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Oznacenia a konvencie

Ciselné mnoziny. Ako N, Z, Q a R postupne oznacujeme mnoziny vietkych prirodzenych ¢&isel
vrdtane nuly, vSetkych celych ¢isel, vSetkych racionalnych ¢&isel a vSetkych redlnych c¢isel. Komplexné
¢isla zavedieme v prvej kapitole a ich mnozinu budeme oznacovat symbolom C.

Realne cCisla. Nech a € R je dana konstanta. Ak nie je povedané inak, treba zapisy ako ,,nech x > a*,
,hech z > a“, ,nech x < a“, alebo ,nech x < a* chéapat tak, ze x je nejaké redlne Cislo splhajuce dani
nerovnost.

Intervaly. Pre uzavreté intervaly pouzivame notaciu [a,b] a pre otvorené intervaly notaciu (a,b).
Zlava resp. sprava uzavreté intervaly potom zapisujeme ako [a,b) resp. (a,b)].

MnozZinové relacie a operacie. Neostru inkliziu oznacujeme vzdy ako ,,C“ resp. ,,0%; naopak
ostru inkltziu vzdy ako ,,C% resp. ,,2“. Pre operaciu mnozinového rozdielu pouzivame symbol ,\*“.

Nula na nultd. V celom texte pracujeme s konvenciou 0° = 1, ktora v ramci matematickej analyzy
nie je Gplne samozrejma. Nam vSak tato konvencia, vSeobecne prijimané napriklad v kombinatorike,
nebude nijak prekazat — naopak povedie k podstatnému zjednoduSeniu niektorych zapisov.
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Kapitola 1

Komplexné cisla a komplexna rovina

U ¢itatela uz predpokladame uréittt obozndmenost s komplexnymi &islami. Velka cast tejto kapitoly
tak tvori opakovanie znameho materialu; jej prezentacia je sCasti ovplyvnené ucebnicou [8].

1.1 Komplexné cisla a ich geometricka interpretacia

Komplexné ¢isla mozno zaviest roznymi spésobmi — azda najrychlejsie by bolo povedat, Ze ide o prvky
pola R[i]/(i? + 1), kde R[] oznacuje okruh polynémov o premennej i s realnymi koeficientmi; tym je
potom uréend aj aritmetika komplexnych ¢&isel.

Za ucelom zopakovania zakladnych vlastnosti komplexnych ¢isel ale bude tucelnejsie definovat tento
¢iselny obor elementarne. Komplexnym ¢islom tak budeme rozumiet dvojicu redlnych ¢isel a a b, ktora
zapisujeme ako a-+ib alebo a+bi.! Komplexné ¢islo a+i0 stotoziujeme s realnym ¢islom a a komplexné
¢islo 0+14b piSeme aj ako ib alebo bi; podobne namiesto a+i1 budeme vécginou pisat len a+14 a namiesto
0+ 41 len 4. Mnozinu vSetkych komplexnych ¢isel oznac¢ujeme symbolom C a mnoZinu realnych ¢isel R
chapeme — prostrednictvom spomenutého stotoznenia a + ¢0 s ¢islom a — ako podmnozinu mnoziny C.
Cisla a4+ ib a ¢+ id povazujeme za rovné — a piSeme a + ib = ¢+ id — ak a = ¢ a stcasne b = d.

Pre komplexné ¢&islo z = a + b nazyvame realne ¢islo a jeho redlnou zloZkou a piSeme Rez := a.
Podobne redlne ¢&islo b nazyvame imagindrnou zloZkou komplexného ¢&isla z a kladieme Imz := b.
Reprezentacia komplexnych ¢isel ako usporiadanych dvojic — teda pomocou ich redlnej a imaginarne;j
zlozky — sa niekedy nazyva aj ich kartezidnskou reprezentdciou. Komplexné ¢islo z tu totiz stotoznu-
jeme s bodom — alebo ekvivalentne vektorom — (Rez,Im z) v rovine R2, ktora sa v tomto kontexte
nazyva aj komplexnou rovinou alebo Gaussovou rovinou; grafické znézornenie ¢isla bodom v rovine,
tak ako na obrazku 1.1, sa v literatture vyskytuje aj pod nazvom Argandov diagram.

Im z
o—3+13

3+1i2e

Obr. 1.1: Grafické reprezentacia ¢isel 2, 3 4+ 2, —3 4+ i3 a —i v komplexnej rovine.

!Na tomto mieste sa Easto uvadza, Ze i je prvok spliiajici rovnost i2 = —1. To bude samozrejme pravda, ale nateraz
nie je nutné zdoraziiovat to explicitne. V naSom ponimani bude ¢ len skratenym zapisom komplexného ¢&isla 0 + il
a rovnost i> = —1 vyplynie z pravidiel aritmetiky komplexnych &isel, ktori onedlho zavedieme (operéacie na komplexnych
¢islach ale budeme samozrejme cielene definovat tak, aby rovnost 2 = —1 bola splnend).



4 1.2 Aritmetika komplexnych cisel

Coskoro uvidime, ze oproti kartezianskej reprezentacii komplexnych ¢isel byva casto vyhodnejsia
ich polarna reprezentacia.

1.2 Aritmetika komplexnych cisel
Operacie scitania a ndsobenia komplexnych ¢isel definujeme pre vetky a, b, ¢,d € R nasledovne:

(a+1ib) + (c+1id) :== (a+¢) +i(b+ d),
(a+ib)(c+ id) := (ac — bd) + i(ad + bc).

Je jasné, Ze ¢islo 0 je neutralne vzhladom na séitanie a ¢islo 1 je neutralne vzhladom néasobenie.
Pre kazdé komplexné ¢islo z = a + b kladieme —z := (—a) + i(—b) a v pripade z # 0 tiez piSeme
1/z := (a/(a® +b%))+i(=b/(a®+b?)); lahko pritom vidiet, Ze z4 (—z) = 0 a z(1/z) = 1. Citatel Tahko
overi, ze mnozina C — s vySsie definovanymi operaciami s¢itania a nasobenia — tvori pole. Definicie
operacii ako od¢itanie alebo delenie st uZ potom rovnaké ako v kazdom poli. Vlastnosti pola budeme
pri praci s komplexnymi ¢islami volne vyuzivat.

Umocriovanie komplexnych Cisel na prirodzeny exponent je tak definované obvyklym induktivnym
sposobom, rovnako ako aj v I'ubovolnom inom poli: pre vietky z € C je 20 = 1 a 2"t! = 272
pre vietky n € N. Z uvedenych definicii zrejme vyplyva aj rovnost i2 = —1.

Absolitnu hodnotu komplexného ¢isla z = a + b definujeme ako bezni euklidovska vzdialenost
bodu (a, b) v komplexnej rovine od bodu (0,0) — teda

z| == Va? + b2.
2| = v

Orientovany uhol 6, ktory v komplexnej rovine zviera kladna realna os s vektorom (a, b), nazyvame
argumentom? komplexného &isla z = a + ib. Tento uhol nie je uréeny jednoznacne: pre z # 0 sa moze
1isit o celo&iselné nasobky &sla 27 a pre z = 0 mozZe byt T'ubovolny. Casto si vystacime s l'ubovolnym
z moznych argumentov 6, pripadne je jeho konkrétna volba zrejmé z kontextu — v takom pripade
mozeme pisat 0 =: arg z. MnoZinu vsetkych argumentov Cisla z ozna¢ime [arg z].

Komplexne zdruZenym c¢islom k ¢islu z = a 4 ib nazveme ¢islo Z := a — tb. Je zrejmé, Ze zobrazenie
=: C — C dané ako -: z +— Z je bijektivne. Z ¢asti (iii) a (iv) nasledujiceho tvrdenia vyplyva, ze
v skuto¢nosti ide o automorfizmus pola C — ¢iZe o izomorfizmus z C do C.

Tvrdenie 1.2.1. Nech z,w € C. Potom:
() ool = |2l (i) FFo=z4+m (1) T=2 (vid) |21 = I3l
(ii) |z|* = 27, (v) zw = zZw; (vi) z+Z=2Rez; (viii) (Rez)?+(Imz2)? = |z|?.

Dokaz. Nech z =a +1b a w = ¢+ id. Potom

|zw| = |(ac — bd) + i(ad + be)| = \/(ac — bd)? + (ad + be)? =
= Va2e = 2abed + V2d? + a2d? + 2abed + b2 = /a2 (2 + d2) + b2(2 + d?) =
= V(@) (2 + ) = Va2 + 2/ + @ = |2||w],

¢o dokazuje rovnost (i). Dalej

2
zE:(a+ib)(a—ib):a2+b2= (\/m) :|Z|2

?Kladna realnu os tu chapeme ako pociatoéné rameno tohto orientovaného uhlu — ide teda o uhol, o ktory je potrebné
otocit kladnu redlnu os proti smeru hodinoviych ruciciek tak, aby vznikla polpriamka jednoznaéne urcena smerovym
vektorom (a, b).
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a dokdzana je aj rovnost (ii). Jednoduchy dokaz rovnosti (iii) prenechavame ¢itatelovi. Na dokaz
rovnosti (iv) si sta¢i v8imnut, ze

Zw = (a —ib)(c — id) = (ac — bd) — i(ad + bc) = (ac — bd) + i(ad + bc) = Zw.

Dokaz rovnosti (v) aZ (viii) je napokon celkom trivialny. O

Okrem prave dokazanych identit sa pri praci s komplexnymi ¢islami uzito¢né aj nasledujtce nerov-
nosti — nerovnost (ii) sa zvykne nazyvat aj trojuholnikovou nerovnostou.

Tvrdenie 1.2.2. Nech z,w € C. Potom:
(1) [Rez| <|z| a Imz| < |z[;
(it) |z +w| < [2| + |wl;

(112) |z +w| = ||z — |w]|.

Dékaz. Nerovnosti (i) st dosledkom vztahu [Re z|? + [Im z|*> = (Re 2)? + (Im 2)? = |2|? a nezdpornosti
absolutnych hodnét. Na dokaz nerovnosti (ii) staci — vdaka nezépornosti ¢isel |z + w| a |z| + |w| —
ukézat, ze |z +w|? < (|2 + |w|)?. Tu viak mame

lz4+wP=C+w(z+w)=(E+w)EZ+o) = |2]* + v+ (2@ + wz) =
= |2)? + |w|* + (2w + zw) = 12|? + |w]* + 2Re (2@) < |2)? + |w|* + 2 |2w| =
= |21? + [wl? + 2|2| [@] = |21 + |w]? + 22| |w| = (2] + [w])*.
Napokon si vSimnime platnost nasledujicich dvoch nerovnosti:

2| = [w] = |z + w = w| = Jw] < |z + w[ + | -w| = |w| = |z + wl,
w] = [z = Jw + 2z = 2| = [2| < Jw+ 2| +[=2] = [z] = |z + w],

Ked7ze je ||z| — |w]|| vZdy rovné niektorej spomedzi hodnot |z| — |w| a |w| — |z|, dostavame ako dosledok
aj poslednu z dokazovanych nerovnosti. O

1.3 Goniometricky a exponencialny tvar komplexného cisla

Komplexnému &slu z = a + b zodpoveda bod komplexnej roviny s kartezidnskymi stradnicami (a, b).
Rovnaky bod komplexnej roviny mozeme zadat aj v poldrnych siradniciach — je totiz jednoznacne
uréeny svojou absolitnou hodnotou |z| = r a hociktorym zo svojich argumentov argz = 6. Lahko
pritom vidiet, ze a = rcos@ a b = rsinf. Cislo z teda mozeme zadat v goniometrickom tvare

z =r(cosf +isind).

Takyto zapis je relativne zdlhavy:; budeme preto ¢astejsie pouzivat ekvivalentny ezponencidlny tvar,
pri ktorom definujeme
e = cos @ + isin#;
namiesto (=% budeme pisat aj e~*. Komplexné ¢islo z spliiajice |z2| = r a argz = 0 teda moZno
v exponencidlnom tvare pisat ako
z=re

Zapis komplexného ¢isla v exponencialnom tvare je pre nas v tomto momente ¢isto formélny a zatial
nie je ni¢im podloZené interpretovat ho ako umociiovanie Eulerovho ¢isla na komplexny exponent —
v skuto¢nosti ani zatial neméme definované, ¢o to umochovanie na komplexny exponent je.

Exponencidlnu funkciu e® komplexnej premennej z definujeme az v tretej kapitole; tym potom
aj odovodnime zmysluplnost vysSie zavedenej notacie. Na formdlnej drovni vSak s exponencialnym
tvarom mozeme pracovat uz teraz — v rameci nasledujticeho tvrdenia totiz overime, Ze sa prinajmenSom
pri najbeznejsich operéciach sprava tak, ako by sme od exponencidlnej funkcie ocakévali.
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Tvrdenie 1.3.1. Nech 0,¢ € R a k € Z. Potom:
(i) (&)(c') = 0+9)
(i7) (1/e”) =e7";
(ii1) (e?)F = k0.
Dékaz. 7 definicie exponencidlneho tvaru a nasobenia komplexnych ¢éisel, ako aj zo sti¢tovych vzorcov
pre goniometrické funkcie dostavame
() (') = (cos 0 + isin 0)(cos ¢ + i sin @) = cos f cos ¢ — sin O sin ¢ + i(sin O cos ¢ 4 cos O sin ¢) =
= cos(f + @) + isin(f + ¢) = e'0F9),
7 definicie prevratenej hodnoty, rovnosti sin? @ + cos?§ = 1, parnosti funkcie kosinus a neparnosti
funkcie sinus dalej
1 1 cos 0 Y —sinf
il = i
e cosf+isinf cos?f+sin?f  cos? 6 +sin? @
= cos(—0) + isin(—0) = e .

=cosf —isinf =

Vzorec pre umociiovanie s vyuZitim rovnosti (i) a (i) Tahko dokdZeme matematickou indukciou. [

S pouzitim exponencidlneho — alebo ekvivalentne goniometrického — tvaru komplexnych ¢isel tak
mozeme nasobit, delit a umocnovat omnoho jednoduchsSie, neZ pri ich kartezidnskej reprezentacii.
Pre z = re? a w = se'® napriklad

Zw = rsei(0+¢),

2w = (r/s)e’0=9) (ak s #0),

2k = pheikt (pre vSetky k € N; v pripade, ze r # 0, aj pre vietky k € Z).

7 definicie exponencialneho tvaru je zrejmé, ze napriklad € = 1, ¢™/2 = j, ™ = —1 a €®7/2 = —j

(obrazok 1.2). Okrem iného tak aj dostdvame ,formalnu verziu“ Eulerovej rovnosti '™ + 1 = 0.

Im z

Obr. 1.2: Cisla ¢ = 1, em/2 =, ™ = —1aed™/2 = —.

Zo vzorca pre umochovanie komplexnych ¢isel v exponencidlnom tvare vyplyva ako jednoduchy
dosledok aj de Moivreova veta.

Tvrdenie 1.3.2 (De Moivreova veta). Nech 0 € R a k € Z. Potom (cos ) + isin 0)* = cos k6 +i sin k6.
Dokaz. Je (cosf + isinf)* = (eie)k = e = cos kf + i sin k6. O

Spomenme este, ze ako bezprostredny doésledok periodicity funkcii sinus a kosinus — alebo alterna-
tivne ako dosledok rovnosti €™ = 1 a vzorca pre nasobenie komplexnych &isel v exponencidlnom tvare
— dostavame pre vietky k € Z rovnost e = ¢! (0+26m) Nayyge e = ¢/ (9+%) prave vtedy, ked ¢ = 2kn
pre nejaké k € Z.
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1.4 Komplexné odmocniny jednej

Dolezitymi Specidlnymi komplexnymi ¢islami st n-té odmocniny jednej pre n € N\ {0}, ktorymi
rozumieme rieSenia rovnice

2" =1 (1.1)
o neznamej z. Nech z = re?, kde r > 0 a 0 € R. Zistujeme, Ze rovnica (1.1) je ekvivalentna rovnici

rhe™ = 1.
Dve komplexné &isla sa mozu rovnat iba vtedy, ked sa rovnaja ich absolutne hodnoty; musi teda byt
r" = 1, z Goho pre nezadporné realne ¢islo r nutne vyplyva r = 1. Preto e = 1, ¢o je po prevedeni
do goniometrického tvaru ekvivalentné poziadavke

cosnf +isinnf = 1.

KedZe dve komplexné ¢isla sa rovnaju prave vtedy, ked sa rovnaji ich redlne a imaginarne zlozky,
zistujeme, Ze musia stucasne platit rovnosti cosnf = 1 a sinnf = 0, z ¢oho vyplyva

0 = 2km /n, kde k € Z.
RieSeniami rovnice (1.1) s teda prave vietky komplexné ¢isla e2km/n pre k € 7. 7 pozorovani na konci
predchéadzajuceho oddielu ale vyplyva, Ze staci uvazovat argument 6 € [0, 27). RieSeniami rovnice (1.1)
tak st prave vietky komplexné &isla e2K™/™ pre k = 0,...,n — 1, ktoré s po dvoch rézne a ktoré
nazyvame n-tymi komplexnymi odmocninamsi jednej. Napriklad na obrazku 1.2 st teda znézornené
v8etky Stvrté komplexné odmocniny jednej.

1.5 Zaklady topolégie komplexnej roviny

Budeme sa teraz zaoberat elementéarnou topolégiou komplexnej roviny — ¢ize pojmami ako okolie,
otvorend a uzavretd mnozina, ¢i hromadny bod. To nam napriklad neskér umozni definovat limitu
a spojitost funkcii komplexnej premennej. Velku ¢ast tohto oddielu moZno zhrnut do jediného pozoro-
vania: mnozina C tvori, spolo¢ne s beznou euklidovskou metrikou, Gplny metricky priestor. Citatelovi
obozndmenému so zékladmi teérie metrickych priestorov sa tak niektoré paséze nasledujiceho textu
moézu pravom zdat déverne znamymi. O zékladoch teérie metrickych priestorov a topologie sa mozno
docitat napriklad v Simmonsovej u¢ebnici [10].

Metrické priestory v tomto texte vyuzivat nebudeme a k topologii komplexnej roviny budeme
pristupovat ad hoc. Citatela opit odkazujeme aj na ucebnicu 8]

Vicsina matematickej analyzy, ak nie matematicka analyza cela, je nejakym sposobom spéta s kon-
ceptom blizkosti. NajbeZnejsi sposob jeho podchytenia zévisi od moZnosti merat vzdialenost medzi
jednotlivymi bodmi, pri¢om v komplexnej rovine sa na tento tcel obycajne pouziva bezné euklidovska
vzdialenost. Vzdialenostou &isel z,w € C teda nazveme hodnotu

d(z,w) := |z — w|.

Oznacenie d(z,w) zvy¢ajne v budicnosti pouzivat nebudeme a bude sa rozumiet samosebou, Ze |z —w|
je vzdialenost ¢isel z a w.

V redlnej analyze sa pod okolim bodu a € R rozumie otvoreny interval (a—e, a+¢) pre nejaké € > 0.
Tento interval obsahuje prave vsetky realne ¢isla vzdialené od a o menej ako €. Podobne definujeme
uzavreté alebo prstencové okolie bodu a. V nasledujtcej definicii tieto pojmy priamociaro rozsirime
do oboru komplexnych ¢isel.



8 1.5 Zaklady topolégie komplexnej roviny

Definicia 1.5.1. Nech a € C je komplexné ¢islo.

a) Okolim bodu a o polomere r > 0 nazveme mnozinu

D(a,r):={z€C||z—a| <r}.

b) Uzavretym okolim bodu a o polomere r > 0 nazveme mnozinu

D(a,r):={2€C||z—a| <r}.

¢) Prstencoviym okolim bodu a o polomere r > 0 nazveme mnoZzinu

D'(a,r) :== D(a,r) \ {a}.

d) Medzikruzim so stredom v bode a nazveme I'ubovolni mnozinu typu
Ala,r,m2) ={2 € C | ri < |z —a| <re},
kde 0 < ry < 19 st redlne ¢&isla. Prstencové okolie je Specidlnym pripadom medzikruzia.

Otvorenou mnoZinou teraz nazveme lubovolni podmnozinu S mnoziny C, ktora pre kazdy bod
z tejto mnoziny obsahuje aj nejaké jeho okolie. Inymi slovami: nech zvolime I'ubovolny bod otvorenej
mnoziny S, vzdy sa eSte z neho mdZeme aspon o nejakt malu vzdialenost ,,pohnut l'ubovolnym smerom*
bez toho, aby sme mnozinu S opustili.

Definicia 1.5.2. Mnozina S C C je otvorend, ak pre vietky z € S existuje € > 0 také, ze D(z,e) C S.

Priklad 1.5.3. Kazdé okolie D(a,r) pre a € C a r > 0 je otvorend mnozina. Lubovolné z € D(a,r)
totiz musi splhat |z — a| < r. Nech € > 0 je také, Ze € < r — |z — a|. Potom D(z,e) C D(a,r), pretoze
pre w € D(z,¢€) je

lw—a|l=lw—z+z—a|<|w—z|+|z—a|<e+]|z—a|l <

<r—lz—a|l+|z—al=r

Situécia je zndzornena na obrazku 1.3.

[ ]s]
<3

Obr. 1.3: Kazdé okolie D(a,r) je otvorend mnozina.

Priklad 1.5.4. Podobne mozno ukéazat, ze aj mnozina {z € C | |z — a| > r} je otvorena pre vsetky
acCar>0.

Priklad 1.5.5. Prazdna mnoZina () a mnozina C si trividlne otvorené.
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Tvrdenie 1.5.6.

a) Ak Sy C C je otvorend mnoZina pre vietky k z nejakej mnoziny K, tak aj mnoZina ¢ Sk je

otvorend.
b) Ak S1,...,S, C C sd otvorené mnoziny, tak aj mnoZina (,_, Sk je otvorend.
Dokaz. Prenechavame Citatelovi ako jednoduché cvicenie. O

Priklad 1.5.7. Lubovolné medzikruZie je prienikom dvoch otvorenych mnozin; tiez teda ide o otvorenu
mnozinu. V désledku toho je otvorenou mnozinou aj kazdé prstencové okolie.

Nasledujticu definiciu opét ziskame priamoc¢iarou upravou analogickej definicie v redlnom obore.

Definicia 1.5.8. Nech S C C je mnozina. Hromadnym bodom mnoZiny S nazveme Tubovolné z € C
také, Ze pre vSetky € > 0 obsahuje prstencové okolie D’(z,e) aspon jeden bod mnoziny S. Ak z € C
patri do S a sii¢asne nie je hromadnym bodom S, nazyva sa izolovanym bodom mnoziny S.

Dalgimi dolezitymi topologickymi pojmami, ktoré teraz potrebujeme definovat, st pojmy uzavretej
mnoZiny a uzdveru.

Definicia 1.5.9.
a) Mnozina S C C je uzavretd, ak je mnozina C\ S otvorena.

b) Uzdverom mnoziny S C C nazveme mnozinu S dant zjednotenim S s mnozinou vsetkych jej
hromadnych bodov.

Priklad 1.5.10. Z prikladu 1.5.4 je zrejmé, Ze kazdé uzavreté okolie D(a,r) pre a € C a r > 0 je
uzavretad mnozina.

Definujme pre tcely tejto a nasledujticej kapitoly® isecku [a,b] z bodu @ € C do bodu b € C
ako mnozinu

[a,b] :={a+t(b—a)|te]0,1]}.

Priklad 1.5.11. Z prikladu 1.5.5 vyplyva, Ze mnoziny () a C st sti¢asne otvorené aj uzavreté.

Ukazeme, Ze ide o jediné dve podmnoziny C s touto vlastnostou. Skutocne: nech S C C je neprézdna
mnozina s neprazdnym komplementom C \ S. Aby bola S otvorena a sucasne uzavreta, musia byt
obidve mnoziny S a C\ S otvorené. Vezmime Tubovolné a € S a b € C\ S a spojme ich tseckou
[a,b] ={a+t(b—a) | te[0,1]}. Uvazujme bod

z=a+ty(b—a),

kde
to =sup{t € [0,1] | a+t(b—a) € S}.

Urcite pritom 0 < typ < 1: z otvorenosti mnoziny S totiz vyplyva, ze do S patri aj nejaké dostato¢ne
malé okolie bodu a; podobne z otvorenosti mnoziny C \ S vyplyva, Ze do C\ S musi patrit aj nejaké
dostato¢ne malé okolie bodu b.

Ak teraz z € S, z otvorenosti S dostavame existenciu € > 0 takého, ze D(z,e) C S. Z toho vyplyva,
Ze existuje aj nejaké 0 > 0 také, ze a + (to + 9)(b — a) € S, ¢o je spor s volbou ty. Podobne v pripade
z € C\ S dostavame existenciu ¢isla € > 0 takého, ze D(z,e) C C\ S, z ¢oho vyplyva, Ze pre nejaké
d > 0 a vietky t € [tg — 0, o] plati a + t(b—a) € C\ S, ¢o je opét spor s volbou ty. Mnozina S teda
nemoze byt otvorend a sucasne uzavreta.

D4 sa ocakavat, Ze pojem uzaveru bude s pojmom uzavretej mnoziny tzko suvisiet. Nasledujice
tvrdenie na tento sivis poukazuje.

3Neskor tusecku definujeme viac ,dynamickym¢, aj ked v principe ekvivalentnym, spésobom.
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Tvrdenie 1.5.12.
(1) Mnozina S C C je uzavretd prave vtedy, ked obsahuje vietky svoje hromadné body.
(ii) MnoZina S C C je uzavretd prdve vtedy, ked' S = S.
(iii) Uzdver S mnoziny S C C je najmendou uzavretou mnozinou T spliiajicou S C T C C.

Dékaz. Mnozina S je uzavreta prave vtedy, ked je mnozina C\ S otvorena. To je pravda préave vtedy,
ked pre vetky z € C\ S existuje ¢ > 0 také, ze D(z,e) C C\ S, ¢ize D'(z,¢) neobsahuje Ziaden bod
mnoziny S. To je prave vtedy, ked ziadne z € C\ S nie je hromadnym bodom S, t. j. ked S obsahuje
vietky svoje hromadné body. Tym je dokézané tvrdenie (i) a aj tvrdenie (i7).

Zostava dokazat ¢ast (ii7). Z tvrdenia (i) vyplyva, Ze kazda uzavretd nadmnozina mnoziny S musi
obsahovat mnozinu S. Sta¢i teda ukazat, Ze mnozina S je uzavretid. Nech z € C je hromadny bod
mnoziny S. Pre vietky ¢ > 0 potom D’(z, €) obsahuje aspoii jeden bod a € S. Potom bud a € S, alebo
je bod a hromadnym bodom mnoziny S, a teda pre vSetky 6 > 0 obsahuje D’(a,d) aspon jeden bod
mnoziny S; v druhom pripade zvolme § tak, aby bolo § < min{|z — al,e — |z — a|}. Zistujeme potom,
ze D'(z,e) obsahuje aspon jeden bod mmnoziny S; kedZe je ¢ > 0 Tubovolné, je z hromadnym bodom
mnoziny S, a teda patri do S. Mnozina S teda obsahuje vietky svoje hromadné body a je uzavreta
podla tvrdenia (7). O

Definicia 1.5.13. MnoZinu S C C nazveme:
a) Ohranicenou, ak existuje M > 0 také, ze pre vSetky z € S je |z| < M.

b) Kompaktnou, ak je sti¢asne ohraniené a uzavreta.

1.6 Rozsirend komplexna rovina a Riemannova sféra

V reéalnej analyze je ¢asto uzitotné pracovat s rozsirenou reélnou osou R U {oo, —oo}. V nasledujiicom
obdobnym spo6sobom rozsirime komplexnt rovinu. Na rozdiel od reélnej osi teraz mame viac ako dve
moznosti ako ,prist do nekonefna®: mozeme sa tam totiz vydat napriklad po I'ubovolne] priamke
v komplexnej rovine. UvaZzovat komplexnt rovinu rozsirent o nekone¢ne vel'a bodov v nekoneéne by bolo
trochu tazkopéadne; ovel'a uZitocnejsim konceptom sa javi byt rozsirend kompleznd rovina C := CU{oc},
v ktorej vSetky body v nekonecne stotoznime — vSetky priamky teda oboma smermi vedta do jedného
a toho istého nekonec¢na.

Prirodzenym modelom rozsirenej komplexnej roviny je takzvana Riemannova sféra. Ide o povrch
gule (napriklad o polomere 1/2) polozenej svojim ,juznym pélom*“ na bod z = 0 komplexnej roviny
tak, ako na obrazku 1.4.

v

Rez -

Obr. 1.4: Riemannova sféra a stereograficka projekcia.



Komplexné ¢isla a komplexna rovina 11

Kazdy bod ¢ Riemannovej sféry, okrem jej ,severného polu“, mézeme stotoznit s prave jednym
bodom komplexnej roviny nasledujicim spésobom: vedme priamku pretinajicu Riemannovu sféru
v jej ,severnom péle“ a v bode (. Tato priamka pretne komplexnii rovinu v jedinom bode z; body z
a ¢ nasledne stotoznime. épecialne teda napriklad ,juzny pél“ Riemannovej sféry zodpoveda bodu 0.
Takéto zobrazenie Riemannovej sféry bez ,,severného polu“ do komplexnej roviny C, ktoré je evidentne
bijektivne, nazyvame stereografickou projekciou.

Jedinym bodom Riemannovej sféry, ktory sa pri stereografickej projekcii do komplexnej roviny
nezobrazi, je jej ,severny pol“. Cim blizsie je viak bod k ,severnému polu“, tym vécsia je absolitna
hodnota ¢isla, na ktoré sa tento bod v komplexnej rovine zobrazi. Je preto prirodzené ,severny po6l“
Riemannovej sféry stotoznit s bodom oo, ¢im ziskavame uzito¢ny model rozsirenej komplexnej roviny.

D4 sa ukazat, Ze vzorom Iubovolnej kruZnice v komplexnej rovine je pri stereografickej projekcii
kruznica na Riemannovej sfére neprechadzajiica cez oo a naopak. Podobne vzorom I'ubovolnej priamky
v komplexnej rovine je kruznica na Riemannovej sfére prechddzajica cez bod oo a naopak. Detaily
moZno najst v [8].

Okolia a prstencové okolia je mozné definovat aj v rozsirenej komplexnej rovine: pre vsetky r > 0
kladieme

D’(oo,r)::{zE(C||z]>r}:{z€@ i<i}\{oo},
Di(co,r) :—D'(oo,r)U{oo}—{ze@ ’ % <i}

kde 1/0 := 00 a 1/00 := 0. Opodstatnenie tychto definicii sa ukdZze najmé vtedy, ked sa pozrieme na ich
vzory na Riemannovej sfére. Pomocou uvedenych pojmov je mozné definovat otvorené a uzavreté
mnoziny v C, hromadné body podmnoZzin C a podobne.

1.7 S1vislé mnozZiny a oblasti

Intuitivne je viac ako zrejmé, ¢o treba rozumiet pod sivislou mnoZinou S C C — ide o mnoZinu, ktoré
pozostéva ,z jedného kusu“ a nie z ,viacerych kusov“. Exaktna definicia tohto pojmu uz tak jedno-
duch4 nie je. Nas pristup teda bude nasledujici: stvislost mnoziny najprv definujeme Standardnym
topologickym sposobom [9]. Nasledne vo vete 1.7.4 dokédZeme ekvivalentna charakterizaciu stuvislosti
pre otvorené mnoziny, vdaka ktorej uvidime, Ze pojem suvislej otvorenej mnoZiny je moZné zachytit
aj elementarnejsim sposobom a naozaj zodpovedé tomu, ¢o by sme intuitivne o¢akavali.

Definicia 1.7.1. Mnozina S C C je sdwisld, ak neexistuje dvojica neprazdnych mnozin X,Y C C
takych, Ze X NY = X NY =0 a XUY = 5. Mnozina S je nesivisld, ak nie je suvisla.

Poznamka 1.7.2. Mnozina S je teda savisla prave vtedy, ked plati nasledujtca vlastnost: kedykol'vek
rozlozime mnozinu S na dve disjunktné neprazdne mnoziny X a Y — t. j. kedykolvek X # 0, Y # 0,
XNY =0aXUY =S — musi bud uzdver mnoziny X obsahovat bod mnoziny Y, alebo naopak.
To znamena, Ze tieto dve mnoziny spolu musia v uréitom velmi silnom zmysle slova ,,susedit” — jedna
z nich musi obsahovat nejaky hromadny bod tej druhej.

Dokéazme najprv, Zze pre otvorené mnoziny mozno definiciu stuvislosti sformulovat o nie¢o jedno-
duchsim spésobom.

4Jediné, ¢o tu trochu nesedi je, Ze okolie sa so zvacsujiucim sa polomerom zmenguje. Tato skutocnost vsak aZ tak
podstatna nie je.
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Tvrdenie 1.7.3. Nech S C C je otvorenda mnoZina. Potom je S suvisld prdave vtedy, ked neexistuji
disjunktné neprdzdne otvorené mnoZiny X,Y C C také, ze S =X UY.

Doékaz. Ak je mnozina S nesuvisld, musi existovat dvojica neprazdnych mnozin U,V C C takych, ze
UNnV=UNV=0aUUV =8. To znamena, Ze

UCC\V a V CC\U, (1.2)

kde mnoziny C\U a C\V sii otvorené. Mnoziny X := SN(C\V) aY := SN(C\U) st preto tieZ otvorené
podla tvrdenia 1.5.6. Z (1.2) az inkluzii U C SaV C SvyplyvaU C X aV C Y. Zo vztahu S = UUV
na druhej strane dostavame X = SN(C\V)C SN(C\V)CU aY =8n(C\U)C SN(C\U)CV.
Teda X =U a Y =V, pricom tieto mnoziny st disjunktné, neprazdne a otvorené a plati S = X UY;
tym je jedna z implikicii dokazana.

Na dokaz opacnej implikacie predpokladajme, Ze existuje dvojica neprazdnych disjunktnych ot-
vorenych mnozin X,Y C C takych, ze S = X UY. Keby mnozina Y obsahovala hromadny bod «a
mnoziny X, musela by vdaka svojej otvorenosti obsahovat pre nejaké € > 0 aj celé okolie D(a,¢).
Toto okolie ale nutne obsahuje aspon jeden bod mnoziny X, ¢o odporuje disjunktnosti mnozin X a Y.
Nutne teda X N'Y = () a obdobne by sme dokazali aj X N'Y = (): mnozina S je nestvisla. O

Lomenou c¢iarou z a € C do b € C v mnozine S C C budeme rozumiet zjednotenie tiseciek
L = [ap,a1]Ula1,a2] U...Uap—1,an],
kde n € N\ {0}, ag,...,a, € C, a0 =a,a, =ba L CS.

Veta 1.7.4. Nech S C C je otvorend mnozina. Potom je S suvisld prave vtedy, ked pre vsetky a,b € S
existuje v S lomend ciara z bodu a do bodu b.

Doékaz. Predpokladajme najprv, Ze je mnozina S suvisla. Zvolme pevné a,b € S a dokdZme existenciu
lomenej ¢iary z a do b. Definujme mnozinu F C .S nasledovne:

F:={z € S| v mnozine S existuje lomena ¢iara z a do z}.

Dokazeme, ze mnoziny F' a S\ F su obidve otvorené, z ¢oho vdaka otvorenosti a predpokladanej
suvislosti mnoziny S z tvrdenia 1.7.3 vyplynie prazdnost jednej z tychto mnozin. KedZe ocividne
a € F, bude musiet byt prazdnou mnozina S\ F. PretoZe v takom pripade nutne F' = S, a teda
aj b € F, bude tak prva z implikaci{ dokézané.

Zvolme Tubovolné z € F. Potom existuje lomena ¢iara L z a do z. KedZe je mnozina S otvorena,
existuje € > 0 takeé, 7e D(z,e) C S. Ak teraz w € D(z,¢), predizenim lomenej ¢iary L tseckou [z, w]
tiez dostavame lomenu ¢aru v S. Plati teda D(z,e) C F a F je otvorena mnoZina (obrazok 1.5).

Obr. 1.5: Dékaz, ze mnozina F' je otvorena.
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Zvol'me teraz lubovolné z € S\ F. Kedze je mnozina S otvorena, existuje ¢ > 0 také, ze D(z,e) C S.
Keby pre niektoré w € D(z,¢) bolo w € F, existovala by v S lomena ¢iara L z a do w. Tu by ale
tseckou [w, z] bolo moZné predizit na loment ¢aru z a do z, tiez leziacu v S; i8lo by teda o spor
s predpokladom z € S\ F. Preto D(z,e) C S\ F' a mnozina S \ F je otvorena.

Za ucelom ddkazu opacnej implikicie predpokladajme, Ze mnozina S nie je suvisla a sicasne z kaz-
dého a € S do kazdého b € S moZno viest v S lomentu ¢aru. Podla tvrdenia 1.7.3 potom existuju
disjunktné neprazdne otvorené mnoziny X,Y C C také, 7e X UY = S. Zvolme a € X a b €Y
a uvazujme loment &aru z a do b. Jej sicastou musi byt usecka

le,d] = {c+td—c) | teo1]}

vedtca z bodu ¢ € X do bodu d € Y, ako je to znédzornené na obrazku 1.6.

Obr. 1.6: Dokaz, Ze nesuvislost znemoZnuje existenciu lomenej ¢iary medzi niektorymi dvojicami bodov.

Polozme to := sup{t € [0,1] | ¢+ t(d — ¢) € X}. Z otvorenosti mnozin X a Y evidentne vyplyva
0 < tp < 1. Uvazujme bod z = c¢+to(d—c). Keby bolo z € X, z otvorenosti X by sme dostali existenciu
okolia D(z,e) C X, a teda aj existenciu ¢isla 6 > 0 takého, ze ¢ + (to + 0)(d — ¢) € X; to by bol spor
s definiciou tg. Keby na druhej strane bolo z € Y, z otvorenosti Y by vyplyvala existencia okolia
D(z,e) CY; existovalo by preto § > 0 také, Ze pre vietky ¢t € [t — d,tp] je c+t(d —¢) € Y, Co je opit
spor s definiciou ty. Prigli sme teda k sporu a aj druha implikécia je dokazané. O

Poznamka 1.7.5. Veta 1.7.4 zostane v platnosti, aj ked v jej zneni nahradime existenciu lomenej ¢iary
napriklad existenciou vhodne definovanej krivky alebo existenciou lomenej ¢iary pozostévajicej iba
z ,,horizontalnych a vertikalnych tuseciek®. Citatel sa o tom mézZe presvedcit sdm v ramci jednoduchého
cvicenia.

Na zaver tohto oddielu este uvedme definiciu tzv. oblasti — najcastejsie uvazovaného typu definic-
ného oboru (jednohodnotovej) funkcie komplexnej premenne;.

Po6jde o podmnozinu komplexnej roviny, ktora je savisla — ¢o je v suvislosti s funkciami celkom
logicky predpoklad, kedze funkciu definovant na nestvislej mnozine mozno typicky opisat pomocou
niekol'kych funkcii na jej stivislych komponentoch — a zaroven otvorend — ¢o znamen4, Ze v kazdom bode
oblasti mozeme skiimat lokalne vlastnosti funkcie ,,v Tubovolnom smere”, ¢im sa zbavime mnoZstva
neprijemnych okrajovych pripadov. Vsimnime si tiez, Ze vdaka otvorenosti je stvislost oblasti dané
aj ekvivalentnymi podmienkami z tvrdenia 1.7.3 a vety 1.7.4.

Definicia 1.7.6. Oblast je Tubovolnéa sivisla otvorend mnozina S C C.
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Cvicenia

Cvicenia

1.

Nech n > 2 je prirodzené ¢islo. Dokéazte, Ze

sucet vsetkych n-tych komplexnych odmocnin jednej je teda pre n > 2 rovny nule. Aplikujte
tento poznatok na vypocet sumy

Lm/3]

prd 3k
pre dané prirodzené ¢islo m.

Dokézte tvrdenie 1.5.6.

Dokaite, 7ze pre vietky a € C ar > 0 je D(a,r) = D(a,r).

Otvorenym pokrytim mnoziny S C C nazveme systém (S; | j € J) otvorenych podmnozin C, kde
J je Tubovolna mnoZina a
UJsios

jeJ
Otvorengm podpokrytim pokrytia (S; | j € J) nazveme I'ubovolné otvorené pokrytie (S; | j € K)
mnoziny S také, ze K C J. Otvorené pokrytie (S; | j € J) nazveme konecngm, ak je J konecna
mnozina.
Dokazte, ze mnozina S C C je kompaktna préave vtedy, ked I'ubovolné jej otvorené pokrytie ma
aspon jedno kone¢né podpokrytie.

Nech S C C. Hranicou mnoziny S nazveme mnozinu 9S vsetkych bodov a € C takych, Ze
pre vietky € > 0 je D(a,e) NS # 0 a zaroven D(a,e) N (C\ S) # 0. Dokazte, ze hranica 95
Tubovolnej mnoziny S je vzdy uzavreta a mnozina S je uzavreta prave vtedy, ked 95 C S.

Vraitrom mnoziny S C C nazveme mnozinu Int(S) = {z € S | 3¢ > 0: D(z,e) C S}. Dokazte,
ze vnutro Int(S) Tubovolnej mnoZiny S je vzdy otvorené a mnozina S je otvorené prave vtedy,

ked S = Int(S).

Dokaite, ze pre [ubovolnit mnozinu S C C je 9S = S \ Int(.9).



Kapitola 2

Holomorfné funkcie

2.1 Komplexné funkcie komplexnej premennej

Komplexné analyza sa zaoberd komplezngmi funkciami komplexnej premennej. Po priblizne prvé dve
tretiny tohto textu budeme takéto funkcie chapat zvycajnym spésobom, ¢ize ako zobrazenia f: S — C
pre nejakd mnozinu S C C.

Takato zdanlivo jasna a bezproblémova interpretacia pojmu komplexnej funkcie komplexnej pre-
mennej nemusi byt vzdy postacujuca: uz sme napriklad narazili na viachodnotovost argumentu; keby
sme teda chceli argument chépat ako funkciu arg z komplexnej premennej z, $lo by o wviachodnotovi
funkciu — ¢ize o tzv. multifunkciu. UkaZe sa, Ze viachodnotové sit v komplexnom obore aj funkcie ako lo-
garitmus alebo odmocnina. Spociatku budeme medzi funkciami a multifunkciami rozliSovat, pri¢om
multifunkciami sa budeme zaoberat len okrajovo — vac¢sinou z nich budeme , vyrabat® jednohodnotové
funkcie vhodnou volbou ,spravnej* vystupnej hodnoty. Neskér sa uz vSak situécia stane netinosnou
a pojem funkcie komplexnej premennej budeme nuteni zrevidovat tak, aby vhodnym sposobom zahifial
jednohodnotové aj viachodnotové funkcie.

Zatial ale komplexnou funkciou komplexnej premennej rozumieme obyé¢ajné zobrazenie f: S — C.
Ku kazdej takejto funkcii mozeme definovat jej redlnu cast ako funkciu Re f: S — R definovanu
pre vietky z € S predpisom (Re f)(z) := Re(f(z)) a jej imagindrnu cast ako funkciu Im f: S — R
danu pre vietky z € S ako (Im f)(z) := Im(f(2)). Zjavne potom f =Re f +iIm f.

2.2 Limita a spojitost

Definujeme teraz limitu postupnosti komplexnych ¢isel, limitu funkcie komplexnej premennej a spojité
funkcie komplexnej premennej. Péjde pritom o samozrejmé analdgie definicii z redlnej analyzy; okolia
bodov na reélnej osi akurat nahradime okoliami bodov v komplexnej rovine.

Definicia 2.2.1. Hovorime, Ze postupnost komplexnych ¢isel (a,); , mé limitu b € C, ak pre vsetky
e > 0 existuje ng € N také, ze ng > k a pre vSetky n > ng je a, € D(b,e). V takom pripade piSeme
lim,, o an, = b alebo a, — b pre n — oco. Ak navySe b € C, hovorime, ze postupnost (a,)>>, konverguje
a jej limitu b nazyvame vlastnou; pre b = co hovorime o nevlastnej limite.

Limita postupnosti (a,)°, evidentne nezéavisi od pociato¢ného indexu k; pod zapisom lim, o ay,
tak treba rozumiet limitu ktorejkol'vek z dobre definovanych postupnosti (a,)>, pre k € N.

Definicia 2.2.2. Nech S C C je mnozina, f: S — C je funkcia a a € C je hromadnym bodom
mnoziny S. Hovorime, 7e funkcia f méa v bode a limitu b € C, ak pre vietky & > 0 existuje § > 0
také, ze pre vietky z € D'(a,d) NS je f(z) € D(b,e). V takom pripade piSeme lim,_,, f(z) = b alebo
f(z) = b pre z — a. Pre b € C hovorime o vlastnej a pre b = oo o nevlastnej limite b.
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Uplne rovnako mozno definovat aj limitu funkcie f: S — C v nekonecne za predpokladu, ze je

a = oo hromadnym bodom S v rozsirenej komplexnej rovine C — ¢ize v pripade, Ze je mnozina S
neohranicena.

Definicia 2.2.3. Nech S C C je neohrani¢end mnozina a f: S — C je funkcia. Hovorime, Ze funkcia f
ma v nekone¢ne limitu b € C, ak pre vietky £ > 0 existuje § > 0 takeé, ze pre vietky z € D'(00,d) N S
je f(z) € D(b,e). V takom pripade piSeme lim, ,~, f(z) = b alebo f(z) — b pre z — oco. Pre b € C
hovorime o vlastnej a pre b = co o nevlastnej limite b.

Definicia 2.2.4. Nech S C C je mnozina, f: S — C je funkcia a a € S. Hovorime, Ze funkcia f
je spojité v bode a, ak pre vSetky € > 0 existuje § > 0 také, Ze pre vSetky z € D(a,d) NS je
f(z) € D(f(a),e).

Definicia 2.2.5. Nech S C C je mnozina, f: S — C je funkcia a T' C S. Hovorime, Ze funkcia f je
spojitd na mnozine T, ak je spojita vo vSetkych bodoch a € T. Dalej hovorime, Ze funkcia f: S — C
je spojitd, ak je spojita na S.

Lahko vidiet, Ze kazda funkcia je spojita v izolovanych bodoch svojho defini¢ného oboru. Nasle-
dujace tvrdenie, analogické podobnému tvrdeniu z realnej analyzy, charakterizuje spojitost funkcie
v bodoch definiéného oboru S, ktoré si1 sic¢asne hromadnymi bodmi mnoziny S.

Tvrdenie 2.2.6. Nech S C C je mnoZina, f: S — C je funkcia a a € S je hromadnym bodom S.
Potom je f spojitd v bode a prdve vtedy, ked lim,_,, f(z) = f(a).

Dékaz. Jednoduché cvicenie. O
Nasledujuce tvrdenie umoziuje previest skiimanie komplexnych limit na skimanie realnych limit.

Tvrdenie 2.2.7. Nech (an)2,. je postupnost komplexnyjch cisel, S C C je mnozina a f: S — C je
funkcia. Potom:

(i) Postupnost (an)2, konverguje k vlastnej limite prave vtedy, ked konverguji obidve postupnosti
(Rean) . a (Imay)P2 . V takom pripade

lim a, = lim Rea, +¢ lim Ima,.
n—o0 n—oo n—oo

(1) Nech a je hromadny bod mnoZiny S, alebo nech je S neohranicend a a = oo. Viastnd limita
lim,_,, f(2) existuje prave vtedy, ked existuji obe vlastné limity lim,_,, Re f(2) a lim,_,, Im f(2).
Vtedy

lim f(z) = lim Re f(=) + i lim Im £(2)

(ii1) Nech a € S. Potom je funkcia f spojitd v bode a prave vtedy, ked si v bode a spojité obidve

funkcie Re f a Im f.

Doékaz. Na ukazku dokdZzeme tvrdenie (i7); dokazy zvysnych dvoch tvrdeni su analogické. Ak existuje
vlastna limita lim,_,, f(2) = b, tak pre vSetky € > 0 existuje 6 > 0 také, ze pre vietky z € D'(a,d) NS
je f(2) € D(b,e) — ¢ize | f(z) — b| < e. Kedze ale pre vSetky w € C je |[Rew| < |w| a |[Imw| < |w|, musi
v takom pripade byt aj |[Re f(z) — Reb| = |Re(f(z) — b)| < e a [Im f(z) — Imb| = [Im(f(z) — b)| < e,
v dosledku ¢oho lim,_,, Re f(2) = Reb a lim,_,, Im f(z) = Imb.

1V realnej analyze sa niekedy hromadné body definuju ako prvky rozsirenej realnej osi. Keby sme v podobnom duchu
definovali hromadné body podmnozin C ako prvky (ﬁ, nemuseli by sme pripad a = oo riesit osobitne. Na druhej strane
by ale prestali platit niektoré uZzitoéné vlastnosti z minulej kapitoly — napriklad by uZ nebola pravda, Ze mnozina je
uzavreta prave vtedy, ked obsahuje vSetky svoje hromadné body.
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Nech teraz naopak existuju limity lim, ,, Re f(2) = ¢ a lim,_,,Im f(2) = d. Pre vsetky ¢ > 0
potom vieme zvolit? § > 0 také, ze pre vietky z € D'(a,0) NS je |Re f(z) — c| < /2 a sicasne
IIm f(2) — d| < £/2. Z trojuholnikovej nerovnosti tak pre vietky z € D'(a,d) NS dostavame

|f(z) = (c+id)| = [(Re f(z) — ¢) +i(Im f(z) — d)| < [Re f(2) —c[+ [Im f(2) —d| <&
a skuto¢ne lim,_,, f(z) = ¢+ id. O

Limity funkcii komplexnej premennej a postupnosti komplexnych ¢isel, ako aj spojité funkcie kom-
plexnej premennej, zdielaja s ich naprotivkami z realnej analyzy viacero elementarnych vlastnosti —
napriklad tie z nasledujticeho tvrdenia.

Tvrdenie 2.2.8. Nech (a,):2 ;. je postupnost komplexnyjch cisel, S C C mnoZina a f: S — C funkcia.
(1) Ak existuje b € C také, Ze limy_o0 an, = b, tak lim,,_,o|an| = |b].

(ii) Nech a je hromadny bod mnoZiny S, alebo nech je S neohranicend a a = co. Ak existuje b € C
také, Ze lim,_,, f(2) = b, tak lim,_q|f(2)] = |0].

(tit) Nech a € S. Ak je f(z) spojitd v bode a, je v bode a spojitd aj funkcia |f(z)].

Doékaz. Opat dokdzeme len tvrdenie (i7); dokaz zvySnych dvoch tvrdeni je analogicky. Ak existuje
limita lim,_,, f(z) = b, tak pre vSetky ¢ > 0 existuje 6 > 0 také, ze pre vSetky z € D'(a,6) N S je
f(2) € D(b,¢), ¢ize |f(z) — b] < e. Potom vsak || f(2)] — |b]| = ||f(2)] — |=0b|| < |f(2) —b] < ¢, a teda
lim, .| f(2)| = |b]. O

Nasledujuce tvrdenie moZno l'ahko dokézat priamo z definicii limity a spojitosti, a to prakticky
rovnako ako v realnej analyze; dokaz preto prenechavame ¢itatelovi.

Tvrdenie 2.2.9. Nech (an)02 ., (bn)02 . st postupnosti komplexnijch cisel, nech S C C je mnoZina
a nech f,g: S — C siu funkcie.

(1) Ak existuji vlastné limity imy, o0 ap a limy,_,o0 by, tak existuji aj viastné limity

lim (a, +b,) = lim a, + lim b, a lim (a,by,) = <lim an> (lim bn) .

n—oo n—oo n—oo n—oo n—oo n—oo
Ak navyse lim,_,oo b, # 0, existuje aj vlastnd limita

. Qp limy, 00 an
lim — = ——=",
n—oo by, limy, o0 by,

(ii) Nech a je hromadny bod mnoZiny S, alebo nech je S neohranicend a a = co. Ak existuji vlastné
limity im,_,q f(2) alim,—, g(2), tak existuji aj viastné limity

lim (f(2) £ 9() = lim f(z) £ lmg(z) o lim (f(2)g(2)) = (lim £(2)) (1im g(2))

z—a z—a z—a zZ—a zZ—ra
Ak navyse lim,_,, g(2) # 0, existuje aj vlastnd limita

lim f(z) _ lim,_,, f(2)
z—a g(2) lim, 4 g(2)

(7it) Nech a € S. Ak su funkcie f(2) a g(z) spojité v bode a, si v bode a spojité aj funkcie f(z) £ g(z)
a f(2)g(z). Ak navyse g(a) # 0, je v bode a spojitd aj funkcia f(z)/g(z).

2Pre kazda z funkcii Re f a Im f dostaneme jednu hodnotu &; stadi potom vybraf td mensiu.
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V poslednom z elementarnych tvrdeni o limitach a spojitosti sa zameriame na zlozené funkcie — opét
p6jde o obdobu dobre znameho tvrdenia z relnej analyzy, ktord tu ale nevyslovime v najvSeobecnejsej
moznej podobe.

Tvrdenie 2.2.10. Nech S,T C C si mnoziny, g: S — C, f: T — C su funkcie a nech T D g(5).

(1) Nech a je hromadny bod mnoZiny S, alebo nech je S neohranicend a a = oco. Ak existuje vlastnd
limita lim,_,, g(2) = b € T a funkcia f(z) je spojitd v bode b, existuje aj vlastnd limita

lim (f 0 g)(2) = lim f(g(2)) = £(b).

zZ—a z—a

(13) Nech a je hromadny bod mnoZiny S, alebo nech je S neohranicend a a = oo. Nech existuje
vlastnd alebo nevlastnd limita lim,_,, g(z) = b, kde b je bud hromadnym bodom mnoZiny T,
alebo je mnoZina T neohranidend a b = o0o; nech dalej existuje vlastnd alebo nevlastnd limita
limy,p f(w) = c. Ak g(2) # b pre vietky z € S\ {a}, tak existuje aj limita

lim (f o g)(=) = lim f(g(2)) = c.

z—a z—a

(ii7) Ak je funkcia g(z) spojita v bode a € S a funkcia f(z) je spojitda v bode g(a) € T, je v bode a
spojitd. af funkeia (£ o g)(2) = £(9(2)).

Doékaz. Zacnime dokazom casti (i). Z predpokladu existencie limity lim,_,, g(z) = b € T vyplyva, Ze
pre vietky & > 0 existuje 6 > 0 také, Ze pre vietky z € D'(a,d) N S je g(z) € D(b,e).

Ak je b izolovanym bodom mnoziny T, mozeme zvolit € > 0 tak, aby D(b,e) N T = {b} a vdaka
inklazii T 2 g(S) zistujeme, Ze existuje § > 0 také, Zze pre vietky z € D'(a,d) NS je g(z) = b — a teda
aj f(g(z)) = f(b) € D(f(b), ). Naozaj teda lim._,q f(g(2)) = f(b).

Ak je naopak b hromadnym bodom mnoziny T, podla tvrdenia 2.2.6 je lim,_;, f(z) = f(b). Ku kaz-
dému € > 0 teda existuje n > 0 také, ze pre vsetky z € D'(b,n) NT je f(z) € D(f(b),e). Kedze ale
sucasne lim,_,, g(z) = b, musi existovat aj § > 0 také, Ze pre vetky z € D'(a, )N S je g(z) € D(b,n) —
a kedze T D ¢g(S), nutne aj g(z) € D(b,n)NT. Pre kazdé z € D'(a,§) NS teda bud g(z) € D'(b,n)NT
a f(g(z)) € D(f(b),e), alebo g(z) = b a f(g(z)) = f(b) € D(f(b),e). Pretoze je € > 0 I'ubovolné,
skuto¢ne lim,_,, f(g(2)) = f(b).

Pokra¢ujme doékazom casti (ii). Vdaka existencii limity lim,, ., f(w) = ¢ zistujeme, Ze pre vietky
e > 0 existuje n > 0 take, ze pre vietky w € D'(b,n) NT je f(w) € D(c,e). Podobne vdaka existencii
limity lim,_,, g(2) = b musi existovat § > 0 také, Ze pre vSetky z € D'(a,0) NS je g(z) € D(b,n).
Vdaka predpokladom tvrdenia navySe g(z) € T a g(z) # b; je teda g(z) € D'(b,n) N T, v dosledku
¢oho f(g(z)) € D(c,e). Kedze je € > 0 Tubovolné, naozaj lim,_,, f(g(z)) = c.

Na dokaz casti (i4i) uvazujme Tubovolné e > 0. Zo spojitosti funkcie f v bode g(a) vyplyva exis-
tencia ¢isla n > 0 takého, ze pre vietky z € D(g(a),n) NT je f(z) € D(f(g(a)),e). K danému 75
navySe vdaka spojitosti funkcie g v bode a existuje § > 0 také, ze pre vSetky z € D(a,d) NS
je g(z) € D(g(a),n); kedze T D ¢(S), je aj g(z) € D(g(a),n) NT a z predchadzajuceho vyplyva
f(9(2)) € D(f(g(a)),e). Cislo e > 0 sme uvazovali lubovolné — funkeia (f o g)(z) je teda skutocne
spojita v bode a. O

Vyslovme este niekolko d'algich viet o limitach, ktoré st komplexnymi analdgiami dobre znamych
tvrdeni z realnej analyzy. Dékazy prvych dvoch z nich, zalozené na vyuziti ich redlnych naprotivkov
a tvrdenia 2.2.7, prenechavame ¢itatelovi ako jednoduché cvicenie.

Veta 2.2.11 (Cauchyho-Bolzanovo kritérium konvergencie). Postupnost komplexngch cisel (an)02
konverguje k viastnej limite prdve vtedy, ked pre vietky € > 0 existuje ng € N také, Ze ng > k a pre vietky
n,m > ng je |am — anp| < €.
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Veta 2.2.12 (Bolzanova-Weierstrassova veta). Z kaZdej ohranicenej® postupnosti kompleznijch cisel
(an)92 . mozno vybrat konvergentni podpostupnost.

Veta 2.2.13 (Heineho definicia limity). Nech S C C je mnoZina a f: S — C funkcia. Nech a € C
je hromadngm bodom mmnoZiny S, alebo nech je S neohraniéend a a = oo. Nech b € C. Potom
lim, ,, f(2) = b prdve vtedy, ked pre kaZdi postupnost (z,)e, ¢isel z S\ {a} takd, Ze limy, o0 2, = a
plati limy, o0 f(2n) = b.

Dékaz. Predpokladajme najprv, Ze lim,_,, f(z) = b a sicasne existuje postupnost (z,)5°, ¢isel z S\{a}
taka, ze limy, o 2, = @ a stcasne limita lim,,_,+ f(z,) neexistuje alebo sa nerovna b. Potom existuje
e > 0 také, Ze pre vSetky ng € N existuje n > ng tak, ze f(z,) € D(b,e). Pre lubovolné ¢ > 0 teraz
zvolme ngy € N tak, aby pre vSetky n > ng bolo z, € D(a,d); to ide, lebo lim,_,~ 2, = a. Zistujeme,
ze existuje € > 0 také, ze pre vietky d > 0 existuje n € N, pre ktoré je z, € D'(a,0) NS a sucasne
f(zn) € D(b,e). To je v spore s predpokladom lim,_,, f(z) = b.

Na dokaz opa¢nej implikacie predpokladajme, ze pre kazda postupnost (z,)0% ¢isel z S\ {a}
splhajicu limy, 00 2, = @ je limy, s00 f(2n) = b. Zvolme Iubovolné £ > 0. UkaZeme, Ze existuje § > 0
také, ze pre vietky z € D'(a,d)NS je f(z) € D(b,e). Sporom, nech to nie je pravda. Ak a € C, mdzeme
pre n =1,2,3,... polozit é,, = 1/n, pricom pre kazdé takéto n nutne existuje w, € D'(a,d,) N S také,
ze f(wy) € D(b,e). Podobne pre a = oo mézeme pre n = 1,2, 3, ... polozit §,, = n a pre kazdé takéto n
opét dostaneme existenciu w,, € D'(a,d,) NS takého, ze f(w,) ¢ D(b,e). V oboch pripadoch zrejme
limy, 00 Wy, = a, kym limita lim,,_, f(wy,) nemoze sucasne existovat a byt rovna b. To je spor s nasim
predpokladom. O

Veta 2.2.14 (O spojitosti na kompakte). Nech S C C je kompakind mnoZina a f: S — C je spojitd
na S. Potom je funkcia f na mnoZine S ohranicend — c¢iZe existuje M > 0 také, Ze pre vietky z € S
je |f(2)| < M. Funkcia |f(2)| navyse na S nadobida maximum a minimum, ¢iZe existuji ay,az € S
také, Ze pre vietky z € S plati |f(a1)| < |f(2)] < |f(a2)].

Dékaz. Za tcelom sporu predpokladajme, Ze funkcia f na mnozine S nie je ohrani¢ena. Potom exis-
tuje postupnost (z,)52, bodov S taka, ze pre vietky n € N je |f(z,)| > n. Z ohrani¢enosti mnoziny S
vyplyva, Ze je ohrani¢end aj postupnost (z,)2°,, a teda z nej podla Bolzanovej-Weierstrassovej vety
mozno vybrat podpostupnost (z,, )5, konvergujicu k nejakému a € C. PretoZe postupnost (z,, )2,
evidentne obsahuje nekonecne vela roznych prvkov, musi byt a hromadnym bodom mnoziny S. Z uzav-
retosti mnoziny S potom dostavame a € S. Zo spojitosti f na S dalej lim,_,, f(2) = f(a); na druhej
strane ale limg_,o0|f (20, )| = 00, a teda nemdze platit limg_,oo f(2n,) = f(a). Dostavame teda spor
s vetou 2.2.13.

Z ohranicenosti funkcie f na S vyplyva, ze existuje reélne ¢islo H = sup,¢g| f(2)|. Keby neexistovalo
ziadne ag € S také, ze |f(a2)| = H, bola by na S funkcia 1/(H —|f(z)|) spojita a su¢asne neohranicena,
lebo pre kazdé e > 0 existuje z € S také, ze |H — | f(z)|| < e. To je spor s prvou ¢astou vety. Existenciu
minima mozno dokézat analogicky. O

2.3 Derivacia a Cauchyho-Riemannove podmienky

Derivaciu funkcie komplexnej premennej f definujeme, podobne ako pre funkcie realnej premennej,
v Tubovolnom bode a, ktory je sicasne prvkom aj hromadnym bodom defini¢ného oboru funkcie f
— samotné definicia derivacie pritom bude tiez prakticky rovnaka, ako v reédlnej analyze. PovécSine
nas vSak bude zaujimat iba situécia, ked tato definicia naozaj zohladfiuje vSetky moZné sposoby,
ktorymi sa k bodu a da pribliZovat — to znamena, ked je funkcia f definovana na nejakej otvorenej
mnozine obsahujucej bod a. V komplexnej analyze sa preto derivacia a diferencovatelnost ¢asto definuju

3Postupnost komplexnych &isel (a,,)S>, je ohranicena, ak je ohrani¢ena postupnost realnych &isel (|an|)oy.
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len v uvedenom menej vieobecnom pripade — a ¢itatel sa nedopusti velkej chyby, ak si nasledujicu
definiciu v tomto duchu preformuluje.?

Definicia 2.3.1. Nech S C C je mnozina, f: § — C je funkcia a a € S je hromadnym bodom
mnoziny S. Ak existuje vlastné limita
b — i £ = F(@)
z—a z—a
hovorime, Ze je funkcia f diferencovatelnd v bode a a &islo D nazyvame derivdciou funkcie f v bode a.
V takom pripade tiez piSeme
df
"(a) = == =D.
F'(a) = 5 (a)
Poznamka 2.3.2. Uvazujme mnozinu R = {h € C\ {0} | a + h € S} a funkciu g: R — C danu
pre vietky h € R ako g(h) = a + h. KedZze je a hromadnym bodom mnoziny S, je 0 evidentne
hromadnym bodom mnoziny R, pri¢om zrejme limy_,o g(h) = a. Zrejme navyse S O g(R) a pre vSetky
h € R je g(h) # a. Z tvrdenia 2.2.10(i7) teda vyplyva, ze derivacia funkcie f v bode a, ak existuje, je
dané zvycajnym sposobom ako
h) —
f/(a) — hm f(a’ + ) f(a) .

h—0 h

(2.1)

Podobne by bolo mozné ukazat, Ze z existencie limity (2.1) vyplyva existencia derivacie, ktoru tak
podla ocakavania mozno prostrednictvom limity (2.1) ekvivalentne definovat. V nasledujicom budeme
vzdy pouzivat ta z definicii, ktora sa bude v danom momente javit ako vhodnejsia.

Definicia 2.3.3. Nech S C C je mnozina, f: S — C je funkcia a T C S. Funkcia f je diferencovatelnd
na mnozine T, ak T pozostéva iba z hromadnych bodov mnoziny S a funkcia f je diferencovatelnéa
v kazdom bode a € T'.

Oznacenie 2.3.4. Derivacie vysSich rddov definujeme a oznacujeme rovnako ako v realnej analyze:
napriklad

d2f
n_ % J
I= dz?
oznacuje druhu derivaciu funkcie f a
d" f
(n) = J
f dz"

jej n-ta derivaciu.

Ak je mnoZina S otvorena a a € S, moZe sa h v limite (2.1) priblizovat k nule z lubovolného smeru
v komplexnej rovine; nech sa ale h pribliZzuje k nule akymkolvek sposobom, podiel

fla+h) = f(a)
h

musi vzdy konvergovat k tej istej limite. Specialne sa teda musia rovnat limity pre h priblizujtce sa
k nule po redlnej a po imaginarnej osi. Désledkom tohto jednoduchého pozorovania sii nasledujtce nutné
podmienky diferencovatelnosti funkcie v danom bode, zname ako Cauchyho-Riemannove podmienky.
Nesplnenie tychto podmienok znamena, ze funkcia nemoze byt diferencovatelna.

4Vieobecnejsiu definiciu uvadzame najmé z toho doévodu, aby sme neskor mohli do vety o derivacii zlozenej funkcie
zahrnat pripad zloZenia komplexnej funkcie komplexnej premennej s komplexnou funkciou realnej premennej definovanou
na uzavretom intervale; s derivaciu takejto zlozenej funkcie sa stretneme v savislosti s krivkovymi integralmi.
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Poznamka 2.3.5. Formulédcia Cauchyho-Riemannovych podmienok vyuziva pojem parcidlnej derivd-
cie funkcie dvoch realnych premennych, s ktorym sa ¢itatel doposial nemusel stretnit. Nech S C R?
a f: S — R je realna funkcia dvoch redlnych premennych x a y. Parcidlnu derivdciu funkcie f podla x
ziskame tak, Ze premenni y zafixujeme — teda ju ,,vyhlasime za konsStantu“ — a funkciu f zderivujeme
podla premennej x. Pre (a,b) € S také, Ze a je hromadnym bodom mnoziny {z € R | (z,b) € S} teda

of f(a—l—h,b)—f(a,b)
ox g () = h%O h

(ak tato limita existuje a je Vlastna) Podobne definujeme aj parcidlnu deriviciu 2 3y funkcze f podla y.
Ak teda napriklad f(z,y) = 222y + y?, pre vietky (z,y) € R? je

0 0

?i(x’ y)=dry  a azjj(x, y) = 227 + 2.
Veta 2.3.6 (Cauchyho-Riemannove podmienky). Nech S C C je otvorena mnozina, f: S — C je
funkcia a u,v su funkcie dvoch redlnych premennych x a y také, Ze pre vSetky x,y € R sx+iy € S je
u(z,y) = Re f(z +iy) a v(w,y) = Im f(z +iy), cize

f(z+iy) = u(z,y) +iv(z,y).

Ak je funkcia f diferencovatelnd v bode a € S, tak existuji obidve parcidlne derivdcie funkcii u a v
v bode (Rea,Ima), pricom

u ov u ov
9 —(Rea,Ima) = ay —(Rea,Ima) a dy —(Rea,Ima) = —%(Re a,Ima).

