiter # subsequently correspond to equivalence classes of ∼Φ.

Let M be a commutative monoid, generated by a finite set A ⊆ M , that
does not contain a submonoid isomorphic to (N × N,+). Let m and α be
as in Lemma 3.5. Let Φ be an (A,m)-vector, and β(Φ, a) for each a ∈ V±(Φ)

be as in Lemma 3.7. Moreover, let the decomposition V±(Φ) = V+(Φ) ∪ V−(Φ) be
given as in Lemma 3.7 as well. For each w ∈ AΦ and Φ′ = Φ

(m)
A,w, let

f+(w) =
∑

a∈V+(Φ)∩V±(Φ′)

⌊
|w|a −m
β(Φ, a)

⌋
and

f−(w) =
∑

a∈V−(Φ)∩V±(Φ′)

⌊
|w|a −m
β(Φ, a)

⌋
.
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Definition 4.1. Let the notation be as above. Given x, y ∈ AΦ, we write x ∼Φ y

if and only if all of the following conditions are satisfied:

(i) Φ
(m)
A,x = Φ

(m)
A,y =: Φ′;

(ii) f+(x)− f−(x) = f+(y)− f−(y);
(iii) (|x|a −m) mod β(Φ, a) = (|y|a −m) mod β(Φ, a) for each a ∈ V±(Φ′);
(iv) (|x|a −m) mod α = (|y|a −m) mod α for each a ∈ V×(Φ′).

An explanation of the definition given above is in order. Lemma 3.7 implies that
if there are Φ′(c) occurrences of each c ∈ A fixed in a word w ∈ AΦ with Φ

(m)
A,w = Φ′,

then one may replace every other β(Φ, a) occurrences of a ∈ V+(Φ) ∩ V±(Φ′) in w
by β(Φ, b) occurrences of any other letter b ∈ V+(Φ) ∩ V±(Φ′), and vice versa –
the word still represents the same element of M after such a replacement. A similar
replacement can be done with any two letters a, b ∈ V−(Φ)∩V±(Φ′). Moreover, one
may replace every other β(Φ, a) occurrences of a ∈ V+(Φ) ∩ V±(Φ′) together with
β(Φ, b) occurrences of b ∈ V−(Φ) ∩ V±(Φ′) by the empty word, as well as newly
introduce β(Φ, a) occurrences of a and β(Φ, b) occurrences of b – every β(Φ, a)

occurrences of a and β(Φ, b) occurrences of b, beyond the firstm occurrences of both,
are “inverse to each other”. Finally, one is free to delete every other α occurrences
of a ∈ V×(Φ′), as well as to newly introduce such occurrences.

The idea of Definition 4.1 is to identify precisely the words from AΦ that can be
obtained one from each other by a sequence of above-described replacements. First
of all, for words x, y ∈ AΦ to satisfy x ∼Φ y, the (A,m)-vectors Φ

(m)
A,x and Φ

(m)
A,y have

to be the same (A,m)-vector Φ′ – this is expressed by condition (i). Next, given
the set V (Φ′) of all a ∈ A appearing at least m times in any of the words x, y, one
may count for each a ∈ V+(Φ) ∩ V±(Φ′) how many disjoint selections of β(Φ, a)

occurrences of a can one make in these words, ignoring some fixed m occurrences
of a in each word. Summing over all a ∈ V+(Φ) ∩ V±(Φ′), one obtains the values
f+(x) and f+(y), and via the same procedure for symbols from V−(Φ) ∩ V±(Φ′),
one obtains f−(x) and f−(y). As β(Φ, a) occurrences of a and β(Φ, b) occurrences
of b are “equivalent” if a, b are both in V+(Φ) ∩ V±(Φ′) or in V−(Φ) ∩ V±(Φ′),
and “inverse” to each other if a ∈ V+(Φ)∩V±(Φ′) and b ∈ V−(Φ)∩V±(Φ′), this leads
to the condition (ii). Furthermore, the numbers of occurrences of particular symbols
that remain after performing the described selections have to be the same in both
words, which is expressed by the condition (iii). Finally, provided m occurrences
of a ∈ V×(Φ′) are fixed, the number of remaining occurrences of a modulo α has to
be the same in both words, which is condition (iv).

