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Abstract

A well-known construction of a weighted automaton over the integers, assigning zero to precisely
the nonempty words from the equality set of a given Post’s correspondence problem instance, is extended
to the case of weights taken from an arbitrary integral domain that is not locally finite. Undecidability
of problems for rational series such as universality or rationality of support thus generalises to such domains
as well. In spite of being fairly simple, these findings imply that the support rationality problem can be
undecidable over rings of positive characteristic, answering an open question of D. Kirsten and K. Quaas.
In addition, a more general undecidability result for rational series over other than locally finite integral
domains is proved, which subsumes, e.g., the undecidability of support rationality or context-freeness.
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1. Introduction

An instance of the Post’s correspondence problem
(PCP) is given by a pair of homomorphisms f, g
between two free monoids. The equality set of such
an instance consists of all w such that f(w) = g(w),
and the task is to decide whether it contains
a nonempty word. The Post’s correspondence prob-
lem is famous for being undecidable [10].

It is a classical observation that for each
PCP instance with equality set E, there exists
a rational series over Z whose support consists
precisely of words not in E and of the empty
word ε: if a PCP instance is given by homomor-
phisms f, g, then one can construct a weighted
automaton Af,g over Z, which assigns zero
to precisely the nonempty words w such that
f(w) = g(w). This fact was independently dis-
covered several times. For instance, it has
been proved by S. Eilenberg [7, Theorem VI.12.1];
his construction is also reproduced in [16, 17].
Another reference is given by [2, Exercise 3.4.2].
It also appears implicitly in works dealing with

Email address: kostolanyi@fmph.uniba.sk (Peter
Kostolányi)

1The author was partially supported by the grant
VEGA 1/0601/20.

decidability of problems for matrix semigroups –
see, e.g., [9, Section 6.1]. As a consequence of this
observation, it follows that the support universality
problem for rational series over Z, in which one asks
whether or not the coefficients of a series realised
by an automaton are all nonzero, is undecidable.

Another result discovered several times is that
of undecidability of support rationality for rational
series over Z – in other words, it is impossible to de-
cide whether a given weighted automaton over Z re-
alises a series whose support is a rational language.
This undecidability result has already been men-
tioned in Exercise II.12.1 of the book by A. Salomaa
and M. Soittola [19]. Later, a proof via modifica-
tion of the above-mentioned reduction from PCP
has been given by D. Kirsten and K. Quaas [14];
their proof technique appears to be the most uni-
versal when it comes to possible generalisations.
Finally, B. Steinberg has noted in a MathOverflow
answer [20] that the result follows directly by con-
structability of Af,g and a result of A. Salomaa [18],
according to which it is undecidable whether a given
PCP instance has a rational equality set; this is
probably the simplest known proof.

To sum up, algorithmic constructability of Af,g is
sufficient to deduce undecidability both of the sup-
port universality problem and of the support ratio-
nality problem for rational series over Z.
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D. Kirsten and K. Quaas [14] have also opened
the question of decidability of the support ratio-
nality problem for semirings other than Z. Un-
decidability of this problem over Z clearly implies
its undecidability over all semirings containing Z,
and in particular over all rings of characteristic
zero. On the other hand, the problem is trivial over
the so-called SR-semirings – i.e., semirings S such
that all rational series over S have rational sup-
ports; an algebraic characterisation of such semi-
rings was given by D. Kirsten [12, 13]. The follow-
ing two problems have been left open in [14]:

1. Is there a semiring not containing Z that is not
an SR-semiring?

2. If so, is there a semiring not containing Z, over
which the support rationality problem is unde-
cidable?

An answer to the former question was actually al-
ready known at the time [2, Exercise 3.4.1], and was
also given later by G. Chapuy and I. Klimann [3]:
the field Fp(x) is not an SR-semiring for any finite
field Fp with prime p. The latter question of [14]
has been left untouched.

In this note, we first emphasise that the above-
mentioned property implies a characterisation
of integral domains that are at the same time
SR-semirings – this happens if and only if the in-
tegral domain in question is locally finite. We also
notice that this property is further equivalent to all
rational series having context-free supports.

Next, we show that weighted automata assign-
ing zero to precisely the nonempty words from
the equality set of a PCP instance can as well be
constructed over all integral domains that are not
locally finite. A very simple property of such inte-
gral domains is sufficient to establish this result.

Using the same reasoning as over the integers,
this implies that problems such as support ratio-
nality or support universality are decidable over
an integral domain R if and only if R is locally
finite. In particular, the support rationality prob-
lem is undecidable for other than locally finite in-
tegral domains of positive characteristic, providing
an affirmative answer to the second open question
from [14].

Some other closely related decision problems are
shown to be undecidable over other than locally
finite integral domains as well.