Dékaz. 7 diferencovatelnosti funkcie f v bode a podla definicie 2.3.1 dostavame

£(a) = Jim fla+ h})b —f(a) _
heR

— lim (U(Rea—l—h,lma) —u(Rea,Ima) n v(Rea+ h,Ima) —v(Rea, Ima))

(3
h—0 h h
heR

ou

ax(Rea Ima) + z%(Rea Ima),

kde existencia parcidlnych derivacii vyplyva z tvrdenia 2.2.7. Podobne tiez

Pla) = i LV = f0) _
heR

= lim =
h—0
heR

(U(Re a,Ima+ h) —u(Rea,Ima) N z,v(Rea, Ima+ h) —v(Rea, Ima))
ih th

= —ig—u(Re a,Ima) + gz(Re a,Ima).

Yy
Z toho 9 5 9u 5
aZ(Rea Ima)—l—za—x(Rea Ima) = —za—y(Rea Ima)—i—a—y(Rea ,Ima).
Porovnanim redlnych a imaginarnych ¢asti jednotlivych stran predchédzajicej rovnosti teda zistujeme,
ze
0 0 0 0
%(Rea,lma):a—Z(Rea,Ima) a KZ(Rea,Ima):—a—Z(Rea,Ima),

¢o bolo treba dokézat. O



22 2.4 Holomorfné funkcie

Priklad 2.3.7. Uvazujme funkciu f(z) = Re z definovant na C. Funkcie wu, v prislachajtce k f podla
znenia predchadzajucej vety s dané ako u(z,y) = x a v(x,y) = 0 pre vietky z,y € R. Pre lubovolné
a € C preto dostavame

ou ou ov ov

a—ZE(Rea,Ima) =1, a—y(Rea, Ima) =0, %(Rea, Ima) =0, a—y(Rea, Ima) =0.

Nie je teda splnend podmienka

%(Rea, Ima) = gz

9 (Rea,Ima)

a funkcia f nie je diferencovatelna v ziadnom bode a € C.

Priklad 2.3.8. Treba pamétat na to, ze Cauchyho-Riemannove podmienky st len nutngymi a nie
postacujiucimi podmienkami diferencovatelnosti. Vezmime napriklad a = 0 a funkciu f: C — C danu

ako
1 ak Rez =0 alebo Imz =0,
f(z) =

0 inak.

Lahko vidiet, Ze — pri pouziti notécie zavedenej vyssie - je 2%(0,0) = g—g(o, 0) = 2(0,0) = g—g(o, 0)=0
a Cauchyho-Riemannove podmienky st teda splnené. Napriklad limita

lim f(eiﬂ/4h) — /0 = lim — LI — 1 lim l
h—0 eim/4p om0 eim/Ah e/t hs0 b
heR heR heR

ale nie je vlastna® a funkcia f teda nie je diferencovatelna v bode a = 0.

2.4 Holomorfné funkcie

Najdolezitejsiu triedu diferencovatelnych funkcii komplexnej premennej tvoria takzvané holomorfné
funkcie (z gr. holos = uplny a morfé = tvar), ktoré teraz definujeme.

Definicia 2.4.1. Nech S C C je otvorena mnozina, f: S — C je funkcia a a € S. Funkcia f je
holomorfnd v bode a, ak existuje r > 0 také, Ze funkcia f je diferencovatelna na mnozine D(a,r).

Definicia 2.4.2. Nech S C C je otvorend mnozina, f: S — C je funkcia a T C S. Funkcia f
je holomorfnd na mnozine T', ak je holomorfna v kazdom bode a € T'.

Holomorfnost funkcie f v bode je teda silnejSou podmienkou, nez diferencovatelnost v bode —
vyzaduje sa totiz aj diferencovatelnost vo vgetkych ostatnych bodoch nejakého dostatoéne malého
okolia. Na druhej strane moZno bez problémov vidiet, ze holomorfnost funkcie f na otvorenej mnozine T’
je ekvivalentnd s jej diferencovatelnostou na T.

Poznamka 2.4.3. Prave zavedena terminologia — ktorta sme v principe prebrali z [8] — nie je uplne
Standardna. Holomorfnost funkcie v bode mnohi autori ani nedefinuju, pripadne pod fiou médzu chapat
diferencovatelnost v bode. Najpodstatnejia je v8ak definicia holomorfnosti na otvorenej mnozine;
tato Standardné je a zhoduje sa s tou naSou. Niektori autori — napriklad L. V. Ahlfors [1] — tiez
namiesto o holomorfngch funkcidch hovoria o funkciach analytickyjch. My pojem analytickej funkcie
v nasledujicej kapitole definujeme odlisnym sposobom, ktory o nieco lepsie odzrkadluje historické
suvislosti. Neskor ale ukdzeme, Ze analytickost funkcie je s jej holomorfnostou ekvivalentna — pouzivanie
nejednotnej terminoldgie teda v tomto pripade nepredstavuje Ziaden problém.

5Jej existencia zavisi na tom, & ju chapeme ako limitu funkcie komplexnej premennej s definiénym oborom zaZenym
na podmnozinu R, alebo ako limitu funkcie redlnej premennej. V prvom pripade je rovna co, v druhom neexistuje.



Holomorfné funkcie 23

Priklad 2.4.4. Uvazujme funkciu f: C — C dant pre vietky z € C ako f(z) = |z|?>. Funkcia f
je v bode 0 diferencovatelnd, lebo
f(h) — £(0) b _|h]

i = lim — =1 o =1 Do =
B0 h ho0 h s |h|e?f(h) IO 0

kde O(h) € [argh] je lubovolny z argumentov komplexného ¢isla h. Pre z # 0 ale mame — pouzivajic
notaciu z vety 2.3.6 — u(z,y) = 2% + y? a v(x,y) = 0, z ¢oho

gZ(ReZ,Imz) =2Rez, gZ(Rez,Imz) =2Imeg, ?);(Rez,lmz) =0, ZZ(Rez,Imz) =0.
Pre z € C s Rez # 0 teda
gZ(Rez,Imz) # gZ(Rez,Imz),
kym pre z € C s Im z # 0 zistujeme, Ze
ou

ov
a—y(Re z,Im z) # fa(Re z,Im z).

Funkcia f teda nie je diferencovatelna v ziadnom z € C\ {0}; nie je teda ani holomorfnd v bode 0.

2.5 Niektoré vlastnosti holomorfnych a diferencovatelnych funkcii
Podobne ako v realnej analyze je kazda diferencovatelna — a tym padom aj kazda holomorfna — funkcia
nutne spojita.

Veta 2.5.1. Nech S C C je mnozZina, f: S — C je funkcia a a € S je hromadngm bodom mnoZiny S.
Ak je funkcia f diferencovatelnd v bode a, je v bode a aj spojita.

Dékaz. Pre vietky h € C\ {0} také, ze a + h € S polozme
fla+h) - f(a)

LT ) =<,
potom
lim e(h) = 0.
h—0
Preto
: . : /
lim f(2) = lim f(a+ h) = lim (£(a) + hf'(a) + he(h)) = f(a)
a funkcia f je v bode a spojita. O

Dosledok 2.5.2. Nech S C C je otvorend mnozina, f: S — C je funkcia a T C S. Ak je funkcia f
holomorfnd na T, je aj spojitd na T .

Dokazy nasledujicich dvoch viet, umoziujucich zo znamych diferencovatelnych resp. holomorfnych
funkcii vytvarat dalsie, si v zasade identické ako v redlnej analyze a prenechavame ich preto ¢itatelovi
ako jednoduché cvicenie na manipulaciu s limitami.

Veta 2.5.3. Nech S C C je mnoZina, nech a € S je hromadny bod mnoZiny S, nech f,g: S — C sd
funkcie diferencovatelné v bode a a nech A € C. Potom je v bode a diferencovatelnd aj:

a) Funkcia \f, pricom (A\f) (a) = \f'(a).

b) Funkcia f + g, pricom (f 4+ g)'(a) = f'(a) + ¢'(a).

¢) Funkcia fg, pricom (fg)(a) = '(a)g(a) + f()g' (@)
Ak navyse f(a) # 0, je v bode a diferencovatelnd aj:

d) Funkcia 1/f, pricom (1/f) (a) = 7}021(;;%
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Veta 2.5.4. Nech S C C je otvorend mnozina, nech R C S, nech f,g: S — C si funkcie holomorfné
na R a nech A € C. Potom je na R holomorfnd aj:

a) Funkcia \f, pricom (\f) (z) = Af'(z) pre vsetky z € R.
b) Funkcia f + g, pricom (f + g)'(z) = f'(z) + ¢'(z) pre vietky z € R.
¢) Funkcia fg, pricom (fg) (z) = f'(2)g(z) + f(2)¢'(z) pre vietky z € R.

Ak navyse f(z) # 0 pre vietky z € R, je na R holomorfnd aj:

d) Funkcia 1/f, pricom (1/f)'(z) = —J{ES% pre vetky z € R.

Je jednoduchym cvi¢enim na limity dokazat, ze funkcie f(z) = 1 a g(z) = z st holomorfné na C,
pricom f'(z) =0 a ¢’(2) = 1 pre vetky z € C. Z uvedenej vety teda vyplyva, Ze st na C holomorfné
aj vSetky polynomické funkcie; rovnako vSetky racionalne funkcie p(z)/q(z), kde p a ¢ st polyno-
mické funkcie, st holomorfné na kazdej otvorenej mnozine neobsahujicej (komplexny) koren funkcie q.
Derivacie vSetkych tychto funkcii sa pocitaji rovnako ako v realnej analyze.

Dokéazeme teraz dva varianty vety o derivacii zloZenej funkcie. Prvy z nich hovori o diferencovatel-
nosti a je dostato¢ne vSeobecny na to, aby zahfnal aj pripad zloZzenia funkcie komplexnej premenne;j
s komplexnou funkciou realnej premennej definovanou na uzavretom intervale (to sa nam neskor zide
v stvislosti s integrovanim). Druhy variant hovori o holomorfnosti a préave tato formulaciu vety budeme
vyuzivat najcastejsie.

Veta 2.5.5 (O derivacii zlozenej funkcie I). Nech S,T C C si mnoZiny, g: S — C, f: T — C su funkcie
a nech T' D g(S). Ak g je diferencovatelnd na mnozine S a f je diferencovatelnd na mnozine T, je
na mnozine S diferencovatelnd aj funkcia f o g, pricom pre vsetky a € S je

(fog)(a) = f'(g(a))g (a).

Dékaz. Zvolme Tubovolné a € S. Nech b = g(a) € T. Z predpokladov vety vyplyva, ze funkcia g je
diferencovatelna v bode a a funkcia f je diferencovatelna v bode b — pri¢om, samozrejme, a musi byt
hromadnym bodom mnoziny S a b musi byt hromadnym bodom mnozZiny 7. Pre vSetky h € C také,
ze a+h €S avsetky £ € C také, ze b+ £ € T polozme

e(h) = { AR —g'(a)  ak b #0,

0 ak h =0,

F+O)—f(b) f/(b) ak ¢ 7& 0

— ¢ 9
n(e): {o ak ¢ = 0.

Upravou pre vietky pripustné h, ¢ dostavame

gla+h) —g(a) = (¢'(a) + (), (2.2)
fb+0) = f() = (£'(b) + n(D)L. (2.3)

Vezmime teraz ¢ = g(a + h) — b. Z (2.3) potom

flgla+h)) — f(b) = (f'(b) + n(g(a+h) = b)) (9(a + h) — b);

to je ekvivalentné rovnosti

flgla+h)) = flg(a)) = (f'(9(a)) +n(g(a+ h) — g(a))) (9(a + h) — g(a)),

z ktorej pouzitim vztahu (2.2) dostavame

flgla+h)) = f(g(a)) = (f'(g(a)) +n(g(a + h) — g(a))) (¢'(a) +(h))h. (2.4)
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Podla vety 2.5.1 a tvrdenia 2.2.6 je
lim g(a + h) — g(a) = 0;
h—0

kedZe je sucasne zrejmé, Ze
lim (¢) = 0 = n(0),
£—0

je funkcia 1 spojita v bode 0 a z tvrdenia 2.2.10(i) vyplyva

lim n(g(a + h) — g(a)) = 0. (2.5)
—0
Evidentne tiez
lim e(h) = 0. (2.6)
h—0

S pouzitim rovnosti (2.4) a limit (2.5) a (2.6) potom dostavame

i L@ ZIGD) _ i (1(ga)) + nlgla+ b) - 9(a))) (' (a) + () = F(9(a))g(a),

h—0 h h—0

¢o bolo treba dokézat. O

Veta 2.5.6 (O derivacii zloZenej funkcie IT). Nech S, T C C si otvorené mnoZiny, g: S — C, f: T — C
st funkcie a T 2 g(S). Ak g je holomorfnd na mnoZine S a f je holomorfnd na mnoZine T, je
na mnozine S holomorfnd aj funkcia f o g, pricom pre vietky a € S je

(fo9)'(a) = f'(9(a))g (a).

Doékaz. V pripade, ze funkcie g a f spliiajia podmienky vety, je funkcia f o g podla vety 2.5.5 diferen-
covatelna v kazdom bode a € S. KedZe je mnoZina S otvorena, je funkcia f o g na S aj holomorfné.
Vzorec pre derivaciu je dany vetou 2.5.5. Ul

Vetu o derivacii inverznej funkcie teraz sformulujeme iba v reci diferencovatelnosti. Pre holomorfné
funkcie je existencia holomorfnej inverznej funkcie zarucené aj za slabsich predpokladov — stadi injek-
tivnost uvazovanej holomorfnej funkcie, pricom ta je navySe lokdlne dosledkom nenulovosti derivécie.
Dokaz tohto tvrdenia, znaAmeho ako veta o inverznej funkcii, vSak vyzaduje urcité pokrocilejsie znalosti;
dostaneme sa teda k nemu az neskor. Zatial teda iba vyslovime pomerne elementarnu vetu o derivdcii
inverznej funkcie, v ktorej navySe musime predpokladat spojitost inverznej funkcie; zato vSak namiesto
holomorfnosti funkcie f staéi predpokladat jej diferencovatelnost.

Veta 2.5.7 (O derivacii inverznej funkcie). Nech S C C je mnozina, f: S — C je injektivna funkcia,
T = f(S) a inverznd funkcia f~': T — C k funkcii f je spojitd. Nech a € S je hromadny bod
mnoziny S. Ak je funkcia f diferencovatelnd v bode a, pricom f'(a) # 0, je b = f(a) hromadnym
bodom mnoziny T, funkcia f~' je diferencovatelnd v bode b a

1
- f'(a)

Dokaz. Funkcia f, diferencovatelna v bode a, tam podla vety 2.5.1 musi byt aj spojita. Pre vSetky
n € N\ {0} tak Specidlne existuje 0, > 0 také, Ze pre vietky z € D(a,d,) NS je f(z) € D(b,1/n).
KedZe je navySe a hromadnym bodom mnoziny S, mdzeme pre vietky n € N\ {0} zvolit nejaké
zn € D'(a,d,) N S; vdaka injektivnosti funkcie f potom f(z,) € D/(b,1/n) NT. Pre vietky € > 0 tak
mozeme zvolit n € N take, ze 1/n < g; potom f(z,) € D'(b,e)NT. Bod b je teda skutoéne hromadnym
bodom mnoziny T

(F1 ()



26 2.5 Niektoré vlastnosti holomorfnych a diferencovatel'nych funkcii

Nech ¢(z) je funkcia dana pre vietky z € S\ {a} ako
z—a

o(z) = ———.

® =0 @
Ak je funkcia f diferencovatelna v bode a s f'(a) # 0, je

— 1 1
lim p(z) = lim SO =

z—a zZ—a f(z) — f(a) N Ijmz_m M f/(a)‘

—a

Funkcia f~!(w) je navySe spojitd v hromadnom bode b mnoziny 7' — podla tvrdenia 2.2.6 teda

lim = (w) = f71(b) = a,

w—b
pri¢om z injektivnosti funkcii f a f~! vyplyva, ze pre vietky w € T\{b} je f~*(w) # a. Z tvrdenia 2.2.10
preto

. -1 .
lim o(f7 (w)) = ) (2.7)

Ked7e pre vsetky w € T\ {b} je

¢im je tvrdenie dokizané. O
Na zaver tejto kapitoly eSte dokazme uzitocné kritérium konStantnosti funkcie f na oblasti.

Tvrdenie 2.5.8. Nech S C C je oblast a f: S — C je holomorfnd na S. Ak f'(z) = 0 pre vietky
z € S, tak je funkcia f na S konstantnd.

Doékaz. Dokazeme, Ze za uvedenych predpokladov je f(a) = f(b) pre v8etky a,b € S. Sporom, nech
a,b € S su také, ze f(a) # f(b). KedZe je S oblast, existuje lomena ¢iara v S spajajica bod a
s bodom b. Musia preto existovat aj dva po sebe idtce vrcholy ¢ # d tejto lomenej Giary, pre ktoré

f(c) # f(d). Uvazujme teraz asecku z bodu ¢ do bodu d,
[e,d] ={c+t(d—¢c)|te]0,1]} CS.

Téato situécia je znazornené na obrazku 2.1.
Dokazeme, Ze pre vietky t € [0, 1] je

’f(cﬂ(d—C)) — f(o)
d—c

Fd) = f(e)|
d—c

t
< Z
<3|

Nerovnost (2.8) tak bude musiet platit aj pre t = 1; to bude spor, pretoze v takom pripade

‘f(d)—f(C) <1‘f(d) f(e)
d—c -2

d—c

)

kde ¢islo v absolutnej hodnote je nenulové.
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Obr. 2.1: Lomena ¢iara z a do b v S, na ktorej vyberieme usecku z ¢ do d taku, ze f(c) # f(d).
Nerovnost (2.8) ale o¢ividne plati pre ¢t = 0; moéZeme teda zmysluplne definovat to € [0, 1] ako

} . (2.9)

Kedze f'(c+to(d—c)) = 0, pre vietky € > 0 existuje 6 > 0 také, ze pre Tubovolné h € Cs 0 < |h| <6
je

t/
< —
-2

fle+t'(d=c)) = f(c)
d—c

f(d) — f(c)
d—rc

tozsup{te [0,1] ‘Vt’e [0, t] :‘

'f(0+t0(d—0)+h)—f(0+t0(d—0))
h

<

Speciélne teda existuje aj (vo vieobecnosti iné) § > 0 také, 7e pre vietky h € R's 0 < |h| < § je

’f(c+ (to + h)(dh—(dd_);) f(e+to(d - C”’ <e. (2.10)
Zvolme
_ L[f@d)— f(e)
g = 5 ‘ d—c

(a) Z platnosti (2.8) na [0,%o) ustidime na platnost pre to. (b) Néasledne ustidime na platnost (2.8) na [0, to + 4]

Obr. 2.2: Schéma kludovej Casti dokazu tvrdenia 2.5.8.

Dokazeme najprv, Ze nerovnost (2.8) plati pre samotné ¢ = tyg. Ak 9 = 0, nie je ¢o dokazovat.
Ak ty > 0, mozeme predpokladat § < tg a v (2.10) zvolit h tak, aby —d < h < 0. Z definicie tp potom
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vyplyva, ze (2.8) plati pre t =ty + h a dostavame
‘f@+¢dd_@)—f®)_

d—c
:‘f(chto(d_c))—f(0+(to+h)(d—0))+f(0+(to+h)(d—0))—f(C) <
d—c -
<‘f(0+to(d_c))—f(0+(to+h)(d—0))‘+‘f(0+(to+h)(d—0))—f(0) <
- d—c d—c
h|f(d)—f(e)] | to+h]|f(d)—flc)|
<_2' d—c * 2 ’ d—c N
o[ J(d) ~ f()
2 d—c '

Ak teraz tg = 1, tvrdenie je dokdzané. V opacnom pripade mozeme predpokladat § < 1 — tg, zvolit
kladné &' < & a uvazovat Tubovolné h spliajice 0 < h < ¢ < 6. Z prave dokazanej platnosti (2.8)
pre t = tg dostavame

fle+ (to+h)(d—c)) = f(c)

d—c

B ’f(0+(to+h)(d—0)) — flettold=c)) + fle+to(d =) = ()] _

B d—c -

< | flet (ot h)(d=c) = flettod—c))|  |flcttold—c)) = fle)

S + <

d—c d—c
N fd) = fQ] | to| f(d) = flo)] _
2 d—c 2 d—c

_tot+h|fd)—flo)

2 d—c ’
Nerovnost (2.8) teda plati pre vetky ¢ € [0,t9+0], €o je spor s definiciou ¢isla ¢y prostrednictvom (2.9).
Tymto je tvrdenie dokazané. O
Cvicenia

1. Dokéazte tvrdenie 2.2.6.
Dokazte tvrdenie 2.2.9.

Dokazte vety 2.2.11 a 2.2.12.

= W

Nech § C C je mnozina a f: S — C funkcia. Nech a je hromadnym bodom mnoziny S, alebo
nech je S neohrani¢ena a a = co. Dokazte, ze lim,_,, f(2) = 0 prave vtedy, ked lim,_,,|f(2)| = 0.

5. Nech § C C je otvorena mnozina a f: .S — C funkcia. Dokazte, ze funkcia f je spojita prave
vtedy, ked pre vietky otvorené mnoziny X C C je jej vzor f1(X) = {z € S| f(2) € X}
pri zobrazeni f tieZ otvorend mnozina.

6. Nech S C C je mnozina a T' C S. Funkcia f: S — C je rovnomerne spojitd na T, ak pre vSetky
e > 0 existuje § > 0 takeé, 7e pre vietky 21, 2o € T splhajtce |21 — 22| < & je |f(z1) — f(22)| < e.

a) Najdite priklad funkcie, ktora je na nejakej podmnozine C spojité, ale nie je tam rovnomerne
spojita.

b) Dokazte, ze ak T' C S je kompaktnd mnozina a f: S — C je spojita na T, je funkcia f na T
aj rovnomerne spojita.
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7.

10.

11.

12.

Najdite vsetky body a € C, v ktorych je diferencovatelna funkcia f: C — C dané ako:
a) f(z) = |zl; c) f(z)
b) f(z) =Imz; d) f(2)

Z;
1 ak|Rez| <1 azaroven |Imz| < 1,
0 inak. '

Nech § C C je oblast. Dokéazte, ze kazda funkcia f: .S — R holomorfnd na S je na oblasti S
nutne konstantné.

Nech S C C je oblast a f: S — C je funkcia holomorfna na S taki, ze funkcia Re f je na S
konstantna. Dokézte, Ze v takom pripade musi byt na S konstantné aj samotna funkcia f.

Zistite, ¢i existuje funkcia f: C — C, ktoré je:

a) Diferencovatelna v bode a € C prave vtedy, ked Ima = 0.

b) Holomorfna v bode a € C prave vtedy, ked Ima = 0.

V pripade kladnej odpovede prislusni funkciu najdite a dokazte, Ze skuto¢ne mé dant vlastnost.
V pripade zapornej odpovede svoje tvrdenie dokazte.

Zistite, ¢i existuje funkcia f: C — C, ktora:
a) Nie je spojita v ziadnom bode a € C.
b) Nie je spojita v ziadnom bode a € C\ {0}, ale v bode a = 0 je dokonca diferencovatelna.

V pripade kladnej odpovede prislusni funkciu najdite a dokazte, Ze skuto¢ne mé dant vlastnost.
V pripade zapornej odpovede svoje tvrdenie dokazte.

Dokézte, ze predpoklad spojitosti je vo vete 2.5.7 skuto¢ne podstatny. To znamena: najdite
priklad mnoziny S C C a injektivnej funkcie f: S — C, diferencovatelnej v nejakom hromadnom
bode a € S mnoziny S, takej, Ze inverzna funkcia f~! nie je v bode b = f(a) ani len spojita.
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Kapitola 3

Analytické funkcie

V nasledujicom definujeme triedu analytickyjch funkcii — ¢ize funkcii lokalne reprezentovatelnych moc-
ninovymi radmi — a preskimame niektoré jej zdkladné vlastnosti. Neskor uvidime, Ze analytickost
funkcie je v skutoc¢nosti ekvivalentna jej holomorfnosti; nech pritom zvolime akékolvek pomenovanie,
ide o bezpochyby najvyznamnejsiu triedu funkcii skimani v komplexnej analyze. V tejto kapitole
dokazeme jeden smer tejto ekvivalencie: kazda analytickd funkcia je holomorfna. NavySe ukizeme, Ze
holomorfné su aj derivacie analytickych funkcii; kazda analytickd funkcia tak mé derivicie v8etkych
radov. Citatela odkazujeme aj na [8].

Cestu k analytickym funkcidm za¢neme skiimanim radov komplexnych ¢isel — uvidime, Ze mnohé
ich klI'a¢ové vlastnosti st rovnaké ako pri radoch realnych &isel. Nasledne preskimame zékladné vlast-
nosti mocninovych radov, definujeme analytické funkcie a dokdZeme vetu o derivovani mocninovych
radov ukazujicu, ze kazda analytickd funkcia je holomorfna. Definujeme tieZz exponencialnu funkciu
a goniometrické funkcie a opodstatnime tak zapis e = cos@ + isin@, ktory sme doposial pouzivali
Cisto formélne. V krétkosti sa tiez dotkneme logaritmickych a mocninovych funkcii komplexnej pre-
mennej, ktoré st vo vieobecnosti viachodnotové; nas pristup k takymto funkciam bude zatial pomerne
naivny a neskor sa k tejto problematike eSte vratime.

3.1 Nekonec¢né rady komplexnych cisel

Aby sme sa mohli zaoberat mocninovymi radmi, musime najprv do komplexného oboru preniest nie-
ktoré poznatky o nekonecnych radoch ¢isel. Podobne ako pri limitach a spojitosti pojde o priamodiare
zovseobecnenie vysledkov znamych z redlnej analyzy.

Nech (a,)P2 je postupnost komplexnych ¢isel. Potom hovorime, ze nekoneény rad komplexnijch
cisel Y an konverguje k suctu s € C, ak je s limitou postupnosti ¢iastoénych sactov tohto radu,
teda ak pre postupnost (sy)22, dani pre vietky n € N ako

n
Sp — E ag
k=0

plati

s = lim s,.
n—oo

V takom pripade tiez hovorime, Ze s je suctom radu > an a piSeme

oo
E a, = S.
n=0

Ak pre nejaky rad neexistuje ziaden sucet s € C, hovorime, Ze tento rad diverguje.
KedZe st uvedené definicie navlas rovnaké ako pre rady realnych &isel, dostdvame nasledujice
tvrdenie umoziiujice previest skimanie radov komplexnych ¢isel na skiimanie radov realnych ¢&isel.



32 3.1 Nekonec¢né rady komplexnych cisel

Tvrdenie 3.1.1. Rad komplexnych cisel Y " an konverguje prave vtedy, ked konverguji obidva rady

oo

redlnych cisel Yo7 qRean a Y oo (Ima,. V takom pripade je

(o) o o0
E Ap = E Rea, +1 E Ima,.
n=0 n=0 n=0

Dékaz. Ide o bezprostredny dosledok tvrdenia 2.2.7. OJ

Nasledujtice tri tvrdenia st priamymi dosledkami analogickych tvrdeni pre rady realnych disel
a tvrdenia 3.1.1.

Tvrdenie 3.1.2. Nech Y .7 an je konvergentny rad komplexnych cisel. Potom lim, o an = 0 a po-
stupnost (|an|)s, je zhora ohranicend.

Tvrdenie 3.1.3. Nech > 7 a, je rad komplexnych cisel a k € N. Potom rad Y 7 an konverguje
prave vtedy, ked konverguje rad > o2, an =Y 0" o Antk a v takom pripade je

[e'S) k—1 00

S o= Yt Y
n=0 n=0 n=~k

Tvrdenie 3.1.4. Nech > 0" an, > neobn st konvergentné rady komplexnych c¢isel a A € C. Potom:

a) Rad Y. Aay, je konvergentny a

Z Aa, = A Z an
n=0 n=0

b) Rad > " (an + byn) je konvergentny a

S oo (£0)  (50)

n=0

Podobne ako pre rady realnych ¢isel hovorime, Ze rad komplexnych ¢isel Y7 an, konverguje abso-
litne, ak konverguje rad > |an|.

Tvrdenie 3.1.5. Nech Y ..°  a, konverguje absolitne. Potom Y ., an konverguje.

Dokaz. Kedze pre vietky a € C je [Rea| < |a| a [Ima| < |a|, z porovnavacieho kritéria pre rady
redlnych ¢isel vyplyva, ze rady > .»° (Rean a Y~ Ima, konverguju absolutne. Staci uz teda vyuzit
znamu skuto¢nost, Ze z absoltatnej konvergencie radu realnych &isel vyplyva jeho konvergencia a odvolat

sa na tvrdenie 3.1.1. O

Kritéria konvergencie nekone¢nych radov

Veta 3.1.6 (Porovnévacie kritérium konvergencie). Nech > -2 by je konvergentny rad nezdpornych
redlnych cisel a pre vietky n € N je an, komplexné cislo také, Ze |a,| < b,. Potom rad Y, an
konverguje absolitne (a teda konverguge).

Dékaz. Trividlny dosledok porovnavacieho kritéria pre rady realnych ¢&isel. O
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Veta 3.1.7 (D’Alembertovo kritérium konvergenciel). Nech Yoo an je rad komplexngch éisel taky,
Ze existuje limita

(= tim 191l
n—oo |ap,|

Ak € <1, rad Y 7y an konverguje absolitne. Ak ¢ > 1, rad Y">7 j a, diverguge.

Dékaz. 7 d’Alembertovho kritéria konvergencie pre rady nezdpornych realnych ¢&isel v pripade £ < 1
priamo vyplyva konvergencia radu y - |a,| — a teda aj absolitna konvergencia radu > 7 ap. Ak na-
opak ¢ > 1, pre vietky dostatocne velké n nutne |an4+1| > |ay|; nemdze teda platit lim, oo ap, = 0
a rad diverguje podla tvrdenia 3.1.2. OJ

Veta 3.1.8 (Cauchyho odmocninové kritérium). Nech Y °  a, je rad komplexnych cisel a nech
¢ =limsup,_,o V/|an|. Ak L <1, rad > >, an konverguje absolitne. Ak £ > 1, rad > >, a, diverguje.

Dokaz. Ak £ < 1, pre v8etky dostatocne velké n € N je {/|a,| < ¢ < 1, a teda aj |a,| < ¢" pre nejaké
g € (0,1). Kedze rad )7, ¢" konverguje, staci sa odvolat na porovnavacie kritérium a tvrdenie 3.1.3.
Ak naopak ¢ > 1, zrejme nemoze byt lim, o a, = 0 a rad diverguje podla tvrdenia 3.1.2. O

Nasledujtce Dirichletovo kritérium konvergencie je pomerne ,,$pecializované a neskoér ho vyuzijeme
v priklade 3.2.4 demongtrujiicom mozné spravanie mocninovych radov na kruznici konvergencie. Citatel
toto kritérium pravdepodobne oceni lepsie, ak sa najprv oboznami so spominanym prikladom.

Veta 3.1.9 (Dirichletovo kritérium konvergencie). Nech (ay)52 je postupnost nezdapornijch redlnych
céisel, (bn)22 je postupnost komplexnych ¢isel a si splnené nasledujice podmienky:

(1) Pre vSetkyn € N je a,, > ap41.

(#i) Plati limy,_,o0 an = 0.
(#i1) Existuje konstanta M > 0 takd, Ze pre vietky n € N je ‘Z?:o bj) <M.
Potom rad Y77y anby konverguje.

Dokaz. Ozname n-ty Clastoény sucet radu y_ ° ; anb, symbolom Sy,:

n
Sp = Z agbg.
k=0
Podobne ozna¢me .
Tn = Z bj.
=0
Potom

n
Sn = Thant1 + ZTk(ak — Apy1)- (3.1)
k=0
Rad Y72 o Tk (ar — ar+1) konverguje absolutne podla porovnavaciecho kritéria: pre vSetky k£ € N je
totiz |Ti(ar — ag+1)| = [Tkl (ak — aps1) < M(ap — apy1) arad Y o2 g M(ar — ar41) konverguje, kedze

0o k
Z (ap — ags1) kli}rf)lOZM(a] ajy1) Mkli)rr;o (ap — axy1) = May
k=0 7=0

Z predpokladov (ii) a (iii) vyplyva lim, o Trant1 = 0 a zo vztahu (3.1) tak dostavame

n—oo n—oo

n n oo
lim Sn = nh%n;o Tnan+1 + 1“}51;0 ;)Tk(ak - ak+1) = lim ;)Tk(ak - ak+1) = kZOTk(ak — ak+1),

v désledku ¢oho konverguje aj rad > 7 anby. O

!Presnejsie ide o relativne slabt verziu tohto kritéria.
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3.2 Mocninové rady

Pod mocninovim radom s komplexnymi koeficientmi a stredom v bode a € C rozumieme rad

o0
Z en(z—a)",
n=0

kde z je komplexna premenné a ¢, € C pre vSetky n € N.

Priklad 3.2.1. Typickym prikladom mocninového radu je geometricky rad > 7, 2. Z tvrdenia 3.1.2
je jasné, Ze tento rad diverguje pre vietky z € C splhajtce |z| > 1. Ak ale |z| < 1, je

0 n n+1
. . & —1 1
E Zz" = lim E 2% = lim = .
n—o0 n—oo 2z — 1 1—2z
n=0 k=0

Rad Y °° ) 2™ teda konverguje pre prave vietky z € C spliiajice |z| < 1.

Klacovym pojmom suvisiacim s mocninovymi radmi je polomer konvergencie radu. Hoci sa jeho
nasledujica definicia méZe na prvy pohlad zdat zvlastna, veta 3.2.3 nas hned vzapéti ubezpedi, Ze je
v stlade s intuitivnou predstavou o tomto koncepte.

Definicia 3.2.2. Polomerom konvergencie mocninového radu ) ° jcp(z —a)* sa € Cac¢, € C
pre vietky n € N nazveme hodnotu ¢ € R>¢ U {oo} dant ako

0:= sup{|z—a\

7 pozorovani u¢inenych v priklade 3.2.1 teda okrem iného vyplyva, Ze polomerom konvergencie
geometrického radu Yo7 ;2™ je o = 1. Tento rad navyse konverguje pre vsetky z € C splhajice |z| < o
a diverguje pre vietky z € C také, Ze |z| > p. Nasledujuca veta ukazuje, Ze rovnakéa vlastnost plati
aj vo vSeobecnosti. Ako ale neskor uvidime v ramci prikladu 3.2.4, pre z na kruznici konvergencie
|z — a| = p sa situacia moZe rad od radu lisit.

oo
z € C a ¢iselny rad E len(z —a)”| konverguje} .

n=0

Veta 3.2.3 (O polomere konvergencie). Nech Y o7 cn(z — a)" je mocninovy rad s komplexnymi
koeficientmi a s polomerom konvergencie o. Potom:

(i) Pre vsetky z € C spliiajiice |z — a| < o ¢iselny rad >0 cn(z — a)™ konverguje absolitne.
(ii) Pre vietky z € C spliiajiice |z — a| > o ¢iselny rad > oo cn(z — a) diverguge.
Polomer konvergencie o je navyse dany vztahom

1

0= >
hmsupn%oo v ‘Cn|

kde pre tcely tejto vety je 1/0 =00 a 1/00 = 0.

Dékaz. Na dokaz turdenia (i) vezmime Tubovolné z € C také, ze |z — a| < p. Podla definicie 3.2.2
existuje aspoil jedno w € C, pre ktoré je |z —a|] < |w —a|] < parad Y oo |cp(w — a)"| konverguje.
Kedze pre vietky n € N je [cp(z — a)"| < |en(w — a)?|, rad Y7 cn(z — a)” konverguje absolatne
vdaka porovnavaciemu kritériu.
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Dokdazeme teraz tordenie (ii). Sporom. Nech |z —a| > p arad > 7 cn(z — a)” konverguje. Vdaka
tvrdeniu 3.1.2 potom existuje konstanta M > 0 taka, ze |cn(z — a)"| < M pre vsetky n € N. Zvolme
si Tubovolné w € C také, ze |z — a| > |w — a| > p. Potom

n n

1

M

w—a w—a

1
[en(w —a)"| = 77 len(z — )"

zZ—a Z—aQ

Iste |(w — a)/(z — a)] < 1; podla pozorovania z prikladu 3.2.1 teda rad > " |(w — a)/(z — a)|"
konverguje a z porovnéavacieho kritéria vyplyva, Ze konverguje aj rad » 7, ﬁ|cn(w — a)"|. Vdaka
tomu podl'a tvrdenia 3.1.4 konverguje aj rad > 7 ;|cn(w — a)™|. KedZe ale |w — a| > o, ¢islo p nemoze
byt polomerom konvergencie radu »_°  ¢n(z —a)”.

Dokdzme napokon vztah
1

0= - .
lim sup,,_,~o V/|cnl

Z Cauchyho odmocninového kritéria vyplyva, ze rad Y7 ¢n(z — a)™ konverguje kedykol'vek

limsup V/|en(z —a)?| < 1 (3.3)

n—oo

(3.2)

a diverguje kedykol'vek

limsup {/|cn(z — a)?| > 1. (3.4)

n—oo

Nerovnost (3.3) je splnena vzdy, ked existuje ¢ € (0,1) také, ze pre dostatocne velké n je

Vienl -1z —al <1 —g¢,

¢o mozno — ak pre ucely tohto dokazu prijmeme konvenciu (1 —¢)/0 = oo — ekvivalentne vyjadrit ako

1—¢

\ ‘

|z —al <

Cnl
Rad teda konverguje vzdy, ked existuje € € (0,1) a § > 0 tak, ze

1-¢
§ + limsup,, ... V/lenl’

|z —al <

¢o je pravda kedykol'vek, ked
1

limsup,, .., ¥/|enl

Nerovnost (3.4) je splnenéa kedykol'vek, ked existuje ¢ € (0,1) také, Ze pre nekonecne vela n je

|z —a| <

|z —a| >
Vlen|

a podobne ako vySsie zistujeme, ze rad diverguje kedykolvek

1

lim SUPy,— o0 n\/ ’Cn‘ .

Z dokazanych tvrdeni (i) a (i7) teda vyplyva, ze skuto¢ne plati vztah (3.2). O

|z —a| >
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Priklad 3.2.4. Veta o polomere konvergencie nehovori ni¢ o konvergencii alebo divergencii mocni-
nového radu Y 7 ¢n(z — a)™ na jeho kruznici konvergencie — &ize v bodoch z, pre ktoré je hodnota
|z — a| rovna polomeru konvergencie p. UkdZeme teraz, Ze situdcia tu moZe byt pre rézne mocninové
rady velmi rozdielna.

a) V priklade 3.2.1 sme dokazali, ze rad )~ ;2" mé polomer konvergencie ¢ = 1, pri¢om tento rad
diverguje na celej kruznici |z| = p.
b) Uvazujme mocninovy rad » 7, %z”. Pre polomer konvergencie tohto radu plati

1
-1 __ 1 n IRT _
o~ = limsup \/1/n—11711n_>sup7€(lnn)/n 1,

n—00

z ¢oho p = 1. Pre z = 1 ide o harmonicky rad, o ktorom je zname, Ze diverguje. Pre z € C\ {1}
spliiajice |z| = 1 méZeme na druhej strane pre vietky n € N\ {0} polozit a, := 1/n a b, := 2™
Pre vsetky kladné prirodzené n zjavne a, > apy1 a lim,— o0 an, = 0; navyse

n n n
D b =D A< (DA
k=1 k=1 k=0

oo 1

Mobzeme sa teda odvolat na Dirichletovo kritérium konvergencie,? podl'a ktorého rad Yoty
pre uvedené z konverguje. Rad teda konverguje na celej kruznici |z| = ¢ s vynimkou bodu z = 1.

<

A | 2
< )
z—1 |7 |z =1

ZTZ
¢) Uvazujme mocninovy rad » .~ #z". Polomer konvergencie je opéat dany vztahom
_ . n . 1
o ! = limsup \/W: hmsupm =1,

n—o0 n—o0
¢ize p = 1. Pre z = 1 dostavame rad Y ., #; tam vSak pre n > 2 mame

1 1 1 1
<

n2 ~nn—-1) n—-1 n

Pre vietky n € N\ {0} teda
"1 " 1 1 1
=) — <1 ) =141--<2

Postupnost ¢iastoénych suctov (S,,)52, ¢iselného radu Y oo

1 % je teda zhora ohranidena; kedzZe je
aj neklesajica, musi konvergovat k vlastnej limite, v dosledku ¢oho konverguje aj rad » >, .
Pouzitim porovnavacieho kritéria tak dostdavame konvergenciu mocninového radu > o2

na celej kruznici |z| = p.

3.3 Analytické funkcie
Analytickou funkciou nazveme funkciu komplexnej premennej, ktoré je lokalne reprezentovatelna moc-
ninovym radom (s nenulovym polomerom konvergencie).

Definicia 3.3.1. Nech S C C je otvorena mnozina, nech f: .S — C je funkcia a a € S. Funkcia f
je analytickd v bode a, ak existuje r > 0 také, ze D(a,r) C S a pre vietky z € D(a,r) je

[o¢]
f(2) =) ealz—a)",
n=0
kde ¢, c1, ¢z, ... st nejaké komplexné &isla a rad Y o2 ¢, (2 — a)™ konverguje pre vietky z € D(a,r).3

2Zjavne je mozné rad preindexovat tak, aby za¢inal nultym ¢lenom.
3Uvedeny rad ma teda polomer konvergencie g > r > 0.
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Definicia 3.3.2. Nech S C C je otvorend mnozina, f: S — C je funkcia a T C S. Funkcia f
je analytickd na mnozine T, ak je analytickd v kazdom bode a € T'.

Priklad 3.3.3. Z prikladu 3.2.1 vyplyva, Ze funkcia f(z) = 1/(1 — 2) je analytickd v bode 0, pri¢om
1 o0

B
—Z n=0

pre vietky z € D(0,1). V skuto¢nosti je vSak tato funkcia analytickd aj na C\ {1}, hoci uvedeny rad
pre z € D(0,1) diverguje. Pre Tubovolné a,z € C\ {1} totiz

1 1 1 1

-z (l-a)—(2—a) 1-a 1-(z—a)/(1-a)

apre z € C\ {1} splhajtce

— to znamena pre z € D(a, |1 —al) — je

1iz:1ia§<i:2>n:im'

n=0

Priklad 3.3.4. Podobne pre Tubovolné ¢isla ¢ € C\{0} a d € C je funkcia f(z) = 1/(cz+d) analyticka
na C\ {—d/c}. Ak d # 0 — ¢ize ak 0 # —d/c — je v bode a = 0 tato funkcia danid mocninovym radom

1 1 1 G "
_ . _ 1) n
cz+d d 1+ (c/d)z nz%( ) an+1”

s polomerom konvergencie ¢ = |d/c|. Pre vSeobecné a € C\ {—d/c} mame

o0

1 1 1 1 LS
cz+d cz—a)+(ca+d) cat+d 1+ (c/(ca+d))(z—a) — ( ca+d”+1 ’

kde polomer konvergencie mocninového radu je ¢ = |(ca + d)/c|.

3.4 Derivovanie mocninovych radov

Dokazeme teraz, ze mocninové rady mozno derivovat Clen po ¢lene. To znamené, Ze kazda funkcia f
analytickd v bode a € C je v tomto bode aj holomorfna, pricom funkcia f’ je v bode a opat analyticka
a mocninovy rad reprezentujtuci f' v bode a ziskame zderivovanim jednotlivych ¢lenov mocninového
radu pre f. UkdZeme navySe, Ze polomer konvergencie mocninového radu pre derivaciu je rovnaky
ako pre mocninovy rad reprezentujici pévodnid funkciu.

KedZe tuto tvahu moZno lubovolny pocet raz zopakovat, Tahko ddjdeme k zaveru, Ze funkcia
analyticka v bode a € C méa v tomto bode derivacie vSetkych radov, ktoré su taktiez analytické.

Lema 3.4.1. Nech Y ° cn(z — a)" je mocninovy rad s polomerom konvergencie o > 0. Polomer

konvergencie radu
= d
E d— (z—a)" chnz—a -1 (3.5)

je potom tieZ rovny o.
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Dékaz. Rad (3.5) ma vdaka tvrdeniu 3.1.4 rovnaky polomer konvergencie R ako rad

oo [e.e]
Z nep(z —a)® = (2 —a) Z nep(z —a)* L.
n=1 n=1
7 vety 3.2.3 potom pre tento polomer konvergencie R dostdvame
R~ =limsup {/|nc,| = limsup ¥/n{/|cy| = limsup /|ea| = 07},
n— o0 n— o0 n—oo

kde predposledné rovnost plati vdaka tomu, Ze lim,, o ¥/n = 1. Presnejie: pre vSetky ¢ > 0 existuje
ng € N také, ze pre vietky n > ng je

|/n—1| <e.
Kedze

o~ = limsup ¥/ len]
n—oo

az o> 0 vyplyva o~! € Rx, z definicie limes superior dostéavame, 7e pre vietky ¢ > 0 existuje n; € N
také, Ze pre v8etky n > ni je

sup V|em| — 07t < e

m>n

Pre v8etky n > max{ng,n;} teda

sup (§/m %/fem]) = 07| = [sup ((¥/m = 1) ¥/Jem| + ¥/lem]) = 07| <
m>n m>n
< |swp ((/m 1) %/Jenl) + sup ¥fewm] — 07| <
m>n m>n
< |sup (( /m — 1) m\/|cml>’ + |sup V|em| — 07t <
m>n m>n
< € sup ( kv ]cm\) te<e(ot+e) te
m>n
Kedze 07! € R>g je konstanta, z uvedeného naozaj vyplyva limsup,,_,., /7 ¥/|cn| = 07t O

Veta 3.4.2. Nech S C C je otvorend mnozina, f: S — C je funkcia a a € S. Ak pre nejaké r > 0
a vSetky z € D(a,r) plati

1) = enlz—ay",
n=0

(kde mocninovy rad konverguje), je funkcia f holomorfnd na D(a,r) a pre vietky z € D(a,r) je

f'(z) = Z nep(z —a)* L.
n=1

Doékaz. Budeme uvazovat iba a = 0. Z tohto Specidlneho pripadu vyplynie aj ten v8eobecny — staci
uvazovat funkciu f(z + a) a jej derivaciu.

Z reprezentacie funkcie f mocninovym radom na D(0,r) vyplyva, ze mé tento rad polomer kon-
vergencie ¢ > r. Preto ma podla lemy 3.4.1 polomer konvergencie ¢ aj rad

oo
Z ne,2" 1 =: g(2).
n=1
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Zostava dokazat, ze g(z) je na D(0,r) derivaciou funkcie f. Zvolme preto I'ubovolné b € D(0,r).
Pre vsetky h € C také, ze b+ h € D(0,7) potom

b+h)— f(b > b+ h)* —b" - = b+ h)" —b" —
f( })l f()—g(b)zzcn<(})l_nb 1>:z:20n<(})l—nb 1).

n=1

Sta¢i dokazat, Ze prava strana tejto rovnosti speje pre h — 0 k nule. Vdaka binomickej vete

(b+h)" = i (Z) hkyF,

k=0

(b+h)" —b" no1 2oper (P)RFOE A
- nb" 1 = » ) b _; L hE=1pn—F =

7 ¢oho

pitipn—i—2 _ p, ( n )hjbnjg
Z <] + 2> jz;) 742

7=0

Ak dalej ¢iselny rad Y d,, konverguje absolatne, s pouZitim trojuholnikovej nerovnosti a limitného
prechodu lahko dokdZeme? |Y°°° ' d,| < Y°°° |d,|. Za predpokladu konvergencie radu z (3.6) nizsie
preto

0 n n e’} n—2
en | ——2—— )| = cn | b . I
U > (5 g

iz

l . .
<l|h o — hli b2 <
||Zrc| N ETe ]_2)!1 Plol" 72 <

< |h|Zrcn|n (n—1) Z AP =
]7

n- -9 . .
Y Zrcnm n—1) ( )|h|ﬂ|b|"—2—f _
]

= [n] Z!cn\n(n —1) (|n| + [p)" 2. (3.6)

n=2

Dvojnasobnym pouzitim lemy 3.4.1 zistujeme, ze rad

o0
Z can(n —1)2"2
n=2

mé tieZ polomer konvergencie p. Z definicie polomeru konvergencie teda vyplyva, Ze pre h spliajice
bl 4+ |h| < o ¢iselny rad

o0

> lealn(n = 1) (|| +[b])" >

n=2
konverguje k nejakej redlnej konstante. Vyraz (3.6) teda skutoéne pre h — 0 speje k nule. O

“Ide o cvicenie 1 na konci tejto kapitoly.
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Désledok 3.4.3. Nech S C C je otvorend mnozina, f: S — C je funkcia a a € S. Ak je funkcia f
analytickd v bode a, je funkcia f v bode a holomorfnd a funkcia f' je opdt analytickd v bode a. V désledku
toho md funkcia [ v bode a derivdcie lubovolného rdadu, pricom vietky si analytické v a.

Tymto pozorovanim nateraz skiimanie vlastnosti analytickych funkcii zanechame. Neskor sa k tejto
problematike eSte vratime a dokdzeme okrem iného aj opa¢nt implikiciu k predoslému zisteniu — Ze totiz
kazdéa holomorfna funkcia je analyticki. TieZ potom uvidime, Ze lokdlne reprezentécie analytickych
funkcii pomocou mocninovych radov su vzdy Taylorovymi radmi danej funkcie (definovanymi obdobne
ako v realnom pripade).

3.5 Exponenciidlna funkcia a goniometrické funkcie

Zavedieme teraz exponencialnu funkciu a goniometrické funkcie komplexnej premennej. Ako je dobre
zname, na R su tieto funkcie reprezentovatelné ich Maclaurinovymi radmi. Komplexné obdoby tychto
radov vyuZijeme na to, aby sme spominané funkcie definovali na obore C.

Definicia 3.5.1.

(1) Exponencidlnu funkciu definujeme pre vSetky z € C predpisom

22 3 >, 2n
Z . —
e __1_,_2,_’_72! +73! +...= Eon!.
n=

(13) Funkciu sinus definujeme pre vietky z € C predpisom

253 25 e . 22n+1
nz:=z——+—+4...= -1 .
A TR T nz:;)( VG

(ti1) Funkciu kosinus definujeme pre vSetky z € C predpisom

22 24 e " 2n
cosz:=1-— 5—1-14— :ngo(—l) o)l

Poznamka 3.5.2. Korektnost uvedenej definicie nie je uplne evidentné; je totiz potrebné dokazat, ze
mocninové rady v nej pouzité maju nekoneény polomer konvergencie. Polomer konvergencie o radu
definujuceho funkciu e? je ale dany ako

1 1
-1 _ 1 n | — 1 <1 —
0 limsup {/1/n! 117rln_>solip T/ = lim sup (/2 In(n/2)

n—00 n—oo €

2n
=limsup — =0
n—00 n
(kde pouzita exponenciélna funkcia je redlna), z ¢oho ¢ = co. Nekoneény polomer konvergencie radov
pre sinus a kosinus potom vyplyva bezprostredne z porovnavacieho kritéria.

Kedze sme na definiciu v8etkych troch funkcii pouZzili komplexnt obdobu ich Taylorovych radov
v redlnom obore, na R tieto funkcie splyvaju s ich realnymi naprotivkami. Dalej uz teda nemusime
rozliSovat medzi ich realnymi a komplexnymi verziami.

V nasledujicom tvrdeni okrem iného vyjadrime pomocou redlnych funkeii sinus a kosinus hodnotu
exponencialnej funkcie pre rydzo imaginarne argumenty (staci zvolit z € R). Odoévodnime tak aj zapis
komplexnych é&isel v exponencidlnom tvare, ktory sme doposial chépali &sto formélne. Na druhej
strane bude z nasledujuceho tvrdenia vyplyvat, Ze vlastnosti ,formélneho* exponencialneho tvaru
platia aj pre ,0zajstni* exponenciilnu funkciu.
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Tvrdenie 3.5.3. Nech z € C. Potom e** = cosz + isin z.

Dékaz. Vyplyva bezprostredne z definicie 3.5.1 a tvrdenia 3.1.4. O

Désledok 3.5.4 (Eulerova rovnost). Plati '™ + 1 = 0.

Tvrdenie 3.5.5. Funkcie €, sinz a cosz si holomorfné na C, pricom (e*) = e, sin’z = cosz
a cos’' z = —sin z.

Dékaz. Vsetky tri funkcie st analytické v bode 0 a zodpovedajice mocninové rady maji nekoneény
polomer konvergencie. Stac¢i teda aplikovat vetu 3.4.2. O

Tvrdenie 3.5.6. Nech z,w € C. Potom e*T% = e?e.

Dékaz. Zvolme a € C apolozme f(z) := e®e® *. Z viet 2.5.3 a 2.5.6 potom f/(z) = e*e? *—e%e % = (.
Podla tvrdenia 2.5.8 je teda funkcia f konstantni. Navyse f(a) = e%e? = e — pre vietky z € C teda
f(z) = €% Pre T'ubovolné z,w € C teraz zvolme a = z + w; zistujeme, e f(z) = e*e® = e*T¥, &o bolo
treba dokézat. O

Désledok 3.5.7. Nech z € C. Potom €* = eRe?eim= |e?| = eRe2 ¢ [arge?] = {Im z + 2kr | k € Z}.

3.6 Argument, logaritmus a mocninové funkcie

Viaceré elementéirne funkcie redlnej premennej sa pri pokuse o zovSeobecnenie do komplexného oboru
jemne vymykaji naSej doterajSej predstave o funkcidach komplexnej premennej ako o zobrazeniach
f:8 — C pre nejakia mnozinu S C C — pre jedno z € C totiz mozu nadobudat viac ako jednu
zmysluplnd vystupni hodnotu. Na viachodnotovost sme uz narazili pri argumente; teraz uvidime, Ze
rovnaka situacia nastéva aj pri logaritmoch, ¢ inych ako celoCiselnych mocninéach.

V ramci tohto oddielu k wiachodnotovym funkcidm — alebo tiez multifunkcidm — zaujmeme po-
merne naivny pristup a budeme sa z nich pokusat vyrabat jednohodnotové funkcie vhodnou volbou
argumentu. V kapitole 12 naSe chapanie analytickych funkcii prehibime a uvidime, Ze na jednohodno-
tové a viachodnotové funkcie je v skuto¢nosti mozné nazerat jednotnym sposobom.

V prvej kapitole sme videli, ze argument komplexného ¢&isla z nie je dany jednoznacne, ale uréuje
celt mnozinu hodnot [arg z]: ide o takzvani viachodnotovi funkciu alebo multifunkciu. Pre nenulové
komplexné ¢isla sa vSak rozne argumenty mozu lisit iba o celo¢iselny nasobok 27. Pre kazdé k € Z
preto mozeme definovat jednohodnotova funkciu argy: C\ {0} — C takua, ze pre vsetky z € C\ {0} je

arg,(z) =0 prave vtedy, ked 0 € [arg z] N ((2k — )7, (2k + 1)m],

t. j. vyberieme jednoznane dant hodnotu argumentu z intervalu ((2k — 1), (2k + 1)x|. Takéto funkcie
nazyvame vetvami viachodnotovej funkcie arg z. Kazda vetva arg(z) je zjavne spojita na C\ (—oc, 0]
a na takzvanom reze komplexnej roviny (—oo,0) spojita nie je. Pre vSetky a € (—o0,0) ale

lim argy(z) = lim arg; ,(2);
Im z>0 Im 2<0

vetva arg,, teda akoby ,,chcela spojito prejst* do vetvy argy ;. MoZno si tiez v8imnit, Ze namiesto rezu
(—00,0) moézeme komplexni rovinu narezat aj pozdlz inej polpriamky z bodu 0 a dostaneme obdobnii
situaciu — v takom pripade len argument vyberame z inych intervalov.
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V jednohodnotovi funkciu argumentu, ktora by bola spojita v bode 0, o¢ividne dufat nemézeme:
v kazdom okoli bodu 0 totiz vieme néjst komplexné ¢islo Tubovolného argumentu. Neexistuje vSak
ani funkcia argumentu, ktora by bola spojita na C\{0}. To mozno dokézat nasledovne: predpokladajme,
Ze takato spojita funkcia 0: C\ {0} — C existuje. Potom by bola spojita aj funkcia f: R — R dana
pre vSetky ¢ € R predpisom
1 .
t) = —(0(e") — ).
£(#) = 5 (6" — 1)
Lahko ale vidiet, Ze tato spojita funkcia nadobuda iba celo¢iselné hodnoty — musi preto byt konstantna,
7 ¢oho dostavame napriklad 0(e®) = 0(e?>™) — 2. To je spor, pretoze 2™ = €0 = 1.

Prirodzeny logaritmus In x kladného realneho ¢isla x je — vdaka injektivnosti redlnej exponencialnej
funkcie — definovany ako jediné realne ¢islo y, pre ktoré e¥ = x. Tuto funkciu by sme teraz chceli rozsirit
do komplexného oboru. Pre dané z € C teda hladame v8etky komplexné rieSenia w rovnice

e’ =z (3.7)

7 dosledku 3.5.7 vyplyva nenulovost exponencidlnej funkcie na celom C; moéZeme preto predpokladat,
ze z # 0. Ak polozime w = u+iv, vdaka doésledku 3.5.7 mame |e*| = e a [arge"] = {v+2kn | k € Z}.
Rovnost (3.7) je teda ekvivalentna dvojici rovnosti e = |z] a v € [arg z]. Pre vsetky z € C\ {0} preto

w

eV =z prave vtedy, ked w = In|z| + 46, kde 6 € [arg z].
To nés vedie k nasledujicej definicii.

Definicia 3.6.1. Prirodzeny logaritmus komplexného ¢isla z € C\ {0} je mnoZina
[Inz] := {In|z| 4+ i0 | 0 € [arg 2] }.

Ziskavame tak d'alsiu doleziti viachodnotovi funkciu. Z vysSie u¢inenych tvah pritom vyplyva, Ze
w € [ln z] prave vtedy, ked e = z.

UvaZované argumenty mozeme opit obmedzit na vhodny interval. Napriklad m6zeme komplexnu
rovinu rozrezat pozdlz polpriamky (—o0, 0] a pre lubovolné k € Z uvazovat funkciu Ing: C\ {0} — C
definovanu pre vsetky z € C\ {0} predpisom

Ing(z) := In|z| + 6, kde 6 € [arg z] N ((2k — 1)m, (2k + 1)7].

Vidime potom, Ze funkcia Relng(z) = In|z| je spojita na C\ {0} a ImIng(z) je — kedZe ide o funkciu
argumentu obmedzent na ((2k—1)m, (2k+1)7] — spojita na C\ (—oo, 0] a nespojita na (—oo, 0). Funkcia
Ing(z) je teda podla tvrdenia 2.2.7 tiez spojitd na C\ (—o0,0] a nespojita na (—oo,0). Pre vSetky
a € (—o0,0) navyse

lim Ing(z) = lim Ingiq(2).
Im 2>0 Im z<0

Funkcia Ing(z) je pre v8etky k € Z holomorfna na C\ (—o0,0]. Jej ztzenie na C\ (—oo, 0] je totiz
spojitou inverznou funkciou k funkcii e¥ ztzenej na S = {w € C | Imw € ((2k — )7, (2k + 1)7)}.
Ak teda pre Tubovolné z € C\ (—o0, 0] polozime w = Ing(2), z vety 2.5.7 vyplyva diferencovatelnost
funkcie Ing v bode z, pricom

1 1 1

! = —_—= = -
Ing(2) = = ) 5

Funkcie Ing(2) teda nazyvame aj holomorfnymi vetvami prirodzeného logaritmu.
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Nech z € C. Pre dané n € N\ {0} najprv najdime vSetky n-té odmocniny &isla z; to znamena
vietky ¢isla w € C, pre ktoré je splnena rovnost

w = z.

Ak z = re'? a w = se’® pre nejaké r,s > 0 a 0, ¢ € R, musi byt s = /™ a ng = 0 + 2kr pre nejaké
k € {0,...,n —1}. Preto kladieme

[21/7] i= { |2/ | g o, on =13} = { e/ ine®in | ke fo, . n—1}}, (38)

kde 6 je Tubovolny prvok [arg z]. Takto by sme vedeli definovat aj racionalne mocniny komplexného
Cisla, avSak na definiciu redlnych a komplexnijch mocnin potrebujeme zvolit iny pristup — vyuzit funkciu
prirodzeného logaritmu komplexnej premennej.

Definicia 3.6.2. Nech z € C\ {0} a « € C. Potom
[2%] :={e* | we[lnz]} = {ea(ln‘zl"’w) ’ 6 € [arg z]]}

Lahko overime, ze definicia 3.6.2 je konzistentna s definiciou odmocnin prostrednictvom (3.8);
pre n € N\ {0} totiz
e(1n|z|+i9)/n — eln\z|/n€i9/n — |Z’1/nei9/n

a vSetky rozne 6 € [argz] tak daju prave mnozinu (3.8). Mame teda definovanu dalsiu spomedzi
najvyznamnejsich multifunkcii.

Vratme sa eSte na chvilu k multifunkcii [2'/"] pre prirodzené n > 2. Obmedzme sa na argu-
menty z intervalu (—, 7] — ¢iZe narezme komplexnt rovinu pozdiz polpriamky (—oo,0] — a definujme
pre k=0,...,n — 1 funkciu f;: C\ {0} — C ako vetvu multifunkcie [2'/"], v ktorej vyberieme k-tu
spomedzi jej n-tych odmocnin: pre vietky z € C\ {0} teda polozme

fk(z) — ei2k;7r/n|Z‘1/nei6/n7

kde 0 € [argz] N (—m, 7] je argument z nami zvoleného intervalu. Pre k& = 0,...,n — 1 a v8etky
z € C\ {0} potom fi(2)" = 2. Funkcie fi(z) st navySe holomorfné na C\ (—o0, 0], kedze

Filz) = 6lnk(Z)/n’

kde Ing(z) je k-ta holomorfna vetva logaritmu; holomorfnost funkcie f na C\ (—o0,0] tak vyplyva
z vety o derivacii zlozenej funkcie. Lahko tiez overime, ze funkcie fi(2) st nespojité na (—oo,0), pri¢om
ale pre vSetky a € (—00,0) je

lim fi(z) = lim fry1(2),

z—a
Im 2>0 Im z<0

kde s¢itanie v indexe funkcie f je modulo n. Funkcie fy, ..., fn—1 teda nazyvame holomorfngmi vetvami
multifunkcie [2%/"]. Lahko tiez vidiet, ze pociatoéna volba argumentu z intervalu (—, 7] nebola nijak
zésadné — pre argumenty vyberané z intervalu ((2¢ — 1)m, (20 + 1)] pre ¢ € Z by sme vzdy dostali
tych istych n holomorfnych vetiev, akurat s cyklicky posunutymi indexmi. Velmi podobné je situacia
aj pri vSeobecnom komplexnom exponente «a; takdto mocninova funkcia vsak ma pre a € QQ nekonecéne
vel'a holomorfnych vetiev.

Pri manipulacii s inymi ako celo¢iselnymi mocninami komplexnych ¢isel je vZidy namieste urcita
opatrnost, pretoze nie vSetky vlastnosti umochovania redlnych ¢isel na redlny exponent st pre kom-
plexné ¢isla plnohodnotne zachované. V nasledujiicom si teda uvedieme aspon dve spomedzi vlastnosti,
ktoré pri praci s mocninami komplexnych ¢isel pouzivat mézeme.
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Tvrdenie 3.6.3. Nech z € C\ {0} a a,8 € C. Potom pre kazdé w € [2°TP] existujii u € [2°]
av € [2P] také, Ze w = uv.

Dékaz. 7 definicie 3.6.2 je

w = (e tB)(Inlzl+i0)

pre nejaké 0 € [arg z]. Potom
u = ea(1n|z\+z’0) e [[Za]]

a
v = Bnleltio) ¢ [.B],
pricom
v = enlz[+i0) B(n|z|+i0) _ (a+p)(In|z|+if) O
Poznamka 3.6.4. Na prvy pohlad sugestivne vyzerajica rovnost [2°T8] = [2%][2°] na rozdiel

od vlastnosti z tvrdenia 3.6.3 neplati. Staci si napriklad v8&imnit, Ze
[[11/3]”112/3]] — {17ei27r/37ei47r/3}{176i27r/3’6i47r/3} — {1’ei27r/376i47r/3} ?é {1} — [[11]]

Klacovym faktorom pri dokaze tvrdenia 3.6.3 bolo, Ze sme pri obidvoch mocninach uvazovali rovnaky
argument ¢isla z.

Identita (ab)® = a“b®, platna pre vsetky a,b > 0 a a € R, nemé ziadnu obdobu umoziujtcu
uvazovat komplexné zaklady aj exponenty. V nasledujicom ale aspon dokadZeme, Zze odmociiovanie
komplexnych ¢&isel — a teda aj ich umocnhovanie na racionalnu mocninu — sa v tomto zmysle sprava
ocakavanym sposobom.

Tvrdenie 3.6.5. Nech a,b € C\ {0} an € N\ {0}. Pre lubovolné u € [a'/"] a v € [b/"] potom
[(ah)/"] = [a"][""] = u81/"] = [al/"]o.

Dékaz. Evidentne staci dokazat iba rovnost [(ab)'/"] = [a*/"]v. Nech 6 € [arga] a ¢ € [argd].
Podla (3.8) existuje £ € {0,...,n — 1}, pre ktoré je v = ¢?267/7|p|1/mei/™ Preto

[[al/n]]v _ {ei2k7r/n|a’1/nei0/n

ke{0,...,n— 1}} ei20m/n |p| 1 /neit/n —
2007/ b1/ 4O | e (o, n—1}} =

kE{O,...,n—l}}:

-
-

ei2k7r/n|ab|1/nei(9+¢)/n

[(ab)'/"],
kedze 6 + ¢ € [arg(ab)]. O

Cvicenia
1. Dokazte, ze pre kazdy absolutne konvergentny rad komplexnych ¢isel Y ° d,, je
o oo
S da| < S ldl.
n=0 n=0

Trojuholnikova nerovnost teda v tomto zmysle plati aj pre nekonecné sucty.

2. Dokazte alebo vyvratte: pre kazdé k € N existuje mocninovy rad )7 ¢,2" so stredom v bode 0
a s polomerom konvergencie 1, ktory diverguje v prdve k roznych bodoch kruznice |z| = 1
(a vo zvySnych bodoch tejto kruznice konverguje).
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3. Dokazte, ze pre vietky z € C a k € Z je (e*)F = eF*. Ako je to s (e*)® pre a € C?
4. Dokézte, ze pre vsetky z € C platia vztahy
eiz _ e—iz eiz + e—iz

sing = —— a cosz =
21

5. Funkcia kosinus je na R parna a funkcia sinus je na R neparna. Zostava tato vlastnost v platnosti
aj na C7

6. Dokézte, ze pre vSetky z,w € C platia siuctové vzorce

sin(z + w) = sin z cosw + cos z sin w,

cos(z + w) = cos z cosw — sin z sin w.
7. Funkcie sinus a kosinus st na R ohrani¢ené. Zostéava tato ich vlastnost v platnosti aj na C?
8. Najdite vSetky z € C také, ze:

a) e —1=0,
b) e +1=0.

9. Najdite vSetky z € C také, ze:

a) sinz =0,

b) cosz = 0.



Predbezna verzia



Kapitola 4

Integrovanie funkcii komplexne]
premennej

Budeme sa teraz nejaky ¢as venovat integralom funkcii komplexnej premennej. Nep6jde pritom o samo-
ucelné snazenie — integrovanie v komplexnej rovine sa neskor ukaze okrem iného ako uzito¢ny nastroj
na skiimanie rozli¢nych vlastnosti analytickych funkcii, o ktoré nam ide predovsetkym. Text tejto
kapitoly ¢iasto¢ne vychadza z knih 8] a [4].

4.1 Komplexné funkcie realnej premennej

V suvislosti s integralmi budeme potrebovat nardbat s komplexnymi funkciami redlnej premennej — ¢ize
s funkciami f: S — C, kde § C R. V podstate tu nejde o Ziaden novy objekt: kazdia takito funkciu f
totiZ moZno reprezentovat pomocou dvojice redlnych funkcii Re f a Im f definovanych pre vSetky
t € S predpismi (Re f)(t) := Re(f(¢)) a (Im f)(t) := Im(f(¢)); evidentne potom f = Re f + iIm f.
V struc¢nosti si teraz zhrnieme niekolko zékladnych faktov o takychto funkciach.

Ako definicie limity a spojitosti mozu pre takéto funkcie poslizit definicie pre funkcie komplexnej
premennej z druhej kapitoly. Plati teda nasledujtce.

