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Abstract

Two families of input-deterministic weighted automata over semirings are considered: purely sequential au-
tomata, in which terminal weights of states are either zero or unity, and sequential automata, in which states
can have arbitrary terminal weights. The class of semirings over which all weighted automata admit purely
sequential equivalents is fully characterised. A similar characterisation is proved for sequential automata
under an assumption that all elements of the underlying semiring have finitely many multiplicative left
inverses, which is in particular true for all commutative semirings and all division semirings.
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1. Introduction

Classical nondeterministic finite automata admit
a well known extension, in which each transition is
weighted (typically) by an element of some semiring
[7, 22]. Such automata – usually known as weighted
automata – realise formal power series instead of
recognising languages, and they have been studied
extensively both from the theoretical point of view
and in connection with their practical applications.
The reader might consult [7] for an overview of some
of the most important research directions.

For applications such as natural language pro-
cessing [16, 20], input-determinism of weighted au-
tomata often turns out to be crucial. This basi-
cally means that the automaton has precisely one
state with nonzero initial weight and there is at
most one transition for each input symbol leading
from each state. However, it is well known that not
all weighted automata can be determinised [19, 21].
The research has thus focused mainly on providing
sufficient conditions – both on the automaton and
the underlying semiring – under which a weighted
automaton admits a deterministic equivalent, and
on devising efficient determinisation algorithms for
automata satisfying such conditions [1, 15, 20, 21].
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We shall focus here on a slightly different ques-
tion: over which semirings all weighted automata
can be determinised? This in fact amounts to
the study of deterministic weighted automata from
a negative point of view, as we shall see that the
class of such semirings is fairly constrained.

More precisely, we shall deal with this question
for two classes of deterministic weighted automata:
for purely sequential weighted automata, in which
terminal weights of states might only be chosen
as zero or unity of the underlying semiring, and
for sequential weighted automata, in which ter-
minal weights can be arbitrary (the term “deter-
ministic weighted automata” usually refers to the
latter [21]). This terminology follows Lombardy
and Sakarovitch [19]; it may differ significantly in
other sources (in particular, purely sequential au-
tomata are often called sequential, while sequential
automata are called subsequential [20]).

We shall prove that weighted automata over S
always admit purely sequential equivalents if and
only if S is a locally finite division semiring. More-
over, local finiteness of S is known to be sufficient to
guarantee that all weighted automata over S have
sequential equivalents [19]. We shall prove that if S
has no element with infinitely many multiplicative
left inverses, then this is also a necessary condition.
In particular, if S is commutative or a division semi-
ring, then weighted automata over S can always be
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sequentialised if and only if S is locally finite.
Finally, let us mention that there is a branch

of research motivated by quantitative formal ver-
ification dealing with weighted – or quantitative –
automata over various structures beyond semirings
[2, 3, 4, 5, 6, 8, 9, 10, 11, 18]. We shall never-
theless confine ourselves to the classical setting of
semirings in this article, making theoretical analysis
more tractable. Possible extensions of the results
presented herein to structures more general than
semirings are left for further research.

2. Preliminaries

A monoid is a triple (M, ·, 1), where M is a set,
· is an associative binary operation on M , and 1 is
a neutral element with respect to ·. A commutative
monoid is a monoid (M, ·, 1) such that · is commu-
tative. A semiring is a quintuple (S,+, ·, 0, 1) such
that (S,+, 0) is a commutative monoid, (S, ·, 1) is
a monoid, the operation · distributes over + both
from left and from right, and 0 · a = a · 0 = 0 holds
for all a in S. We shall always assume that S 6= {0}.
A commutative semiring is a semiring such that
(S, ·, 1) is commutative. A division semiring [12] is
a (not necessarily commutative) semiring such that
(S − {0}, ·, 1) is a group, i.e., each nonzero element
of S has a multiplicative inverse. We shall often
simply write S for a semiring (S,+, ·, 0, 1).