Finally, we prove a relatively general undecidabil-
ity result for rational series over other than locally

finite integral domains R, providing sufficient con-
ditions for a class of languages L under which it
is undecidable whether the support of a rational
series over R belongs to L . We show that when L
contains all rational languages and is closed under
left quotients by words, then nontriviality of this
decision problem always implies its undecidability.
In particular, it follows that the context-freeness
of support is undecidable.

2. Preliminaries

Alphabets are always nonempty and finite
in what follows. The empty word over any alphabet
is denoted by ε. Given an alphabet Σ, w ∈ Σ∗, and
c ∈ Σ, we denote by |w| the length of the word w
and by |w|c the number of occurrences of c in w.
If moreover L ⊆ Σ∗, we denote by w−1L the left
quotient w−1L = {x ∈ Σ∗ | wx ∈ L} of L by w.

We denote by N, Z, and Q, respectively, the sets
of all nonnegative integers, integers, and rational
numbers. For each n ∈ N, we write [n] = {1, . . . , n}.

A semiring is an algebra (S,+, ·, 0, 1), where
(S,+, 0) is a commutative monoid, (S, ·, 1) is
a monoid, multiplication distributes over addition
both from left and from right, and a · 0 = 0 · a = 0
holds for all a ∈ S. A ring is a semiring
(R,+, ·, 0, 1) such that R forms an abelian group
with addition; it is said to be commutative if · is.
An integral domain is a nontrivial commutative ring
in which a = 0 or b = 0 whenever a · b = 0. A field
is an integral domain (F,+, ·, 0, 1) such that F\{0}
forms an abelian group with multiplication.

The reader may consult any standard text on ab-
stract algebra, such as [6, 11], for the necessary
background. In what follows, we just briefly review
some basic algebraic concepts used in this article.

The subsemiring of a semiring S generated
by a set X ⊆ S is the smallest subsemiring of S
containing X. Similarly, the subring of a ring R
generated by X ⊆ R is the smallest subring of R
containing X, and the subfield of a field F gener-
ated by X ⊆ F is the smallest subfield of F contain-
ing X. A semiring, a ring, or a field, resp., is said
to be finitely generated if it is generated by a fi-
nite set, and locally finite if its finitely generated
subsemirings, subrings, or subfields, resp., are all
finite. A field is locally finite if and only if it is
locally finite as a ring (or as a semiring).

An element a of a semiring is said to be of infinite
multiplicative order if an = am for n,m ∈ N always
implies n = m.
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The characteristic of a ring R is, in case it
exists, the smallest positive integer n such that∑n
k=1 1 = 0 holds in R; if there is no such n, then

the characteristic of R is said to be zero. A posi-
tive characteristic of an integral domain is always
a prime, as any ring with composite characteristic
n = pq for p, q ∈ [n] \ {1, n} satisfies(

p∑
k=1

1

)
·

(
q∑

k=1

1

)
=

n∑
k=1

1 = 0,

the factors on the left-hand side being nonzero.
The prime subfield of a field (F,+, ·, 0, 1) is

the subfield of F generated by 1. The prime sub-
field of every field of characteristic zero equals Q
(up to isomorphism), while the prime subfield
of a field of positive characteristic p is always (up
to isomorphism) the finite field Fp of order p.

A field K is said to be an extension of a field F
if F is a subfield of K. Given some extension K
of a field F and X ⊆ K, we denote by F[X] the sub-
ring of K generated by X over F, i.e., the sub-
ring of K generated by F ∪X. Similarly, F(X) de-
notes the subfield of K generated by X over F, i.e.,
the subfield of K generated by F∪X. If X is a finite
set X = {α1, . . . , αn}, we also write F[α1, . . . , αn]
for F[X] and F(α1, . . . , αn) for F(X). The ring F[X]
defined above is actually always an integral domain
and F(X) is its field of fractions.

An extension K of a field F is finite if K is finite-
dimensional as a vector space over F.

Given an extension K of a field F, an element
α ∈ K is algebraic over F if it is a root of some
nonzero univariate polynomial over F, and tran-
scendental over F otherwise. An extension K of F is
said to be algebraic if all elements of K are algebraic
over F, and transcendental otherwise. Every finite
extension is algebraic; if X is a finite set of elements
algebraic over F, then F(X) is a finite extension
of the field F.

If α is a transcendental element over F, then
the ring F[α] is isomorphic to the univariate poly-
nomial ring F[x] over F and F(α) is isomorphic
to the field of rational fractions F(x) over F, i.e.,
to the fraction field of the integral domain F[x].

