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Označenia a konvencie

Číselné množiny. Ako N, Z, Q a R postupne označujeme množiny všetkých prirodzených čísel
vrátane nuly, všetkých celých čísel, všetkých racionálnych čísel a všetkých reálnych čísel. Komplexné
čísla zavedieme v prvej kapitole a ich množinu budeme označovať symbolom C.

Reálne čísla. Nech a ∈ R je daná konštanta. Ak nie je povedané inak, treba zápisy ako „nech x ≥ a“ ,
„nech x > a“ , „nech x ≤ a“ , alebo „nech x < a“ chápať tak, že x je nejaké reálne číslo spĺňajúce danú
nerovnosť.

Intervaly. Pre uzavreté intervaly používame notáciu [a, b] a pre otvorené intervaly notáciu (a, b).
Zľava resp. sprava uzavreté intervaly potom zapisujeme ako [a, b) resp. (a, b].

Množinové relácie a operácie. Neostrú inklúziu označujeme vždy ako „⊆“ resp. „⊇“ ; naopak
ostrú inklúziu vždy ako „(“ resp. „)“ . Pre operáciu množinového rozdielu používame symbol „\“ .

Nula na nultú. V celom texte pracujeme s konvenciou 00 = 1, ktorá v rámci matematickej analýzy
nie je úplne samozrejmá. Nám však táto konvencia, všeobecne prijímaná napríklad v kombinatorike,
nebude nijak prekážať – naopak povedie k podstatnému zjednodušeniu niektorých zápisov.
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Kapitola 1

Komplexné čísla a komplexná rovina

U čitateľa už predpokladáme určitú oboznámenosť s komplexnými číslami. Veľkú časť tejto kapitoly
tak tvorí opakovanie známeho materiálu; jej prezentácia je sčasti ovplyvnená učebnicou [8].

1.1 Komplexné čísla a ich geometrická interpretácia

Komplexné čísla možno zaviesť rôznymi spôsobmi – azda najrýchlejšie by bolo povedať, že ide o prvky
poľa R[i]/(i2 + 1), kde R[i] označuje okruh polynómov o premennej i s reálnymi koeficientmi; tým je
potom určená aj aritmetika komplexných čísel.

Za účelom zopakovania základných vlastností komplexných čísel ale bude účelnejšie definovať tento
číselný obor elementárne. Komplexným číslom tak budeme rozumieť dvojicu reálnych čísel a a b, ktorú
zapisujeme ako a+ib alebo a+bi.1 Komplexné číslo a+i0 stotožňujeme s reálnym číslom a a komplexné
číslo 0+ib píšeme aj ako ib alebo bi; podobne namiesto a+i1 budeme väčšinou písať len a+i a namiesto
0 + i1 len i. Množinu všetkých komplexných čísel označujeme symbolom C a množinu reálnych čísel R
chápeme – prostredníctvom spomenutého stotožnenia a+ i0 s číslom a – ako podmnožinu množiny C.
Čísla a+ ib a c+ id považujeme za rovné – a píšeme a+ ib = c+ id – ak a = c a súčasne b = d.

Pre komplexné číslo z = a + ib nazývame reálne číslo a jeho reálnou zložkou a píšeme Re z := a.
Podobne reálne číslo b nazývame imaginárnou zložkou komplexného čísla z a kladieme Im z := b.
Reprezentácia komplexných čísel ako usporiadaných dvojíc – teda pomocou ich reálnej a imaginárnej
zložky – sa niekedy nazýva aj ich karteziánskou reprezentáciou. Komplexné číslo z tu totiž stotožňu-
jeme s bodom – alebo ekvivalentne vektorom – (Re z, Im z) v rovine R2, ktorá sa v tomto kontexte
nazýva aj komplexnou rovinou alebo Gaussovou rovinou; grafické znázornenie čísla bodom v rovine,
tak ako na obrázku 1.1, sa v literatúre vyskytuje aj pod názvom Argandov diagram.

2

3 + i2

−3 + i3

Re z

Im z

−i

Obr. 1.1: Grafická reprezentácia čísel 2, 3 + i2, −3 + i3 a −i v komplexnej rovine.

1Na tomto mieste sa často uvádza, že i je prvok spĺňajúci rovnosť i2 = −1. To bude samozrejme pravda, ale nateraz
nie je nutné zdôrazňovať to explicitne. V našom ponímaní bude i len skráteným zápisom komplexného čísla 0 + i1
a rovnosť i2 = −1 vyplynie z pravidiel aritmetiky komplexných čísel, ktorú onedlho zavedieme (operácie na komplexných
číslach ale budeme samozrejme cielene definovať tak, aby rovnosť i2 = −1 bola splnená).
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4 1.2 Aritmetika komplexných čísel

Čoskoro uvidíme, že oproti karteziánskej reprezentácii komplexných čísel býva často výhodnejšia
ich polárna reprezentácia.

1.2 Aritmetika komplexných čísel

Operácie sčítania a násobenia komplexných čísel definujeme pre všetky a, b, c, d ∈ R nasledovne:

(a+ ib) + (c+ id) := (a+ c) + i(b+ d),

(a+ ib)(c+ id) := (ac− bd) + i(ad+ bc).

Je jasné, že číslo 0 je neutrálne vzhľadom na sčítanie a číslo 1 je neutrálne vzhľadom násobenie.
Pre každé komplexné číslo z = a + ib kladieme −z := (−a) + i(−b) a v prípade z 6= 0 tiež píšeme
1/z := (a/(a2 +b2))+ i(−b/(a2 +b2)); ľahko pritom vidieť, že z+(−z) = 0 a z(1/z) = 1. Čitateľ ľahko
overí, že množina C – s vyššie definovanými operáciami sčítania a násobenia – tvorí pole. Definície
operácií ako odčítanie alebo delenie sú už potom rovnaké ako v každom poli. Vlastnosti poľa budeme
pri práci s komplexnými číslami voľne využívať.

Umocňovanie komplexných čísel na prirodzený exponent je tak definované obvyklým induktívnym
spôsobom, rovnako ako aj v ľubovoľnom inom poli: pre všetky z ∈ C je z0 = 1 a zn+1 = znz
pre všetky n ∈ N. Z uvedených definícií zrejme vyplýva aj rovnosť i2 = −1.

Absolútnu hodnotu komplexného čísla z = a + ib definujeme ako bežnú euklidovskú vzdialenosť
bodu (a, b) v komplexnej rovine od bodu (0, 0) – teda

|z| :=
√
a2 + b2.

Orientovaný uhol θ, ktorý v komplexnej rovine zviera kladná reálna os s vektorom (a, b), nazývame
argumentom2 komplexného čísla z = a+ ib. Tento uhol nie je určený jednoznačne: pre z 6= 0 sa môže
líšiť o celočíselné násobky čísla 2π a pre z = 0 môže byť ľubovoľný. Často si vystačíme s ľubovoľným
z možných argumentov θ, prípadne je jeho konkrétna voľba zrejmá z kontextu – v takom prípade
môžeme písať θ =: arg z. Množinu všetkých argumentov čísla z označíme Jarg zK.

Komplexne združeným číslom k číslu z = a+ ib nazveme číslo z := a− ib. Je zrejmé, že zobrazenie
· : C → C dané ako · : z 7→ z je bijektívne. Z častí (iii) a (iv) nasledujúceho tvrdenia vyplýva, že
v skutočnosti ide o automorfizmus poľa C – čiže o izomorfizmus z C do C.

Tvrdenie 1.2.1. Nech z, w ∈ C. Potom:

(i) |zw| = |z||w|;

(ii) |z|2 = zz;

(iii) z + w = z + w;

(iv) zw = z w;

(v) z = z;

(vi) z + z = 2 Re z;

(vii) |z| = |z|;

(viii) (Re z)2+(Im z)2 = |z|2.

Dôkaz. Nech z = a+ ib a w = c+ id. Potom

|zw| = |(ac− bd) + i(ad+ bc)| =
√

(ac− bd)2 + (ad+ bc)2 =

=
√
a2c2 − 2abcd+ b2d2 + a2d2 + 2abcd+ b2c2 =

√
a2(c2 + d2) + b2(c2 + d2) =

=
√

(a2 + b2)(c2 + d2) =
√
a2 + b2

√
c2 + d2 = |z||w|,

čo dokazuje rovnosť (i). Ďalej

zz = (a+ ib)(a− ib) = a2 + b2 =
(√

a2 + b2
)2

= |z|2

2Kladnú reálnu os tu chápeme ako počiatočné rameno tohto orientovaného uhlu – ide teda o uhol, o ktorý je potrebné
otočiť kladnú reálnu os proti smeru hodinových ručičiek tak, aby vznikla polpriamka jednoznačne určená smerovým
vektorom (a, b).



Predbežná verzia

Komplexné čísla a komplexná rovina 5

a dokázaná je aj rovnosť (ii). Jednoduchý dôkaz rovnosti (iii) prenechávame čitateľovi. Na dôkaz
rovnosti (iv) si stačí všimnúť, že

z w = (a− ib)(c− id) = (ac− bd)− i(ad+ bc) = (ac− bd) + i(ad+ bc) = zw.

Dôkaz rovností (v) až (viii) je napokon celkom triviálny.

Okrem práve dokázaných identít sú pri práci s komplexnými číslami užitočné aj nasledujúce nerov-
nosti – nerovnosť (ii) sa zvykne nazývať aj trojuholníkovou nerovnosťou.

Tvrdenie 1.2.2. Nech z, w ∈ C. Potom:

(i) |Re z| ≤ |z| a |Im z| ≤ |z|;

(ii) |z + w| ≤ |z|+ |w|;

(iii) |z + w| ≥ ||z| − |w||.

Dôkaz. Nerovnosti (i) sú dôsledkom vzťahu |Re z|2 + |Im z|2 = (Re z)2 + (Im z)2 = |z|2 a nezápornosti
absolútnych hodnôt. Na dôkaz nerovnosti (ii) stačí – vďaka nezápornosti čísel |z + w| a |z| + |w| –
ukázať, že |z + w|2 ≤ (|z|+ |w|)2. Tu však máme

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = |z|2 + |w|2 + (zw + wz) =

= |z|2 + |w|2 +
(
zw + zw

)
= |z|2 + |w|2 + 2 Re (zw) ≤ |z|2 + |w|2 + 2 |zw| =

= |z|2 + |w|2 + 2|z| |w| = |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2.

Napokon si všimnime platnosť nasledujúcich dvoch nerovností:

|z| − |w| = |z + w − w| − |w| ≤ |z + w|+ |−w| − |w| = |z + w|,
|w| − |z| = |w + z − z| − |z| ≤ |w + z|+ |−z| − |z| = |z + w|.

Keďže je ||z| − |w|| vždy rovné niektorej spomedzi hodnôt |z|− |w| a |w|− |z|, dostávame ako dôsledok
aj poslednú z dokazovaných nerovností.

1.3 Goniometrický a exponenciálny tvar komplexného čísla

Komplexnému číslu z = a+ ib zodpovedá bod komplexnej roviny s karteziánskymi súradnicami (a, b).
Rovnaký bod komplexnej roviny môžeme zadať aj v polárnych súradniciach – je totiž jednoznačne
určený svojou absolútnou hodnotou |z| = r a hociktorým zo svojich argumentov arg z = θ. Ľahko
pritom vidieť, že a = r cos θ a b = r sin θ. Číslo z teda môžeme zadať v goniometrickom tvare

z = r(cos θ + i sin θ).

Takýto zápis je relatívne zdĺhavý; budeme preto častejšie používať ekvivalentný exponenciálny tvar,
pri ktorom definujeme

eiθ := cos θ + i sin θ;

namiesto ei(−θ) budeme písať aj e−iθ. Komplexné číslo z spĺňajúce |z| = r a arg z = θ teda možno
v exponenciálnom tvare písať ako

z = reiθ.

Zápis komplexného čísla v exponenciálnom tvare je pre nás v tomto momente čisto formálny a zatiaľ
nie je ničím podložené interpretovať ho ako umocňovanie Eulerovho čísla na komplexný exponent –
v skutočnosti ani zatiaľ nemáme definované, čo to umocňovanie na komplexný exponent je.