Example 4.2. Consider the monoid M = 〈a, b | ab = ba, ab = 1〉 isomorphic to Z
and A = {a, b}. One can take m = 0, so there is only one (A,m)-vector Φ = (0, 0).
Let V+(Φ) = {a}, V−(Φ) = {b}, and β(Φ, a) = β(Φ, b) = 2. Then f+(w) = b|w|a/2c
and f−(w) = b|w|b/2c for all w ∈ A∗. Words x, y ∈ AΦ = A∗ thus satisfy
x ∼Φ y if and only if b|x|a/2c − b|x|b/2c = b|y|a/2c − b|y|b/2c, |x|a ≡ |y|a (mod 2),
and |x|b ≡ |y|b (mod 2).
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Proposition 4.3. With definitions and notation as above, ∼Φ is an equivalence
relation on AΦ and x ∼Φ y implies x =M y for all x, y ∈ AΦ.

Proof. It is obvious that ∼Φ is an equivalence relation on AΦ. Consider
any x, y ∈ AΦ such that x ∼Φ y. Then Φ

(m)
A,x = Φ

(m)
A,y = Φ′ by the condition (i)

of Definition 4.1, which in particular implies |x|a = |y|a for all a ∈ A \ V (Φ′).
Moreover, the condition (iv) of Definition 4.1 means that removing α occurrences
of every symbol a ∈ V×(Φ′) in both words x, y as many times as possible while
retaining the inequalities |x|a ≥ m and |y|a ≥ m yields words x′, y′ ∈ AΦ such
that Φ

(m)
A,x′ = Φ

(m)
A,y′ = Φ′ and x′ ∼Φ x ∼Φ y ∼Φ y′, while at the same time it follows

by Lemma 3.5 and Proposition 3.2 used together with the commutativity ofM that

x =M x′ and y′ =M y. (4.1)

At the same time, we have |x′|a = |y′|a for each a ∈ V×(Φ′) ∪ (A \ V (Φ′)).
Let us finally denote the common value of f+(x′)− f−(x′) and f+(y′)− f−(y′)

by d. If d > 0, there surely exists at least one a+ ∈ V+(Φ) ∩ V±(Φ′), and if d < 0,
there has to be at least one a− ∈ V−(Φ) ∩ V±(Φ′). Delete precisely

β(Φ, a)

⌊
|x′|a −m
β(Φ, a)

⌋
occurrences of each a ∈ V±(Φ′) in x′. If d > 0, add precisely dβ(Φ, a+) occur-
rences of a+ to x′ and if d < 0, add precisely −dβ(Φ, a−) occurrences of a−. Call
the resulting word x′′. Similarly, delete precisely

β(Φ, a)

⌊
|y′|a −m
β(Φ, a)

⌋
occurrences of each a ∈ V±(Φ′) in y′. If d > 0, add dβ(Φ, a+) occurrences of a+

to y′ and if d < 0, add precisely −dβ(Φ, a−) occurrences of a−. Call the resulting
word y′′. Lemma 3.7 together with Proposition 3.2 and the commutativity of M
gives x′ =M x′′ and y′′ =M y′. At the same time, obviously |x′′|a = |y′′|a for all
a ∈ V±(Φ′)∪V×(Φ′)∪(A\V (Φ′)) = A, so that Ψ (x′′) = Ψ (y′′), and commutativity
of M implies x′′ =M y′′. Thus, by (4.1), we finally obtain

x =M x′ =M x′′ =M y′′ =M y′ =M y,

completing the proof.