Let K be an extension of F and X ⊆ K. Then X
is said to be algebraically dependent over F if there
exists n ∈ N \ {0} and a nonzero n-variate polyno-
mial p over F such that p(α1, . . . , αn) = 0 for some
pairwise distinct α1, . . . , αn ∈ X. When this is not
the case, X is said to be algebraically independent
over F. Observe that if X = {α1, . . . , αn} is alge-

braically independent over F, then αn is necessarily
transcendental over F(α1, . . . , αn−1).2

For an extension field K of F, a transcendence
basis of K over F is a maximal subset B of K that
is algebraically independent over F. Any two tran-
scendence bases of K over F have the same cardi-
nality – this is known as the transcendence degree
of K over F. If B is a transcendence basis of K
over F, then K is an algebraic extension of F(B).
In particular, every field K is an algebraic extension
of a field obtained by extending the prime subfield P
of K by a transcendence basis of K over P.

If F is a field generated by a set X and P is
the prime subfield of F, then clearly F = P(X).
Moreover, it is easy to see that a transcendence
basis of F over P can always be chosen as a sub-
set of the generating set X. In particular, it fol-
lows that if F is finitely generated, it can be ex-
pressed as F = P(α1, . . . , αn)(α′1, . . . , α

′
t), where

P is the prime subfield of F, n, t ∈ N, the ele-
ments α1, . . . , αn ∈ F form a transcendence basis
of F over P, and α′1, . . . , α

′
t ∈ F are algebraic over

P(α1, . . . , αn).
We now recall the basic facts about noncommu-

tative formal power series and weighted automata;
see [2, 4, 5, 16, 17, 19] for a comprehensive treat-
ment. A formal power series over a semiring S
and alphabet Σ is a mapping r : Σ∗ → S. The value
of r upon w ∈ Σ∗ is denoted by (r, w) instead
of r(w) and called the coefficient of r at w. The se-
ries r itself is written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all series over S and Σ is denoted
by S⟪Σ∗⟫.

Elements of S and words over Σ are natu-
rally identified with power series having at most
one nonzero coefficient (i.e., monomials). Given
r, s ∈ S⟪Σ∗⟫, the sum r + s, Cauchy product r · s,
and Hadamard product r � s are defined by

(r + s, w) = (r, w) + (s, w),

(r · s, w) =
∑

u,v∈Σ∗

uv=w

(r, u) · (s, v),

(r � s, w) = (r, w) · (s, w)

2This follows by noting that any root of a univariate
polynomial over F(α1, . . . , αn−1) is at the same time a root
of a univariate polynomial over F[α1, . . . , αn−1].
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for all w ∈ Σ∗. The support of r ∈ S⟪Σ∗⟫ is the lan-
guage supp(r) = {w ∈ Σ∗ | (r, w) 6= 0}. The char-
acteristic series of a language L ⊆ Σ∗ over S is
the series 1L ∈ S⟪Σ∗⟫ such that (1L, w) = 1 for all
w ∈ L and (1L, w) = 0 for all w ∈ Σ∗ \ L.

A family of series (ri | i ∈ I) from S⟪Σ∗⟫ is
locally finite if I(w) = {i ∈ I | (ri, w) 6= 0} is finite
for all w ∈ Σ∗. The sum

∑
i∈I ri over such family

is defined pointwise: for all w ∈ Σ∗,(∑
i∈I

ri, w

)
=
∑
i∈I(w)

(ri, w).

A weighted (finite) automaton over a semiring S
and alphabet Σ is a quadruple A = (Q, σ, ι, τ),
where Q is a finite set of states, σ : Q× Σ×Q→ S
a transition weighting function, ι : Q→ S an ini-
tial weighting function, and τ : Q→ S a terminal
weighting function.

A run of the automaton A is a (finite)
word γ = q0c1q1c2q2 . . . qn−1cnqn ∈ (QΣ)∗Q with
q0, . . . , qn ∈ Q and c1, . . . , cn ∈ Σ such that
σ(qk−1, ck, qk) 6= 0 holds for k = 1, . . . , n;
we also say that γ is a run from q0 to qn.
The label of γ is the word λ(γ) = c1 . . . cn
and the value of γ is the semiring element
σ(γ) = σ(q0, c1, q1)·σ(q1, c2, q2)·. . .·σ(qn−1, cn, qn).

The set of all runs of A from p ∈ Q to q ∈ Q is
denoted by Rp,q(A). The behaviour of A is a series

‖A‖ =
∑
p,q∈Q

∑
γ∈Rp,q(A)

(ι(p)σ(γ)τ(q)) λ(γ),

where the inner sum is obviously over a locally finite
family of series. We also say that the series ‖A‖ is
realised by A. A series r ∈ S⟪Σ∗⟫ is rational over S
if it is realised by a weighted automaton over S.

Every weighted automaton over S and Σ admits
an equivalent with terminal weights in {0, 1}.

Given a weighted automaton A = (Q, σ, ι, τ)
and q ∈ Q, we denote by ‖A‖q the series ‖Aq‖ re-
alised by the automaton Aq = (Q, σ, ι, τq), where
τq(q) = 1 and τq(p) = 0 for all p ∈ Q \ {q}.

It is well known that the class of rational series
over a semiring S is closed under sum and Cauchy
product; when S is commutative, it is also closed
under Hadamard product.