Exponenciálnu funkciu ez komplexnej premennej z definujeme až v tretej kapitole; tým potom
aj odôvodníme zmysluplnosť vyššie zavedenej notácie. Na formálnej úrovni však s exponenciálnym
tvarom môžeme pracovať už teraz – v rámci nasledujúceho tvrdenia totiž overíme, že sa prinajmenšom
pri najbežnejších operáciách správa tak, ako by sme od exponenciálnej funkcie očakávali.
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Tvrdenie 1.3.1. Nech θ, φ ∈ R a k ∈ Z. Potom:

(i) (eiθ)(eiφ) = ei(θ+φ);

(ii) (1/eiθ) = e−iθ;

(iii) (eiθ)k = eikθ.

Dôkaz. Z definície exponenciálneho tvaru a násobenia komplexných čísel, ako aj zo súčtových vzorcov
pre goniometrické funkcie dostávame

(eiθ)(eiφ) = (cos θ + i sin θ)(cosφ+ i sinφ) = cos θ cosφ− sin θ sinφ+ i(sin θ cosφ+ cos θ sinφ) =

= cos(θ + φ) + i sin(θ + φ) = ei(θ+φ).

Z definície prevrátenej hodnoty, rovnosti sin2 θ + cos2 θ = 1, párnosti funkcie kosínus a nepárnosti
funkcie sínus ďalej

1

eiθ
=

1

cos θ + i sin θ
=

cos θ

cos2 θ + sin2 θ
+ i

− sin θ

cos2 θ + sin2 θ
= cos θ − i sin θ =

= cos(−θ) + i sin(−θ) = e−iθ.

Vzorec pre umocňovanie s využitím rovností (i) a (ii) ľahko dokážeme matematickou indukciou.

S použitím exponenciálneho – alebo ekvivalentne goniometrického – tvaru komplexných čísel tak
môžeme násobiť, deliť a umocňovať omnoho jednoduchšie, než pri ich karteziánskej reprezentácii.
Pre z = reiθ a w = seiφ napríklad

zw = rsei(θ+φ),

z/w = (r/s)ei(θ−φ) (ak s 6= 0),

zk = rkeikθ (pre všetky k ∈ N; v prípade, že r 6= 0, aj pre všetky k ∈ Z).

Z definície exponenciálneho tvaru je zrejmé, že napríklad ei0 = 1, eiπ/2 = i, eiπ = −1 a ei3π/2 = −i
(obrázok 1.2). Okrem iného tak aj dostávame „formálnu verziu“ Eulerovej rovnosti eiπ + 1 = 0.

Re z

Im z

ei0
eiπ/2

ei3π/2

eiπ

Obr. 1.2: Čísla ei0 = 1, eiπ/2 = i, eiπ = −1 a ei3π/2 = −i.

Zo vzorca pre umocňovanie komplexných čísel v exponenciálnom tvare vyplýva ako jednoduchý
dôsledok aj de Moivreova veta.

Tvrdenie 1.3.2 (De Moivreova veta). Nech θ ∈ R a k ∈ Z. Potom (cos θ + i sin θ)k = cos kθ+ i sin kθ.

Dôkaz. Je (cos θ + i sin θ)k =
(
eiθ
)k

= eikθ = cos kθ + i sin kθ.

Spomeňme ešte, že ako bezprostredný dôsledok periodicity funkcií sínus a kosínus – alebo alterna-
tívne ako dôsledok rovnosti ei2π = 1 a vzorca pre násobenie komplexných čísel v exponenciálnom tvare
– dostávame pre všetky k ∈ Z rovnosť eiθ = ei(θ+2kπ). Navyše eiθ = ei(θ+φ) práve vtedy, keď φ = 2kπ
pre nejaké k ∈ Z.
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1.4 Komplexné odmocniny jednej

Dôležitými špeciálnymi komplexnými číslami sú n-té odmocniny jednej pre n ∈ N \ {0}, ktorými
rozumieme riešenia rovnice

zn = 1 (1.1)

o neznámej z. Nech z = reiθ, kde r ≥ 0 a θ ∈ R. Zisťujeme, že rovnica (1.1) je ekvivalentná rovnici

rneinθ = 1.

Dve komplexné čísla sa môžu rovnať iba vtedy, keď sa rovnajú ich absolútne hodnoty; musí teda byť
rn = 1, z čoho pre nezáporné reálne číslo r nutne vyplýva r = 1. Preto einθ = 1, čo je po prevedení
do goniometrického tvaru ekvivalentné požiadavke

cosnθ + i sinnθ = 1.

Keďže dve komplexné čísla sa rovnajú práve vtedy, keď sa rovnajú ich reálne a imaginárne zložky,
zisťujeme, že musia súčasne platiť rovnosti cosnθ = 1 a sinnθ = 0, z čoho vyplýva

θ = 2kπ/n, kde k ∈ Z.

Riešeniami rovnice (1.1) sú teda práve všetky komplexné čísla ei2kπ/n pre k ∈ Z. Z pozorovaní na konci
predchádzajúceho oddielu ale vyplýva, že stačí uvažovať argument θ ∈ [0, 2π). Riešeniami rovnice (1.1)
tak sú práve všetky komplexné čísla ei2kπ/n pre k = 0, . . . , n − 1, ktoré sú po dvoch rôzne a ktoré
nazývame n-tými komplexnými odmocninami jednej. Napríklad na obrázku 1.2 sú teda znázornené
všetky štvrté komplexné odmocniny jednej.

1.5 Základy topológie komplexnej roviny

Budeme sa teraz zaoberať elementárnou topológiou komplexnej roviny – čiže pojmami ako okolie,
otvorená a uzavretá množina, či hromadný bod. To nám napríklad neskôr umožní definovať limitu
a spojitosť funkcií komplexnej premennej. Veľkú časť tohto oddielu možno zhrnúť do jediného pozoro-
vania: množina C tvorí, spoločne s bežnou euklidovskou metrikou, úplný metrický priestor. Čitateľovi
oboznámenému so základmi teórie metrických priestorov sa tak niektoré pasáže nasledujúceho textu
môžu právom zdať dôverne známymi. O základoch teórie metrických priestorov a topológie sa možno
dočítať napríklad v Simmonsovej učebnici [10].

Metrické priestory v tomto texte využívať nebudeme a k topológii komplexnej roviny budeme
pristupovať ad hoc. Čitateľa opäť odkazujeme aj na učebnicu [8].

Väčšina matematickej analýzy, ak nie matematická analýza celá, je nejakým spôsobom spätá s kon-
ceptom blízkosti. Najbežnejší spôsob jeho podchytenia závisí od možnosti merať vzdialenosť medzi
jednotlivými bodmi, pričom v komplexnej rovine sa na tento účel obyčajne používa bežná euklidovská
vzdialenosť. Vzdialenosťou čísel z, w ∈ C teda nazveme hodnotu

d(z, w) := |z − w|.

Označenie d(z, w) zvyčajne v budúcnosti používať nebudeme a bude sa rozumieť samosebou, že |z−w|
je vzdialenosť čísel z a w.

V reálnej analýze sa pod okolím bodu a ∈ R rozumie otvorený interval (a−ε, a+ε) pre nejaké ε > 0.
Tento interval obsahuje práve všetky reálne čísla vzdialené od a o menej ako ε. Podobne definujeme
uzavreté alebo prstencové okolie bodu a. V nasledujúcej definícii tieto pojmy priamočiaro rozšírime
do oboru komplexných čísel.
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Definícia 1.5.1. Nech a ∈ C je komplexné číslo.

a) Okolím bodu a o polomere r > 0 nazveme množinu

D(a, r) := {z ∈ C | |z − a| < r}.

b) Uzavretým okolím bodu a o polomere r > 0 nazveme množinu

D(a, r) := {z ∈ C | |z − a| ≤ r}.

c) Prstencovým okolím bodu a o polomere r > 0 nazveme množinu

D′(a, r) := D(a, r) \ {a}.

d) Medzikružím so stredom v bode a nazveme ľubovoľnú množinu typu

A(a, r1, r2) = {z ∈ C | r1 < |z − a| < r2},

kde 0 ≤ r1 < r2 sú reálne čísla. Prstencové okolie je špeciálnym prípadom medzikružia.

Otvorenou množinou teraz nazveme ľubovoľnú podmnožinu S množiny C, ktorá pre každý bod
z tejto množiny obsahuje aj nejaké jeho okolie. Inými slovami: nech zvolíme ľubovoľný bod otvorenej
množiny S, vždy sa ešte z neho môžeme aspoň o nejakú malú vzdialenosť „pohnúť ľubovoľným smerom“
bez toho, aby sme množinu S opustili.

Definícia 1.5.2. Množina S ⊆ C je otvorená, ak pre všetky z ∈ S existuje ε > 0 také, že D(z, ε) ⊆ S.

Príklad 1.5.3. Každé okolie D(a, r) pre a ∈ C a r > 0 je otvorená množina. Ľubovoľné z ∈ D(a, r)
totiž musí spĺňať |z − a| < r. Nech ε > 0 je také, že ε < r − |z − a|. Potom D(z, ε) ⊆ D(a, r), pretože
pre w ∈ D(z, ε) je

|w − a| = |w − z + z − a| ≤ |w − z|+ |z − a| < ε+ |z − a| <
< r − |z − a|+ |z − a| = r.

Situácia je znázornená na obrázku 1.3.

a r

D(a, r)

z
ε

D(z, ε)

Obr. 1.3: Každé okolie D(a, r) je otvorená množina.

Príklad 1.5.4. Podobne možno ukázať, že aj množina {z ∈ C | |z − a| > r} je otvorená pre všetky
a ∈ C a r ≥ 0.

Príklad 1.5.5. Prázdna množina ∅ a množina C sú triviálne otvorené.
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Tvrdenie 1.5.6.

a) Ak Sk ⊆ C je otvorená množina pre všetky k z nejakej množiny K, tak aj množina
⋃
k∈K Sk je

otvorená.

b) Ak S1, . . . , Sn ⊆ C sú otvorené množiny, tak aj množina
⋂n
k=1 Sk je otvorená.

Dôkaz. Prenechávame čitateľovi ako jednoduché cvičenie.

Príklad 1.5.7. Ľubovoľné medzikružie je prienikom dvoch otvorených množín; tiež teda ide o otvorenú
množinu. V dôsledku toho je otvorenou množinou aj každé prstencové okolie.

Nasledujúcu definíciu opäť získame priamočiarou úpravou analogickej definície v reálnom obore.

Definícia 1.5.8. Nech S ⊆ C je množina. Hromadným bodom množiny S nazveme ľubovoľné z ∈ C
také, že pre všetky ε > 0 obsahuje prstencové okolie D′(z, ε) aspoň jeden bod množiny S. Ak z ∈ C
patrí do S a súčasne nie je hromadným bodom S, nazýva sa izolovaným bodom množiny S.

Ďalšími dôležitými topologickými pojmami, ktoré teraz potrebujeme definovať, sú pojmy uzavretej
množiny a uzáveru.

Definícia 1.5.9.

a) Množina S ⊆ C je uzavretá, ak je množina C \ S otvorená.

b) Uzáverom množiny S ⊆ C nazveme množinu S danú zjednotením S s množinou všetkých jej
hromadných bodov.

Príklad 1.5.10. Z príkladu 1.5.4 je zrejmé, že každé uzavreté okolie D(a, r) pre a ∈ C a r > 0 je
uzavretá množina.

Definujme pre účely tejto a nasledujúcej kapitoly3 úsečku [a, b] z bodu a ∈ C do bodu b ∈ C
ako množinu

[a, b] := {a+ t(b− a) | t ∈ [0, 1]}.