Tvrdenie 4.1.1. Nech SCR a f: S — C je funkcia.

a) Nech a € R je hromadny bod mnoziny S. Viastnd limita limy_,, f(t) potom existuje prdve vtedy,
ked existugi obidve vlastné limity lim;_,, Re f(t) a limy_, Im f(t). V takom pripade

}g%f(t) = %L%Ref(t) —l—z%grtlzlmf(t).

b) Funkcia f je spojita v bode a € S (resp. na mnoZine T C S) prdve vtedy, ked si v bode a
(resp. na mnoZine T') spojité obidve funkcie Re f a Im f.

Dékaz. Ide o Specidlny pripad tvrdenia 2.2.7. OJ

Ako definiciu derivicie mozeme takisto pouZzit tu z druhej kapitoly; derivacie vSak musime uvazovat
v hromadnych bodoch mnoziny S C C — a nielen v bodoch otvorenych podmnozin C, ako tomu je
pri holomorfnych funkciach.

Definicia 4.1.2. Nech S CR, f: § — C je funkcia a a € S je hromadny bod mnoziny S. Derivdciou
funkcie f v bode a nazveme, ak existuje, hodnotu vlastnej limity
t —

1 F0 = f(@)

t—a t—a
Ak ma funkcia f v bode a derivaciu, nazveme ju diferencovatelnou v bode a. Funkcia f je diferen-
covatelnad na mnozine T C S, ak T pozostava vyhradne z hromadnych bodov mnoziny S a f je
diferencovatelna v kazdom bode a € S.
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Tvrdenie 4.1.3. Nech S CR a f: S — C je funkcia. Funkcia f je diferencovatelndg v hromadnom bode
a € S mnoZiny S prave vtedy, ked si v bode a diferencovatelné obidve funkcie Re f a Im f. V takom
pripade navyse

f'(a) = (Re f)'(a) +i(Im f)'(a).

Dokaz. Jednoduché cvicenie. O

Po zvysSok tejto kapitoly budeme ¢asto pracovat s ur€itymi integralmi redlnych funkcii reélnej pre-
mennej. Moze pritom vzdy ist o Riemannov integral alebo o Tubovolny iny integral taky, ze vetky
funkcie po Castiach spojité na intervale [«, 5] — ¢iZe v8etky funkcie, ktoré si na tomto intervale nespo-
jité v nanajvys koneénom pocte bodov — st na intervale [a, 3] integrovatelné, pricom hodnota tohto
integralu sa zhoduje s hodnotou Riemannovho integralu. Moze ist teda napriklad aj o Lebesgueov
integral; znalost jeho teodrie vSak u ¢itatela nepredpokladame.

Ako medzikrok k pojmu krivkového integralu definujeme urcity integral komplexnej funkcie redlnej
premennej; zakladom pre definiciu takéhoto integréilu je jeho ocakévanéa linearita.

Definicia 4.1.4. Nech a < 3 su realne ¢isla a f: [a, 5] — C je funkcia. Funkcia f je integrovatelnd
na intervale [o, 5], ak st na tomto intervale integrovatelné funkcie Re f a Im f. V takom pripade
definujeme

B B B B
/f(t)dt:/ (Re f(t) +iIm f(t)) dt ::/ Ref(t)dt+i/ Tm f(t) dt.

«

Poznamka 4.1.5. Z uvedeného vyplyva, Ze vSetky komplexné funkcie realnej premennej, po ¢astiach
spojité na nejakom intervale, sii na tomto intervale integrovatelné.

Poznamka 4.1.6. V sulade s beznou praxou budeme za integrovate}’né povazovat aj vSetky funkcie
file, 5]\ F — C, kde F' je kone¢nd mnoZzina a Tubovolna z funkcii f: [a, B] — C taka, Ze pre vietky
t € [o,B]\ F je f(t) = f(t), je integrovatelnd na [a, 3]. Nech totiz funkciu f dodefinujeme na f

akymkolvek sposobom, integral
B . B
/ f(t)dt —:/ f(t)dt

bude vzdy ten isty.

4.2 Parametrické krivky

Urcity integral funkcie jednej redlnej premennej sa obvykle definuje na intervale. V ramci prechodu
od jednorozmernej redlnej osi k dvojrozmernej komplexnej rovine sa vhodnym zovSeobecnenim tohto
konceptu javi byt integrovanie komplexnych funkcii pozdlz kriviek. Zavedieme preto niekolko pojmov,
ktoré s krivkami stvisia.

Krivku v komplexnej rovine mozno vo vieobecnosti zadat (najmenej) dvoma principialne odlisnymi
sposobmi. Jednou moznostou je chapat krivku ako ,staticky objekt*, ¢ize ako vhodnit mnozinu bodov
komplexnej roviny, zadant napriklad rovnicou. Tak napriklad zépis K = {z € C | |z — a| = r} udava
kruznicu so stredom a € C a polomerom r > 0, zapis U = {z € C | [Rez| = [Imz| A |z] < V2} je
vyjadrenim tsecky spajajicej body —1 — ¢ a 1 4 4, a podobne.
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Za ucelom definicie integralu je v8ak vhodnejsi ,,dynamicky* pohl'ad, pri ktorom krivku chapeme ako
dréahu opisant pohybujicim sa bodom v nejakom ¢asovom intervale. Ak sa bod zacal pohybovat v Case
t = a a prestal sa pohybovat v Case t = [, je nim opisand draha jednoznacne urcena funkciou, ktora
pre kazdy Cas z intervalu [a, 8] vrati ,,aktualnu polohu“ pohybujtceho sa bodu v komplexnej rovine.
Aby sme o opisanej drahe mohli zmysluplne hovorit ako o krivke, pohybujici sa bod by nemal mat
moznost ,skakat* z jedného miesta na druhé — zobrazenie udavajuce krivku by teda malo byt spojité.
Krivka je tu teda dané spojitou funkciou realneho ¢asového parametra t a nazyvame ju preto krivkou
danou parametricky alebo parametrickou krivkou. Zvycajne vSak budeme privlastok ,,parametricka‘
vynechévat a hovorit jednoducho o krivke.

Definicia 4.2.1. Parametrickd krivka je spojité zobrazenie v: [a, 8] — C, kde o < 3 st redlne ¢isla.

Priklad 4.2.2. Usecku zacinajucu v bode u € C a konéiacu v bode v € C mozno zadat ako paramet-
ricka krivku [u,v]: [0,1] — C danu pre vSetky t € [0, 1] predpisom

[u,v](t) = u+t(v—u).

Pre tsecky pouzivame rovnaki notaciu ako pre uzavreté intervaly; vyznam notacie [u, v] ale bude vzdy
zrejmy z kontextu.
Kruhovij oblik so stredom a € C a polomerom r > 0, vymedzeny uhlami 6; < 62, mozno zadat ako
parametrickt krivku s, g,1(a,7): [01,62] — C dant pre vSetky ¢ € [0, 2] predpisom
Kig,,00)(a,7)(t) = a + re't.

Pod kruznicou k(a,r) so stredom a € C a polomerom r > 0 rozumieme kruhovy oblik K[0,27] (a,r).
Tieto tri pravdepodobne najdolezitejsie druhy parametrickych kriviek st znazornené na obrazku 4.1.

5[91,02](172) 5(172)

[, 4 4
K/ﬁ:um

/

u=-3-—2i

v

(a) Usetka [—3 — 26,1 + 2i]. (b) Kruhovy oblik kg, 9,(1,2)- (¢) Kruznica x(1,2).

Obr. 4.1: Usecka, kruhovy oblik a kruznica.

Oznacenie 4.2.3. V nasledujucom budeme ¢asto pouZivat notéciu z predoslého prikladu — [u,v]
pre tsecku, kg, g,)(a,) pre kruhovy oblik a k(a,r) pre kruznicu.

Pociatoénym bodom takto definovanej krivky v nazveme bod y(«) a jej koncovym bodom bod ~(f).
Symbolom v* ozna¢ime mnozinu vSetkych bodov leziacich na krivke v, t. j. v* = {y(¢) | t € [a, (]};
tato mnozina sa nazyva obrazom krivky «y. Krivku nazveme uzavretou, ak v(a) = v(8), a jednoduchou,
ak pre vSetky ¢; < to z intervalu [a, ] moZe rovnost v(¢1) = y(t2) nastat iba v pripade, Ze t; = to,
alebo stucasne t1 = a a to = (; jednoducha krivka sa teda nikde sama so sebou ,,nekrizi“, pricom moéze
alebo nemus{ byt uzavreta. Jednoduchu a sti¢asne uzavretu krivku nazyvame Jordanovou krivkou.
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Kazdé jednoduchéa parametricka krivka udava okrem svojho obrazu ~* aj smer, v ktorom je téato
mnoZina bodov opisana. Ttuto skuto¢nost graficky vyjadrujeme gipkami, podobne ako na obrazku 4.2.
O jednoduchej uzavretej krivke navyse hovorime, Ze je kladne orientovand, ak je opisana ,,proti smeru
hodinovych ruciciek®. Takéito definicia orientécie je zna¢ne neexaktné — ozajstni definiciu sformulujeme
az neskor s vyuzitim krivkového integralu.

k(1,2)

N
v

]

(a) Smer opisania krivky 7 znazorneny Sipkou. (b) Kruznica k(1,2) je orientovana kladne.

Obr. 4.2: Orientované krivky.

Poznamka 4.2.4. Grafické znézornenie na obrazku 4.2 vyjadruje sposob, akym jednoduché paramet-
rické krivky obvykle chdpeme — vac¢Sinou ich stotozZriujeme s ich obrazom spoloc¢ne s ich orientaciou.
Pri praci s krivkovymi integralmi sa tymto stotoZnenim zvycajne nedopustime chyby. Treba vSak mat
na paméti, ze tato skuto¢nost nie je nijak samozrejma: dve rovnako orientované krivky s rovnakymi
obrazmi mozu byt definované pomocou rozdielnych funkcii ¢asového parametra, a teda nemusi ist o je-
den a ten isty objekt. Budeme preto neskor musiet dokazovat, Ze v uvedenom zmysle ,ekvivalentné
krivky sa za urcitych okolnosti naozaj ,spravaja rovnako“.

Na krivkach tiez mozeme definovat niekol'ko jednoduchych operécii. Pre kazda krivku v: [a, 5] — C
oznadime symbolom —+ k nej opacni krivku —v: [a, 8] — C, definovani pre vSetky ¢ € [, 5] predpisom

(—)(#) = y(a+ B —1).

Tato krivka mé rovnaky obraz ako krivka +, je v8ak opisand ,opa¢nym smerom“. Pre Tubovolnu
dvojicu kriviek 41 : [a1, f1] = C a y2: [ag, f2] — C takych, ze v1(51) = v2(a2) dalej symbolom 71 + o
oznac¢ime ich spojenie!, ktoré definujeme ako krivku 1 + 2 [a1, B1 + B2 — ao] — C danii pre vietky
t € [a1, 1 + P2 — ag] ako

[ @) ak t € [aq, f1],
(11 +72)() = { yalag — B +t) akt € [Br,f1+ B2 — asl.

Nakoniec definujme ziZenie v | [&, 3] krivky v: [, 8] — C na interval [&, ], kde o« < & < 8 < 8,
ako krivku (fy i [&,B]) : [d,B] — C splhajtcu (fy i [&,B]) (t) = ~(t) pre vietky ¢ € [d,B].

Poznamka 4.2.5. Notacia —v pre opacnu krivku a -1 +72 pre spojenie dvoch kriviek je sice zauzivana,
ale nie je konzistentné s operaciami na funkciach, ktoré st nositelkami rovnakych oznaceni. Je preto
dolezité zakazdym rozliSovat, ¢ krivku chapeme naozaj ako krivku, alebo nés zaujima funkcia, pomocou
ktorej je tato krivka definovana. V nasledujicom to bude vzdy zrejmé z kontextu.

LOperacia spojenia kriviek je zrejme asociativna, o nAm umoziiuje pouZzivat aj notaciu 41 + ...+ v, pre spojenie n
(vhodnych) kriviek 1, ..., vn-
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Zmysel nasledujucej definicie hladkyjch a po castiach hladkijch kriviek sa ukaZze v suvislosti s kriv-
kovymi integralmi.

Definicia 4.2.6. Nech « < 3 st reélne ¢isla. Krivku v: [, 5] — C nazveme:
a) Hladkou?, ak je funkcia vy na intervale [a, 3] spojite diferencovatelna.
b) Po castiach hladkou, ak je spojenim niekolkych hladkych kriviek.

V komplexnej analyze sa typicky pracuje s krivkami, ktoré st spojenim kone¢ného poc¢tu kruhovych
oblikov a useciek — priklad takejto krivky je na obrazku 4.3. Lahko moZno overit, Ze vSetky takéto
krivky st po castiach hladké. V nasledujicom budeme pracovat vyhradne s po Castiach hladkymi
krivkami.

\/

/s
N

Obr. 4.3: Krivky vzniknuté spojenim kone¢ného poctu kruhovych oblikov a useciek st v komplexnej analyze
najcastejSie pouzivanym druhom po Castiach hladkych kriviek.

4.3 Krivkovy integral

Definujeme teraz krivkové integraly komplexnych funkcif komplexnej premennej. Ako uz bolo povedané,
pojde o zovSeobecnenie urcitého integralu funkcii redlnej premennej, pri ktorom budeme namiesto
intervalov integrovat pozdiz kriviek v komplexnej rovine. Ako je dobre zname, pre funkciu g reélnej
premennej ¢ integrovatelnd na intervale [0, 1] je

/log(t)dt:—/olg(t)dt.

Ocakavali by sme teda napriklad, Ze ak v je usecka dizky 1 zvierajtca so smerom realnej osi uhol @
a f je funkcia komplexnej premennej z taka, ze pre kazdé t € [0,1] je f(~(t)) = g(t), bude integral

funkcie f pozdfé ~ Spfﬁaﬁ rovnost
' 1
/f(z) dz = 6“9/ g(t)dt.
0 0

Pre vSeobecnu krivku v: [a, ] — C pozadujeme podobnu vlastnost: cheeli by sme ,s¢itat nekonecne
vela hodnoét funkcie f nad krivkou 4, pricom ,kazdy infinitezimalny kasok“ nad bodom ~(t) by sme

2Pojem hladkej krivky nemozno zamienat s pojmom hladkej funkcie, ¢o je realna funkcia s derivaciami vietkych radov.
Pri hladkej krivke pozadujeme iba existenciu jedinej spojitej derivécie.
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chceli prenasobit ,,smerovym vektorom* parametrickej krivky v danom bode, ktory je dany jej deriva-
ciou (ak, pravda, existuje). Prichddzame tak k vztahu

B
/ f(z)dz = / S/ () () dt,

ktory mozeme odovodnit aj symbolicky: ak z = ~(¢), tak dz = +/(¢) dt. Derivacia 7/(¢) v8ak na danom
intervale nemusi vSade existovat, pripadne nemusi byt spojita; aby teda bol vysSie uvedeny integral
dobre definovany, obmedzime sa na po ¢astiach hladké krivky. Tak prichddzame k nasledujicej definicii.

Definicia 4.3.1. Nech S C C, f: S — C je spojita funkcia a v: [a, 5] — C je po Castiach hladka
krivka taka, ze v* C S. Integrdl funkcie f pozdlZ krivky ~ potom definujeme predpisom

B
/ f(2)dz = / v (1) .

Poznamka 4.3.2. Korektnost uvedenej definicie vyplyva z nasledujiiceho: funkcie f aj v st spojité,
teda je spojité aj ich zloZenie. Krivka v je navySe po castiach hladka, ¢o znamené, Ze funkcia v je
na intervale [a, 3] — aZ na kone¢ne vel'a jeho bodov? — dobre definované a po ¢astiach spojita. V dosledku
toho je — po pripadnom dodefinovani v konecéne vel'a bodoch — po ¢astiach spojita aj funkcia (f ov)~';
tato funkcia je teda integrovatelna.

Poznamka 4.3.3. Krivkovy integral moZno definovat aj pre vieobecnejsiu triedu kriviek, nez s po ¢as-
tiach hladké krivky — takyto pristup by si vSak vyzadoval vybudovat pomerne netrivialnu teoériu, hoci
z hladiska porozumenia fundamentalnym principom komplexnej analyzy by sme tym vela neziskali.
Aj pre praktické ucely st po ¢astiach hladké krivky viac ako plne postacujice.

Priklad 4.3.4. Vypocitame integral z funkcie f(z) = 22 pozdlz tsecky v = [—i, 2i]:

1 1
/22 dz :/ (—i+3it)23idt:3i/ (—9t% + 6t —1)dt =
o7 0 0

= 3i [-3° + 32 — ],_, = 3i (-1 - 0) = —3i.

Vyznam nasledujiceho tvrdenia nemoZno precenit — hovori o azda najdolezitejsich konkrétnych
integraloch v komplexnej analyze vobec.

Tvrdenie 4.3.5. Necha € C, r >0 a k € Z. Potom

ok 0 akkez\{-1},
/(aﬂ.)(z a> dz{ 21 akk:—l

Dékaz. Plati
2m ) ) 2
/ (z—a)fdz = / (re”)k ire' dt = irkt! / ekt g =
K(a,r) 0 0
2m
= jrh Tt / (cos(k + 1)t 4+ isin(k + 1)t) dt =
0
27 2
= jrhtl (/ cos(k + 1)tdt —l—z'/ sin(k + 1)tdt> =
0 0

| sin(k+1)t 2m . | cos(k+1)t 2
) artt <[ T L:o_z[ik“ ]t:(]) ak k € Z\ {—1},

P[4, ak k= —1.

Na zaviSenie dokazu uz len stac¢i vyuzit skutocnost, Ze pre vSetky £ € Z je sin2fmr = sin0 = 0
a cos 2w = cos0 = 1. O

3V tychto bodoch ju vSak mozno Tubovolne dodefinovat, a teda tato skuto¢nost v stlade s dobrym zvykom a po-
znamkou 4.1.6 ignorujeme.
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4.4 Elementarne vlastnosti krivkového integralu

Dokéazeme najprv, ze integraly pozdlz opaénych kriviek a pozdlz spojeni kriviek maju ocakavatelné
hodnoty.

Tvrdenie 4.4.1. Nech S C C, f: S — C je spojitda funkcia a v: [o, 5] — C je po castiach hladkd

krivka takd, Ze v* C S. Potom:
/ f(z)dz = —/f(z)dz.
- gl

(1) Plati
(13) Ak v =1+ v2 pre nejaké dve po castiach hladké krivky ~v1: [aq, B1] — C a y2: [, f2] — C, tak
/ f(z)dz= [ f(z)dz+ | f(2)d=.
2l 0! 72

Doékaz.

(1) Z definicie opacnej krivky dostavame
B B
| 1@ = [ Henoi = [ fotass-0)a+p- -
— a a
a B
= [ s as == [ e s = [ 1
(74) Z definicie spojenia kriviek dostavame o = ay, 8 =1 + P2 —ag a

B1+P2—a2
/ f(z)dz = / (o + 1)) (1 +72) () dt =
Y1+72 a

1

51 B1+B2—a2
~ [ e aes [ F (2 — By + )yl — By +£) dt =
b1 B2
= Fn @) (t) dt+/ f(v2(s))v3(s)ds = (z)dz+ | f(2)dz. O
al a2 71 Y2

Dosledok 4.4.2. Nech S C C, f: S — C je spojita funkcia a ~v: [a, 8] — C je po castiach hladkd
krivka takd, Ze v* C S. Ak v =1 + ...+ v pre nejakd n-ticu po castiach hladkych kriviek

1 [alvﬁl] —>C7'~7’Yn5 [aann] _>(C7
tak

Priklad 4.4.3. Vypoditame integral funkcie f(z) = 22 pozdiz uzavretej krivky v = [~2, 2] + K[0,x](0,2)
na obrazku 4.4. Této integratna krivka je oCividne po ¢astiach hladki. Z tvrdenia 4.4.1 a definicie
krivkového integralu:

1 T
/szZZ/ z2dz+/ szz:/ (—2+4t)24dt+/ (2e)22ie™ dt =
~ [—2,2] n[o,ﬂ](0,2) 0 0

1 ™ ™
:4/ (16t2—16t—|—4)dt—|—8i/ cos3tdt—8/ sin3tdt =
0 0 0

16t3 in3t]” 3t]™ 16 16
— 4| g | s | 2B 18| 00
3 3 t=0 3 t=0 3 3

1

t=0
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Obr. 4.4: Uzavreta integracna krivka ~.

V nasledujicom dokézeme, Ze integraly pozdlz po ¢astiach hladkych kriviek ,s rovnakym obra-
zom a smerom“, liSiacich sa iba parametrizidciou, maji za istych podmienok rovnaké hodnoty. Kazda
po ¢astiach hladka krivku v: [, ] — C teda moZeme za ur¢itych podmienok reparametrizovat —
t. j. napriklad zadat ako funkciu nejakého iného intervalu [&, B] — bez toho, aby sa zmenili hodnoty
integralov pozdlz nej. Podmienky, ktoré musi tato reparametrizacia spliat, byvaji v praxi v podstate
vzdy splnené; to nas do uréitej miery opraviiuje hovorit o integraloch pozdlz kriviek bez toho, aby sme
tieto krivky explicitne parametrizovali.*

Definicia 4.4.4. Nech ~: [a, 3] — C je po ¢astiach hladké krivka. Krivku 4: [&, 5] — C nazveme
reparametrizdciou krivky v, ak existuje rasttca spojite diferencovatelna bijekcia ¢ : [&, 5] — [a, 5] taka,
Zey=7v0¢p.

Podmienka rasttucosti a bijektivnosti reparametrizéicie vyjadruje vlastnost opisania obidvoch kriviek
rovnakym smerom. Podmienka jej spojitej diferencovatelnosti je technickd a vyuziva sa pri dokaze
nasledujticeho tvrdenia.

Je zrejmé, Ze ak je v po Castiach hladka krivka a 4 jej reparametrizacia, je 4* = 4* a aj orientécia
obidvoch kriviek je rovnaka. Nasledujice tvrdenie hovori, Ze st rovnaké aj vSetky integraly spojitych
funkcii pozdlz tychto dvoch kriviek.

Tvrdenie 4.4.5 (O reparametrizacii). Nech S C C, f: S — C je spojitda funkcia, v: [o, B] — C je
po castiach hladkd krivka takd, Ze v* C S a 4 je reparametrizdicia krivky ~v. Potom 4 je po castiach

hladkd a
[Ayf(z)dz:lf(z)dz.

Dokaz. Vdaka dosledku 4.4.2 staci uvazovat pripad, ked je krivka v hladka. Nech 4: [&,B] — C
a p: @, 5] — |a, f] je rastiuca spojite diferencovatelna bijekcia taka, ze 4 = v o . Kedze st obidve

funkcie v, ¢ diferencovatelné, je podla vety 2.5.5 na intervale [&, 3] diferencovatelna aj funkcia 4. Plati
pritom

¥'=0Hop) ¢

a zo spojitosti funkcii v/, ¢ a ¢’ tak vdaka tvrdeniam 2.2.9(iii) a 2.2.10(iii) dostavame spojiti
diferencovatelnost funkcie 4, ktora preto musi byt — ak ju chapeme ako krivku — hladka.

4Presnejsie povedané: krivky pouZivané v komplexnej analyze st asto zloZené z tsedick, kruhovych oblakov a po-
dobnych ,elementarnych® kriviek, pre ktoré je znama nejaka ich ,,obvykla* parametrizacia (pre usecky a kruhové obliuky
je to parametrizacia z prikladu 4.2.2). Podla nasledujaceho tvrdenia o reparametrizacii moézeme intervaly parametrov
bezo zmeny hodnoty integralu prinajmensom S§kalovat a posavat, pripadne vykonavat dalsie transformécie v sulade
s technickymi podmienkami tvrdenia. Ak teda niekedy budeme hovorit o integrale pozdiz krivky bez explicitne danej
parametrizacie, budeme mat na mysli niektora z jej ,,obvyklych“ parametrizacii, ktora pripadne moze byt ,,povolenym
sposobom‘ transformovana.
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Zistujeme teda, Ze

A f(z)dz

~

] B
/ fE@)Y(1)d :/ Fr(e(®)' () (t) dt =
(v()7'(s)

B
/a f ds:Lf(z)dz,

¢o bolo treba dokézat. O

Poznamka 4.4.6. V dokazoch predoslych tvrdeni sme po tichu pouzili metédu substiticie pre ur¢ité
integraly realnych funkcii komplexnej premennej; dékaz, ze tadto metdda skutocne funguje, prenecha-
vame ¢itatelovi ako jednoduché cvigenie.

Viacero vlastnosti krivkovych integralov vyplyva priamo z vlastnosti ur¢itych integrélov realnych
funkcii realnej premennej (napriklad Riemannovho integralu). Tieto vlastnosti budeme zvycajne pou-
zivat volne — na ukizku uvedieme len dokaz tvrdenia o linearite krivkovych integréalov.

Tvrdenie 4.4.7 (Linearita krivkovych integralov). Nech S C C, f,g: S — C su spojité funkcie,
a,b € C a~y: [a, ] = C je po castiach hladkd krivka takd, Ze v* C S. Potom

L(af(z)—i—bg(z)) dz:a/f(z) dz+b/g(z)dz.

v v

Doékaz. Funkcia af(z)+bg(z) musi byt podla tvrdenia 2.2.9 spojité, takZe znenie dokazovaného tvrdenia
déava zmysel. Z definicie krivkového integralu dalej

B8
/ (af(2) + bg(2)) dz = / (af +bg)(z)dz = / (af +bg)(4(£)' () dt =
Y Y

«

B
- / (af (YO () + bg(v ()Y (1)) dt =
B8 B
—a / FOOW (1) dt +b / ()Y (1) dt =

:a//f(z)dz%—b/vg(z)d,:

¢o bolo treba dokézat. O

4.5 Veta o odhade

Nasledujica veta je uzito¢nd napriklad v pripadoch, ked je integral tazké vypocitat presne alebo
jednoducho v pripadoch, ked néas zaujima najméi absoliutna hodnota integréalu.

Veta 4.5.1. Nech S C C, f: S — C je spojitd funkcia a v: [o, 8] — C je po castiach hladkd krivka

takda, Ze v* C S. Potom
B
[ 1] < [ e .
0% «@

Ak navyse existuje M > 0 také, Ze pre vietky z € v* je |f(z)| < M, tak

A £(2)dz

kde L(vy) oznacuje dlzku krivky ~ definovani ako

<M - L(y),

B8
L(y) = / /(1) dt.
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Doékaz. 7 definicie krivkového integralu

/vf(z) dz

B8 B8
/ f(v(t))'y’(t)dt‘ﬁ [ lre@n o] a (4.1)

[ swro .

Dokazeme, Ze

Skuto¢ne: nech ff FOy(t)y(t) dt = 7€ pre nejaké » > 0 a 6 € [0,27). Potom

8 g
r= [ TR0 O d =Re [ p0)0 1) d -
:/ﬁRe (e‘”f(v(t))v’(t)) dtﬁ/ﬁ

67

e P F(y()Y (t)] dt =

aﬂ
= [ [f(@)' ()] dr.

(0%
KedZe ale tieZ

r =

[ 6wno ]

je nerovnost (4.1) a tym aj prva ¢ast tvrdenia dokidzana. Ak dalej M > 0 je také, ze |f(z)| < M
pre vietky z € v*, je

B B
/ | F(v(0)Y (1) dt:/ [F(v@)] - [ ()] dt <
B B
< [ M| ae=n [ o] ae= L)
¢o dokazuje aj druhu c¢ast tvrdenia. O

Poznamka 4.5.2. Pojem dizky po castiach hladkej krivky zo znenia predchadzajtcej vety sthlasi s jeho
beznou definiciou v realnej analyze — ak totiz pre ¢ € [a, §] oznaéime z(t) := Re~v(t) a y(t) := Im~(¢),
tak

B8 B
Liy) = / (1) dt = / |(Ren)'(t) + i(Im~) ()] dt =

B B
- [eo+iyola= [ Jeo?+yorae
Ak navyse z(t) =t a y(t) = f(t), dostavame znamy vzorec

1) = | St e

Z uvedenych skutocnosti vyplyva, Ze dlzka ,,beznych kriviek — akymi st napriklad tsecky alebo kruhové
obliuky — méa skutocne vzdy hodnotu, aki by sme ocakavali.
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4.6 Krivkové integraly a primitivne funkcie

Primitivne funkcie mozno pre funkcie komplexnej premennej definovat obdobne ako v redlnej analyze.

Definicia 4.6.1. Nech S C C je oblast a f: S — C je funkcia. Hovorime, Ze funkcia F': S — C
je primitivnou funkciou k funkcii f na oblasti S, ak je funkcia F' na mnoZine S holomorfnéa, pri¢om
pre vietky z € S je F'(z) = f(2).

Dokazeme teraz tvrdenie o vztahu krivkovych integralov a primitivnych funkcii, ktoré je obdo-
bou zakladnej vety diferencidlneho a integralneho poctu pre funkcie komplexnej premennej. Preto sa
tiez niekedy nazyva zdkladnou vetou o krivkovijch integrdloch — toto pomenovanie je vSak relativne
zavadzajuce, kedZe nasledujuca veta nedosahuje vyznam Cauchyho integralnej vety, ktori dokaZzeme
v nasledujtcej kapitole a ktoré je skutoénym zakladnym kamenom komplexnej analyzy.

Veta 4.6.2. Nech S C C je oblast, f: S — C je spojitd funkcia, ku ktorej na S existuje primitivna
funkcia F: S — C a~: [a, B] = C je po castiach hladkd krivka takd, Ze v* C S. Potom

/ f(2)dz = F((8)) - F(2(a)).

Pre uzavrett po castiach hladku krivku v teda Specidlne

/y f(2)dz =

Dokaz. Nech su predpoklady vety splnené. Predpokladajme najprv, Ze je krivka ~ hladka. KedZe je
funkcia F' holomorfna na oblasti S O v* = v([a, #]) a funkcia ~ je na intervale [« 8] diferencovatelna,
je — podla vety 2.5.5 o derivacii zloZzenej funkcie — funkcia F o~y diferencovatelna na [«, 5] a pre vSetky

t € o, Bl je
(Foy)(t) = F'(v(t) (t);

tato derivacia je navySe na [«, 3] spojita, pretoze st spojité funkcie v,~7" a F' = f. Zistujeme teda, Ze

/ f(2)ds = / e / " P @ at =

B B
/(Fo*y) t)dt = / ReFoy)(t)dt—i—z/ Im(F o) (t)dt =
= Re(F o 7)(t)], + i [Im(F o)), =
= (Re F(7(B)) = Re F(v(a))) + i (Im F(7(B)) — Im F(y(a))) =
= F(y(8)) = F(y())-

Pre po castiach hladka krivku v: [, 8] — C existuje kladné prirodzené ¢islo n a hladké krivky
m: [, B1] = C, .o yn: [am, Bn] — C takeé, ze

Y=+t Y

Specidlne teda v(a) = y1(a1), ¥(8) = 7n(Ba) & pre k = 1,...,n — 1 plati (B) = Yer1(ans1):
7 dosledku 4.4.2 a z vyssie dokdzaného tvrdenia pre hladké krivky potom dostavame

n

[ #az = Z 2dz = 3 (Fw(By) - Fllon) =

=1 % k=1
n—1

F(yn(Bn)) = F(yi(ar)) + Y (F(w(Br) = F(rir1(ons1))) = F((B)) = F(v(e)),
k=1

¢o bolo treba dokézat. O
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7 dokazanej zakladnej vety o krivkovych integraloch vyplyva, Ze pokial k spojitej funkcii f existuje
na oblasti S primitivna funkcia, zavisia krivkové integraly tejto funkcie iba na pociatoénom a kon-
covom bode integracnej krivky. Tato nezéavislost integralu od integrac¢nej krivky je dokonca existencii
primitivnej funkcie ekvivalentna, ako ukazuje nasledujica veta.

Veta 4.6.3. Nech S C C je oblast a f: S — C je spojitd funkcia. Potom siu nasledujice tvrdenia
ekvivalentné:

(1) K funkcii f existuje na oblasti S primitivna funkcia.

(13) Pre vsetky dvojice po castiach hladkych kriviek ~1: (a1, f1] — C, va2: (e, B2] — C takych, Ze
71,75 €S, m(an) = 12(a2) @ 71(B1) = 72(B2) je

/71 sz = [ ge)d

(#i7) Pre vSetky uzavreté po castiach hladké krivky v: [, 5] — C také, Ze v* C S je

A F(2)dz = 0.

V pripade platnosti tyjchto ekvivalentngch tvrdeni navyse mdéze byt primitivna funkcia k f na S dand
pre vSetky z € S ako

() = / f(w) dw,

kde ~ je lubovolnd po castiach hladkd krivka s pevngm pociatocénym bodom zy € S nezdvislym od z
a s koncovym bodom z takd, Ze v* C S.

Dokaz. Implikacia ,,(i) = (7)* je dosledkom vety 4.6.2. Dokazeme implikaciu ,,(i7) = (4i7)“. Nech plati
tvrdenie (i) a v: [, 5] — C je uzavreta po Castiach hladka krivka. Zvolme bod p € [«, 5] Tubovolne
a oznatme v, = 7 | [a,p] a v2 := 7 | [u, 3] (obrazok 4.5). Potom 7 a —vo st krivky splhajice
podmienky tvrdenia (i7), a teda
(z2)dz = f(z)dz.
7 72
Kedze v = v1 + 72, z tvrdenia 4.4.1 vyplyva

/f(z)dz- f(z)dz+ f(z)dz-/ f(z)dz — f(z)dz =0,
8l At Y2 71

-2

¢im je implikacia dok4zana.

«’
N
A
N
o

_%,
|

v
_%,
|

\J

(a) Uzavreta krivka ~. (b) Rozdelenie krivky v na dve. (¢) Vysledna dvojica kriviek.

Obr. 4.5: Situacia z dokazu implikécie ,,(i3) = (4i7)“.
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(a) Krivky 71 a 2. (b) Zmena orientacie krivky vs. (c) Vysledna uzavreta krivka.

Obr. 4.6: Situacia z dokazu implikécie ,,(¢ii) = (i7)“.

Opac¢ni implikaciu ,,(iii) = (i1)* dokdZeme podobnym spdsobom. Nech plati tvrdenie (iii) a nech
7 [a1, B1] = C, v2: [ag, f2] — C st po Castiach hladké krivky také, ze 77,75 C S, m(a1) = 12(a2)
a 71(51) = v2(B2). Polozme v := 1 + (—2) (obrazok 4.6). Z platnosti tvrdenia (iii) a z tvrdenia 4.4.1
potom

Oz/f(z)dz: f(z)dz+

z ¢oho uz priamo dostavame

(2)dz = / fydz— [ f(2)dz,

-2 72

/71 F(2)dz = L () dz.

Zostava dokazat implikaciu ,,(ii) = (i)“. Predpokladajme, ze plati tvrdenie (i), zvolme pevné
zp € S a definujme funkciu F': S — C pre v8etky z € S predpisom

F(z) = / f(w) dw,

kde v je T'ubovolna po ¢astiach hladké krivka s po¢iatoénym bodom zg a koncovym bodom z splitajtca
v* C S. Dokdzeme, Ze funkcia F je na S holomorfn4, pri¢om pre vietky z € S je F'(z) = f(z). Zvolme
pevne z € S. Z predpokladu platnosti tvrdenia (i¢) a z tvrdenia 4.4.1 vyplyva, Ze pre vietky h € C\ {0}
splhajice D(z,|h|) C S je
F(z+h)— F(2) :/ f(w) dw,
v(h)

kde y(h) je nejaké po Castiach hladka krivka s po¢iatoénym bodom z a koncovym bodom z+ h taka, ze
~v(h)* C S. Pre tuto krivku tiez vdaka tvrdeniu (i¢) plati

1
/ dw:/ dw:/hdt:h.
v(h) [2,24h] 0
F(z+h)— F(2)

1 1
e P ( [, fwaw—se [ dw> =3 ], U sy v ()

Zo spojitosti funkcie f v bode z vyplyva, ze ku kazdému € > 0 existuje § > 0 také, ze |f(w) — f(2)| < e
kedykolvek w € S a |w — 2| < §. Z tvrdenia (1) a z vety 4.5.1 potom pre h € C\ {0} spliajtice
D(z,]h]) € S a |h| < vyplyva

Preto

<elhl,

/ (f(w) — £(2)) duw
~(h)

/ (f(w) - £(2)) dw
[2,2+h]
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z ¢oho dosadenim do (4.2) pre takéto h dostavame

F(z+h) — F(2) elh|
h f(z) Tal &
v dosledku ¢oho Fz+h)— F(2)
zZ+h)—r(z
li = .
Lim 3 f(z)
Funkcia F je teda v bode z skuto¢ne diferencovatelna a F'(z) = f(z). O

Poznamka 4.6.4. V situaciach, ked su pre funkciu f na oblasti S splnené ekvivalentné podmienky
z predchadzajicej vety, sa niekedy pouZziva notacia

[ e = [ e

kde ~ je Tubovolna po ¢astiach hladka krivka s v* C S, po&iatoénym bodom a a koncovym bodom b.
My tato notaciu — najméa kvoli hroziacej zémene s integralom funkcie reélnej premennej — pouZivat
nebudeme.

Poznamka 4.6.5. V nasledujicej kapitole dokdzeme jednu z najdélezitejsich viet komplexnej analyzy
— tzv. Cauchyho integrdlnu vetu. T moZno interpretovat ako vetu hovoriacu o relativne l'ahko overi-
telnej postacujicej podmienke platnosti ekvivalentnych tvrdeni z vety 4.6.3; pdjde tak vlastne o akusi
,prakticka verziu“ tejto vety.

Cvicenia
1. Dokazte, ze obraz v* krivky 7: [«, 5] — C je vzdy kompaktna mnoZina.
2. Vypocitajte

/22 dz
.

pre:

a
b

C

k(0,1),
Ki—r/2,7/2) (0, 1),
[—i

[0,

1]+ (1,01,
—i.
3. Nech v =[-1,1] + [1,4] + [i, —1]. Vypocitajte:

a) [ e*dz,
b) [, coszdz.

)
)
)
)

2 02 0 W
1

o,

4. Pouzite zakladnt vetu o krivkovych integraloch na dokaz, Zze neexistuje funkcia prirodzeného
logaritmu, ktora by bola holomorfna na C\ {0}.

5. Zhora odhadnite absolutnu hodnotu integralov:
1
a) f[1,2+2¢] zdz,

b) fn(3i,1) m dz.



Kapitola 5

Cauchyho integralna veta 1

Minuli kapitolu sme zakonéili dokazom zakladnej vety o krivkovych integraloch, podla ktorej je pre spo-
jita funkciu f rovnost

[ feraz=o (5.1)
:

splnena pre vSetky uzavreté po cCastiach hladké krivky ~ v oblasti S prave vtedy, ked k funkcii f
existuje na S primitivna funkcia. Tieto podmienky st navySe ekvivalentné, pre Iubovolné dva pevne
dané body v S, nezéavislosti krivkovych integralov funkcie f od volby integracnej krivky ~ s obrazom
v S spajajucej tieto dva body.

Dokézat existenciu primitivnej funkcie nemusi byt vzdy tplne jednoduché. V nasledujiucom preto
dokazeme Cauchyho integrdlnu vetu (pre jednoducho savisla oblast), ktord nam poskytne postacu-
jucu podmienku platnosti uvedenych troch ekvivalentnych tvrdeni — vdaka nej budeme moct usadit
na platnost rovnosti (5.1) pre vSetky uzavreté krivky v oblasti S iba na zaklade holomorfnosti funkcie f
na S a ,velmi jednoduchej“ topologickej vlastnosti oblasti S. Na overenie rovnosti (5.1) teda zvy¢ajne
sta¢i dokazat holomorfnost funkcie f, ¢o je typicky omnoho jednoduchsie, nez priamy dékaz existencie
primitivnej funkcie.

K ,jozajstnej* Cauchyho integréilnej vete — ¢ize k jej verzii pre jednoducho savisla oblast — sa ale bu-
deme dopracuvat postupne. DokaZeme najprv dve slab8ie verzie Cauchyho integralnej vety, ktoré maja
charakter viac-menej pomocnych vysledkov: Cauchyho integralnu vetu pre trojuholnik a Cauchyho
integralnu vetu pre konvexnu oblast. Nasledne s pomocou topologického pojmu homotopie prejdeme
od konvexnych oblasti k Tubovolnym jednoducho savislym oblastiam (intuitivne oblastiam , bez dier*).
V kapitole 10 neskér dokédZeme este jeden vSeobecnejsi variant Cauchyho integralnej vety; verzia pre jed-
noducho suvisla oblast v8ak bude pre praktické ucely plne postacujuca.

5.1 Cauchyho integralna veta pre trojuholnik
Pod trojuholnikom budeme chapat, v stlade so zdravym rozumom, Tubovolni uzavreti krivku v v tvare
(hoci aj degenerovaného) trojuholnika — teda krivku v = AABC := [A, B] + [B,C] + [C, A], kde

A, B,C eC.

Tvrdenie 5.1.1 (Cauchyho integralna veta pre trojuholnik). Nech S C C je oblast obsahujica troju-
holnik v a celé jeho vnitro. Nech f: S — C je holomorfnd na S. Potom

[yf(z) dz =0.
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Dékaz. Trojuholnik v nahradime mensim trojuholnikom vy takym, Ze hodnota integrilu funkcie f
pozdlz vy je oproti hodnote povodného integralu ,nezanedbatelna“ a stcasne je na tomto trojuholniku
funkcia f aproximovatelna vhodnou linearnou funkciou. Pre linedrne funkcie existuje primitivna funkcia
na celom C; integral aproximujtcej linearnej funkcie pozdiz vy tak bude nulovy vdaka zékladnej vete
o krivkovych integraloch. Integral povodnej funkcie f pozdlz yn tak bude mat hodnotu blizku nule,
pricom miera tejto blizkosti bude imern4 kvalite aproximacie. Kedze je vSak hodnota tohto integralu
oproti povodnému integralu ,nezanedbatelna“, budeme méct aj hodnotu poévodného integralu zhora
odhadnut stile mensim a mensim ¢islom, imerne kvalite aproximécie. Tym dokaZeme jeho nulovost.

Presnejsie: pre degenerovany trojuholnik v je dokazované tvrdenie zrejmé. Predpokladajme teda, ze
je trojuholnik v nedegenerovany a poloZme 7 := . Predpokladajme dalej, Ze pre nejaké n € N mame
dany trojuholnik v, = AABC, kde A, B,C € C su tri nekolinedrne body. Ozna¢me stredy tseciek
[A, B], [B,C] a [C, A] ako ¢, a, resp. b. Uvazujme trojuholniky ~,4+1[0] := Aabe, yny1[l] := AAch,
n+1[2] := ABac a yp4+1[3] := ACba. Tato situacia je znazornené na obrazku 5.1.

C

B
A

Obr. 5.1: Rozdelenie trojuholnika AABC na Styri mensie trojuholniky.

KedZe na pravej strane nasledujicej rovnosti integrujeme pozdlz kazdej zo stran ,vnutorného®
trojuholnika 7,,+1[0] obidvoma smermi prave raz, je

/7 ) de = kz?,: L RCLE

=0

Nutne preto musi existovat k € {0,1,2,3} také, ze

/ f(z)dz
Tn+1 [k]

trojuholnik ~,,11[k| ozna¢me ako 1.

Takto dostavame postupnost trojuholnikov (7,)22, s nasledujicimi vlastnostami:
1. Plati vg = 7.

2. Ozna¢me pre vSetky n € N ako A, kompaktni mnozinu s hranicou =, — ¢ize uzaver vnutra
trojuholnika ~,. Pre vietky n € N je A, 11 C A,,.

3. Pre vSetky n € N je L(y,) =27"L(7).

4. Pre vsetky n € N je
(5.2)

/% f(z)dz| >
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Zvolme teraz Tubovolny bod! zy € M°°, A,,. Funkcia f je v bode zq diferencovatelna — pre vietky
e > 0 teda existuje § > 0 také, Ze pre vietky z € D(zp,9) je

f(zz — i”o(zo) — fl(=0)| <,
z ¢oho
|f(2) = (f(20) + (z — 20) f(20))| < €|z — 20| . (5.3)

Ak teraz zvolime N € N také, 7e Ay C D(zp,9), pre vietky z € Ay zrejme
|z — 20| < L(yw) =27 VL()
a z (5.3) tak dostavame

|F(2) = (f(20) + (2 = 20)f'(20)) | < €2V L().

Zo zakladnej vety o krivkovych integréloch navyse
/ (f(20) + (2 = 20) f'(20)) dz = 0.
TN

Ak teda na integral funkcie f pozdlz vy pouZijeme vetu o odhade, zistujeme, ze

f(z)dz

IN

/ (f(z) = (f(z0) + (z — 20)f'(20))) d= +/ (f(20) + (2 — 20) f'(20)) dz| =

TN

< e2NL(y)L(yn) = e4 VL(y)%.

/ (f(2) = (f(20) + (2 = 20)f'(20))) dz
TN

Podla (5.2) teda

kedZe je € > 0 Tubovolné, nutne

a Cauchyho integralna veta pre trojuholnik je dokdzané. O

5.2 Cauchyho integralna veta pre konvexni oblast

Rozgirime teraz Cauchyho integralnu vetu na pripad Tubovolnej uzavretej po ¢astiach hladkej krivky
obsiahnutej v nejakej konvexnej oblasti S. Konvexné oblasti st pritom definované beznym sposobom.

Definicia 5.2.1. Oblast S C C je konveznd, ak pre vietky u,v € S je [u,v]* C S.

Cauchyho integralnu vetu pre konvexnii oblast dokdZeme tak, Ze nahliadneme existenciu primitivne;j
funkcie pre vSetky holomorfné funkcie na takejto oblasti. VyuZzijeme pritom Cauchyho integralnu vetu
pre trojuholnik a podobné techniky ako v dokaze vety 4.6.3.

'Pre kazdé n € N zvolme wy,, € A,. Postupnost (w, )52, je ohraniena a podl'a Bolzanovej-Weierstrassovej vety z nej
tak mozno vybrat konvergentnti podpostupnost. KedZe je mnoZzina A, pre vietky n € N uzavretd a Ap41 C Ay, musi
byt limita tejto podpostupnosti prvkom vsetkych mnozin A, — moéZeme ju teda vziat za naSe zo.
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Lema 5.2.2. Nech S C C je konvexnd oblast a f: S — C je spojitda funkcia takd, Ze pre lubovolny
trojuholnik v s v* C S je
/ f(z)dz=0.
.

Pre lubovolné pevné zg € S je potom funkcia F: S — C, dand pre vietky z € S ako

F(z) := f(w) dw,

[Z(),Z}
holomorfnd na S, pricom F' = f.

Doékaz. Zvolme z € S. UkdZzeme, Ze funkcia F' je v bode z diferencovatelna a F'(z) = f(z).
Pre vietky h € C spliajice z + h € S musi do konvexnej oblasti S patrit cely trojuholnik
v = Azpz(z + h); tato situacia je znazornena na obrazku 5.2.

Obr. 5.2: Trojuholnik v = Azpz(z + h).

7 predpokladu lemy vyplyva

/f(w)dw: f(w)dw+/ f(w)dw+/ flw)dw =0,
¥ [20,2] [2,2+h] [z+h,20]

z ¢oho
[ twae= [ pwdes [ fwdw,
[z0,2+h] [20,2] [2,2+h]
a teda
Fle+h) — F(2) = / F(w) duw.
[z,2+h]
Preto

F(z+h) — F(2) 1 1
Iy =2 ( |t [ dw> =3 ), U = 1) dw

Zo spojitosti funkcie f v bode z ale vyplyva, Ze pre vSetky € > 0 existuje § > 0 také, Ze pre vsetky
we D(z,0)jeweSal|f(w)— f(z)] <e. Pre he C\{0}s |h| < teda z vety o odhade dostavame

F(z+h)-F(2) B |1 W) — £(2)) duw %:g
e s =l [, - 1) au| < Gl =<
Preto Flz th)— F()
o h = /)

a funkcia F' ma v bode z skuto¢ne derivaciu f(z). O
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Désledok 5.2.3. Nech S C C je konvexnd oblast a f: S — C je holomorfnd na S. Potom existuje
funkcia F: S — C holomorfnd na S takd, Ze F' = f.

Dékaz. 7 Cauchyho integralnej vety pre trojuholnik vyplyva, Ze pre kazda funkciu f holomorfni na S
st splnené predpoklady lemy 5.2.2. O

Mézeme teraz sformulovat samotni Cauchyho integralnu vetu pre konvexnii oblast — stale vSak
pdjde o vysledok viac-menej predbezny.

Tvrdenie 5.2.4 (Cauchyho integralna veta pre konvexni oblast). Nech S C C je konvexnd oblast
a f: S — C je holomorfnd na S. Potom pre kaZdi uzavretid po castiach hladkd krivku v s v* C S je

L F(2)dz = 0.

Doékaz. Vyplyva bezprostredne z désledku 5.2.3 a zo zékladnej vety o krivkovych integraloch. O

5.3 Homotopie

MozZnosti pouzitia Cauchyho integréalnej vety pre konvexné oblasti st trochu obmedzené — Casto totiz
vznika potreba integrovat funkciu pozdlz krivky v oblasti, ktora konvexna nie je. Rozsirit Cauchyho
integralnu vetu na pripad inych ako konvexnych oblasti ale budeme moct az po tom, ¢o preskimame
deformacie kriviek a pdvodne topologicky koncept homotdpie pre Specidlny pripad parametrickych
kriviek v komplexnej rovine.

Homotdpie kriviek najprv definujeme vSeobecne pre lubovolni dvojicu parametrickych kriviek —
pojde pritom o zobrazenia udavajtce spojiti transformdciu jednej krivky na druht. Neskor nas ale
homotopie budi zaujimat predovietkym v pripadoch, ked uvazované krivky navyse spliiaju nejaka
dalgiu vlastnost: najéastejdie budeme pracovat s homotopiami po ¢astiach hladkych kriviek, ktoré su
bud uzavreté, alebo maja rovnaké pociatocné a koncové body. Pre kazdu z tychto vlastnosti neskor
upravime definiciu homotoépii tak, aby prislusnu vlastnost mali aj krivky ziskané ako medzivysledky
spojitej transformacie, ktora je homotépiou uréena.

Definicia 5.3.1. Nech S C C je oblast a v,7: [«a, ] — C st krivky také, ze v*,4* C S. Hovorime, Ze
krivky v a 4 st homotopické v S, ak existuje zobrazenie H: [0,1] x [a, 3] — S splhajice nasledujtice
podmienky:

(i) Zobrazenie H je spojité: pre vietky (1p,%0) € [0,1] X [, 5] a vSetky € > 0 teda existuje 6 > 0 take,
7e pre vietky (7,t) € [0,1] x [a, 8] spliajtce |7 — 79| < 6 a |t —to| < 0 je |H(7,t) — H(70,t0)| < €.

(73) Pre vSetky t € [o, 8] je H(0,t) = ~(t) a H(1,t) = 5(¢).
Takéto zobrazenie H nazyvame homotdpiou z y na 4.

Nasledujtiice dve tvrdenia st bezprostrednymi désledkami faktu, Zze homotoépie si spojitymi zo-
brazeniami na kompaktnej podmnozine [0,1] x [a, 8] metrického priestoru R?. UvAdzame ich vSak
aj s elementarnymi dokazmi, ktoré znalost teorie metrickych priestorov nepredpokladaju.

Tvrdenie 5.3.2. Kazdd homotdpia H: [0,1] X [a, B] — S, kde S C C je oblast, je rovnomerne spojita.
Pre wvsetky € > 0 teda existuje § > 0 také, Ze pre vsetky 11,70 € [0,1] a t1,to € [, B] spliajiice
|71 — 72| <0 alty —ta| <9 je |H(mo,t2) — H(m1,t1)| < €.

Dékaz. Za ucelom sporu predpokladajme, Ze existuje € > 0 také, ze pre vSetky & > 0 mozno najst
T1,5,T2,6 € [0,1] a tys,tas € [, B] s [T1,5 — To 5| <9, |tis —tas| <9 a|H(ros,tas) — H(Tis,t15)| > €.
Z Bolzanovej-Weierstrassovej vety potom vyplyva existencia rastiicej postupnosti (ny)z, kladnych
prirodzenych &isel takej, ze vietky Styri postupnosti (71,1 /n, )70 (72,1/ns ) 0> (F1,1/n1 )10 @ (B2,1/m4 ) oo
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konverguja k vlastnej limite. KedZe st obidva intervaly [0,1] a [«, 8] uzavreté a pre vietky k € N je
1701 e = T2, il < 1/1k @ [t11/m, — t2,1/m, | < 1/, zistujeme, Ze existuji 7o € [0,1] a to € [a, 3] taks,
Ze

To = klgglo GRS klggo T2,1/n (5.4)
a
t[) = kli)n;.lo tl/nk = kli)I{.lo t271/nk. (55)

Zo spojitosti homotopie H vyplyva existencia ¢isla 6 > 0 takého, Ze pre vietky 7 € [0,1] a t € [a, ]
splhajtce |7 — 79| < 0 a [t —to| < § je |H(7,t) — H(7o,t0)| < £/2. Z toho vyplyva, Ze aj pre vietky
T1,T2 € [O, 1] aty,ty € [a,ﬁ] splhajtce ’Tl —7'0’ < 4, ‘7’2 — To‘ <4, |t1 — t0| <da ‘tg —to’ < 6 musi byt’

|H(7‘2,t2) — H(Tl,t1)| = |H(Tg,t2) — H(Tg,to) —|—H(T0,t0) — H(Tl,t1)| S
< [H(72,t2) — H(7o,%0)| + [H (70, t0) — H(71,t1)| <&

Pre dostatocne velké k € N ale vdaka (5.4) a (5.5) iste |71,1/n, — 70| < 0, |T2,1/n, — 70| < 6,
’tlvl/nk — to’ < da ‘t271/nk — to‘ < 6, priéom

|H (72,1 /np t2,0/my) = H(T1 1 mgs t11/m)| 2 €5
to odporuje pozorovaniu u¢inenému vyssie. O

Tvrdenie 5.3.3. Nech S C C je oblast a H: [0,1] X [, 5] — S homotdpia. Obraz H([0,1] X [a, B])
homotdpie H je potom kompaktnd podmnoZina mnoZiny S.

Dokaz. Nech a € C je hromadny bod mnoziny H([0,1] x [a, f]). Pre vietky n € N\ {0} potom
existuje nejaké z, € H([0,1] x [a, B]) N D'(a,1/n). Existuja pritom 7, € [0,1] a t, € [a, (] také,
ze zp, = H(Ty,t,). Z Bolzanovej-Weierstrassovej vety vyplyva existencia rastticej postupnosti (nx)32,
kladnych prirodzenych ¢isel takej, Ze postupnosti (7, )52 a (tn,)5o konverguji k vlastnym limitam
7o resp. to. Vdaka uzavretosti intervalov [0,1] a [«, 5] iste 19 € [0,1] a ¢ty € [a, B]. DokaZeme, Ze
H(7p,tg) = a — kedZe je a l'ubovolny hromadny bod mnoziny H([0,1] x [a, (]), bude tym dokazana
uzavretost tejto mnoziny.

Za ucelom sporu predpokladajme, ze H(1y,tp) = b # a. KedZe je zobrazenie H spojité, existuje
§ > 0 také, ze pre vietky 7 € [0,1] a t € [a, 3] spliiajice |7 — 79| < & a |t — to| < I je

b — al

|H(1,t) — H(70,t0)| = |H(T,t) — b] < 5

Pre dostato¢ne velké k € N je ale sucasne |1, — 10| < 0, |tn, —to| < a 1/n < |b—al/2. Nutne teda

b—a
B (5ytoy) — 0l = [z, —a] < 220

pri¢om stcasne
b—a
|H (Tp,,, tny) — b < | 5 |

Z trojuholnikovej nerovnosti ale potom dostavame
‘b - a| < ‘H(Tnmtnk) - a| + |H(Tnkatnk) - b| < ‘b - a|,

¢o je evidentny spor. Mnozina H ([0, 1] x [a, 8]) je teda uzavretd.

Zostéava dokazat ohranicenost mnoziny H ([0, 1] x [, f]). Za u¢elom sporu predpokladajme, Ze je
tato mnoZzina neohranicend a pre vietky n € N tak vieme najst z, € H([0,1] X [, f]) take, ze |z,| > n.
Nech 7, € [0,1] a t, € [o, ] st také, ze z, = H(y,tn). Z Bolzanovej-Weierstrassovej vety opét
dostavame existenciu rastiicej postupnosti (ny);2, kladnych prirodzenych ¢isel takej, Ze postupnosti
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(Tn )2 @ (tn, )7, konverguji k vlastnym limitam 79 resp. tg, pricom vdaka uzavretosti intervalov
[0,1] a [a, 8] je 10 € [0,1] a ty € [a, B]. Ozna¢me b = H(7p,to). Zo spojitosti funkcie H potom vyplyva,
7e pre Vsetky e > 0 existuje & > 0 také, Ze pre vietky 7 € [0,1] a t € [, 8] splhajice |7 — 10| < §
alt—to] <9 je
|H(T,t) —H(To,t0)| = |H(T,t> —b| <e.

Pre dostato¢ne velké k € N ale zrejme |7, — 79| < § a |tn, — to] < 0, kym
| H (Tny,s tny) — bl = |2n, — b > €,
¢im prichddzame k hladanému sporu. O

Homotoépie udévaji spojita transforméciu jednej krivky na druhtt — v nasledujicom ukazeme, Ze
aj vSetky medzivysledky tejto transformécie, ziskané zafixovanim prvého parametra homotopie, si tiez
krivkami, t. j. spojitymi zobrazeniami z intervalu [o, 3] do C. Pre v8etky homotopie H : [0, 1]x[a, ] — S
a 7 € [0,1] budeme ako H, oznafovat zobrazenie H,: [a, 5] — S dané pre vSetky ¢t € [o, 3] ako
H.(t) = H(T,1).

Tvrdenie 5.3.4. Nech S C C je oblast, nech v,%: [a, 8] — C su krivky také, zZe v*,4* C S a nech
H: [0,1] x [or, B] = S je homotdpia z v na 4. Pre vietky T € [0,1] je potom aj H;: [a, B] — S krivka
v oblasti S.

Dokaz. Zo spojitosti homotopie $pecidlne vyplyva, ze vSetky to € [a, 8] a € > 0 existuje § > 0 take, ze
pre vietky t € [, ] spliiajiice [t — to| < 0 je

|H-(t) — Hr(to)| = [H(7,t) — H(7,10)| <e.
Zobrazenie H;: [a, ] — S je preto spojité — ide teda o krivku v S. O
Jednoduchy dékaz nasledujtceho tvrdenia prenechavame citatelovi ako uZito¢né cvicenie.

Tvrdenie 5.3.5. Nech S C C je oblast. Reldcia ,,byt homotopickiy v S« je reldciou ekvivalencie na mno-
Zine vsetkych kriviek s obrazmi pod S.

Pre po castiach hladké krivky budeme od homotépii navyse vyzadovat, aby aj vSetky medzivysledky
prislusnej spojitej transformacie boli po castiach hladké krivky.

Definicia 5.3.6. Nech S C C je oblast a v,%: [a, 5] — C st po ¢astiach hladké krivky také, zZe
~*,4* C S. Hovorime, 7e vy a 4 st homotopické v S ako po Castiach hladké krivky, ak existuje homotopia
H: [0,1] x [a, B] — S taka, ze pre vietky 7 € [0,1] je H;: [a, 5] — S po Castiach hladka krivka. Takuto

homotépiu H nazyvame homotopiou po castiach hladkijch kriviek z ~ na 4.

Ak su dalej krivky 7, 4: [a, 8] — C uzavreté, budeme aj od homotopii vyzadovat, aby boli vietky
medzivysledky uzavretymi krivkami; pre po Castiach hladké uzavreté krivky prirodzene pridavame
aj poziadavku, aby boli medzivysledky po castiach hladké.

Definicia 5.3.7. Nech S C C je oblast a ~,%: [a, 8] — C st uzavreté (po ¢astiach hladké) krivky
také, ze v*,4* C S. Hovorime, Ze v a 4 st homotopické v S ako uzavreté (po ¢astiach hladké) krivky,
ak existuje homotopia H: [0,1] x [a, 5] — S taka, ze pre vSetky 7 € [0,1] je H.: [a, f] — S uzav-
retd (po Castiach hladka) krivka. Takato homotépiu H nazyvame homotdpiou uzavretych (po castiach
hladkych) kriviek z v na 4.

Pre krivky v,%: [«, 8] — C s rovnakymi pociatoénymi a koncovymi bodmi napokon tiez uvazujeme
homotoépie, pre ktoré maju tato vlastnost aj vsetky medzivysledky spojitej transformécie.
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Definicia 5.3.8. Nech S C C je oblast a v,%: [, 8] — C st (po castiach hladké) krivky také, Ze
v C S, y(a) = 4(a) ay(B8) = 4(B8). Hovorime, ze v a4 st homotopické v S ako (po ¢astiach hladké)
krivky s rovnakymi poc¢iatoénymi a koncovymi bodmi, ak existuje homotopia H: [0,1] X [a, 5] — S
taka, ze pre vietky 7 € [0,1] je H,: [a, 8] — S (po Castiach hladkd) krivka splhajica H,(a) = v(a)
a H:(B) = v(B). Takato homotopiu H nazyvame homotdpiou (po castiach hladkych) kriviek s rovna-
kymi pociatocngmi a koncovymi bodmi z vy na 4.

Citatel uréite lahko dokéze, ze aj prave definované silnejsie varianty homotopickosti uréuji relacie
ekvivalencie na prislusnych mnozinach kriviek s obrazmi pod S.

Podmienka z predchadzajtcich definicii, podla ktorej musi byt interval parametrov [, 8] pre obidve
homotopické krivky rovnaky, je ¢isto technicka a v skutocnosti sa ¢asto hovori aj o homotopickych dvo-
jiciach kriviek, pre ktoré su tieto intervaly rozne. Kazda dvojicu kriviek totiZz moZeme reparametrizovat
tak, aby boli vysledné intervaly parametrov pre obidve krivky rovnaké. Nasledujtce tvrdenie, ktorého
dokaz prenechavame ¢itatel ovi ako jednoduché cvicenie, tito bezna prax do velkej miery ospravedliuje.

Tvrdenie 5.3.9. Nech S C C je oblast, v1,72: [o, f] = C s ~f,v C S su (po castiach hladké)
krivky |resp. uzavreté krivky / krivky s rovnakymi pociatocnymi a koncovymi bodmi|, homotopické v S
ako (po castiach hladke) krivky |resp. uzavreté krwky / krivky s rovnakymi pociatocnymi a koncovymz
bodmi|. Nech & < 8 si redlne isla a 41,42+ [&, ] = C st krivky také, Ze pre vsetky t € [&, f] je

R t— & R t— &
a0 =n(at520-0) @ aw=n(ori@-a).
B —a& f—a
Potom si krivky 41 a 42 homotopické v S ako (po castiach hladké) krivky |resp. uzavreté krivky / krivky
s rovnakymi pociatocnymi a koncovgmi bodmi].

Hoci st uvedené definicie homotopii ako spojitych transformacii v topologii bezné, pre nase neskorsie
ucely bude vhodnejsi iny pohl'ad na homotopické krivky, zaloZeny na nasledujicom pojme elementdrnej
deformdcie.

Definicia 5.3.10. Nech S C C je oblast a «,4 su krivky také, ze v*,4* C S. Hovorime, Ze krivka 4
vznikne z krivky v elementdrnou deformdciou v S, ak existuje n € N\ {0} a krivky v1, ..., ¥, Y15+ - Fn
s nasledujucimi vlastnostami:

(@) y=m+.. . Fmay=n+...+n
(i1) Pre k =1,...,n existuje konveznd oblast Sy C S taka, ze v{, 55 C Sk.

Ak st obidve krivky v,4 po castiach hladké (resp. uzavreté, pripadne s rovnakymi podiato¢nymi
a koncovymi bodmi), hovorime o elementérnej deformaécii po ¢astiach hladkych kriviek (resp. uzavretych
kriviek, pripadne kriviek s rovnakymi pociatoénymi a koncovymi bodmi).

Krivka 4 teda vznikne z krivky « elementéarnou deformaciou v S, ak vieme najst ,,retaz konvexnych
podoblasti S takych, Ze obidve krivky v a 4 postupne prechédzaju cez tieto konvexné podoblasti a st
nimi dplne pokryté. To je znazornené na obrizku 5.3.

Poznamka 5.3.11. V praxi nam zvycajne nezélezi na poc¢iato¢no-koncovom bode y(«) = () uzavre-
tej krivky v: [a, B] — C a podmienku (77) predchadzajicej definicie tak pre uzavreté krivky v kone¢nom
dosledku nahradzame podmienkou 9+ ... +v,—1 € Rot(vy) a5y +...+7,_1 € Rot(¥), kde pre kazda
uzavreta krivku «: [a, 8] = C je Rot(y) = {(v | [, B]) + (7 | e, 1)) ] € [a, B]}. Integraly pozdiz kri-
viek v Rot(y) ale maji o¢ividne rovnakt hodnotu ako integral pozdiZ +; nedoptstame sa teda Ziadnej
zésadnej chyby.

Nasledujiica veta charakterizuje homotopické krivky pomocou elementarnych deformécii — tohto
pohladu na homotopické krivky sa neskér budeme drzat pri dokaze Cauchyho integralnej vety pre jed-
noducho suvisla oblast.
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Obr. 5.3: Elementarna deformécia uzavretej krivky v na uzavretu krivku 4 (znazornené su len tri konvexné
podoblasti).

Veta 5.3.12. Nech S C C je oblast a v,%: [a, 5] — C su (po castiach hladké) krivky |resp. uzavreté
krivky / krivky s rovnakymi pociatoénymi a koncovymi bodmi| také, Ze v*,4* C S. Potom ~ a 4 si
homotopické v S ako (po castiach hladké) krivky |resp. uzavreté krivky / krivky s rovnakgmi pocia-
toénymi a koncovymi bodmi| prdave vtedy, ked 4 wvznikne z 7y postupnostou elementdrnych deformdcii
(po castiach hladkijch) kriviek [resp. uzavretych kriviek / kriviek s rovnakgmi pociatocnymi a koncovymi
bodmi| v oblasti S.

Dékaz. Predpokladajme najprv, Ze 4 vznikne z v jedinou elementarnou deforméaciou. Potom existuje
n € N\ {0} a (po castiach hladké) krivky ~1,...,7 a 91,...,9, také, Ze plati y1 + ... + v, = «
ay+...+9 = apre k = 1,...,n existuje konvexnd oblast S} C S, pre ktora ~;,5; C Sy.

Bez ujmy na vSeobecnosti d'alej predpokladajme, Ze existuju realne ¢isla @ = a1 < as < ... < an
af1 <pP2<...<pB,=p také, Zze pre k = 1,...,n st v a ; zobrazeniami 7,k : [ak, Bx] — C
aprek=1,...,n—1je By = agy1. Pre k = 1,..., n teraz definujme zobrazenie Hy: [0, 1] x [ay, Br] — C

pre vietky 7 € [0,1] a t € [ag, S| predpisom

H(7,t) = v(t) + 7(56(t) — (t));
od bodu 7% (t) teda k bodu 4% (t) prechddzame postupne po tusecke; konvexnost oblasti Sy pritom
zaruCuje, ze pre vietky 7 € [0,1] a t € [ag, Bk] je Hi(7,t) € Sk. Homotopiu H: [0,1] x [a, 5] — C
z vy na 4 teraz moéZzeme pre vietky 7 € [0,1] a t € [a, 8] definovat predpisom H(7,t) = Hy(7,t), kde
ke{l,...,n} je take, ze t € [y, Bi].