The class of rational series over S is also
known to be closed under inverse homomorphisms
of free monoids [19, Theorem II.4.3]. More pre-
cisely, let Σ,Γ be alphabets, h : Σ∗ → Γ∗ a homo-
morphism, and r ∈ S⟪Γ∗⟫ a rational series over S.

The series h−1(r) ∈ S⟪Σ∗⟫, defined by

h−1(r) =
∑
w∈Σ∗

(r, h(w))w,

is then rational over S as well. This property can
be easily proved via linear representations [19].3

All closure properties mentioned above are effec-
tive, i.e., they correspond to algorithmically realis-
able constructions on weighted automata.

An instance of the Post’s correspondence problem
(PCP) over a binary alphabet is a triple (Σ, f, g),
where Σ is an alphabet and f, g : Σ∗ → {0, 1}∗
are homomorphisms. The task is to decide whether
there exists a word w ∈ Σ+ such that f(w) = g(w),
i.e., whether the equality set

E(f, g) = {w ∈ Σ∗ | f(w) = g(w)}

of (Σ, f, g) contains a nonempty word. It is well
known that this problem is undecidable [10].

3. Basic Observations

The reductions of the PCP to problems
about supports of rational series are often based
on an interpretation of words over {0, 1} as binary
representations of numbers. In what follows, we
use the same idea over general integral domains.
However, the difference is that 2 = 1 + 1 might
no longer be a convenient base for a numeral system
with digits taken from {0, 1}, as the resulting repre-
sentation might not be unambiguous over integral
domains of positive characteristic. This motivates
the following definition.

Definition 3.1. Let R be an integral domain
and α ∈ R. We say that α is a binary numeral
base over R if the mapping ψα : {0, 1}∗ → R, given
for all n ∈ N and a1, . . . , an ∈ {0, 1} by

ψα(a1 . . . an) = αn +

n∑
k=1

akα
n−k,

is injective.

3As such, it is actually more a property of recognisable
series. Nevertheless, the rational and recognisable series over
free monoids are well known to coincide.
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We now proceed to the fundamental observation
on existence of binary numeral bases, which we later
use to obtain our main results.

Proposition 3.2. Let R be an integral domain.
Then R contains a binary numeral base if and only
if R is not locally finite.

Proof. For all α ∈ R, the mapping ψα sends binary
words to elements of the subring 〈α〉 of R, generated
by α. If R is locally finite, then 〈α〉 is finite, so that
ψα cannot be injective. Thus R contains no binary
numeral base in this case.

Suppose that R is not locally finite. When R
is of characteristic zero, it contains an isomorphic
copy of Z, and 2 clearly is a binary numeral base
over R. More generally, if a rational number q dif-
ferent from 0 and ±1 is in R, then it is a binary
numeral base.4 Indeed, if an element α ∈ R is not
a binary numeral base over R, then

ψα(a1 . . . an) = ψα(b1 . . . bn)

for some n ∈ N and a1, . . . , an, b1, . . . , bn ∈ {0, 1}
such that ak 6= bk for some k ∈ [n].5 This implies
that α is a root of a nonzero polynomial

p(x) =

n∑
k=1

(ak − bk)xn−k

with coefficients in {−1, 0, 1}. Thus α cannot be
a rational number other than 0 or ±1 by the ra-
tional root theorem. It also follows that α can-
not be transcendental over Q, so that if R contains
such element, it is necessarily a binary numeral base
as well.

Let us finally suppose that R is not locally finite
and of characteristic p > 0, which is surely a prime.
The fraction field F of R then has the finite field Fp
as its prime subfield, and Fp is necessarily contained
in R. If all elements of R were algebraic over Fp,
then F would be locally finite, as any finitely gen-
erated subfield of F would be a finite extension
of Fp, which is itself finite. As a consequence, R
would be locally finite as well, which would con-
tradict our assumption. The integral domain R
thus contains at least one element α transcenden-
tal over Fp. This in particular implies that α is not

4Similar results are known in literature; see, e.g., [8].
In what follows, we give a self-contained proof of this fact.

5The length of both words can clearly be assumed to be
the same without loss of generality.

a root of a polynomial with coefficients in {−1, 0, 1}.
Thus, by the same reasoning as in the case of char-
acteristic zero, α is a binary numeral base.

Note that the proof of the preceding theorem tells
us much about how the binary numeral bases over R
might look like.

If R is of characteristic zero, then every rational
number in R except 0 and ±1 is a binary numeral
base. In addition, R might or might not contain
elements transcendental over Q – these are binary
numeral bases as well. The remaining elements of R
might or might not be binary numeral bases.

If R is not locally finite and is of positive char-
acteristic p, then R necessarily contains an element
transcendental over Fp, and every such element is
a binary numeral base. On the contrary, elements
of R algebraic over Fp cannot be binary numeral
bases.