Príklad 1.5.11. Z príkladu 1.5.5 vyplýva, že množiny ∅ a C sú súčasne otvorené aj uzavreté.
Ukážeme, že ide o jediné dve podmnožiny C s touto vlastnosťou. Skutočne: nech S ⊆ C je neprázdna

množina s neprázdnym komplementom C \ S. Aby bola S otvorená a súčasne uzavretá, musia byť
obidve množiny S a C \ S otvorené. Vezmime ľubovoľné a ∈ S a b ∈ C \ S a spojme ich úsečkou
[a, b] = {a+ t(b− a) | t ∈ [0, 1]}. Uvažujme bod

z = a+ t0(b− a),

kde
t0 = sup{t ∈ [0, 1] | a+ t(b− a) ∈ S}.

Určite pritom 0 < t0 < 1: z otvorenosti množiny S totiž vyplýva, že do S patrí aj nejaké dostatočne
malé okolie bodu a; podobne z otvorenosti množiny C \ S vyplýva, že do C \ S musí patriť aj nejaké
dostatočne malé okolie bodu b.

Ak teraz z ∈ S, z otvorenosti S dostávame existenciu ε > 0 takého, že D(z, ε) ⊆ S. Z toho vyplýva,
že existuje aj nejaké δ > 0 také, že a+ (t0 + δ)(b− a) ∈ S, čo je spor s voľbou t0. Podobne v prípade
z ∈ C \ S dostávame existenciu čísla ε > 0 takého, že D(z, ε) ⊆ C \ S, z čoho vyplýva, že pre nejaké
δ > 0 a všetky t ∈ [t0 − δ, t0] platí a + t(b − a) ∈ C \ S, čo je opäť spor s voľbou t0. Množina S teda
nemôže byť otvorená a súčasne uzavretá.

Dá sa očakávať, že pojem uzáveru bude s pojmom uzavretej množiny úzko súvisieť. Nasledujúce
tvrdenie na tento súvis poukazuje.

3Neskôr úsečku definujeme viac „dynamickým“, aj keď v princípe ekvivalentným, spôsobom.
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Tvrdenie 1.5.12.

(i) Množina S ⊆ C je uzavretá práve vtedy, keď obsahuje všetky svoje hromadné body.

(ii) Množina S ⊆ C je uzavretá práve vtedy, keď S = S.

(iii) Uzáver S množiny S ⊆ C je najmenšou uzavretou množinou T spĺňajúcou S ⊆ T ⊆ C.

Dôkaz. Množina S je uzavretá práve vtedy, keď je množina C \ S otvorená. To je pravda práve vtedy,
keď pre všetky z ∈ C \ S existuje ε > 0 také, že D(z, ε) ⊆ C \ S, čiže D′(z, ε) neobsahuje žiaden bod
množiny S. To je práve vtedy, keď žiadne z ∈ C \ S nie je hromadným bodom S, t. j. keď S obsahuje
všetky svoje hromadné body. Tým je dokázané tvrdenie (i) a aj tvrdenie (ii).

Zostáva dokázať časť (iii). Z tvrdenia (i) vyplýva, že každá uzavretá nadmnožina množiny S musí
obsahovať množinu S. Stačí teda ukázať, že množina S je uzavretá. Nech z ∈ C je hromadný bod
množiny S. Pre všetky ε > 0 potom D′(z, ε) obsahuje aspoň jeden bod a ∈ S. Potom buď a ∈ S, alebo
je bod a hromadným bodom množiny S, a teda pre všetky δ > 0 obsahuje D′(a, δ) aspoň jeden bod
množiny S; v druhom prípade zvoľme δ tak, aby bolo δ < min{|z − a|, ε− |z − a|}. Zisťujeme potom,
že D′(z, ε) obsahuje aspoň jeden bod množiny S; keďže je ε > 0 ľubovoľné, je z hromadným bodom
množiny S, a teda patrí do S. Množina S teda obsahuje všetky svoje hromadné body a je uzavretá
podľa tvrdenia (i).

Definícia 1.5.13. Množinu S ⊆ C nazveme:

a) Ohraničenou, ak existuje M ≥ 0 také, že pre všetky z ∈ S je |z| ≤M .

b) Kompaktnou, ak je súčasne ohraničená a uzavretá.

1.6 Rozšírená komplexná rovina a Riemannova sféra

V reálnej analýze je často užitočné pracovať s rozšírenou reálnou osou R∪ {∞,−∞}. V nasledujúcom
obdobným spôsobom rozšírime komplexnú rovinu. Na rozdiel od reálnej osi teraz máme viac ako dve
možnosti ako „prísť do nekonečna“ : môžeme sa tam totiž vydať napríklad po ľubovoľnej priamke
v komplexnej rovine. Uvažovať komplexnú rovinu rozšírenú o nekonečne veľa bodov v nekonečne by bolo
trochu ťažkopádne; oveľa užitočnejším konceptom sa javí byť rozšírená komplexná rovina C̃ := C∪{∞},
v ktorej všetky body v nekonečne stotožníme – všetky priamky teda oboma smermi vedú do jedného
a toho istého nekonečna.

Prirodzeným modelom rozšírenej komplexnej roviny je takzvaná Riemannova sféra. Ide o povrch
gule (napríklad o polomere 1/2) položenej svojím „južným pólom“ na bod z = 0 komplexnej roviny
tak, ako na obrázku 1.4.

Re z

C

0

∞

z

ζ ≡ z

Obr. 1.4: Riemannova sféra a stereografická projekcia.
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Každý bod ζ Riemannovej sféry, okrem jej „severného pólu“ , môžeme stotožniť s práve jedným
bodom komplexnej roviny nasledujúcim spôsobom: veďme priamku pretínajúcu Riemannovu sféru
v jej „severnom póle“ a v bode ζ. Táto priamka pretne komplexnú rovinu v jedinom bode z; body z
a ζ následne stotožníme. Špeciálne teda napríklad „južný pól“ Riemannovej sféry zodpovedá bodu 0.
Takéto zobrazenie Riemannovej sféry bez „severného pólu“ do komplexnej roviny C, ktoré je evidentne
bijektívne, nazývame stereografickou projekciou.

Jediným bodom Riemannovej sféry, ktorý sa pri stereografickej projekcii do komplexnej roviny
nezobrazí, je jej „severný pól“ . Čím bližšie je však bod k „severnému pólu“ , tým väčšia je absolútna
hodnota čísla, na ktoré sa tento bod v komplexnej rovine zobrazí. Je preto prirodzené „severný pól“
Riemannovej sféry stotožniť s bodom ∞, čím získavame užitočný model rozšírenej komplexnej roviny.

Dá sa ukázať, že vzorom ľubovoľnej kružnice v komplexnej rovine je pri stereografickej projekcii
kružnica na Riemannovej sfére neprechádzajúca cez∞ a naopak. Podobne vzorom ľubovoľnej priamky
v komplexnej rovine je kružnica na Riemannovej sfére prechádzajúca cez bod ∞ a naopak. Detaily
možno nájsť v [8].

Okolia a prstencové okolia je možné definovať aj v rozšírenej komplexnej rovine: pre všetky r > 0
kladieme

D′(∞, r) := {z ∈ C | |z| > r} =

{
z ∈ C̃

∣∣∣∣ ∣∣∣∣1z
∣∣∣∣ < 1

r

}
\ {∞},

D(∞, r) := D′(∞, r) ∪ {∞} =

{
z ∈ C̃

∣∣∣∣ ∣∣∣∣1z
∣∣∣∣ < 1

r

}
,

kde 1/0 :=∞ a 1/∞ := 0. Opodstatnenie týchto definícií sa ukáže najmä vtedy, keď sa pozrieme na ich
vzory na Riemannovej sfére.4 Pomocou uvedených pojmov je možné definovať otvorené a uzavreté
množiny v C̃, hromadné body podmnožín C̃ a podobne.

1.7 Súvislé množiny a oblasti

Intuitívne je viac ako zrejmé, čo treba rozumieť pod súvislou množinou S ⊆ C – ide o množinu, ktorá
pozostáva „z jedného kusu“ a nie z „viacerých kusov“ . Exaktná definícia tohto pojmu už tak jedno-
duchá nie je. Náš prístup teda bude nasledujúci: súvislosť množiny najprv definujeme štandardným
topologickým spôsobom [9]. Následne vo vete 1.7.4 dokážeme ekvivalentnú charakterizáciu súvislosti
pre otvorené množiny, vďaka ktorej uvidíme, že pojem súvislej otvorenej množiny je možné zachytiť
aj elementárnejším spôsobom a naozaj zodpovedá tomu, čo by sme intuitívne očakávali.

Definícia 1.7.1. Množina S ⊆ C je súvislá, ak neexistuje dvojica neprázdnych množín X,Y ⊆ C
takých, že X ∩ Y = X ∩ Y = ∅ a X ∪ Y = S. Množina S je nesúvislá, ak nie je súvislá.

Poznámka 1.7.2. Množina S je teda súvislá práve vtedy, keď platí nasledujúca vlastnosť: kedykoľvek
rozložíme množinu S na dve disjunktné neprázdne množiny X a Y – t. j. kedykoľvek X 6= ∅, Y 6= ∅,
X ∩ Y = ∅ a X ∪ Y = S – musí buď uzáver množiny X obsahovať bod množiny Y , alebo naopak.
To znamená, že tieto dve množiny spolu musia v určitom veľmi silnom zmysle slova „susediť“ – jedna
z nich musí obsahovať nejaký hromadný bod tej druhej.

Dokážme najprv, že pre otvorené množiny možno definíciu súvislosti sformulovať o niečo jedno-
duchším spôsobom.

4Jediné, čo tu trochu nesedí je, že okolie sa so zväčšujúcim sa polomerom zmenšuje. Táto skutočnosť však až tak
podstatná nie je.
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Tvrdenie 1.7.3. Nech S ⊆ C je otvorená množina. Potom je S súvislá práve vtedy, keď neexistujú
disjunktné neprázdne otvorené množiny X,Y ⊆ C také, že S = X ∪ Y .

Dôkaz. Ak je množina S nesúvislá, musí existovať dvojica neprázdnych množín U, V ⊆ C takých, že
U ∩ V = U ∩ V = ∅ a U ∪ V = S. To znamená, že

U ⊆ C \ V a V ⊆ C \ U, (1.2)

kde množiny C\U a C\V sú otvorené. MnožinyX := S∩(C\V ) a Y := S∩(C\U) sú preto tiež otvorené
podľa tvrdenia 1.5.6. Z (1.2) a z inklúzií U ⊆ S a V ⊆ S vyplýva U ⊆ X a V ⊆ Y . Zo vzťahu S = U∪V
na druhej strane dostávame X = S ∩ (C \V ) ⊆ S ∩ (C \V ) ⊆ U a Y = S ∩ (C \U) ⊆ S ∩ (C \U) ⊆ V .
Teda X = U a Y = V , pričom tieto množiny sú disjunktné, neprázdne a otvorené a platí S = X ∪ Y ;
tým je jedna z implikácií dokázaná.

Na dôkaz opačnej implikácie predpokladajme, že existuje dvojica neprázdnych disjunktných ot-
vorených množín X,Y ⊆ C takých, že S = X ∪ Y . Keby množina Y obsahovala hromadný bod a
množiny X, musela by vďaka svojej otvorenosti obsahovať pre nejaké ε > 0 aj celé okolie D(a, ε).
Toto okolie ale nutne obsahuje aspoň jeden bod množiny X, čo odporuje disjunktnosti množín X a Y .
Nutne teda X ∩ Y = ∅ a obdobne by sme dokázali aj X ∩ Y = ∅: množina S je nesúvislá.

Lomenou čiarou z a ∈ C do b ∈ C v množine S ⊆ C budeme rozumieť zjednotenie úsečiek

L = [a0, a1] ∪ [a1, a2] ∪ . . . ∪ [an−1, an],

kde n ∈ N \ {0}, a0, . . . , an ∈ C, a0 = a, an = b a L ⊆ S.

Veta 1.7.4. Nech S ⊆ C je otvorená množina. Potom je S súvislá práve vtedy, keď pre všetky a, b ∈ S
existuje v S lomená čiara z bodu a do bodu b.

Dôkaz. Predpokladajme najprv, že je množina S súvislá. Zvoľme pevné a, b ∈ S a dokážme existenciu
lomenej čiary z a do b. Definujme množinu F ⊆ S nasledovne:

F := {z ∈ S | v množine S existuje lomená čiara z a do z}.