We are now prepared to show that when a finitely generated commutative
monoid M does not contain the free commutative monoid on two generators
as a submonoid, the word problem of M can always be recognised by a pushdown
automaton, and is thus context-free.

Let the notation be the same as above in this section. The pushdown automaton
constructed in the proof of the following proposition nondeterministically guesses
an (A,m)-vector Φ at the beginning of its run. Configurations of this automaton
upon reading the delimiter symbol # then correspond to equivalence classes
of the relation ∼Φ on AΦ.
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We now describe how such a configuration corresponding to the equivalence class
[u] of ∼Φ containing a word u ∈ AΦ looks like.

The following information is stored in a state of the automaton in a configuration
corresponding to [u]; a finite state set is obviously sufficient to do so:

• The (A,m)-vector Φ
(m)
A,u =: Φ; indeed, note that there are only finitely

many different (A,m)-vectors, and storing them in a state is thus possi-
ble. By Definition 4.1, one also has Φ

(m)
A,x = Φ for every x ∈ [u].

• The value (|u|a − m) mod β(Φ, a) =: ra for every a ∈ V±(Φ).
By Definition 4.1, one also necessarily has (|x|a − m) mod β(Φ, a) = ra
for every x ∈ [u] and each a ∈ V±(Φ).
• The value (|u|a −m) mod α =: sa for each a ∈ V×(Φ). By Definition 4.1,

one also always has (|x|a − m) mod α = sa for every x ∈ [u] and each
a ∈ V×(Φ).
• The sign sgn(f+(u) − f−(u)) =: σ. By Definition 4.1, one also always has

sgn(f+(x)− f−(x)) = σ for every x ∈ [u].

Moreover, the following is stored on the pushdown:

• The absolute value |f+(u) − f−(u)| =: d+ in unary, i.e., the word a Zd+

for some pushdown symbol Z and the bottom-of-pushdown symbol a.
By Definition 4.1, one also always necessarily has |f+(x)− f−(x)| = d+

for every x ∈ [u].

Note that the configuration of the automaton corresponding to the equivalence
class [u] is unambiguously determined by any x ∈ [u] and, in particular, by u

itself. On the other hand, every configuration unambiguously determines the cor-
responding equivalence class [u]; this configuration is then “shared by all x ∈ [u]”,
so the word u itself is not unambiguously determined.

We can now finally proceed to the actual main results of this article. The con-
struction of a pushdown automaton in the proof of the following proposition is
largely presented in terms of its configurations taking the form described above.

Proposition 4.4. Let M be a finitely generated commutative monoid that does not
contain a submonoid isomorphic to (N × N,+). The word problem of M is then
context-free.

Proof. Let A, m, α, and β(Φ, a) for every (A,m)-vector Φ and a ∈ V±(Φ) be
as above. Let % ⊆ A∗ × A∗ be a finite relation such that M = 〈A | %〉, while
α ≥ `(M,A, %) and β(Φ, a) ≥ `(M,A, %) for every (A,m)-vector Φ and a ∈ V±(Φ).
We describe a construction of a pushdown automaton A recognising the language
WPA(M). As the class L (CF) is closed under intersection with a rational lan-
guage and the language A∗#A∗ with # 6∈ A is rational, we assume without loss
of generality that every input word of A takes the form u#vR for some u, v ∈ A∗.
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High-Level Description of A. We construct the automaton A such that its run
on a word u#vR consists of the following four phases:

(1) The automaton nondeterministically guesses two (A,m)-vectors Φ′ and Φ

such that Φ
(m)
A,u = Φ′ and V±(Φ

(m)
A,x) ⊆ V±(Φ) for all x ∈ A∗ satisfying

x =M u. (Existence of such Φ is guaranteed by Lemma 3.9.) The automaton
actually only chooses among the pairs of (A,m)-vectors (Φ′,Φ) satisfying
V±(Φ′) ⊆ V±(Φ), as this has to be the case whenever the guess is correct.
Note that the set of all such (Φ′,Φ) is finite, so that the guess amounts
to a single nondeterministic choice among finitely many transitions, while
the chosen (A,m)-vectors Φ′,Φ can be stored in a state.