For later reference, let us record one particularly
simple property of binary numeral bases.

Proposition 3.3. Let R be an integral domain
and α ∈ R a binary numeral base over R. Then
α is of infinite multiplicative order.

Proof. Assume for contradiction that αn = αm

for some nonnegative integers n 6= m. Then
ψα(0n) = ψα(0m), contradicting the assumption
of α being a binary numeral base.

We now proceed to the characterisation
of integral domains over which all rational
series have rational or context-free supports.
The result for rationality is already known
in its essence [2, Exercise 3.4.1] – see also [3]
– and the one for context-freeness is a trivial
extension of the same observation.

Nevertheless, we still include a proof
of the proposition below, in which we make
use of a slightly more straightforward approach
compared to [2, 3]. While [2, 3] describe a coun-
terexample over a unary alphabet that works
in the case of positive characteristic only, we give
a counterexample that can be used regardless
of the characteristic, at the price of not being over
a unary alphabet anymore.6

6G. Chapuy and I. Klimann [3] have proved that univari-
ate rational series over fields of characteristic zero always
have rational supports.
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Proposition 3.4. Let R be an integral domain.
Then the following are equivalent:

(i) The support of every rational series over R
is rational.

(ii) The support of every rational series over R
is context-free.

(iii) The integral domain R is locally finite.

Proof. It is well known that all rational series over
locally finite semirings have rational supports [13].
It thus remains to show that in case the integral
domain R is not locally finite, there is a rational
series over R whose support is not context-free.

Let us suppose that R is not locally finite.
By Proposition 3.2, there is a binary numeral
base α ∈ R over R. Let Σ = {a, b, c}. The series
ra,b, ra,c, rb,c ∈ R⟪Σ∗⟫, given for all w ∈ Σ∗ by

(ra,b, w) = α|w|a − α|w|b ,
(ra,c, w) = α|w|a − α|w|c ,
(rb,c, w) = α|w|b − α|w|c ,

are then clearly rational over R. The series

r = ra,b � ra,c � rb,c,

satisfying

(r, w) = (α|w|a −α|w|b)(α|w|a −α|w|c)(α|w|b −α|w|c)

for all w ∈ Σ∗, is thus rational as well. As α is
of infinite multiplicative order by Proposition 3.3
and as R is an integral domain, it follows that (r, w)
is zero if and only if at least one of the equali-
ties |w|a = |w|b, |w|a = |w|c, or |w|b = |w|c holds.
In other words,

supp(r) = {w ∈ Σ∗ | |w|a 6= |w|b 6= |w|c 6= |w|a} ,

which can easily be seen to be not context-free.

4. The Main Results

We are now prepared to generalise the stan-
dard undecidability results for rational series over Z
to rational series over other than locally finite
integral domains. The main tool that we use to es-
tablish these results is a construction of a weighted
automaton assigning zero to precisely the nonempty
words from the equality set of a given PCP instance.
This is described in Theorem 4.2 below and mimics
the one over the integers [14], while using the ob-
servations of the previous section. The following
proposition captures the gist of this construction.

Proposition 4.1. Let R be an integral domain,
α ∈ R, and Γ = {0, 1}. The series Ψα ∈ R⟪Γ∗⟫,
defined for all x ∈ Γ∗ by

(Ψα, x) = ψα(x),

is rational over R.

Proof. The series Ψα is realised by the weighted
automaton Aα in Fig. 1.

Γ:1 Γ:α

1:1

Figure 1: The automaton Aα. The notation Γ:β
with β ∈ R is used as a shorthand for two transitions la-
belled by 0:β and 1:β. Nonzero initial and final weights
are always 1 and they are omitted in the diagram.

Indeed, given x = a1 . . . an with a1, . . . , an ∈ Γ,
the run of Aα that reads the entire x in the right
state is of value αn. For each k ∈ [n] with ak = 1,
the run of Aα that reads a1 . . . ak−1 using the loop
at the left state, then moves to the right state
upon ak, and finally reads the rest of the word,
is of value αn−k. As these are the only runs whose
values contribute to (‖Aα‖, x), we obtain

(‖Aα‖, x) = αn +

n∑
k=1

akα
n−k = ψα(x),

since the nonzero initial and terminal weights are
all equal to 1.

Theorem 4.2. Let R be an integral domain that
is not locally finite. Given an instance (Σ, f, g)
of the PCP, it is possible to algorithmically con-
struct a weighted automaton Af,g(R) over R and Σ
such that

supp (‖Af,g(R)‖) = Σ∗ \ (E(f, g) \ {ε}) .