Dokážeme, že množiny F a S \ F sú obidve otvorené, z čoho vďaka otvorenosti a predpokladanej
súvislosti množiny S z tvrdenia 1.7.3 vyplynie prázdnosť jednej z týchto množín. Keďže očividne
a ∈ F , bude musieť byť prázdnou množina S \ F . Pretože v takom prípade nutne F = S, a teda
aj b ∈ F , bude tak prvá z implikácií dokázaná.

Zvoľme ľubovoľné z ∈ F . Potom existuje lomená čiara L z a do z. Keďže je množina S otvorená,
existuje ε > 0 také, že D(z, ε) ⊆ S. Ak teraz w ∈ D(z, ε), predĺžením lomenej čiary L úsečkou [z, w]
tiež dostávame lomenú čiaru v S. Platí teda D(z, ε) ⊆ F a F je otvorená množina (obrázok 1.5).

a

z

S

w

Obr. 1.5: Dôkaz, že množina F je otvorená.
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Zvoľme teraz ľubovoľné z ∈ S\F . Keďže je množina S otvorená, existuje ε > 0 také, žeD(z, ε) ⊆ S.
Keby pre niektoré w ∈ D(z, ε) bolo w ∈ F , existovala by v S lomená čiara L z a do w. Tú by ale
úsečkou [w, z] bolo možné predĺžiť na lomenú čiaru z a do z, tiež ležiacu v S; išlo by teda o spor
s predpokladom z ∈ S \ F . Preto D(z, ε) ⊆ S \ F a množina S \ F je otvorená.

Za účelom dôkazu opačnej implikácie predpokladajme, že množina S nie je súvislá a súčasne z kaž-
dého a ∈ S do každého b ∈ S možno viesť v S lomenú čiaru. Podľa tvrdenia 1.7.3 potom existujú
disjunktné neprázdne otvorené množiny X,Y ⊆ C také, že X ∪ Y = S. Zvoľme a ∈ X a b ∈ Y
a uvažujme lomenú čiaru z a do b. Jej súčasťou musí byť úsečka

[c, d] = {c+ t(d− c) | t ∈ [0, 1]}

vedúca z bodu c ∈ X do bodu d ∈ Y , ako je to znázornené na obrázku 1.6.

X

Y

a

c

d

b

z = c+ t0(d− c)

Obr. 1.6: Dôkaz, že nesúvislosť znemožňuje existenciu lomenej čiary medzi niektorými dvojicami bodov.

Položme t0 := sup{t ∈ [0, 1] | c + t(d − c) ∈ X}. Z otvorenosti množín X a Y evidentne vyplýva
0 < t0 < 1. Uvažujme bod z = c+t0(d−c). Keby bolo z ∈ X, z otvorenosti X by sme dostali existenciu
okolia D(z, ε) ⊆ X, a teda aj existenciu čísla δ > 0 takého, že c+ (t0 + δ)(d− c) ∈ X; to by bol spor
s definíciou t0. Keby na druhej strane bolo z ∈ Y , z otvorenosti Y by vyplývala existencia okolia
D(z, ε) ⊆ Y ; existovalo by preto δ > 0 také, že pre všetky t ∈ [t− δ, t0] je c+ t(d− c) ∈ Y , čo je opäť
spor s definíciou t0. Prišli sme teda k sporu a aj druhá implikácia je dokázaná.

Poznámka 1.7.5. Veta 1.7.4 zostane v platnosti, aj keď v jej znení nahradíme existenciu lomenej čiary
napríklad existenciou vhodne definovanej krivky alebo existenciou lomenej čiary pozostávajúcej iba
z „horizontálnych a vertikálnych úsečiek“ . Čitateľ sa o tom môže presvedčiť sám v rámci jednoduchého
cvičenia.

Na záver tohto oddielu ešte uveďme definíciu tzv. oblasti – najčastejšie uvažovaného typu definič-
ného oboru (jednohodnotovej) funkcie komplexnej premennej.

Pôjde o podmnožinu komplexnej roviny, ktorá je súvislá – čo je v súvislosti s funkciami celkom
logický predpoklad, keďže funkciu definovanú na nesúvislej množine možno typicky opísať pomocou
niekoľkých funkcií na jej súvislých komponentoch – a zároveň otvorená – čo znamená, že v každom bode
oblasti môžeme skúmať lokálne vlastnosti funkcie „v ľubovoľnom smere“ , čím sa zbavíme množstva
nepríjemných okrajových prípadov. Všimnime si tiež, že vďaka otvorenosti je súvislosť oblasti daná
aj ekvivalentnými podmienkami z tvrdenia 1.7.3 a vety 1.7.4.

Definícia 1.7.6. Oblasť je ľubovoľná súvislá otvorená množina S ⊆ C.
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Cvičenia

1. Nech n ≥ 2 je prirodzené číslo. Dokážte, že

n−1∑
k=0

ei2kπ/n = 0;

súčet všetkých n-tých komplexných odmocnín jednej je teda pre n ≥ 2 rovný nule. Aplikujte
tento poznatok na výpočet sumy

bm/3c∑
k=0

(
m

3k

)
pre dané prirodzené číslo m.

2. Dokážte tvrdenie 1.5.6.

3. Dokážte, že pre všetky a ∈ C a r > 0 je D(a, r) = D(a, r).

4. Otvoreným pokrytím množiny S ⊆ C nazveme systém (Sj | j ∈ J) otvorených podmnožín C, kde
J je ľubovoľná množina a ⋃

j∈J
Sj ⊇ S.

Otvoreným podpokrytím pokrytia (Sj | j ∈ J) nazveme ľubovoľné otvorené pokrytie (Sj | j ∈ K)
množiny S také, že K ⊆ J . Otvorené pokrytie (Sj | j ∈ J) nazveme konečným, ak je J konečná
množina.

Dokážte, že množina S ⊆ C je kompaktná práve vtedy, keď ľubovoľné jej otvorené pokrytie má
aspoň jedno konečné podpokrytie.

5. Nech S ⊆ C. Hranicou množiny S nazveme množinu ∂S všetkých bodov a ∈ C takých, že
pre všetky ε > 0 je D(a, ε) ∩ S 6= ∅ a zároveň D(a, ε) ∩ (C \ S) 6= ∅. Dokážte, že hranica ∂S
ľubovoľnej množiny S je vždy uzavretá a množina S je uzavretá práve vtedy, keď ∂S ⊆ S.

6. Vnútrom množiny S ⊆ C nazveme množinu Int(S) = {z ∈ S | ∃ε > 0 : D(z, ε) ⊆ S}. Dokážte,
že vnútro Int(S) ľubovoľnej množiny S je vždy otvorené a množina S je otvorená práve vtedy,
keď S = Int(S).

7. Dokážte, že pre ľubovoľnú množinu S ⊆ C je ∂S = S \ Int(S).
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Holomorfné funkcie

2.1 Komplexné funkcie komplexnej premennej

Komplexná analýza sa zaoberá komplexnými funkciami komplexnej premennej. Po približne prvé dve
tretiny tohto textu budeme takéto funkcie chápať zvyčajným spôsobom, čiže ako zobrazenia f : S → C
pre nejakú množinu S ⊆ C.

Takáto zdanlivo jasná a bezproblémová interpretácia pojmu komplexnej funkcie komplexnej pre-
mennej nemusí byť vždy postačujúca: už sme napríklad narazili na viachodnotovosť argumentu; keby
sme teda chceli argument chápať ako funkciu arg z komplexnej premennej z, šlo by o viachodnotovú
funkciu – čiže o tzv. multifunkciu. Ukáže sa, že viachodnotové sú v komplexnom obore aj funkcie ako lo-
garitmus alebo odmocnina. Spočiatku budeme medzi funkciami a multifunkciami rozlišovať, pričom
multifunkciami sa budeme zaoberať len okrajovo – väčšinou z nich budeme „vyrábať“ jednohodnotové
funkcie vhodnou voľbou „správnej“ výstupnej hodnoty. Neskôr sa už však situácia stane neúnosnou
a pojem funkcie komplexnej premennej budeme nútení zrevidovať tak, aby vhodným spôsobom zahŕňal
jednohodnotové aj viachodnotové funkcie.

Zatiaľ ale komplexnou funkciou komplexnej premennej rozumieme obyčajné zobrazenie f : S → C.
Ku každej takejto funkcii môžeme definovať jej reálnu časť ako funkciu Re f : S → R definovanú
pre všetky z ∈ S predpisom (Re f)(z) := Re(f(z)) a jej imaginárnu časť ako funkciu Im f : S → R
danú pre všetky z ∈ S ako (Im f)(z) := Im(f(z)). Zjavne potom f = Re f + i Im f .

2.2 Limita a spojitosť

Definujeme teraz limitu postupnosti komplexných čísel, limitu funkcie komplexnej premennej a spojité
funkcie komplexnej premennej. Pôjde pritom o samozrejmé analógie definícií z reálnej analýzy; okolia
bodov na reálnej osi akurát nahradíme okoliami bodov v komplexnej rovine.

Definícia 2.2.1. Hovoríme, že postupnosť komplexných čísel (an)∞n=k má limitu b ∈ C̃, ak pre všetky
ε > 0 existuje n0 ∈ N také, že n0 ≥ k a pre všetky n ≥ n0 je an ∈ D(b, ε). V takom prípade píšeme
limn→∞ an = b alebo an → b pre n→∞. Ak navyše b ∈ C, hovoríme, že postupnosť (an)∞n=0 konverguje
a jej limitu b nazývame vlastnou; pre b =∞ hovoríme o nevlastnej limite.

Limita postupnosti (an)∞n=k evidentne nezávisí od počiatočného indexu k; pod zápisom limn→∞ an
tak treba rozumieť limitu ktorejkoľvek z dobre definovaných postupností (an)∞n=k pre k ∈ N.

Definícia 2.2.2. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ C je hromadným bodom
množiny S. Hovoríme, že funkcia f má v bode a limitu b ∈ C̃, ak pre všetky ε > 0 existuje δ > 0
také, že pre všetky z ∈ D′(a, δ) ∩ S je f(z) ∈ D(b, ε). V takom prípade píšeme limz→a f(z) = b alebo
f(z)→ b pre z → a. Pre b ∈ C hovoríme o vlastnej a pre b =∞ o nevlastnej limite b.



Predbežná verzia

16 2.2 Limita a spojitosť

Úplne rovnako možno definovať aj limitu funkcie f : S → C v nekonečne za predpokladu, že je
a = ∞ hromadným bodom S v rozšírenej komplexnej rovine C̃ – čiže v prípade, že je množina S
neohraničená.1

Definícia 2.2.3. Nech S ⊆ C je neohraničená množina a f : S → C je funkcia. Hovoríme, že funkcia f
má v nekonečne limitu b ∈ C̃, ak pre všetky ε > 0 existuje δ > 0 také, že pre všetky z ∈ D′(∞, δ) ∩ S
je f(z) ∈ D(b, ε). V takom prípade píšeme limz→∞ f(z) = b alebo f(z) → b pre z → ∞. Pre b ∈ C
hovoríme o vlastnej a pre b =∞ o nevlastnej limite b.

Definícia 2.2.4. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ S. Hovoríme, že funkcia f
je spojitá v bode a, ak pre všetky ε > 0 existuje δ > 0 také, že pre všetky z ∈ D(a, δ) ∩ S je
f(z) ∈ D(f(a), ε).

Definícia 2.2.5. Nech S ⊆ C je množina, f : S → C je funkcia a T ⊆ S. Hovoríme, že funkcia f je
spojitá na množine T , ak je spojitá vo všetkých bodoch a ∈ T . Ďalej hovoríme, že funkcia f : S → C
je spojitá, ak je spojitá na S.

Ľahko vidieť, že každá funkcia je spojitá v izolovaných bodoch svojho definičného oboru. Nasle-
dujúce tvrdenie, analogické podobnému tvrdeniu z reálnej analýzy, charakterizuje spojitosť funkcie
v bodoch definičného oboru S, ktoré sú súčasne hromadnými bodmi množiny S.