Je zrejmé, 7e H je skutocne homotopiou z v na 4. Kedze dalej obraz kazdého zo zobrazeni Hy, lezi
pod S, musi obraz H lezat pod S — to dokazuje, ze H je homotopia v S. Lahko tiez vidiet, Ze ak st
pre k = 1,...,n krivky v a 9 po Castiach hladké, musi byt pre vSetky 7 € [0, 1] po ¢astiach hladk4 aj
krivka Hy, - : [0y, Bi] — S dané pre vetky t € [y, i) ako Hy, - (t) = i (t) +7 (4% (t) =& (t)); v dosledku
toho je po Castiach hladké aj krivka H;: [a, 5] = S a H je homotopiou po ¢astiach hladkych kriviek.
Podobne v pripade uzavretosti kriviek v a 4 je v(a) = v(5) a ¥(a) = 4(B), z ¢oho pre vietky 7 € [0, 1]
dostavame

Hr (o) = () + 7(§(a) = 7(a)) =~v(8) + 7(3(8) —v(B)) = H-(B),
takze H je homotopiou uzavretych kriviek. Ak napokon ~(a) = () a y(8) = 5(B), pre vietky
T € [0,1] je tiez
H,(0) = 7(@) + 7(3(0) — 7(a)) = 1(a)

H:(B) =~(8) + 7(3(8) —~v(B)) = v(B),

takZze H je homotoépiou kriviek s rovnakymi pociatoénymi a koncovymi bodmi.
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Ak dalej 4: [, 8] — C vznikne z : [«, 8] — C postupnostou m elementarnych deformécii (po ¢as-
tiach hladkych) kriviek [resp. uzavretych kriviek / kriviek s rovnakymi pociatoénymi a koncovymi
bodmil, z predchadzajiceho vyplyva, Ze existuji homotopie HM, ... HI™: [0,1] x [a, 8] = S (po cas-
tiach hladkych) kriviek [resp. uzavretych kriviek / kriviek s rovnakymi pociatoénymi a koncovymi
bodmi| také, ze pre vietky t € [a, 8] je HU(0,t) = ~(t), H™(1,t) =4(t) a HY(1,t) = HIAH(0,1)
pre £ = 1,...,m — 1. Potom ale Tahko vidiet, Ze zobrazenie H: [0,1] X [a, 8] — S, dané pre vSetky
7€ [0,1] at € [a,f] ako H(r,t) = HY(',t), kde £ € {1,...,m} je také, ze 7 € [(£ — 1)/m,£/m)]
a1 = ({—1)/m+ 7'/m, je homotopiou (po ¢astiach hladkych) kriviek [resp. uzavretych kriviek /
kriviek s rovnakymi pociatoénymi a koncovymi bodmi| v a 4 v oblasti S.

Predpokladajme nakoniec, ze H: [0,1] X [o, 5] — S je homotopiou (po ¢astiach hladkych) kri-
viek [resp. uzavretych kriviek / kriviek s rovnakymi pociatoénymi a koncovymi bodmi| v oblasti S
z v: [a,f] = C na 4: [a,8] — C. Podla tvrdenia 5.3.3 je obraz homotopie H — &Ze mnoZina
H([0,1] X [a, B]) — kompaktnou podmnoZinou 7" mnoziny S. Keby navyse ohrani¢ena mnozina 1" obsa-
hovala body Tubovolne blizko mnoziny C\ S, s pouzitim Bolzanovej-Weierstrassovej vety by sme l'ahko
nasli hromadny bod mnoziny 7', ktory by bol stacasne prvkom C\ S. To by spolo¢ne s uzavretostou
mnoziny 7" bolo v spore s inklaziou T' C S. Existuje teda € > 0 také, Ze pre vietky a € T je D(a,e) C S.
Podl'a tvrdenia 5.3.3 je dalej homotoépia H na [0, 1] X [a, §] rovnomerne spojita. V désledku toho existuje
d > 0 také, ze pre vSetky dvojice bodov (71,%1), (12,t2) € [0,1] X [ov, B] je |H (71,t1) — H(72,t2)| < €/2
kedykol'vek stcasne |19 — 71| < d a |ta — t1| < 0. Bez ujmy na vSeobecnosti mézeme predpokladat, ze
d = 1/m pre nejaké kladné prirodzené ¢islo m. ,,Dostatoéne hustym* koneénym pokrytim krivky Hy,/p,
okoliami s polomerom ¢ tak pre k = 0,...,m — 1 ziskavame konvexné oblasti zaruc¢ujice existenciu
elementéarnej deformacie tejto krivky na krivku H ) /m.2 Krivka 4 teda skuto¢ne vznikne z v po-
stupnostou elementarnych deformacii (po ¢astiach hladkych) kriviek [resp. uzavretych kriviek / kriviek
s rovnakymi po¢iatoénymi a koncovymi bodmi| v oblasti S. O

Dokazeme teraz, ze ak krivka 4 vznikne v oblasti S elementérnou deforméciou z krivky 4 a krivka
vznikne elementarnou deformaciou z «y, bude rovnaka vlastnost platit aj v pripade, Zze ,,prostrednia*
krivku 4 nahradime vhodnou lomenou ¢arou s obrazom pod S. Pod lomenou ¢iarou tu mame na mysli
krivku 7 taka, ze m = [ag, a1] + [a1,a2] + ... + [an—1,ay] pre nejaké n € N a ag, ..., a, € C.

Lema 5.3.13. Nech S C C je oblast a v,7,%: [a, f] = S su krivky také, Ze v*,5*,4* C S, pricom 7
vznikne elementdrnou deformdciou krivky v v .S a 4 vznikne elementdrnou deformdciou krivky v v S.
Potom existuje lomend Ciara 7 takd, Ze m* C S, m vznikne elementdrnou deformdciou krivky v v S a %
vznikne elementdrnou deformdciou lomenej ciary m v S. Ak si navyse krivky v, ¥ a4 uzavreté, mozno aj
lomenid ¢iaru m zvolit ako uzavreti; ak v, v a4 su také, Ze y(a) = (o) = (o) av(B) = F(B) = 5(5),
mozno aj lomeni Ciaru 7: [, B] — C zvolit tak, aby w(a) = y(a) = F(a) a w(B) = v(B) = F(B).

Dékaz. Nech Si,...,5, C S st konvexné oblasti z definicie 5.3.10 pre elementarnu deforméaciu y
nayali,..., T, CS sutakéto konvexné oblasti pre elmentarnu deformaciu 4 na 4. Evidentne potom
existuju aq,...,as € Rtaké, zea=a; <as < ... <as;=faprek=1,...,s—1stobidva body ¥(a)

a ¥(ag4+1) prvkami nejakého S, pre p € {1,...,n}, ako aj nejakého Tj, pre ¢ € {1,...,m}. Z konvexnosti
oblasti S, a T, potom dostavame [Y(ag), ¥(og+1)]* € Sp N Ty. Vhodna reparametrizacia lomenej ¢iary
= [F(o),¥(a2)] + [F(a2),¥(as3)] + ... + [F(as—1), ¥(cs)] tak ma pozadované vlastnosti. O

Prave u¢inené pozorovanie teraz vyuzijeme na dokaz, ze dve po Castiach hladké krivky homotopické
v zmysle definicie pre vSeobecné krivky si nutne homotopické aj ako po ¢astiach hladké krivky. f)alej
uZ teda medzi homotopiami pre vSeobecné a po Castiach hladké krivky nebudeme musiet rozlisovat.
Aj nadalej v8ak budeme musiet rozlisovat medzi homotopiami uzavretych kriviek, homotépiami kriviek
s rovnakymi pociatoénymi a koncovymi bodmi a homotépiami kriviek bez niektorej z tychto dvoch
vlastnosti — tieto druhy homoto6pii st fundamentdlne odlisné.

2Mozeme vziat napriklad okolia D(H (k/m,a + j6),€) pre j =0,..., [ (8 — a)/d].
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Veta 5.3.14. Nech S C C je oblast a v,7: [o, 8] — C si po éastiach hladké krivky [resp. uzavreté
krivky / krivky s rovnakymi pociatocnymi a koncovymi bodmi| také, Ze v*,4* C S. Krivky 7,4 si potom
homotopické v S ako krivky [resp. uzavreté krivky / krivky s rovnakymi pociatoéngmi a koncovgmi
bodmi| prdve vtedy, ked si homotopické v S ako po castiach hladké krivky |resp. uzavreté krivky /
krivky s rovnakgmi pociatoéngmi a koncovymi bodmi].

Dokaz. Ked7ze je kazda homotopia po ¢astiach hladkych kriviek zaroven aj homotépiou kriviek, je im-
plikacia sprava dol'ava trivialna. Opa¢né implikacia vyplyva zo skuto¢nosti, Ze ak st v a 4 homotopické
ako (v8eobecné) krivky, musi podla vety 5.3.12 po ¢astiach hladka krivka 4 vzniknit z po ¢astiach hlad-
kej krivky v postupnostou elementarnych deformacii v .S. Vdaka leme 5.3.13 moéZeme predpokladat, ze
vietky dalgie krivky vystupujtice v tejto postupnosti elementarnych deformécii stt lomenymi ¢iarami.
KedZe je ale kazd4 lomenéa ¢lara zaroven aj po ¢astiach hladkou krivkou, vznikne 4 z ~ postupnostou
elementarnych deformécii po castiach hladkych kriviek. Krivky v a 4 teda st — opét podla vety 5.3.12
— homotopické ako po ¢astiach hladké krivky. O

5.4 Veta o deformécii

Vyznam homotépii pre komplexntu analyzu je dany predovsetkym nasledujiicou vetou, podla ktorej
maji integraly pozdlz homotopickych uzavretych po ¢astiach hladkych kriviek rovnaké hodnoty.

Veta 5.4.1 (O deformécii). Nech S C C je oblast, f: S — C je holomorfnd na S a v,5 si uzavreté
po castiach hladké krivky spliiajice v*,4* C S a navzdjom homotopické v S. Potom

Af(z)dz:éf(z)dz.

Doékaz. Tvrdenie stadi dokazat pre pripad, ked 4 vznikne z v elementarnou deforméaciou. Nech teda
S0, .., 8,1 C S st konvexné oblasti a ¥y, ..., Yn—1,30,-- -, ¥n—1 SU po Castiach hladké krivky také, ze
pre k=0,...,n—1jev;,9. C Sk, pricom vy + ... +Vp_1=7va% +... + -1 =7%.

...............

Obr. 5.4: Krivka 4; = v; + [7;(8), 5 (8)] + (=3;) + [3;(&),vj ()] (pozdlz Gernych Sipok).

Zvolme teraz pevné j € {0,...,n — 1} a predpokladajme, Ze 7; je zobrazenie v;: oy, 5;] = C a4
je zobrazenie 4;: [&;, B;] — C. Uvazujme krivku ; := v; + [v;(85), 73 (85)] + (=%;) + [¥5(&5),vj ()],
znazornend na obrazku 5.4. Z Cauchyho integralnej vety pre konvexni oblast potom

f(z)dz=0.

Vi
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Sucasne ale pre k = 0,...,n—1je [ve(Be), 3% (Br)] = —[Frs1 (@rr1), Yost (ars1)] (kde k+1 je modulo n),
z ¢oho

n—1 n—1
f(z)dz— [ f(z)dz = ( f(z)dz— [ f(2) dz) = Z f(z)dz =0.

k=0 Yk
Preto

¢o bolo treba dokézat. O

5.5 Jednoducho savislé oblasti

Zavedieme teraz klacovy pojem jednoducho sivislej oblasti. Intuitivne by malo byt zrejmé, Ze jedno-
duché uzavreta krivka -« v oblasti S je homotopické s nejakym bodom a — ktory chiapeme ako krivku
Ya: o, B] — C taku, Ze v4(t) = a pre vSetky t € [«, 8] — prave vtedy, ked ,,vnatro krivky - celé lezi v S
— zatial pritom nechajme bokom fakt, Ze uz samotny pojem ,vnutra krivky“ je viac ako problematicky.
Homotopickost kazdej (nie nutne jednoduchej) uzavretej krivky v oblasti S s nejakym bodom v S teda
vyjadruje intuitivnu skuto¢nost, Ze oblast S ,neméa diery*. Prave takéto oblasti nazveme jednoducho
suvislyma.

Definicia 5.5.1. Oblast S C C je jednoducho sivisld, ak je kazdé uzavreta krivka v s v* C S homo-
topickd v S s nejakym bodom a € S (chapanym ako uzavreta krivka).

Na obrazku 5.5 st znazornené dva priklady oblasti — prva z nich je a druha nie je jednoducho
suvisla.
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\ \ \ y \ __
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(a) Jednoducho suvisla oblast. (b) Oblast, ktora nie je jednoducho suavisla.

Obr. 5.5: Ilustracia pojmu jednoduchej suvislosti.

Priklad 5.5.2. Kazda konvexné oblast je oc¢ividne jednoducho suvisla. Na druhej strane napriklad
Ziadne medzikruZie nie je jednoducho suvislé — to ale vyplynie az z Cauchyho vety pre jednoducho
stvisli oblast, ktorti onedlho dokdZeme (napriklad integral funkcie 1/(z — a) pozdlz Tubovolnej kladne
orientovanej kruznice v danom medzikruzi, kde a je stred tohto medzikruzia, méa hodnotu 27é; funkcia
1/(z — a) je ale na medzikruzi holomorfna).

MnoZstvo rozlicnych pohladov na homotopické krivky ma celkom samozrejme za nasledok, Ze aj
jednoducho suvislé oblasti moZno charakterizovat rozliénymi sposobmi. Niektoré z tychto charakteri-
zacii teraz dokdzeme; intuitivne by vSak mali byt vSetky nasledujtce tvrdenia zrejmé.

Tvrdenie 5.5.3. Nech S C C je oblast. Potom su nasledujice tvrdenia ekvivalentné:
(1) Oblast S je jednoducho suvisld.
(13) KaZdd uzavretd krivka v s v* C S je homotopickd v S s nejakym bodom a € S.
(ii1) KaZdd uzavretd po castiach hladkd krivka v s v* C S je homotopickd v S s nejakym bodom a € S.
)

(iv) Kazdd uzavretd lomend ciara vy s v* C S je homotopickd v S s nejakym bodom a € S.
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Dokaz. Tvrdenie (i7) je nasou definiciou jednoducho suvislych oblasti. Je dalej zrejmé, ze (i7) implikuje
(791) a (¢31) implikuje (iv). Zostava dokazat, Ze (iv) implikuje (i7). Ak vSak pokryjeme uzavreta krivku
kone¢nym poctom okoli® typu D(z,¢),kde z € v* apree > 0je D(z,¢) C S, mdzeme v kazdom z tychto
okoli nahradit dany usek krivky ~ tsec¢kou, pricom pojde o elementarnu deforméciu. KaZdd uzavretd
krivka v kazdej oblasti S je teda homotopickd s nejakou uzavretou lomenou ¢iarou, a tvrdenie (iv) teda
skuto¢ne implikuje (i1). O

Tvrdenie 5.5.4. Nech S C C je oblast. Potom si nasledujiice tvrdenia ekvivalentné:

(i) Oblast S je jednoducho suvisld.

(17) KaZdé dve uzavreté krivky v1,7v2: [a, B] = C s ~f,v5 € S si homotopické v S.
(1ii) Kazdé dve uzavreté po castiach hladké krivky vi,v2: [o, 8] = C s 7,75 C S s homotopické v S.
(tv) Kazdé dve uzavreté lomené ciary 1,72 [a, f] = C s 471,75 C S si homotopické v S.

Doékaz. Tvrdenia (ii) az (iv) st navzajom ekvivalentné podla rovnakej argumentéacie, ako v predchéa-
dzajucom tvrdeni. Zostéava dokazat, ze napriklad tvrdenie (ii) je ekvivalentné jednoduchej suvislosti
oblasti S. Ak su v8ak vSetky dvojice uzavretych kriviek homotopické v S, je nutne kazda uzavreté
krivka homotopicka aj s nejakym bodom (t. j. degenerovanou uzavretou krivkou). Ak je naopak kazda
uzavreta krivka homotopicka v S s nejakym bodom v .5, je homotopicka s kaZdim bodom v S, pretoze
v suvislej oblasti mézeme kazdu dvojicu bodov spojit lomenou ¢iarou a tuto ¢aru pokryt okoliami
sliziacimi ako konvexné oblasti pre postupnost niekolkych elementéarnych deformacii. Tvrdenie (i)
tak dostavame s vyuzitim tranzitivnosti relacie ,,byt homotopicky v S*. O

Na dokaz poslednej z charakterizicii potrebujeme jednu pomocnii lemu, ktora je vSak zaujimavym
tvrdenim sama o sebe.

Lema 5.5.5. Nech S C C je oblast, a € S av: |[a,5] > C sv* C S ay(a) =v(B8) = a je uzavretd
krivka. Potom je krivka v homotopickd v S s bodom a ako uzavretd krivka prdve vtedy, ked si v s a
homotopické v .S ako krivky s rovnakymi pociatocnymi a koncovymsi bodms.

Doékaz. Implikacia ,sprava dolava® je trividlna. Stac¢i teda dokazat, Ze homotopickost v s a, chapanych
ako uzavreté krivky, v oblasti S, ma za nasledok, Ze st v s a homotopické v S aj ako krivky s rovnakymi
pociatocnymi a koncovymi bodmi.

Bez ujmy na v8eobecnosti predpokladajme, Ze aj bod a je dany uzavretou krivkou parametrizovanou
intervalom [o, 8]. Nech H: [0, 1] X [«, 5] — S je homotopia uzavretych kriviek z v na a.

Uvazujme krivku 4: [ — 1, 5 4+ 1] — C danu pre vSetky t € [a — 1, 8 + 1] takto:

a akt € [a —1,q],

A(t) =4 (1) aktele,f]
a akt€[5,5+1]

Je zrejmé, Ze 4 a y st — po reparametrizacii jednej z tychto kriviek v zmysle tvrdenia 5.3.9 — homotopické
krivky s rovnakymi poc¢iatoénymi a koncovymi bodmi (v oblasti S). Sta¢i preto dokazat, ze ¥ a a
st homotopické v S ako krivky s rovnakymi pociatoénymi a koncovymi bodmi. Tu méZzeme vyuzit
homotopiu H a definovat zobrazenie

A~

H:[0,1]x[a-1,8+1 > S

3To, 7e takéto konetné pokrytie vzdy existuje, vyplyva napriklad z cvidenia 4 kapitoly 1 a zo skutonosti, Ze mnoZina v*
je — ako spojity obraz kompaktnej podmnoziny R — nutne kompaktna. Detaily prenechédvame &itatelovi ako cvicenie.
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pre vietky 7 € [0,1] a t € [o — 1, 8 + 1] takto:

Ht—a+1l,a) aktela—1l,a—1+T7],

H(r,«) akt € la—1+4+7, 0],
H(r,t)={ H(r1t) ak t € [a, ],

H(r,B) akt € [B,8+1—7],

HB+1-t,p8) akte|[f+1-1,6+1].

Zrejme ide o homotopiu kriviek s rovnakymi pociatoénymi a koncovymi bodmi — pre v8etky 7 € [0, 1]
totiz ﬁ(T,a —1)=aa fI(T,B + 1) = a. Navyse Hy = 4 a — kedze trajektoria bodu v(a) = a je
pri homotoépii H rovnaka ako trajektoria (toho istého) bodu v(8) = a, existuje uzavreta krivka -,
s podiatoénym a zarovei koncovym bodom a taka, Ze Hy = 74 + (—va). Krivky 4 a 74 + (—74) st teda
homotopické v S ako krivky s rovnakymi pociatoénymi a koncovymi bodmi.

Krivka 7, + (—74) je evidentne homotopickd v S s bodom a (pricom ide o homotépiu kriviek
s rovnakymi podiatoénymi a koncovymi bodmi). V désledku toho su teda v S homotopické, ako krivky
s rovnakymi poc¢iatoénymi a koncovymi bodmi, aj 4 s a a v s a. Tym je dokaz lemy dokonceny. OJ

Tvrdenie 5.5.6. Nech S C C je oblast. Potom si nasledujice tvrdenia ekvivalentné:
(1) Oblast S je jednoducho suvisld.

(17) Kazdé dve krivky y1,7v2: [, B] = C s 77,75 € S s rovnakymi pociatoénymi a koncovymi bodmi
sti homotopické v S.

(791) Kazdé dve po castiach hladké krivky vi,v2: [o, 8] — C s ~{,7v5 C S s rovnakymi pociatocnymi
a koncovymi bodmi si homotopické v S.

(tv) Kazdé dve lomené ciary v1,7v2: (o, B] = C s 7,75 C S s rovnakymi pociatocnymi a koncovymi
bodmi si homotopické v S.

Dékaz. Rovnaka argumentacia ako v tvrdeni 5.5.3 opét dokazuje ekvivalenciu tvrdeni (ii) az (iv).
Zostava dokazat ekvivalenciu tychto tvrdeni s tvrdenim (7).

Ak su v8ak kazdé dve krivky s rovnakymi podiatoénymi a koncovymi bodmi homotopické v S, je
Specialne aj kazda uzavreta krivka v S homotopickd s nejakym bodom na tejto krivke. Tieto krivky
homotopické ako krivky s rovnakymi pociatoénymi a koncovymi bodmi st homotopické aj ako uzavreté
krivky a oblast S je jednoducho suvisla.

Nech je naopak oblast S jednoducho suvisla — dokézeme, Ze plati (ii). Uvazujme krivky -1,
s 71,75 €S, so spolotnym pociatocnym bodom a € S a spoloénym koncovym bodom b € S. Krivka
71+ (—72) je uzavreta, a teda homotopicka s bodom a ako uzavreta krivka. Podla lemy 5.5.5 st krivky
v + (—72) a a homotopické aj ako krivky s rovnakymi pociatoénymi a koncovymi bodmi.

Krivka 71 je — po vhodnej reparametrizécii — o¢ividne homotopicka s krivkou v1 4+ b; bod b je navyse
homotopicky s krivkou (—v2) + 2. V désledku toho je krivka «; homotopicka s krivkou v1 + (—72) + 72
a z vysSie dokdzaného vyplyva, Ze tato krivka je homotopickd s krivkou a + 2, ktord je trividlne
homotopické s vo. Krivky 71 a 72 st teda homotopické, ¢o bolo treba dokézat. O

5.6 Cauchyho integralna veta pre jednoducho suvisla oblast

Roz&irenie Cauchyho integralnej vety na Iubovolnu jednoducho stvisla oblast je uz v tomto momente
trividlnou zélezitostou. Namiesto o Cauchyho integréilnej vete pre jednoducho suvisla oblast budeme
vacginou hovorit len o Cauchyho integrdlnej vete — pdjde totiz o najvSeobecnejsi variant tejto vety,
ktory nateraz dokazeme.
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Veta 5.6.1 (Cauchyho integralna veta). Nech S C C je jednoducho sivisla oblast a f: S — C je
holomorfnd na S. Potom pre kaZdi uzavretd po castiach hladkd krivku v s v* C .5 je

/7 F(z)dz = 0.

Dokaz. Kedze je oblast S jednoducho suvisla, je krivka v homotopické s nejakou degenerovanou krivkou
4 takou, ze 4* = {a} pre nejaky bod a € C; l'ahko vidiet, Ze takato krivka 4 mé vSade nulovi derivaciu,
v dosledku ¢oho je integral Tubovolnej spojitej funkcie pozdlz nej nulovy. Z vety o deformécii potom

[ fera:= [ 1@az=o.
Y ol
¢o bolo treba dokézat. O

Podla vety 4.6.3 je nulovost integralov funkcie f pozdlz vetkych uzavretych po ¢astiach hladkych
kriviek v danej oblasti ekvivalentna dalsim dvom podmienkam. Tato skuto¢nost je natolko doélezita,
7e ju zdoéraznime explicitne.

Désledok 5.6.2. Nech S C C je jednoducho suvisld oblast a f: S — C je holomorfnd na S. Potom:

a) Ezistuje funkcia F: S — C holomorfnd na S takd, Ze F' = f. Tdto funkcia navySe moze byt pre
lubovolné pevné zy € S dand pre vietky z € S ako

HQZAfWNW

kde ~ je lubovolnd po castiach hladkd krivka s pociatocngm bodom zy a koncovym bodom z takd,
Zey* C S.

b) Pre kaZdi dvojicu po castiach hladkych kriviek vi,7v2 s 77,75 C S a zhodngmi pociatocnymi
a koncovymi bodmi plati

(2)dz= | f(z)d=.

7 Y2

Dékaz. Vyplyva bezprostredne z vety 5.6.1 a vety 4.6.3. Ul

5.7 Jordanova a Jordanova-Schoenfliesova veta

Uvedieme teraz dve vyznamné topologické vety vyznacCujlce sa intuitivnou zrejmostou ich tvrdeni,
no na druhej strane zna¢nou netrivialnostou ich dékazov — Jordanovu vetu (o kruznici) a Jordanovu-
Schoenfliesovu vetu. Tieto vety nebudeme dokazovat, ale ob&as ich budeme vyuzivat. Vzdy, ked sa tak
stane, explicitne na to upozornime.

Jordanova veta hovori o tom, Ze kazda jednoduché uzavreta krivka — ¢ize kazda Jordanova krivka
— 7 rozdeluje komplexnu rovinu na dve podoblasti (t. j. sivislé otvorené podmnoziny). Jedna z nich je
pritom ohrani¢ené a nazveme ju vnitrom krivky -; dalsia je neohrani¢ené a nazveme ju vonkajskom
krivky ~. Hoci je toto tvrdenie intuitivne oc¢ividné, jeho dokaz nie je zdaleka trividlny.

Veta 5.7.1 (Jordanova veta). Nech v je jednoduchd uzavretd krivka. MnoZinu C\ v* potom mozZno
vyjadrit ako disjunktné zjednotenie oblasti I(y) a O(y), kde I(y) je ohranicend a O(7y) je neohranicend.
Oblast I(7y) nazgvame vnutrom krivky v a oblast O(~y) nazyvame jej vonkajskom.

Pre naSe ucely bude podstatny este jeden suvisiaci fakt: vnitro kazdej Jordanovej krivky je nielen
savislé, ale dokonca jednoducho suvislé. To je opét intuitivne zrejmé, pretoze vo vnutre jednoduchej
uzavretej krivky ,nemaja ako vzniknat diery“. Dokaz tohto tvrdenia je eSte néroc¢nejsi ako v pripade
Jordanovej vety — jeho zédkladnym kamenom je totiz nasledujtca netrividlna Jordanova-Schoenfliesova
veta; pod homeomorfizmom chapeme spojita bijekciu ¢: C — C, ktord méa aj spojit inverznu funkciu.
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Veta 5.7.2 (Jordanova-Schoenfliesova veta). Nech 7 je jednoduchd uzavretd krivka. Potom existuje
homeomorfizmus ¢: C — C taky, Ze o(I(y)) = D(0,1), p(v*) = (0,1)* a ¢(O(7y)) = C\ D(0,1).

Jednoduch4 suvislost mnoziny I(y) je dosledkom Jordanovej-Schoenfliesovej vety, pretoze jedno-
duchéa suvislost je topologicky invariant: mnozina S C C je jednoducho suvisla prave vtedy, ked je
jednoducho suvisla mnozina ¢(S) pre Tubovolny homeomorfizmus ¢. Homotopie a homeomorfizmy
totiz spolu mozno skladat, pricom vysledkom je opat homotépia; homeomorfnym obrazom Jordanovej
krivky je pritom opét Jordanova krivka a homeomorfnym obrazom bodu je opéat bod. Druhé ¢ast nasle-
dujiceho désledku vyplyva z toho, Ze sa hranica mnoZiny I(vy) — ¢iZze mnoZina v* — pri homeomorfizme
zobrazi na x(0, 1)*.

Dosledok 5.7.3. Nech v je jednoduchd uzavretd krivka. Potom je mnoZina I(7y) jednoducho sivisld.
Pre vietky oblasti S O v*UI(y) navyse existuje jednoducho sivisld oblast G C S takd, Ze G 2 ~v*UI(y).

Prijatie takto netrividlnych viet za ,axiémy* méze u ¢itatela vzbudit opravnent nevolu. V nasle-
dujacom ich ale budeme vyuZivat relativne minimalisticky:

e Jordanovu vetu a désledok 5.7.3 budeme okrem nasledujiceho oddielu potrebovat v kapitole 6
pri formulécii a dokaze niektorych vSeobecnejsich variantov Cauchyho integralneho vzorca. Vzdy,
ked bude v zneni alebo dokaze niektorého tvrdenia Jordanova alebo Jordanova-Schoenfliesova
veta ukrytd, explicitne na to upozornime.

e Slabsie varianty Cauchyho integralneho vzorca dokdZeme bez pouzitia spominanych nedokéza-
nych tvrdeni. Pre d'alsie krivky v praxi pouZivané v suvislosti s Cauchyho integralnym vzorcom —
napriklad pre uzavreté krivky zloZzené z kone¢ného poc¢tu tiseciek a kruhovych oblikov — je navyse
lahké dokazat Jordanovu vetu aj dosledok 5.7.3 ad hoc; neddvercivy Citatel teda moze zavislost
tvrdeni od Jordanovej vety a dosledku 5.7.3 interpretovat aj ako dodato¢ny predpoklad, ktory je
pri ich pouziti potrebné overit.

e Neskor dokazeme iny — a dokonca eSte o nie¢o v8eobecnejsi — variant Cauchyho integralneho
vzorca, pri formulacii a dokaze ktorého nebude potrebné ani Jordanova veta, ani dosledok 5.7.3.
Cesta k tomuto variantu Cauchyho integralneho vzorca je ale o nieCo menej intuitivna, nez je
tomu pre varianty Jordanovu vetu vyuzivajtce (¢o je aj dévodom, preco sa tymito variantmi
vobec budeme zaoberat).

5.8 Dalsie tvrdenie o deformacii

Nasledujuce tvrdenie, pri formulécii a dokaze ktorého budeme pouzivat ako Jordanovu vetu, tak aj
dosledok 5.7.3, vyuzijeme v nasledujicej kapitole pri dokaze niektorych variantov Cauchyho integral-
neho vzorca.

Tvrdenie 5.8.1. Nech S C C je oblast, v s v* UI(y) C S kladne orientovand jednoduchd uzavretd
po castiach hladkd krivka, a € X(v) bod, s > 0 ¢islo také, Ze D(a,s) CI(y) a f: S\ D(a,s) — C funkcia
holomorfnd na S\ D(a,s). Nech dalej v > s je ¢islo také, Ze k(a,r)* C I(y). Potom

/yf(z) dz = /ﬁ(w‘) f(z)dz.

Doékaz. Nech v je zobrazenie typu v: [, 5] — C. Vedme z bodu k(a,r)(7/2) polpriamku v smere
rastticej imaginarnej zlozky; z ohrani¢enosti I(vy) vyplyva, Ze sa tato polpriamka v niektorom bode
~(u) po prvy raz pretne s krivkou 7. Podobne mézeme viest polpriamku z bodu k(a,r)(37/2) v smere
klesajticej imaginarnej zlozky a tato sa s krivkou v po prvy raz pretne v nejakom inom bode ~(v).
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Obr. 5.6: Krivky zo znenia tvrdenia 5.8.1.

Bez ujmy na vSeobecnosti mozeme predpokladat, ze p = «, a teda y(u) = v(a) = v(8); v opacnom
pripade staci krivku « reparametrizovat. Oznacme teraz
71 = (k(a,r) [ [7/2,37/2]) + [5(a,7)(37/2),7 (V)] + (= (v | [, v])) + 7 (@), k(a, r)(7/2)],
Y2 = (k(a,7) [ [37/2,27]) + (k(a,7) [ [0,7/2]) + [r(a, r)(7/2), y(a)] + (= (v [ [v, B])) +
+ [y(v), £(a,r)(37/2)).

Tieto krivky st znazornené na obrazku 5.7.

Obr. 5.7: Konstrukcia kriviek v; a 2 v dékaze tvrdenia 5.8.1.

Krivky 71 a 2 st jednoduché a uzavreté — z dosledku 5.7.3 teda vyplyva, ze 77 UI(v1) a v5 UI(y2) st
podmnozinami nejakych jednoducho savislych oblasti G resp. Ga, ktoré navysSe mozno zvolit tak, aby
boli obsiahnuté v S\ D(a, s). Funkcia f je teda holomorfna na Gp aj na G a z Cauchyho integralnej
vety dostavame

[ t@ass [ @ [ f@dss [ seae=o
-y w(a,r) o

Y2

z ¢oho uz priamo vyplyva

Tvrdenie je dokazané. O
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Tvrdenie 5.8.1 m6zeme pouzit napriklad na zosilnenie tvrdenia 4.3.5 hovoriaceho o hodnotéch prav-
depodobne najvyznamnejsich konkrétnych integralov v komplexnej analyze — v iom uz teraz nemusime
uvazovat integraly pozdlz kruznic okolo bodu a € C; rovnaké hodnoty dostaneme aj integrovanim po-
zdlz Tubovolnej jednoduchej uzavretej po ¢astiach hladkej krivky takej, Ze bod a lezi v jej vnitri.

Dosledok 5.8.2. Nech a € C, v je jednoduchd uzavretd po castiach hladkd krivka tokd, Ze a & ~*

a k €Z. Potom
0 ak ke Z\ {-1},

/(z—a)kdz: 2wt akk=—1aacI(y),
v 0 akk=—-1aacO(y).

Dokaz. Pre a € I(y) stadi pouzit tvrdenie 4.3.5 a tvrdenie 5.8.1. Tvrdenie pre a € O(y) vyplyva
napriklad z Cauchyho integralnej vety a désledku 5.7.3. O

Cvicenia
1. Dokéazte tvrdenie 5.3.5.
2. Dokazte tvrdenie 5.3.9.

3. Dokazte, 7e kazda uzavreta krivka v s v* C D’(0,1) je homotopicka v D’(0,1), ako uzavreta
krivka, s nejakou uzavretou krivkou 4 takou, ze 4* C k(0,1/2)*.

4. Nech § C C je oblast, f: S — C je holomorfné na S a 7,4 st homotopické po ¢astiach hladké
krivky s rovnakym poéiatoénym a koncovym bodom splhajice v*,4* C S. Dokazte, Ze potom

/Wf(z)dz:ﬂyf(z) dz.

5. Doplite vynechané detaily v dokaze tvrdenia 5.5.3.

6. Zistite, ktoré z nasledujacich oblasti st jednoducho sivislé:

a) S1=C\ (—o0,0]; c) S3=D(0,1)\ (—1,0];
b) So =C\ [-1,0]; d) Sy =D(0,1)\ [-1/2,0].

Svoje tvrdenia dokazte.



Kapitola 6

Cauchyho integralny vzorec 1

Cauchyho integralny vzorec umoziuje vyjadrit hodnotu holomorfnej funkcie f v bode a prostrednic-
tvom integralu istej jemne pozmenenej funkcie pozdlz krivky obkolesujicej bod a. Ide pritom o jeden
z najdolezitejsich stavebnych kamenov komplexnej analyzy s mnozstvom zaujimavych désledkov nielen
pre vlastnosti holomorfnych funkeif.

V ramci tejto kapitoly najprv sformulujeme a dokédZzeme samotny Cauchyho integrilny vzorec,
a to hned v troch variantoch ligiacich sa triedou uvazovanych integraénych kriviek. Néasledne tento
vzorec aplikujeme na doékaz Liouvillovej vety, ktorej dosledkom bude zakladné veta algebry: kazdy
polyném stupiia n s komplexnymi koeficientmi méa prave n komplexnych korefiov. Dalej dokézeme,
Ze kazda holomorfna funkcia méa derivacie lubovolného radu a odvodime Cauchyho integralne vzorce
pre jednotlivé derivacie. V zavere kapitoly napokon dokdzeme Morerovu vetu, ktord je uZitoénym
néstrojom na dokazovanie holomorfnosti niektorych komplikovanejsich funkcii.

6.1 Cauchyho integralny vzorec

Cauchyho integralny vzorec sformulujeme a dokdzeme v troch jemne odlisnych podobach. Najprv do-
kazeme ,,zékladni verziu“ tohto vzorca, kde krivka obkolesujtca bod a je kladne orientovana kruznica
so stredom v a — to bude nasa veta 6.1.1. VyuZitim znamych tvrdeni o deforméciach kriviek I'ahko
ziskame analogické tvrdenia aj pre iné typy uzavretych integraénych kriviek. S nastrojmi nezavislymi
od Jordanovej a Jordanovej-Schoenfliesovej vety pritom dospejeme k vete 6.1.2; s nastrojmi spolieha-
juicimi sa na tieto nedokazané tvrdenia zas dospejeme k vete 6.1.3.

Je dolezité si uvedomit, Ze nasledujica veta pozaduje holomorfnost funkcie nielen na kruznici s (a, r),
ale aj v jej vnitri.

Veta 6.1.1 (Cauchyho integrélny vzorec, formulacia I). Nech S C C je oblast, a € S je bod, r > 0 je
polomer taky, Ze D(a,r) C S a f: S — C je holomorfnd na S. Potom

a) = ! 7f(w) dw.
fla) = 3= | o

211 w—a

Dékaz. Ak v dokazovanom vzorci nahradime premennt f(w) konstantou f(a), je podla tvrdenia 4.3.5

1 fla) - [fla) 1 _
2mi /ﬁ(ay,ﬂ) w—a dw = 2mi A(a,r) w—a dw = f(a).

Funkcia f je v bode a holomorfna — pre vietky £ > 0 preto existuje § > 0 také, ze pre w € D(a,d) NS

je
‘ f(w)

— f(a)

<|f(a)| +e.
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Pre r < 6 tak z vety o odhade dostéavame

L Jw) o f(a)‘ ey fw) g L[ @)
271 w—a 271 w—a 271 w—a
k(a,r) k(a,r) k(a,r)
MERy SN GETUPWE
210 J(ar)y W —a
27r

<2 (1) +) = (1 @) +2).

Teda

liml/ I 4 = fa). (6.1)

r—0 271 (a,r) w—a

Pre 'ubovolné R > r > 0 také, Ze D(a, R) C S si ale kruznice x(a, R) a k(a,r) zjavne homotopické
v S\ {a}, pricom funkcia f(w)/(w — a) je holomorfna na S\ {a}. Z vety o deformécii preto vyplyva

1 fw) o1 f@w

% n(a,R)w_a _% ,{(w)w—a

a vztah (6.1) moze byt splneny len ak pre vsetky » > 0s D(a,r) C S je

1 f(w)

% /-c(a,r) w—a

dw = f(a).

Tym je dokaz vety dokonceny. O

Z vety o deformacii vyplyva, Ze namiesto kruZnice x(a,r) mozeme v Cauchyho integralnom vzorci
pouzit Tubovolnti uzavretiu po ¢astiach hladku krivku v homotopicku v oblasti S\ {a} s nejakou takouto
kruZnicou — samozrejme, pravda, za predpokladu, Ze funkcia f je holomorfna na S, pricom S obsahuje
nielen obrazy oboch homotopickych kriviek v a k(a, ), ale aj celé vnutro kruznice k(a,r).

Veta 6.1.2 (Cauchyho integralny vzorec, formulacia II). Nech S C C je oblast, a € S je bod, f: S — C
je holomorfnd na S a v s v* C S\ {a} je uzavretd po castiach hladkd krivka homotopickd v S\ {a}
s nejakou kruznicou k(a,r), kde r >0 a D(a,r) C S. Potom

1 [ flw)
=— [ —=dw.
f(a) 27Ti/ﬂ/w—a v
Dékaz. 7 vety 6.1.1 za uvedenych predpokladov dostdvame

a) = 1 f(w) dw.
f@ =5 | o

2w J,. w—a

Krivka v je na S\ {a} homotopicka s x(a,r) a funkcia f(w)/(w — a) je holomorfna na S\ {a} — z vety
o deformécii preto dostavame

1 [ fw) 1 fw) o
/7 dw dw = f(a),

27 J, w—a 27 Jy(ary W — G

¢o bolo treba dokézat. O
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Vdaka tvrdeniu 5.8.1 mozeme vSeobecnejsiu verziu Cauchyho integralneho vzorca sformulovat
o niefo intuitivnej§im spoésobom — jednoducho vezmeme lubovolnu kladne orientovant jednoduchu
uzavreti po Castiach hladka krivku obkolesujicu bod a a budeme predpokladat, Ze f je holomorfna
na oblasti obsahujiicej tuto krivku a celé jej vnutro. Uz samotné znenie nasledujicej vety vSak skryto
vyuziva Jordanovu vetu — len vdaka nej totiz mame definovantt mnozinu I(y). Tvrdenie 5.8.1, ktoré
vyuzivame v jej ddkaze, navySe predpokladd platnost Jordanovej-Schoenfliesovej vety. Ide tak roz-
hodne o najmenej trivialnu verziu Cauchyho integrélneho vzorca, a to napriek tomu, Ze formulécia
nasledujtcej vety je oproti predchadzajiicej o poznanie intuitivnejsia.

Veta 6.1.3 (Cauchyho integralny vzorec, formulécia III). Nech S C C je oblast, a € S je bod, f: S — C
je holomorfnd na S a~y s v*UI(y) C S je kladne orientovand jednoduchd uzavretd po castiach hladkd

krivka takd, Ze a € I(y). Potom
fay - ! / fw)
.

27 w—a

Dokaz. Stag¢i vziat r > 0 také, Ze k(a,r)* C I(y) a odvolat sa na vetu 6.1.1 spolu s tvrdenim 5.8.1. [

6.2 Liouvillova veta a zdkladna veta algebry

Zaoberajme sa teraz na chvilu funkciami, ktoré st holomorfné na celej komplexnej rovine C — takéto
funkcie nazyvame celymi.

Definicia 6.2.1. Funkcia f: C — C je celd, ak je holomorfna na C.

Typickymi prikladmi celych funkcii st napriklad polynomické funkcie, exponencidlna funkcia e?
a goniometrické funkcie sin z a cos z. Pri funkciach sin z a cos z sme si v ramci jedného z cviceni mali
moznost v8imnut, Ze na rozdiel od ich redlnych naprotivkov tieto funkcie nie si ohrani¢ené. DokiZeme
teraz Liouvillovu vetu, podla ktorej je tato vlastnost spolo¢né vietkym nekonstantnym celym funkciam.

Veta 6.2.2 (Liouvillova veta). Nech f: C — C je ohranicend celd funkcia. Potom je funkcia f na C
konstantnd.

Dokaz. Predpokladajme, ze |f(z)| < M pre nejaké pevné M > 0 a vSetky z € C. Nech a,b € C su
Tubovolné; ukazeme, ze f(a) = f(b).

Zvolme R > 0 dostato¢ne velké v porovnani s |a| aj s |b] — tak, aby bolo R > 2max{|al, |b|}.
Pre vietky w € (0, R)* potom |w —a| > & aj |w — b| > £. Z Cauchyho integrélneho vzorca teda

el L[ (fw) @)\ a=b [ fw)
/(@) f(b)_Qm' /n(o,R) (w—a w—b> d 2mi /f-;(o,R) (w—a)(w—b)d '

7 vety o odhade preto

|a — b M M

|f(a) = f(b)] < 7‘2771%‘? —4"1_17‘?-
Kedze ale R > 2max{|al|, |b|} moze byt Iubovolne velké, nutne |f(a) — f(b)| = 0, z ¢oho f(a) = f(b);
veta je dokazana. O

Ako jednoduchy dosledok Liouvillovej vety dostavame zdkladni vetu algebry. T sformulujeme ako
tvrdenie hovoriace, Ze pre kazdid nekonstantni polynomickid funkciu p: C — C existuje a € C také,
ze p(a) = 0. Ak je totiz p: C — C polynomicka funkcia a p € C|z] je k nej prislachajici polyném,
je p(a) = 0 prave vtedy, ked p = (2 — a)7 pre nejaky iny polyném 7 € C[z].} Indukciou na stupen
polynému p teda I'ahko dokdzeme, Ze polynéom stupia n € N s komplexnymi koeficientmi ma prave n
(nie nutne roznych) komplexnych korenov, ¢o je ekvivalentna formulécia zékladnej vety algebry.

mplikicia sprava dolava je zrejma. Opaéna implikéacia vyplyva z vety o deleni polynémov so zvyskom, podla ktorej
existuju polynomy 7, § € C[z] také, ze p = (z — a)7 + § a stupenr polynému § je ostro mensi ako stupein polynému z — a.
Polynom § je teda konstantny a z rovnosti p(a) = 0 vyplyva, Ze musi byt nulovy.
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Veta 6.2.3 (Zakladna veta algebry). Nech p: C — C je nekonstantnd polynomickd funkcia. Potom
existuje a € C také, Ze p(a) = 0.

Dékaz. Predpokladajme za t¢elom sporu, Ze p je nekonstantnéd polynomickd funkcia, ktord je na C
nenulova. Funkcia 1/p je potom cela. Tato funkcia je navySe aj ohranicené: kedZe pre z — 0o mame
Ip(2)| — oo, musi existovat R > 0 takeé, Ze pre vietky z € C s |z| > R je |1/p(z)] < 1. Mnozina D(0, R)
je ale kompaktna a funkcia 1/p je na nej spojita — z vety o spojitosti na kompakte preto dostéavame
existenciu M > 0 takého, ze pre vietky z € Cs |z| < R je |1/p(z)| < M. V doésledku toho

'p(lz)‘ < max{1, M}

pre vetky z € C. Funkcia 1/p je teda celd a stucasne ohranicend, ¢o znamend, ze podla Liouvillovej
vety musi byt konStantna, a preto musi byt konStantna aj funkcia p: spor. O
6.3 Cauchyho vzorce pre derivacie

Dokézeme teraz, Ze kazda holomorfnd funkcia mé v skutoc¢nosti derivacie vSetkych radov. NavySe
ukézeme, ze z Cauchyho integralneho vzorca

z) = ! f(w) dw
£(2) / |

27 w— z

kde v je vhodnéa krivka obkolesujtuca bod z, ziskame derivovanim integrandu podla z vzorce pre jed-
notlivé derivéacie — pre kazdé n € N teda

n! w
£ () = L (wji(z))nﬂdw. (6.2)

T 2mi

Na dokaz existencie derivacii Tubovolného radu nie je nutny integralny vzorec pre vSetky rady: staci
odvodit integralny vzorec pre prva derivaciu a ukézat, Ze nim definovand funkcia je holomorfna —
existencia derivacii vyssich rddov uz potom vyplynie z jednoduchého induktivneho argumentu. Hoci je
takyto pristup o niec¢o jednoduchsi, v nasledujicom sa neuspokojime len s existenciou derivécii vyssich
radov, ale dokdZeme aj samotny Cauchyho vzorec (6.2) pre derivacie vyssich radov, ktory je Casto
neocenitelnym néstrojom.

Veta 6.3.1 (Cauchyho vzorec pre vyssie derivacie, formulécia I). Nech S C C je oblast, a € S je bod,
r > 0 je polomer taky, Ze D(a,r) C S a f: S — C je holomorfnd na S. Potom pre vietky n € N
existuje n-td derivdcia funkcie f v bode a, pricom

" (a) = o /H(am) 7@} )i dw.

Dékaz. Pre n = 0 ide o Cauchyho integralny vzorec, ktory uz mame dokazany. Predpokladajme teda,
ze tvrdenie plati pre n = k; funkcia f je potom v bode a diferencovatelna k-krat a k-ta derivacia je
danéa integralnym vzorcom zo znenia vety. UkdZeme, ze tvrdenie plati aj pre n = k4 1. Budeme pritom
dokazovat, Ze

d
h—0 h 21 W

P (a+n) = fF(a) (k+})!/ f(w)
k(a,r

pricom na ddkaz pouzijeme zakladnt vetu o krivkovych integréloch.



Cauchyho integralny vzorec 1 83

Nech w € k(a,r)*. Funkcia
1

je na D(a,r) ocividne primitivnou funkciou k funkeii (k+ 1)/(w — ()
vety o krivkovych integraloch teda pre vietky u € D(a,r) dostavame

Fo(u) = (k + 1)/

[uo,u] (w - C)k+2
kde ug € D(a,r) je Tubovolny pevne zvoleny bod a C' € C je konstanta. Podobne funkcia

1
Guw(n) = (w—n)?

Fw(C) =

k42 (premennej ¢). Zo zakladnej

d¢ + C,

je na D(a,r) primitivnou k funkcii (k 4 2)/(w — n)**3; pre v € D(a,r) teda

Go(u) = (k+2) /

[uo 7u]

————dn+
(w—yFes VT
kde ug € D(a,r) je ITubovolny pevne zvoleny bod a C” € C je konstanta.

Nech teraz h € D(0,7). Z indukéného predpokladu, vety o deformécii a evidentnej homotopickosti
k(a,r) s Tubovolnou kruznicou k(a + h,s) pre 0 < s < r — |h| v oblasti S\ {a + h} dostavame

fOa+h) - fBa) K 1 . B
k!
~ h2mi /K(a,r) f(w) (Fu(a+h) = Fu(a)) dw =
_ (k£ 1)! 1
- h2mi /f@(a,r) f(w) </[a,a+h] m dC) dw. (6.3)
Oznac¢me f(k)( h) f(k)( ) (k ) f(w)
a+h)— a +1)! w
Ah) = ) -E T e

Sta¢i ukazat A(h) — 0 pre h — 0. AvSak pre |h| < r z (6.3) mame

RS RS L e R
(ar)(

2mi

A(h) =

(k4 1)
h2mi

h
m a,r) </[a a+h] w C)k+2 dC (w - a)k+2> e
 (k+1)! 1 1 -
= homi (a , </[a ath) \ (W — Q)FF2 C(w— a)k:+2> dC) dw =
_ (k+1) ( /[ g (ulO = Gufa) dg) dw =

h2mi (a r
_(k+2)! o
-~ h2mi /m(a,r) fw) (/[a,aJrh] </[G»C] (w —n)*+s d77> dc) o

KedZe je mnozina k(a,r)* kompaktna a funkcia f je na nej spojité, existuje M > 0 také, Ze pre vSetky
w € k(a,r)* je |f(w)] < M. Pre takéto w tiez |w — a| = r; ak teda vezmeme |h| < 1/2, tak pre vSetky
¢ € la,a+ h] je |¢ —a|] < r/2 a v doésledku toho pre vietky n € [a,(] a vSetky w € k(a,r)* plati
|lw —n| > r/2 — tato situécia je znazornena na obrazku 6.1.
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Obr. 6.1: Poloha bodov a, a + h, w, ¢ a n v ramci D(a,r).

7 vety o odhade teda dostavame

(k+2)! 1
|A(R)] = : / f(w) / / —~ ___dp| d¢| dw| <
h2mi K(a,r) [a,a+h] [a,C] (’U) - 77)k+3
(k +2)! 1 2KE3 M - |h] - (K + 2)!
29w - M - \hl -k - —
= ohfr mr |h] - [R] (r/2)F+3 2
a pre h — 0 skuto¢ne A(h) — 0. Tym je dokaz dokonceny. O

Podobne ako pre ,zékladny“ Cauchyho integralny vzorec teraz mézeme vyuzit deformacie kriviek
na sformulovanie analogickych viet pre o nie¢o vSeobecnejsiu triedu kriviek obkolesujicich a. Kedze
st ich dékazy navlas rovnaké ako vyssie, obmedzime sa na vyslovenie tychto viet. Opét vsak plati, Ze
kym prvé z nasledujicich viet je nezéavisld na Jordanovej a Jordanovej-Schoenfliesovej vete, t4 druha
ich platnost predpoklada.

Veta 6.3.2 (Cauchyho vzorec pre vyssie derivacie, formulacia II). Nech S C C je oblast, a € S je
bod, f: S — C je holomorfnd na S a v s~* C S je uzavretd po castiach hladkd krivka homotopickd
v S\ {a} s nejakou kruznicou r(a,r), kde r > 0 a D(a,r) C S. Potom pre vietky n € N existuje n-td
derivdcia funkcie f v bode a, pricom

n! w
fM(a) = MA (w {(a))n-i-l dw.

Veta 6.3.3 (Cauchyho vzorec pre vyssie derivacie, formulacia III). Nech S C C je oblast, a € S je
bod, f: S — C je holomorfnd na S a v s v*UI(y) C S je kladne orientovand jednoduchd uzavretd
po castiach hladkd krivka takd, Ze a € I(y). Potom pre vietky n € N existuje n-td derivdcia funkcie f
v bode a, pricom

n n! flw
™ (a) = [y(w—(a))"ﬂdw'

"~ 2mi

Este raz explicitne sformulujme uz spominany désledok viet dokézanych vyssie: kazda holomorfna
funkcia ma derivacie vSetkych radov.

Dosledok 6.3.4. Nech S C C je oblast a f: S — C je holomorfnd na S. Potom je pre vsetky n € N
na S dobre definovand n-td derivdcia funkcie f, ktord je takisto holomorfnd na S.

Doékaz. Pre kazdé z € S staci aplikovat (napriklad) vetu 6.3.1 pre r > 0 také, ze D(z,7) C S. O]
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6.4 DMorerova veta

Dalsiu spomedzi klasickych viet komplexnej analyzy, Morerovu vetu, mozno chapat ako (takmer) opacné
tvrdenie ku Cauchyho integralnej vete pre trojuholnik — umoznuje totiz usidit na holomorfnost fun-
kcie f na oblasti S za predpokladu nulovosti integralov tejto funkcie pozdiz vsetkych trojuholnikov v S;
podmienkou je vSak spojitost funkcie f na S.

Veta 6.4.1 (Morerova veta). Nech S C C je oblast a f: S — C je spojitd funkcia takd, Ze pre lubovolny
trojuholnik v s v* C .S je
/f(z) dz =0.
.

Potom je funkcia f holomorfnd na S.

Doékaz. Staci pre kazdé a € S ukédzat holomorfnost funkcie f v bode a. Nech r > 0 je také, Ze
D(a,r) C S; oblast D(a,r) je konvexna a z lemy 5.2.2 tak za predpokladov tejto vety vyplyva exis-
tencia primitivnej funkcie F': D(a,r) — C k funkecii f. Tato funkcia je na D(a,r) holomorfna a plati
pre iu F’ = f. Podla dosledku 6.3.4 ma vsak kazda holomorfna funkcia derivacie Tubovolného radu
— §pecialne teda musi na D(a,r) existovat aj druhé derivacia funkcie F, ktora je nutne derivaciou
funkcie f na D(a,r): funkcia f je holomorfna na D(a,r), a teda aj v bode a. O]

Cvicenia

1. Vypocitajte

2. Vypocitajte

2
—1
[ 2l
k(4,1) z¢+1

3. Vypocitajte

€Z
—dz.
/5(0,1) 24 :

4. Nech f je funkcia holomorfna na D(0, R) pre nejaké R > 0 a nech r je také, ze 0 < r < R. Nech
|f(2)] je pre z € k(0,r)* zhora ohrani¢ena konstantou M > 0. Dokazte odhad

1/ f(wz dw| <r "M.
271 H(O,’I’) w”+
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Kapitola 7

Taylorove rady

V tejto kapitole dokaZeme, Ze holomorfné funkcie s lokalne reprezentovatelné Taylorovymi radmi
— funkcia holomorfna v nejakom bode a € C je teda v tomto bode aj analytickd a holomorfnost
a analytickost funkcie st v skuto¢nosti totozné koncepty.

7.1 Rovnomerna a lokdlne rovnomerna konvergencia

Dokaz predoslaného tvrdenia vyZaduje integrovat nekonecné rady funkcii ¢len po ¢lene, ¢o nie je vidy
pripustné. Techniky umoziujtce takito ,zadmenu integralu s nekone¢nou suméciou” v istych pripadoch
oddvodnit st zalozené na teérii rovnomernej konvergencie, ktorej zaklady teraz preskiimame. Spolo¢ne
s rovnomernou konvergenciou definujeme aj jej o nieco slabsi variant — takzvana lokdine rovnomernu
konvergenciu — a niektoré z tvrdeni tohto oddielu dokédZeme uz pre tento vSeobecnejsi koncept. Hoci
v suvislosti s Taylorovymi radmi nam postaci pracovat iba s rovnomernou konvergenciou, znalost
vlastnosti lokdlne rovnomerne konvergentnych postupnosti funkcii sa nam zide neskér v savislosti
s funkciou gama.

Definicia 7.1.1. Nech S C C je mnozina a (f,)52, je postupnost funkecii f,: S — C pre n € N.
Hovorime, ze:

(i) Postupnost (fy,)22, konverguje bodovo k funkcii f: S — C, ak pre vietky z € S a vSetky ¢ > 0
existuje ng € N také, ze pre vSetky prirodzené n > ng je |f(2) — f(2)] < e. V takom pripade
piseme f, — f pre n — oo.

(i7) Postupnost (fn)22, konverguje rovnomerne k funkcii f: S — C, ak pre vietky ¢ > 0 existuje
no € N také, Ze pre vSetky prirodzené n > ng a vietky z € S je |fn(2) — f(2)| < e. V takom
pripade piSeme f, = f pre n — oc.

Nech dalej T' C S je mnoZina, fn: T — C je pre vSetky n € N ztzenim funkcie f, na T a f: T—C
je ztzenim f na T. Hovorime, Ze postupnost (fy)52, konverguje k f bodovo resp. rovnomerne na T,
ak (fn)s2, konverguje bodovo resp. rovnomerne k f.

Rozdiel teda spociva v tom, Ze pri bodovej konvergencii ng zavisi od z, kym pri rovnomernej
konvergencii mozno pre vSetky z zvolit jedno spolo¢né ny.

Definicia 7.1.2. Nech S C C je mnozina a (f,)52, je postupnost funkecii f,: S — C pre n € N.
Hovorime, ze postupnost (fy)>2, konverguje lokdlne rovnomerne k funkcii f: S — C, ak pre vsetky
z € S existuje r > 0 také, ze na D(z,r) NS je f, = f pre n — oo. V takom pripade piSeme f,, =joc f
pre n — oo.

Lokélne rovnomernt konvergenciu na 7' C S definujeme prostrednictvom ziiZeni prislusnych funkeif,
rovnako ako pri bodovej a rovnomernej konvergencii.
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Ak postupnost funkcii konverguje k nejakej funkcii f rovnomerne, evidentne k nej konverguje aj
lokdlne rovnomerne; z lokdlne rovnomernej konvergencie tiez zrejme vyplyva bodova konvergencia.
Nasledujtce dva priklady ukazujd, zZe opa¢nym smerom Zziadna z tychto dvoch implikacii neplati.
Priklad 7.1.3. Pre kazdé n € N definujme funkciu f,,: C — C pre vsetky z € C ako

1 ak [z] > 1/(n+1),
fn(z) = { (n+1)|z| inak.

LCahko potom vidiet, Ze pre n — oo je f, — f, kde f: C — C je dana pre vietky z € C ako

ro={¢ w70

Postupnost funkcii ()52, ale k funkcii f nekonverguje lokalne rovnomerne, pretoze konvergencia nie
je rovnomerna na ziadnom okoli D(0, ) pre r > 0. Keby totiz na nejakom D(0,r) bolo f,, = f, muselo
by napriklad aj pre e = 1/2 existovat ng € N také, Ze pre vSetky prirodzené n > ng a vsetky z € D(0,r)
je |fn(2) — f(2)| < e. Bez ujmy na v8eobecnosti ale predpokladajme r < 1 a pre dané ny uvazujme
z=1/3(np + 1). Pre n = ny potom

r(no + 1) ’ 33—

£2(2) = F)] = |G -

a dostéavame spor. Postupnost (f,)2, teda k f konverguje bodovo, ale nie lokdlne rovnomerne.
Priklad 7.1.4. UvaZzujme dalej funkcie g,: D'(0,1) — C dané pre vietky n € N a z € D'(0,1)
ako gn(z) = 2". Pre n — oo je evidentne g, — 0; dokdZeme, Ze aj g, =oc 0. K danému z € D’(0,1)
zvolme r = min{|z|/2, (1—|z|)/2}; existuja teda reédlne &isla ri, 79 také, ze 0 < 11 < ro < 1 a pre vietky
w € D(z,7) je

> ->-=c¢

Wl N
N |

r1 < |w| < 7.
Pre vsetky € > 0 a w € D(z,r) je potom
|gn(w) = 0] = |w"| = [w|" <e
prave vtedy, ked nln|w| < Ine, ¢o je pre e < 1 splnené! kedykol'vek

Ine

Inry
Ak teda vezmeme ng = [(Ine)/(Inra)], pre vietky n > ng aw € D(z,7) je |gn(w) — 0| < e. Pren — o0

tak skutocne g, =31oc 0. Postupnost funkecii (g,)72, ale ku konstantne nulovej funkcii nekonverguje

rovnomerne, pretoze v takom pripade by pre kazdé £ > 0 muselo existovat ng € N také, ze pre vSetky
prirodzené n > ng a z € D'(0,1) je

|9n(2) = O = [2"] = [2[" <e.

Podobne ako vyssie ale zistujeme, Ze napriklad pre ¢ = e~! je tato nerovnost splnena prave vtedy, ked

Ine 1
Injz|  Infz|’
Specidlne teda musi byt aj
1
ng > ———.
07 T n|z|

Napriklad pre z = e~/ ("0+1) ¢ D’(0,1) potom ale
ng > ng + 1,

¢im prichadzame k sporu. Postupnost funkeii (g,)5°, teda ku konstantne nulovej funkcii konverguje
lokdlne rovnomerne, ale nie rovnomerne.

1V nepodstatnom pripade € > 1 je nerovnost splnené vidy.
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Ak postupnost (fy)pe, funkcii spojitych na oblasti S konverguje k funkcii f: S — C bodovo,
funkcia f nemusi byt spojitd — takato situdcia o¢ividne nastéva aj v priklade 7.1.3 vyssie. Dokazeme
teraz, ze limita rovnomerne alebo lokdlne rovnomerne konvergentnej postupnosti spojitych funkcii je
naopak vzdy spojita.

Tvrdenie 7.1.5. Nech S C C je mnozina a (fn)52, je postupnost funkcii, kde pre vsetky n € N je
funkcia fn: S — C spojitd na S. Ak pre nejoki funkciu f: S — C je fn Sioc [ pre n — oo, je funkcia
f na S taktiez spojitd.

Dékaz. Zvolme € > 0 a z € S; potrebujeme najst § > 0 také, Zze pre vsetky w € D(z,0) NS je
|f(z) — f(w)| < e. KedzZe fn, =oc [, existuje r > 0 a m € N také, Ze pre vetky w € D(z,7) NS
je |fm(w) — f(w)| < /3. Funkcia f,, je spojitd v bode z, a teda existuje n > 0 také, Ze pre vSetky
w € D(z,m) NS je | fm(z) — fm(w)| < e/3. Pre 6 = min{n, r} a vietky w € D(z,d) NS potom

[f(2) = f(w)| = [f(2) = fm(2) + fm(2) = fn(w) + fn(w) — f(w)] <
<[f(2) = fm()] + [fm(2) = fin(w)] + | frn(w) = f(w)

<e,
¢im je hTadané § najdené a tvrdenie dokdzané. O

Bodovi, rovnomernu a lokdlne rovnomerni konvergenciu prirodzenym spoésobom definujeme aj
pre rady funkcii — pojde vidy o rovnaku vlastnost prislusnej postupnosti ¢iastocénych stuctov.

Definicia 7.1.6. Nech S C C je mnozina a (f,)5, je postupnost funkcii f,,: S — C pre n € N. Nech
je pre vietky n € N funkcia Fj,: S — C dana ako F,, := fy+ ...+ fn. Potom hovorime, Ze:

(i) Rad funkcii > 7 fn konverguje bodovo k funkcii F': S — C, ak k funkcii F' konverguje bodovo
postupnost (F3,)5%.

(i) Rad funkeii Y 7 fn konverguje rovnomerne k funkecii F': S — C, ak k funkcii F' konverguje
rovnomerne postupnost (F,)22 .

(é17) Rad funkeii ) fn konverguje lokdlne rovnomerne k funkcii F': S — C, ak k funkcii F' konver-
guje lokalne rovnomerne postupnost (£5,)52.

Veta 7.1.7 (Weierstrassovo kritérium rovnomernej konvergencie). Nech S C C je mnozina a (f,,)5, je
postupnost funkcii fr: S — C pren € N. Ak pre vsetky n € N existuje M,, > 0 také, Ze pre vSetky z € S
je | fu(2)| < My a rad 07 o My, konverguje, tak rad funkeii y o2 fn na S konverguje rovnomerne.

Doékaz. Ak st predpoklady vety splnené, pre kazdé pevné z € S a vietky n € N je |fn(2)] < M,
a ¢iselny rad > 7 fn(z) konverguje podla porovnéavacieho kritéria. V dosledku toho rad » 7 fn
konverguje na S bodovo k nejakej funkcii F': S — C. Zostava dokazat, ze tento rad konverguje k F'
aj rovnomerne. Pre v8etky n € N ozna¢me F,, :== fo+ ...+ f,. Pre kazdé z € S a vSetky n € N potom

PGS

k=n+1 k=n+1

[F(2) = Fa(2)] =

Kedze rad )7, M, konverguje, pre vietky ¢ > 0 musi existovat ng € N takeé, ze pre vietky n > ng je

o0

Pre n > ng potom aj |F(z) — Fy,(2)| < ¢, pre vietky z € S:rad )~ f» konverguje rovnomerne. [J
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Nasledujtiica veta dava rovnomerni konvergenciu do suvisu so zamenou limity a integralu, ako
aj s integrovanim radov funkcii ¢len po ¢lene. Pdjde o zadkladny nastroj, ktory vyuzijeme pri dokaze
reprezentovatelnosti holomorfnych funkcii Taylorovymi radmi. Rovnomernt konvergenciu by aj v na-
sledujiicej vete bolo v skuto¢nosti mozné nahradit lokalne rovnomernou konvergenciou — akurat dékaz
by v takom pripade bol nepatrne technickejsi. Ttuto tilohu prenechavame &itatelovi ako jedno z cviceni
na konci kapitoly.

Veta 7.1.8. Nech S C C je oblast, (fn)5 je postupnost spojitych funkcii fr,: S — C pren € N a
je po castiach hladkd krivka takd, Ze v* C S. Potom:

(1) Ak fn = f pre nejakd funkciv f: S — C an — oo, tak

lim fn( )dz:/nli_{gofn(z)dz:/f(z)dz.
v g

n—oo

(it) Ak rad y . fn konverguje rovnomerne na S, tak

o

ZL dz—/an

n=0

Dokaz. Sta¢i dokazat tvrdenie (i); tvrdenie (iz) je jeho bezprostrednym dosledkom. Zvolme & > 0
Tubovolne. Kedze f,, = f, je funkcia f tieZ spojita a existuje ng € N také, Ze pre vSetky prirodzené
n > ng a vietky z € S je | fn(2) — f(2)| < e. Pre n > ng teda z vety o odhade dostavame

[tnrae = [ 1)z =| [ (ale) = 5() 2] < L),
v v gl
a teda skutocne
li fn = f(z)dz.
Jim [ ez = [ fe)a:
Tym je dokaz vety dokonceny. O

Dokazme este, Ze podobne ako v pripade spojitych funkcii je aj rovnomerné alebo lokalne rovno-
mernd limita postupnosti holomorfnijch funkcii tiez vzdy holomorfna.

Veta 7.1.9. Nech S C C je oblast a (fn)2>, je postupnost funkcii, kde pre vsetky n € N je funkcia
fn: S — C holomorfnd na S. Ak pre nejaki funkciu f: S — C je fr =10c [ pre n — 00, je funkcia f
na S taktieZ holomorfnd.

Doékaz. Zvolme Tubovolné z € S; dokdZeme holomorfnost funkcie f v bode z. Nech r > 0 je takeé, Ze
D(z,r) C S a f, = f na D(z,7) pre n — 0o. Nech v je Tubovolny trojuholnik s v* C D(z,r). Vdaka
vete 7.1.8 a Cauchyho integralnej vete pre trojuholnik potom

n—oo

dw = li n dw= 1 n dw= lim 0=0.
Af(w)w /Wn;oﬂw)w nggo/yf(w)w im

Kedze je teda funkcia f spojitd podla tvrdenia 7.1.5, z Morerovej vety vyplyva jej holomorfnost
na D(z,7), a teda aj v bode z. O]
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7.2 Taylorove rady

Mame teraz k dispozicii vSetky ingrediencie potrebné na dokaz vety o lokalnej reprezentacii holomorf-
nych funkcii Taylorovymi radmi.

Veta 7.2.1. Nech S C C je otvorend mnozina, a € S je bod a f: S — C je holomorfnd na D(a, R)

pre nejaké R > 0. Potom existuji jednoznacne dané konstanty c, pren =0,1,2,... také, Ze pre vsetky
z € D(a, R) je
(o]
f(2) = calz—a)" (7.1)
n=0

(kde rad konverguje na D(a, R)). Koeficienty ¢, si navySe pre vSetky n € N dané vztahom

1 f(w)

27i w(ar) (W —a)" ! n!