A subsemiring of a semiring (S,+, ·, 0, 1) is
a semiring (S′,+, ·, 0, 1) such that S′ ⊆ S (and +, ·
are restricted to S′ × S′). If moreover X ⊆ S is
a set, the subsemiring of S generated by X is the
intersection of all subsemirings of S containing X.
A semiring S is finitely generated if it is generated
by some finite subset of S. A semiring S is locally
finite if every finitely generated subsemiring of S
is finite. Submonoids, finitely generated monoids,
and locally finite monoids are defined similarly.

A formal power series over a semiring S and over
an alphabet Σ is a mapping r : Σ∗ → S. It is cus-
tomary to write (r, w) instead of r(w) for the value
of r on a word w in Σ∗; the formal power series r
itself is then written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over S and Σ is
denoted by S⟪Σ∗⟫.

Let r1 and r2 be in S⟪Σ∗⟫. The series r1 + r2 is
then defined by (r1 + r2, w) = (r1, w) + (r2, w) for

all w in Σ∗ and the series r1 · r2 is defined by

(r1 · r2, w) =
∑

u,v∈Σ∗

uv=w

(r1, u)(r2, v)

for all w in Σ∗. The set S⟪Σ∗⟫ constitutes a semi-
ring together with these two operations [7].

Let S be a semiring. A proper weighted automa-
ton [7] over S is a sextuple A = (Q,Σ, T, ν, ι, τ),
where Q is a nonempty finite set of states, Σ is
a (finite) alphabet, T ⊆ Q×Σ×Q is a set of tran-
sitions, ν : T → S is a transition weighting func-
tion, ι : Q→ S is an initial weighting function, and
τ : Q→ S is a terminal weighting function.

Moreover, a run in A = (Q,Σ, T, ν, ι, τ) is a word
γ = p1[p1, c1, q1]p2[p2, c2, q2] . . . pn[pn, cn, qn]pn+1

in (QT )∗Q such that n is a nonnegative integer
and qi = pi+1 for i = 1, . . . , n. We shall de-
note by SA(γ) := p1 the source of the run γ,
and by DA(γ) := pn+1 the destination of γ. The
label of a run γ in A is given by λA(γ), where
λA : (Q ∪ T )∗ → Σ∗ is a homomorphism such that
λA(q) = ε for all q in Q and λA([p, c, q]) = c for
all [p, c, q] in T . The weight of a run γ in A is
given by WA(γ), where WA : (Q ∪ T )∗ → (S, ·, 1)
is a monoid homomorphism such that WA(q) = 1
for all q in Q and WA([p, c, q]) = ν([p, c, q]) for all
[p, c, q] in T . If A is clear from the context, we shall
usually write S(γ), D(γ), λ(γ), and W (γ) instead
of SA(γ), DA(γ), λA(γ), and WA(γ), respectively.

Let us denote by R(A) the set of all runs in A
and by R(A, w), where w is in Σ∗, the set of all γ
in R(A) such that λ(γ) = w. The behaviour of A
then is a power series ‖A‖ defined by

(‖A‖, w) =
∑

γ∈R(A,w)

ι(S(γ))W (γ)τ(D(γ))

for all w in Σ∗. Note that this sum is always finite,
and thus well defined.

We shall always assume that ν([p, c, q]) 6= 0 for
all [p, c, q] in T – this is without loss of generality,
as having a transition with zero weight is clearly
equivalent to having no transition at all.

Let A = (Q,Σ, T, ν, ι, τ) be a proper weighted
automaton over a semiring S. The automaton A is
sequential if q0 in Q exists such that ι(q0) 6= 0 and
ι(q) = 0 for all q 6= q0 in Q, and if at most one q in
Q with [p, c, q] in T exists for each p in Q and c in Σ.
Moreover, A is purely sequential if it is sequential
and if τ(q) is in {0, 1} for each q in Q. Finally, A is
unambiguous if R(A, w) contains at most one run
γ with ι(S(γ))W (γ)τ(D(γ)) 6= 0 for each w in Σ∗.
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Remark 2.1. A purely sequential automaton can
have a state with initial weight equal neither to 0,
nor to 1. However, it is easy to see that when it
comes to series realised by purely sequential au-
tomata, restricting initial weights to 0 and 1 would
only affect possible weights of the empty word.