Tvrdenie 2.2.6. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ S je hromadným bodom S.
Potom je f spojitá v bode a práve vtedy, keď limz→a f(z) = f(a).

Dôkaz. Jednoduché cvičenie.

Nasledujúce tvrdenie umožňuje previesť skúmanie komplexných limít na skúmanie reálnych limít.

Tvrdenie 2.2.7. Nech (an)∞n=k je postupnosť komplexných čísel, S ⊆ C je množina a f : S → C je
funkcia. Potom:

(i) Postupnosť (an)∞n=k konverguje k vlastnej limite práve vtedy, keď konvergujú obidve postupnosti
(Re an)∞n=k a (Im an)∞n=k. V takom prípade

lim
n→∞

an = lim
n→∞

Re an + i lim
n→∞

Im an.

(ii) Nech a je hromadný bod množiny S, alebo nech je S neohraničená a a = ∞. Vlastná limita
limz→a f(z) existuje práve vtedy, keď existujú obe vlastné limity limz→a Re f(z) a limz→a Im f(z).
Vtedy

lim
z→a

f(z) = lim
z→a

Re f(z) + i lim
z→a

Im f(z).

(iii) Nech a ∈ S. Potom je funkcia f spojitá v bode a práve vtedy, keď sú v bode a spojité obidve
funkcie Re f a Im f .

Dôkaz. Na ukážku dokážeme tvrdenie (ii); dôkazy zvyšných dvoch tvrdení sú analogické. Ak existuje
vlastná limita limz→a f(z) = b, tak pre všetky ε > 0 existuje δ > 0 také, že pre všetky z ∈ D′(a, δ)∩S
je f(z) ∈ D(b, ε) – čiže |f(z)− b| < ε. Keďže ale pre všetky w ∈ C je |Rew| ≤ |w| a |Imw| ≤ |w|, musí
v takom prípade byť aj |Re f(z)− Re b| = |Re(f(z)− b)| < ε a |Im f(z)− Im b| = |Im(f(z)− b)| < ε,
v dôsledku čoho limz→a Re f(z) = Re b a limz→a Im f(z) = Im b.

1V reálnej analýze sa niekedy hromadné body definujú ako prvky rozšírenej reálnej osi. Keby sme v podobnom duchu
definovali hromadné body podmnožín C ako prvky C̃, nemuseli by sme prípad a = ∞ riešiť osobitne. Na druhej strane
by ale prestali platiť niektoré užitočné vlastnosti z minulej kapitoly – napríklad by už nebola pravda, že množina je
uzavretá práve vtedy, keď obsahuje všetky svoje hromadné body.
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Nech teraz naopak existujú limity limz→a Re f(z) = c a limz→a Im f(z) = d. Pre všetky ε > 0
potom vieme zvoliť2 δ > 0 také, že pre všetky z ∈ D′(a, δ) ∩ S je |Re f(z) − c| < ε/2 a súčasne
|Im f(z)− d| < ε/2. Z trojuholníkovej nerovnosti tak pre všetky z ∈ D′(a, δ) ∩ S dostávame

|f(z)− (c+ id)| = |(Re f(z)− c) + i(Im f(z)− d)| ≤ |Re f(z)− c|+ |Im f(z)− d| < ε

a skutočne limz→a f(z) = c+ id.

Limity funkcií komplexnej premennej a postupností komplexných čísel, ako aj spojité funkcie kom-
plexnej premennej, zdieľajú s ich náprotivkami z reálnej analýzy viacero elementárnych vlastností –
napríklad tie z nasledujúceho tvrdenia.

Tvrdenie 2.2.8. Nech (an)∞n=k je postupnosť komplexných čísel, S ⊆ C množina a f : S → C funkcia.

(i) Ak existuje b ∈ C také, že limn→∞ an = b, tak limn→∞|an| = |b|.

(ii) Nech a je hromadný bod množiny S, alebo nech je S neohraničená a a = ∞. Ak existuje b ∈ C
také, že limz→a f(z) = b, tak limz→a|f(z)| = |b|.

(iii) Nech a ∈ S. Ak je f(z) spojitá v bode a, je v bode a spojitá aj funkcia |f(z)|.

Dôkaz. Opäť dokážeme len tvrdenie (ii); dôkaz zvyšných dvoch tvrdení je analogický. Ak existuje
limita limz→a f(z) = b, tak pre všetky ε > 0 existuje δ > 0 také, že pre všetky z ∈ D′(a, δ) ∩ S je
f(z) ∈ D(b, ε), čiže |f(z) − b| < ε. Potom však ||f(z)| − |b|| = ||f(z)| − |−b|| ≤ |f(z) − b| < ε, a teda
limz→a|f(z)| = |b|.

Nasledujúce tvrdenie možno ľahko dokázať priamo z definícií limity a spojitosti, a to prakticky
rovnako ako v reálnej analýze; dôkaz preto prenechávame čitateľovi.

Tvrdenie 2.2.9. Nech (an)∞n=k, (bn)∞n=k sú postupnosti komplexných čísel, nech S ⊆ C je množina
a nech f, g : S → C sú funkcie.

(i) Ak existujú vlastné limity limn→∞ an a limn→∞ bn, tak existujú aj vlastné limity

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn a lim
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim
n→∞

bn

)
.

Ak navyše limn→∞ bn 6= 0, existuje aj vlastná limita

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

(ii) Nech a je hromadný bod množiny S, alebo nech je S neohraničená a a =∞. Ak existujú vlastné
limity limz→a f(z) a limz→a g(z), tak existujú aj vlastné limity

lim
z→a

(f(z)± g(z)) = lim
z→a

f(z)± lim
z→a

g(z) a lim
z→a

(f(z)g(z)) =
(

lim
z→a

f(z)
)(

lim
z→a

g(z)
)
.

Ak navyše limz→a g(z) 6= 0, existuje aj vlastná limita

lim
z→a

f(z)

g(z)
=

limz→a f(z)

limz→a g(z)
.

(iii) Nech a ∈ S. Ak sú funkcie f(z) a g(z) spojité v bode a, sú v bode a spojité aj funkcie f(z)± g(z)
a f(z)g(z). Ak navyše g(a) 6= 0, je v bode a spojitá aj funkcia f(z)/g(z).

2Pre každú z funkcií Re f a Im f dostaneme jednu hodnotu δ; stačí potom vybrať tú menšiu.
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V poslednom z elementárnych tvrdení o limitách a spojitosti sa zameriame na zložené funkcie – opäť
pôjde o obdobu dobre známeho tvrdenia z reálnej analýzy, ktorú tu ale nevyslovíme v najvšeobecnejšej
možnej podobe.

Tvrdenie 2.2.10. Nech S, T ⊆ C sú množiny, g : S → C, f : T → C sú funkcie a nech T ⊇ g(S).

(i) Nech a je hromadný bod množiny S, alebo nech je S neohraničená a a =∞. Ak existuje vlastná
limita limz→a g(z) = b ∈ T a funkcia f(z) je spojitá v bode b, existuje aj vlastná limita

lim
z→a

(f ◦ g)(z) = lim
z→a

f(g(z)) = f(b).

(ii) Nech a je hromadný bod množiny S, alebo nech je S neohraničená a a = ∞. Nech existuje
vlastná alebo nevlastná limita limz→a g(z) = b, kde b je buď hromadným bodom množiny T ,
alebo je množina T neohraničená a b = ∞; nech ďalej existuje vlastná alebo nevlastná limita
limw→b f(w) = c. Ak g(z) 6= b pre všetky z ∈ S \ {a}, tak existuje aj limita

lim
z→a

(f ◦ g)(z) = lim
z→a

f(g(z)) = c.

(iii) Ak je funkcia g(z) spojitá v bode a ∈ S a funkcia f(z) je spojitá v bode g(a) ∈ T , je v bode a
spojitá aj funkcia (f ◦ g)(z) = f(g(z)).

Dôkaz. Začnime dôkazom časti (i). Z predpokladu existencie limity limz→a g(z) = b ∈ T vyplýva, že
pre všetky ε > 0 existuje δ > 0 také, že pre všetky z ∈ D′(a, δ) ∩ S je g(z) ∈ D(b, ε).

Ak je b izolovaným bodom množiny T , môžeme zvoliť ε > 0 tak, aby D(b, ε) ∩ T = {b} a vďaka
inklúzii T ⊇ g(S) zisťujeme, že existuje δ > 0 také, že pre všetky z ∈ D′(a, δ) ∩ S je g(z) = b – a teda
aj f(g(z)) = f(b) ∈ D(f(b), ε). Naozaj teda limz→a f(g(z)) = f(b).

Ak je naopak b hromadným bodom množiny T , podľa tvrdenia 2.2.6 je limz→b f(z) = f(b). Ku kaž-
dému ε > 0 teda existuje η > 0 také, že pre všetky z ∈ D′(b, η) ∩ T je f(z) ∈ D(f(b), ε). Keďže ale
súčasne limz→a g(z) = b, musí existovať aj δ > 0 také, že pre všetky z ∈ D′(a, δ)∩S je g(z) ∈ D(b, η) –
a keďže T ⊇ g(S), nutne aj g(z) ∈ D(b, η)∩T . Pre každé z ∈ D′(a, δ)∩S teda buď g(z) ∈ D′(b, η)∩T
a f(g(z)) ∈ D(f(b), ε), alebo g(z) = b a f(g(z)) = f(b) ∈ D(f(b), ε). Pretože je ε > 0 ľubovoľné,
skutočne limz→a f(g(z)) = f(b).

Pokračujme dôkazom časti (ii). Vďaka existencii limity limw→b f(w) = c zisťujeme, že pre všetky
ε > 0 existuje η > 0 také, že pre všetky w ∈ D′(b, η) ∩ T je f(w) ∈ D(c, ε). Podobne vďaka existencii
limity limz→a g(z) = b musí existovať δ > 0 také, že pre všetky z ∈ D′(a, δ) ∩ S je g(z) ∈ D(b, η).
Vďaka predpokladom tvrdenia navyše g(z) ∈ T a g(z) 6= b; je teda g(z) ∈ D′(b, η) ∩ T , v dôsledku
čoho f(g(z)) ∈ D(c, ε). Keďže je ε > 0 ľubovoľné, naozaj limz→a f(g(z)) = c.

Na dôkaz časti (iii) uvažujme ľubovoľné ε > 0. Zo spojitosti funkcie f v bode g(a) vyplýva exis-
tencia čísla η > 0 takého, že pre všetky z ∈ D(g(a), η) ∩ T je f(z) ∈ D(f(g(a)), ε). K danému η
navyše vďaka spojitosti funkcie g v bode a existuje δ > 0 také, že pre všetky z ∈ D(a, δ) ∩ S
je g(z) ∈ D(g(a), η); keďže T ⊇ g(S), je aj g(z) ∈ D(g(a), η) ∩ T a z predchádzajúceho vyplýva
f(g(z)) ∈ D(f(g(a)), ε). Číslo ε > 0 sme uvažovali ľubovoľné – funkcia (f ◦ g)(z) je teda skutočne
spojitá v bode a.

Vyslovme ešte niekoľko ďalších viet o limitách, ktoré sú komplexnými analógiami dobre známych
tvrdení z reálnej analýzy. Dôkazy prvých dvoch z nich, založené na využití ich reálnych náprotivkov
a tvrdenia 2.2.7, prenechávame čitateľovi ako jednoduché cvičenie.

Veta 2.2.11 (Cauchyho-Bolzanovo kritérium konvergencie). Postupnosť komplexných čísel (an)∞n=k

konverguje k vlastnej limite práve vtedy, keď pre všetky ε > 0 existuje n0 ∈ N také, že n0 ≥ k a pre všetky
n,m ≥ n0 je |am − an| < ε.
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Veta 2.2.12 (Bolzanova-Weierstrassova veta). Z každej ohraničenej3 postupnosti komplexných čísel
(an)∞n=k možno vybrať konvergentnú podpostupnosť.