Cn =
kde 0 < r < R.2 Mocninovy rad na pravej strane (7.1) potom nazjvame Taylorovym radom funkcie f
v bode a; v pripade a = 0 hovorime o Maclaurinovom rade.

Dékaz. Nech z € D(a, R) je dané. Zvolme r tak, aby |z —a| < r < R; z Cauchyho vzorca pre derivacie
vyplyva, Ze vetu staéi dokazat pre toto pevné r. Podl'a Cauchyho integralneho vzorca navyse

z) = L f(w) dw. 7.2
6 =52 | . (7.2)

211 w— z

Nech teraz r’ je redlne ¢islo take, ze |z —a| <’ <raT ={w € D(a,R) | ' < |w — a| < R}. Potom
k(a,r)* C T a pre vietky w € T je

kde |(z —a)/(w — a)| < 1; teda

Z Z__aan+1 . (7.3)

n=

Pre kazdé reélne &islo s take, ze [(z — a)/(w — a)| < s < 1 a vSetky n € N mame

(z—a)"

1 1
=

< —g"

“lw—al T

a z Weierstrassovho kritéria rovnomernej konvergencie vyplyva, Ze rad (7.3), chapany ako rad funkcii
premennej w, konverguje rovnomerne na 7. Dosadenim (7.3) do (7.2) a aplikovanim vety 7.1.8 teda
zistujeme, Ze

1 w 1 (z—a)"
f(z)=— f()dw: Z T dw =
210 J (o) W — 2 2mi Jyo( 0 a)nt
o0
= —————dw(z —a)" z—a)"
Ny N ;
Zostava dokazat jednoznacnost postupnosti koeficientov ( ) . Ta ale vyplyva z vety 3.4.2 o deriva-
ciach analytickych funkcii: podla nej totiz musi byt nle, ( ), pricom n-té derivacie funkcie f st
dané jednoznacne. O

2Pripadne mozno kruZnicu (a, ) nahradit vSeobecnejsou krivkou rovnako ako vo variantoch II a IIT Cauchyho vzorca
pre derivacie.
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Cvicenia

Obr. 7.1: Situicia z dokazu vety 7.2.1. Medzikruzie ohrani¢ené ¢arkovanymi kruznicami je oblast 7T'.

7.3 Ekvivalencia holomorfnosti s analytickostou

Doékazom vety o reprezentacii holomorfnych funkcii Taylorovymi radmi sme zéroven zavisili aj dékaz
rovnosti tried holomorfnych a analytickych funkcii. Tento délezity vysledok teraz eSte sformulujeme

explicitne.

Dosledok 7.3.1. Nech S C C je otvorend mnozina. Funkcia f: S — C je potom holomorfnd v bode
a € S prdve vtedy, ked je analytickd v bode a.

Dékaz. Ak je funkcia f v bode a holomorfna, vyplyva jej analytickost v tomto bode z vety 7.2.1.

Naopak kazda analyticka funkcia je holomorfna podl'a doésledku 3.4.3. O
Cvicenia
1. Dokazte, ze na kompakinej mnozine postupnost funkcii konverguje rovnomerne prave vtedy, ked

konverguje lokilne rovnomerne.

Dokézte, ze vo vete 7.1.8 v skutoénosti mozno predpoklad rovnomernej konvergencie nahradit
slabsim predpokladom lok&lne rovnomernej konvergencie.

Kazdy mocninovy rad Y .2, ¢,(z — a)™ s polomerom konvergencie o mézeme stotoznit s radom
funkeii Y07 fn, kde fp je pre vietky n € N dana ako fn(z) = cp(z — a)™ (pre z také, ze
Y02 o cn(z—a)™ konverguje). Dokézte, Ze pri takejto interpretacii rad Y oo ¢n(z—a)™ konverguje
rovnomerne na D(a,r) pre vietky r také, ze 0 < r < p.

Ukazte, ze rad ) -~ ¢n(2—a)™ s polomerom konvergencie ¢ > 0 nemusi konvergovat rovnomerne
na D(a, g), ale musi tam konvergovat lokdlne rovnomerne.

Nech pre nejaké r > 0 na D(0,7) je f(z) =D _,2 yanz™ a g(z) = >_,2; by2™. Dokéite, ze potom
st na D(0,r) analytické aj funkcie f £ g a f - g a najdite mocninové rady reprezentujice tieto

funkcie.

Odévodnite, pre¢o st mocninové rady definujice funkcie e?, sinz a cosz pre vsetky z € C
v skutocnosti aj Maclaurinovymi radmi tychto funkcii.

Néajdite Maclaurinov rozvoj funkcie f(z) = %23 cos 3z a jeho polomer konvergencie.
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8. Uvazujme holomorfné vetvy Iny: C\(—o00,0] — C prirodzeného logaritmu z oddielu 3.6 pre k € Z.
Hlavnou holomorfnou vetvou logaritmu d'alej nazvime vetvu Ln z := Ing z. Dokazte, Ze na D(0, 1)
je funkcia Ln(1 + z) dana Mercatorovym radom

2 3

z z 24 (—1)nt
142)= ——+———+,..:§ 2"
In(l+2)==% 5 3 1 z

n=1
Najdite Maclaurinove rady na D(0,1) aj pre vSetky funkcie Ing(1 + 2), kde k& € Z. Najdite
Taylorove rady so stredom v bode 1 pre funkcie Ing z, kde k € Z.

9. Uvazujme hlavni vetvu mocninovej funkcie [2%] definovanii pre z € C\ (—oo, 0] ako 2 := e*n %,
ide teda o holomorfna vetvu multifunkcie [2¢] na C\ (—o0,0], pre ktora je 1% = 1. Oznacme
dalej f(z) = (1 4 2)%, kde umociiujeme s pouzitim tejto hlavnej vetvy.

a) Dokéizte, Ze pre vietky a € Ca z € C\ (—00,0] je L2 = az2"L.

b) Funkcia f je ocividne holomorfna na D(0,1). Z predchadzajiceho vztahu odvodte, Ze
pre vietky z € D(0,1) je (1+ 2)f'(2) = af(2).

c) Ukazte, ze pre z € D(0,1) je funkcia f(z) dana binomickym rozvojom

ra =2 =3 (0)

n=0

o\ _ [TiZo(e—k)
n n! '
d) Né&jdite obdobné Maclaurinove rozvoje aj pre dalsie holomorfné vetvy mocninovej funkcie
[(1+2)%] na C\ (—o0,0].

kde prea € Can €N je

10. Nech f je cela funkcia. Dokazte, Ze ak |f(z)| < C|z|F pre nejaké C > 0, k € N a vietky
z € C\ D(0, R) pre nejaké R > 0, tak je funkcia f polynomicka stupiia najviac k.
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Kapitola 8

Veta o jednoznacnosti

V nasledujicom dokéZzeme vetu o jednoznacnosti, podla ktorej je kazd4 holomorfna funkcia f na ob-
lasti S jednozna¢ne dand svojimi hodnotami na Tubovolnej podmnozine 7' C S takej, ze T méa v S
aspon jeden hromadny bod. Cel4 informécia o holomorfnej funkcii f na mnozine S je teda ,,zakédovand*
v jej hodnotach na — hoci aj ovela ,,mensej* — mnozine 7. Okrem toho tiez dokdZeme princip mazima
modulu, podla ktorého absolutna hodnota funkcie holomorfnej na oblasti nemoze nadobudat Ziadne
ostré lokdlne maxima.

8.1 Korene holomorfnych funkcii

Pod korerimi funkcie komplexnej premennej v stlade s beznou terminolégiou chdpeme body, v ktorych
funkcia nadobiida nulové hodnoty.

Definicia 8.1.1. Nech S C C a f: S — C je funkcia. Hovorime, ze bod a € S je korefiom funkcie f,
ak f(a) = 0.

Casto sa zide aj jemnejsia klasifikicia korenov holomorfngch funkcii podla ich rddu — ide pritom
o miniméalny rad derivacie funkcie f, ktora je v danom bode nenulova.

Definicia 8.1.2. Nech f je funkcia holomorfna v bode a € C. Pre m € N hovorime, Ze bod a je
koreriom funkcie f rddu m, ak f®)(a) =0pre k =0,...,m—1a f(™(a) # 0. Ak ziadne takéto m € N
neexistuje, hovorime, ze a je koreriom funkcie f rddu oc.

Bod a je teda korenom funkcie f prave vtedy, ked a je jej koretiom nenulového rddu; korene nulového
radu podla tejto terminologie korenmi funkcie f (bez d'algieho privlastku) vobec nie su.

Korene kone¢ného radu mozno charakterizovat aj viacerymi dalsimi spésobmi zhrnutymi v nasle-
dujicom tvrdeni. Ako cvicenie prenechavame ¢itatelovi charakterizaciu korefiov nekonecéného radu.

Tvrdenie 8.1.3. Nech f je funkcia holomorfnd v bode a € C, pricom r > 0 je také, Ze pre vsetky
z € D(a,r) je funkcia f dand Taylorovym radom f(z) = > 0"y cn(z —a)". Nech m € N. Potom si
nasledujice tvrdenia ekvivalentné:

(1) Bod a je koretiom radu m funkcie f.

(ii) Platico=...=¢pm—1 =0 a ¢, #0.

(tit) Ezistuje funkcia g holomorfnd na D(a,r) takd, Ze g(a) # 0 a pre vsetky z € D(a,r) je funkcia f
dand ako f(z) = (z —a)"g(z).

(tv) Limita lim,_,, f(2)/(z — a)™ existuje a je rovnd nejakému nenulovému komplexnému ¢islu.
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Doékaz. Tvrdenia (i) a (i7) st ekvivalentné vdaka vete o Taylorovych radoch: pre vsetky n € N totiz

nutne ¢, = f(a)/n!. Ak dalej co = ... = 1 = 0 a ¢, # 0, mdZeme polozit
o0
9(2) =Y ealz—a)"™,
n=m

pricom tento rad musi konvergovat pre vsetky z € D(a,r). Zjavne v takom pripade g(a) = ¢, # 0
a f(z) = (z —a)™g(z) pre vietky z € D(a,r). Ak naopak f(z) = (z — a)™g(z) pre nejaki funkciu
9(z) =307y bn(z — @)™ holomorfnii na D(a,r) s g(a) # 0, tak

o0

f(2)=(z=a)"g(2) = Y bo—m(z —a)"

az by = g(a) # 0 je zrejmé, ze prdve prvych m koeficientov Taylorovho rozvoja tejto funkcie v bode a
je nulovych. To dokazuje ekvivalenciu tvrdeni (ii) a (ii7). Z platnosti (iii) a spojitosti holomorfne;
funkcie g v bode a tiez vyplyva

lim L) gy B9

z=a (z—a)™  z2=a (z—a)™
kde g(a) # 0; teda (i7¢) implikuje (iv). Nech nakoniec pre nejaké C € C\ {0} je

lim 7]0(2)

z—a (z — a)m

=C.

Potom pre vietky £ > 0 existuje § > 0 také, Ze f je holomorfna na D(a,d) a pre vietky w € D'(a, ) je

M _ C < g,
CEDR
a teda aj
[f(w)] <(IC] +&)d™.
7 Cauchyho vzorca pre derivéicie a vety o odhade potom pre n =0,...,m — 1 dostavame
! ! § 2"H(|C) 4 €)™
‘f (a) 270 Sy 2y (W — @)t wl<go2m g S n12"(|C| +¢)

akedze e > 0 a § > 0 mozu byt Tubovolne malé, nutne £ (a) = 0. Ak teda f(z) = 30 cu(z — a)?,

jecg =...=cm_1 = 0. KedZe ale na druhej strane
IV ()N n—m _
=ty i S o e
n=m
dostavame ¢, = C' # 0. Tvrdenie (iv) teda implikuje (i7), ¢im je dokaz dokonceny. O

Oznacenie 8.1.4. Nech S C C a f: S — C je funkcia na S. Ako Z(f) oznac¢ime mnozinu vsetkych
korenov funkcie f v S, t. j.

Z(f) :={ae S| fla) =0}
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8.2 Veta o jednoznacnosti

Vetu o jednoznacnosti dokédZzeme pomocou dvoch lem hovoriacich o nulovosti holomorfnej funkcie na ob-
lasti za predpokladu, Ze je tato funkcia nulova na podmnozine danej oblasti spliajicej isté podmienky.

Lema 8.2.1. Nech a € C, r > 0 a funkcia f je holomorfnd na D(a,r). Ak f(a) = 0 a bod a je
hromadnygm bodom mnoZiny Z(f), tak f(z) = 0 pre vietky z € D(a,r).

Doékaz. Nech su predpoklady lemy splnené. Z holomorfnosti funkcie f na D(a,r) vyplyva, Ze funkciu f
mozno pre vietky z € D(a,r) reprezentovat jej Taylorovym radom

f(2) =) eulz—a)"
n=0

Ak ¢, = 0 pre vetky n € N, tak pre kazdé z € D(a,r) nutne f(z) = 0, ¢o je v sulade so znenim
lemy. UkaZeme, Ze opaéna moznost vedie k sporu. Z tvrdenia 8.1.3 v takom pripade vyplyva, Ze je
a korenom funkcie f radu m € N\ {0}. Rovnaké tvrdenie potom zarucuje aj existenciu funkcie g
holomorfnej na D(a,r) takej, ze g(a) # 0 a pre vietky z € D(a,r) je f(z) = (2 —a)™g(z). Holomorfna
funkcia g musi byt v bode a spojita — existuje preto § > 0 také, Ze pre vietky z € D(a, ) je g(z) # 0;
pre z € D'(a,d) potom aj f(z) = (z —a)™g(z) # 0. Z toho vyplyva, Ze a je izolovanym bodom
mnoziny Z(f), ¢o je v spore s predpokladom, Ze ide o hromadny bod tejto mnoziny. O

Lema 8.2.2. Nech S C C je oblast a f: S — C je holomorfnd na S. Ak md mnozina Z(f) v S asporni
jeden hromadny bod, je funkcia f na S konstantne nulovd.

Dékaz. Nech a € S je hromadny bod mnoziny Z(f). Pre kazdé § > 0 potom existuje z € D'(a,d) N S
také, ze f(z) = 0. Zo spojitosti funkcie f v bode a teda vyplyva aj f(a) = 0. Ak teraz b € S je
Tubovolné, suvislost oblasti S implikuje existenciu lomenej ¢ary v z bodu a do bodu b. Kedze je v*
kompaktna, existuje e > 0 také, ze pre vietky z € v* je D(z,e) C S. Pokrytim lomenej ¢iary v ,,retazou‘
prekryvajucich sa okoli o polomere ¢, kde stred kazdého d'algieho okolia patri aj do predchadzajiceho
okolia, tak s pouzitim lemy 8.2.1 zistujeme, Ze aj f(b) = 0. Kedze je b € S Tubovolné, je lema
dokézané. O

Jednoduchym désledkom prave dokdzanej lemy je uz samotné veta o jednoznad¢nosti: kazda funkcia f
holomorfna na oblasti S je jednoznacne dané jej hodnotami na 'ubovolnej podmnozine T' oblasti S,
ktord mé v S aspon jeden hromadny bod. V hodnotéach funkcie f na mnozine T je teda ,,obsiahnuté
kompletné informécia“ o hodnotéch f na celej oblasti S.

Veta 8.2.3 (O jednoznacnosti). Nech S C C je oblast a f,g: S — C su funkcie holomorfné na S. Nech
existuje mnozina T C S takd, Ze pre vietky z € T je f(z) = g(z) a T md v S aspori jeden hromadny
bod. Potom f =g.

Dékaz. Stadi aplikovat lemu 8.2.2 na holomorfna funkciu f — g. O

Priklad 8.2.4. Predpokladajme, Ze f: C — C je holomorfna funkcia taka, ze pre vsetky z € (0,1)
je f(z) = sinz. Z vety o jednoznacnosti potom f(z) = sinz pre vSetky z € C. Na vyvodenie tohto
zéveru by rovnako dobre postacovala aj rovnost f(z) = sin z pre v8etky z € {1/n | n € N\ {0}}, kedZe
tato mnozina ma v C hromadny bod 0. Rovnost f(z) = sinz pre z € {2kn | k € Z} uz ale napriklad
postacujica nie je, kedze v tomto pripade moze byt funkcia f napriklad aj konStantne nulova; to vSak
neodporuje vete o jednoznacnosti, kedze mnozina {2k7 | k € Z} nema v C ziaden hromadny bod.

Priklad 8.2.5. Ak pre nejaku dvojicu celych funkeii f,g: C — C plati f(x) = g(z) pre vSetky = € R,
veta o jednoznacnosti zarucuje platnost rovnosti f(z) = g(z) aj pre vetky z € C. Takto moZno
do komplexného oboru rozsirit identity ako napriklad sin? z + cos? z = 1 alebo sin 2z = 2sin z cos 2.
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8.3 Princip maxima modulu

Dokazeme teraz takzvany princip mazima modulu — t. j. absolitnej hodnoty funkcie. Pojde o vetu
hovoriacu, Ze absolatna hodnota funkcie holomorfnej na oblasti nenadobtuda na tejto oblasti Ziadne
ostré lokidlne maxima.

Veta 8.3.1 (Princip maxima modulu). Nech f je funkcia holomorfnd na D(a,r) pre nejaké a € C
ar>0. Ak |f(2)| <|f(a)| pre vSetky z € D(a,r), tak je funkcia f na D(a,r) konstantnd.

Doékaz. Zvolme I'ubovolné realne s také, ze 0 < s < r. Z Cauchyho integralneho vzorca potom

1 fz) 1 [T flatse®) o0 1 [ it
f(a)—% N(w)z_adZ—% ; Tsze dt—% i fla+ se™)dt,
7 ¢oho
1 2m i+ q 1 27 q
< — v < — = X
f@1< 5 [ s at < o [Cir@lae= s
Preto
27 ) 27
/ \f(a+se”)]dt=/ (o) dt,
0 0
a teda

2
/0 (If (@) = [f(a+se™)|) dt = 0.

Integrand je tu pritom spojity a nezaporny na [0, 27]; nutne teda ’f(a + seit)‘ = |f(a)| pre vsetky
t €10,27]. Z toho |f(2)| = |f(a)| pre vietky z € r(a, s)* — a kedZe je s [ubovolné realne &islo spliiajtice
0<s<r jel|f(z)=]f(a)| aj pre vetky z € D(a,r).

Dokazali sme teda, ze absolutna hodnota funkcie f je na D(a,r) konstantna. Zostava dokazat, ze
v takom pripade musi byt na D(a,r) konStantna aj samotné funkcia f.

Nech u, v st funkcie dvoch realnych premennych také, ze pre z € D(a,r) je u(Rez,Im z) = Re f(z)
a v(Rez,Imz) = Im f(z). Konstantnost funkcie |f| na D(a,r) znamené, Ze pre nejaké ¢ > 0 a vietky
z,y € R splhajice x + iy € D(a,r) je

u(w,y)? +v(z,y)* = (8.1)

Ak pritom ¢ = 0, musia byt funkcie u(x,y) aj v(z,y) konstantne nulové a na D(a,r) je teda konstantne
nulova aj funkcia f. MdZeme preto predpokladat, ze ¢ > 0.
Zderivovanim oboch stran rovnosti (8.1) podla x resp. podla y potom dostéavame

ou ov

ou ov
2u(x7y)a7y(l‘ay) + 21}(1:’ ?/)a*y(l‘a y) = 07

¢o mozno s vyuzitim Cauchyho-Riemannovych podmienok po predeleni dvomi prepisat ako

) g ) = (1) G (,) = 0 (5.2

) G ) + 00, 0) 5 (2,0) = . (53
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Z toho napokon prenasobenim funkciou u(z,y) resp. v(z,y) dostavame

) o) = e p)ol ) 5 (o) =0

ou ou

v(a;, y)Q%($7y) + u(w,y)v(w,y)a—y(a:, y) =0,

pricom séitanim oboch rovnosti prichadzame k vztahu

(e, ) + 0l 9)°) G 9) = o () = 0.

KedZe ¢ > 0, je parcialna derivacia funkcie u podla x konstantne nulova a vd'aka Cauchyho-Riemannovym
podmienkam dostavame rovnaku vlastnost aj pre parcialnu derivaciu funkcie v podla y.
Podobne po prenasobeni (8.2) a (8.3) funkciou —v(z,y) resp. u(z,y) mame

a5 e9) = ule (o) 5 ) =0

ou ou

2

bt bl -0
u(,y) ay (,9) +ulz, y)o(z,y)5-(z,y) =0,
z ¢oho po s¢itani oboch rovnosti dostavame

(ul,)? + v(z,9)?) g;‘u,y) - c2?;<x,y> 0.

Konstantne nulova je teda aj parcidlna derivicia funkcie u podla y a vdaka Cauchyho-Riemannovym
podmienkam aj parcidlna derivacia funkcie v podla x.
Funkcie u aj v st teda konstantné, v doésledku ¢oho je na D(a,r) konStantna aj funkcia f. O

Nasledujtce dva dosledky prave dokazanej vety sa niekedy tieZ nazyvaja principom maxima modulu.
Prvy z nich pritom explicitne hovori o uz predoslanej interpretacii predchadzajtcej vety.

Désledok 8.3.2. Nech S C C je oblast, f je funkcia holomorfnd na S a pre nejaké a € S existuje
r >0 také, Ze D(a,r) C S a pre vSetky z € D(a,r) je |f(2)] < |f(a)|. Potom je f konstantnd na S.

Dokaz. 7 predchéadzajucej vety vyplyva konstantnost funkcie f na okoli D(a,r), ktoré ma hromadny
bod v S. Z vety o jednoznacnosti teda dostdvame konstantnost funkcie f aj na celej oblasti S. O

Doésledok 8.3.3. Nech S C C je ohranicend oblast a f je funkcia holomorfnd na S a spojitd na S.
Potom | f| nadobida mazimum na hranici S = S\ S mnoZiny S.

Dokaz. Mnozina S je kompaktna a spojita funkcia | f| tak musi na S nadobtidat maximum. Pokial ale
funkcia f nie je konstantna na S, podla predchadzajiceho doésledku neméze funkcia |f| toto maximum
nadobtudat na S, a teda ho musi nadobtuidat na 9S. Ak naopak funkcia f na oblasti S konStantna je,
musi byt vdaka svojej spojitosti konstantna aj na S. Kedze evidentne 35S # (), nadobtda | f| aj v tomto
pripade maximum na 95. OJ
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Cvicenia

1. Nech je a € C korefiom radu p € N holomorfnej funkcie f a zarovein korefiom radu ¢ € N
holomorfnej funkcie g. Charakterizujte rad koreha a funkcie f - g prostrednictvom ¢&isel p a q.

2. Dokazte alebo vyvratte: ak f: D(0,1) — C je holomorfna na D(0, 1), pri¢om +1 a +i sa hro-
madnymi bodmi Z(f), je funkcia f na D(0, 1) nutne konstantne nulova.

3. Nech f: C — C je cela funkcia. Dokazte, ze ak f(z) € R pre vsetky z € C také, ze |z| = 1, je
funkcia f nutne konstantné.
f(2)

z

4. Nech f: C — C je cela funkcia. Dokazte, ze ak lim,_, = 0, je funkcia f nutne konStantné.



Kapitola 9

Laurentove rady

V tejto kapitole si ukdZeme, Ze za istych okolnosti moZzno funkciu komplexnej premennej rozvinat
do patri¢ne zovSeobecneného mocninového radu aj v bodoch, v ktorych tato funkcia nie je holomorfna.
Zameriame sa pritom na pomerne Specidlny pripad izolovangch singularit jednohodnotovej holomorfnej
funkcie, v ktorych mozno funkciu rozvinut do takzvaného Laurentovho radu; na rozdiel od Taylorovych
radov mozu Laurentove rady obsahovat aj zaporné mocniny. Nésledne bliZsie preskimame samotné
izolované singularity jednohodnotovych holomorfnych funkcii.

9.1 Laurentove rady

Ak funkcia f nie je holomorfné v bode a € C, nemoze existovat ani Taylorov rozvoj funkcie f v bode a,
ktorym by bola funkcia f reprezentovana na D(a,r) pre nejaké r > 0; pokial pritom z funkcie f nedos-
taneme funkciu holomorfnii v bode a jednoduchou zmenou funkénej hodnoty f(a), nie je tato funkcia
reprezentovana Taylorovym rozvojom ani na ziadnom prstencovom okoli D’(a,r). Teraz vSak ukazeme,
ze v bodoch a € C takych, Ze funkcia f je holomorfna na D’(a,r), mozno funkciu f rozvinat do radu
népadne pripominajiceho Taylorov rad, avsak obsahujtceho vo vSeobecnosti aj zdporné mocniny —
takyto rad nazveme Laurentovym radom. Hoci je spomenuty pripad z hladiska aplikicii najdolezi-
tejsi, v skutocnosti dokonca dokadZeme o nieco silnejsie tvrdenie: rovnaké vlastnost plati aj pre funkcie
holomorfné na medzikruzi so stredom v bode a.
Pred vyslovenim samotnej vety o Laurentovych radoch si musime ujasnit sposob, akym chapeme

obojstranne nekonec¢né rady: hovorime, Ze rad komplexnijch cisel

o

>

n=—00

konverguje k sictu s, ak rad ) 7 a, konverguje k suctu si, rad > o7, a_p, konverguje k sactu sp
a s1 + so = s. Obdobnym spdsobom chapeme aj obojstranne nekoneéné mocninové rady.
Veta 9.1.1. Nech f je funkcia holomorfnd na medzikruzi A = {z € C | r1 < |z — a| < ra} pre nejaké
0 < 71 < ry. Potom ezistuje jednozna¢ne dand postupnost koeficientov ()0 _ o takd, Ze pre vietky
z € A je funkcia f dand Laurentovym radom

o0

[ =3 elz—a)

n=—oo

(kde rad konverguje na A). Pre vietky n € Z je navyse koeficient ¢, dany ako

1 fw

= % k(a,r) (’UJ - a)n+1 ’

kde r je lubovolné redlne cislo také, Ze r < r < rs.



102 9.1 Laurentove rady

Dékaz. Nech z € A je pevné. Zvolme realne ¢isla s1, sg tak, aby r1 < s1 < |z — a] < s3 < r9. Spojme
kruZnice k(a, $1) a k(a, $3) dvoma nepretinajucimi sa tuseckami tak, aby bod z nelezal na ziadnej z nich
a skonstruujme krivky 1, 2 tak, ako na obrazku 9.1b.

_~__ - _~_— -

(a) Volba hodnot sq a so. (b) Krivky v1 a 2.

Obr. 9.1: Dékaz vety 9.1.1.

7 Cauchyho integralneho vzorca potom

z:L de
7(2) /

211 w— z

a z Cauchyho integrélnej vety pre jednoducho stvislu oblast

1w,

27 w— z

O:

72
S¢itanim obidvoch integralov dostavame

z) = 1 M dw — 1 f(w) dw. 9.1
f( ) ) /H(a $2) ) /n(a,sl) ( )

211 w—z 211 w— z

*ale lw—al >|z—ala

1 1 i z—a)"
w—z w-—a 1- T (w — a) D

Pre w € k(a, s2)

kde rad konverguje rovnomerne pre w z nejakej oblasti obsahujucej x(a, s2)*. Pre w € k(a, s1)* naopak

lw—al <|z—ala
11 1 _i (w—a)*
w—z  z—a l—u_k_O (z — a)kt1’

zZ—a

kde rad konverguje rovnomerne pre w z nejakej oblasti obsahujtcej x(a, s1)*. Dosadenim do (9.1) tak
s pouzitim vety 7.1.8 zistujeme, Ze

N L S S Gl P oS W=t

AR PRRELCD Dorr e S RELCD Dy ey 2
_OO = ﬂw z—a)" 3 1 7]”(10) w)|(z—a) k1=
_1;](27'(2/&(&752) (w_a)n+1d >( ) +k§0<27m./’€(a751) (w—a)—k‘d >( )

> e L S (L @Yy
z::<27m /’f(a,m)(dw) (z=a)+ Zoo <2ﬂ'i ~/I€(a751) (w—a)n+1d >( )"

n—=——

S
\
Q
~—
3
+
—
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Vdaka vete o deformacii mozeme integracné krivky «(a, s1) a k(a, s2) nahradit krivkou x(a, ). Dosta-

vame teda
f(z) = Z (27” /H(a » (w Ji(a))n+1 dw) (z—a)" = Z en(z —a)™.

n=—oo n=—oo
Zostava dokazat jednoznacénost koeficientov ¢,,. Ak ale pre z € A plati f(2) = 332 di(z — a)*
pre nejaké konstanty (dy )22 tak pre vsetky n € Z zistujeme, Ze

k=—o00"
1 f(w) / gk
211 /H(aﬂn) (w — CL)"‘*‘1 2772 (a,r) kZ k v
= L idk(w—a)k L dw + L 3 d_p(w —a) """ dw.
2mi k(a,r) k=0 2mi r(a,r) k=1

Obidva nekone¢né rady v integrandoch konverguji rovnomerne podl'a Weierstrassovho kritéria — za Mj,
mozno pri prvom z nich vziat napriklad |dk|qk n=1 pre lubovolné redlne ¢, také, ze r < q1 < o1, kde o1
je polomer konvergencie radu y 7° diu® a pri druhom rade napriklad ]d k]q’””“ pre reédlne &islo go
také, ze 1/r < g2 < 02, kde 02 je polomer konvergencie radu y oo d_puF. Preto

0o
kn 1 —k—n—1
- d - dw =
o 227”/(17“ w+22ﬂ'2/ar a v

k n—1
dw = d,,, 2
2m/m v 52)

kedZe integral je v (9.2) nenulovy len pre £k = n a jeho hodnota je v takom pripade 2ms. O

Poznamka 9.1.2. Podobne ako pri Cauchyho integralnych vzorcoch alebo koeficientoch Taylorovych
radov mozno integral pozdlz kruznice (a,r) v zneni vety 9.1.1 nahradit integralom pozdlz Iubovolnej
uzavretej po ¢astiach hladkej krivky homotopickej v A s k(a, ) (¢o vyplyva priamo z vety o deformécii),
pripadne integralom pozdlz I'ubovolnej kladne orientovanej jednoduchej uzavretej po ¢astiach hladkej
krivky v s v* C A takej, ze D(a,r1) C I(y) (kde je ale v kone¢nom dosledku potrebné odvolat sa
na Jordanovu a Jordanovu-Schoenfliesovu vetu).

Poznamka 9.1.3. Pre disjunkiné medzikruzia so stredom v bode a € C mézu byt Laurentove rozvoje
so stredom v a vo v8eobecnosti rozne. Typicky sa vSak budeme zaujimat o Laurentov rozvoj funkcie
na nejakom prstencovom okoli bodu a, ktory je vdaka predchadzajtcej vete dany jednoznacne. Casto
budeme nepresne hovorit o Laurentovom rozvoji funkcie v bode a; v takom pripade mame vzdy na mysli
(jediny) Laurentov rad na nejakom prstencovom okoli bodu a.

Priklad 9.1.4. Funkcia f(z) = 1/z je ,sama svojim Laurentovym radom* v bode z = 0 — to znamené
f(z)=>2 cpz™ kde co1 =1 a ¢, =0 pre vietky n € N\ {—1}.

n=—oo

Priklad 9.1.5. Uvazujme funkciu f(z) = 1/(z3+ 22). Laurentov rozvoj funkcie f v bode z = 0 mozno

najst takto:
1 1 oo (e.9]
Z2)= 55— =— —1)"" | = —1)"2".
6= s = (D) = S
n=0 n=—2

To znamenad, ze koeficienty pri z™ st pre n < 2 nulové. Ide pritom o Laurentov rad na prstencovom
okoli D'(0,1). UZitoénym cvidenim moZze byt najdenie Laurentovho radu reprezentujiceho funkciu f
na medzikruzi A = {z € C | 1 < |z| < r} pre [ubovolné r > 1.

Priklad 9.1.6. Laurentov rad funkcie sin(1/z) v bode z = 0 je dany ako

1 00 L—(2nt1)

sin| - | = 1)

(z) Z( ) n!
n=0

Je v fiom teda nekonecne vela nenulovych koeficientov pri zapornych mocninach z.



104 9.2 Izolované singularity a ich klasifikacia

9.2 Izolované singularity a ich klasifikacia

Po zvySok tejto kapitoly sa za¢neme vaznejSie zaoberat vlastnostami bodov, v ktorych nejaka funkcia f
nie je holomorfné, hoci je holomorfna v ich blizkosti — presnejsie sa budeme zaoberat takzvanymi
1zolovangmi singularitami jednohodnotovych holomorfnych funkcii, ktoré si tizko spité s Laurentovymi
radmi. Samotny pojem singularity funkcie zatial definovat nebudeme; urobime tak aZ neskoér v suvislosti
s analytickym predlzenim. Izolované singularity jednohodnotovych funkcii bud@ — az na nepodstatny
pripad odstranitelnych singularit — §pecidlnym pripadom singularit.

Definicia 9.2.1. Nech S C C je mnozina a f: S — C je funkcia. Hovorime, Ze bod a € C je izolovanou
singularitou funkcie f, ak existuje r > 0 také, Zze D'(a,r) C S, pricom funkcia f je holomorfna
na D’'(a,r), ale nie je holomorfna! v bode a.

Podmienka holomorfnosti funkcie f na D’(a,r) mé za nasledok, Zze kazda funkciu mozno v jej
izolovanych singularitach rozvinut do Laurentovho radu. Vlastnosti tohto radu su pritom zakladom
pre jemnejsiu klasifikdciu izolovanych singularit.

Definicia 9.2.2. Nech S C C je mnozina, f: S — C je funkcia a a € C je izolovana singularita
funkcie f. Nech r > 0 je také, ze f je holomorfna na D'(a,r), pricom pre z € D'(a,r) je funkcia f dana
Laurentovym rozvojom

Potom hovorime, zZe a je:
a) Odstrdnitelnou singularitou funkcie f, ak pre vSetky celé ¢isla n < 0 je ¢, = 0.

b) Pdlom funkcie f, ak existuje m € N\ {0} také, Ze c_,, # 0 a pre vSetky celé ¢isla n < —m je
c¢n = 0. V takom pripade tieZ hovorime, Ze a je pélom rddu m.

c¢) Podstatnou izolovanou singularitou funkcie f, ak existuje nekonecne vela réznych celych ¢isel
n < 0 takych, ze ¢, # 0.

Priklad 9.2.3. Z prikladov 9.1.4, 9.1.5 a 9.1.6 vyplyva, Ze funkcie

fi) = -
¢ 1
P

maji v bode z = 0 pol. V prvom pripade ide o pdl radu 1, nazyvany tiez jednoduchym pélom; v druhom
pripade ide o poél radu 2. Funkcia
At
— S —_
f3(z) = sin < . >

méa v bode z = 0 podstatnu izolovani singularitu. Prikladom funkcie s odstranitelnou singularitou
v bode 0 méze byt napriklad funkcia f;: C — C dané pre vSetky z € C ako

mo-{o wilo

pripadne zuzenie funkcie e* na C\ {0} a podobne.

1Samotny bod a pritom méze, ale nemusi patrit do S.



Laurentove rady 105

9.3 Odstranitel'né singularity

V terminologii, ktort zavedieme neskor, sa odstranitelné singularity za singularity vébec nepokladaju.
Existencia odstranitelnej singularity funkcie f v bode a totiZz znamend, Ze na nejakom prstencovom

okoli D’'(a,r) bodu a je
= Z en(z —a)”
n=0

pre nejakt postupnost koeficientov (¢, )22 ;. Funkcia definovana tymto mocninovym radom je na D(a, r)
holomorfna. Ak teda funkcia f nie je holomorfné v bode a, moze to byt iba z dvoch dévodov: bud
nie je v bode a vobec definované, alebo mé v tomto bode hodnotu réznu od ¢o. V oboch pripadoch
mo7no dodefinovanim resp. predefinovanim hodnoty f(a) na co ziskat holomorfna funkciu. Pripad
odstranitelnych singularit je teda zanedbatelny, kedZe predefinovanie funkcie v jednom izolovanom
bode zvycajne nehra velkad rolu.

Veta 9.3.1 (Riemannova veta o odstranitelnych singularitach). Nech S C C je otvorend mnoZina,
aeSaf:S\{a} — C je funkcia holomorfnd na S\ {a}. Potom si nasledujice tvrdenia ekvivalentné:

(i) Ezistuje funkcia f: S — C holomorfnd v bode a takd, Ze pre vsetky z € S\ {a} je f(2) = f(2).
(i1) Euxistuje funkcia f: S — C spojitd v bode a takd, Ze pre vietky z € S\ {a} je f(z) = f(2).
(i11) Ezistuje r > 0 také, Ze D(a,r) C S a funkcia f je ohranicend na D'(a,r).

(iv) Ezistuje vlastnd limita lim,_,, f(z) = L.

(0) lims . £(2)( — a) = 0.

Dokaz. 7 tvrdenia (i) vyplyva tvrdenie (i7) podla vety 2.5.1. Platnost tvrdenia (i) dalej znamena,
Ze ku kazdému ¢ > 0 vieme najst § > 0 také, Ze pre vietky z € D(a,8) N S je f(z) € D(f(a),e).
Ak teda zvolime r > 0 tak, aby bolo r < ¢ a sacasne D(a,r) C S, pre vietky z € D'(a,r) je
17(2)] = |f(2)| < |f(a)| + ¢ a funkcia f je teda ohrani¢ena na D'(a,r).

Predpokladajme d'alej platnost tvrdenia (ii7) a uvazujme funkciu g: S — C danu pre vietky z € S

" (=~ a1 (2)
_ z—a)“f(z) akz#a,
g(z)—{o ak z = a.
Funkcia g je evidentne holomorfna na S\ {a} a vdaka ohrani¢enosti funkcie f na D'(a,r) dostavame
2
o 9E —e) )
g'(a) = lim =—"— lim —— lim (z — a)f(2)

Funkcia g je teda holomorfna na S. Podla vety 7.2.1 teda pre [ubovolné R > 0 splhajice D(a, R) C S
a vetky z € D(a, R) je
o0
= Z en(z —a)®
n=0

pre nejaki jednoznacne dant postupnost koeficientov (c,,)52. Kedze g(a) = ¢'(a) =0, je co = ¢1 = 0.
Pre vSetky z € D(a, R) potom mozeme definovat hodnoty funkcie f: D(a, R) — C ako

o

E Cnt2(z —a)”

kde rad napravo evidentne konverguje pre vSetky pripustné z. Pre vietky z € D’(a, R) navyse
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Funkcia f : 8 — C dana pre vsetky z € S ako

e f(z) ak z € D(a, R),
(z) = { f(2) akze S\ D(a,R)

je potom holomorfnym rozsirenim funkcie f na S, ¢im sme dokézali tvrdenie ().
Tvrdenia (i) az (ii7) su teda skuto¢ne ekvivalentné a zostava dokazat ich ekvivalenciu s tvrdeniami
(1v) az (v). Ak ale predpokladame napriklad (i7), podla tvrdenia 2.2.6 je

lim f(2) = lim f(2) = f(a),

z—a

a tvrdenie (iv) je dokazané pre L = f(a). Tvrdenie (iv) dalej zrejme implikuje tvrdenie (v).
Predpokladajme napokon platnost tvrdenia (v) — teda

lim f(z)(z —a) =0.

z—a

Pre Tubovolné pevné € > 0 potom existuje § > 0 také, Ze funkcia f je na D’(a,d) holomorfna
a pre vietky w € D'(a,0) je

[f(w)(w = a)] <e&;

pre Tubovolné realne ¢islo 7 spliiajiice §/2 < 1 < § a vietky w € k(a,n)* teda aj

Fw)] < . 93)

Funkcia f d'alej musi byt na D’(a,d) dana svojim Laurentovym radom

& oo- Zvety 9.1.1, vety o odhade a (9.3) potom pre ubovolné
realne 7 spliiajice 6/2 < 1 < § a vietky zdporné celé &isla n dostavame

1 f(w)
— AN
2mi /,,i(am) (w—a)nt! v

a kedze e > 0 a § > 0 mozu byt l'ubovolne malé, nutne |d,,| = d,, = 0. Pre vsetky 2z € D'(a,d) teda
v skutocnosti

pre nejaki postupnost koeficientov (d,,)5°

1 2n+26 2n+26
|d,| = gﬁ.gﬁ.g.wzm

kde rad napravo udava holomorfné rozsirenie funkcie f na D(a,d). Pre funkciu f: S — C dant ako

2oy Y ydn(z—a)"  ak z € D(a,0),
f(Z)_{f(Z)O ak z € S\ D(a,0)

teda plati tvrdenie (7). O

O Riemannovej vete o odstranitelnyjch singularitdch hovorime v suvislosti s vetou 9.3.1 preto, lebo
jej dosledkom je nasledujice kritérium odstranitelnosti singularity.
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Dosledok 9.3.2. Nech S C C je otvorend mnozina o f: S — C funkcia holomorfnd na S s izolovanou
singularitou v bode a € C. Nech r > 0 je také, Ze D'(a,r) C S a nech je pre vietky z € D'(a,r) funkcia

[ dand Laurentovym radom f(z) =Y 02 cn(z — a)™. Potom si nasledujice turdenia ekvivalentné:

(1) Bod a je odstranitelnou singularitou funkcie f.
(ii) Eristuje funkcia f holomorfnd na D(a,r) takd, pre vietky z € D'(a,7) je f(z) = f(z).
(ii7) Existuje funkcia f spojitd na D(a,r) takd, pre vsetky z € D'(a,r) je f(z) = f(z)
(iv) Funkcia f je ohranicend na nejakom prstencovom okoli bodu a.
(v) Ezistuje vlastnd limita lim,_,, f(z) = L.
(vi) lim,—q f(2)(2 —a) = 0.

Dokaz. Izolovana singularita a € C funkcie f je z definicie odstranitelna prave vtedy, ked pre vsetky
celé ¢isla n < 0 je ¢, = 0. Pre vetky z € D'(a,r) potom

f(z) = Z en(z—a)"
n=0

a rad napravo urcuje holomorfné rozsirenie funkcie f na D(a,r). Ak naopak existuje funkcia f holo-
morfné na D(a,r) taka, ze pre vietky z € D'(a,r) je f(z) = f(2), st hodnoty funkcie f na D'(a,r)
dané Taylorovym radom funkcie f so stredom v bode a, ktory je vdaka jednozna¢nosti koeficientov
Laurentovho radu stucasne aj Laurentovym radom funkcie f na D’(a,r). Tento rad ma nulové vsetky
koeficienty pri zapornych mocninach z a izolovana singularita a tak musi byt odstranitelné.

Dokéazali sme teda ekvivalenciu tvrdeni (7) a (7). Ekvivalencia tvrdenia (i7) so zvySnymi tvrdeniami
vyplyva priamo z vety 9.3.1. OJ

Sformulujme este dalsie dva uZitoéné dosledky Riemannovej vety o odstranitelnych singularitach.

Désledok 9.3.3. Nech S C C je otvorend mnoZina, a € S a f: S — C je funkcia holomorfnd
na S\ {a}. Potom je funkcia f holomorfnd v bode a prdive vtedy, ked je v bode a spojitd.

Dékaz. Vyplyva bezprostredne z ekvivalencie tvrdeni (i) a (i7) vety 9.3.1. O

Dosledok 9.3.4. Nech S C C je otvorend mnozina, ' C S je konecnd mnozina, f: S — C je funkcia
holomorfnd na S\ F a a € F. Potom je funkcia f holomorfnd v bode a prive vtedy, ked je v bode a
spojitd.

Dokaz. KedZe je mnozina S otvorend, existuje ¢ > 0 také, ze D(a,e) C S. Ak navySe zvolime toto
¢islo e tak, aby bolo
e<min{|z—al||ze F\{a}},

evidentne

D(a,e) C (S\ F)U {a}.

Staci sa teda opéat odvolat na vetu 9.3.1. O
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9.4 Poly

Zaoberajme sa teraz blizSie polmi. Charakterizujme najprv poly radu m podobnym spdésobom, ako
sme v tvrdeni 8.1.3 charakterizovali korene radu m a v dosledku 9.3.2 odstranitelné singularity.

Tvrdenie 9.4.1. Nech S C C je otvorend mnozina a f: S — C je funkcia holomorfnd na S. Nech
a€Car >0 sitaké, Ze D'(a,r) C S a pre vsetky z € D'(a,r) je funkcia f dand Laurentovim radom
f(z) =300 en(z—a)". Nech m € N\ {0}. Potom su nasledugiice tvrdenia ekvivalentné:
(1) Bod a je polom ridu m funkcie f.
(i1) Ewxistuje funkcia g holomorfnd na D(a,r) takd, Ze g(a) # 0 a pre vietky z € D'(a,r) je funkcia f
dand ako f(z) = g(2)/(z —a)™.

(#i7) Limita lim,_,, f(2)(z — a)™ existuje a je rovnd nejakému nenulovému komplexnému ¢islu.

Dékaz. Platnost tvrdenia (i) znamené, Ze c_p, # 0 a pre vSetky celé ¢isla n < —m je ¢, = 0. Pre vSetky
z € D'(a,r) teda

o0

f(Z) - Z Cn(z - a)nj

n=—m

kde koeficient ¢_,, je nenulovy. Lahko teda vidiet, ze na D'(a,r) je f(z) = g(z)/(z — a)™ pre funkciu
g danu pre vSetky z € D(a,r) ako

g(z) = Z Cn—m(z —a)".
n=0

Rad napravo zrejme konverguje pre vietky z € D(a,r); funkcia g je teda holomorfna na D(a, ), pri¢om
g(a) = c_pym # 0. Tvrdenie (i) teda implikuje tvrdenie (i7).
Ak naopak plati (ii) pre nejakt holomorfnt funkciu g splhajtcu g(a) # 0 a dant na D(a, ) radom

9(z) =) bulz—a)",
n=0
tak pre vSetky z € D'(a,r) je

fo) =2 S e,

n=-—m

pricom koeficient ¢_,, = by = g(a) pri (z —a)~™ je nenulovy. Tvrdenia (i) a (ii) su teda ekvivalentné.

Zostéava dokazat ekvivalenciu tvrdenia (iii) s predchadzajucimi dvoma tvrdeniami. Z platnosti (i)
a spojitosti holomorfnej funkcie g v bode a vyplyva

, . (z—a)"g(2)
— m _ =
lim £(:)(z - )" = tim -0 ),

kde g(a) # 0; tvrdenie (i7) teda implikuje (i77).

Nech naopak plati (iii) a C € C\ {0} je také, ze

lim f(2)(z —a)™ =C.

zZ—a

Pre vietky € > 0 potom existuje § > 0 také, ze f je holomorfna na D’(a,d) a pre vietky w € D'(a, )
je

|f(w)(w—a)™ - C| < g
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pre Tubovolné realne &islo 7 splhajtce 6/2 < n < 6 a vietky w € k(a,n)* teda aj

2M(|C| +¢€)

Fw)l < =2

Ak teda f(2) =02 cu(z —a)", pre n < —m dostéavame

n=—oo N

1 2m+n+1 2m+n+1
R (IC] +2) _ (IC] + )
2 5m+n+1 gm+n

len| =

1 f(w)
— A G N
2mi /,i(am) (w —a)ntl v

a kedze € > 0 a § > 0 moézu byt Tubovolne malé, nutne ¢, = 0. Naopak ale

e.¢] (e.¢]
—1i g\ — 1 _ \tm 5 _ \ntm |
C= ;1_1?% f(z)(z—a) ;I_If(ll n_zm cn(z —a) ;l_I)I}l (cm + _ZH cn(z —a) ) C—m,

z ¢oho c_,, = C # 0. Tvrdenie (i77) teda implikuje (7), ¢im je dokaz dokonceny. O
Mozeme teraz sformulovat relativne dolezité tvrdenie déavajuce do suvisu korene a poly.

Tvrdenie 9.4.2. Nech f je funkcia holomorfnd v bode a € C a m € N\ {0}. Potom md funkcia f
v bode a koreni radu m prdve vtedy, ked md funkcia 1/f v bode a pdl radu m.

Dékaz. Ak ma holomorfné funkcia f v bode a koren radu m, existuje r > 0 také, Ze pre vsetky
z € D(a,r) je

[e.9]

F2) =3 eulz— )",

n=m

kde ¢,, # 0. Funkcia f potom musi byt pre nejaké § spliajice 0 < § < r nenulova na prstencovom
okoli D'(a,d) bodu a; v opa¢nom pripade by totiz bod a bol hromadnym bodom mnoziny korefiov
funkcie f, z lemy 8.2.1 by sme dostali nulovost tejto funkcie na D(a,r) a z jednozna¢nosti koeficientov
Taylorovho rozvoja by vyplynulo ¢, = 0. Z toho vyplyva, Ze funkcia 1/f je holomorfna na D’(a,?).
Podl'a tvrdenia 8.1.3 navySe existuje funkcia g holomorfna na D(a,r) taka, ze pre z € D(a,r) je
f(z) = (z—a)"g(z) a g(a) # 0. Funkcia g pritom musi byt nenulova na D(a, ), pretoZze v opatnom
pripade by funkcia f nebola nenulova na D'(a,d). Pre vetky z € D'(a,d) teda
1 1 1 /9(2)

fz)  (z—a)mg(z)  (z—a)m

a kedze je 1/g holomorfna na D(a,d) al/g(a) # 0, je a polom radu m funkcie 1/ f podla tvrdenia 9.4.1.
Ak ma naopak funkcia 1/f v bode a pdl radu m, existuje r > 0 také, Ze pre vsetky z € D'(a,r) je

1 o0
eI YRR

n=-—m

kde d_,, # 0. Funkcia
9(2) = Zdn—m(z —a)"
n=0

je potom holomorfna na D(a,r), pricom g(a) = d_,, # 0 a pre vSetky z € D'(a,r) je

(z—a)"

9(z) = W
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Zo spojitosti tejto funkcie teda vyplyva existencia realneho ¢isla § takého, ze 0 < § < r a funkcia g je
na D(a,0) nenulova. Na D(a,d) je potom holomorfna aj funkcia 1/¢(z), pricom evidentne 1/g(a) # 0.

Ked7e navyge
1= (o) -

pre vietky 2z € D'(a, d) a funkcie na oboch stranéch tejto rovnosti st holomorfné v a, plati tato rovnost
podla vety o jednoznacnosti pre vietky z € D(a,d) a funkcia f ma podla tvrdenia 8.1.3 v bode a koren
radu m. O

9.5 Meromorfné funkcie

ZakonCime tuto kapitolu definiciou délezitej triedy meromorfnijch funkcii — funkcia je meromorfna
na T C C, ak je holomorfna na T s vynimkou nejakej mnoziny izolovanych bodov, ktoré si polmi
funkcie. Citatel bude mat prilezitost preskimat niektoré vlastnosti tychto funkcii v ramci cvicent.

Definicia 9.5.1. Nech S je otvorend mnozina a f: S — C funkcia. Hovorime, Ze funkcia f je mero-
morfnd v bode a € C, ak nastane jedna z nasledujtcich dvoch moZnosti:

(1) Bod a patri do S a funkcia f je holomorfna v a.
(73) Funkcia f mé v a pol.
Hovorime, Ze funkcia f je meromorfnd na mnozine T' C C, ak je meromorfné v kazdom bode a € T'.

Priklad 9.5.2. Kazda racionélna funkcia f je (po odstraneni pripadnych odstranitelnych singularit)
meromorfna na C. Ak totiz

pre nejaké polynomické funkcie p,q: C — C, kde funkcia ¢ nie je konStantne nulovd a mnoZina jej
koretiov je dana ako Z(q) = {aq, ..., ay}, je funkcia f evidentne holomorfna na C\ Z(q). Ak je navyse
pre k =1,...,n koreii o, funkcie g radu my € N\ {0}, existuje polynomicka funkcia §: C — C taka,
ze §(ag) # 0 a pre vSetky z € C je q(z) = (z — ag)™¢(z). Ak sucasne p(ay) # 0, existuje r > 0 také,
ze pre vietky z € D'(ag,r) je

o) )
1= 00 = G awmie)

pricom funkcia p(z)/q(z) je holomorfna na D(ay,r) a p(ag)/d(ar) # 0. V dosledku toho je podla
tvrdenia 9.4.1 bod aj poélom funkcie f radu my. Ak naopak p(ay) = 0, je oy korefiom funkcie p
radu mj € N\ {0}, v dosledku ¢oho /existuje polynomicka funkcia p: C — C taka, ze p(ay) # 0
a pre vietky z € C je p(z) = (z — ay)™p(2). Existuje teda r > 0 také, ze pre vSetky z € D'(ag,r) je

Cp(2) (- ap)mhiz) —c
f(Z) q(z) (Z IR Oék)mkqA

kde funkcia p(z)/4(z) je holomorfna na D(oy,r) a plag)/d(ax) # 0. Ak teda mj, > my, je bod ay,
odstranitelnou singularitou funkcie f; ak m) < my, ide o pol funkcie f radu my — m}. Funkcia f je
teda po odstraneni pripadnych odstranitelnych singularit naozaj meromorfna na C.
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Cvicenia

1.

10.

Néajdite Laurentove rozvoje nasledujtcich funkcii f1, fa, f3, fa: C\ {0} — C v bode a = 0:

a) fi(z) = (sinz)/z;
b) fa(z) = (cos 2)/2;
&) fo(2) = (sin 2)/5;
d) fa(z) = cos(1/2?).

V kazdom z uvedenych pripadov je bod a = 0 izolovanou singularitou danej funkcie — zistite
pre jednotlivé funkcie druh tejto izolovanej singularity.

Najdite Laurentov rozvoj funkcie

v bode a = 0 konvergentny na medzikruzi:
a) Ay = D/(Oa 1);
b) Ao={z€C|1<|z| <2};
c) A3 ={z € C |2 < |z| <r} pre Tubovolné r > 2.

Nech f je holomorfna na D’(a,r) pre nejaké a € C a r > 0. Dokézte, Ze funkcia f je holomorfna
v bode a préave vtedy, ked lim,_,, f(2) = f(a).

. Nech f je analytickd v bode 0. Pozorujte, ze funkcia 1/f je analytickd v bode 0 prave vtedy,

ked f(0) # 0. Nech navySe pre nejaké r > 0 a vietky z € D(a,r) je f(z) = Y o qanz™. Najdite
Maclaurinov rad funkcie 1/f (vyjadrite jeho koeficienty pomocou koeficientov ag, ai,as . ..).

Funkcia kosekans je pre vsetky z € C\ {k7 | k € Z} dana predpisom
1

sin 2z’

cosec 2 1=

2

Najdite prvych niekolko ¢lenov Laurentovych radov funkcii cosec z a cosec®z v bode a = 0.

Vysvetlite, ako by ste opisali n-té ¢leny tychto radov.

Nech a € C je pol funkcie f. Dokazte, ze v takom pripade lim,_,, f(2) = 0o — t.j. | f(2)| pre z — a
rastie nad vSetky medze.

Dokézte Casoratiho- Weierstrassovu vetu: ak a € C je podstatnéd izolované singularita funkcie
f holomorfnej na nejakom prstencovom okoli D’(a,r) bodu a, tak pre kazdé ¢ € C existuje
postupnost bodov (a,)52 z D'(a,r) taka, ze lim, o0 ay, = @ a lim,, o0 f(an) = .

Charakterizujte funkcie meromorfné na ' C C pomocou Laurentovych rozvojov v bodoch a € T'.

Nech T C C je oblast a f,g st funkcie meromorfné na T. Dokézte, Ze v takom pripade su
po odstraneni pripadnych odstranitelnych singularit na 7" meromorfné aj funkcie f +g a f - g.
Charakterizujte Laurentove rozvoje funkcii f +¢g a f- g v bode a € T pomocou Laurentovych
rozvojov funkcii f a g.

Nech T' C C je oblast a f je funkcia meromorfna na 7. DokaZzte, Zze v takom pripade je po od-
straneni pripadnych odstranitelnych singularit na 7" meromorfné aj funkcia 1/f. Charakterizujte
Laurentov rozvoj funkcie 1/f v bode a € T' pomocou Laurentovho rozvoja funkcie f.
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11. Nech T C C je oblast.

a) Dokazte, ze mnozina H(T) funkcii holomorfnych na T tvori spolu s beZnymi operaciami
sCitania a nésobenia funkcii obor integrity.

b) Dokéazte, ze mnozina M(T') funkcii meromorfnych na 7' tvori spolu s operaciami s¢itania
a nasobenia funkcii, nasledovanych odstranenim pripadnych odstranitelnych singularit, pole.

12. Nech f je funkcia meromorfna na C, ktora je na prstencovom okoli D’(0,1) dan& Laurentovym
rozvojom s konefnym poc¢tom ¢lenov: pre vietky z € D'(0,1) je teda

M
f(Z) = Z anzna

kde m,M € Z apre n=m,...,M je a, € C. Najdite vietky mozné pocty polov funkcie f v C.

Nech S C C je neohranicena oblast. Potom hovorime, Ze funkcia f: S — C ma v nekone¢ne izolo-
vant singularitu nejakého druhu, ak mé izolovant singularitu tohto druhu v bode 0 funkcia f: T — C
dané pre vietky z € T = {z € C\ {0} | 1/z € S} ako f(z) := f(1/z). Hovorime tiez, Ze funkcia f je
holomorfnd na C, ak ide o cela funkciu s odstranitelnou singularitou v nekoneéne a meromorfnd na C,
ak ide o funkciu meromorfnta na C, ktord ma v nekonecne odstranitelnt singularitu alebo pol.

13. Najdite druh izolovanej singularity v nekonec¢ne pre funkciu:

14. Dokazte, ze:

a) Kazda funkcia holomorfna na C je konstantna.

b) Kazda funkcia meromorfna na C je racionélna.
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Cauchyho integralny vzorec 11
a Cauchyho integralna veta 11

Nage dalgie tivahy zacneme definiciou indexu bodu vzhladom ku krivke, pomocou ktorého bude mozné
exaktne merat ,,pocet ovinuti“ uzavretej po ¢astiach hladkej krivky okolo daného bodu,! ako aj poriadne
— t. j. bez odkazu na matematicky pofidérne pojmy, akymi st smer hodinovych rudic¢iek alebo lava
a pravé strana — definovat orientéaciu jednoduchej uzavretej krivky.

S pouzitim tohto pojmu dalej dokdZeme zatial najvSeobecnejSiu verziu Cauchyho integralneho
vzorca, ktord navyse nebude predpokladat platnost Jordanovej ani Jordanovej-Schoenfliesovej vety —
namiesto pokusov o topologické uchopenie pojmov ako , krivka obkolesujtca dany bod“ totiz priamo
v jej formulacii vyuZijeme pojem indexu, ktorého nenulovost bude zndmkou toho, Ze krivka dany bod
aspon raz ovinie. Nakoniec takto vylepSseny Cauchyho integralny vzorec pouzijeme na ddkaz vSeobec-
nych variantov Cauchyho integralnej vety a vety o deformacii. Vo formulacii tychto viet nebude zmienka
o ziadnej netrivialnej topologickej vlastnosti, akou je jednoducha suvislost — vlastnost ,,neobkolesenia‘
ziadneho bodu mimo oblasti, na ktorej je funkcia holomorfné, vyjadrime len prostrednictvom relativne
elementarneho pojmu indexu. Text kapitoly ¢iasto¢ne vychadza z |9, 11, §|.

10.1 Index bodu vzhl'adom ku krivke

V predchadzajucich kapitolach sme uz niekolkokrat narazili na integral

1
/ dz.
yZ—a

Ak je napriklad v kladne orientovana kruznica so stredom v a, je tento integral rovny 27mi. Rovnaka
vlastnost plati aj pre lubovolna uzavretu po ¢astiach hladku krivku 4 homotopicka v C\ {a} s takouto
kruznicou alebo — ak siahneme po Jordanovej a Jordanovej-Schoenfliesovej vete — pre Tubovolnu kladne
orientovani jednoduchti uzavreti po ¢astiach hladka krivku v s a € I(y). Nech je v dana ktorymkol' vek
z tychto sposobov, bude mat integral pozdlz v+~ hodnotu 47, integral pozdlz v+~ +~ bude 67i, atd.
Naopak integral pozdlz —y bude —27i a podobne ako vyssie vieme najst hodnoty integralov aj pozdlz
spojeni niekol'kych takychto kriviek.

Bez pouzitia Jordanovej vety nie je tiplne jasné, ¢o si predstavit pod ,,po¢tom ovinuti“ krivky
okolo a € C. Tuto veli¢inu v8ak mozeme definovat na zaklade vyssie uvedenych pozorovani — dostavame
sa tak k délezitému pojmu indezu bodu vzhladom ku krivke.

Definicia 10.1.1. Nech « je uzavreta po ¢astiach hladka krivka a a € C\~v*. Indezom bodu a vzhludom

ku krivke v nazveme hodnotu
1 1
Ind,(a) = / dz.
2mi )y z—a

1 ey . “. . . . .
V angli¢tine sa preto pre index pouZiva aj pomenovanie winding number.
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Priklad 10.1.2. Ind,{(071)(1/2) = ]., Ind,ﬁ(071)(1/2) =-—1a Indﬁ(071)+n(071)(1/2) = 2.

Pojem indexu méZeme vyuZit aj na definiciu orientécie jednoduchej uzavretej krivky — stac¢i si v§im-
nut, Ze pre kladne orientované kruznice a s nimi homotopické krivky je index Tubovolného bodu v ich
vnitri vzhladom k nim rovny jednej. S pouZitim Jordanovej vety teda mozno orientaciu jednoduchej
uzavretej po Castiach hladkej krivky + definovat napriklad takto: v je kladne orientovand, ak pre vsetky
a € I(v) je Ind,(a) = 1 a zdporne orientovand, ak pre vietky a € I(v) je Ind,(a) = —1.

My v8ak uprednostnime nasledujticu ekvivalentni definiciu orientacie, ktora — hoci je o nieco tazsie
Citatelna, nez ta opisana vyssie — neobsahuje implicitnt odvolavku na Jordanovu vetu.

Definicia 10.1.3. Nech 7 je jednoduché uzavreta po castiach hladka krivka. Hovorime, Ze v je kladne
orientovand, ak pre vietky a € C\ v* je Ind,(a) > 0 a zdporne orientovand, ak pre vietky a € C\ v*
je Indy(a) <0.

10.2 Integralna reprezentacia logaritmov

Za ucelom sktimania d'alsich vlastnosti indexu budeme potrebovat vetu o integralnej reprezentacii ho-
lomorfnych vetiev prirodzeného logaritmu. Z oddielu 3.6 vieme, Ze holomorfné vetvy logaritmu na ob-
lasti S — t. j. holomorfné funkcie f: S — C také, ze pre vietky z € S je f(z) € [In z] — mo6zeme definovat
kedykolvek S = C\ R, kde R je polpriamka zac¢inajica v bode 0. Z toho vyplyva, Ze holomorfné vetvy
logaritmu moéZeme definovat aj na Tubovolnej konvexnej oblasti neobsahujtcej bod 0.

Nasledujiicu vetu sformulujeme pre T'ubovolnu oblast S, na ktorej mozno definovat holomorfnu
vetvu logaritmu — méze teda ist napriklad o oblast C\ (—oo, 0] — a $pecialne pre Tubovolni konvexnu
oblast neobsahujicu bod 0.

Veta 10.2.1. Nech S C C je lubovolnd oblast, na ktorej je mozné definovat holomorfni vetvu prirodze-
ného logaritmu — alebo Specidlne lubovolnd konvexnd oblast neobsahujica bod 0. Nech Ing: S — C
je holomorfnd vetva prirodzeného logaritmu na S, t. j. Ing je holomorfnd a pre vsetky z € S je
Ing(z) € [Inz]. Pre lubovolni po castiach hladki krivku v: [o, 5] — C s v* C S, v(a) = a ay(B) = 2
potom

/ %dw =Ing(z) — Ing(a).

Ak teda navyse 1 € S, y(a) =1 alng(1l) =0, tak

1
lns(z):/dw.
y W

Dékaz. Holomorfnu vetvu logaritmu mozno definovat len pre oblasti S také, Ze 0 € S; znenie vety teda
déava zmysel. Zjavne sta¢i dokazat iba jej prvu ¢ast. V oddiele 3.6 sme ale dokazali, Ze pre vSetky k € Z
aw € C\(—o00,0] jeIn)(w) = 1/w, pricom rovnaky argument evidentne moZno pouzit aj pre uvazovant
holomorfnu vetvu Ing: pre vietky w € S je

1
I’ = —
ng(w) w

Dokazované tvrdenie teda vyplyva priamo zo zékladnej vety o krivkovych integraloch. O
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10.3 Index a spojity vyber argumentu

Hoci je vyznam indexu intuitivne zrejmy, ozajstné odévodnenie pouzitia tohto konceptu na meranie
,poctu ovinuti“ uzavretej krivky okolo bodu poskytuje az nasledujica veta, ktord ho déva do stvisu
so spojitym viberom argumentu pozdlz uzavretej krivky +.

Veta 10.3.1. Nech v: [, 8] — C je uzavretd po castiach hladkd krivka a a € C\ ~* je bod. Potom
existuje spojitd funkcia n: (o, B] — R takd, Ze pre vietky t € [, B8] je n(t) € Jarg(y(t) — a)] a

Ind (@) = 5 (n(8) ()
i

Doékaz. Nech S je Tubovolna oblast taka, ze v* C S a a € S. Nie je tazké dokéazat, Ze existuje € > 0,

n€Naredlnecislaa=ty<...<t,=ptaké, zev* C DyU...UD,_1 C S, kdepre k=0,...,n—1

je Dy, == D(v(ty),€) a krivka vy, := 7 | [ty, tps1] splita v C Dy,.2

Pre k = 0,...,n — 1 dalej ozna¢me ako In¥l Tubovolni vetvu prirodzeného logaritmu takd, Ze

In*(z — a) je holomorfna na Dy,. Pre z € Dy, potom

¥ (z — a) = In|z — a| + i (z — a),

kde A*] je funkcia taka, ze 6%!(z — a) je spojita na Dy, a pre vietky z € Dy, je 6F1(z —a) € [arg(z —a)].

Pre k = 0,...,n — 1 definujme funkciu ng: [tg,tx+1] — R pre v8etky ¢ € [tg,tx+1] predpisom
ne(t) = 0¥ (y(t) — a). Kedze s funkcie 8% a v spojité, je spojita aj funkeia 1. Funkciu n: [, 8] — R
teraz mozeme definovat pre k =0,...,n — 1 a vietky ¢ € [t, tg11] ako

k—1
n(t) =ne() = > (n;(t;) —nj-1(t;));
j=0

je zrejmé, Ze takto ziskame funkciu spojita na [a, §]. Od hodnoty 1 (t) navyse vidy odpocitavame
nejaky celo¢iselny nasobok ¢isla 27; pre vsetky t € [a, 8] teda n(t) € [arg(y(t) — a)]. Z vety 10.2.1
nakoniec dostavame

1 n—1
1 1 1
I =5 = — 3 (" —a) — M o) =
ndy(a) = QWz/yz—a o kZ/ o =5 kzo(n (k1) — a) — I (y(tk) a))
1 n—1 1 n—1
k=0 k=0
1 n—1 1
= or 2 (M(tet1) —n(tk)) = o (n(B) —n(a)),
¢im je dokaz vety dokonceny. 0

Désledok 10.3.2. Nech «y: [a, 8] — C je uzavretd po castiach hladkd krivka a a € C\~* je bod. Potom
je Ind.(a) celé cislo.

Dokaz. 7 predchadzajucej vety vyplyva existencia spojitej funkcie n: [, 5] — R takej, Ze pre vSetky

t € a,8] je n(t) € [arg(v(t) — )] a Tnd,() = (n(B) — n(a)) /2. Kede ale 4(a) = 7(8), nutne
n(B) — n(e) = 2k7 pre nejaké k € Z, z ¢oho uz priamo vyplyva celo¢iselnost hodnoty Ind,(a). O

2Ide o napli cvicenia 1 na konci tejto kapitoly.
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10.4 Zamena poradia integrovania

Nez prejdeme k hlavnym vysledkom tejto kapitoly — teda k vSeobecnému Cauchyho integréalnemu vzorcu
a Cauchyho integralnej vete — dokazeme tri na seba nadvézujice tvrdenia o integraloch, z ktorych
posledné sa nam pri dokaze vSeobecného Cauchyho integralneho vzorca zide. Dokazy tvrdenia 10.4.1
a tvrdenia 10.4.2 st prevzaté z [3|, kde sa o problematike zameny integrélov v realnej analyze moZno
docitat viac.