(2) The prefix u# of the input word is read by A, and the initial guess of Φ′

is verified. In case this turns out to be incorrect, the corresponding run
of A rejects the input. Otherwise surely u ∈ AΦ – regardless of whether
the initial guess of Φ was correct or not – and the automaton happens to be
in a configuration corresponding to the equivalence class [u] of ∼Φ.

(3) In case the input was not rejected so far, this configuration is nondeter-
ministically transformed to a configuration corresponding to [x] for some
x ∈ AΦ such that x =M u. This is done in a way that in case the initial
guess of Φ was correct – and every x ∈ A∗ satisfying x =M u is thus in AΦ

– then configurations corresponding to all possible [x] for such x can indeed
be reached; one can thus also obtain all configurations corresponding to [x]

with x ∈ A∗ such that x =M u. The aim in this step is to nondeterministi-
cally guess a configuration corresponding to [x] such that [x] = [v].

(4) Going through the suffix vR, the guess of the equivalence class from the pre-
ceding step is verified, i.e., the automaton checks whether indeed [x] = [v].
If so, the run of A accepts; otherwise it rejects.

Correctness of A. It is easy to see that a pushdown automaton A conforming
to the high-level specification above necessarily recognises the language WPA(M).
Indeed, if u#vR ∈WPA(M), we have u =M v. By Lemma 3.9, the automaton A
guesses Φ′ and Φ such that Φ

(m)
A,u = Φ′ and V±(Φ

(m)
A,x) ⊆ V±(Φ) for all x ∈ A∗ with

x =M u in at least one of its runs. After reading u# and arriving at a configuration
corresponding to [u], one can transform [u] to [v] and finally verify the guess of [v]

while reading the suffix. If, on the contrary, u#vR 6∈WPA(M), then either the ini-
tial guess of Φ′ is not correct, or the configuration corresponding to [u] cannot be
transformed to a one corresponding to [v] since v 6=M u. The input word is rejected
by the run in both cases, hence it is rejected by all runs of A.

Note in particular that the initial nondeterministic guess of Φ does not have
to be verified – the input might even get accepted for some wrong guesses. In case
both Φ′ and Φ are guessed incorrectly, the corresponding run rejects in Step 2. If Φ′

is guessed correctly and Φ with V±(Φ′) ⊆ V±(Φ) is guessed incorrectly, then one
obtains a smaller set of equivalence classes reachable in Step 3. However, if a con-
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figuration corresponding to an equivalence class [x] is obtained in Step 3, then it is
correct – in the sense that x =M u – regardless of the correctness of the guessed
(A,m)-vector Φ. This means that exclusively words from WPA(M) can be accepted,
regardless of the initial guess of Φ; if, however, Φ was guessed correctly, then all
words from WPA(M) are accepted by at least one run.

Detailed Description of Phases (1), (2). We now describe a run of A in more
detail. At its beginning, A performs a nondeterministic guess of (A,m)-vectors Φ′

and Φ such that V±(Φ′) ⊆ V±(Φ); this amounts to choosing a pair (Φ′,Φ) from
a fixed finite set, and can thus be implemented directly in the transition function.
The guessed (A,m)-vectors Φ′ and Φ are stored in a state of the automaton.

The automaton A next goes through the prefix u# of the input word u#vR.
During this pass through u#, it gradually builds a configuration corresponding
to the equivalence class [u] of ∼Φ (in case the initial guess of Φ′ was correct),
and at the same time it verifies the guess of Φ′.