Veta 2.2.13 (Heineho definícia limity). Nech S ⊆ C je množina a f : S → C funkcia. Nech a ∈ C
je hromadným bodom množiny S, alebo nech je S neohraničená a a = ∞. Nech b ∈ C̃. Potom
limz→a f(z) = b práve vtedy, keď pre každú postupnosť (zn)∞n=0 čísel z S \ {a} takú, že limn→∞ zn = a
platí limn→∞ f(zn) = b.

Dôkaz. Predpokladajme najprv, že limz→a f(z) = b a súčasne existuje postupnosť (zn)∞n=0 čísel z S\{a}
taká, že limn→∞ zn = a a súčasne limita limn→∞ f(zn) neexistuje alebo sa nerovná b. Potom existuje
ε > 0 také, že pre všetky n0 ∈ N existuje n ≥ n0 tak, že f(zn) 6∈ D(b, ε). Pre ľubovoľné δ > 0 teraz
zvoľme n0 ∈ N tak, aby pre všetky n ≥ n0 bolo zn ∈ D(a, δ); to ide, lebo limn→∞ zn = a. Zisťujeme,
že existuje ε > 0 také, že pre všetky δ > 0 existuje n ∈ N, pre ktoré je zn ∈ D′(a, δ) ∩ S a súčasne
f(zn) 6∈ D(b, ε). To je v spore s predpokladom limz→a f(z) = b.

Na dôkaz opačnej implikácie predpokladajme, že pre každú postupnosť (zn)∞n=0 čísel z S \ {a}
spĺňajúcu limn→∞ zn = a je limn→∞ f(zn) = b. Zvoľme ľubovoľné ε > 0. Ukážeme, že existuje δ > 0
také, že pre všetky z ∈ D′(a, δ)∩S je f(z) ∈ D(b, ε). Sporom, nech to nie je pravda. Ak a ∈ C, môžeme
pre n = 1, 2, 3, . . . položiť δn = 1/n, pričom pre každé takéto n nutne existuje wn ∈ D′(a, δn)∩ S také,
že f(wn) 6∈ D(b, ε). Podobne pre a =∞ môžeme pre n = 1, 2, 3, . . . položiť δn = n a pre každé takéto n
opäť dostaneme existenciu wn ∈ D′(a, δn) ∩ S takého, že f(wn) 6∈ D(b, ε). V oboch prípadoch zrejme
limn→∞wn = a, kým limita limn→∞ f(wn) nemôže súčasne existovať a byť rovná b. To je spor s naším
predpokladom.

Veta 2.2.14 (O spojitosti na kompakte). Nech S ⊆ C je kompaktná množina a f : S → C je spojitá
na S. Potom je funkcia f na množine S ohraničená – čiže existuje M ≥ 0 také, že pre všetky z ∈ S
je |f(z)| ≤ M . Funkcia |f(z)| navyše na S nadobúda maximum a minimum, čiže existujú a1, a2 ∈ S
také, že pre všetky z ∈ S platí |f(a1)| ≤ |f(z)| ≤ |f(a2)|.

Dôkaz. Za účelom sporu predpokladajme, že funkcia f na množine S nie je ohraničená. Potom exis-
tuje postupnosť (zn)∞n=0 bodov S taká, že pre všetky n ∈ N je |f(zn)| ≥ n. Z ohraničenosti množiny S
vyplýva, že je ohraničená aj postupnosť (zn)∞n=0, a teda z nej podľa Bolzanovej-Weierstrassovej vety
možno vybrať podpostupnosť (znk)∞k=0 konvergujúcu k nejakému a ∈ C. Pretože postupnosť (znk)∞k=0

evidentne obsahuje nekonečne veľa rôznych prvkov, musí byť a hromadným bodom množiny S. Z uzav-
retosti množiny S potom dostávame a ∈ S. Zo spojitosti f na S ďalej limz→a f(z) = f(a); na druhej
strane ale limk→∞|f(znk)| = ∞, a teda nemôže platiť limk→∞ f(znk) = f(a). Dostávame teda spor
s vetou 2.2.13.

Z ohraničenosti funkcie f na S vyplýva, že existuje reálne čísloH = supz∈S |f(z)|. Keby neexistovalo
žiadne a2 ∈ S také, že |f(a2)| = H, bola by na S funkcia 1/(H−|f(z)|) spojitá a súčasne neohraničená,
lebo pre každé ε > 0 existuje z ∈ S také, že |H−|f(z)|| < ε. To je spor s prvou časťou vety. Existenciu
minima možno dokázať analogicky.

2.3 Derivácia a Cauchyho-Riemannove podmienky

Deriváciu funkcie komplexnej premennej f definujeme, podobne ako pre funkcie reálnej premennej,
v ľubovoľnom bode a, ktorý je súčasne prvkom aj hromadným bodom definičného oboru funkcie f
– samotná definícia derivácie pritom bude tiež prakticky rovnaká, ako v reálnej analýze. Poväčšine
nás však bude zaujímať iba situácia, keď táto definícia naozaj zohľadňuje všetky možné spôsoby,
ktorými sa k bodu a dá približovať – to znamená, keď je funkcia f definovaná na nejakej otvorenej
množine obsahujúcej bod a. V komplexnej analýze sa preto derivácia a diferencovateľnosť často definujú

3Postupnosť komplexných čísel (an)∞n=k je ohraničená, ak je ohraničená postupnosť reálnych čísel (|an|)∞n=k.
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len v uvedenom menej všeobecnom prípade – a čitateľ sa nedopustí veľkej chyby, ak si nasledujúcu
definíciu v tomto duchu preformuluje.4

Definícia 2.3.1. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ S je hromadným bodom
množiny S. Ak existuje vlastná limita

D = lim
z→a

f(z)− f(a)

z − a
,

hovoríme, že je funkcia f diferencovateľná v bode a a číslo D nazývame deriváciou funkcie f v bode a.
V takom prípade tiež píšeme

f ′(a) =
df

dz
(a) := D.

Poznámka 2.3.2. Uvažujme množinu R = {h ∈ C \ {0} | a + h ∈ S} a funkciu g : R → C danú
pre všetky h ∈ R ako g(h) = a + h. Keďže je a hromadným bodom množiny S, je 0 evidentne
hromadným bodom množiny R, pričom zrejme limh→0 g(h) = a. Zrejme navyše S ⊇ g(R) a pre všetky
h ∈ R je g(h) 6= a. Z tvrdenia 2.2.10(ii) teda vyplýva, že derivácia funkcie f v bode a, ak existuje, je
daná zvyčajným spôsobom ako

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
. (2.1)

Podobne by bolo možné ukázať, že z existencie limity (2.1) vyplýva existencia derivácie, ktorú tak
podľa očakávania možno prostredníctvom limity (2.1) ekvivalentne definovať. V nasledujúcom budeme
vždy používať tú z definícií, ktorá sa bude v danom momente javiť ako vhodnejšia.

Definícia 2.3.3. Nech S ⊆ C je množina, f : S → C je funkcia a T ⊆ S. Funkcia f je diferencovateľná
na množine T , ak T pozostáva iba z hromadných bodov množiny S a funkcia f je diferencovateľná
v každom bode a ∈ T .

Označenie 2.3.4. Derivácie vyšších rádov definujeme a označujeme rovnako ako v reálnej analýze:
napríklad

f ′′ =
d2f

dz2

označuje druhú deriváciu funkcie f a

f (n) =
dnf

dzn

jej n-tú deriváciu.

Ak je množina S otvorená a a ∈ S, môže sa h v limite (2.1) približovať k nule z ľubovoľného smeru
v komplexnej rovine; nech sa ale h približuje k nule akýmkoľvek spôsobom, podiel

f(a+ h)− f(a)

h

musí vždy konvergovať k tej istej limite. Špeciálne sa teda musia rovnať limity pre h približujúce sa
k nule po reálnej a po imaginárnej osi. Dôsledkom tohto jednoduchého pozorovania sú nasledujúce nutné
podmienky diferencovateľnosti funkcie v danom bode, známe ako Cauchyho-Riemannove podmienky.
Nesplnenie týchto podmienok znamená, že funkcia nemôže byť diferencovateľná.

4Všeobecnejšiu definíciu uvádzame najmä z toho dôvodu, aby sme neskôr mohli do vety o derivácii zloženej funkcie
zahrnúť prípad zloženia komplexnej funkcie komplexnej premennej s komplexnou funkciou reálnej premennej definovanou
na uzavretom intervale; s deriváciu takejto zloženej funkcie sa stretneme v súvislosti s krivkovými integrálmi.
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Poznámka 2.3.5. Formulácia Cauchyho-Riemannových podmienok využíva pojem parciálnej derivá-
cie funkcie dvoch reálnych premenných, s ktorým sa čitateľ doposiaľ nemusel stretnúť. Nech S ⊆ R2

a f : S → R je reálna funkcia dvoch reálnych premenných x a y. Parciálnu deriváciu funkcie f podľa x
získame tak, že premennú y zafixujeme – teda ju „vyhlásime za konštantu“ – a funkciu f zderivujeme
podľa premennej x. Pre (a, b) ∈ S také, že a je hromadným bodom množiny {x ∈ R | (x, b) ∈ S} teda

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h

(ak táto limita existuje a je vlastná). Podobne definujeme aj parciálnu deriváciu ∂f
∂y funkcie f podľa y.

Ak teda napríklad f(x, y) = 2x2y + y2, pre všetky (x, y) ∈ R2 je

∂f

∂x
(x, y) = 4xy a

∂f

∂y
(x, y) = 2x2 + 2y.

Veta 2.3.6 (Cauchyho-Riemannove podmienky). Nech S ⊆ C je otvorená množina, f : S → C je
funkcia a u, v sú funkcie dvoch reálnych premenných x a y také, že pre všetky x, y ∈ R s x+ iy ∈ S je
u(x, y) = Re f(x+ iy) a v(x, y) = Im f(x+ iy), čiže

f(x+ iy) = u(x, y) + iv(x, y).

Ak je funkcia f diferencovateľná v bode a ∈ S, tak existujú obidve parciálne derivácie funkcií u a v
v bode (Re a, Im a), pričom

∂u

∂x
(Re a, Im a) =

∂v

∂y
(Re a, Im a) a

∂u

∂y
(Re a, Im a) = −∂v

∂x
(Re a, Im a).

Dôkaz. Z diferencovateľnosti funkcie f v bode a podľa definície 2.3.1 dostávame

f ′(a) = lim
h→0
h∈R

f(a+ h)− f(a)

h
=

= lim
h→0
h∈R

(
u(Re a+ h, Im a)− u(Re a, Im a)

h
+ i

v(Re a+ h, Im a)− v(Re a, Im a)

h

)
=

=
∂u

∂x
(Re a, Im a) + i

∂v

∂x
(Re a, Im a),

kde existencia parciálnych derivácií vyplýva z tvrdenia 2.2.7. Podobne tiež

f ′(a) = lim
h→0
h∈R

f(a+ ih)− f(a)

ih
=

= lim
h→0
h∈R

(
u(Re a, Im a+ h)− u(Re a, Im a)

ih
+ i

v(Re a, Im a+ h)− v(Re a, Im a)

ih

)
=

= −i∂u
∂y

(Re a, Im a) +
∂v

∂y
(Re a, Im a).

Z toho
∂u

∂x
(Re a, Im a) + i

∂v

∂x
(Re a, Im a) = −i∂u

∂y
(Re a, Im a) +

∂v

∂y
(Re a, Im a).

Porovnaním reálnych a imaginárnych častí jednotlivých strán predchádzajúcej rovnosti teda zisťujeme,
že

∂u

∂x
(Re a, Im a) =

∂v

∂y
(Re a, Im a) a

∂u

∂y
(Re a, Im a) = −∂v

∂x
(Re a, Im a),

čo bolo treba dokázať.
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Príklad 2.3.7. Uvažujme funkciu f(z) = Re z definovanú na C. Funkcie u, v prislúchajúce k f podľa
znenia predchádzajúcej vety sú dané ako u(x, y) = x a v(x, y) = 0 pre všetky x, y ∈ R. Pre ľubovoľné
a ∈ C preto dostávame

∂u

∂x
(Re a, Im a) = 1,

∂u

∂y
(Re a, Im a) = 0,

∂v

∂x
(Re a, Im a) = 0,

∂v

∂y
(Re a, Im a) = 0.