Proof. By Proposition 3.2, there exists α ∈ R that
is a binary numeral base over R. Using the closure
properties of rational series and Proposition 4.1,
it follows that one can algorithmically construct
a weighted automaton realising the series

r = f−1(Ψα)− g−1(Ψα) + 1
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that satisfies (r, ε) = 1 and

(r, w) = ψα(f(w))− ψα(g(w))

for all w ∈ Σ+. By injectivity of ψα for a binary
numeral base α, it follows that (r, w) = 0 if and only
if w is a nonempty word such that f(w) = g(w).
The weighted automaton over R and Σ constructed
for r can thus be taken for Af,g(R).

The possibility to algorithmically construct
the automaton Af,g(R) from the above theorem
allows us to directly generalise several standard
undecidability results for rational series over the in-
tegers [16, 17, 14] to rational series over an arbitrary
integral domain R that is not locally finite.

Corollary 4.3. Let R be an integral domain that
is not locally finite. For a rational series r over R
and some alphabet Σ, given by a weighted automa-
ton, it is impossible to decide:

(i) Whether supp(r) = Σ∗.

(ii) Whether there exists w ∈ Σ∗ such that
(r, w) = β for some fixed β ∈ R.7

(iii) Whether supp(r) is cofinite in Σ∗.

(iv) Whether supp(r) is rational.

Moreover, all these problems are decidable over
locally finite integral domains.

Proof. Consider an arbitrary Post’s correspondence
problem instance (Σ, f, g) and the corresponding
weighted automaton Af,g(R) over R and Σ that
can be algorithmically constructed by Theorem 4.2.
The instance (Σ, f, g) has a solution if and only if
E(f, g) contains a nonempty word, which happens
if and only if E(f, g) is infinite. Thus, by the prop-
erty of Af,g(R) described in Theorem 4.2, existence
of a solution for (Σ, f, g) is further equivalent to uni-
versality and cofiniteness of supp(‖Af,g(R)‖) in Σ∗.

The problems (i) and (iii) are thus undecidable.
Moreover, the problem (ii) can clearly be reduced
to (i) by constructing an automaton for the series

r − β · 1Σ∗ .

7A slight modification of this problem, in which β is a part
of the input, has been considered as the so-called ∃-exact
problem for tropical automata by S. Almagor, U. Boker,
and O. Kupferman [1]. The ∃-exact problem for weighted
automata over other than locally finite integral domains is
thus undecidable as well.

The problem (ii) is thus undecidable as well.
Finally, rationality of E(f, g) is known to be unde-
cidable [18], while it is clearly equivalent to ratio-
nality of supp(‖Af,g(R)‖) – undecidability of (iv)
is established as well.

On the other hand, it is well known that
weighted automata over locally finite semirings
– and thus also over locally finite integral do-
mains – are determinisable using a generalised
subset construction [15]. The first three prob-
lems can clearly be decided using the automa-
ton resulting from this construction. Rationality
of supp(r) is trivial over locally finite integral do-
mains by Proposition 3.4 (and in fact for all locally
finite semirings as well [13]).

Note that using some suitable encoding, it is
possible to reduce the undecidable problems from
the above corollary to their counterparts, in which
Σ is a fixed two-letter alphabet.8 All four problems
thus remain undecidable over binary alphabets.

The undecidability of (iv) for other than locally
finite integral domains of positive characteristic af-
firmatively answers an open question of D. Kirsten
and K. Quaas [14], who have asked whether there
exists a semiring not containing Z, for which
the support rationality problem is undecidable.

Given undecidability of support rationality
for rational series over other than locally finite
integral domains, it is natural to ask whether it
is possible to decide membership of the support
of a given rational series to some other language
classes. Similar methods as we have used for sup-
port rationality can sometimes be used to estab-
lish undecidability of such problems. For instance,
A. Salomaa [18] has also proved that it is unde-
cidable whether the equality set of a given PCP
instance is context-free, implying undecidability
for the membership of supports to the class of com-
plements of context-free languages.

However, undecidability results for membership
of PCP equality sets to language classes tend to be
quite technical.9 For this reason, we now better
adopt a different approach to study decidability

8For problems (i), (iii), and (iv), this involves making
sure that nonzero values are always assigned to invalid code-
words; for problem (ii), some value other than β has to be
assigned to such words.

9For instance, already the proof of A. Salomaa [18]
for context-free languages is much more involved than an ob-
vious easy proof for the rational languages.
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questions related to supports, generalising the one
of D. Kirsten and K. Quaas [14].

In what follows, we prove a relatively general un-
decidability result, providing sufficient conditions
under which it is impossible to decide whether
the support of a rational series over an integral do-
main belongs to a language class L . The following
lemma is needed for the proof of this result.

Lemma 4.4. Let F,K be fields such that K is
a finite extension of F. Let (β1, . . . , βm) with
m ∈ N \ {0} be a basis of K as a vector space over F.
Every rational series r over K then satisfies

r =

m∑
k=1

βkrk

for some rational series r1, . . . , rm over F.