To build the said configuration, the automaton initialises the (A,m)-vector Φ

to 0 : A → {0, . . . ,m} such that 0(a) = 0 for each a ∈ A (if the guess of Φ′ was
correct, Φ has to eventually become Φ′ after reading u). Moreover, it sets to 0

the values ra for all a ∈ V±(Φ′), the values sa for all a ∈ V×(Φ′), and the sign σ.
The value d+ is initialised to zero as well, so that the pushdown store only contains
the bottom-of-pushdown symbol a at the beginning of the run. The automaton then
goes through u and upon each of its symbols a, the following is performed:

• If Φ(a) < Φ′(a) ≤ m, increase Φ(a) by one.
• If Φ(a) = Φ′(a) < m, reject.
• If Φ(a) = Φ′(a) = m, a ∈ V±(Φ′), and ra < β(Φ, a)− 1, increase ra by one.
• If Φ(a) = Φ′(a) = m, a ∈ V±(Φ′), and ra = β(Φ, a) − 1, set ra to 0.

Moreover:

a) If σ = 0, set σ to 1 if a ∈ V+(Φ) and to −1 if a ∈ V−(Φ); in both cases
push one symbol Z, so that d+ increases by one.

b) If σ = 1, push Z (i.e., increase d+) if a ∈ V+(Φ), and pop Z (i.e., de-
crease d+) if a ∈ V−(Φ). If a appears on the top of the pushdown
in the latter case (i.e., d+ was decreased to 0), set σ to 0.

c) If σ = −1, push Z (i.e., increase d+) if a ∈ V−(Φ), and pop Z (i.e., de-
crease d+) if a ∈ V+(Φ). If a appears on the top of the pushdown
in the latter case (i.e., d+ was decreased to 0), set σ to 0.

• If Φ(a) = Φ′(a) = m, a ∈ V×(Φ′), and sa < α− 1, increase sa by one.
• If Φ(a) = Φ′(a) = m, a ∈ V×(Φ′), and sa = α− 1, set sa to 0.

After reading the delimiter #, the automaton rejects in case Φ 6= Φ′.
If on the other hand Φ = Φ′, the initial guess of Φ′ was necessarily correct,
and the automaton is in a valid configuration corresponding to the equivalence
class [u] of ∼Φ.
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Detailed Description of Phase (3). By Proposition 3.8, A×(Φ
(m)
A,x) = A×(Φ′)

for every x ∈ A∗ such that x =M u. Let us denote this common alphabet
by A× and let A± := A \A×; as there are only finitely many (A,m)-vectors,
the automaton can store both alphabets for all Φ′ in a state. Lemma 3.5 gives
V×(Φ

(m)
A,x) = V (Φ

(m)
A,x) ∩A× and V±(Φ

(m)
A,x) = V (Φ

(m)
A,x) ∩A± for every word x ∈ A∗

satisfying x =M u.
Provided the guess of Φ′ was verified as correct and A is in a valid configu-

ration corresponding to [u] after reading #, the automaton nondeterministically
transforms this configuration to some of the configurations corresponding to [x]

with x ∈ AΦ such that x =M u. To describe how precisely is this done, interpret %
as a rewriting system (A, %), so that for w,w′ ∈ A∗ we write w −→ w′ if and only if
w = w1yw2 and w′ = w1y

′w2 for some w1, w2, y, y
′ ∈ A∗ such that (y, y′) ∈ %. If we

denote by←→ the symmetric closure of −→ and by ∗←→ the reflexive and transitive
closure of ←→, then ∗←→ is the same as the congruence =M .