Nie je teda splnená podmienka

∂u

∂x
(Re a, Im a) =

∂v

∂y
(Re a, Im a)

a funkcia f nie je diferencovateľná v žiadnom bode a ∈ C.

Príklad 2.3.8. Treba pamätať na to, že Cauchyho-Riemannove podmienky sú len nutnými a nie
postačujúcimi podmienkami diferencovateľnosti. Vezmime napríklad a = 0 a funkciu f : C → C danú
ako

f(z) =

{
1 ak Re z = 0 alebo Im z = 0,
0 inak.

Ľahko vidieť, že – pri použití notácie zavedenej vyššie – je ∂u
∂x(0, 0) = ∂u

∂y (0, 0) = ∂v
∂x(0, 0) = ∂v

∂y (0, 0) = 0
a Cauchyho-Riemannove podmienky sú teda splnené. Napríklad limita

lim
h→0
h∈R

f(eiπ/4h)− f(0)

eiπ/4h
= lim

h→0
h∈R

− 1

eiπ/4h
= − 1

eiπ/4
lim
h→0
h∈R

1

h

ale nie je vlastná5 a funkcia f teda nie je diferencovateľná v bode a = 0.

2.4 Holomorfné funkcie

Najdôležitejšiu triedu diferencovateľných funkcií komplexnej premennej tvoria takzvané holomorfné
funkcie (z gr. holos = úplný a morfé = tvar), ktoré teraz definujeme.

Definícia 2.4.1. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a a ∈ S. Funkcia f je
holomorfná v bode a, ak existuje r > 0 také, že funkcia f je diferencovateľná na množine D(a, r).

Definícia 2.4.2. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a T ⊆ S. Funkcia f
je holomorfná na množine T , ak je holomorfná v každom bode a ∈ T .

Holomorfnosť funkcie f v bode je teda silnejšou podmienkou, než diferencovateľnosť v bode –
vyžaduje sa totiž aj diferencovateľnosť vo všetkých ostatných bodoch nejakého dostatočne malého
okolia. Na druhej strane možno bez problémov vidieť, že holomorfnosť funkcie f na otvorenej množine T
je ekvivalentná s jej diferencovateľnosťou na T .

Poznámka 2.4.3. Práve zavedená terminológia – ktorú sme v princípe prebrali z [8] – nie je úplne
štandardná. Holomorfnosť funkcie v bode mnohí autori ani nedefinujú, prípadne pod ňou môžu chápať
diferencovateľnosť v bode. Najpodstatnejšia je však definícia holomorfnosti na otvorenej množine;
táto štandardná je a zhoduje sa s tou našou. Niektorí autori – napríklad L. V. Ahlfors [1] – tiež
namiesto o holomorfných funkciách hovoria o funkciách analytických. My pojem analytickej funkcie
v nasledujúcej kapitole definujeme odlišným spôsobom, ktorý o niečo lepšie odzrkadľuje historické
súvislosti. Neskôr ale ukážeme, že analytickosť funkcie je s jej holomorfnosťou ekvivalentná – používanie
nejednotnej terminológie teda v tomto prípade nepredstavuje žiaden problém.

5Jej existencia závisí na tom, či ju chápeme ako limitu funkcie komplexnej premennej s definičným oborom zúženým
na podmnožinu R, alebo ako limitu funkcie reálnej premennej. V prvom prípade je rovná ∞, v druhom neexistuje.
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Príklad 2.4.4. Uvažujme funkciu f : C → C danú pre všetky z ∈ C ako f(z) = |z|2. Funkcia f
je v bode 0 diferencovateľná, lebo

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h|2

h
= lim

h→0

|h|2

|h|eiθ(h)
= lim

h→0

|h|
eiθ(h)

= 0,

kde θ(h) ∈ Jarg hK je ľubovoľný z argumentov komplexného čísla h. Pre z 6= 0 ale máme – používajúc
notáciu z vety 2.3.6 – u(x, y) = x2 + y2 a v(x, y) = 0, z čoho

∂u

∂x
(Re z, Im z) = 2 Re z,

∂u

∂y
(Re z, Im z) = 2 Im z,

∂v

∂x
(Re z, Im z) = 0,

∂v

∂y
(Re z, Im z) = 0.

Pre z ∈ C s Re z 6= 0 teda
∂u

∂x
(Re z, Im z) 6= ∂v

∂y
(Re z, Im z),

kým pre z ∈ C s Im z 6= 0 zisťujeme, že
∂u

∂y
(Re z, Im z) 6= −∂v

∂x
(Re z, Im z).

Funkcia f teda nie je diferencovateľná v žiadnom z ∈ C \ {0}; nie je teda ani holomorfná v bode 0.

2.5 Niektoré vlastnosti holomorfných a diferencovateľných funkcií

Podobne ako v reálnej analýze je každá diferencovateľná – a tým pádom aj každá holomorfná – funkcia
nutne spojitá.

Veta 2.5.1. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ S je hromadným bodom množiny S.
Ak je funkcia f diferencovateľná v bode a, je v bode a aj spojitá.

Dôkaz. Pre všetky h ∈ C \ {0} také, že a+ h ∈ S položme

f(a+ h)− f(a)

h
− f ′(a) =: ε(h);

potom
lim
h→0

ε(h) = 0.

Preto
lim
z→a

f(z) = lim
h→0

f(a+ h) = lim
h→0

(
f(a) + hf ′(a) + hε(h)

)
= f(a)

a funkcia f je v bode a spojitá.

Dôsledok 2.5.2. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a T ⊆ S. Ak je funkcia f
holomorfná na T , je aj spojitá na T .

Dôkazy nasledujúcich dvoch viet, umožňujúcich zo známych diferencovateľných resp. holomorfných
funkcií vytvárať ďalšie, sú v zásade identické ako v reálnej analýze a prenechávame ich preto čitateľovi
ako jednoduché cvičenie na manipuláciu s limitami.

Veta 2.5.3. Nech S ⊆ C je množina, nech a ∈ S je hromadný bod množiny S, nech f, g : S → C sú
funkcie diferencovateľné v bode a a nech λ ∈ C. Potom je v bode a diferencovateľná aj:

a) Funkcia λf , pričom (λf)′(a) = λf ′(a).

b) Funkcia f + g, pričom (f + g)′(a) = f ′(a) + g′(a).

c) Funkcia fg, pričom (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Ak navyše f(a) 6= 0, je v bode a diferencovateľná aj:

d) Funkcia 1/f , pričom (1/f)′(a) = − f ′(a)
f(a)2 .
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Veta 2.5.4. Nech S ⊆ C je otvorená množina, nech R ⊆ S, nech f, g : S → C sú funkcie holomorfné
na R a nech λ ∈ C. Potom je na R holomorfná aj:

a) Funkcia λf , pričom (λf)′(z) = λf ′(z) pre všetky z ∈ R.

b) Funkcia f + g, pričom (f + g)′(z) = f ′(z) + g′(z) pre všetky z ∈ R.

c) Funkcia fg, pričom (fg)′(z) = f ′(z)g(z) + f(z)g′(z) pre všetky z ∈ R.

Ak navyše f(z) 6= 0 pre všetky z ∈ R, je na R holomorfná aj:

d) Funkcia 1/f , pričom (1/f)′(z) = − f ′(z)
f(z)2 pre všetky z ∈ R.

Je jednoduchým cvičením na limity dokázať, že funkcie f(z) = 1 a g(z) = z sú holomorfné na C,
pričom f ′(z) = 0 a g′(z) = 1 pre všetky z ∈ C. Z uvedenej vety teda vyplýva, že sú na C holomorfné
aj všetky polynomické funkcie; rovnako všetky racionálne funkcie p(z)/q(z), kde p a q sú polyno-
mické funkcie, sú holomorfné na každej otvorenej množine neobsahujúcej (komplexný) koreň funkcie q.
Derivácie všetkých týchto funkcií sa počítajú rovnako ako v reálnej analýze.

Dokážeme teraz dva varianty vety o derivácii zloženej funkcie. Prvý z nich hovorí o diferencovateľ-
nosti a je dostatočne všeobecný na to, aby zahŕňal aj prípad zloženia funkcie komplexnej premennej
s komplexnou funkciou reálnej premennej definovanou na uzavretom intervale (to sa nám neskôr zíde
v súvislosti s integrovaním). Druhý variant hovorí o holomorfnosti a práve túto formuláciu vety budeme
využívať najčastejšie.

Veta 2.5.5 (O derivácii zloženej funkcie I). Nech S, T ⊆ C sú množiny, g : S → C, f : T → C sú funkcie
a nech T ⊇ g(S). Ak g je diferencovateľná na množine S a f je diferencovateľná na množine T , je
na množine S diferencovateľná aj funkcia f ◦ g, pričom pre všetky a ∈ S je

(f ◦ g)′(a) = f ′(g(a))g′(a).

Dôkaz. Zvoľme ľubovoľné a ∈ S. Nech b = g(a) ∈ T . Z predpokladov vety vyplýva, že funkcia g je
diferencovateľná v bode a a funkcia f je diferencovateľná v bode b – pričom, samozrejme, a musí byť
hromadným bodom množiny S a b musí byť hromadným bodom množiny T . Pre všetky h ∈ C také,
že a+ h ∈ S a všetky ` ∈ C také, že b+ ` ∈ T položme

ε(h) :=

{
g(a+h)−g(a)

h − g′(a) ak h 6= 0,
0 ak h = 0,

η(`) :=

{
f(b+`)−f(b)

` − f ′(b) ak ` 6= 0,
0 ak ` = 0.

Úpravou pre všetky prípustné h, ` dostávame

g(a+ h)− g(a) = (g′(a) + ε(h))h, (2.2)
f(b+ `)− f(b) = (f ′(b) + η(`))`. (2.3)

Vezmime teraz ` = g(a+ h)− b. Z (2.3) potom

f(g(a+ h))− f(b) =
(
f ′(b) + η(g(a+ h)− b)

)
(g(a+ h)− b);

to je ekvivalentné rovnosti

f(g(a+ h))− f(g(a)) =
(
f ′(g(a)) + η(g(a+ h)− g(a))

)
(g(a+ h)− g(a)),

z ktorej použitím vzťahu (2.2) dostávame

f(g(a+ h))− f(g(a)) =
(
f ′(g(a)) + η(g(a+ h)− g(a))

)
(g′(a) + ε(h))h. (2.4)
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Podľa vety 2.5.1 a tvrdenia 2.2.6 je

lim
h→0

g(a+ h)− g(a) = 0;

keďže je súčasne zrejmé, že
lim
`→0

η(`) = 0 = η(0),

je funkcia η spojitá v bode 0 a z tvrdenia 2.2.10(i) vyplýva

lim
h→0

η(g(a+ h)− g(a)) = 0. (2.5)

Evidentne tiež
lim
h→0

ε(h) = 0. (2.6)

S použitím rovnosti (2.4) a limít (2.5) a (2.6) potom dostávame

lim
h→0

f(g(a+ h))− f(g(a))

h
= lim

h→0

(
f ′(g(a)) + η(g(a+ h)− g(a))

)
(g′(a) + ε(h)) = f ′(g(a))g′(a),

čo bolo treba dokázať.

Veta 2.5.6 (O derivácii zloženej funkcie II). Nech S, T ⊆ C sú otvorené množiny, g : S → C, f : T → C
sú funkcie a T ⊇ g(S). Ak g je holomorfná na množine S a f je holomorfná na množine T , je
na množine S holomorfná aj funkcia f ◦ g, pričom pre všetky a ∈ S je

(f ◦ g)′(a) = f ′(g(a))g′(a).

Dôkaz. V prípade, že funkcie g a f spĺňajú podmienky vety, je funkcia f ◦ g podľa vety 2.5.5 diferen-
covateľná v každom bode a ∈ S. Keďže je množina S otvorená, je funkcia f ◦ g na S aj holomorfná.
Vzorec pre deriváciu je daný vetou 2.5.5.