Remark 2.2. We shall confine ourselves to the
study of proper weighted automata, i.e., automata
without transitions labelled by the empty word.
This clearly has no effect on our results. Moreover,
all weighted automata are understood to be proper
in what follows.

It is well known that each weighted automaton
over a locally finite semiring S admits a sequen-
tial equivalent [19]. The underlying construction is
based on an observation that each such automaton
realises a series over some finite subsemiring S′ of S.
It is thus possible to incorporate weights into the
usual subset construction, while “emitting” them as
terminal weights. Let us restate this property as
a proposition for later reference.

Proposition 2.3. Let S be a locally finite semiring
and A be a weighted automaton over S. Then there
exists a sequential automaton A′ over S such that
‖A′‖ = ‖A‖.

3. Locally Finite Semirings

We shall now gather some simple facts about lo-
cally finite semirings. First, let us observe that local
finiteness of a semiring is in fact equivalent to local
finiteness of its multiplicative monoid.

Proposition 3.1. Let (S,+, ·, 0S , 1S) be a semi-
ring. Then S is locally finite if and only if the
monoid (S, ·, 1S) is locally finite.

Proof. The “only if” part of the statement is trivial.
For the converse, let us assume that the monoid
(S, ·, 1S) is locally finite. We shall prove that the
semiring (S,+, ·, 0S , 1S) is locally finite as well.

As the monoid (S, ·, 1S) is locally finite, the ele-
ment 2S := 1S+1S has to be of finite multiplicative
order in S. This means there are nonnegative inte-
gers r, q such that r < q and 2rS = 2qS .

Now, let X ⊆ S be a finite set, and let us denote
by [X] the subsemiring of S generated by X. By
commutativity of + and distributivity, each element
x of [X] can be written as a finite sum

x =
n∑
i=1

mi × xi, (1)

where n and m1, . . . ,mn are nonnegative integers,
x1, . . . , xn are distinct elements of the submonoid of
(S, ·, 1S) generated byX, andmi×xi is a shorthand
for
∑mi

j=1 xi. As x1, . . . , xn are distinct, it follows by
local finiteness of (S, ·, 1S) that n is bounded from
above by a constant. Moreover, as

2r × y = 2rS · y = 2qS · y = 2q × y

holds for each y in S, the numbers m1, . . . ,mn can
always be assumed to be smaller than some con-
stant as well. The set of all elements x representable
by (1) is thus finite. As this set equals [X] and X
is an arbitrary finite subset of S, this proves that S
is locally finite.

An element a of a semiring S is of finite multi-
plicative order if two distinct nonnegative integers
n,m do exist so that an = am. Using similar ideas
as in the proof of Proposition 3.1, it is possible
to show that local finiteness is equivalent to finite
multiplicative order of all elements for commutative
semirings [17].

Proposition 3.2. Let S be a commutative semi-
ring. Then S is locally finite if and only if each
element of S is of finite multiplicative order.

4. Purely Sequential Weighted Automata

We shall now fully characterise the class of semi-
rings S such that all weighted automata over S ad-
mit purely sequential equivalents by proving that
this is the case if and only if S is a locally finite
division semiring. We shall also observe that this
property remains true after restricting the universe
to unambiguous automata: purely sequential au-
tomata over S are strictly less powerful than unam-
biguous weighted automata over S whenever they
are strictly less powerful than (general) weighted
automata over S.

Let us first prove that S being a locally finite
division semiring is a sufficient condition. We shall
do this by introducing a suitable modification of the
classical subset construction [13].

Lemma 4.1. Let S be a locally finite division
semiring and A be a weighted automaton over S.
Then there exists a purely sequential automaton A′
over S such that ‖A′‖ = ‖A‖.

Proof. Let A = (Q,Σ, T, ν, ι, τ), and let

X := ν(T ) ∪ ι(Q) ∪ τ(Q)
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be the set of all weights in A. Let [X] be a sub-
semiring of S generated by X. Local finiteness of
S then implies that [X] is finite and it is clear that
(‖A‖, w) is in [X] for all w in Σ∗. Moreover, S is
a division semiring, implying that each nonzero x
in S has a multiplicative inverse x−1.