After reading #, the automaton A is allowed to make several nondeterministic
steps, in which it reads nothing from the input, and in which the current configura-
tion corresponding to some [x1] can be transformed to a configuration corresponding
to [x2] for an arbitrary x2 ∈ AΦ such that

x′1 ←→ x2

for some x′1 ∈ [x1]. Put differently, the equivalence class [x1] of ∼Φ is interpreted
as an arbitrary word x′1 ∈ [x1], and this word is rewritten, according to←→, to some
other word x2 – in case x2 ∈ AΦ, the automaton finds itself in a configuration cor-
responding to the equivalence class [x2]. As always x1 =M x′1 =M x2 and x2 ∈ AΦ,
the configurations reachable by a sequence of such steps all correspond to [x]

for some x ∈ AΦ satisfying x =M u; on the other hand, as ∗←→ equals =M , all
configurations corresponding to [x] for x ∈ A∗ such that x =M u are reachable
by at least one sequence of steps in case Φ was guessed correctly.

Let us now take a closer look at one such step, in which a configuration corre-
sponding to [x1] is transformed to a one for [x2] such that x2 ∈ AΦ and x′1 ←→ x2

for some x′1 ∈ [x1], and clarify how this can be implemented by the pushdown
automaton A. What needs to be done is to nondeterministically choose some
(y, y′) ∈ % ∪ %−1 and some x′1 ∈ [x1] containing the factor y, to replace this factor
by y′ and obtain a configuration corresponding to the equivalence class of the re-
sulting word. We perform this transformation modulo commutativity, essentially
dealing with Parikh vectors of the words x′1, y, y′ only.

Observe that for every x′1 ∈ [x1] and for the corresponding configuration given
by Φ = Φ

(m)
A,x1

, the values ra for a ∈ V±(Φ), the values sa for a ∈ V×(Φ), the sign σ,
and the value d+, the set V±(Φ) further decomposes as V±(Φ) = X± ∪ Y±, where
X± consists of all a ∈ V±(Φ) such that |x′1|a = m + ra and Y± consists of all
a ∈ V±(Φ) such that |x′1|a ≥ m + β(Φ, a) + ra. Similarly, the alphabet V×(Φ)

decomposes as V×(Φ) = X× ∪ Y×, where X× contains precisely all a ∈ V×(Φ) such
that |x′1|a = m+ sa and Y× contains all a ∈ V×(Φ) with |x′1|a ≥ m+ α+ sa.
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Moreover, it is not hard to see that a pair of decompositions V±(Φ) = X± ∪ Y±
and V×(Φ) = X× ∪ Y× corresponds in this way to at least one x′1 ∈ [x1] if and only
if the following conditions are satisfied:

(i) If σ = 0 and Y± 6= ∅, then both Y± ∩ V+(Φ) 6= ∅ and Y± ∩ V−(Φ) 6= ∅.
(ii) If σ = 1, then Y±∩V+(Φ) 6= ∅; if moreover Y±∩V−(Φ) = ∅, then d+ ≥ |Y±|.

(iii) If σ = −1, then Y± ∩ V−(Φ) 6= ∅; if moreover Y± ∩ V+(Φ) = ∅, then
d+ ≥ |Y±|.

The automaton A nondeterministically guesses a pair of decompositions
V±(Φ) = X± ∪ Y± and V×(Φ) = X× ∪ Y× such that the above conditions are
satisfied. Note that the inequality d+ ≥ |Y±| in (ii) and (iii) can indeed be checked
by a pushdown automaton by popping at most some constant number of symbols Z
from the pushdown, finding out whether the bottom a was or was not reached,
and pushing the removed symbols Z back to the pushdown. The remaining checks
may be performed using finite information that can be stored in states of the au-
tomaton. Moreover, A nondeterministically chooses some (y, y′) ∈ % ∪ %−1.

For each a ∈ A, the automaton A first modifies the configuration corresponding
to [x1] by “decreasing the number of occurrences” of a by |y|a. This has a slightly
different meaning depending on which symbol a we currently consider:

• If a ∈ A\V (Φ), then the value Φ(a) is decreased by |y|a provided the result
is nonnegative; should the result be negative, the rewriting step is impos-
sible to perform.
• If a ∈ X±, then ra is decreased by |y|a in case |y|a ≤ ra holds. If on the other

hand |y|a > ra and k := |y|a − ra, then ra is decreased to 0 and the value
Φ(a) is decreased by k provided the result is nonnegative; should the result
be negative, the rewriting step cannot be performed.
• If a ∈ Y±, then ra is again decreased by |y|a in case |y|a ≤ ra holds.