Nech X,T C R. Pripomenme si, Ze funkcia f: X x T' — R je spojitd na X x T, ak pre kazdé
(z,t) € X x T a vietky € > 0 existuje & > 0 také, ze pre vietky (2/,t') € X x T s |z —2/| < §
alt—1t|<djelf(x,t)— f(a!,t')| < e. Z toho Specialne vyplyva, Ze pre kazdé ¢t € T je spojita funkcia
f(-,t) premennej = a sucasne je pre kazdé x € X spojita funkcia f(z,-) premennej t.

Tvrdenie 10.4.1. Nech a < b si redlne ¢isla a f: [a,b] — R je spojitd funkcia. Potom ezistuje ¢ € [a, b]
také, Ze

[ rwar= [ 4= g0

Dékaz. Pre a = b je tvrdenie triviadlne. Predpokladajme teda, ze a < b. Nech m = inf{f(x) | = € [a, ]}
a M =sup{f(z) | z € [a,b]}. Potom

m(b—a):/abmdxg/abf(a:)d:zg/:Md:c:M(b—a),

7 ¢oho
1

b—a

b
m < / f(z)dx < M.
a
Funkcia f spojitd na uzavretom intervale [a,b] musi na [a,b] aspon raz nadobudnit hodnotu m, ako
aj hodnotu M. Preto na [a, b] aspon raz nadobuda kazda hodnotu z intervalu [m, M]; $pecidlne teda
existuje aj ¢ € [a, b] take, ze

b
O =50 [ S,

b
0= = [ f@)d
a
Tym je lema dokézané. O
Nasledujtce tvrdenie je Specidlnym pripadom takzvanej Fubiniho vety z tebrie miery a integralu.

Tvrdenie 10.4.2. Nech a < b a ¢ < d si redlne ¢isla a f: [a,b] X [c,d] — R je spojitd na [a,b] X [c,d].

Potom
/Cd/abf(x,t)dxdt:/ab/cdf(:z,t)dtdx.

Dékaz. Pre kazdé x € [a,b] je funkcia f(z,-) spojitd na uzavretom intervale [c,d], a teda musi byt
rovnomerne spojité. Pre vSetky € > 0 teda existuje § > 0 také, Ze pre vSetky o, 8 € [¢,d] s |a — ] < §
je |f(z,a) — f(x, )] < e. Funkcia

b
F(t)—/ f(z,t)dx

je teda (rovnomerne) spojita na [c, d], lebo pre vietky «, 5 € [¢,d] s o — | < J je

[F(a) = F(B)| = <e(b—a).

b
/ (f(x,0) — f(z.5)) da
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Podobne mozno dokazat, Ze funkcia

:/cdf(x,t)dt

je spojita na [a, b]. Vietky integraly zo znenia lemy teda existuju.

Prakticky rovnako ako pre funkcie jednej realnej premennej definované na uzavretom intervale —
pripadne ako pre homotopie v tvrdeni 5.3.2 — by sme navySe dokézali, Ze aj samotna funkcia f, spojita
na kompaktnej mnozine [a,b] X [c,d], musi byt rovnomerne spojita: pre vietky £ > 0 existuje § > 0
také, ze pre vietky (z,t), (2/,t') € [a,b] X [e,d] s |z — 2| < d a |t —1t| < dje |f(x,t) — f(a/,¥)] <e.
Pre dané ¢ > 0 zvolme n € N tak, aby platili nerovnosti

b—a d—c

<9 a
n n

<9

apre j=0,...,n polozme a; =a+ (b—a)j/n ac; =c+ (d—c)j/n. Potom

//fxtdxdt_ZZ/ / f(,t) dz dt. (10.1)

7=1 k=1

Prek=1,...,naj=1,...,n teraz dvojnasobnym aplikovanim tvrdenia 10.4.1 zistujeme, Ze existuju
Cisla xy, € [ag—1,ar] a t; € [cj_1,c;] také, Ze

/ / Fat) dadt = f(a ;) (ar — ap1)(e; —cj1).

Z (10.1) potom
//fl‘t )dzdt = Zwak,tg ar — ag-1)(¢j — ¢j-1)-
7=1 k=1

Analogickou argumenticiou mozno dokézat, ze pre k = 1,...,n a j = 1,...,n existuji disla
! ! 2 v
), € lag—1,ax] a t) € [cj_1,¢)] také, Ze

/ / flz,t)dtdz = ZZf Ty, t5)(ar — ap—1)(cj — ¢j-1).
k=1 j=1

Vdaka vol'be ¢&isla n potom

d rb b pd
f(m,t)dxdt—//f(x,t)dtda:

n n

D (Fl@nsty) = f(@hth)) (ar — ag-1)(cj — ¢j1)| <
7=1 k=1
<D elar — ap—1)(cj — ¢j—1) = (b —a)(d — o).
Jj=1k=1

KedZe moze byt € > 0 [ubovolne malé, nutne

/Cd/abf(x,t)d:zdt:/ab/cdf(x,t)dtd:n,

¢o bolo treba dokézat. O
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Tvrdenie 10.4.3. Nech S,T C C si otvorené mnoZiny, f: S x T — C je spojitd na S X T a y1,7v2 s4
po castiach hladké krivky také, Ze v7 € .S a v5 CT. Potom

/yz[nf(Z,w)dzdw:[Yl ’ygf(sz)dwdz.

Dokaz. Vdaka linearite krivkovych integralov staci uvaZzovat pripad, ked st krivky 1 a ~9 hladke.
Vdaka vete o reparametrizacii dalej mozno bez ujmy na vSeobecnosti predpokladat, Ze su tieto krivky
dané zobrazeniami 1 : [0,1] — S a 2: [0,1] — T'. Z definicie krivkového integralu potom

1 1
Aqﬁ@mewaAAfwmmmmwww%@wz
1 1
iAAfM@wNMWMWMMt

Kedze st krivky 71 a 2 hladké, je funkcia g(z,t) = f(y1(x),v2(t))vi(z)74(t) spojita na [0, 1] x [0, 1].
Tvrdenie 10.4.2 mozno priamodiaro rozsirit aj na pripad spojitych komplexnych funkcii dvoch redlnych
premennych; preto

[,2 Ll fzw)dzdw = /01 /01 f(n (@), v2(0)71 (@)75(t) de dt =

1 1
—Aﬂfm@mwmmmmwM—
= / f(z,w)dwdz,

¢o bolo treba dokézat. O

10.5 VsSeobecny Cauchyho integralny vzorec

Postupne teraz vyuzijeme pojem indexu bodu vzhladom ku krivke na sformulovanie a dokaz vSeobecnej
verzie Cauchyho integralneho vzorca. Hoci samotny dokaz bude o nieco zdlhavejsi, nez tomu bolo
pri predchadzajucich variantoch Cauchyho integralneho vzorca, z hladiska pouzitych metod podjde
o pomerne elementarny vysledok. Jeho formulacia ani dékaz nebudi zévisiet od nedokazanych tvrdeni
ako Jordanova a Jordanova-Schoenfliesova veta a samotné znenie vety sa zaobide aj bez relativne
pokrocilych topologickych pojmov, akymi stt homotopie a jednoducho sivislé oblasti.

Varianty Cauchyho integralneho vzorca, s ktorymi sme sa stretli doposial, vyjadrovali hodnotu
f(a) holomorfnej funkcie f: S — C na oblasti S v bode a € S pomocou integralu pozdiz kladne
orientovanej jednoduchej uzavretej krivky ~ obkolesujticej bod a, avSak neobkolesujicej ziaden bod
b ¢ S - pripadne pozdlz nejakej uzavretej krivky, ktora je v S\ {a} s takouto krivkou homotopicka.
Vo v8eobecnom Cauchyho integralnom vzorci uz uzavreta krivka + obkolesujica bod a nebude nutne
jednoduché a kladne orientovand — bod a teda napriklad méze ovinut aj viackrat, a to pripadne aj
,v smere hodinovych ruciciek”. To sa v zneni vety prejavi tym, Ze namiesto samotnej hodnoty f(a)
budeme integralom vyjadrovat su¢in

Indy(a)f(a).
Podmienku neobkolesenia ziadneho bodu b € S uzavretou krivkou « napokon vyjadrime poziadavkou
Ind, (b) = 0 pre vietky b € C\ S.
V skutoc¢nosti ale bude takyto Cauchyho integralny vzorec az nasim dosledkom 10.5.4. V samotnej

vete 10.5.3 budeme pracovat s eSte dalsim drobnym zovSeobecnenim uvedeného: namiesto pre uzavreté
krivky ju totiz sformulujeme pre tzv. cykly.
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Retazou nazveme lubovolni koneénu postupnost I' = (y1,...,7,), kde n € N a ~1,...,9, st
po castiach hladké krivky. PiSeme potom I' = v + ...+ v, a ™ =7 U...U~;. Pre funkciu f spojitu
na oblasti §'s I'* C S definujeme

/f(z) dz
r

Integrujeme teda ,,pozdlz nickolkych kriviek naraz“. Uvedena notacia nie je tiplne jednoznaéna, pretoze
+ moze oznacovat ako spojenie kriviek, tak aj “formélne +” z definicie retaze. Nie je to vSak na Skodu,
pretoze v situaciach, ked tato nejednoznacnost prichddza do tvahy, st hodnoty integralov pri obidvoch
interpretéaciach tie isté.

:Zn:[yk () dz.

k=1

Na retaziach mozno zaviest podobné operacie ako na krivkach: pre retaze I' = v + ... + 7,
af‘ =41 +...+AmpiSeme T = (=) + ...+ (=) al+T =y 4+ ... 47+ %1 + ... + Fm.
Dizku L(T") refaze I' = v1 + ... + 5, definujeme ako L(I') = L(vy1) + ... 4+ L(7n).

Cyklom nazveme retaz I' = 1 + ... + 7, taka, ze vSetky po castiach hladké krivky 1, ..., 7, st
uzavreté. Na cykly mozno prirodzenym sposobom rozsirit aj pojem indexu: pre vetky a € C\ I'™*

kladieme
1 1

2mi r:Z—a

Indp(a) := dz.

Pre cyklus I' = v; + ... + 7y, pritom

n

1 1
Ind — —
ndp(a) = 27TZ/1“Z—CL Z2m

k=1

=3 Tndy, (@)
k=1

Vgeobecny Cauchyho integralny vzorec sformulovany v reci uzavretych kriviek — t. j. désledok 10.5.4
nizsie — dostaneme z vety 10.5.3 obmedzenim sa na cykly pozostavajice z jedinej uzavretej krivky.
KedZe naopak integral pozdlz cyklu dostaneme st¢tom niekolkych integralov pozdlz uzavretych kriviek,
mohlo by sa zovSeobecnenie z uzavretych kriviek na cykly zdat na prvy pohlad pomerne lacnym.
V skuto¢nosti ale veta 10.5.83 z ddsledku 10.5.4 nijak bezprostredne vyplijvat nebude: ak totiz cyklus
I' =71 +...+ 7, spliia podmienku Indr(b) = 0 pre vietky b € C\ S, nemusi byt obdobna podmienka
splnend aj pre uzavreté krivky ~i, ..., v,, ktoré v skuto¢nosti bod b mimo oblasti S obkolesovat mézu.
Napriklad moéze byt I' = v + (=), kde Ind, (b) # 0; potom

Indr(b) = Ind,(b) + Ind_(b) = Ind,(b) — Ind,(b) =0

Veta 10.5.3 tak bude okrem vSetkych situacii explicitne alebo implicitne zahrnutych v désledku 10.5.4
zahfhat aj niektoré fundamentalne odligné situacie — a prave vdaka nim je zovSeobecnenie na cykly
opodstatnené. Jednou z aplikacii tohto pristupu bude aj variant vety o deformécii v zneni vety 10.7.1,
ktory by sme iba s pouzitim dosledku 10.5.4 tak Tahko nedokazali.

Nez ale vyslovime samotni vetu 10.5.3 o vSeobecnej verzii Cauchyho integralneho vzorca, dokazme
dve lemy, ktoré budeme pri jej dokaze potrebovat.

Lema 10.5.1. Nech S C C je otvorend mnozina a f: S — C je funkcia holomorfnd na S. Funkcia
g: S x 8 —C, dand pre vsetky z,w € S predpisom

fW)=1E) e w e
9(z,w) = { f'(z) ak w =z,

je potom spojitd na S x S: pre vSetky (z,w) € S xS ae > 0 existuje 6 > 0 také, Ze pre vietky
(u,v) € S x S spliajiice u € D(z,6) av € D(w,d) je |g(u,v) — g(z,w)| < e.
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Dékaz. Spojitost funkcie g je zrejma vo v8etkych bodoch (z,w) € S x S takych, Ze z # w — zostava
dokéazat jej spojitost v bodoch (a,a) pre a € S. Nech teda a € S je pevné a € > 0. Zo spojitosti funkcie
f’ v bode a potom pre nejaké § > 0 a vietky ¢ € D(a,d) NS dostavame |f/'({) — f'(a)| < €. Pre vSetky
(u,v) € S x S také, ze u,v € D(a,d) tak pre u = v = b mame

l9(u,v) = g(a,a)| = |g(b,0) — g(a,a)] = [f'(b) = f'(a)] <&

ak navySe bez ujmy na vSeobecnosti D(a,d) C S a u,v € D(a,d) st rozne, s pouzitim vety o odhade
zistujeme, Ze

S—
|
K,}
—~
IS
S—
S—
|
—~
(o4
|
IS
S—
-
—
s}
~
I

v —ul - |g(u,v) — g(a,a)] = [(v —u) (9(u, v) — g(a,a))| = [(f(v

f1(¢)d¢ - f'(a)d¢] =

[u,v] [u,v]

< |v—ule.

V oboch pripadoch teda |g(u,v) — g(a,a)| < € a spojitost funkcie ¢ je dokézana. O

Lema 10.5.2. Nech T' je cyklus. Na kaZdej oblasti S C C\ I'* je potom funkcia Indr konstantnd.
Navyse existuje M > 0 také, Ze na oblasti C \ D(0, M) je funkcia Indr konstantne nulovd.

Doékaz. Funkcia Indrp(z) premennej z je podla doésledku 10.3.2 celo¢iselna. Dokazeme, Ze je tato funkcia
sti¢asne spojita na C\ I'™*.

Nech z € C\ T'* je dané pevne. Zvolme oblast T' C C tak, aby bolo I'* C T a z ¢ T. Nech r > 0 je
také, Ze pre vietky w € T je |w — z| > 2r.

Uvazujme teraz [ubovolni postupnost (z,)52, bodov z C\ I'* taku, ze lim, .« 2, = 2. Postupnost
funkeii (1/(w — 2zp))52, premennej w potom pre n — oo konverguje k funkeii 1/(w — z) rovnomerne
na T — kedZe totiz z, — z pre n — 0o, pre vSetky € > 0 existuje ng € N také, ze pre vsetky n > ng je
|zn, — 2| < € a stcasne |z, — z| < r. Pre vietky w € T potom ale tiez |w — z,| > r, z ¢oho

€
272"

‘ 1 1

’ Zn — 2

(w— zp)(w — 2)

wW—2, W—2

KedZe je r > 0 fixn4 konstanta, je tymto rovhomerna konvergencia dokazana. Vdaka vete 7.1.8 teda

1 1 1 1 1 1
lim Indr(z,) = lim / dw=— [ lim dw = — dw = Indr(z)
n—00 n—oo 27 Jp w — 2z 21 Jpn—oo w — 2, 2 Jpw — 2

a funkcia Indr je spojita v bode z vdaka vete 2.2.13 a tvrdeniu 2.2.6. Kedze je z € C \ I'* Tubovolné,
je tato celociselna funkcia spojita na C\I'™ — ako taka teda musi byt na lubovolnej oblasti konstantné.

Z kompaktnosti mnoziny I'* navyse vyplyva existencia konsStanty M > 0 takej, Ze pre vietky w € I'*
je |lw| < M. Na oblasti C\ D(0, M) je funkcia Indr konstantné, pricom pre vietky z € C\ D(0, M)
stucasne z vety o odhade dostavame

|Indp(2)| =

1 1 1 1
/ dw| < —L(T)——.
27t Jrw — z 27 |z| — M

KedZe moze byt |z| Tubovolne velké, pre vietky z € C\ D(0, M) nutne Indr(z) = 0. O
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Mézeme teraz vyslovit a dokazat samotny v8eobecny variant Cauchyho integralneho vzorca.
Veta 10.5.3 (Cauchyho integralny vzorec, formulacia IV). Nech S C C je otvorend mnozina, a € S
je bod, f: S — C je holomorfnd na S a T' s T* C S\ {a} je cyklus taky, Ze pre vetky b € C\ S je
Indr(b) = 0. Potom

Indr(a)f(a) = 217”/1“ f(wzl dw.

w —
Dékaz. Funkcia g: S x S — C, dana pre v8etky z,w € S predpisom
f(w)—f(2)
oz, w) = s akw;«_éz,
f(2) ak w = z,

je spojita podla lemy 10.5.1. Mozeme teda definovat funkciu h: S — C pre vSetky z € S predpisom

1
h(z) = — / 9(z,w) dw.

21 T
Dokdzeme, Ze pre a € S\ T je

h(a) = 0. (10.2)
Potom uZz bude Cauchyho integralny vzorec dokézany, lebo

1 [ f(w) 1 f(a) 1 / f(a)
270 Jpw —a YT om F<g(a,w)+w_a v (a)+2m’ rw-—a w = Indp(a)f(a)

K rovnosti (10.2) pritom prideme tak, Ze funkciu h rozsirime na celi funkciu H: C — C, o ktorej
dokazeme, Ze je konStantne nulova.

Ako prvy krok k tomuto cielu dokdZeme, Ze funkcia h je spojitd na S. Nech z € S je pevné aT C S
je ohrani¢ena otvorena mnozina taka, ze z € T, I'* C T a T C S. Funkcia g spojitd na S x S je potom
na kompaktnej mnozine T x T nutne rovnomerne spojita: pre vietky € > 0 existuje § > 0 také, Ze
pre vietky z1,wr, 20, we € T spliajice |21 — 22| < & a w1 — wa| < & je |g(z1,w1) — g(z9,w2)| < .3
Uvazujme ale Tubovolnii postupnost (z,,)°, prvkov T' takd, Ze z, — z pre n — oco. Pre vietky § > 0
potom existuje ng € N takeé, Ze pre vetky n > ng je |z, —z| < 0. Z obidvoch zisteni dohromady vyplyva,
7e pre vietky € > 0 existuje ng € N také, Ze pre vietky n > ng a vietky w € T je |g(zn, w)—g(z,w)| < .
Postupnost funkcif (g(zy, )22, teda na T konverguje rovnomerne k funkcii g(z, -). Preto

1 1 1
lim h(z,) = lim /g(zn,w) dw = lim g(zp,,w)dw = g9(z,w)dw = h(z)
r

n—o0 n—o0 274 2mt Jpn—oo 2mi Jr

a funkcia h je v bode z spojita vdaka vete 2.2.13 a tvrdeniu 2.2.6. KedZe je z € S Tubovolné, funkcia h
je spojita na S.

Ako dalsi krok dokdzZeme, Ze funkcia h je holomorfnd na S. Funkcia g(z,w) premennej z je pre fixné
w € S holomorfnd na S — pre z # w je to ofividné a v bode z = w si vdaka doésledku 9.3.3
a tvrdeniu 2.2.6 sta¢i uvedomit, Ze z holomorfnosti funkcie f vyplyva lim,_,,, g(z,w) = g(w,w). Nech
teraz ya je Tubovolny trojuholnik taky, ze yA C S. Zo spojitosti funkcie g a tvrdenia 10.4.3 potom

1 1
h(z dz:/ ,/g(z,w dwdz:,// 9(z,w)dzdw = 0,
/m ) ya 20 Jp ) 2mi Jr Jya (

/ g(z,w)dz =0
YA

pre vietky w € S vdaka holomorfnosti funkcie g(-,w) a Cauchyho integralnej vete pre trojuholnik.
Kedze je funkcia h spojitd na S a trojuholnik yA s obrazom v S je Tubovolny, z Morerovej vety
vyplyva, ze aj funkcia h je holomorfna na S.

pretoze

3U% po niekolky raz tu narazame na Specialny pripad tvrdenia o rovnomernej spojitosti kazdého spojitého zobrazenia
na kompaktnom metrickom priestore. Citatel, ktory s teériou metrickych priestorov nie je oboznameny, ho istotne I'ahko
dokéaze podobnym spésobom ako pre spojité realne funkcie definované na uzavretom intervale, resp. ako pre homotopie
v tvrdeni 5.3.2.
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Nech dalej S = {z € C\ '™ | Indp(z) = 0}. Z predpokladov vety vyplyva C\ S C ', a teda aj
SUS’ = C. KedZe je podla lemy 10.5.2 funkcia Indp(z) premennej z na Tubovolnej oblasti kongtantna,
je mnoZina S" otvorend. Z tej istej lemy tiez vyplyva, ze mnoZina S” obsahuje vsetky z € C s dostatocne
velkou absolitnou hodnotou.

Definujme teraz funkciu h: S' — C pre vietky z € S’ predpisom

o[ fw)

27 Fw—z

Ukdzeme, Ze h je spojitd na S'. Vezmime pevné z € S a ohranitené otvorené mnoziny 7/ C 8’ aT C S
také, ze z € T' aT* C T, pricom T C S'. T C S aT' NT = {). Funkcia f(w)/(w — z) o premennych
z a w (v tomto poradi) je o¢ividne spojita na T’ x T; je tam teda aj rovnomerne spojita: pre vietky
e > 0 existuje § > 0 také, ze pre vietky 21,20 € T” a wy,wy € T splhajtce nerovnosti [z — 23| < §

a |wp —wa| < je |f(wr)/ (w1 — 2z1) — f(w2)/(w2 — 22)| < e. Uvazujme Iubovolnt postupnost (z,)5°
prvkov T’ taki, Ze z, — z pre n — oco. Pre vietky § > 0 potom existuje ng € N také, ze pre vietky
n > ng je |z, — z| < . Dohromady dostavame, Ze pre vSetky e > 0 existuje ng € N také, Ze pre vSetky
n > ng a vietky w € T je |f(w)/(w — z,) — f(w)/(w — 2)| < e. Postupnost funkcii f(w)/(w — zy)
premennej w teda na T pre n — oo konverguje rovnomerne k funkcii f(w)/(w — z). Preto

lim h(z,) = lim / f(w :L, lim f(w) dw = — f(w) dw = h(z)

n—00 n—o0 274 — zn 27 Jpn—oow — 2, 2 Jpw — 2

a funkcia A je v bode z spojita. Kedze je z € S’ Tubovolné, je funkcia h spojité na S'.

Ukdzeme este, Ze h je holomorfnd na S'. Pre pevné w € T'* je funkcia f(w)/(w — z) ocividne
holomorfna na S’ ako funkcia premennej z. Uvazujme dalej Tubovolny trojuholnik ya s vA € S’
Zjavne existuju otvorené mnoziny 77 C S a T C S také, ze yA C 1", I'* C T a T’ N T = (). Funkcia
f(w)/(w — z) o premennych z a w (v tomto poradi) je potom evidentne spojitda na 77 x T. S pouzitim
tvrdenia 10.4.3 teda dostavame

. 1 1
/ h(z)dz:/ / (w) dwdz = — / Mdzdw:
A va 2T Jrw —z 270 Jp Jy, w— 2

kde posledny krok je désledkom rovnosti

vyplyvajicej z holomorfnosti funkcii f(w)/(w — z) o premennej z pre pevné w € I'* a z Cauchyho
integralnej vety pre trojuholnik. KedZe je vSak trojuholnik ya T'ubovolny a funkcia h je na S’ spojita,
vdaka Morerovej vete mozeme ustdit na holomorfnost funkcie h na S

Rozgirme teraz funkciu h na celi funkciu H. Pre vietky z € SN S’ je

h(z) = 271”,/Fg(z,w) dw =5 /F de — (2) = f(2) Tndp () = h(z).

Mozno teda korektne definovat funkciu H: C — C danu pre vsetky z € C predpisom

[ h(z) akzels,
H(Z)_{il(z) ak z € 5.

7 holomorfnosti funkcif k a h na otvorenych mnozinach S resp. S’ navySe vyplyva, Ze funkcia H je
holomorfna na C — je to cela funkcia.
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Zostdva dokdzat, Ze funkcia H — a tiym pdadom aj funkcia h — je konstantne nulovd. Tu vSak staci
vyuzit fakt, Ze mnozina S’ obsahuje vietky z € C splihajtce |z| > M pre nejaké M > 0. Pre z € C
také, ze |z| > M teda

[H(2)] = |i(z)| =

1 f(w) 1 M’
— | —=dw| < —L(T 10.3
27ri/pw—z w‘—zw D= (103)
kde M' > 0 je také, ze pre vetky w € T'* je |f(w)| < M'. Funkcia H je v dosledku toho ohranic¢ena
napriklad na mnozine C\ D(0, M + 1). Mnozina D(0, M + 1) je ale kompaktna a spojita funkcia H
na nej musi byt taktieZ ohrani¢ené. Funkcia H je teda ohrani¢end na C. KedZe je ale su¢asne H celé,
z Liouvillovej vety vyplyva jej konstantnost na C a z (10.3) vyplyva, Ze touto konStantou musi byt
nula. O

Explicitne este sformulujme 3pecialny pripad vety 10.5.3, v ktorom namiesto integralov pozdiz
cyklov uvazujeme iba integraly pozdlz uzavretych po ¢astiach hladkych kriviek.

Dosledok 10.5.4 (Cauchyho integralny vzorec, formulacia V). Nech S C C je oblast, a € S je bod,
f: 8 — C je holomorfnd na S a v s v* C S\ {a} je uzavretd po castiach hladkd krivka takd, Ze
pre vietky b € C\ S je Ind,(b) = 0. Potom

Indy(a)f(a) = ! /f(w) dw
g

21 w—a

Dékaz. Staci aplikovat vetu 10.5.3 na cyklus I' pozostavajici z jedinej uzavretej krivky +. O

10.6 Vseobecnid Cauchyho integralna veta

Vgeobecna Cauchyho integrilna veta je jednoduchym dosledkom préve dokdzaného vseobecného va-
riantu Cauchyho integralneho vzorca.

Veta 10.6.1 (Cauchyho integralna veta, v8eobecné verzia I). Nech S C C je otvorend mnoZina,
f: S — C je holomorfnd na S aT' s I C S je cyklus taky, Ze pre vSetky b € C\ S je Indr(b) = 0.

Potom
/ f(z)dz=0.
r

Doékaz. Nech a € S\ I'*. Definujme funkciu g: S — C pre vietky z € S ako g(z) = (2 —a) f(z). Potom
g(a) = 0 a zo vSeobecného Cauchyho integralneho vzorca dostavame

/Ff(z) dz = 27”'2%% /1“ 9) dz = 2mi g(a) Indr(a) =0,

—a

¢o bolo treba dokézat. O

Dosledok 10.6.2 (Cauchyho integralna veta, vSeobecna verzia II). Nech S C C je oblast, f: S — C
je holomorfnd na S ay s~v* C S je uzavretd po castiach hladkd krivka takd, Ze pre vietky b€ C\ S je

Ind, (b) = 0. Potom
/f(z) dz =0.
.

Dékaz. Staci aplikovat vetu 10.6.1 na cyklus I' pozostévajuci z jedinej uzavretej krivky . O
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10.7 VsSeobecna veta o deformécii

Dalsim uzitoénym dosledkom vSeobecného variantu Cauchyho integralneho vzorca je nasledujici vse-
obecny variant vety o deformaécii.

Veta 10.7.1 (Veta o deformacii, vSeobecna verzia). Nech S C C je otvorend mnozina, f: S — C je
holomorfnd na S a I'1,T'y s I'7,T'5 C S su cykly také, Ze pre vsetky b € C\ S je Indr, (b) = Indr, (b).
Potom

f(z)dz= [ f(z)d=.
Fl FQ
Dékaz. Uvazujme cyklus I' = I'; 4+ (—T'2). Pre vSetky b € C\ S potom
Indp(b) = IndF1 (b) + Ind,r‘2 (b) = IndF1 (b) - Indr‘2 (b) = 0.

7 vety 10.6.1 teda
f()dz— [ f(z)dz= [ f(z)dz+ f(z)dz:/f(z)dz:o,
l_‘1 F2 Fl 7F2 I

7 ¢oho
f2)de = [ f(z)dz
Fl FZ

a veta je dokdzana. O

Désledok 10.7.2. Nech S C C je oblast, f: S — C je holomorfnd na S a v1,72 s 7,7, € S su
uzavreté po castiach hladké krivky také, Ze pre vsetky b € C\ S je Ind,, (b) = Ind,, (b). Potom

A sz = [ sea

Dékaz. Staci aplikovat vetu 10.7.1 na cyklus I' pozostévajuci z jedinej uzavretej krivky -. O

Cvicenia

1. Nech S je oblast a v: [, 5] = C s v* C S krivka. DokaZte, Ze existuje ¢ > 0, n € N a reélne ¢isla
a=ty<..<t,=ptaké, ze pre k =0,...,n—1, Dy := D(vy(tr),e) a vk := v | [tk,tkr1] je
’yz CDOyCSavy"CDyU...UD,_1CS.

2. 'V dokaze tvrdenia 10.4.2 sme vyuzivali skuto¢nost, ze funkcia f: [a,b] X [¢,d] — R, spojita
na svojom definiénom obore [a,b] x [c,d], musi byt aj rovhomerne spojita.* Dokézte toto tvr-
denie podobnym spdsobom ako pre funkcie jednej redlnej premennej, resp. ako pre homotopie
v tvrdeni 5.3.2.

3. Zistite, ktoré vysledky z predchadzajucich kapitol boli v koneénom désledku pouzité na dékaz
vety 10.5.3. Pokiste sa identifikovat ¢o mozno najjednoduchsiu cestu od zakladnych poznatkov
o holomorfnych funkciach az po tuto vetu.

4Ide pritom o pecialny pripad tvrdenia, podla ktorého st rovnomerne spojité vetky spojité zobrazenia definované
na kompaktnom metrickom priestore.



Kapitola 11

Rezidua

Cauchyho vetu o rezidudch, ktora v tejto kapitole dokdZeme, moZno z urcitého pohladu vnimat ako
zastresujuci vysledok klasickej tedrie funkcii komplexnej premennej — okrem toho, Ze ide o silny néstroj
na vypocet krivkovych integralov, je tato veta spoloénym zovseobecnenim Cauchyho integralnej vety,
Cauchyho integralneho vzorca, aj Cauchyho vzorca pre derivacie. S pouzitim Cauchyho vety o reziduach
nasledne dokaZeme aj rad dalsich dolezitych teoretickych vysledkov — Cauchyho princip argumentu,
Rouchého vetu, vetu o otvorenom zobrazeni a vetu o inverznej funkcii.

11.1 Cauchyho veta o reziduach

Zakladny poznatok potrebny na dékaz Cauchyho vety o reziduach uz mame k dispozicii: ak je funkcia
f holomorfna na prstencovom okoli D'(a,r) bodu a € C pre nejaké r > 0, mozno ju na D’'(a,r)
reprezentovat jej Laurentovym rozvojom
o0
@)=Y a-a™
n—=——oo
Koeficienty ¢, st pre vSetky n € Z dané integralnym vzorcom
oL AR
2mi k(a,s) (w - a)nJrl

kde 0 < s < r. V 8pecidlnom pripade n = —1 potom dostavame
1

% k(a,s)

fw)dw = c_q, (11.1)

pricom kruznicu k(a, s) mozno nahradit aj lubovolnou inou uzavretou po ¢astiach hladkou krivkou ~
homotopickou v D’(a,r) s touto kruznicou, pripadne — ak sa implicitne odvolame na Jordanovu
a Jordanovu-Schoenfliesovu vetu — Tubovolnou kladne orientovanou jednoduchou uzavretou po &as-
tiach hladkou krivkou v s v* C D'(a,r) takou, Ze bod a lezi v jej vnutri. Vidime teda, Ze koeficient c_;
je velkého vyznamu pre vypocet integralov funkcie f pozdiz kriviek okolo bodu a. Pre meromorfné
funkcie je tento vyznam natolko velky, Ze si koeficient ¢_; vysluzil vlastné pomenovanie.

Definicia 11.1.1. Nech S C C je oblast, f: S — C je funkcia s pélom v bode a € C. Nech je pre nejaké
r > 0 na prstencovom okoli D’(a,r) C S funkcia f dan& Laurentovym radom

o0

f(z) = Z Cn(z - a)nj

kde m € N\ {0} a c_,, # 0. Reziduum funkcie f v bode a je potom koeficient
Res(f,a) :==c_;.

Poznamka 11.1.2. Uénny navod na vypocet rezidui dava cvicenie 3 na konci tejto kapitoly.
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Cauchyho veta o rezidudch je zovSeobecnenim vztahu (11.1) pre meromorfné funkcie — hovori,
7e az na konstantny faktor 27 mozno integral kazdej funkcie f meromorfnej na oblasti S pozdiz
lubovolnej kladne orientovanej jednoduchej uzavretej krivky - v oblasti S, neprechadzajucej cez pol
funkcie f, vyjadrit ako sacet rezidui funkcie f cez vSetky poly vo vnutri krivky . Tuto vetu pritom
dokazeme v dvoch variantoch. Prvy bude priamo sledovat uvedent intuitivnu formulaciu, avSak medzi
jej implicitnymi predpokladmi bude aj Jordanova a Jordanova-Schoenfliesova veta. Druhy variant,
vyuzivajici pojem indexu, bude od spominanych dvoch nedokdzanych tvrdeni nezévisly a o nieco
v8eobecnejsi; formulacia samotnej vety vSak bude o ¢osi menej intuitivna.

Dokazme najprv velmi jednoduchi lemu, ktoré sa nam zide pri dokaze obidvoch variantov Cauchyho
vety o reziduach.

Lema 11.1.3. Nech S C C je oblast a funkcia f je meromorfnd na S. Nech A je mnoZina vsetkijch
polov funkcie f v S. Potom mnoZina A nemdze mat v S Ziaden hromadny bod.

Dokaz. Sporom — nech a € S je hromadny bod mnoziny A. Pre vietky r > 0 potom existuje izolovana
singularita z € D’'(a,r); funkcia f teda nie je holomorfna na D'(a,r) pre ziadne r > 0. V désledku toho
nemdze byt funkcia f v bode a holomorfné a bod a nemdéze byt ani izolovanou singularitou funkcie f.
Funkcia f teda nie je meromorfna v bode a: spor. O

Veta 11.1.4 (Cauchyho veta o reziduach, formulacia I). Nech S C C je oblast, funkcia f je meromorfnd
na S a~vy sy *UI(y) C S je kladne orientovand jednoduchd uzavretd po castiach hladkd krivka takd, Ze
f je holomorfnd na v*. MnoZina A vsetkijch pdlov funkcie f v I(vy) je potom konecnd a

;m[yf(z) dz = ZRes(f,a).

acA

Doékaz. Podla Jordanovej vety je oblast I() ohrani¢end — mnozina v* U I(7y) je teda kompaktna.
Za ucelom sporu predpokladajme, Ze je mnozina A nekone¢na. Nech (ay,)22, je l'ubovolna postupnost
po dvoch réznych bodov z A. KedZe je mnozina A C I(y) ohranicené, podla Bolzanovej-Weierstrassovej
vety sa z postupnosti (a,);2, musi dat vybrat konvergentna podpostupnost (an, )z, Ak oznacime
limitu tejto postupnosti ako a, nutne a € v* UI(y). Kedze st prvky postupnosti (a,)5e, po dvoch
rézne, je a hromadnym bodom mnoziny A. Existencia takéhoto bodu ale odporuje leme 11.1.3.

Mnozina A je teda skuto¢ne koneéna. Pre vSetky a € A je funkcia f na nejakom prstencovom okoli
D'(a,r) s r > 0 reprezentovana Laurentovym radom

o0

J&)= 3 calz— ),

n=—m
kde m € N. Ozna¢me g, takzvani hlavnid cast tohto Laurentovho radu:

-1

ga(2) = Z en(z —a)™.

n=-—m

Lahko vidiet, Ze funkcia g, je pre vietky a € A je holomorfna na S\ {a}. Ak teda definujeme

9(2) = f(2) = D gal2),

a€A

mé funkcia g(z) na S iba odstréanitelné singularity. MoéZeme ich teda odstranit a predpokladat, Ze je
funkcia g na S holomorfna.
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7 Cauchyho integréalnej vety pre jednoducho suvisla oblast a désledku 5.7.3 potom

/Yg(z) dz =0.

Pre kazdé a € A dalej z integralneho vzorca pre koeficient ¢_; Laurentovho radu a z tvrdenia 5.8.1
dostavame

1
— [ ga(z)dz = Res(gq, a) = Res(f,a).
211 y
Preto
5 [r@as= o [ a6+ X a) ) -
271'2'7 & 2—27”,792 galZ s
a€A
1 1
= 5 d Y a dz = ) )
27”,/79(2) z+;2m/vg (z)dz %Res(f a)
¢o bolo treba dokézat. O

Poznamka 11.1.5. Ak je funkcia f holomorfna na v* UI(y) C S, je mnoZina A z predchadzajice;j
vety prazdna a samotna veta teda hovori, ze

/7 F(z)dz = 0.

Ide teda o variant Cauchyho integralnej vety.!
Ak je funkcia f holomorfna na v* UI(vy), je pre a € I(y) funkcia

=)

zZ—Q

9(z) =

holomorfna na (v*UI(y))\{a}, pricom v bode a méa funkcia g jednoduchy pél. Na nejakom prstencovom
okoli bodu a teda

[e.9]

9 = Y ealz—a)

n=-—1

Funkcia

o
(z—a)g(z) = Y ena(z —a)"
n=0
ma v bode a odstranitelnta singularitu, a teda

lim (= — a)g(z) = lim f(z) = c1.

Pre reziduum funkcie g v bode a preto plati

Res(g,a) = c_1 = lim f(z) = f(a)

z—a

a z Cauchyho vety o reziduich dostavame

L[
[y dz = f(a).

21 zZ—a

Ako 8pecialny pripad Cauchyho vety o reziduéch teda dostavame aj Cauchyho integralny vzorec.

!Predpoklady na funkciu f a krivku + st tu trochu iné, nez vo variantoch Cauchyho integralnej vety, s ktorymi sme
sa doposial stretli. Specialnym pripadom druhého variantu Cauchyho vety o reziduach, ktory dokaZeme nizsie, viak bude
v8eobecné Cauchyho integralna veta v podobe, v akej sme ju vyslovili v raAmci désledku 10.6.2.
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Ak je napokon f holomorfna na v* UI(y) a m € N, je pre a € I(vy) funkcia

9(z) = (Z;fiz)znﬂ

opat holomorfna na (v* UI(v)) \ {a}, pricom v bode a ma funkcia g pol rddu m + 1. Na nejakom

prstencovom okoli bodu a teda
o0

g(z) = Z en(z —a)™.

n=—(m+1)

Funkcia

(z=a)"g(2) = Y en(miny(z —a)"
n=0

mé v bode a odstranitelna singularitu. Mézeme ju teda odstranit, ¢im dostaneme funkciu f(z); podla
vety o Taylorovych radoch potom

(m)
o fm(a)
m!
V désledku toho )
Res(g,a) =C-1= f '(a)
m!

a z Cauchyho vety o rezidudch mame

m! f(z)
o I 4 = M ().
270 L (z —a)mtl 2= ")
Ako $pecialny pripad Cauchyho vety o reziduach tak dostavame aj Cauchyho vzorec pre derivacie.

V ramci cvi¢eni sme uz videli viacero situacii, kedy je mozné krivkovy integral vyratat velmi
jednoducho s pouzitim Cauchyho integrélneho vzorca alebo Cauchyho vzorca pre derivacie. To v8ak
vyzaduje, aby bola integrované funkcia f uZ vyjadrena alebo Tahko vyjadritelna v tvare

9(2)
f(z) = Gyt
kde g je v bode a holomorfna. Vieme uz, ze takymto spésobom mozno vyjadrit l'ubovolnii funkciu, ktora
mé v bode a pol radu m + 1; prevod do kyZeného tvaru v8ak nemusi byt technicky jednoduchy. Navyse
moze integracné krivka obkolesovat aj viacero polov a Cauchyho integralny vzorec, ani Cauchyho vzorec
pre derivacie, uz pouzit nemozeme. Prave v uvedenych situéciach je na vypocet krivkovych integralov
velmi uZitoénym nastrojom Cauchyho veta o reziduéch.

Priklad 11.1.6. Uvazujme integral
1

S dz.
£(0,1) Z2 COS 2

Na D/(0,7/2) mame

1 2 4 -1
COS 2 2! 4! 1— (z?' _ % +O(26))

=1+ (’22 - Z4+0(z6)> + <Z2 - Z4+0(26)>2+0(z6) =

—_

21 4! 21 4!
2 4 4 2 4
z z z z 5z
-1+ 2 42 6Oy—14 2 422 6
+2 24+4+O(z) +2+24—|—O(z),
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7 ¢oho .
1 1 1 5z

- - ol O 3

z3cosz 23 +2,21 + 24 +0(=%)

1
Res (1/(2° cos 2),0) = 3

Bod 0 je pritom jedinym polom integrovanej funkcie na D(0,7/2); vo zvysnych bodoch D(0,7/2) je
tato funkcia holomorfna. Z Cauchyho vety o reziduach preto

1
/H(O,l) Foosg 17 T ZmiRes (1/(2* cos 2),0) = mi.

Priklad 11.1.7. Vypocitajme teraz integral

foon 0T

———dz.
w(02) (2 —1)(2* +1)
Integrovanu funkciu tu mozno upravit nasledovne:

z z

z—1D(2+1) (-D(-i)(z+1i)

Zistujeme teda, ze na D(0,2) ma integrovanad funkcia tri jednoduché pdly: 1 a +i; na x(0,2)* je
integrovanéa funkcia holomorfna. Z dvah uinenych v ramci poznamky 11.1.5 vyplyvaju nasledujice
vztahy:

z

e ((z— 1><z—z'><z+i>’1) RO

)
z A 7 _ 1 __i—l—l
Res((z—l)(z—i)(z+i)7z> - (=i +9) To2i-1) i

z . —1 _ 1 71—1
Res((z—l)(z—i)(z—i—i)’_Z) (Ci—1)(—i—4)  20+1) 4

7 Cauchyho vety o reziduach tak dostavame

/’{(0,2) Wdz = 2mi Z Res(z/(z —1)(z —i)(z +1i),a) =

2
(Z * 1) ae{l,;,—1}
1 ++1 -1
i <2 1 + 1 ) 0

Cauchyho vetu o reziduach mozno Gasto vyuZit aj na vypocet redlnych integralov, ako ukazuje
nasledujuci priklad prebraty z [5].

Priklad 11.1.8. UvaZujme nevlastny integral

* 1
[
oo T4+ 1

Vypocitajme najprv pre vSetky r > 1 krivkovy integral

J =t
—— az
[77“,1”}4’%[0’,”] (O,T‘) 22 + 1

pozdlz integracnej krivky [—r,r] + %(0,7(0,7) zndzornenej na obrazku 11.1.
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Obr. 11.1: Integracnd krivka [—r, 7] + Ko, (0,7).

KedZe je integrovana funkcia
1 1

2+1  (z—i)(z+1)

holomorfna na tejto krivke a meromorfna v jej vnutri, pricom jedinou izolovanou singularitou v jej
vnutri je jednoduchy pol ¢ s

Res (1/(2* +1),i) = —%,

podla Cauchyho vety o reziduach dostavame

dz = 2miRes (1/(z* + 1),4) = .
/[rr}—l—H[Dﬁ](Or)Z 2+1

7 vety o odhade vsak stcasne

dz| < 7r
K[O,ﬂ'](orr) Z2 + 1 T2 B
a pre r — oo tato hodnota speje k nule. Preto
> 1 1
/ — 7 dz = lim ——dz =
o0 T +1 THOO[TT]Z +1
1
= lim ——dz =m.

r—00 [rr]Jr/{[o.,r(O?“)Z +1

Dokézme teraz druhy variant Cauchyho vety o reziduéach, vyuZivajaci pojem indexu bodu vzhladom
ku krivke — bude o nie¢o v8eobecnejsi, nez ten predchadzajuci a navySe nebude predpokladat platnost
Jordanovej a Jordanovej-Schoenfliesovej vety.

Veta 11.1.9 (Cauchyho veta o reziduéch, formulacia II). Nech S C C je oblast, funkcia f je me-
romorfnd na S a vy s y* C S je uzavretd po castiach hladkd krivka takd, Ze f je holomorfnd na v*
a pre vSetky b € C\ S je Ind,(b) = 0. Nech A je mnoZina vietkyjch pélov funkcie f v S. Potom existuje

nanajvys konecne vela bodov a € A s Indy(a) # 0, pricom?

2m/ )dz = Zlnd )Res(f,a).

acA

2V nasledujiicom sumujeme iba cez nenulové prvky, ktorych je kone¢ne vela.
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Dékaz. Podla lemy 10.5.2 existuje M > 0 také, ze funkcia Ind, je na C\ D(0,M) nulova. Z toho
vyplyva, ze mnozina T = {z € C\v* | Ind,(z) # 0}Uy* — a teda aj mnozina A’ = {a € A| Ind,(a) # 0}
— je podmnozinou nejakej ohranicenej oblasti D. NavySe tiez existuje € > 0 také, Ze pre vSetky z € v* je
D(z,e) € DNS. Pre lubovolné w na hranici otvorenej mnoziny DNS (t.j.w e DNS N C\ (DNS))
potom okolie D(w, €) neobsahuje ziaden bod z v* a funkcia Ind, tak na tomto okoli musi byt — opét
podla lemy 10.5.2 — konstantna. Toto okolie vak sucasne obsahuje aspoi jeden bod b € C\ (DN S);
ak ale b ¢ S, je Ind,(b) = 0 podl'a predpokladov vety a ak b ¢ D, mame Ind,(b) = 0 vdaka inkltzii
T C D. Na okoli D(w,¢) je teda funkcia Ind,(z) nulové a mnozina A’ je v désledku toho obsiahnuta
v nejakej kompaktnej podmnozine ohrani¢enej mnoziny D NS — z jej nekonecnosti by teda, rovnako
ako v dokaze prvého variantu Cauchyho vety o reziduach, vyplynula existencia hromadného bodu
mnoziny A v S, ¢o by odporovalo leme 11.1.3. Mnozina A’ je teda skuto¢ne kone¢na.

f)alej uz postupujeme podobne ako v dékaze prvého variantu Cauchyho vety o reziduéch. Pre vSetky
a € A’ je funkcia f na nejakom prstencovom okoli D’(a,r) s r > 0 reprezentovana Laurentovym radom

o0

f(z) = Z Cn(z - a)nv

n=—m
kde m € N. Ozna¢me g, hlavnu ¢ast tohto Laurentovho radu:

-1

ga(2) = Z cn(z —a)™.

n=—m

Lahko vidiet, ze funkcia g, je pre vietky a € A" je holomorfna na S\ {a}. Ak teda definujeme

- Z 9a(2)

acA’

ma funkcia g(z) v oblasti S\ (4\ A’) iba odstraniteIné singularity.> Odstrafime ich a predpokladajme,
ze je funkcia g na S\ (A '\ A’) holomorfna.
Kedze pre vietky b € C\ (S\ (A\ A4)) = (C\ S)U(A\ 4’) je Ind,(b) = 0, zo vSeobecnej Cauchyho
integralnej vety mame
/ g(z)dz = 0.
.

Pre kazdé a € A’ dalej zo zakladnej vety o krivkovych integraloch a definicie indexu dostdvame

1 1 .
9 ga 2m/ Z en(z—a)" =5 7c,l(z—a) dz =

=cq Ind,y(a) = Ind, (a) Res(gq,a) = Ind,(a) Res(f,a).

Preto
1/f(z)dz—1/ +Z dz =
2mi J, = am /|9 aeA,g" -
1
N/vg(z dz+ ) 2m/ga )dz = > Ind,(a)Res(f,a) =
acA’ v acA’
= ) _Ind,(a)Res(f,a),
a€A
¢o bolo treba dokazat. O

3Dokaz, ze S\ (A \ A’) je skutoéne oblast, prenechavame &itatelovi ako jednoduché cvigenie.
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11.2 Cauchyho princip argumentu

Nagim dalsim cielom bude dokazat takzvany Cauchyho princip argumentu, ktory umoziuje vyjadrit
rozdiel poc¢tu korenov a poc¢tu pdlov nejakej meromorfnej funkcie, obkolesenych jednoduchou uzavretou
krivkou «, pomocou integralneho vzorca. DokaZeme tu iba variant implicitne vyuZivajaci Jordanovu
a Jordanovu-Schoenfliesovu vetu; dékaz variantu zalozeného na pojme indexu a nezévislého od tychto
nedokéazanych tvrdeni prenechavame &itatelovi ako uzitoéné cvicenie.?

Nasledujiicu lemu budeme potrebovat na odévodnenie zmysluplnosti nagich d'alsich tvrdeni.

Lema 11.2.1. Nech S C C je oblast, T je ohranicend mnozina takd, Ze T C S a f je funkcia mero-
morfnd na S, ktord na S nie je konstantne nulovd. Potom md funkcia f v T nanajvys konecne vela
koreriov a nanajvys konecéne vela pdlov.

Dékaz. Koneénost poc¢tu polov mozno dokazat podobne ako v doékaze Cauchyho vety o reziduéch:
mnozina T je kompaktna a z nekone¢nosti mnoziny polov A funkcie f v T by tak vyplyvala existencia
hromadného bodu mnoziny A v S. To by bol spor s lemou 11.1.3.

Keby mala na druhej strane funkcia f v mnozine T nekoneéne vel'a korefiov, rovnaka argumentécia
by zarucovala existenciu hromadného bodu a mnoziny Z(f) v S; z tvrdenia 9.4.1(¢i¢) pritom l'ahko
vidiet, Ze bod a neméZe byt pélom funkcie f. Pomocou vety o jednozna¢nosti tak zistujeme, Ze funkcia f
musi byt konStantne nulova na svojom defini¢nom obore. Takéito funkcia v8ak nemé ziaden pol, ¢o spolu
s meromorfnostou funkcie f na S znamen4, Ze je f konstantne nulova na S. To odporuje predpokladom
lemy. O

Prv, nez vyslovime a dokédZeme samotny Cauchyho princip argumentu, dokdZeme na ilustraciu jeho
o nieco slabsiu verziu.

Tvrdenie 11.2.2. Nech S C C je oblast, funkcia f je holomorfnd na S a v s y*UI(y) C S je kladne
orientovand jednoduchd uzavretd po castiach hladkd krivka takd, Ze pre vSetky z € ~* je f(z) # 0.

Potom . f’( )
z

kde Z € N je pocet korefiov funkcie f v I(y), pricom koreri radu m > 1 je zapocitany m-krdt.

Dokaz. Tvrdenie déva zmysel vdaka leme 11.2.1 a skutocnosti, ze I(7) je ohrani¢end mnozina taka, Ze
I(y) =7"UI(y) € 5.
Nech a € I(y) je korenr funkcie f rddu m > 1. Podl'a tvrdenia 8.1.3 potom existuje r > 0 také, ze
pre vietky z € D(a,r) je
f(z) = (z=a)"g(2),

kde g je holomorfna na D(a,r) a g(a) # 0. Na D(a,r) potom tiez
f'(z) =m(z = a)" " g(2) + (z — a)"d (2),

7 ¢oho

fz)  z—a  g(z)
Kedze g(a) # 0, je funkcia ¢'(z)/g(z) holomorfna v bode a, a teda Res(f’/f,a) = m. Kedze je korenr
a € I(y) Tubovolny a kedZze je funkcia f’'(z)/f(z) holomorfna vo vsetkych bodoch b € S takych, ze
f(b) # 0, z Cauchyho vety o reziduach dostavame

1)
2mi J, f(2) d

fe)_ m o g

2= Y Res(f'/fa)=2,

aeZ(f)NI(v)

¢o bolo treba dokézat. O

*Ide o cvigenie 8 na konci tejto kapitoly.
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Veta 11.2.3 (Cauchyho princip argumentu). Nech S C C je oblast, funkcia f je meromorfnd na S
avy sy UI(y) C S je kladne orientovand jednoduchd uzavretd po castiach hladkd krivka takd, Ze f je
holomorfnd na v* a pre vSetky z € v* je f(z) # 0. Potom

1 !
,/f<z)dz:Z—P,
2mi J, f(2)
kde Z € N je pocet koreriov funkcie f v I(vy) a P € N je pocet pélov funkcie f v I(v), pricom kaZdy
koren a pol radu m je zapocitany m-krdt.

Dokaz. Podobne ako v dokaze tvrdenia 11.2.2 zistujeme, Ze pre kazdy korenr a € I(~y) funkcie f radu m
je Res(f'/f,a) = m. Nech teraz b € I(~) je pol funkcie f radu k > 1. Podla tvrdenia 9.4.1 potom
existuje s > 0 také, Ze pre vietky z € D'(b, s) je

f(Z):m

pre nejaka funkciu A holomorfnt na D' (b, s) taku, Ze h(b) # 0. Na D'(b, s) potom tieZ

, h(z n(z
fi(z) = _k(z _(a))k+1 (z —(a))k’

z ¢oho

F) -k W)

f(z) —a h(z)"
Kedze h(b) # 0, je funkcia h'(z)/h(z) holomorfna v bode b, a teda Res(f’'/f,b) = —k. Ak navyse
¢ € I() nie je korefiom ani polom funkcie f, je funkcia f/(z)/f(z) v tomto bode holomorfna. Ak teda
ozna¢ime ako P(f) mnozinu vSetkych polov funkcie f, z Cauchyho vety o reziduach dostavame

i‘ f/(Z) dz = Z Res(f’/f, Cl) + Z RGS(f//f, b) =Z-P

2mi )., f(z) e Z(Hoi) beP(f)NL(y)

Tym je veta dokizana. O

Poznamka 11.2.4. Integral z predchadzajtcej vety mozno interpretovat aj ako integral funkcie 1/z
pozdlz krivky f o, ¢ize ako index bodu 0 vzhladom ku krivke fo~v. Vdaka stvisu so spojitym vyberom
argumentu teda ide o ,,celkovy narast argumentu® hodnoty f(z) pozdlz krivky ; odtial pomenovanie
,,Cauchyho princip argumentu®.

11.3 Rouchého veta

Vyslovme a dokdZme eSte jeden zaujimavy doésledok Cauchyho principu argumentu — tzv. Rouchého
vetu. Opéat sa pritom obmedzime iba na jej variant implicitne predpokladajici platnost Jordanovej
a Jordanovej-Schoenfliesovej vety.

Veta 11.3.1 (Rouchého veta). Nech S C C je oblast, funkcie f, g si holomorfné na S a~y sy*UI(vy) C S
je jednoduchd uzavretd po castiach hladkd krivka takd, Ze pre vSetky z € v* je |f(2)| > |g(z)|. Potom
magji funkcie f a f + g rovnaky pocet koreriov v I(7y).

Dokaz. Nech t € [0,1]. Z predpokladov vety vyplyva, funkcia f + tg je holomorfna na S a pre vSetky
z € v*je f(z)+tg(z) # 0. Z tvrdenia 11.2.2 (pripadne z Cauchyho principu argumentu) teda vyplyva,

7e (
t
Y e V) 4. s,
2ri ) +tg(z
kde ((t) je pocet koreniov funkcie f + tg v I(7).
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Dokazeme, ze funkcia ¢: [0,1] — N je spojité, ¢im zaroven dokazeme aj jej konstantnost. Pre vietky
t1,t9 € [O, 1] je

C(t2) —((t1) =

T (€ CLS (TR,

2mi )y (f(2) +119(2))(f (2) + t29(2))
KedZe je mnozina v* kompaktna, funkcia ¢'(z)f(z) — f/(2)g(z) na nej nadobuda maximum M > 0
a funkcia (f(z) + t19(2))(f(2) + t29(z)), ktora je na v* nutne nenulova, na nej nadobida minimum
m > (. Pre vSetky z € 4* je teda

Z toho

IC(t2) — C(t1)] =

ta — 11 d(2)f(z) = f'(2)g9(2) [ta — 1] M
2m /7 (f(2) +t1g9(2))(f(2) + t2g(2)) dz‘ < gy )

Pre vetky ¢ > 0 teda pre dostato¢ne malé |t — ¢;| mame

IC(t2) — ((t1)] < ¢

a funkcia ¢ je naozaj (rovnomerne) spojita. Musi byt teda konstantna, z ¢oho vyplyva, zZe vSetky funkcie
f+tg st e [0,1] maja rovnaky pocet koreniov v I(y). Specialne teda maja rovnako vela korefiov v I(7y)
aj funkcie f=f+0ga f+g=f+1g. O

3 .

11.4 Veta o otvorenom zobrazeni a veta o inverznej funkcii

Rouchého vetu teraz aplikujeme na dokaz dolezitého tvrdenia o holomorfnych funkciach — tzv. vety
o otvorenom zobrazeni. Dosledkom tejto vety dalej bude veta o inverznej funkcii, ktort mozno chapat
ako zosilnenie vety 2.5.7 o derivacii inverznej funkcie pre pripad holomorfnych funkeii.

Definicia 11.4.1. Nech S C C je otvorend mnozina a f: S — C funkcia. Hovorime, Ze f je otvorené
zobrazenie na S, ak pre vSetky otvorené mnoziny 7' C S je f(7T') otvorend mnoZina.

Veta 11.4.2 (Veta o otvorenom zobrazeni). Nech S C C je oblast a f: S — C nekonstantnd funkcia
holomorfnd na S. Potom je funkcia f otvorengym zobrazenim na S.

Dékaz. Nech T' C S je otvorena mnozina a b € f(T'). Dokazeme existenciu ¢éisla € > 0 takého, ze
Dib,e) C F(T).

Kedze b € f(T), existuje a € T také, ze b = f(a). Funkcia f je na S nekonstantna, takze funkcia
f(2) = f(a) premennej z nemoze byt na S konStantne nulova. Z vety o jednoznac¢nosti teda vyplyva,
ze pre nejaké 6 > 0 také, ze D(a,d) C T musi byt funkcia f(z) — f(a) nenulova na D'(a,0).

Zvolme reélne ¢islo r také, ze 0 < r < § a uvazujme kruZnicu k(a,r). KedZe ide o kompaktnu
mnozinu, absolutna hodnota | f(z)— f(a)| spojitej funkcie f(z)— f(a) na k(a,r)* nadobtida minimum m.
Vdaka nenulovosti funkcie f(z) — f(a) na D'(a,d) je m > 0. Pre vietky w € D(b,m) a z € k(a,r)*
dalej

(F(a) = £(2)) + (f(2) = w)| = |f(a) — w] < m < |f(2) — f(a),
takze funkcie

f(z) = f(a)

f(2) —w = (f(2) = f(a)) + ((f(a) = f(2)) + (f(2) —w))
premennej z maju podla Rouchého vety rovnaky pocet korehov v D(a,r). KedZe teda ma funkcia
f(2) — f(a) prave jeden koreir v D(a,r), musi tam mat prave jeden koren aj kazda z funkeii f(z) — w
pre w € D(b,m). Pre kazdé w € D(b,m) teda existuje z € D(a,r) také, ze f(z) = w — a teda
D(b,m) C f(D(a,r)) C f(T). Na zaviSenie dokazu teda staci vziat e = m. O
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Veta 11.4.3 (Veta o inverznej funkeii, formulacia I). Nech S C C je otvorend mnoZina a f: S — C
injektivna funkcia holomorfnd na S. Pre T = f(S) je potom inverznd funkcia f~': T — C k funkcii f
holomorfnd na T a pre vSetky a € S s f(a) =b je

Doékaz. Vdaka vete 2.5.7 staéi dokazaf, ze funkcia f~! je na T spojitd. Nech teda b € T a € > 0
— dokazeme, Ze existuje § > 0 také, ze pre vietky w € D(b,d) je f~'(w) € D(a,e). Podla vety
o otvorenom zobrazeni je ale f(D(a,¢)) otvorena mnozina, pricom vdaka rovnosti b = f(a) musi byt
b e f(D(a,e)). Existuje teda 6 > 0 také, ze D(b,0) C f(D(a,e)) a pre vietky w € D(b, ) tak existuje
z € D(a,¢) také, ze w = f(z) — ¢ize f~1(w) = z € D(a,¢). O

Poznamka 11.4.4. 7 tvrdenia v cviceni 5 kapitoly 2 Tahko vidiet, Ze bijektivna funkcia f: S — T je
otvorenym zobrazenim préave vtedy, ked je inverzné funkcia f~': T'— S spojita. V nasom dokaze vety
o inverznej funkcii sme v podstate iba aplikovali toto pozorovanie.

Nasledujiice tvrdenie hovori, Ze holomorfna funkcia f s nenulovou deriviaciou v bode a musi byt
na nejakom okoli tohto bodu injektivna. Z vety o inverznej funkcii teda vyplyva, Ze nenulovost derivacie
funkcie f v bode a je postacujucou podmienkou existencie holomorfnej inverznej funkcie k zuzeniu
funkcie f na nejaké okolie bodu a.

Tvrdenie 11.4.5. Nech S C C je otvorend mnoZina, a € S a f: S — C je holomorfnd na S.
Ak f'(a) # 0, existuje r > 0 také, Ze D(a,r) C S a ziZenie funkcie f na D(a,r) je injektivne.

Dékaz. 7 lemy 10.5.1 vyplyva existencia r > 0 takého, ze pre vSetky z,w € D(a,r) je

(@)l — 2|

fw) = £(2) =

Ak pritom z # w, je vdaka predpokladu f’(a) # 0 vyraz na pravej strane nerovnosti kladny, a teda aj

|[f(w) = f(2)] > 0~ z toho f(2) # f(w). m

Dosledok 11.4.6 (Veta o inverznej funkeii, formulacia II). Nech S C C je otvorend mnoZina a nech
f:S = C funkcia holomorfnd na S. Nech a € S je bod taky, Ze f'(a) # 0. Potom existuje r > 0 také,
Ze funkcia f je injektivna na D(a,r) a pre T = f(D(a,r)) je inverznd funkcia f~': T — C k tomuto
zuZeniu funkcie f holomorfnd na T. Pre vietky z € D(a,r) s f(z) = w pritom

Dékaz. Bezprostredne z vety 11.4.3 a tvrdenia 11.4.5. O

Cvicenia
1. a) Najdite rezidud funkcie fi(z) = (”* —1)/(2* + 1) v bodoch i a —i. Vypod&itajte integraly
tejto funkcie pozdlz kriviek (i, 10719) a x(4, 10190).

b) Najdite rezidua funkcie fa(z) = €#/(23—1) v bodoch 1, e27/3 a ¢47/3_ Vypocitajte integraly
tejto funkcie pozdlz kriviek (e?27/3, 107190 k(€273 10109),

2. Vypocitajte integral

0 1
/OO RS
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3. Nech S C C je oblast a f: S — C funkcia s polom rddu m € N\ {0} v bode a € C. Dokaite, ze
v takom pripade je

1 dm—l
— : _\m
Res(f,0) = oty lim Sy (2 = ) (2).

4. Zovseobecnite Cauchyho vetu o reziduach aj na pripad funkcii s odstranitelnymi a podstatnymi
izolovanymi singularitami.

5. Uvazujme funkciu f: C\ {i, —i} — C, danu pre vSetky z € C\ {—i,¢} ako

—5iz — 1
J(z) = 2m(z2 +1)
Najdite vSetky I € C také, Ze pre nejakt uzavreta po ¢astiach hladka krivku v s v* C C\ {7, —¢}
je
I= / f(z)dz
¥

6. Zistite, ¢i existuje funkcia f meromorfna na C také, ze pre vietky n € N\ {0} ma funkcia f
v bode n pol, pricom Res(f,n) = n. Ak ano, skonstruujte takt funkciu; ak nie, dokazte.

7. Zistite, i existuje meromorfna funkcia f na nejakej oblasti S C C taka, Zze pre vSetky a € R
existuje pol a € S funkcie f, pre ktory je Res(f,a) = a. Ak &no, skonstruujte taka funkciu;
ak nie, dokazte.

8. Dokazte nasledujuci variant Cauchyho principu argumentu, zaloZzeny na pojme indexu a nezavisly

od Jordanovej a Jordanovej-Schoenfliesovej vety: nech S C C je oblast, funkcia f je meromorfna
na S a~vys~vy* CS jeuzavreta po Castiach hladka krivka taka, ze f je holomorfna a nenulova na ~*
a pre vietky b € C\ S je Indy(b) = 0. Nech Z(f) je mnozina korefiov a P(f) je mnozina polov
funkcie f. Potom je v oboch tychto mnozinach iba koneény pocet prvkov s nenulovym indexom
vzhladom ku krivke v a

f '(2)
— Z Ind, (a) deg(a Z Ind,, (b) deg(b),

2m ~ (2)
a€Z(f) beP(f

kde deg(w) oznacuje rad korefia resp. polu w.

9. Najdite pocet korefiov funkcie 22 4+ 5 — €% takych, ze Im z > 0.



Kapitola 12
Analytické predlzenie

Technika analytického prediZenia — do velkej miery zalozena na vete o jednozna¢nosti, ktora sme uz
dokéazali — umoznuje rozsirit analyticka (¢ize holomorfni) funkciu f, definovani na nejakom obore S,
na ,maximalny mozny defini¢ny obor“ obsahujtci S. Napriklad funkciu

o)=Y =
n=0

definovanti na okoli D(0, 1), moZno pomocou analytického prediZenia rozsirit na funkciu 1/(1 — 2) de-
finovana na C\ {1}. Takto rozsirena funkcia je vzdy dana jednoznacne; ukaze sa v8ak, Ze moze byt
aj viachodnotovéi. N&s doterajsi pristup k viachodnotovym funkcidm — spocivajici v ad hoc vybere jed-
nohodnotovych vetiev — uz tym padom nebude dlh&ie tnosny. Namiesto toho budeme musiet zrevidovat
samotné nase chapanie analytickych funkcii tak, aby tento koncept prirodzene zahinal aj viachodnotové
funkcie. Dospejeme tak k délezitému pojmu globdlnych analytickyjch funkcid, ktoré budi reprezento-
vat vo vSeobecnosti viachodnotové analytické funkcie na svojom ,maximélnom moZznom defini¢nom
obore. Odporucanym dopliiujacim ¢itanim k tejto kapitole st prislusné partie knih |7, 6, 9].

12.1 Rozsirenie defini¢ného oboru funkcie a viachodnotovost

-----

neZ na akom bola pévodne definovana. Nech napriklad f: D(0,1) — C je pre vietky z € D(0,1) dana

ako
o0
n=0
Podla standardného vzorca pre stucet geometrického radu pre vsetky z € D(0,1) mame

f(z) = —

11— z;
funkcia g: C\ {1} — C dana pre vSetky z € C\ {1} ako
1

9(2) =1
je ale analytickd na C\ {1}. Nasli sme teda funkciu g(z), ktora sa na D(0,1) zhoduje s funkciou f,
ale jej definiény obor je vacsi: C \ {1}. KedZe ma mnozina D(0,1) v C\ {1} hromadny bod, z vety
o jednoznac¢nosti vyplyva, ze ide o jedinid analyticka funkciu g(z) s touto vlastnostou. Hovorime, Ze
takto definovana funkcia g: C\ {1} — C je analytickym prediZenim funkcie f.! V analytické predlZenie
funkcie f na celi komplexni rovinu C difat nemdzeme — to mozno jednoducho dokéazat s pouZzitim
jednoznacnosti Laurentovych radov alebo prostrednictvom Liouvillovej vety.

1Ozajstnt definiciu analytického predlZenia sformulujeme aZ nizsie.
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Pre analyticka funkciu f: S — C, kde S C C je oblast, sa teda poniikaji prirodzené otazky:
e Mozno funkciu f rozsirit na analytickt funkciu definovanii na oblasti T' 2 S?

e Ak ano, z vety o jednoznac¢nosti vyplyva, Ze existuje prave jedna taka funkcia — ako ju ale moZno
néjst?

Obr. 12.1: Weierstrassova technika analytického predizenia pomocou mocninovych radov.