Proof. Let A = (Q, σ, ι, τ) be a weighted automa-
ton over K and alphabet Σ such that ‖A‖ = r.
Without loss of generality, let us assume that
τ(q) ∈ {0, 1} for all q ∈ Q.

We now describe a construction of a weighted
automaton B = (Q× [m], σ′, ι′, τ ′) over F, in which
the definition of τ ′ is left unspecified. For every
q ∈ Q, let aq,1, . . . , aq,m be the unique elements of F
such that

ι(q) = aq,1β1 + . . .+ aq,mβm,

and set
ι′(q, `) = aq,`

for ` = 1, . . . ,m. Similarly, for each p, q ∈ Q,
c ∈ Σ, and k ∈ [m], let b(p,c,q),k,1, . . . , b(p,c,q),k,m be
the unique elements of F such that

σ(p, c, q)βk = b(p,c,q),k,1β1 + . . .+ b(p,c,q),k,mβm.

For all (p, c, q) ∈ Q× Σ×Q and k, ` = 1, . . . ,m, set

σ′ ((p, k), c, (q, `)) = b(p,c,q),k,`.

We prove by induction on |w| that for all w ∈ Σ∗,

(‖A‖q, w) =

m∑
`=1

(
‖B‖(q,`), w

)
β` (1)

holds for every q ∈ Q. For w = ε, one has

(‖A‖q, ε) = ι(q) =
m∑
`=1

aq,`β` =

=

m∑
`=1

ι′(q, `)β` =

=

m∑
`=1

(
‖B‖(q,`), ε

)
β`.

For x ∈ Σ∗ and c ∈ Σ, the induction hypothesis
gives us

(‖A‖q, xc) =
∑
p∈Q

σ(p, c, q) (‖A‖p, x) =

=
∑
p∈Q

σ(p, c, q)

m∑
k=1

(
‖B‖(p,k), x

)
βk =

=
∑

(p,k)∈Q×[m]

(
‖B‖(p,k), x

)
σ(p, c, q)βk =

=
∑

(p,k)∈Q×[m]

(
‖B‖(p,k), x

) m∑
`=1

b(p,c,q),k,`β` =

=

m∑
`=1

β`
∑

p∈Q×[m]

σ′ (p, c, (q, `)) (‖B‖p, x) =

=

m∑
`=1

(
‖B‖(q,`), xc

)
β`,

finishing the proof of (1).
Finally, observe that (1) implies

‖A‖q =

m∑
k=1

βk‖B‖(q,k)

for all q ∈ Q. Thus

r = ‖A‖ =
∑
q∈Q
τ(q)=1

‖A‖q =

=
∑
q∈Q
τ(q)=1

m∑
k=1

βk‖B‖(q,k) =

=

m∑
k=1

βk
∑
q∈Q
τ(q)=1

‖B‖(q,k),

so that it suffices to set

rk =
∑
q∈Q
τ(q)=1

‖B‖(q,k)

for k = 1, . . . ,m. As r1, . . . , rm are clearly rational
over F, the lemma is proved.
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To prove Theorem 4.5 below, we need to recall
the following property [19, Theorem III.2.2]: if R
is an integral domain with fraction field F and r is
a rational series over F, then there exists a rational
series s over R such that supp(s) = supp(r). In-
deed, let A be a weighted automaton over F such
that ‖A‖ = r. Write the weights of A as fractions
of elements of R, and let M be the product of de-
nominators of all these fractions. Then it is easy
to see that

s =
∑
w∈Σ∗

(
M |w|+2(r, w)

)
w

is a rational series over R satisfying
supp(s) = supp(r), and that a weighted au-
tomaton over R realising s can be algorithmically
constructed from A.

Theorem 4.5. Let R be an integral domain that is
not locally finite and L a class of languages such
that the following three conditions hold:

(i) All rational languages are in L .

(ii) The class L is closed under left quotients
by words.

(iii) There exists a rational series r over R
and some alphabet Γ such that supp(r) 6∈ L .

Then it is impossible to decide whether the support
of a rational series over R, given by a weighted
automaton, is in L .

Proof. Let F be the fraction field of R and P its
prime subfield. Consider the series r from (iii),
and let A be a weighted automaton over R such
that ‖A‖ = r. Then r is in particular rational over
the subfield of F finitely generated by the weights
of A. This subfield can then be written
as P(α1, . . . , αn)(α′1, . . . , α

′
t), where α1, . . . , αn ∈ F

for n ∈ N form its transcendence basis over P,10
and where α′1, . . . , α

′
t for t ∈ N are algebraic

over P(α1, . . . , αn). Thus P(α1, . . . , αn)(α′1, . . . , α
′
t)

is a finite extension of P(α1, . . . , αn).
Let (β1, . . . , βm) with m ∈ N \ {0} and β1 = 1

be a basis of P(α1, . . . , αn)(α′1, . . . , α
′
t) as a vector

space over P(α1, . . . , αn). By Lemma 4.4, there are
rational series r1, . . . , rm over P(α1, . . . , αn) such
that

r =

m∑
k=1

βkrk.