If |y|a > ra and k := |y|a − ra, then ra is decreased to 0 and new β(Φ, a)

occurrences of a are “found” on the pushdown; k of them that correspond
to the remaining occurrences of a in y are removed, and the rest is stored
as the new value of ra. More precisely, if a ∈ V+(Φ), then Z is popped
if σ = 1 and pushed if σ ∈ {0,−1}; in case the original value of σ was 0,
it is changed to −1, and in case the last occurrence of Z on the pushdown
was popped, σ is changed to 0. Similarly, if a ∈ V−(Φ), then Z is popped if
σ = −1 and pushed if σ ∈ {0, 1}; in case the original value of σ was 0, it is
changed to 1, and in case the last occurrence of Z on the pushdown was
popped, σ is changed to 0. The value ra is set to β(Φ, a) − k in any case.
Note that β(Φ, a) ≥ `(M,A, %) ≥ k > 0, so this can always be done.
• If a ∈ X×, then sa is decreased by |y|a in case |y|a ≤ sa. If |y|a > sa

and k := |y|a − sa, then sa is set to 0 and Φ(a) is decreased by k provided
the result is nonnegative; should the result be negative, the rewriting step
cannot be performed.
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• If a ∈ Y×, then sa is again decreased by |y|a in case |y|a ≤ sa. If |y|a > sa
and k := |y|a − sa, then sa is set to α − k, which can be performed since
α ≥ `(M,A, %) ≥ k > 0.

Once this “deletion” of y is finished, one has to “insert the new factor” y′ and up-
date the configuration accordingly. This is done in a similar manner as while reading
the prefix u – for each letter a of y′, the automaton does the following:

• If Φ(a) < m, increase Φ(a) by one. In case the new value happens to be m,
set ra = 0 if a ∈ A± and sa = 0 if a ∈ A×. If a ∈ A± and a 6∈ V±(Φ), reject
– the initial guess of the (A,m)-vector Φ was incorrect.
• If Φ(a) = m, a ∈ A±, and ra < β(Φ, a)− 1, increase ra by one.
• If Φ(a) = m, a ∈ A±, and ra = β(Φ, a)− 1, set ra to 0. Moreover:

a) If σ = 0, then set σ to 1 if a ∈ V+(Φ) and to −1 if a ∈ V−(Φ); in both
cases push one symbol Z, so that d+ increases by one.

b) If σ = 1, then push Z (i.e., increase d+) if a ∈ V+(Φ), and pop Z

(i.e., decrease d+) if a ∈ V−(Φ). If the symbol a finds itself on the top
of the pushdown in the latter case (i.e., d+ was decreased to 0), set
the sign σ to 0.

c) If σ = −1, then push Z (i.e., increase d+) if a ∈ V−(Φ), and pop Z

(i.e., decrease d+) if a ∈ V+(Φ). If the symbol a appears on the top
of the pushdown in the latter case (i.e., d+ was decreased to 0), set
the sign σ to 0.

• If Φ(a) = m, a ∈ A×, and sa < α− 1, increase sa by one.
• If Φ(a) = m, a ∈ A×, and sa = α− 1, set sa to 0.

If the input was not rejected by A during the above procedure, V±(Φ) ⊆ V±(Φ)

clearly has to hold for the resulting (A,m)-vector Φ. The automaton thus is in a valid
configuration corresponding to an equivalence class [x2] of∼Φ for some x2 ∈ AΦ such
that there is x′1 ∈ [x1] satisfying x′1 ←→ x2. Moreover, configurations corresponding
to all such [x2] can obviously be reached.