Let us now construct a purely sequential weighted
automaton A′ = (Q′,Σ, T ′, ν′, ι′, τ ′) over S equiv-
alent to A. Let us take Q′ = [X]Q for the set of
states, and let the set of transitions T ′ consist of all
triples [ϕ, c, ψ] such that ϕ,ψ are in [X]Q, c is in Σ,
and

ψ(q) =
∑

[p,c,q]∈T

ϕ(p)ν([p, c, q])

holds for all q in Q. Let the transition weighting
function ν′ be given for all [ϕ, c, ψ] in T ′ by

ν′([ϕ, c, ψ]) = G[ϕ]−1 ·G[ψ],

where G[κ] is defined for all κ in [X]Q by

G[κ] =

{ ∑
q∈Q κ(q)τ(q) if

∑
q∈Q κ(q)τ(q) 6= 0,

1 otherwise.

Next, let the initial weighting function ι′ be given
by ι′(ϕ) = G[ϕ] for the1 mapping ϕ : Q→ [X] sat-
isfying ϕ(q) = ι(q) for all q in Q and by ι′(ψ) = 0
for all other mappings ψ : Q → [X]. Finally, the
terminal weighting function will be given by

τ ′(ϕ) =

{
1 if

∑
q∈Q ϕ(q)τ(q) 6= 0,

0 otherwise

for all ϕ in Q′ = [X]Q.
We leave to the reader the straightforward proof

of the fact that ‖A′‖ = ‖A‖.

Let us now turn to the converse implication of
our characterisation. We shall first prove that lo-
cal finiteness of S is necessary in order for all (all
unambiguous, in fact) weighted automata to have
a purely sequential equivalent.

Lemma 4.2. Let S be a semiring that is not locally
finite. Then there exists an unambiguous weighted
automaton A over S, for which there is no purely
sequential weighted automaton A′ over S such that
‖A′‖ = ‖A‖.

1Note that the equality ϕ = ι might not hold from
a strictly formal viewpoint, as these two functions can have
different codomains.

Proof. Assume that the semiring (S,+, ·, 0, 1) is not
locally finite. By Proposition 3.1, this means that
the monoid (S, ·, 1) is not locally finite, and hence it
contains a finite subset X = {s1, . . . , sn} such that
the element 0 is not in X and the submonoid 〈X〉
generated by X is infinite.

Let A = (Q,Σ, T, ν, ι, τ) be an (obviously un-
ambiguous) weighted automaton over S given by
Q = {1, 2, 3, 4}, Σ = {a1, . . . , an, b},

T ={[1, ai, 2], [3, ai, 4] | i ∈ {1, . . . , n}} ∪
{[2, b, 1], [4, b, 3]},

ν([1, ai, 2]) = si for i = 1, . . . , n, ν([2, b, 1]) = 1,
ν([3, ai, 4]) = 1 for i = 1, . . . , n, ν([4, b, 3]) = 1,
ι(1) = ι(3) = 1, ι(2) = ι(4) = 0, τ(1) = τ(4) = 0,
and τ(2) = τ(3) = 1. The diagram of A is depicted
in Figure 1 (nonzero initial and terminal weights
are understood to be 1, and thus they are not made
explicit in the diagram).

1 2

3 4

a1:s1, . . . , an:sn

a1:1, . . . , an:1

b:1

b:1

Figure 1: The diagram of the automaton A.