Karl Weierstrass prisiel s technikou postupného rozsirovania defini¢ného oboru analytickej funkcie
zalozenej na nasledujicom pozorovani. Predpokladajme, Ze je funkcia f analytickd v nejakom bode
a € C. Jej Taylorov rad v bode a méa potom nenulovy polomer konvergencie ¢. Zvolme Tubovolny
bod b € D(a, ). Funkcia f je v tomto bode nutne analyticka, a teda je reprezentovatelna Taylorovym
radom so stredom v b. Tento rad ur¢ite konverguje na D(b, o—|b—al); jeho polomer konvergencie ¢’ viak
niekedy moze byt aj vac¢si a v takom pripade sme prave rozsirili definicny obor povodnej analytickej
funkcie. MdZeme teraz rovnaky postup opakovat s Tubovolnym dalim bodom ¢ nového defini¢ného
oboru. Tato situécia je znédzornena na obrazku 12.1.

V skutoc¢nosti ale pri analytickom prediZeni vobec nie je nutné nardbaf s mocninovymi radmi
a ich polomermi konvergencie. Ak mame dant analyticka (t. j. holomorfna) funkciu f na Iubovolnom
kruhovom okoli D; (pripadne aj na oblasti iného typu) a najdeme analyticka funkciu g na nejakom
inom okoli Dy takom, ze D; N Dy # (), pricom na tomto prieniku sa obidve funkcie zhoduju, nasli sme
jediné predlzenie funkcie f na D; U Dy. Tento postup mézeme Tubovolne vela raz opakovat. Situacia
je znézornené na obrazku 12.2.

D,

Obr. 12.2: Zakladna myslienka analytického predizenia.

Uvidime, Ze ak je mozné analyticka funkciu f: S — C na oblasti S predlzit na nejaka nadoblast
T D S, vzdy ju tam mozno predizit rovnakym sposobom ako vyssie, aj ked vo vieobecnosti méoze byt
potrebnych nekone¢ne vela krokov.
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Pri takomto postupnom predlZovani funkcie sa vSak moéZze pomerne ,zékernym‘ sposobom prejavit
jej viachodnotovost. Nech napriklad Dy = D(1,1/2) a nl%: Dy — C oznacuje holomorfni vetvu priro-
dzeného logaritmu na Dg taka, Ze ln[o](l) = 0.2 Postupne pokryvajme kladne orientovani jednotkovii
kruZnicu ,retazou* prekryvajucich sa okoli Dy, D1, Ds, ... o polomere 1/2 a so stredmi
i /4 i /2

)

i3m /4

apg=1,a1 =c¢ ar=¢e¢" " a3 =e sag = —1,...

tak, ako na obrazku 12.3. Okolie Dy, sa pre vSetky k € N prekryva s Dy 1 a lahko vidiet, Ze ak pre vSetky
k € Nje Inl¥: Dy — C holomorfna vetva prirodzeného logaritmu na Dy, taka, Ze Inl¥] (ar) = ikm/4, tak
pre vSetky z € DN Dy je ln[k](z) = ln[kH](z). Takto v8ak postupne prideme k okoliu Dg so stredom
v bode ag = €™ = 1, pre ktoré zistujeme, ze In'®! (1) = i27. Obkruzenim kladne orientovanej jednotko-
vej kruznice sme sa teda nevratili k pévodnej vetve prirodzeného logaritmu Inl spliajicej Inl) (1) =0,
ale plynule sme presli k inej vetve. Lahko vidiet, Ze pomocou niekol'kych takychto ,,obkriZeni“ kladne
alebo zaporne orientovanej jednotkovej kruZznice by sme vedeli ziskat Tubovolna vetvu prirodzeného
logaritmu (napriklad) na D(1,1/2).

Obr. 12.3: Analytické predizenie prirodzeného logaritmu, pri ktorom sa prejavi jeho viachodnotovost.

Viachodnotovost analytickych funkcii uZ teda, zda sa, nemozeme dalej zametat pod koberec.
Aby pojem analytického predlzenia funkcie déval naozajstny zmysel, musime zrevidovat samotné nase
pojatie pojmu analytickej funkcie tak, aby zahfnalo aj viachodnotové funkcie — ,,maximéalnym* analy-
tickym predlzenim akejkol'vek vetvy logaritmu tak bude ,ozajstny viachodnotovy logaritmus®.

12.2 Analytické prvky a analytické predizenie

Sformalizujeme teraz ideu analytického predizenia podla ,retazcov* prekryvajicich sa okoli, ktori
sme si na neformalnej drovni vysvetlili v predchadzajiucom oddiele. Zakladnym stavebnym kamefiom
pre nés pritom bude takzvany analytickij prvok — pdjde o kruhové okolie, na ktorom je definovana nejaka
analyticka funkcia. V literatire sa vSak vyskytuja aj rozne iné definicie analytickych prvkov — moze sa
napriklad pozadovat, aby polomerom kruhového okolia so stredom v a € C bol polomer konvergencie
Taylorovho radu danej analytickej funkcie so stredom v a; iné definicie zas namiesto kruhovych okoli
pripustajia Tubovolnu oblast. Vietky podobné pristupy su vSak vo svojej podstate ekvivalentné a lisia
sa len v detailoch.

?Ide teda o ztzenie hlavnej vetvy Ln z = Ing(2) prirodzeného logaritmu definovanej na C \ (—oo, 0].
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Definicia 12.2.1. Analyticky prvok je dvojica (f, D), kde D = D(a,r) je kruhové okolie nejakého bodu
a € C o polomere r > 0 alebo D = D(a,o0) :=C a f: D — C je funkcia holomorfna na D. Hovorime
potom, Ze a € C je stredom?® analytického prvku (f, D) a r > 0 je jeho polomerom. Ak je navyse S C C
oblast a D C S, hovorime, Ze (f, D) je analyticky prvok v oblasti S.

Definicia 12.2.2. Nech S C C je oblast a (f, D), (g, E) st analytické prvky v S. Hovorime, Ze:

a) Prvok E) je priamym analytickym predlZenim prvku D) v oblasti S, ak DN FE 1]
) g, ) je priamy ytickgm p p : :
a pre vietky z € DN E je f(z) = g(2).

b) Prvok (g, E) je analytickym prediZenim prvku (f, D) v oblasti S, ak existuje n € N a postupnost
analytickych prvkov (fi,D1),...,(fn,Dn) v S takych, ze (f1,D1) = (f, D), (fn,Dn) = (9, F)
aprek=1,...,n—1je prvok (fxs1, Dry1) priamym analytickym predizenim prvku (fx, Dy).

Ak S = C, hovorime iba o priamom analytickom prediZent resp. o analytickom predlzent.

Tvrdenie 12.2.3. Nech S C C je oblast. Reldcia ,byt priamym analytickym prediZenim v S je
reflexivna a symetrickd. Reldcia ,byt analytickym predlZenim v S ¢ je reldciou ekvivalencie na mnoZine
vsetkych analytickych prvkov v oblasti S.

Dékaz. Zrejmé. O

Tvrdenie 12.2.4. Nech (f, D) je analyticky prvok, E je kruhové okolie a (g1, E), (g2, F) si priame
analytické prediZenia prvku (f, D). Potom (g1, E) = (g2, E).

Dékaz. Ak (g1, E), (g2, E) st priame analytické predlzenia prvku (f, D), z definicie nutne D N E # ()
a z otvorenosti tychto dvoch mnozin vyplyva, ze D N E mé& v E hromadny bod. NavySe pre vSetky
z€ DN Eje gi(z) = g2(2) = f(2). Z vety o jednozna¢nosti preto g1 = g2 a (g1, F) = (g2, F). O]

Poznamka 12.2.5. Priklad prirodzeného logaritmu z tvodného oddielu ukazuje, Ze nemoéze byt prav-
diva ziadna obdoba tvrdenia 12.2.4 pre vSeobecné — ¢iZe nie nutne priame — analytické prediZenie.
Téato skuto¢nost je zakladnym zdrojom viachodnotovosti analytickych funkcii.

LCubovolné dva analytické prvky (f, D), (g, E) také, Ze D a E maja rovnaky stred a pre vSetky
z € DNE je f(z) = g(z), st oéividne navzajom svojimi priamymi analytickymi predizeniami. V takom
pripade piseme (f, D) = (g, E) a obidva prvky aj v uréitych situacidch stotoziiujeme.* Zrejme pritom
ide o relaciu ekvivalencie.

12.3 Globalne analytické funkcie

Mozeme teraz vyuzit definicie z predchadzajiceho oddielu na zavedenie pojmu globdlnej analytickej
funkcie, ktora bude dana nejakou d’alej neprediZitelnou mnozinou analytickych prvkov takou, ze kazdé
dva prvky z tejto mnoziny st vzajomne svojimi analytickymi predizeniami. Pojde teda o vieobecnosti
aj viachodnotové funkcie definované na , maximélnom moznom definicnom obore“. Neskdr definujeme
aj vetvy globalnych analytickych funkcii — a prave tento pojem sa ukaZze byt vhodnym zovSeobecnenim
konceptu analytickej funkcie do ,,viachodnotového sveta“.

37a stred analytického prvku s okolim C mozno povazovat kazdé komplexné &islo a. Ak teda budeme neskér hovorit
o ,,dvojiciach analytickych prvkov s rovnakym stredom®, $§pecidlnym pripadom bude aj taka dvojica prvkov, kde aspon
jeden z nich je s okolim C.

4Stotoznenie takychto dvojic analytickych prvkov vychadza z pévodného Weierstrassovho pojatia analytickych prv-
kov, kde je funkcia f dand mocninovym radom v nejakom bode a a zodpovedajucim okolim D je D(a,g) pre polomer
konvergencie ¢ tohto mocninového radu. Vd'aka vete o Taylorovych radoch je potom D(a, g) jednozna¢ne danym maxi-
malnym okolim D so stredom v bode a takym, ze (f, D) je analyticky prvok. Vsetky ostatné analytické prvky tohto typu
teda mozeme s prvkom (f, D) bez velkej ujmy stotoznit.
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Definicia 12.3.1. Nech & je mnoZina vSetkych analytickych prvkov a ~ je relacia ekvivalencie na &
taka, ze pre dvojicu analytickych prvkov (f,D), (g, F) je (f,D) ~ (g, F) prave vtedy, ked jeden
z tychto prvkov je analytickym predizenim druhého. Globdlna analytickd funkcia je Tubovolna trieda
ekvivalencie f relacie ~, ¢ize Tubovolny prvok f € &/ ~.

Casto byva uzitocné pracovat aj s ,lokalnymi globalnymi analytickymi funkciami*, ¢ize s obdobou
globalnych analytickych funkcif definovanou na zaklade analytického predlzenia v nejakej oblasti S C C.
Takéto funkcie budeme (nestastne) volat globdlnymi analytickymi funkciami v S.

Definicia 12.3.2. Nech S C C je oblast, &5 je mnozina vSetkych analytickych prvkov v S a ~g je
relacia ekvivalencie na & taka, Ze pre analytické prvky (f, D), (g, E) v S je (f,D) ~g (g, F) prave
vtedy, ked jeden z nich je analytickym predlZzenim toho druhého v S. Globdlna analytickd funkcia
v oblasti S je Tubovolna trieda ekvivalencie f relacie ~g, ¢ize lubovolny prvok f € &5/ ~g.

Poznamka 12.3.3. Globalna analyticka funkcia je teda globélna analytickd funkcia v oblasti C.

Kazda globalna analytickd funkcia f (v oblasti S) je teda nejakd mnozina analytickych prvkov
(v oblasti S), pricom pre kazdy analyticky prvok (f, D) € f patria do f prave vSetky analytické prvky,
ktoré st (v oblasti S) analytickym predizenim prvku (f, D). Pracovat priamo s touto definiciou by ale
bolo znacne tazkopadne. Zavedieme preto terminoldgiu a notaciu, ktora bude mat blizsie k intuitivnej
predstave o globalnej analytickej funkcii.

Nech f je globalna analyticka funkcia v nejakej oblasti S C C. Definicngm oborom funkcie f
nazveme zjednotenie vSetkych mnozin D takych, Ze f obsahuje nejaky prvok (f, D). Lahko vidiet, Ze
tento defini¢ny obor je opét oblast. Pre v8etky z z defini¢ného oboru funkcie f oznac¢ime [f(z)] mnozinu
v8etkych hodnot funkcie f v bode z, dant ako

[£(2)] ={/f(2) | (f,D) €f; z € D}.

Ak je v nejakom bode z defini¢ného oboru funkcie f mnozina [f(z)] jednoprvkova, hovorime, zZe funkcia
f je v bode z jednohodnotovd; inak hovorime, Ze je viachodnotovd. Na priklade prirodzeného logaritmu
vidiet, Ze globalna analytickd funkcia mdéZze naozaj byt aj viachodnotova. Ak je globalna analyticka
funkcia f v oblasti S jednohodnotova v kazdom bode z € S, stotoznujeme tuto funkciu s ,beznou —
a oc¢ividne analytickou — funkciou f: S — C takou, Ze pre vSetky z € S je f(z) dané ako jediny prvok
mnoziny [f(2)].

Vetvou globalnej analytickej funkcie f na oblasti T' C S d'alej nazveme globalnu analytickta funkciu
f7 v oblasti T taku, ze fr C f. Lahko moZno dokazat, Ze Specialne kazdy analyticky prvok (f, D) € f
je — po stotoZneni s globalnou analytickou funkciou v oblasti D — jednohodnotovou vetvou funkcie f.
Zneuzivajic terminologiu tiez hovorime, Ze f je analytickym prediZenim Tubovolnej svojej vetvy (a teda
aj lubovolného svojho analytického prvku).

Napriek svojej relativne komplikovanej definicii je tak pojem vetvy globalnej analytickej funkcie
prirodzenym zovSeobecnenim pojmu analytickej funkcie, ako sme ho chépali doteraz.

12.4 Analytické predlZenie pozdiz krivky

V tvodnom oddiele tejto kapitoly sme holomorfnii vetvu prirodzeného logaritmu analyticky predlzovali
pozdlz jednotkovej kruznice — videli sme pritom, Ze orientacia a pocet jej ,,obkrazeni“ boli rozhodujtice
pre to, aki vetvu sme ziskali na konci celého procesu. Myslienku takéhoto analytického prediZenia
pozdlZ krivky teraz sformalizujeme — pojde o predlzenie, v ktorom jednotlivé analytické prvky vyberame
tak, aby ich stredy lezali na danej krivke, pri¢om stredom prvého okolia je poc¢iatocny bod a stredom
posledného okolia je koncovy bod tejto krivky. Tato situécia je zndzornena na obrazku 12.4. Dokazeme,
7e analytické predlZenie pozdlz krivky skuto¢ne zéavisi iba od tejto krivky a nie od konkrétneho vyberu
analytickych prvkov so stredmi na tejto krivke.
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Obr. 12.4: Analytické predlzenie pozdlz krivky z bodu a do bodu b.

Definicia 12.4.1. Nech (f, D) je analyticky prvok so stredom a € C a (g, F) je analyticky prvok
so stredom b € C. Nech 7: [a, 8] — C je krivka. Hovorime, ze prvok (g, E) je analytickym predlZenim
prvku (f, D) pozdlZ krivky v, ak existuje n € N, realne ¢isla o = tg < ... < t, =  a analytické prvky
(f1,D1),...,(fn, Dyn), pre ktoré sa splnené nasledujuce podmienky:

(i) Plati v(a) = a, ¥(8) = b, (f1,D1) = (f, D) a (fn, Dn) = (g, E).
(i) Prek=1,...,nje (v | [tk—1,tx])" C Dy a stred okolia Dy, lezi v v*.
(iii) Pre k=1,...,n —1 je (fu41, Dxs1) priamym analytickym predlzenim prvku (fy, Dy).

Poznamka 12.4.2. Hodnoty tg,...,t, z predchadzajicej definicie je vZdy mozné bez ujmy na vse-
obecnosti predpokladat po dvoch rézne tak, aby bolo a = tg < ... < t, = 3 (a to aj v pripade
zhodnosti niektorych okoli).

Poznamka 12.4.3. KaZdé analytické predlZzenie mozno chapat ako analytické predlzenie pozdlz krivky,
ba dokonca pozdlz lomenej &ary. Staci pospéajat tseckami stredy analytickych prvkov vystupujtcich
v definicii analytického predlzenia.

Dokazeme teraz, Ze ,,vysledok“ analytického predizenia pevne daného analytického prvku (f, D)
pozdlz pevne danej krivky 7 je vidy jednoznaéne dany — [ubovolné dve analytické predizenia (f, D)
pozdlz v st totiz v relacii =.

Tvrdenie 12.4.4. Nech (f, D) je analyticky prvok so stredom a € C, v: [, 5] — C je krivka takd, Ze
y(a) =a a (g1, E1), (g2, Fo) st analytické prediZenia (f, D) pozdlz ~. Potom (g1, E1) = (g2, Es).

Doékaz. Nech (fi,D1),...,(fn,Dn) st analytické prvky z definicie 12.4.1, vdaka ktorym je prvok
(g1, E1) analytickym predlzenim (f, D) pozdlz v; nech a = 1o < ... < t, = B st zodpovedajiice
indexy v zmysle poznamky 12.4.2. Nech (f1,D1), ..., (fm, Dm) st takéto analytické prvky pre (g2, Es)
aa =1y <...<ty, =70 st prislusné indexy. Potom existuje € > 0 také, ze pre vietky t € [a, ]
je okolie D[t] := D(~(t),e) stasne podmnozinou Dy, pre k € {1 .,n} takeé, ze t € [ty_1,tx] =: Iy
a podmnoZinou b pre j € {1,...,m} také, ze t € [tj 1,75]] I Ev1dentne aehnliapBel,ni,
Pre vietky ¢ € [a, B3] deﬁnujme funkcie f[t]: D[t] — C a f[t]: D[t] — C ako f[t](z) = fu(z )
a f[t](z) = f;(2) pre vietky z € D[t] a k € {1,...,n},j € {1,...,m} takeé, 7e t € I N I;. Ak pritom
t=t,prepe {1 —1} je stcasne t € I, at € I,11 —a podobne ak t = t, pre ¢ € {1,...,m — 1},
je stcasne t € I at E Iq+1 Uvedené definicia funkcii f[t] a It [t] je ale napriek tomu korektné, pretoze
pret =t,je D[t ] C DpNDp41 akedze (fpt1, Dpt1) je priamym analytickym predlzenlm prvku (fp, Dp),
musi pre Véetky z € D p N Dpi1 byt fp(2) = fp1(2); podobne pre t = t, je Dt] C D ﬂDqH a kedZe je

(qu, q+1) priamym analytickym predlZzenim (fq, q), je fq( z) = qu( z) pre vietky z € D N DqH

SPrislugnost okoli Dy, a D]- k intervalom obsahujtcim ¢ je potrebné zdoraznit, pretoze krivka vy nemusi byt jednoduché.
Mbzu teda existovat t,t’ € [a, B] také, ze t # t', ale y(t) = (') a v takom pripade je tento bod stredom dvoch zhodnych
okoli D[t] a D[t]. Je ich teda nutné medzi sebou odlisit v pripade, Ze zodpovedaju réznym Dy, resp. D;.
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Kedze st navyse f[t] a f[t] pre vietky ¢ € [o, ] ziZeniami holomorfnych funkeii, st obe tieto funkcie
holomorfné na DIt]; v nasledujiicom tak moZeme skiimat analytické prvky (f[t], D[t]) a (f[t]. D[t])

v zavislosti na parametri ¢ € [a, B]. Staci pritom ukdzat, Ze 18] = flB] — kedze totiz pre vietky
z € D[f] € D, N Dy, je fIB](2) :Afn(z) a f[Bl(z) = fm(z), pricom D[] ma v oblasti D, N Dy,
hromadny bod, z rovnosti f[8] = f[8] pomocou vety o jednoznacnosti dostaneme f,,(2) = fm(z)

pre vietky z € D, N Dy okolia D,, a D,, pritom maja rovnaky stred v(3), z ¢oho vyplynie, Ze nutne
<917E1) = (f?’w D) EN(meﬁm) :~(927 EQ)

Nech teraz o« = t9 < ... < t; = [ st indexy také, ze pre £ = 1,...,s existuju k € {1,...,n}
aje{l,...,m} takeé, ze Iy := [iy — 1,4;] C I; N fj. Indukciou vzhladom na ¢ = 1,...,s dokdZeme,
7e pre vietky t € I, je f[t] = f[t].

Pre £ =1 a ubovolné ¢ € Lijetel A le — funkcia f[t] je teda ztZenim fi na D[t] a funkcia f1
je zazenim fi na D[t]. Av3ak (f1,D1) = (f1,D1) = (f, D), takze naozaj f[t] = f[t].

Nech teraz tvrdenie plati pre £ = ¢ < s a uvazujme ¢ = ¢ + 1. Potom t~q € qu a stcasne t~q € fq+1.
Z indukéného predpokladu teda fltg = flig)- Prek € {1,... ;ntaje{l,...,m} také, ze I C LN,
ale stcasne D[t,] C Dy N Dj, pricom D[t,] ma v oblasti Dy N D; hromadny bod a pre vietky z € D[t,]
je fr(2) = flt](z) = f[fq] (2) = fj(z) Z vety o jednoznacnosti teda dostavame f(z) = fj(z) pre vietky
2 € Dy N Dj. Pre Tubovolné ¢ € I,y ale D[t] C Dy N D;, pricom f[t] je zaZenim f;, na D[t] a f1t] je
zGZenim fj na D[t]. Z uvedeného teda vyplyva, ze f[t] = f[t].

Pre vietky t € [a, 8] teda skutocne f[t] = f[t] - a Specidlne f[B] = f[3], ¢o bolo treba dokézat. [

Tvrdenie 12.4.5. Nech S C C je oblast a (f,D),(g,E) su analytické proky v S také, Ze (g, E) je
analytickym predlZenim (f, D) pozdlz krivky v: [o, B] — C s v* C S. Potom je (g, E) analytickym
predlzenim (f,D) v oblasti S.

Dokaz. Nech sa (f1,D1),...,(fn, Dy) analytické prvky, vdaka ktorym je analyticky prvok (g, E) ana-
lytickym predlzenim (f, D) pozdlz krivky v; nech dalej a =ty < ... < t, = /3 st prislusné indexy
v zmysle poznamky 12.4.2. Pre k = 1,...,n uvazujme interval I := [t;_1,{;] a prislusné zuzenie
Yk =y | Ij krivky v; mnoZina v, je potom kompaktné, a teda existuje € > 0 také, Ze pre vSetky z € 7y
je D(z,e) € SNDy. Vdaka kompaktnosti v} tiez existuje jej kone¢né pokrytie okoliami ﬁk,l, - 7‘Dk7mk
so stredom v v} a o polomere €, pricom 7 (tx—1) € lA)kjl ay(ty) € Ek,mk- Prek=1,...,nafl=1,...,my
potom moZno funkciu fuz lA)kyg — C korektne definovat pre vSetky z € Dk,g ako fk,g(z) = fr(2).
Lahko vidiet, 7e (f, D), (fi1, D11),- s (Frm Dim)s -5 (Ffats D)o (Famns Dima)s (9, E) je po-
stupnost analytickych prvkov, vdaka ktorym je (g, F) analytickym predlzenim (f, D) v oblasti S. [

V definicii analytického predlzenia pozdiz krivky sme — najmé kvoli siladu tohto pojmu s intuiciou
— pozadovali, aby stredy jednotlivych analytickych prvkov lezali na danej krivke. DokaZeme teraz
tvrdenie, podl'a ktorého je tato podmienka nepodstatné za predpokladu, Ze je krivka stale jednotlivymi
analytickymi prvkami pokryta. Jeho znenie je znazornené aj na obrazku 12.5.

Obr. 12.5: Tvrdenie 12.4.6.
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Tvrdenie 12.4.6. Nech (f, D) je analyticky prvok so stredom a € C, v: [, B] — C je krivka takd,
Ze v(a) = a, (g,F) je analytické predizenie (f,D) pozdlz v a (fi,D1),...,(fn,Dn) st analytické
pruky zodpovedajice tomuto prediZeniu podla definicie 12.4.1. Nech 4: [&, 3] — C je krivka takd, Ze
Y(@) = y(a) a @(B) = ~(B), pricom existuji ¢isla o = tg < ... < t, = (B také, ze pre k = 1,...,n
krivka 4y, == 4 | [tk—1,%x] spliia 47 C Dy. Potom existuje analytické predizenie (9, E) proku (f, D)
pozdlz 4, pricom (g,E) =(g9,F).

Doékaz. Myslienka doékazu spocéiva v pokryti krivky 4 dostatoéne malymi okoliami tak, aby kazdé
z tychto okoli bolo podmnozZinou prislusného ,,velkého* okolia Dj. Nasledne moZno skumat analy-
tické predizenie prvku (f, D) pozdlz %, vyuzivajtce tieto okolia — vdaka tvrdeniu 12.4.4 na vybere
okoli nezalezi.

Presnejsie: kedze je pre k = 1,...,nmnozina v} C Dy kompaktna, existuje e > 0 takeé, Ze pre vietky
z € 4} je D(z,€) C Dy. Vdaka kompaktnosti 4} potom existuje aj nejaké konecné pokrytie 4 okoliami
tohto typu. Vyberme takéto koneéné pokrytie pre kazda z kriviek 4 pre £ = 1,...,n a zahriime don
vidy aj okolia D(3(fx_1),¢) a D(3(ix),€). Zistujeme potom, Ze existujt &sla & = so < ... < Sy = f3
také, ze pre k =0,...,nje t, = s;j pre nejaké j € {0,...,m}, apre j =0,...,m okolie Ej so stredom
v s, pricom Dy=Daprej=1,...,mje (A T [sj—1,85])* C Dj a ﬁj C Dy pre k € {1,...,n} splia-
juce s € [ty_1,1x]. Ak na takomto okoli D; definujeme funkciu f;: D; — C predpisom f;(z) = fi(2)
pre vSetky z € Dj a ak vezmeme fy = f, bude pre j = 1,...,m analyticky prvok ( fj,Dj) eviden-
tne priamym analytickym predizenim prvku (ﬁj_l, fj_l). Naozaj teda existuje analytické prediZzenie
(5, E) = (fm, Dm) prvku (f, D) pozdlz krivky 4, pricom pre vietky z € D, C Dy, je fn(2) = fu(2).
Nutne teda musi byt g(z) = fm(z) = fu(z) = g(z) pre vietky z € E, z &oho vyplyva, ze naozaj

(9, E) = (9, E). .

12.5 Jednohodnotové globalne analytické funkcie

Analyticky prvok v nejakej oblasti S so stredom v bode a nazveme neobmedzene prediZitelngm v S,
ak existuje jeho analytické predlZenie pozdlz Tubovolnej krivky v oblasti S za¢inajicej v bode a.

Definicia 12.5.1. Nech S C C je oblast a (f, D) je analyticky prvok v S so stredom a € S. Hovorime,
7e prvok (f, D) je neobmedzene prediZitelng v S, ak pre l'ubovolnt krivku «: [, 3] — C taku, ze v* C S
a y(a) = a existuje analytické predlzenie prvku (f, D) pozdlz 7.

Zaviedli sme uz konvenciu stotoznovania jednohodnotovych globalnych analytickych funkcii f v ob-
lasti S' s ,,beznymi* analytickymi funkciami f: S — C — kazda jednohodnotové globélna analyticka
funkcia f v S totiz zrejme takuto funkciu f definuje. UkdZeme teraz, Ze aj naopak ku kazdej ,beznej*
analytickej funkcii f: S — C zodpoveda jednohodnotova globélna analytickd funkcia f v S; kazdy ana-
lyticky prvok tejto funkcie je navyse v S neobmedzene predlzitelny. Toto pozorovanie — ktoré pre jeho
doélezitost sformulujeme ako vetu — umoziuje pojmy ,,beznej“ analytickej funkcie na S a jednohodno-
tovej globalnej analytickej funkcie v S nadobro stotoznit.

Veta 12.5.2. Nech S C C je oblast a f: S — C je holomorfnd funkcia. Potom existuje jednohodnotovd
globdlna analytickd funkcia £ v S takd, Ze pre vietky z € S je [£(2)] = {f(2)}. KaZdy analyticky prvok
funkcie £ je navyse neobmedzene prediZitelng v S a

f={(fp,D)|3ae S Ire(0,00)U{ox}: D=D(a,r) CS; Vz€ D: fp(z) = f(2)}.

Dékaz. Prekazdée T' C S oznacme ako fr: T'— C ztaZenie funkcie f naT. Necha € S, r € (0,00)U{o0}
a D = D(a,r) je okolie také, ze D C S. Staci dokazat, Ze pre lubovolna volbu takéhoto D je analyticky
prvok (fp, D) neobmedzene predlzitelny v S, pricom pre kazdu krivku v: [a, 5] = Csvy* C S, v(a) = a
a v(B) = b je analytickym predlzenim prvku (fp, D) pozdlz v prvok (fg, E) pre nejaké E = D(b, s),
kde s € (0,00) U {0} a ECS.
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Nech je ale takato krivka v dana. Uvazujme pokrytie krivky v okoliami Dy, ..., D, C S so stredmi
v v* takymi, ze D; = D a pre nejaké redlne &isla o = tg < ... < t, = fak =1,....n je
(v T [tk—1,tk]))* € Dg. Potom (fp,,D1) = (fp, D) a lahko vidiet, Ze pre k = 1,...,n — 1 je analy-
ticky prvok (fp,,,, Dk+1) priamym analytickym predizenim prvku (fp,, Dy). Analytickym predlZzenim
prvku (fp, D) pozdlz v je tak prvok (fp,,Dy), pricom zrejme (fp, ,Dy) = (fg, E). Preto je (fg, E)
naozaj (az na = jedinym) analytickym predizenim (fp, D) pozdlz v. KedZe v moze byt Iubovolna
krivka s danymi vlastnostami, je prvok (fp, D) neobmedzene predlzitelny v S. O

12.6 Veta o monodromii

Dokazeme teraz vetu o monodromai, ktora sa pravom poklada za jednu z najddlezitejsich viet o analy-
tickom predlzeni. Hovori nasledujiice: ak je oblast S jednoducho sivisld a nejaka globalna analyticka
funkcia f v S obsahuje analyticky prvok neobmedzene predlzitelny v S, tak je funkcia f na S jedno-
hodnotova a splyva s ,beznou holomorfnou funkciou f: § — C.

Po ceste k vete monodromii v skuto¢nosti dokdZeme aj o nieco silnejsie tvrdenie: ak je S Tubovolna
— teda nie nutne jednoducho stvisla — oblast a (f, D) je neobmedzene predlzitelny analyticky prvok
v S, tak je jeho analytické predlzenie rovnaké pozdlz Tubovolnych dvoch kriviek homotopickych v S
a zacinajucich v strede okolia D.

Veta 12.6.1. Nech S C C je oblast, a € S je bod, D C

v, [a, B] = C s v*,9* C S, v(a) = Y(a) = a av(B) = A(B) su krivky homotopické v S ako krivky
s rovnakymi pociatocngmi a koncoviymi bodmi a (f, D) je analyticky prvok neobmedzene prediZitelns
v S. Nech (g, E) je analytické prediZenie proku (f, D) pozdiZ v a (g, E) je jeho prediZenie pozdlz 4.
Potom (g9,E) = (4§, E).

S je kruhové okolie so stredom v bode a,

Dékaz. Tvrdenie dokdZeme pre pripad, ze krivka 4 vznikne z v elementarnou deforméciou; rozsirenie
na pripad homotopickych kriviek je uz potom vd'aka vete 5.3.12 iba otazkou jednoduchého induktivneho
argumentu. Ramcova myslienka dokazu — definovat dostatoéné mnozstvo kriviek® , medzi v a 4* a kazdé
dve po sebe iduce z tychto kriviek pokryt spolo¢nou konecnou postupnostou okoli pod S tak, aby bolo
mozné aplikovat tvrdenie 12.4.6 — je znazornena na obrazku 12.6.

Obr. 12.6: Myslienka dokazu vety 12.6.1.

K danej dvojici kriviek prislicha nejaké pokrytie konvexnymi oblastami Si,...,S, a rozdelenie
na podkrivky vi,...,7, a d1,...,%, ako v definicii 5.3.10. Bez ujmy na vSeobecnosti mozeme predpo-
kladat, ze pre k = 1,...,n sa krivky v a 4 parametrizované rovnakym intervalom [ay, fi]. Z konvex-

nosti mnoziny Sy vyplyva, ze pre vietky ¢ € [oy, Bk lezi usecka [y (t), 4% (t)] cela v Sk. To znamené,

5V principe péjde o krivky ,,vyrobené“ homotépiou z v na 4.
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ze pre vietky ¢ € [0, 1] mozeme definovat krivku ~x[q]: [k, Br] — S pre vSetky t € [ag, S| predpisom

Yelal () = 7(t) + q(5(t) — (1))
Pre kazdé ¢ € [0,1] je spojenie tychto kriviek, v[q] := m[q] +
a =~(a) =4(a) do bodu v(8) = 4(8); navyse plati v[¢g]* C 5.

MnozZina
Q= |J "
qe [071]

...+ Tnlg], krivkou vedicou z bodu

je kompaktné, a teda existuje € > 0 také, ze pre vSetky z € @ je D(z,¢) C S. Ak navySe

d = sup{|9x(t) —w@®)| | k € {1,...,n}; t € [, Br},

vezmime m € N\ {0} také, ze d/m < /2. Pre j = 0,...,m —1 a k = 1,...,n potom mnoZinu
Yel7/m]*Uvk[(7+1)/m]* mozeme pokryt kruhovymi okoliami typu D(z, ), kde z € v;[j/m]*. MnoZina
Yel7/m]* Uk[(F + 1)/m]* je navySe kompaktn4, a teda existuje aj takéto koneéné pokrytie.

KedZe je analyticky prvok (f, D) neobmedzene predlzitelny v S, musi existovat jeho analytické
prediZenie pozdlz kazdej z kriviek v[j/m] pre j = 0,...,m. Po zjednoteni spominanych kone¢nych
pokryti vi[j/m]* Uk[(j + 1)/m|* cez vietky k € {1,...,n} a pridani najviac dvoch dalsich okoli
o polomere ¢ (so stredmi v spoloénom poé¢iato¢nom resp. koncovom bode uvazovanych kriviek) tak su
pre j = 0,...,m — 1 a krivky v[j/m], v[( + 1)/m] splnené predpoklady tvrdenia 12.4.6. Pre analy-
tické predlZenia (g, E;), (gj+1, Ej+1) prvku (f, D) pozdlz kriviek v[j/m] resp. y[(j + 1)/m] teda plati
(95, Ej) = (gj11, Ej+1). Kedze vsak 4[0] = v, v[1] = 4 a relacia = je tranzitivna, nutne (g, E) = (g, E),
¢o bolo treba dokazat. O

Z prave dokézanej vety mozno uz ako pomerne jednoduchy dosledok odvodit aj samotni wetu
0 monodrémii.

Veta 12.6.2 (O monodrémii). Nech S C C je jednoducho siuvisld oblast a f je globdlna analytickd
funkcia v S obsahugjica nejaky analyticky prvok (f, D) neobmedzene prediZitelng v S. Potom je funkcia
f na S jednohodnotovd.

Dékaz. Predpokladajme, Ze globédlna analyticka funkcia f v S za danych predpokladov nie je jednohod-
notova. Potom existuje dvojica analytickych prvkov (g1, E1), (g2, E2) v f s rovnakym stredom b € S
takych, Ze (g1, E1) Z (g2, E2). KedZe prvky (g1, E1), (92, E2) a (f, D) vSetky patria do f, sa vSetky
tieto prvky navzajom svojimi analytickymi predlzeniami v S — videli sme pritom, Ze v takom pripade
ide aj o analytické predlzenia pozdiz nejakych kriviek.

Nech (f, D) ma stred a € S a nech v s v* C S je krivka z bodu a do bodu b taka, ze (g1, E1) je
analytickym predlzenim prvku (f, D) podla 5. Nech 4 s 4* C S je krivka z a do b taka, Ze (go, Fo) je
predlzenim prvku (f, D) podla 4. Krivky v a 4 potom podla tvrdenia 5.5.6 musia byt v jednoducho
stuvislej oblasti S homotopické ako krivky s rovnakymi po¢iatoénymi a koncovymi bodmi. Prvok (f, D)
je navyse neobmedzene predizitelny v S a z vety 12.6.1 tak dostavame (g1, E1) = (go, Fo): spor. O

12.7 Riemannove plochy

Pri stidiu globélnych analytickych funkcii sa ¢asto zide ich prirodzenéd geometrickd interpretacia po-
mocou takzvanych Riemannovych ploch. Viachodnotové funkcie definované na nejakej podmnozine
komplexnej roviny totiz mozeme rovnako dobre povazovat aj za jednohodnotové funkcie definované
na ploche takej, ze analytické predlzenie pozdlz dvoch ,neekvivalentnych“ kriviek z nejakého bodu a
vzdy vedie do roznych bodov na tejto ploche. Tak napriklad prirodzeny logaritmus mozno reprezentovat
na ,Spiralovej ploche“ okolo z = 0, kde kazda holomorfnéa vetva logaritmu (napriklad) na C\ (—oo, 0]
zodpoved4 jednému ,,poschodiu” tejto $piraly. Riemannovymi plochami sa pre zna¢nu rozsiahlost a ne-
trividlnost tejto problematiky zaoberat nebudeme — ¢itatela len odkédzeme na [7].
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Cvicenia
1. Najdite globalnu analytickd funkciu obsahujtacu ako svoju vetvu:

a) Funkciu f(z) = 07, 2" definovani na D(0,1).

b) Hlavna vetvu Ln z = Ing(z) prirodzeného logaritmu definovani na C \ (—o0, 0].

Lnz)/n

c¢) Hlavnu vetvu el mocninovej funkcie z'/™ pre nejaké prirodzené n > 2, definovant

na C\ (—o0,0].

d) Hlavnu vetvu e ?

mocninovej funkcie z% pre o € C, definovant na C \ (—o0, 0].

e) Nejaku funkciu meromorfna na C.

2. Ak existuje, najdite globalnu analytickt funkciu f s definiénym oborom S takd, ze pre vsetky
z € S je [f(z)] alebo jednoprvkova, alebo dvojprvkovd mnozina, pri¢om obidva tieto pripady
nastand pre aspon jedno z € S.

3. Ak existuje, najdite globalnu analytickd funkciu f taku, Ze pre vietky n € N\ {0} existuje z € C,
pre ktoré je [f(z)] presne n-prvkova mnozina.

4. Videli sme, 7e kazdé analytické predlzenie je analytickym predfzenim pozdlz nejakej lomene;
Giary. Dokazte, ze rovnaké tvrdenie je pravdivé aj pre analytické prediZenia pozdlz lomenych ar
v = [ag,a1] + [a1,a2] + ... + [an—1,ay] takych, ze n € N, ag,a, € Caprek =1,...,n—1 je
ap = pr + iqx, kde pg, qr € Q.

5. Dokéazte Poincarého-Volterrovu vetu, podla ktorej je pre kazda globalnu analyticka funkciu f
a kazdé z € C mnozina [f(z)] nanajvys spo¢itatelne nekoneéna.
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Kapitola 13
Singularity

V stvislosti s Laurentovymi radmi sme sa uz zaoberali izolovanymi singularitami jednohodnotovych
analytickych funkcii. Koncept analytického predizenia nam v nasledujicom umozni definovat a sktimat
singularity vo vSeobecnosti — to znamena tak, aby tento pojem zahffial ako neizolované singularity, tak
aj singularity viachodnotovych analytickych funkcii.!

13.1 Definicia singularity

Pod singularitou analytického prvku (f, D) budeme rozumiet bod na hranici kruhového okolia D taky,
7e neexistuje ziadne priame analytické prediZenie prvku (f, D) so stredom v tomto bode.

Definicia 13.1.1. Nech (f, D) je analyticky prvok. Bod b € C je singularitou analytického prvku
(f,D), ak b € D\ D a neexistuje Ziaden analyticky prvok (g, E) so stredom v b, ktory je priamym
analytickym predizenim prvku (f, D).

Poznamka 13.1.2. Namiesto b € D\ D by sme v definicii singularity mohli pozadovat iba b € D;
pre kazdé b € D totiZ zrejme existuje priame analytické predizenie prvku (f, D) so stredom v b — staci
vziat funkciu f na okoli bodu b dostatoéne malom na to, aby bolo celé sucastou D. Prislusnost bodu b
do D je naopak zasadna — singularitou totiz chceme nazvat iba bod v bezprostrednej blizkosti oblasti,
na ktorej je funkcia definované a analyticka.

Definiciu singularit globalnej analytickej funkcie v oblasti S musime sformulovat o nie¢o opatrnejsie,
s pouzitim pojmu analytického prediZenia pozdiz krivky — pojde o , prekazky* pri analytickom predizeni
pozdlz kriviek. Lahko vidiet, Ze ak pre nejaku krivku v: [a, 8] — C existuje analytické predizenie
nejakého analytického prvku (f, D) pozdlz v | [a,7], kde 7 € [a,f8), tak takéto predizenie musi
existovat aj pozdlz v | [a,t] pre vetky t z nejakého intervalu [1,7 + ¢, kde € > 0. Ak teda existuje
nejaké 7 € [, B] také, Ze neexistuje analytické predizenie (f, D) pozdlz v | [, 7], nutne musi existovat
aj najmensie také 7. Tato myslienka je v pozadi za nasledujticou definiciou.

Definicia 13.1.3. Nech S C C je oblast a f je globalna analytické funkcia v S. Bod b € C je singularita
funkcie f, ak existuje analyticky prvok (f, D) funkcie f so stredom v bode a € S a krivka 7: [a, f] — C
s v(a) = a, v(B) = b a nasledujicimi vlastnostami:

(i) Pre vietky t € [, B) je ¥(t) € S a existuje analytické predizenie prvku (f, D) pozdiz v | [a, t].

(i) Neexistuje ziadne analytické predizenie prvku (f, D) pozdlz krivky ~.

1 Cize globalnych analytickych funkcii v nejakej oblasti S C C, resp. ekvivalentne vetiev nejakej globélnej analytickej
funkcie.
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Poznamka 13.1.4. Singularitou globalnej analytickej funkcie teda nazveme Tubovolny bod b, ktory
je singularitou aspori jednej z jej vetiev.? Nemusi pritom ist o singularitu kazdej vetvy definovanej
v blizkosti bodu b, ako mozno vidiet na priklade funkcie 1/1n z. D4 sa ukazat, ze tato funkcia — okrem
toho, Ze je singularna v bode 0 — ma singularitu aj v bode 1: ide o jednoduchy poél sposobeny tym,
Ze existuje vetva prirodzeného logaritmu taka, ze In1 = 0. Existuji v8ak aj iné vetvy prirodzeného
logaritmu na okoli bodu 1, pricom zodpovedajice vetvy funkcie 1/1Inz st v bode 1 analytické.

Dokazeme teraz, ze singularity analytickych prvkov funkcie f st sticasne aj singularitami samotne;j
tejto funkcie.

Tvrdenie 13.1.5. Nech S C C je oblast, f je globdlna analytickd funkcia v S a (f, D) je analyticky
prvok funkcie f. Ak b € C je singularita proku (f, D), je tento bod aj singularitou funkcie f.

Dékaz. Nech a je stred kruhového okolia D. Bod b lezi na hranici tohto kruhového okolia. Uvazujme
tsecku [a,b]. Pre vietky t € [0,1) zjavne existuje analytické predlzenie prvku (f, D) pozdlz tsecky
[a,b] T [0,t] — je nim Tubovolny analyticky prvok (g, F) taky, Ze E je kruhové okolie bodu [a, b](t)
obsiahnuté v D a g je ztZenie funkcie f na E. Analytické predizenie prvku (f, D) pozdlz [a,b] ale
neexistuje, pretoze by zrejme bolo priamym analytickym predizenim prvku (f, D) so stredom v jeho
singularite b. O

Poznamka 13.1.6. Existuje globalna analyticka funkcia f so singularitou v bode b € C taka, Ze b nie
je singularita ziadneho analytického prvku (f, D) funkcie f.

Poznamka 13.1.7. Je jednoduchym cvi¢enim dokézat, Ze singularitami jednohodnotovej analytickej
funkcie f: D — C, kde D C C je nejaké kruhové okolie, st prave vSetky singularity analytického prvku
(f, D). Tento fakt budeme v nasledujiicom volne vyuzivat.

V minulej kapitole sme videli, Ze kazda ,bezni* jednohodnotovi analytickd funkciu f: S — C
na nejakej oblasti S C C moZno chapat aj ako globalnu analytickt funkciu na tejto oblasti. Mali by sme
sa teda presvedcCit o tom, Ze izolované singularity — tak, ako sme ich chapali doteraz — sa singularitami
aj podla novej definicie. Presnejsie teraz ukazeme, Ze tato vlastnost plati pre poly a podstatné izolované
singularity; odstrdnitelné singularity vz dalej za singularity povaZovat nebudeme.

Tvrdenie 13.1.8. Nech S C C je oblast, f: S — C je holomorfnd na S a b € C je pol alebo podstatnd
1zolovand singularita funkcie f. Potom je bod b singularitou funkcie f.

Dékaz. 7 definicie izolovanej singularity vyplyva, Ze pre nejaké r > 0 musi byt D’(b,r) C S. Vezmime
Tubovolné a € D'(b,r/2) a D := D(a,|b — al) € D'(b,r); nech fp je zaZenie f na D. Potom je
(fp, D) analytickym prvkom funkcie f. Keby teraz bod b nebol singularitou funkcie f, muselo by
existovat analytické predizenie (g, E) prvku (fp, D) pozdlz tsecky [a,b]. Bez ujmy na vieobecnosti
predpokladajme, ze E = D(b,s), kde 0 < s < r. Funkcia g sa zhoduje s funkciou f na mnoZine
D(b,s) N D a prstencové okolie D'(b, s), na ktorom sa definované obidve funkcie f a g, ma hromadny
bod v D(b,s) N D. Z vety o jednoznacnosti teda vyplyva, Ze pre vietky z € D'(b,s) je f(z) = g(z)
a vdaka jednoznacnosti koeficientov Laurentovych radov zistujeme, Ze Laurentovym radom funkcie f
v bode b musi byt Taylorov rad funkcie g v tomto bode. Bod b teda moze byt nanajvys odstranitelnou
singularitou funkcie f, ¢o je spor s predpokladmi tvrdenia. O

2Kazda globalna analyticka funkcia je totiz zaroven aj svojou vetvou, a teda kazd4 singularita globalnej analytickej
funkcie je naozaj singularitou niektorej jej vetvy. Ak je naopak b € C singularitou niektorej vetvy globalnej analytickej
funkcie £, musi byt tento bod ,,prekazkou® pri analytickom predlzeni nejakého prvku (f, D) z danej vetvy pozdlz nejakej
krivky ~y; ten isty prvok (f, D) a tu istu krivku « ale potom mdzeme pouzit na dokaz, ze b je singularitou funkcie f.
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13.2 Singularity na kruzZnici konvergencie Taylorovho radu

Zaoberajme sa teraz na chvilu ,maximélnymi“ analytickymi prvkami — ¢iZe obormi konvergencie
Taylorovych radov analytickych funkcii. UkdZeme najprv, Ze na hranici kazdého takéhoto analytic-
kého prvku, ak je ohraniceny, musi byt aspon jedna singularita.

Veta 13.2.1. Nech f je funkcia holomorfnd v bode a € C, s Taylorovym rozvojom
o
f(z) = Z cn(z—a)" (13.1)
n=0

o konecnom polomere konvergencie ¢ > 0. Potom na hranici k(a, 0)* analytického prvku (f, D(a,0))
existuje aspon jedna singularita tohto prvku.

Doékaz. Za ucelom sporu predpokladajme, Ze ziaden bod z € k(a, 0)* nie je singularitou (f, D(a, 0)).
Pre vietky w € k(a, 0)* potom existuje priame analytické predizenie (g[w], D(w,e[w])) analytického
prvku (f, D(a, 0)) so stredom v bode w, kde e[w] > 0. Systém

(D(w,e[w]) | w e k(a, 0)")

je otvorenym pokrytim kruznice k(a,0)*; z kompaktnosti tejto kruznice teda vyplyva, Ze existuje
kone¢na mnozina bodov J C k(a, 0)* taka, ze (D(w,e[w]) | w € J) je koneénym otvorenym pokrytim
r(a, 0)*. Nech € > 0 je také, ze pre vietky z € k(a, 0)* plati D(z,¢) C J, e D(w,e[w]). Lahko potom
vidiet, ze funkcia F': D(a, o+ ¢) — C definovana pre vsetky z € D(a, 0 + €) predpisom

[ f2) ak [z —a| < o,
F(z) = { glw](z) ak w € J je také, ze z € D(w,e[w)])

je holomorfna na D(a, 0+ €) a na D(a, o) sa zhoduje s funkciou f. Z vety o Taylorovych radoch tak
vyplyva, Ze polomer konvergencie radu (13.1) musi byt aspon ¢ + &: spor. O

Priklad 13.2.2. Polomer konvergencie Maclaurinovho radu funkcie
1 S
D DL
n=0
je rovny jednej, pri¢om jedinou jej singularitou v £(0,1)* je bod a = 1. Rad pritom nekonverguje v ziad-

nom bode (0, 1)*. Divergencia Taylorovho radu v nejakom bode na hranici jeho oboru konvergencie
teda este nie je zdrukou existencie singularity v tomto bode.

Priklad 13.2.3. Z prikladu 3.2.4 tieZ vieme, Ze mocninovy rad s kone¢nym polomerom konvergencie
0 > 0 moze konvergovat na celej kruznici konvergencie; funkcia tymto radom dané pritom podla
vety 13.2.1 musi mat v (0, 0)* aspon jednu singularitu. Konvergencia Taylorovho radu v bode na hranici
jeho oboru konvergencie teda nevylucuje existenciu singularity v danom bode.

Priklad 13.2.4. UkaZeme teraz, Ze funkcia

HOEDSE
n=0

definovand na D(0,1) — kde polomer konvergencie radu je oc¢ividne rovny jednej — mé singularitu
v kazdom bode (0, 1)*: hovorime, ze mnozina (0, 1)* tvori prirodzent hranicu funkcie f.
Skuto¢ne — Tahko vidiet, ze pre vSetky z € D(0,1) je

f(z):z+f(22):z+z2+f(z4):...: 22j+f(225), (13.2)

kde s € N je Tubovolné.
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Ak teda $pecialne pre nejaké n € N vezmeme za z lubovolni 2"-t odmocninu jednej prenasobent
nejakym 7 € (0,1) — t. j. z = re?7/2" kden € N, k € {0,...,2" — 1} ar € (0,1) - tak z (13.2)
pre s = n dostavame

n—1
f(’l“eiQkﬂ/Qn) _ ZTQJ ei2k7r/2"*3 + f(?“Qn).
7=0

Pre fixné n potom
lim ‘f(reiQk”/Qn)‘ > —n+ lirq |f(r*)] = o0, (13.3)
r—

r—1

kde posledna rovnost vyplyva zo skutoc¢nosti, ze vdaka kladnosti ¢isla r pre v8etky s € N plati

s—1 s—1

H GRS (S | =2 ) e

=0 §=0
a teda aj

lim ‘f(rQn)‘ > lim ZTWH =3

r—1 r—1

pre vietky s € N. Z (13.3) a z Riemannovej vety o odstranitelnych singularitach teda vyplyva, Ze
v ziadnej 2"-tej odmocnine jednej nemoéze existovat priame analytické predlzenie prvku (f, D(0,1)) —
ide teda o jeho singularitu. NavySe je zrejmé, Ze mnozina singularit analytického prvku (f, D(0,1)
na #(0,1)* musi byt uzavreta.? Kedze ale

{e2km/2" | neN; ke{0,...,20 —1}} = £(0,1)%,

musi byt mnoZina tychto singularit rovna celej kruznici (0, 1)*, ¢o bolo treba dokazat.

13.3 Zakladna klasifikacia singularit

Singularity globalnych analytickych funkcii v danej oblasti S moZno v prvom rade rozdelit na izolované
a neizolované (alebo podstatné*). Pojem izolovanej singularity pritom bude zahfiiat izolované singula-
rity jednohodnotovych funkcii — ¢ize poly a podstatné izolované singularity® — tak, ako sme ich chéapali
doteraz, ako aj singularity viachodnotového typu, ktorymi buda takzvané body vetvenia.

Definicia 13.3.1. Nech S C C je oblast a f je globalna analytické funkcia v .S. Bod b € C je izolovand
singularita funkcie f, ak existuje r > 0, analyticky prvok (f, D) funkcie f so stredom v bode a € S
a krivka v: [a, 5] = C s v(a) = a, v(8) = b a nasledujucimi vlastnostami:

(i) Pre vietky ¢ € [a, B) je v(t) € S a existuje analytické predizenie prvku (f, D) pozdlz v | [« 1].
(i) Neexistuje ziadne analytické predizenie prvku (f, D) pozdlz ~.

(iii) Nech 7 € [a, B) je také, ze (v | [1,8])* € D(b,7) a (g, E) je analytické predlzenie prvku (f, D)
pozdlz v | [, 7] také, ze E C D'(b,r). Potom je (g, E) neobmedzene predizitelny v D’(b,r).

Bod b € C je neizolovand alebo podstatnd singularita funkcie f, ak pren existuje prvok (f, D) a krivka v
s vlastnostami (i) a (i7) tak, ze pre ziadne r > 0 nie je splnené vlastnost (7i).

3 Ak existuje priame analytické predizenie (g, E) prvku (f, D(0,1)) so stredom v nejakom bode a € (0, 1)*, existuje
toto predizenie aj vo vietkych bodoch x(0,1)* N E; komplement mnoziny tychto singularit je teda otvorena mnozina.

4 Podstatna singularita® je teda nie¢o iné ako ,podstatna izolovana singularita®.

®Odstranitelné singularity uz za singularity nepovazujeme.
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Izolovana singularita je teda prekazkou pri analytickom predizeni pozdlz krivky -+, ale ide o je-
dint taktto prekazku na celom okoli D(b,7).% Z uvedenej definicie je bezprostredne zrejmé, ze kazda
izolovana singularita globalnej analytickej funkcie f v S je skuto¢ne singularitou funkcie f.

Poznamka 13.3.2. V nasledujicom budeme trochu nepresne hovorit o analytickom predlzeni pozdlz
kruznice (b, s) pre lubovolny analyticky prvok so stredom v k(b, s)*. Rozumieme pritom samo sebou, Ze
ide o kruznicu ,,zrotovani“ tak, aby jej zaciatok a koniec bol zhodny so stredom daného analytického
prvku. Rovnaka konvenciu budeme obc¢as pouZivat aj pre [ubovolni jednoducht uzavretu krivku ~
prechadzajtcu cez stred daného analytického prvku.

Poly a podstatné izolované singularity jednohodnotovych funkcii si zjavne Specidlnymi pripadmi
izolovanych singularit. Mali by sme eSte tieto pojmy definovat aj pre globalne analytické funkcie v ne-
jakej oblasti .S, resp. pre ich vetvy.

Pre takuto funkciu f budeme hovorit o singularite b € C jednohodnotového typu prave vtedy, ked
je jednohodnotova — pri oznaceni z predchadzajicej definicie — vetva funkcie £ na D’(b, r) obsahujtca
analyticky prvok (g, E). To znamen4, Ze analytickym predlzenim Iubovolného analytického prvku tejto
vetvy pozdlz l'ubovolnej krivky v D'(b,r) s pevnym koncovym bodom ziskame vzdy (aZ na =) ten isty
prvok. Lahko pritom vidiet, Ze tato poziadavka je ekvivalentna tomu, aby existoval nejaky analyticky
prvok (f D) tejto vetvy a nejakd kruznica (b, s) s #(b, s)* C D'(b, r) taka, Ze analytickym predizenim
prvku (f D) pozdiz k(b, s) je (az na =) opif (f D) Takéto predlZenie totiz definuje ,beznt* jedno-
hodnotovi holomorfnti funkciu na nejakom medzikruzi so stredom v bode b, ktoré je celé obsiahnuté

D’(b,r), pricom tato funkcia je dand hodnotami uvazovanej vetvy funkcie f. Lahko vidiet, Ze ko-
neénym poctom priamych analytickych predizeni prvkov tejto funkcie mozno ziskat jednohodnotovii
holomorfnu funkciu F na lubovolnom medzikruzi

A(ri,re) ={z€C|r <|z—0b] <ra},

kde 0 < 7 < ry < r. Ak je ale v1,v2 Tubovolna dvojica kriviek v D’(b, r) s po¢iatoénym bodom v strede
nejakého prvku (Fp, D) — kde Fp je ziZenie F na D — a s rovnakym koncovym bodom, musi existovat
medzikruzie A(rq,79) také, ze v§,v3 C A(r1,72) a predlzenim prvku (Fp, D) pozdiz obidvoch kriviek
ziskame (aZ na =) ten isty prvok. Jednohodnotova funkcia F' je teda globélnou analytickou funkciou
v D'(b,r). KedZe ale funkeia F stcasne obsahuje analyticky prvok (f, D), je rovna F a jednohodnotové
aj pévodne uvazované vetva funkcie f.

Okolo izolovanych singularit jednohodnotového typu sa teda vetvy globalnych analytickych funkcii
spravaja rovnako ako ,bezné“ holomorfné funkcie v blizkosti svojich izolovanych singularit. Mozno
ich tam teda lokalne rozvinut do Laurentovho radu a podla charakteru tohto radu mozeme izolované
singularity jednohodnotového typu rozdelit na pdly a podstatné izolované singularity.

Definicia 13.3.3. Nech S C C je oblast a f je globalna analytickd funkcia v .S. Bod b € C nazveme
bodom vetvenia” funkcie f, ak je izolovanou singularitou f, ktora nie je jednohodnotového typu.®

Bod b je teda bodom vetvenia, ak je viachodnotova — pri oznaceniach z definicie 13.3.1 — vetva
funkcie f na D’(b,r) obsahujtca analyticky prvok (g, E). Z predchadzajucich uvah vyplyva, Ze tato
situécia nastane prave vtedy, ked je analytickym predlzenlm nejakého analytického prvku ( f D) z tejto
vetvy pozdlz nejakej kruznice x(b,s) s k(b,s)* C D'(b,r) analyticky prvok, ktory s (f D) nie je
v relacii =. To je dalej ekvivalentné existencii takejto kruznice pre kaZdy prvok danej vetvy.

5Je doélezité uvedomit si, Ze toto nie je ekvivalentné neexistencii d'alsej singularity v tomto okoli — takato singularita
sa v D(b,r) nachadzat mozZe, ale v takom pripade musi ist o singularitu inej vetvy funkcie f.

"Alebo singularitou viachodnotového typu.

80pét treba upozornit na to, ze kvoli moznej ,,viacvetvovosti“ funkcie tato formulacia nie je ekvivalentna formulécii
,,b je izolovana singularita a stcasne b nie je singularita jednohodnotového typu“.
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13.4 Klasifikidcia bodov vetvenia a Puiseuxove rady

Nasledujuca veta prebraté z knihy [7] sumarizuje zékladné poznatky umoziiujice jemnejsiu klasifikaciu
bodov vetvenia.

Veta 13.4.1. Nech b € C ar > 0. Nech (f,D) s D C D'(b,r) je analyticky prvok neobmedzene
predlZitelng v D'(b,7) a f je (jedind) globdlna analytickd funkcia v D'(b,r) obsahujica prvok (f,D).
Oznacme H :={w € C | Rew < Inr}. Potom:

a) FEzistuje jednohodnotovd analytickd funkcia f*: H — C takd, Ze pre vSetky w € H je
fH(w) € [E(b+e)].

b) Ak navyse existuje k € N\ {0} také, Ze pre (niektord takito) funkciu f* a vietky w € H je
ff(w) = f*(w+ i2km)

a k je najmensie s touto vlastnostou, tak pre kaZdy analyticky prvok ( f , 15) funkcie £ je k zdroven
aj najmensie kladné prirodzené ¢éislo také, Ze analytickym prediZenim (f,ﬁ) pozdlZ spojenia k
kruznic k(b,s) so stredom v bode b a prechddzajicich cez stred a proku (f,D) je (a# na =)
opat prvok (f, f)) Veobecnejsie mozno namiesto kruznice k(b, s) uvaZovat lubovolni jednoduchi

uzavreti krivku vy s v* C D'(b,r) taki, Ze a € v* a b € I(y).”

¢) Ak takéto k € N\ {0} neexistuje, je analytickym prediZenim kazdého analytického proku (f,D)
funkcie £ pozdlZ spojenia lubovolného kladného poctu zhodne orientovanych kruznic so stredom v b
prechddzajicich cez stred a prvku (f, D) analyticky prvok, ktory s prvkom (f, D) nie je v reldcii =
— a podobne pre lubovolni jednoduchi uzavretd krivku v s v* C D'(b,r), a € v* a b € I(y).

d) Ak existuje k z turdenia b), nadobida £ v kaZdom z € D'(b,r) najviac k réznych hodnét a proky
funkcie £ so stredom z tvoria presne k tried ekvivalencie relicie =. Inak existuje nekonecne vela
tychto tried ekvivalencie.

e) Ak je k z turdenia b) rovné jednej, bod b bud nie je singularitou funkcie £, alebo je jej singularitou
jednohodnotového typu. Ak k > 2 alebo k € N\ {0} z turdenia b) vobec neexistuje, je b bodom
vetvenia funkcie f.

Dékaz. Oznaéme ako Inp Tubovolni holomorfnti vetvu prirodzeného logaritmu na C \ {se®® | s > 0}
pre nejaké o € R také, Ze pre vietky z € D je a & [arg(z — b)]; Tahko vidiet, Ze také o musi uréite
existovat. Z jednej strany tuto funkciu spojite rozdirme aj na {se’® | s > 0}. Pre vietky z € C\ {0}
a nejaké m € 7Z teda

Inp(z) = In|z| + 46, kde 0 € [arg z] N [2m7 + «, 2(m + 1)1 + ).
Pre funkciu L: D'(b,r) — C, dant pre v8etky z € D'(b,r) predpisom L(z) := Inp(z — b), je potom
L(D'(b,r))=HN{zeC|2mr+a<Imz<2(m+1)r+a}.

Tato situécia je znadzornena na obrazku 13.1.

Prstencové okolie D’(b,r) sa teda cez L zobrazi na jeden pas v H. Idea dokazu spociva v tom,
ze kazda krivku v v D’(b,7) mozno pomocou ,vhodne predlzenej* funkcie L zobrazit na krivku A
v H, ktord uz moéze prechadzat aj cez viac takychto pasov — ¢o zodpovedéd tomu, Ze vetva L moze
spojite prejst v inl vetvu zodpovedajticej globalnej analytickej funkcie v D’(b, r). Tym rozliSime medzi
rovnakymi bodmi na krivke -y, ktoré v8ak dosiahneme po réznom pocte ,,obkrizeni“ bodu b.

9V duchu poznamky 13.3.2 je potrebné kruznicu k(b, s) resp. krivku 7 ,zrotovat® tak, aby jej po¢iatoénym a koncovym
bodom bol bod a.
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Obr. 13.1: Defini¢ny obor a moZzny obraz funkcie L(z).

Analyticky prvok (f, D) je neobmedzene predizitelny v D’(b,r) — pre kazdu krivku 7: [a, 8] — C
spliajicu v* C D'(b,r), s podiatoénym bodom v strede a € D'(b,r) prvku (f, D), existuje nejaké
analytické predizenie prvku (f, D) pozdiz v. Pozdlz v tiez mozno analyticky predlzit funkciu L, ¢im
ziskame spojity vyber funkcie prirodzeného logaritmu zo z — b pozdlz tejto krivky — a teda aj (spojiti)
krivku A: [a, ] = C s \* C H taku, ze A(a) = L(a) a pre vietky t € [o, 8] je A(t) € [In(y(¢) — b)].

Uvazujme teraz analyticky prvok (¢, A) pre nejaké kruhové okolie A C L(D) so stredom v L(a)
a funkciu ¢: A — C dana pre vietky w € A ako p(w) = f(b+ e*) — dokdZeme, Ze existuje jeho
analytické prediZenie pozdlz krivky A v H. Nech Lp je ztzenie funkcie L na D. K pokrytiu krivky A
,dostatofne malymi“ kruhovymi okoliami A = Ay,..., A, € H potom moZno néjst kruhové oko-
lia Dy,...,D, C D'(b,r) také, Ze analytické predlzenie prvku (Lp, D) pozdlz v je dané postupnos-
tou analytickych prvkov (Lp, D) = (L1, D1),...,(Ln, Dy), analytické predizenie prvku (f, D) pozdlz
krivky ~ je dané postupnostou analytickych prvkov (f, D) = (f1,D1),...,(fn,Dn) apre j=1,...,n
je Aj C Lj(Dj). Na Aj tak pre j = 1,...,n moézeme definovat funkciu ¢;: A; — C pre vietky w € A;
ako

pj(w) = fj(b+e")

a Tahko vidiet, Ze postupnost prvkov (o1, A1),. .., (¢n, Ap) uréuje analytické predlzenie prvku (¢, A)
pozdlz krivky A v oblasti H.

KedZze moze byt krivka v v D’(b,r) Tubovolna, moze byt lubovolna aj krivka A\ v H; analytickymi
predlZzeniami prvku (¢, A) v H je teda definovana globalna analyticka funkcia f* v H, ktora je ne-
obmedzene predlzitelna v jednoducho suvislej oblasti H. Podla vety o monodrémii potom musi byt
funkcia f* jednohodnotové. Navyse je zrejmé, Ze pre takto definovana funkciu f* musi pre kazdé w € H
existovat analyticky prvok (f[w], D[w]) v f taky, Ze na nejakom okoli bodu w je f*(w) = flw](b+ e").
Pre vetky w € H preto

£*(w) € [E(b + )],

¢im je dokdzané tvrdenie a).
Takato funkcia f* samozrejme nie je dana jednoznacne, ale je determinované pociatocnou volbou
funkcie L, resp. zodpovedajucej vetvy prirodzeného logaritmu.
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Dokazeme tvrdenie b). Nech je prirodzené k > 1 z jeho znenia dané. Analyticky prvok ( f, 15)
so stredom @ € D’(b,r) musi byt analytickym predlzenim prvku (f, D) pozdlz nejakej krivky (alebo
dokonca lomenej ¢iary) v s v* C D’(b,r). Rovnako ako vyssie teda modzeme najst krivku A konciacu
v nejakom bode wy € H takom, Ze b+e"° = a a na nejakom okoli bodu wy je f*(w) = f(b+e®). Nech
je funkeia L dana pre (f, D) rovnako ako L pre (f, D); nech L - p Je zizenie Lna D.

Analytickému predizeniu (g,E) prvku ( f ,D) pozdlz k kladne orientovanych kruznic so stredom
v b prechadzajucich cez @ zodpoveda, rovnako ako vyssie, analytické predizenie (ﬁ E) prvku (f/ 15)
pozdlz tychto k kruznic, ako aj analytické predlzenie funkcie f * pozdlz usecky [wo, wo+i2k7]. Ak je teda
(fA,» A1) analyticky prvok f* so stredom wy taky, ze Ay C L- »(D) a (fA,, A2) je analyticky prvok f*
so stredom wq+i2k taky, ze Ao C L s(E ) a Ay ma rovnaky polomer ako A; (¢o mézeme predpokladat
bez ujmy na vSeobecnosti), vdaka periodicite funkcie f* musi pre vietky w € Ag byt

G0+ ¢*) = f3,(w) = [*(w) = [*(w — i2km) = fX, (w — i2k7) = f(b+ ") = f(b + ),

a teda aj (9, E) = (f, D).

Treba este dokazat, Ze ¢islo k je najmensie s touto vlastnostou. Keby pre nejaké j € {1,...,k—1}
bol analytickym predizenim prvku ( 1, D) pozdlz j uvazovanych kruznic (az na =) opét prvok ( 1, 15),
musel by z rovnakych dovodov ako vyssie byt analytickym predizenim prvku ( fA,» A1) funkcie f*
pozdlz [wo, wo + i2j7] prvok (fA,>As) funkcie f* taky, Ze pre vSetky w € Ag jelo

fr(w) = fR;(w) = fA, (w —i2jm) = f*(w — i2jm).
Mnozina Asg méa v8ak v H hromadny bod a z vety o jednoznac¢nosti tak vyplyva platnost vztahu
fr(w) = f*(w + i2jm)

pre vietky w € H — ¢o je zrejmy spor s volbou ¢isla k.