Detailed Description of Phase (4). It remains to describe the last part
of the run of A, in which the automaton starts in a configuration corresponding
to [x] for some x ∈ AΦ satisfying x =M u, and subsequently goes through the suf-
fix vR to decide whether [x] = [v]. This check is largely “inverse” to the procedure
performed while reading the prefix u. For each symbol a of vR, the automaton
updates its configuration in the following way:

• If Φ(a) = 0, reject.
• If 0 < Φ(a) < m, decrease Φ(a) by one.
• If Φ(a) = m, a ∈ A±, and ra > 0, decrease ra by one.
• If Φ(a) = m, a ∈ A±, and ra = 0, nondeterministically either decrease Φ(a)

by one, or set ra to β(Φ, a)− 1 and perform the following:
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a) If σ = 0, then set σ to −1 if a ∈ V+(Φ) and to 1 if a ∈ V−(Φ); in both
cases push one symbol Z, so that d+ increases by one.

b) If σ = 1, then pop Z (i.e., decrease d+) if a ∈ V+(Φ), and push Z

(i.e., increase d+) if a ∈ V−(Φ). If a appears on the top of the push-
down in the former case (i.e., d+ was decreased to 0), set σ to 0.

c) If σ = −1, then pop Z (i.e., decrease d+) if a ∈ V−(Φ), and push Z
(i.e., increase d+) if a ∈ V+(Φ). If a appears on the top of the push-
down in the former case (i.e., d+ was decreased to 0), set σ to 0.

• If Φ(a) = m, a ∈ A×, and sa > 0, decrease sa by one.
• If Φ(a) = m, a ∈ A×, and sa = 0, nondeterministically either decrease Φ(a)

by one, or set sa to α− 1.

It is clear that [x] = [v] if and only if after reading the suffix vR, a configuration
can be reached in which Φ = 0 and only the bottom-of-pushdown symbol a is left
on the pushdown. The automaton accepts the input in this case.

This finishes the description of the pushdown automaton A; finiteness
of the state set of A should be evident.

The proposition established completes the characterisation of finitely generated
commutative monoids with a context-free word problem – the first main result
of this article, which we now state explicitly.

Theorem 4.5. Let M be a finitely generated commutative monoid. Then the word
problem of M is context-free if and only if M does not contain a submonoid iso-
morphic to (N× N,+), the free commutative monoid on two generators.

Proof. Follows directly by Proposition 3.1 and Proposition 4.4.

We can now also easily establish the second main result of this article – the char-
acterisation of finitely generated commutative semigroups with a context-free word
problem. One of the implications of this characterisation is obtained in a similar
way as in Proposition 3.1 for monoids. The remaining implication – that would be
harder to prove on its own – follows as a direct consequence of the characterisation
for monoids established above.

Theorem 4.6. Let S be a finitely generated commutative semigroup. Then the word
problem of S is context-free if and only if S does not contain a subsemigroup isomor-
phic to ((N× N) \ {(0, 0)},+), the free commutative semigroup on two generators.

Proof. If S contains a commutative subsemigroup freely generated by a, b ∈ S

and A ⊆ S is a finite generating set of S such that a, b ∈ A, then similarly
as in the proof of Proposition 3.1 for monoids, the language

WPA(S) ∩ a+b+#a+b+ = {aibj#aibj | i, j ∈ N \ {0}}

is not context-free, thus WPA(S) cannot be context-free either.
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Conversely, if the semigroup S does not contain a subsemigroup isomorphic to
((N×N) \ {(0, 0)},+), then S1 cannot contain a submonoid isomorphic to the free
commutative monoid (N×N,+), as the only idempotent of this monoid is its identity
element. Any finite generating set A ⊆ S of the semigroup S also is a generating
set of the monoid S1. It follows by Theorem 4.5 that the language WPA(S1) is
context-free, hence the language

WPA(S) = WPA(S1) ∩A+#A+

is context-free as well.
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