It is easy to see that (‖A‖, ai1bai2b . . . baikb) = 1
and (‖A‖, ai1bai2b . . . baikbaik+1

) = si1 . . . sik+1
for

every nonnegative integer k and every i1, . . . , ik+1

in {1, . . . , n}.
We shall prove that there is no purely sequential

automaton A′ over S such that ‖A′‖ = ‖A‖. For
contradiction, suppose that such automaton exists
and letA′ = (Q′,Σ′, T ′, ν′, ι′, τ ′); obviously Σ′ ⊇ Σ.
Let x be in 〈X〉−{0, 1}. Then there is a nonnegative
integer k and indices i1, . . . , ik+1 in {1, . . . , n} such
that si1 . . . sik+1

= x. Let w := ai1bai2b . . . baikb
and w′ := waik+1

. By pure sequentiality of A′,
runs γ and γ′ have to exist so that R(A′, w) = {γ},
R(A′, w′) = {γ′}, and γ′ = γ[p, c, q]q for some
[p, c, q] in T ′; in particular, S(γ) = S(γ′). More-
over, as A′ is purely sequential, it follows that

ι′(S(γ))W (γ) = (‖A′‖, w) = 1
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and

ι′(S(γ))W (γ)ν′([p, c, q]) = (‖A′‖, w′) =

= si1 . . . sik+1
= x.

Hence, ν′([p, c, q]) = x. As x was chosen as an ar-
bitrary element of an infinite set 〈X〉 − {0, 1}, this
implies that A′ has to have infinitely many transi-
tions, i.e., a contradiction.

We shall now prove that if all (all unambiguous)
weighted automata over S admit purely sequential
equivalents, then S has to be a division semiring.

Lemma 4.3. Let S be a semiring that is not a di-
vision semiring. Then there exists an unambiguous
weighted automaton A over S, for which there is
no purely sequential weighted automaton A′ over S
such that ‖A′‖ = ‖A‖.

Proof. Suppose that S is not a division semiring,
i.e., (S − {0}, ·, 1) is not a group. This means that
the monoid (S, ·, 1) contains a nonzero element s,
which has no right inverse [14], i.e., s has no right
multiplicative inverse in the semiring S.

Let A = (Q,Σ, T, ν, ι, τ) be an unambiguous au-
tomaton over S with Q = {1, 2, 3, 4, 5}, Σ = {a},
T = {[1, a, 2], [3, a, 4], [4, a, 5]}, ν([1, a, 2]) = s,
ν([3, a, 4]) = ν([4, a, 5]) = 1, ι(1) = ι(3) = 1,
ι(2) = ι(4) = ι(5) = 0, τ(1) = τ(3) = τ(4) = 0,
and τ(2) = τ(5) = 1. The diagram of the automa-
ton A is depicted in Figure 2.

1 2a:s

3 4a:1 5a:1

Figure 2: The diagram of the automaton A.

It is clear that (‖A‖, a) = s and (‖A‖, aa) = 1. It
thus suffices to prove that there is no purely sequen-
tial automaton A′ over S such that (‖A′‖, a) = s
and (‖A′‖, aa) = 1.

Suppose that A′ = (Q′,Σ′, T ′, ν′, ι′, τ ′) has
this property; clearly, a has to be in Σ′. It
then follows by pure sequentiality of A′ that
there is a run γ = p1[p1, a, p2]p2[p2, a, p3]p3

in A′ such that ι′(p1)ν′([p1, a, p2]) = s and
ι′(p1)ν′([p1, a, p2])ν′([p2, a, p3]) = 1. Thus,
ν′([p2, a, p3]) is a right multiplicative inverse of s:
a contradiction.

The results obtained so far yield the following
characterisation.

Theorem 4.4. Let S be a semiring. The following
statements are equivalent:

(i) All weighted automata over S have purely se-
quential equivalents over S.

(ii) All unambiguous weighted automata over S
have purely sequential equivalents over S.

(iii) S is a locally finite division semiring.

Proof. Follows directly by Lemma 4.1, Lemma 4.2,
and Lemma 4.3.

Remark 4.5. Although an arbitrarily large finite
alphabet is used in the counterexample presented
in the proof of Lemma 4.2, it is clear that a two-
letter alphabet suffices if the original symbols are
encoded and the reasoning is modified accordingly.

5. Sequential Weighted Automata

Let us now consider sequential weighted au-
tomata. We shall prove that if S is a semiring
that contains no element with infinitely many mul-
tiplicative left inverses (in particular, this is the
case when S is a commutative semiring or a di-
vision semiring), then all weighted automata over
S have sequential equivalents if and only if S is
locally finite. We shall leave open the question if
the assumption of S not containing elements with
infinitely many multiplicative left inverses can be
weakened or abandoned.