10In particular, αk is transcendental over P(α1, . . . , αk−1)
for k = 1, . . . , n.

Two cases can now be distinguished.
When n = 0, the series r is rational over a fi-
nite algebraic extension of P. As the support of r
is not rational by (i), it follows by Proposition 3.4
that P = Q, so that R is of characteristic zero.
The series r1, . . . , rm are thus rational over Q.
Now, apply the construction similar to the one
from above the statement of this theorem: letM be
the product of denominators of fractions appearing
as weights in automata for r1, . . . , rm; then

s =
∑
w∈Γ∗

(
M |w|+2(r, w)

)
w

is a rational series over F with the same support
as r, while it can be written as

s =

m∑
k=1

βksk

for some series s1, . . . , sk rational over Z.
When n > 0, write

P(α1, . . . , αn) = P(α1, . . . , αn−1)(αn)

and the same reasoning as above gives us existence
of a rational series s′ over F with the same support
as r such that

s′ =

m∑
k=1

βks
′
k

for s′1, . . . , s′k rational over P(α1, . . . , αn−1)[αn].
Let us now consider an arbitrary PCP instance

(Σ, f, g). If n = 0 – i.e., R is necessarily of charac-
teristic zero – it follows that 2 is a binary numeral
base over R. As already observed in the proof
of Theorem 4.2, the series

rf,g = f−1(Ψ2)− g−1(Ψ2) + 1

satisfies (r, w) = 0 if and only if w is a nonempty
word such that f(w) = g(w). Moreover, for

C = max{|f(c)|, |g(c)| | c ∈ Σ},

it is easy to see that

|(rf,g, w)| ≤ 2C|w|+1

for all w ∈ Σ∗. Let # 6∈ Σ ∪ Γ. The series

sf,g = rf,g#1Γ∗ +

( ∑
w∈Σ∗

2C|w|+2 w

)
#s

9



then satisfies (sf,g, x) = 0 if and only if either
x 6∈ Σ∗#Γ∗, or x = u#v, where u ∈ Σ+ is
a nonempty word such that f(u) = g(u) and v ∈ Γ∗

is such that (s, v) = (r, v) = 0.
For n > 0, use the transcendental binary numeral

base αn and

r′f,g = f−1(Ψαn
)− g−1(Ψαn

) + 1

instead. For C as above, we observe that (r′f,g, w)
is a polynomial from P[αn] ⊆ P(α1, . . . , αn−1)[αn]
of degree at most C|w| for all w ∈ Σ∗. It thus
follows that for # 6∈ Σ ∪ Γ, the series

s′f,g = r′f,g#1Γ∗ +

( ∑
w∈Σ∗

αC|w|+1
n w

)
#s′

again satisfies (s′f,g, x) = 0 if and only if either
x 6∈ Σ∗#Γ∗, or x = u#v, where u ∈ Σ+ is
a nonempty word such that f(u) = g(u) and v ∈ Γ∗

is such that (s′, v) = (r, v) = 0.
The series sf,g and s′f,g defined above are clearly

rational over F and realised by automata algorith-
mically constructible from (Σ, f, g). By what has
been said in the discussion preceding the state-
ment of this theorem, in both cases it is possible
to algorithmically construct a weighted automa-
ton B over R such that supp(‖B‖) = supp(sf,g)
or supp(‖B‖) = supp(s′f,g), respectively.

When (Σ, f, g) has no solution, the support
of ‖B‖ equals Σ∗#Γ∗ – this language is rational,
and thus in L by (i). On the other hand, when
(Σ, f, g) has a solution given by w ∈ Σ+ such that
f(w) = g(w), then clearly

(w#)−1 supp(‖B‖) = supp(r) 6∈ L ,

so that
supp(‖B‖) 6∈ L

by our assumption (ii). As a result, PCP can be
reduced to the problem of deciding whether the sup-
port of a rational series over R is in L , implying
that the latter problem is undecidable.

As a consequence, we can now establish undecid-
ability of support context-freeness for rational se-
ries over other than locally finite integral domains;
it is easy to see that undecidability of support ratio-
nality, already established in Corollary 4.3, follows
by Theorem 4.5 in the same way.

Corollary 4.6. Let R be an integral domain that
is not locally finite. Then it is impossible to decide,
for a rational series r over R given by a weighted
automaton, whether supp(r) is context-free.

Proof. All rational languages are context-free
and the class of all context-free languages is closed
under left quotient by words. Moreover, we have
seen in Proposition 3.4 that there is a rational series
over R whose support is not context-free. The un-
decidability of support context-freeness for rational
series over R thus follows by Theorem 4.5.

Similarly as for Corollary 4.3, it is easy to see that
the undecidability result of Corollary 4.6 actually
already holds over a two-letter alphabet.
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