Toto tvrdenie mozno zovseobecnit aj na pripad jednoduchej uzavretej krivky v v D'(b,r) s a € v*
a b € I(y). Kedze je kazda takato krivka homotopickd s jednoduchou uzavretou po castiach hladkou
krivkou (alebo dokonca s lomenou ¢iarou), mézeme predpokladat, Ze je krivka ~ po ¢astiach hladka.
Vdaka stvisu indexu so spojitym vyberom argumentu potom zistujeme, Ze analytické predlZenie prvku
( f , ﬁ) pozdlz k takychto kriviek zodpoveda predlzeniu f* pozdlz krivky A s pociatoénym bodom wy
a koncovym bodom wq + iInd (b)2k7. ZvySok argumentacie je rovnaky ako vyssie.

Na dokaz tvrdenia c) si (pre kruzmcu) staci rovnako ako vysSie uvedomit, Ze keby bol analytic-
kym predizenim prvku ( f D) pozdlz j uvazovanych kruznic (az na =) opét prvok ( f D), muselo by
pre vSetky w z nejakého okolia bodu wg + i2j7 byt

fr(w) = f*(w —i2jm)
a z vety o jednoznac¢nosti tak aj
Jr(w) = fH(w +12jm)
pre vSetky w € H; to by bol spor s neexistenciou takéhoto j. Rovnako ako vysSie moZzno tvrdenie

zovSeobecnit aj na iné jednoduché uzavreté krivky.
Tvrdenie d) je bezprostrednym doésledkom tvrdeni b) a c), rovnako ako tvrdenie e). O

Prirodzene sa pontka myslienka klasifikdcie bodov vetvenia na zaklade Cisla k z predchédzajtcej

vety. Ak takéto k pre bod vetvenia b existuje, budeme hovorit, Ze b je bodom vetvenia rddu k — 1.11

00pit bez ujmy na vieobecnosti predpokladdame rovnost polomerov okoli A; a As.
1priom singularity jednohodnotového typu a body, ktoré nie st singularitami, by sme mohli nazvat bodmi vetvenia
radu 0.
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Definicia 13.4.2. Nech S C C je oblast, f je globéalna analyticka funkcia v .S a b € C je bod vetvenia
funkcie f, uvazovany v stvislosti s neexistenciou analytického predlZzenia nejakého prvku (f, D) funkcie
f pozdlz krivky v: [, 8] — C s poéiatoénym bodom v strede prvku (f, D) a koncovym bodom b.
Nech r > 0 a 7 € [, ) st také, ze (v | [1,8])* € D(b,r) a (¢9,E) s E C D'(b,r) je analytické
predizenie prvku (f, D) pozdlz v | [, 7], ktoré je neobmedzene predizitelné v D’(b,r). Pre prirodzené
k > 2 potom hovorime, ze b je bodom vetvenia rddu k — 1, ak je k najmensie kladné prirodzené ¢islo
také, Ze analytickym predizenim prvku (g, E) pozdlz k kladne orientovanych kruznic so stredom b,
prechadzajticich cez stred prvku (g, E), je (aZ na =) opét prvok (g, F). Ak Ziadne takéto k neexistuje,'?
nazyvame b bodom vetvenia rddu oo.

Poznamka 13.4.3. Podobne ako niekol'kokrat vyssie je v uvedenej definicii zaml¢any jeden podstatny
aspekt: rad bodu vetvenia b € C nezévisi len na tomto bode, ale aj na vetve, v ktorej ho uvazujeme —
CiZe presnejsie na analytickom prvku (f, D) a krivke = z predchadzajucej definicie. Nie je teda vylucena
ani situacia, kde b je v niektorych vetvach bodom vetvenia radu r;, v inych vetvich bodom vetvenia
radu 79 # 1 a v ete dalsich vetvach vobec nie je bodom vetvenia.

Priklad 13.4.4. Pre kazdu vetvu funkcie 2/ s n € N\ {0,1}, definovanti na oblasti S obsahujtcej
nejaké prstencové okolie nuly, je b = 0 bodom vetvenia radu n — 1.

Priklad 13.4.5. Pre kazda vetvu funkcie In z, definovant na oblasti S obsahujicej nejaké prstencové
okolie nuly, je b = 0 bodom vetvenia radu oo.

Dokéazeme teraz velmi doleziti vetu o singularnych rozvojoch funkcii v bodoch vetvenia konecného
radu — takéto rozvoje budeme nazyvat Puiseuzoviymi radmi' a pojde o zovieobecnenie Laurentovych
radov, pri ktorom sa v rade vyskytuju aj racionalne mocniny (z —a); tie st uz samotné multifunkciami,
¢o je v silade so skuto¢nostou, zZe mé dany rad vyjadrovat viachodnotova funkciu. Pripadné rozsirenie
nasledujtcej vety na pripad & = 1 by zahinalo aj vetu o Laurentovych radoch.

Veta 13.4.6. Nech a € C, r > 0 a f je globdlna analytickd funkcia v D'(a,r) takd, Ze lubovolny
analyticky prvok (f, D) funkcie f je neobmedzene prediZitelng v D'(a,r), pricom a je bodom vetvenia
funkcie £ radu k — 1, kde k > 2 je prirodzené ¢islo. Potom existuje jednoznacne dand postupnost
koeficientov (cp )32 takd, Ze pre vSetky z € D'(a,r) je

n=—oo

o0

f(z) = Z en(z —a)V*

n=—oo
(kde rad konverguje).'* Uvedenyj rad nazjvame Puiseuxovym radom funkcie £ v bode a.
Dékaz. Uvazujme zobrazenie M : D'(a,r) — C dané pre vsetky z € D’'(a,r) predpisom
M(z) = (z —a)/¥

pre nejaki vetvu funkcie z'/* holomorfni na C\ {se’® | s > 0} pre nejaké a € R, z jednej strany
spojite rozsirent aj na {se’® | s > 0}; pre vietky z € C\ {a} je teda M(z) = elz=al/k+i0/k ke
0 € Jarg(z — a)] N [2mm + a, 2(m + 1)7 + a) pre nejaké m € Z. Pre nejaké 5 € R potom

M(D'(a,r)) = D'(0,r'*)n{z e C | B <argz < B+ 27/k}.

Téato situécia je (pre k = 3 a § = 0) znazornené na obrazku 13.2.

12V takom pripade neméze uvedena vlastnost platit ani pre k = 1, pretoze vtedy by podla predchadzajicej vety bod b
nebol bodom vetvenia, ale nanajvys singularitou jednohodnotového typu.

13Niekde sa tieZ mono stretnat s pomenovaniami ako Newtonov-Puiseuzov rad alebo zovseobecneny Laurentov rad.

1 Je dolezité uvedomit si, Ze ide o rad multifunkcii. Uvedeny zapis pritom chapeme tak, Ze zakazdym vyberieme jednu
konkrétnu vetvu funkcie (z — a)l/k, ktora pouzijeme na vypodcet (z — a)"/lC pre vSetky n € Z. Takto dostavame presne k
jednohodnotovych vetiev funkcie f(z) na kazdom kruhovom okoli D C D'(a,r).
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\/

Obr. 13.2: Definiény obor a mozny obraz funkcie M(z).

Vezmime Tubovolné D C D'(a,r) také, ze uvazovana vetva funkcie (z — a)'/* je na D holomorfna

a Tubovolny analyticky prvok (f, D) funkcie f. Na kruhovom okoli A C M (D) potom mozeme definovat
funkciu f°: A — C pre vSetky u € A predpisom

fo(u) = fla+ub).

Podobne ako v dokaze vety 13.4.1 zodpoveda kazdému analytickému predlzeniu prvku (f, D) pozdlz
krivky v: [o, 3] — C s v* C D'(a,r) predizenie prvku (f°,A) pozdlz krivky u: [a, 8] — C takej,
ze p* C D'(0,7Y%), u(a) je stred prvku (f°,A) a pre vietky t € [o, 8] je p(t) € [(v(t) — a)/*].
Ak je navyse predlzenim (f, D) pozdiz v prvok (f,, D), musi byt predizenim (f°, A) pozdlz u prvok
(fz, Ap) taky, ze (ak je D), dostatotne malé) pre vietky u € A, je fj(u) = f(a+u*). Tieto predizenia
moézu byt Tubovolné — prvok (f°, A) je teda neobmedzene predlzitelny v D’(0,7'/%), ¢im je dana aj
globalna analyticka funkcia f° v tomto prstencovom okoli.

Ak je §pecialne krivka v dana ako spojenie k kladne orientovanych kruznic cez stred prvku (f, D), je
krivka g zjavne uzavreta. KedZze je a bodom vetvenia radu k — 1, je predizenim (f,D) pozdlz takychto
k kruznic (az na =) opét prvok (f, D). Predizenie prvku (f°, A) pozdiz krivky u teda tiez musi byt
(az na =) opif (f°,A). Z vety 13.4.1 preto vyplyva, Ze £° je na D’(0,7/*) jednohodnotova; v bode 0
mé teda tato funkcia jednozna¢ne dany Laurentov rozvoj

[e.e]

fo(u) = Z cpu™.

n=—oo

Pre vietky u € D’(0, /%) tak existuje analyticky prvok ( 1 ﬁ) funkcie f taky, ze

a aj opacne pre kazdy prvok (f, ﬁ) funkcie f existuje vetva funkcie (z — a)'/* taka, ze

o0

f(z): Z cn(z—a)"/k.

n=—oo
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Ked7e pre kazdé z € D'(a,r) existuje presne k neekvivalentnych analytickych prvkov funkcie f so stre-
dom v z, musia sa tieto li5it iba vo vol'be vetvy funkcie (z — a)'/* a nutne

oo
f(z) = Y clz—a)/F,
n=—oo
kde koeficienty (c,)52 _ . st dané jednoznacne. Tym je dokaz vety dokonceny. O

Préave dokazani vetu o Puiseuxovych radoch este vyuzijeme na dalsiu klasifikaciu bodov vetvenia.
Terminol6gia z nasledujtcej definicie je inSpirovana charakterom bodov vetvenia algebraickych funkcii
(ako napriklad 21/ pre prirodzené n > 2) a prirodzenych logaritmov.

Definicia 13.4.7. Nech S C C je oblast, f je globélna analyticka funkcia v .S a b € C je bod vetvenia
funkcie f. Potom hovorime, Ze b je:

a) Algebraicky bod vetvenia, ak je b konefného radu k —1 > 1 a existuje m € Z takeé, ze funkcia f

ma v bode b Puiseuxov rozvoj
oo

f(z) = ) ealz —b)"/"

n=m

Ak navySe m > 0, hovorime o obycajnom bode vetvenia.
b) Logaritmicky bod vetvenia, ak je b nekone¢ného radu.

¢) Transcendentny bod vetvenia, ak b nie je algebraicky bod vetvenia — ¢ize ak ide o logaritmicky
bod vetvenia, alebo o bod vetvenia kone¢ného radu k — 1 > 1 taky, Zze v Puiseuxovom rozvoji

o0

f(z) = Z en(z —a)V*

n=—o00
existuje nekoneéne vela réznych n < 0 takych, Ze ¢, # 0.

Poznamka 13.4.8. Algebraické body vetvenia sa ¢asto namiesto prostrednictvom Puiseuxovych radov
definuju prostrednictvom existencie vlastnej alebo nevlastnej limity funkcie v danom bode — pre nas
to bude ekvivalentna charakterizacia algebraickych bodov vetvenia, dokaz ktorej je naplhou jedného
z nasledujacich cviceni.

Cvicenia

1. Zistite, ¢i je bod a = 0 singularitou niektorej vetvy nasledujtcich funkcii:

a) fi(z) =Vz

b) fa(z) = V1 -z

c) fs(z) = eV

d) fa(z) = 1/

e) fs(z) =1+1/z

£) fo(z) = \/2(z —1);
g) fr(z) = Vavz—1;
h) fs(z) = 1V1—7%;

i) fo(z) =21/22(z - 1).

V pripade, Ze je bod a singularitou, zistite typ tejto singularity. Ak existuje, najdite Puiseuxov
(alebo Laurentov, ¢i Taylorov) rozvoj tej-ktorej vetvy v bode a.
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2. Zistite, ¢ existuje funkcia f, holomorfna a realna na R, taka, Ze nejaké jej analytické predizenie
maé aspoil jeden bod vetvenia. Ak 4no, najdite taka funkciu. Ak nie, dokazte.

3. Dokazte, ze bod vetvenia b funkcie f koneéného radu je algebraicky prave vtedy, ked existuje
vlastné alebo nevlastna limita prislusnej vetvy funkcie f v bode b.



Kapitola 14

Funkcia gama

V ramci tejto kapitoly sa zameriame na délezitt Specidlnu funkciu, znamu pod oznac¢enim I'. Pojde
o funkciu holomorfna na C\ {0, —1, -2, ...}, ktora — ako ukdZeme — bude mozné chapat aj ako spojité
rozsirenie faktoridlu prirodzenych &isel. Odporuc¢anym dopliujacim &itanim k tejto kapitole je Artinov
klasicky text o redlnej funkcii gama [2].

14.1 Definicia funkcie gama

Zacénime s definiciou funkcie I' pre z € C splhajice Rez > 0 — jej korektnost ale vobec nebude zrejma
a vyplynie az z diskusie, ktora za fou nasleduje. Neskor funkciu I' analyticky prediZime na defini¢ny
obor C\ {0, -1, —2,...}. Pre vietky realne ¢t > 0 a a € C chapeme t* ako e®'™*, kde In je redina funkcia
prirodzeného logaritmu.

Definicia 14.1.1. Nech z € C je také, ze Re z > 0. Potom kladieme

oo
I'(z) = / e~tt*7Lat. (14.1)
0
V&imnime si najprv, Ze integral (14.1), ktory je oc¢ividne nevlastny sprava, mdze byt nevlastny
aj zlava — napr. pre x € (0,1) je totiz lim,_,+ e #*~1 = co. To znamen4, 7e definiciu funkcie I" treba

v skutoc¢nosti chapat (napriklad) ako

1 o) 1 h
I'(2) :/ ettZ1dt+/ e ldt =lim [ e tdt+ lim [ e ft*Tldt. (14.2)
0 1

e—0 /. h—oo Jq1

DokéZeme najprv, ze nevlastny integral z definicie funkcie I' konverguje v pripade, Ze za z vezmeme
kladné reélne ¢islo & — obidve limity zo vztahu (14.2) teda v takom pripade existuji a st vlastné.

[ee]
/ et dt.
0
Doékaz. Pre vietky ¢ >0 at € [g,1] je 0 < e 1 <¢*=1 7 &oho

1 1 z71 x
t 1
/ e it ldt < / t*hdt = [] -
e e T | T T

Uvedeny integrél je teda pre vSetky € > 0 zhora ohranic¢eny konstantou 1/ a pre ¢ — 0 jeho hodnota
rastie — musi teda existovat aj limita

Tvrdenie 14.1.2. Nevlastny integrdl

konverguje pre vsetky redlne ¢isla x > 0.

1

lim e el e,
e—0 e
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Podobne pre vsetky h > 1 a t € [1, h] z Maclaurinovho rozvoja funkcie € zrejme pre vietky m € N
vyplyva

p
e > 7',
z ¢oho
_; _m!
e "< —
tm
a |
—tyr—1 m:
0<e™t < P

Ak teda vezmeme m >z +1,jem+1—xz>1a

h h ] h '
/ e~teldt < / LGN PR I S Y e 1 < M
1 p tmtl-e (m—x)tm=—=],_, m—x (m—z)hm m—x

Integral je teda opét pre vSetky h > 1 zhora ohraniceny konstantou m!/(m — x) a pre h — oo jeho
hodnota rastie — existuje teda aj limita

h
lim e e dt.
h—o0 1

Podl'a (14.2) tak musi konvergovat aj nevlastny integral zo znenia tvrdenia. O

V nasledujtcich tvrdeniach postupne dokézeme, Ze integral (14.1) z definicie funkcie I' konverguje
nielen pre redlne x > 0, ale skuto¢ne aj pre vSetky komplexné ¢&isla 2 také, ze Rez > 0.

Tvrdenie 14.1.3. Nech f: [1,00) — C je spojitd funkcia. Ak konverguje nevlastny integrdl

| sl

/1 T f)at.

[ ol
1

h
lim /1 F(b)) dt.

h—o00

konverguje aj nevlastny integrdl

Doékaz. Konvergencia nevlastného integralu

znamend existenciu vlastnej limity

Specialne teda aj pre vietky rasttce postupnosti (hn)o2, cisel z [1,00) take, ze limy, o0 hy = 00, musi

existovat vlastn4 limita N
n

lim [ |f(t)] dt.

n—oo 1

Postupnost tychto integralov tak musi byt cauchyovskd — pre vSetky € > 0 existuje ng € N také, ze
pre vSetky prirodzené n, m splhajtice ng < n < m je

] / ") dt - / 1) dt\ <,

/:Lm (D) dt' <e
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V dosledku toho ale aj
hm

f(t) dt’ <e,
hn
£, J.
hm hn
f(t)dt — f(t) dt‘ <e
1 1

(o).,

je tiez cauchyovska pre vSetky rastice postupnosti (hy)22, ¢isel z [1,00) také, Ze lim, o0 hy, = 00.
Preto existuje vlastné limita

a postupnost integralov

h
Jim / £(t) dt,
h—o0 1
a teda aj nevlastny integral
o
[ s
1
musi konvergovat. O

Tvrdenie 14.1.4. Nech f: (0,1] — C je spojitd funkcia. Ak konverguje nevlastny integral

1
/ ) dt,
0

/0 1 F(t)dt.

Dokaz. Stag¢i po substitucii u = 1/t aplikovat predchadzajice tvrdenie. O

o0
/ et dt.
0

konverguje pre vsetky z € C také, Ze Rez > 0. Definicia 14.1.1 je teda korektnd.

konverguje aj nevlastny integrdl

Tvrdenie 14.1.5. Nevlastny integrdl

Doékaz. 7 tvrdeni 14.1.3 a 14.1.4 vyplyva, Ze stacéi pre vSetky z € C s Rez > 0 dokazat konvergenciu
nevlastného integralu
(o]
/ le =71 dt.
0

eRe(zfl) lntez Im(z—1)Int

Pre vietky ¢ € (0,00) ale

,ttzfl‘ — ot )e(zfl)lnt

et ’eRe(zfl) Int

‘e = e*t’

— ot )tRe(z)—l‘ _ 6—ttRe(z)—1‘

0

vSak existuje vd'aka tvrdeniu 14.1.2. O]

Integral
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14.2 Rekurentny vztah a stuvis s faktoridlom

Funkciu I" sme definovali pre vSetky z € C s Re z > 0 pomocou nevlastného integralu

[e.e] 1 h
F(Z) = / e*ttzfl dt — hm e*tt2’71 dt + hm eittzfl dtj
0 e—0 € h—o00 1
z ¢oho
1 h
e—0 /. h—oo Jq1

Toto pozorovanie teraz vyuZijeme na odvodenie rekurentného vztahu pre hodnoty funkcie I' a nasledne
aj na vyjadrenie faktoridlu prirodzenych ¢isel pomocou tejto funkcie.

Tvrdenie 14.2.1. Pre vietky z € C s Rez >0 je I'(z + 1) = 2T'(2).

Dékaz. Nech a,b st redlne &isla také, ze 0 < a < b. Integral

b
/ e WA dt
a

mozeme pomocou metody per partes upravit nasledovne:
b b b b
/ e dt = [—e 7], + z/ el dt = —e " + e " + z/ e Pl dt.
a B a a
Z rovnosti (14.3) potom

1 h
D(z+1)=lim | —et+e e +2 [ et dt) + lim (—e"h* +et +2 [ et*ldt) =
e—0 € h—o0 1

oo
=—c¢lt+e !+ z/ e At = 2T(2),
0
¢o bolo treba dokézat. O

Lahko teraz najdeme hodnotu funkcie I'(z) v bode z = 1:

[e's) h h
(1) :/ e tdt = lim e”'dt = lim [—e7']_ = lim (_e_h + 1) =L
0

h—o0 Jo h—o0 h—o00

Prichddzame teda k dolezitému pozorovaniu, vdaka ktorému mozno funkciu gama chapat ako spojité
rozsirenie faktorialu prirodzenych &isel.

Veta 14.2.2. Pre vietky n € N\ {0} je I'(n) = (n — 1)L

Dékaz. Pre n=1jeI'(1) =1 = 0!. Ak teraz I'(n) = (n — 1)! pre nejaké n € N\ {0}, z tvrdenia 14.2.1
dostavame I'(n + 1) = nl'(n) = n(n — 1)! = nl. O



Funkcia gama 165

14.3 Rozsirenie definicného oboru

Funkciu I" sme definovali na polrovine S = {z € C | Rez > 0} a hodnoty I'(z) pre z € S sme
v tvrdeni 14.2.1 vyjadrili rekurentnym vztahom
I'(z+1)

I(z) = —

Indukciou vzhladom na n by sme Tahko dokéazali, Ze pre vietky z € S an € N je

— I'(z+n) . I'(z+n)
o= 2(z+1)...(z4+n—1) Z;é('z*k)' (14.4)

Tento vztah teraz vyuzijeme na dodefinovanie funkcie I' na C\ {0, —1,—2,...}.

Definicia 14.3.1. Nech z € C\{0,—1, -2, ...} je také, ze pre nejaké n € N\{0} je —n < Rez < —n+1
(pricom z # —n + 1). Potom kladieme
I'(z+n) I'(z+n)

F(Z):Z(Z+1)...(z+n—1) N io(z+k)

Definiciami 14.1.1 a 14.3.1 je teda dana funkcia I': C \ {0,—1,—-2,...} — C. Neskoér dokazeme,
Ze tato funkcia je na svojom defini¢nom obore analytickd — definicia 14.3.1 teda hovori o analytickom
predlZeni funkcie T’ z definicie 14.1.1. Zanedlho tiez uvidime, ze body 0, —1,—2, ... st polmi funkcie I'.

Vsimnime si ete, Ze rekurentny vztah pre hodnoty funkcie I' z tvrdenia 14.2.1 v skuto¢nosti plati
pre vietky z € C\ {0,—1,-2,...}.

Veta 14.3.2. Pre vietky z € C\ {0,—1,-2,...} je (2 + 1) = zI'(2).

Doékaz. Ak Rez > 0, vyplyva platnost rekurentného vztahu z tvrdenia 14.2.1. Ak naopak existuje
prirodzené ¢islo n € N\ {0} také, ze —n < Rez < —n + 1, z definicie 14.3.1 je

I'(z+n)
ne) = ot
r—o(z + k)
Pre n =1 tak priamo dostavame
r 1
[(z) = @’
z

£ ],
I(z+1) =2I'(2).

Pre n > 2 rovnako z definicie 14.3.1 dostavame

T'(z+n
[(z) = nfli)
k=0 (z + k)
: r
F(Z%l) — n_2(2+n) ]
oz +1+E)
To ale znamena, Ze
r r r
F(z—l—l) _ n72(2+n) _ nlef"i‘n) — nE'j‘f‘n) ZZF(Z).
ko (z +1+Fk) j1(z + k) ko (z + k)

Rekurentny vztah zo znenia vety tak naozaj plati pre vSetky z € C\ {0, —1,-2,...}. O



166 14.4 Analytickost, singularity a niektoré funkéné hodnoty

14.4 Analytickost, singularity a niektoré funkéné hodnoty

Analytickost funkcie I' dokazeme tak, Ze na polrovine S = {z € C | Rez > 0} — ¢iZe na jej péovodnom
defini¢nom obore v zmysle definicie 14.1.1 — ju vyjadrime ako lokadlne rovnomernt limitu postupnosti
analytickych — &zZe holomorfnych — funkcii. Vdaka vete 7.1.9 tak na S bude musiet byt holomorfnéa
— Cize analytickd — aj samotna funkcia I'. Analytickost funkcie I' na rozSirenom defini¢nom obore
C\ {0,—1,—-2,...} nasledne I'ahko vyplynie z definicie 14.3.1.

V ramci tohto oddielu budeme pre vsetky n € N\ {0} uvaZzovat funkciu f,,: S — C, dant pre vSetky
z € S ako

fn(z)—/ e tt* 1.
1/n

Lema 14.4.1. Pre vietky n € N\ {0} je funkcia f,: S — C analytickd na S = {z € C| Rez > 0}.

Doékaz. Dokazeme najprv, Ze funkcia f, je spojitd. K danému z € S a € > 0 zvolme 6 > 0 tak, aby
bolo D(z,6) C S a aby pre vSetky h € D(0,0) a v8etky ¢t € [1/n,n] bolo

’th—l‘ <&

ked7e z definicie t" = e!"* takéto § > 0 uréite existuje. Pre vietky h € D(0,0) potom aj

n

|fn(z + h) - fn(z)| = e_ttz_l(th — 1) <

1/n

n
e tEFthlqr — / ettt =
/n

1/n
< 5/ le7"t* 71 = efn(Rez).
1/n

Tymto je dokdzana spojitost funkcie f, v bode z — kedZe navySe z € S moze byt Tubovolné, je
funkcia f, spojitd na S.

Nech teraz v: [a, 8] — C je trojuholnik taky, ze v* C S. Trojuholnik v je spojenim troch tseciek
a pre kazda usecku o: [0,1] — C je e ‘7 ~15/(u) evidentne spojitou funkciou dvoch premennych
t € [1/n,n] au € [0,1]. Vdaka tvrdeniu 10.4.2, holomorfnosti funkcie e~/t*~1 = ettt jedne;
premennej z na S pre vietky t € [1/n,n] a Cauchyho integralnej vete pre trojuholnik teda

/fn dz—// ttZ1dtdz—/ / ttZ1dzdt—/ 0dt = 0.
1/n 1/n 1/n
Podl'a Morerovej vety tak dostavame holomorfnost funkcie f,, na S. O

Lema 14.4.2. Na S ={z € C|Rez > 0} je fn, =1oc I pre n — oo.

Dékaz. Pre vietky n € N\ {0} a z€ S je
1/n 00 1/n (9)
IT(2) = fu(2)] = / ettZ1dt—i—/ e 'l dt| < / e 'l dt| + / ettZ1dt‘ <
0 n 0 n

1/n 00 1/n 00
g/ et dt+/ e 't* | dt—/ ettRezldtJr/ e 'thesml e,
0 n 0 n
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Pre Tubovolné m € N splajtce m > Re z+1 potom mézeme vyuzit odhad e™* < m!/t™ vyplyvajtci
z Maclaurinovho rozvoja funkcie e a dostaneme

1/n R . 9] m) 1/n R ) h m!
ez— : . ez— 1 I — =
IT(z) — fu(2)] < /0 t dt + /n PR v dt = ;1_)1% i t dt + hli}ngo | e dt =

tRe 271/n 1 h
lim + lim [ m!|— =
e=>0 [Rez ], . h—oo (m — Rez)tm—Rez |

— lim (W”)Rez ERez) +m! lim <( ! _ 1 ) _

e—=0 Rez  Rez h—oo \ (m — Rez)nm—Rez  (m — Rez)hm—Rez
_ (1/n)Re= m!
~ Rez (m — Rez)nm—Rez’

Pre dané a € S teraz zvolme r > 0 tak, aby bolo » < Rea. Potom D(a,r) C S; nech dalej p,q > 0
su také, ze pre vietky z € D(a,r) je 0 < p < Rez < q. Pre vietky n € N\ {0} a z € D(a,r) potom
z dokazaného vyplyva

T(z) - fu(e) < L0 (g DY

n

pri¢om vyraz na pravej strane pre n — oo o¢ividne speje k nule. Na D(a,r) teda f, = T pre n — oo,
z ¢oho dostavame f, =1 I’ na S, kedze uvazovany bod a € S je Tubovolny. O]

Veta 14.4.3. Funkcia I je analytickd na C\ {0,—1,-2,...}.

Dékaz. Na S = {z € C| Rez > 0} je funkcia I' podla lem 14.4.1 a 14.4.2 lokalne rovnomernou limitou
postupnosti analytickych funkcii. Vdaka vete 7.1.9 je teda na S analyticka aj funkcia T
S pomocou vety 14.3.2 by sme navy$e indukciou vzhladom na n Tahko dokézali, Ze pre vietky
z€C\{0,-1,-2,...} an €N jel
['(z+n) I'(z+n)

F(Z):z(z+1)...(z+n—1) TSGR

Pre vietky n € N\ {0} aa € C\ {0,—1,-2,...} spliiajice —n < Rea < —n + 1 tak existuje r > 0
také, ze D(a,r) CC\ {0,—1,—2,...} a pre vietky z € D(a,r) jez+n € S a
I'(z+n) I'(z+n)

Y= ) G D) 1k

Funkcia na pravej strane tejto rovnosti je pritom evidentne holomorfna na D(a,r); v bode a tak musi
byt holomorfné aj funkcia I'. KedZe a moze byt I'ubovolny bod mnoziny (C\ {0,—1,-2,...})\ S, je
tymto dokadzana analytickost funkcie I na C\ {0, -1, -2,...}. O

0,—1,—2,... st totiz izolovanymi singularitami funkcie I".
Tvrdenie 14.4.4. Body 0,—1, -2, ... si jednoduché pdly funkcie I
Dékaz. Nech a = —n pre nejaké n € N. Potom

liy(e - T(e) =l = 000 = i (<) T

T(z+n+1) (1) (—)m

AT G D (ot (Dl

Téato limita je vlastna a nenulova; a je tak jednoduchym polom funkcie I' podla tvrdenia 9.4.1(i¢). O

Pre z € S ide o rovnost (14.4); novym pozorovanim na tomto mieste je, Ze rovnaka rovnost plati aj pre zvysné
ze€ C\{0,-1,-2,...}.
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Zakoncime tento oddiel najdenim niekolkych doélezitejSich hodnot funkcie I'. Néjdenie hodnoty
v bode 1/2 si pritom vyZzaduje spocitat relativne netrividlny integral.

Tvrdenie 14.4.5. I'(1/2) = /=.

Dokaz. Poktisme sa vypoditat integral (14.1) pre z = 1/2 pomocou substiticie = v/t — zistujeme, 7e

F(1/2)—/ ettl/zdt—/ ex2w12mdx—2/ e’ dx—/ e da. (14.5)
0 0 0

—00

Zostéava vypocitat hodnotu nevlastného integrélu na pravej strane, zndmeho ako Gaussov integrdl.
Urobime tak s vyuzitim Cauchyho vety o reziduéch.
Nech a = v/27(1 +14). KedZe a? = i4n, st rieSeniami rovnice

1+e =0

0 neznamej z prave vsetky

a ka
- +—|keZ;,=:P.
ze{4+2\ € }

Mozeme potom definovat funkciu f: C\ P — C pre vSetky z € C\ P ako

2
eZ

f(Z):W;

tato funkcia je evidentne holomorfna na C\ P, pricom v kazdom z € P ma jednoduchy pol.
Uvazujme teraz pre vietky r > 1 obdlznikovi integracni krivku

Yy = [=r, 7] + [r,r+i\/ﬂ} + [r+im, —r+i\/ﬂ} + [—r—l—im, —r] .

Funkcia f je potom holomorfna na + a meromorfna na I(~,), pricom jedinym polom funkcie f v I(,)
je bod a/4. Reziduum funkcie f v bode a pritom mozeme najst tak, ze funkciu 1 4+ e~%* v menovateli
vyjadrime na okoli jej korena a/4 ako

14+ e = (2 — a/4)g(2),

kde g je na tomto okoli holomorfna. Z Taylorovho rozvoja funkcie 1+ e~ v bode a/4 potom evidentne

vyplyva, Ze funként hodnotu g(a/4) dostaneme ako hodnotu derivacie funkcie 1 + e~%* v bode a/4 —
teda
2
glaj4) = —ae™ /4,

Z toho

—aqe—@*/4  —qe~im 2\/m

1+ea2’ 4 - -

—22 —a?/16 —im/4 ;
Res(f,a/4) = Res( ¢ a) =2 c !

a z Cauchyho vety o reziduéch preto

.2
e * a

[{T f(z)dz = 2miRes(f,a/4) = 2mi Res (1—1—6_“2’ 1

)

7 vety o odhade navyse

f(z)dz

1 6—<r+it 7r/2>2 )
— / i/m/2dt| < e T2\ /7 )2
0

1+efa<r+it 7r/2)

/[r,rJri\/E}
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a 2
1 e—(—r+i\/7r/2—it 7r/2) s
F(2)dz| = / (—in/m2) dt| < e 47/2, ]2,
/[_Him,_r} 0 14 e—a(—r-‘rh/#/?—it 71'/2)
takze
lim f(z)dz = lim f(z)dz=0.
T |:T,T+’i\/m:| =0 [7r+im,fr]
V doésledku toho
Vv = lim / f(z)dz = lim (/ f(z)dz—i—/ f(z)dz) =
T S, 00 [=rr] [r-l—im —r—&—i\/m]
:li)m (/ f(z)dz — f(a:+z V)2 dx>—hm/ flz+iy/m /2)) dz =
= li)m (f(x) flx+a/2— / dx— hm / flz+a/2))d
:/ (f(@) — (o +a/2) de (14.6)
kde predposledna rovnost vyplyva zo zrejmej skuto¢nosti
lim / f(x+a/2)d1:—/_ f(:n+a/2)da:) = 0.
r—)oo( T_\/m _T_\/m
Pre vsetky z € C teraz
1+ 6—a(z+a/2) =14 e—aze_a2/2 — 14+ e~ %21 _ q + e,
takze , (ra/2)?
e % e~ z4a/2 (1 + e—az) 2
JE) - fera) =t =B
Integral (14.6) teda mozeme vyjadrit ako
| U@-tarayde= [ ertae—va
a vdaka (14.5) teda aj I'(1/2) = /m, ¢o bolo treba dokazat. O

S pouzitim vety 14.3.2 néasledne T'ahko prideme k hodnotdm funkcie I" zhrnutym v tabulke 14.1.

Hodnota I'(z) ‘

’ Bod z Hodnota I'(z) ‘ Bod 2
—3 jednoduchy pol 1/2
-5/2 —&m 1
—2 jednoduchy pol 3/2
-3/2 3w 2
—1 jednoduchy pél 5/2
—1/2 —2yx 3

0 jednoduchy pol 7/2

I
ol=1
ST

1'=1
VT

21=2
ER

Tabul'ka 14.1: Niektoré hodnoty funkcie T
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14.5 Reprezentacia pomocou limity

Pre vietky n € N\ {0} definujme funkciu I';,: C\ {0,—-1,-2,...} — C ako
n*n! n*n!

T2+ (z+n)  [LG+k

pre vietky z € C\ {0,—1,—-2,...}, kde vyraz n* opit chapeme ako e* Inn “kde In je redlny prirodzeny
logaritmus. V ramci tohto oddielu dok4zeme, Ze pre vietky z € C\ {0,—1,-2,...} je

I'n(2)

r lim T li nnt
(2) = Jim Tu(2) = lim

Zactnime dokazom integralnej reprezentacie funkcii 'y, pre n € N\ {0}.

Lema 14.5.1. Nechn € N\ {0} a S ={z € C| Rez > 0}. Pre vietky z € S potom

Co(z) = /On <1 — ;)nt'z—l dt.

Doékaz. Vsimnime si najprv, Ze po substiticii u = t/n dostaneme

n t n 1 1
/ (1 - > t#ldt = / (1 —w)™(un)*"ndu = nz/ (1 —w)™u*~t du.
0 n 0 0

Indukciou vzhladom na n dokazeme, Ze pre vietky n € N\ {0} a z € S je
1
nz/ (1 —w)"u* 1 du =T,(2). (14.7)
0

Pre n =1 a vietky z € S je

1 1 1 1
nz/ (1 —u)"u*du = / (1 —wu*tdu = / uw”tdu — / u’du =
0 0 0 0

1 1 271 urtl 1
= lim w*1du — lim v du = lim [] — lim [ ] =
e—0 J, e—0 J, e=0 | 2 c e=0|z4+1 u—se
. 1 € , 1 g*tl 1 1 1
=lim|[-—-—— )] —1lim — == — = =
e»0\z 2 e—~0\z+1 2z+41 z z+1 z(z+1)
171! r
= 7Z(Z T 1) = 1(2).

Nech teraz rovnost (14.7) plati pre n = k € N\ {0}. Pre n = k+1 a [ubovolné z € S potom integrujme
po Castiach:

1 1
(k + l)Z/ (1—w)*" 0 du = (k4 1)*lim [ (1 —w)* v tdu =
0

e—=0 J,

~ (k+ 1)l ([(1 o] [ (-t du> _

= (k+1)*lim (—(1 — e)kHi + /El(/-g +1)(1- u)klg du> =

e—0 z
1 u?
= (k+1)*lim [ (k+1)(1 —u)*—du=
e—=0 J,. z

k 1 z+1 1
= (D lim [ (1—w)*u®du=
z e—=0 J,

k 1 z+1 1
= (—’—)/ (1 — u)*u? du.
z 0
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7 indukéného predpokladu teda

! k+1)"T Tz +1) (k + 1)t k= +1E!
k 1)# 1— k+1, 2—1 du = ( k _ _
(k+1) /0 (1 =)™ " zk#HL 2k (z+1) ... (2 4+ 14+ k)
(k4 1)A(RE+ 1)
2(z+1)...(z+k+1)

¢o bolo treba dokézat. O

= Tit1(2),

Pripomenme si Bernoulliho nerovnost, ktora hovori, ze pre vSetky redlne © > —1 an € N je
(1+2)" > 1+ nz.

Pre n = 0 je skuto¢ne (1 4+ z)° = 1 > 1; ak dalej nerovnost plati pre n = k € N, pre n = k + 1
s vyuzitim indukéného predpokladu a nezapornosti ¢isel 1 4+ x a ka? dostavame

A+ =1 4+2)*Q+2) > A+ k)1 +2) =14 (k+ D+ ka? > 1+ (k+ 1)z

Lema 14.5.2. Nech n € N\ {0}. Pre vietky t € [—n,n] potom
n —t
0<e — (1—t> <Pt

n n

Dokaz. Pre vietky x € R je e® > 1+ x: pre x < —1 je toto pozorovanie trividlne, pretoze e” je kladné,
kym 1+ x nie je; pre x > —1 zas s pouzitim Bernoulliho nerovnosti dostdvame

m
e’ = lim (l—i—i) > lim (1+2)=1+u=z.
m—o0 m m—0o0
Zvolme x = —t/n. Zistujeme potom, Ze
eft/’n 2 1— E’
n

z ¢oho — kedze t/n <1 —
a teda aj

¢o dokazuje prvia z nerovnosti. Podobne pre z = t/n dostavame

t
etm>14 2,
n

>n
S pouzitim Bernoulliho nerovnosti teda
—t 2 2\ " n n
t t t t
et — 25—t <1—> <et <1—2> =et <1—> <1+> <
n n n n n
AN t\"
n n

z ¢oho napokon dostavame aj druhtu dokazovand nerovnost

n —t
et - <1 - t) <2 0
n n

z ¢oho — kedze t/n > —1 —
et > <1 +

SEES
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Mozeme teraz pristupit k dokazu samotnej vety o reprezentacii funkcie I' pomocou limity funkcii ',
pre n — oo.

Veta 14.5.3. Pre vSetky z € C\ {0,—1,-2,...} je

n*n!

T = lim T, =1 .
(2) = fim Tu(z) = lim o)

Doékaz. Uvazujme najprv [ubovolné z € C také, ze Rez > 0 a pre n € N\ {0} skimajme hodnotu

T(2) — Tn(2)] = / Tt T ()| =

0

n o0 n t n
= / e tr1 dt+/ e Pl de —/ (1 — ) tz_ldt’ =
0 n 0 n
n t n o0
= / <e_t — <1 — ) >tz_1 dt+/ e tr! dt‘ <
0 n n
n t n [e'e)
< / <e—t - (1 - > >tz_1dt‘ + / e_ttz_ldt'.
0 n n

Dokézeme, ze obidve absolitne hodnoty v sti¢te na pravej strane nerovnosti speji pre n — oo k nule.
S pouzitim lemy 14.5.2 pre prva z nich dostavame

/ <€_t—<1—t) )tz_ldt‘</ (e_t— <1—t> >tz_1
0 n 0 n
" —t t " Rez—1 " t2€_t Rez—1
e 1 t dt < —t dt =
0 n 0 mn

L Re z+1 L[ Re z+1 1
= / e e tlqe < / e fthertl dt = “T(Re 2 + 2);
0 0

dt =

n n n

[0l

Podobne pre druhii absoltutnu hodnotu dostéavame

oo oo [e.9]
/ e_ttz_ldt‘ g/ e~ dt—/ e el gt
n n n

Pre Tubovolné m € N splhajace m > Rez + 1 teda

& & m! e ml
/ €_ttz_1 dt’ S / ﬁ dt = lim Tm+1—Rez dt =
n n tm ez h—s00 " tm+ ez

h
= lim [ m!|— 1 =
h—oo \ | (m—Rez)tm—Rez|

1 1
e <m ((m — Rez)nm—Rez  (m — Re z)hm—Rez )>
m!

~ (m — Rez)pm—Rez’

skutocne teda

lim
n—oo

Ak teda g € N je také, ze Rez < ¢, je
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a skuto¢ne tak aj v tomto pripade prichddzame k zaveru, ze

lim ‘/ e 1 dt’ =0.

n—oo

Tymto je veta dokdzana pre z € C také, ze Rez > 0. Pre zvysné z € C\ {0, —1, -2, ...} existuje m € N
také, ze —m < Rez < —m + 1. Potom Re(z +m) > 0, a teda

r
r(z) = (z+ m) =
z(z+1)...(z4+m—1)
1 n*tmn)
= lim =
2(z+1)...(z+4m—1)n>c (z4+m)(z+m+1)...(z+m+n)
’ n*tmnp) . n*n!
_nlﬁnc}oz(z—l—l)...(z—l—(m—l—n)) _ngl;oZ(Z—i—l)...(z—i—n)7
¢im je veta dokadzan. O

14.6 Bohrova-Mollerupova veta

Dokazeme teraz Bohrovu-Mollerupovu vetu, podla ktorej je redina funkcia gama jedinou funkciou splha-
jucou tri velmi jednoduché vlastnosti. Presnejsie povedané: dokdzeme, Ze kazda funkcia s tymito troma
vlastnostami musi byt rovna funkcii gama. Nebudeme ale zatial dokazovat, Ze funkcia gama tieto tri
vlastnosti naozaj ma — pri dvoch z nich to bude zrejmé, zatial vSak nechame otvorentu otazku loga-
ritmickej konvexnosti funkcie gama. To znamené, Ze zatial nebudeme méct predpokladat neprazdnost
triedy funkcii spliajicich dané tri vlastnosti (a teda ani netrividlnost Bohrovej-Mollerupovej vety).
Téa vyplynie az z na8ich neskorsich avah okolo Stirlingovej aproximacie.

Definicia 14.6.1. Nech I C R je nedegenerovany interval. Funkcia f: I — R je konvexrnd, ak pre vSetky
a€lje
f(z) = f(a)

r—a
neklesajicou funkciou premennej x na I.

Dvakrat diferencovatelné funkcia je pritom na I konvexna prave vtedy, ked je jej druha derivécia
na I nezaporna.

Definicia 14.6.2. Nech I C R je nedegenerovany interval. Funkcia f: I — (0,00) je logaritmicky
konvexnd na I, ak je na I konvexné funkcia Inof.

Veta 14.6.3 (Bohrova-Mollerupova veta). Nech X C R je mnoZina takd, Ze (0,00) C X ax+1€ X
kedykolvek x € X. Nech f: X — R je funkcia takd, Ze:

(1) Pre vSetky x € X je f(x +1) =z f(x).

(13) Funkcia f je na intervale (0,00) kladnd a logaritmicky konvexnd.
(#ii) Plati f(1) = 1.
Pre vietky x € X potom f(z) =T'(z).

Dokaz. Rovnost f(x) = I'(z) stadi ukazat pre vSetky = € (0,1]; pre zvy$né x € X potom vyplynie
z vlastnosti (7) a vety 14.3.2.

Z logaritmickej konvexnosti funkcie f na (0, 00) pre vSetky = € (0, 1] a vSetky prirodzené &isla n > 2
dostavame

In(f(n —1)) = In(f(n))
(n—1)—n

In(f(n + x)) — In(f(n))

In(f(n+1)) —In(f(n))
(n+x)—n )

(n+1)—n

<

<
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Ked7ze z vlastnosti (i) a (i7i) evidentne vyplyva f(n) = (n — 1)!, moZno uvedené nerovnosti prepisat
aj ako
< In(f(n+z)) —In(n — 1)!

In(n —1) .

<lInn,

z ¢oho
In((n—1)*n-1") <In(f(n+z)) <ln(n"(n—-1)!).

Vdaka monotonnosti prirodzeného logaritmu teda
n=1)%n-1)!'< f(n+z) <n"(n—-1),

¢o je to isté ako
n—1
(n—1)"(n -1 < f(z) [[(x+k) <n®(n—1).

k=0
Z toho

(n—1)*(n—1)!

n*(n —1)! nn! x+n
z(z+1)...(x+n—1) )

SI@) S Y. man—D) 2@t D).. @i =

KedZe navySe tieto nerovnosti platia pre vsetky prirodzené n > 2, dostavame

L) < (o) < Tafw) 2

pre vSetky prirodzené n > 2. Preto

I'(z) = lim T'y(z) < f(x)

n—oo

a sucasne

. . r+n
I(z) = nl;rglo T(z) = Jlﬁ\nolo I (z) - > f(x);
nutne teda f(x) = I'(z), ¢o bolo treba dokazat. O

14.7 Stirlingova aproximéacia a Legendreov vztah

Nasim najbliz§im cielom bude asymptoticky odhadnut funkciu I'(x) pre  — oo pomocou elementarne;j
funkcie. Dokézeme najprv dve pomocné tvrdenia, ktoré sa nam za tym ucelom zidu.

Tvrdenie 14.7.1. Pre vSetky k € N\ {0} je

1 k 1 k+1
14 - 14— .
(+k> <e<<—|—k>
— 1 1+1k—1' 1+1k1+1 = lim (1 AN
el k)T b k p) e\t ’

o0

sta¢f ukézat rasticost postupnosti ((1+ 1/!4:)"7),9:1 a klesajticost postupnosti ((1+ 1/k)*1)
V prvom pripade potrebujeme ukazat, ze pre vsetky k € N\ {0} je

Lo\ K I\ F
14+ —— 1+ —
(o) > ()

Dokaz. Kedze

00
k=1’
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1+kil’“<1 1) )
+— ] > 1.
1+ ¢ k+1

S pouzitim Bernoulliho nerovnosti ale skuto¢ne dostavame

k
1+ &2 IR kk+2)\* E+2 ! kk+2>
1++ k+1) \(k+1)2%) k+1 (k+1)2) k+17~
k k+2 1
—( (k+1)2>k+1 TS

Podobne pre druhti postupnost potrebujeme ukazat, Ze pre vetky k € N\ {0} je
k+2 k+1
1 1
1+—— < (14 -+
(ven) <(er)

k+1
1+ 4 J k2
14 k+1
k+1

S pouzitim Bernoulliho nerovnosti ale opét zistujeme, Ze

k+1
14\ _((k+1)2>k+1_<1+ 1 >k+1>1+ 4l k+l k2
1+ & k(k + 2) k(k + 2) = k(k+2) (k+1)2  k+1

¢im je tvrdenie dokizané. O

Tvrdenie 14.7.2. Pre vSetky n € N\ {0} je

n\" n\n"
e(—) <n!<en<—) )
e e

Dékaz. Prenasobenim nerovnosti z tvrdenia 14.7.1 pre £k = 1,...,n — 1 dostavame
””(k+1) = (k4 1)k
H kk H kk—l—l ?
k=1 k=1
¢o je to isté ako
nn—l n

oo < o

Prenasobenim tychto nerovnosti ¢islom n! dostavame

n" < nle 1 < pntl

a predelenim ¢&slom e” ! napokon prichadzame k dokazovanym nerovnostiam
n\m n\m
e(—) <n!<en<—) . O
e e
7 tvrdenia 14.7.2 a vety 14.2.2 vyplyva, Ze prinajmensSom pre prirodzené ¢isla x > 1 bude
xzeforl < F(CIZ + 1) < xx+1efx+17
z ¢oho vdaka vztahu I'(z) = T'(x + 1) /2 dostavame
ex”le™ < I'(x) < ex®e™™.
Funkciu T sa teda pre = € (0, 00) pokusme vyjadrit ako
I(z) = az® 1 2em Tl

kde a € R je vhodné konstanta a p je vhodna funkcia. Skusme teda najst konStantu a a funkciu p
tak, aby funkcia az®1/2¢~%e#(®) mala vSetky tri vlastnosti z Bohrovej-Mollerupovej vety. Zide sa nam
pritom nasledujica lema.
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Lema 14.7.3. Nech I C R je nedegenerovany interval.
a) Siucet konvexngch funkcii na I je konvexnd funkcia.
b) Sucin logaritmicky konvexnyjch funkcii na I je logaritmicky konvexnd funkcia.
¢) Limita (bodovo konvergentnej) postupnosti konvexnijch funkcii na I je konvernd funkcia.
d) Sicet nekoneéného radu konvexnych funkcii na I je konvernd funkcia.

Dokaz. Na dokaz tvrdenia a) najprv uvazujme Iubovolna dvojicu konvexnych funkcii f,g: I — R.
Pre vsetky a € I st potom

f(x) — f(a) . g(x) — g(a)

neklesajice funkcie premennej x na I. Neklesajicou je v8ak v takom pripade aj funkcia

(f(x) + g(x)) = (f(a) + 9(a))

r—a

premennej x a funkcia f + ¢g tak musi byt tiez konvexna.

Ak st dalej funkcie f,g: I — R logaritmicky konvexné, st funkcie In f a Ing konvexné a podla
prave dokézaného tvrdenia tak konvexnou musi byt aj funkcia In f +1n g = In(fg). Funkcia fg je teda
tiez logaritmicky konvexna a dokézané je aj tvrdenie b).

Na dokaz tvrdenia c) si staci v&imnit, Ze konvexnost funkcie f: I — R je ekvivalentna poziadavke

f@1)—fla) _ f(x2)—f(a)
z1—a Zo—a >0
xr1 — T2 -

pre vietky a,xq,x2 € I. Lahko vidiet, Ze pre limitu postupnosti funkcii splhajucich takito nerovnost
zostéva tato vlastnost zachovana.
Tvrdenie d) je napokon désledkom tvrdeni a) a c). O

Najdime teraz najprv funkciu p: (0,00) — R, pre ktora funkcia f(z) = 2% /2e=%e#®) splha
podmienky () a (i) Bohrovej-Mollerupovej vety. Pre lubovolnu funkciu f takéhoto tvaru je

T —(z T z+1/2
flz+1)  (z+1) tl/ze_( +1) pu(z+1) (14 1 re—lea+)—n(z)
f(z) x%—1/2e—zep(2) x

Aby funkcia f vyhovovala podmienke (7) Bohrovej-Mollerupovej vety, musi byt tento podiel rovny = —
nutne teda

1 z+1/2 1
w(x) —p(r+1)=In (1 + x) el =(x+1/2)In (1 + x) —1=:g(x). (14.8)
Funkciu p definujeme pre vietky x € (0,00) ako
p(z) = Zg(af +n). (14.9)
n=0

Dokéazeme teraz, Ze tento rad skuto¢ne konverguje — platnost vztahu (14.8), a tym padom aj pod-
mienky (i) Bohrovej-Mollerupovej vety pre funkciu f, je v takom pripade evidentna. Popritom doka-
zeme aj konvexnost funkcie g.
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Tvrdenie 14.7.4. Funkcia g: (0,00) = R, dand pre vsetky x € (0,00) ako

o(z) = (z +1/2)In (1 + i) Y

je konvexnd. Rad

> gz +mn) (14.10)
n=0

pritom konverguje pre vSetky x € (0,00), pricom

> 1
0< < —.
—;g(“”) = 122

Dékaz. Uvazujme rad

1, 1+y 1 1 /2y 2y 2¢°
—In—2 = —(In(1 —In(1 — ==+ 4+ Z4+...]) =
s =S~ - p) = 3 (L2 2

<

3 5
vy
R SRR

ktory konverguje pre vietky realne isla y spliiajice |y| < 1. Vezmime y = 1/(2z + 1); vysledny rad

1 1 1. 145 1 1 1
“In(1+=2) =21 a1l _
2n< +x> e 2 +1  32et+17 B2zt 1)p |

potom konverguje pre vietky x € (0,00), lebo |1/(2x + 1)| < 1 pre vSetky takéto z. Prenésobenim
predchadzajtcej rovnosti vyrazom (2x + 1) a odpoé&itanim jednej dostavame

1 1 1 1 1
9(x) = (‘” + 2> n (1 - x> T 3ea 1 Th@e )t T Ta 1 (14.11)

Ked7ze st vSetky ¢leny nekone¢ného radu funkcii napravo evidentne konvexné na (0, oo), musi byt podla
lemy 14.7.3 konvexnéa aj funkcia g. Tym je dokézana prvé Cast tvrdenia.

Rad (14.11) nam ale tiez umoziiuje odhadnut hodnotu funkcie g(x): pre vietky = € (0,00) je

1 1 1
0=9@) = 3oz Y h@egr i T 7@ rap TS
< ! + ! + ! +...=
T 3(2x+1)2  3(2z+1)* 32z +1)°
:1(1+ L +) -
3(2x + 1)2 2z +1)2  (2z+1)4
B 1 1 B 1 B
B 3(2m+1)21—m C32r+1)2-3
1 1 1 1

T 1202+ 120 120(z+1) 1220 12(w+1)

Konvergenciu radu (14.10) a odhad pre jeho sicet teda dostaneme nasledovne:

= = 1 1 1
0< < _ _ 1
—§g(x+")—;)<12(x+n) 12(x+n+1)> 122

Tvrdenie je dokazané. O
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Funkcia p je teda naozaj dobre definované; z predchadzajiceho tvrdenia navyse dostdvame uzitocny
odhad

1
0<pu(x)<

— 14.12
— 12x ( )

pre vietky € (0,00). Funkcia f(x) = 27~ 1/2e~%e/®) je teda, pre funkciu p definovant vztahom (14.9),
tiez dobre definovana a vyhovuje podmienke (i) Bohrovej-Mollerovej vety. DokaZzeme teraz, Ze vyhovuje
aj podmienke (i7), t. j. je logaritmicky konvexna.

Tvrdenie 14.7.5. Funkcia f(z) = z*~2e=%e®) je kladnd a logaritmicky konveznd na (0,00).

#=1/26=% premennej = je na (0, 00) logaritmicky konvexna, pretoze

In (ac"’_l/Qe_”") =In (e(lm)(x_lﬂ)_x) = (Inx) (x - ;) -,

z ¢oho pre derivacie tejto funkcie pre z € (0, 00) dostavame

(111 (mx_lme_‘”))/ _ - 1/2 +Ilnzx—1

X

Doékaz. Funkcia x

<ln (93:”_1/26_x))// = 27132 + % > 0.

Vdaka leme 14.7.3 teda staci dokazat, je logaritmicky konvexné funkcia e*(®) — to pritom bude isté,
ak dokazeme, ze funkcia p je na intervale (0, 00) konvexna. Kedze

ulx) = glx +n),
n=0

sta¢i vdaka leme 14.7.3 dokéazat konvexnost funkcii g(z + n) pre vietky n € N; ta je ale ekvivalentna
konvexnosti funkcie g(x) dokazanej v ramci tvrdenia 14.7.4. O

Funkcia f(z) = 2% 1/2e~%e/*) teda splia podmienky (i) a (i7) Bohrovej-Mollerupovej vety. Rov-
nako dobre tak tieto podmienky spliia aj Tubovolna funkcia f,(z) = az®1/2e=7el®) pre o > 0.
Zostava teda zvolit konstantu « > 0 tak, aby bola pre funkciu f, splnené aj podmienka (i) Bohrovej-
Mollerupovej vety, t. j. aby bolo

fa(1) = aeterM) =1,

Tato rovnost je, samozrejme, splnend pre a = a := e #(1) — podla Bohrovej-Mollerupovej vety teda

I(z) = fa(z)

pre vietky € (0,00). V désledku toho tiez zistujeme, Ze funkcia I' naozaj spliia vietky tri podmienky
Bohrovej-Mollerupovej vety — je teda okrem iného aj logaritmicky konvexna na intervale (0, c0).
Z rovnosti I'(x) = f,(z) a odhadu (14.12) pre nejaka funkciu 0: (0,00) — [0, 1] a vSetky = € (0, c0)
dostavame
I'(z) = az®~V2emeh(®) = gpr—1/2g—e+0(z)/(122) (14.13)

a kedZe navyse pre vietky n € N je n!l =T'(n + 1) = nI'(n), tak aj

nl — anHL/2g—nt0(n)/(120) (14.14)

7 tychto dvoch vztahov odvodime Stirlingove aproximécie pre funkciu gama resp. pre faktorial.
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Nagim najbliz§im cielom bude vyjadrit konstantu a jednoduchsim spdsobom. Za tym tcelom uva-
zujme pre vietky p € N\ {0} funkciu ¢,: (0,00) — R, dant pre vietky x € (0, 00) ako

pp(z) = p'T <Z> r (m ; 1) T <$H}:H> . (14.15)

Ukazeme, Ze tato funkcia takisto spliia podmienky (i) a (i) Bohrovej-Mollerupovej vety.

KedZe je funkcia I'(z) kladna a logaritmicky konvexna na (0, c0), z vety o derivacii zloZenej funkcie
vyplyva, Ze na tomto intervale musia byt kladné a logaritmicky konvexné aj funkcie

") (57 ()

Funkcia p® je na intervale (0, 00) takisto logaritmicky konvexna, pretoze

d? . d?
@ln(p )= @xlnp— 0.

Vdaka leme 14.7.3 a (14.7.3) tak musi byt logaritmicky konvexna aj funkcia ¢p(z).
Uvazujme dalej funkéntt hodnotu hodnotu ¢, (z + 1). S pouzitim vety 14.3.2 zistujeme, ze

op(z+1) =p"*'T (M) ...r<x+p_1>r(~’”+l’> _

p p p

1 -1
:pxpf<x+1>r<x+ )...r<w>:
p p p

1 -1
:pmpwr(w>F<w+ >F<$+p>:
p p p p
1 -1
() () (2
b b b

= zpp().

Funkcia ¢, teda naozaj splita podmienky (i) a (ii) Bohrovej-Mollerupovej vety, a teda existuje kon-
Stanta a, > 0 taka, Ze

pp(x) = apl'(z)
pre vietky x € (0,00). Specilne pre # = 1 je I'(z) = 1, z coho

a, = pI (;) r (;) .T (Z) . (14.16)

Mézeme teraz pristupit k identifikdcii hTadanej konstanty a — dokdZeme, Ze a = +/27. Popritom
tiez ukazeme, Ze pre vietky p € N\ {0} je a = /paP~! = p'/2(2m)P~1)/2,

Tvrdenie 14.7.6. Nech z € (0,00). Potom I'(x) = 2rz* 1/2e~%e®) o pre vsetky p € N\ {0} je
op(x) = p/2(2m) P~ V20 (z).

Dékaz. Vieme, 7e pre vietky kladné realne = je T'(z) = fo(z) = az® /2e~%e/(*); dokazované tvrdenie
je teda naozaj ekvivalentné rovnostiam a = V27 a a, = \/Z)apfl.

Z vety 14.5.3 pre k = 1,...,p dostavame

TR G () R G

p

r (k) nk/Pp) nk/Pplpntl
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takze

()r(E)-

Stcasne ale zrejme

(14.17)

P\ .. n(I+-4P)/p(plyppnrte L n(PH1/2(pl)pprete
=)= 1lim —5 p —— = lim
D n—oo [[i_o[lfey(k+jp)  nooo (np +p)!

| |
i )t ()l + 1) - (np £ p)
n—r00 (np)!(np)P n—00 (np)!(np)p
Zo vztahov (14.16) a (14.17) teda dostavame

(P+1)/2(p\Pprpte |
ap:pl“(l)r<2>”_p(p>:phm n (n!)Pp (np +p)! _

=1.

p p p nwoo  (np+p)l (np)(np)P
R (nh)Pp"P
o pnh—golo (np)!n(l’_l)/2 ’

Podla (14.14) pritom

(14.18)

(n)P = aPpPtr/2e=npO(n)p/(12n)

(np)! = a(np)"P /2=l )/ (12np)

Po dosadeni do (14.18) dostavame

apnnp+p/2efnpee(n)p/(lzn‘)pnp

B — p—1 | 0(n)p/(12n)—0(np)/(12np) _ p—1
=P R ) [ ez — VP i e = vpa'

Specialne pre p = 2 navyse vdaka (14.16) zistujeme, Ze

La MOT)
B

¢o bolo treba dokézat. O

Mozeme teraz vyslovit samotnii vetu o Stirlingovych aproximaciach pre realnu funkciu I', ako aj
pre faktorial prirodzenych ¢isel.

Veta 14.7.7 (Stirlingove aproximacie). Pre redlne x — oo je

D(z) = \/ﬂji (g)m (1 +0 (i))

nl = 27m(g)” <1+0 (i)) .

Dokaz. Bezprostredne zo vztahu (14.13) a tvrdenia 14.7.6 pre nejaku funkciu 0: (0, 00) — [0, 1] a vietky
z € (0,00) dostavame
F(:c) _ /27Txx—1/26—:v+6’(3:)/(12m);

podobne vdaka (14.14) pre vSetky n € N mame
n! = mnn+1/2efn+9(n)/(12n).

a pre prirodzené n — o0 je

Pre x — oo teraz

1 1 1
0(z)/(12z) ~ 1/12z _ — — 1.
e <e 1+12:L“+(123:)22!+'” 1+O<x>’

podobne teda aj pre n — oo mame
SHm/(120) _ 1 4 0 (1)
n

a veta je dokdzané. O
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Po ceste k Stirlingovym aproximacidm sme navysSe dokazali aj nasledujice dva vysledky, ktoré stoja
za osobitni zmienku.

Veta 14.7.8 (Gaussov su¢inovy vzorec). Pre vsetky p € N\ {0} a z € C\ {0,—1,-2,...} je

z z+p—1\ (2m)(p=1)/2
(2. r () o

Doékaz. Podla tvrdenia 14.7.6 pre vietky p € N\ {0} a = € (0, 00) plati

() = p°T <"’“’) T ("” + 1) T <W> — pU/2(2m) D21 (),

p p p

T z+p—1 _(27r)(p_1)/2
0(3)-r () - e

pre vietky x € (0,00). KedZze méa interval (0,00) v C\ {0, —1,—2,...} hromadny bod, z vety o jedno-
znacCnosti dostavame aj dokazovani rovnost

z z+p—1Y\ (2m)(p=1)/2
(2).or (270 B

pre vetky z € C\ {0, —-1,-2,...}. O

z ¢oho dostavame rovnost

Veta 14.7.9 (Legendreov vztah). Pre vSetky z € C\ {0,—1,-2,...} je
z z+1 NS
r <7> r = (2).
2 < 2 ) 311 (2)

Dékaz. Vyplyva bezprostredne z Gaussovho stu¢inového vzorca pre p = 2. O

14.8 S1vis so sinusom

Na zéver tejto kapitoly venovanej funkcii gama eSte dokdZme vetu, ktora tito funkciu dava do stvisu
s goniometrickou funkciou sin z.

Veta 14.8.1. Pre vietky z € C\ Z je

()T —2) =

sin(mz)’
Dékaz. Pre vsetky z € C\ Z polozme
o(z) :=T(2)['(1 — z)sin(nz).

UkéZeme postupne, ze funkcia ¢ je na svojom defini¢nom obore konStantna. VSimnime si najprv, Ze
pre vietky z € C\ Z je

INOE-

—Z

e(z+1)=T(z+ I'(—2)sin(m(z + 1)) = (zI'(2)) (

=T(2)['(1 — z)sin(7z) = p(z).

) (sin(r) =
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Funkcia ¢ je teda prinajmensom periodickd. Uvazujme teraz stcin
z z+1 z z Tz z+1 1—2z TZ 0w
; =r(g)r(i-g)sm(F)r r (5 +3) -
‘p(2>90< 2 ) 2 2) 2 2 SR A
:r(5>r N p (=) p (A2l sin(E>cos<E>.
2 2 2 2 2 2

Aplikovanim Legendreovho vztahu v bode z a v bode 1 — z tak dostavame

@ (5) ¢ (z il 1> _ VT T'(z) ﬁf(l ~ 2)sin (%) cos <E> -

2 2 ) 2e717 Yo 2
. (TZ Tz .
— aT(2)T(1 — 2)2sin (7) cos (7) = aD(2)D(1 — 2)sin(nz) = mp(z).  (14.19)
DokaZeme teraz, Ze funkcia ¢ mé iba odstranitelné singularity — a mozno ju teda dodefinovat
na celt funkciu. Funkcia ¢ je ale zjavne analytickd na C\ Z; moznymi singularitami tejto funkcie sa
tak jedine body a € Z. Pre a = 0 a v8etky z € D'(0,1) ale

(1 3.3 5.5 77
¢(2) = T(z)I(1 - 2)sin(nz) = <z”)r<1 —2) <m B ) -
71'322 7T5Z4 7T7ZG
:F(l—i—z)f‘(l—z)(W— il + I —f—...);

na D'(0,1) je teda funkcia ¢(z) zhodna s funkciou analytickou v bode 0, a teda moze mat v bode 0 iba
odstranitelna singularitu — jej hodnotu v bode 0 méZzeme dodefinovat na I'(1)I'(1)m = 7. Z periodicity
funkcie ¢ napokon vyplyva, Ze rovnako méZzeme na 7 dodefinovat aj hodnoty funkcie ¢ vo v8etkych
bodoch a € Z, ktoré tak musia byt odstranitelnymi singularitami funkcie . Vo vysledku tak dostavame
celii funkciu ¢: C — C taka, ze pre vietky z € C\ Z je ¢(z) = ¢(z). Z (14.19) a vety o jednozna¢nosti
navyse pre tiuto funkciu dostavame vztah

o(2)e (Z ! 1) = p(2) (14.20)

pre vSetky z € C — teda aj pre body a € Z, v ktorych pévodna funkcia ¢ nebola definovana.

Mézeme napokon dokazat konstantost funkcie ¢ — a tym padom aj pévodne uvazovanej funkcie .
Uvazujme najprv z € R; funkcia ¢ je evidentne kladna na intervale [0,1] a vdaka jej periodickosti
tak musi byt kladna aj na R. Mozeme teda definovat funkciu g: R — R pre vSetky x € R ako
g(x) = % In @(z). Z rovnosti (14.20) potom pre vSetky = € R dostavame

g(z) = %g (g) + %g (x ; 1) . (14.21)

Ako druh& derivacia analytickej funkcie navy$e musi byt funkcia ¢ na svojom defini¢nom obore R
spojita; Specialne je preto spojita aj na intervale [0,1]. Z toho vyplyva existencia M > 0 takého, Ze
pre vietky = € [0,1] je |g(x)| < M; vdaka periodickosti funkcie ¢ tak opét |g(z)| < M aj pre vSetky
z € R. Z (14.21) ale stucasne pre lubovolné takéto M > 0 a vietky = € R dostéavame

|($)|<1‘ (f)}_kl z+1 <%+%:M

PN=4 Q)T 1pP\ 2 )|=a "1 "2
z ¢oho vyplyva, Ze v skutonosti mozno vziat aj M = 0. Funkcia g tak musi byt na R konStantne
nulova — funkcia In ¢ preto musi byt na R linearna alebo konstantné; kedze je ale suc¢asne periodické,
moze byt jedine konStantna. Konstantnd na R tak musi byt aj funkcia ¢ a z vety o jednoznacnosti
nasledne vyplyva konstantnost tejto funkcie aj na C.

Vieme pritom, ze $(0) = 7w — pre vietky z € C teda musi byt ¢(z) = 7. Pre vSetky z € C\ Z je

teda

()1 -2) = siigjr)z) - siigjr)z) - sinzrm)’

¢o bolo treba dokézat. O
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Cvicenia
1. Dokazte, ze funkcia gama nemé Ziadne korene.

2. Dokazte, 7ze pre vietky x € (0,00) je

) () = / =1 (In 1) dt.

0



Predbezna verzia
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