Lemma 5.1. Let S be a semiring that is not lo-
cally finite and contains no element with infinitely
many multiplicative left inverses. Then there exists
an unambiguous weighted automaton A over S, for
which there is no sequential weighted automaton A′
over S such that ‖A′‖ = ‖A‖.

Proof. As the semiring (S,+, ·, 0, 1) is not locally
finite, it follows by Proposition 3.1 that the monoid
(S, ·, 1) is not locally finite. Hence, there is a finite
subset X = {s1, . . . , sn} of S − {0} such that the
submonoid 〈X〉 generated by X is infinite.

Let A = (Q,Σ, T, ν, ι, τ) be the unambiguous
weighted automaton from the proof of Lemma 4.2
(for convenience, the diagram of A is depicted once
again in Figure 3).
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1 2

3 4

a1:s1, . . . , an:sn

a1:1, . . . , an:1

b:1

b:1

Figure 3: The diagram of the automaton A.

Recall that (‖A‖, ai1bai2b . . . baikb) = 1 and
(‖A‖, ai1bai2b . . . baikbaik+1

) = si1 . . . sik+1
for ev-

ery nonnegative integer k and every i1, . . . , ik+1

in {1, . . . , n}. Suppose for the purpose of con-
tradiction that there is a sequential weighted au-
tomaton A′ = (Q′,Σ′, T ′, ν′, ι′, τ ′) over S such that
‖A′‖ = ‖A‖; then clearly Σ′ ⊇ Σ.

Moreover, let

L = {ai1bai2b . . . baik+1
| i1, . . . , ik+1 ∈ {1, . . . , n}}

and let us denote

R(A′) =
⋃
w∈L

R(A′, w).

As the monoid 〈X〉 is infinite and as each element
of 〈X〉−{1} is a coefficient in ‖A′‖ of some w in L,
it follows that there has to be a state q in Q′ such
that the set

V (q) = {ι′(S(γ))W (γ) | γ ∈ R(A′); D(γ) = q}

is infinite. However, as A′ is sequential, it is clear
that each γ inR(A′) withD(γ) = q can be extended
to a run γ′ := γ[q, b, q′]q′, where q′ is in Q′ and

ι′(S(γ))W (γ)ν′([q, b, q′])τ ′(q′) = 1.

As a result, each element of V (q) is a multiplicative
left inverse for ν′([q, b, q′])τ ′(q′). As V (q) is infinite,
this contradicts our assumption on S.

The lemma that we have just proved yields, with
Proposition 2.3, the following characterisation.

Theorem 5.2. Let S be a semiring that contains
no element with infinitely many multiplicative left
inverses. The following statements are equivalent:

(i) All weighted automata over S have sequential
equivalents over S.

(ii) All unambiguous weighted automata over S
have sequential equivalents over S.

(iii) S is locally finite.

Proof. Follows directly by Proposition 2.3 and
Lemma 5.1.

In particular, let us mention explicitly that the
theorem stated above gives us a complete character-
isation of all commutative semirings and all division
semirings S such that all weighted automata over
S have sequential equivalents.

Corollary 5.3. Let S be a commutative semiring
or a division semiring. The following statements
are equivalent:

(i) All weighted automata over S have sequential
equivalents over S.

(ii) All unambiguous weighted automata over S
have sequential equivalents over S.

(iii) S is locally finite.

Proof. If S is commutative and ba = ca = 1, then
b = bca = bac = c. In other words, each a in S
has at most one multiplicative left inverse. If S
is a division semiring, this property follows by the
fact that (S − {0}, ·, 1) is a group and 0 has no
multiplicative left inverse. Hence, the claim follows
by Theorem 5.2.

Remark 5.4. Similarly as in the case of purely
sequential automata, the counterexample used in
Lemma 5.1 can obviously be modified so that a two-
letter alphabet is used instead of an arbitrarily large
finite alphabet.
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