Vetu o derivácii inverznej funkcie teraz sformulujeme iba v reči diferencovateľnosti. Pre holomorfné
funkcie je existencia holomorfnej inverznej funkcie zaručená aj za slabších predpokladov – stačí injek-
tívnosť uvažovanej holomorfnej funkcie, pričom tá je navyše lokálne dôsledkom nenulovosti derivácie.
Dôkaz tohto tvrdenia, známeho ako veta o inverznej funkcii, však vyžaduje určité pokročilejšie znalosti;
dostaneme sa teda k nemu až neskôr. Zatiaľ teda iba vyslovme pomerne elementárnu vetu o derivácii
inverznej funkcie, v ktorej navyše musíme predpokladať spojitosť inverznej funkcie; zato však namiesto
holomorfnosti funkcie f stačí predpokladať jej diferencovateľnosť.

Veta 2.5.7 (O derivácii inverznej funkcie). Nech S ⊆ C je množina, f : S → C je injektívna funkcia,
T = f(S) a inverzná funkcia f−1 : T → C k funkcii f je spojitá. Nech a ∈ S je hromadný bod
množiny S. Ak je funkcia f diferencovateľná v bode a, pričom f ′(a) 6= 0, je b = f(a) hromadným
bodom množiny T , funkcia f−1 je diferencovateľná v bode b a

(
f−1

)′
(b) =

1

f ′(a)
.

Dôkaz. Funkcia f , diferencovateľná v bode a, tam podľa vety 2.5.1 musí byť aj spojitá. Pre všetky
n ∈ N \ {0} tak špeciálne existuje δn > 0 také, že pre všetky z ∈ D(a, δn) ∩ S je f(z) ∈ D(b, 1/n).
Keďže je navyše a hromadným bodom množiny S, môžeme pre všetky n ∈ N \ {0} zvoliť nejaké
zn ∈ D′(a, δn) ∩ S; vďaka injektívnosti funkcie f potom f(zn) ∈ D′(b, 1/n) ∩ T . Pre všetky ε > 0 tak
môžeme zvoliť n ∈ N také, že 1/n < ε; potom f(zn) ∈ D′(b, ε)∩T . Bod b je teda skutočne hromadným
bodom množiny T .
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Nech ϕ(z) je funkcia daná pre všetky z ∈ S \ {a} ako

ϕ(z) =
z − a

f(z)− f(a)
.

Ak je funkcia f diferencovateľná v bode a s f ′(a) 6= 0, je

lim
z→a

ϕ(z) = lim
z→a

z − a
f(z)− f(a)

=
1

limz→a
f(z)−f(a)

z−a

=
1

f ′(a)
.

Funkcia f−1(w) je navyše spojitá v hromadnom bode b množiny T – podľa tvrdenia 2.2.6 teda

lim
w→b

f−1(w) = f−1(b) = a,

pričom z injektívnosti funkcií f a f−1 vyplýva, že pre všetky w ∈ T\{b} je f−1(w) 6= a. Z tvrdenia 2.2.10
preto

lim
w→b

ϕ(f−1(w)) =
1

f ′(a)
. (2.7)

Keďže pre všetky w ∈ T \ {b} je

ϕ(f−1(w)) =
f−1(w)− a

f(f−1(w))− f(a)
=
f−1(w)− f−1(b)

w − b
,

môžeme (2.7) prepísať ako

(
f−1

)′
(b) = lim

w→b

f−1(w)− f−1(b)

w − b
=

1

f ′(a)
,

čím je tvrdenie dokázané.

Na záver tejto kapitoly ešte dokážme užitočné kritérium konštantnosti funkcie f na oblasti.

Tvrdenie 2.5.8. Nech S ⊆ C je oblasť a f : S → C je holomorfná na S. Ak f ′(z) = 0 pre všetky
z ∈ S, tak je funkcia f na S konštantná.

Dôkaz. Dokážeme, že za uvedených predpokladov je f(a) = f(b) pre všetky a, b ∈ S. Sporom, nech
a, b ∈ S sú také, že f(a) 6= f(b). Keďže je S oblasť, existuje lomená čiara v S spájajúca bod a
s bodom b. Musia preto existovať aj dva po sebe idúce vrcholy c 6= d tejto lomenej čiary, pre ktoré
f(c) 6= f(d). Uvažujme teraz úsečku z bodu c do bodu d,

[c, d] = {c+ t(d− c) | t ∈ [0, 1]} ⊆ S.

Táto situácia je znázornená na obrázku 2.1.
Dokážeme, že pre všetky t ∈ [0, 1] je∣∣∣∣f(c+ t(d− c))− f(c)

d− c

∣∣∣∣ ≤ t

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ . (2.8)

Nerovnosť (2.8) tak bude musieť platiť aj pre t = 1; to bude spor, pretože v takom prípade∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ ≤ 1

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ ,
kde číslo v absolútnej hodnote je nenulové.
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S
a

b

c d

Obr. 2.1: Lomená čiara z a do b v S, na ktorej vyberieme úsečku z c do d takú, že f(c) 6= f(d).

Nerovnosť (2.8) ale očividne platí pre t = 0; môžeme teda zmysluplne definovať t0 ∈ [0, 1] ako

t0 = sup

{
t ∈ [0, 1]

∣∣∣∣ ∀t′ ∈ [0, t] :

∣∣∣∣f(c+ t′(d− c))− f(c)

d− c

∣∣∣∣ ≤ t′

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣} . (2.9)

Keďže f ′(c+ t0(d− c)) = 0, pre všetky ε > 0 existuje δ > 0 také, že pre ľubovoľné h ∈ C s 0 < |h| < δ
je ∣∣∣∣f(c+ t0(d− c) + h)− f(c+ t0(d− c))

h

∣∣∣∣ < ε.

Špeciálne teda existuje aj (vo všeobecnosti iné) δ > 0 také, že pre všetky h ∈ R s 0 < |h| < δ je

∣∣∣∣f(c+ (t0 + h)(d− c))− f(c+ t0(d− c))
h(d− c)

∣∣∣∣ < ε. (2.10)

Zvoľme

ε :=
1

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ .

c

d

c+ t0(d− c)

c+ (t0 + h)(d− c)

(a) Z platnosti (2.8) na [0, t0) usúdime na platnosť pre t0.
c

d

c+ t0(d− c)

c+ (t0 + h)(d− c)

(b) Následne usúdime na platnosť (2.8) na [0, t0 + δ′].

Obr. 2.2: Schéma kľúčovej časti dôkazu tvrdenia 2.5.8.

Dokážeme najprv, že nerovnosť (2.8) platí pre samotné t = t0. Ak t0 = 0, nie je čo dokazovať.
Ak t0 > 0, môžeme predpokladať δ < t0 a v (2.10) zvoliť h tak, aby −δ < h < 0. Z definície t0 potom
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vyplýva, že (2.8) platí pre t = t0 + h a dostávame∣∣∣∣f(c+ t0(d− c))− f(c)

d− c

∣∣∣∣ =

=

∣∣∣∣f(c+ t0(d− c))− f(c+ (t0 + h)(d− c)) + f(c+ (t0 + h)(d− c))− f(c)

d− c

∣∣∣∣ ≤
≤
∣∣∣∣f(c+ t0(d− c))− f(c+ (t0 + h)(d− c))

d− c

∣∣∣∣+

∣∣∣∣f(c+ (t0 + h)(d− c))− f(c)

d− c

∣∣∣∣ <
< −h

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣+
t0 + h

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ =

=
t0
2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ .
Ak teraz t0 = 1, tvrdenie je dokázané. V opačnom prípade môžeme predpokladať δ < 1 − t0, zvoliť
kladné δ′ < δ a uvažovať ľubovoľné h spĺňajúce 0 < h ≤ δ′ < δ. Z práve dokázanej platnosti (2.8)
pre t = t0 dostávame∣∣∣∣f(c+ (t0 + h)(d− c))− f(c)

d− c

∣∣∣∣ =

=

∣∣∣∣f(c+ (t0 + h)(d− c))− f(c+ t0(d− c)) + f(c+ t0(d− c))− f(c)

d− c

∣∣∣∣ ≤
≤
∣∣∣∣f(c+ (t0 + h)(d− c))− f(c+ t0(d− c))

d− c

∣∣∣∣+

∣∣∣∣f(c+ t0(d− c))− f(c)

d− c

∣∣∣∣ <
<
h

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣+
t0
2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ =

=
t0 + h

2

∣∣∣∣f(d)− f(c)

d− c

∣∣∣∣ .
Nerovnosť (2.8) teda platí pre všetky t ∈ [0, t0+δ′], čo je spor s definíciou čísla t0 prostredníctvom (2.9).
Týmto je tvrdenie dokázané.

Cvičenia

1. Dokážte tvrdenie 2.2.6.

2. Dokážte tvrdenie 2.2.9.

3. Dokážte vety 2.2.11 a 2.2.12.

4. Nech S ⊆ C je množina a f : S → C funkcia. Nech a je hromadným bodom množiny S, alebo
nech je S neohraničená a a =∞. Dokážte, že limz→a f(z) = 0 práve vtedy, keď limz→a|f(z)| = 0.

5. Nech S ⊆ C je otvorená množina a f : S → C funkcia. Dokážte, že funkcia f je spojitá práve
vtedy, keď pre všetky otvorené množiny X ⊆ C je jej vzor f−1(X) = {z ∈ S | f(z) ∈ X}
pri zobrazení f tiež otvorená množina.

6. Nech S ⊆ C je množina a T ⊆ S. Funkcia f : S → C je rovnomerne spojitá na T , ak pre všetky
ε > 0 existuje δ > 0 také, že pre všetky z1, z2 ∈ T spĺňajúce |z1 − z2| < δ je |f(z1)− f(z2)| < ε.

a) Nájdite príklad funkcie, ktorá je na nejakej podmnožine C spojitá, ale nie je tam rovnomerne
spojitá.

b) Dokážte, že ak T ⊆ S je kompaktná množina a f : S → C je spojitá na T , je funkcia f na T
aj rovnomerne spojitá.
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7. Nájdite všetky body a ∈ C, v ktorých je diferencovateľná funkcia f : C→ C daná ako:

a) f(z) = |z|;

b) f(z) = Im z;

c) f(z) = z;

d) f(z) =

{
1 ak |Re z| < 1 a zároveň |Im z| < 1,
0 inak. .

8. Nech S ⊆ C je oblasť. Dokážte, že každá funkcia f : S → R holomorfná na S je na oblasti S
nutne konštantná.

9. Nech S ⊆ C je oblasť a f : S → C je funkcia holomorfná na S taká, že funkcia Re f je na S
konštantná. Dokážte, že v takom prípade musí byť na S konštantná aj samotná funkcia f .

10. Zistite, či existuje funkcia f : C→ C, ktorá je:

a) Diferencovateľná v bode a ∈ C práve vtedy, keď Im a = 0.

b) Holomorfná v bode a ∈ C práve vtedy, keď Im a = 0.

V prípade kladnej odpovede príslušnú funkciu nájdite a dokážte, že skutočne má danú vlastnosť.
V prípade zápornej odpovede svoje tvrdenie dokážte.

11. Zistite, či existuje funkcia f : C→ C, ktorá:

a) Nie je spojitá v žiadnom bode a ∈ C.
b) Nie je spojitá v žiadnom bode a ∈ C \ {0}, ale v bode a = 0 je dokonca diferencovateľná.

V prípade kladnej odpovede príslušnú funkciu nájdite a dokážte, že skutočne má danú vlastnosť.
V prípade zápornej odpovede svoje tvrdenie dokážte.

12. Dokážte, že predpoklad spojitosti je vo vete 2.5.7 skutočne podstatný. To znamená: nájdite
príklad množiny S ⊆ C a injektívnej funkcie f : S → C, diferencovateľnej v nejakom hromadnom
bode a ∈ S množiny S, takej, že inverzná funkcia f−1 nie je v bode b = f(a) ani len spojitá.
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Kapitola 3

Analytické funkcie

V nasledujúcom definujeme triedu analytických funkcií – čiže funkcií lokálne reprezentovateľných moc-
ninovými radmi – a preskúmame niektoré jej základné vlastnosti. Neskôr uvidíme, že analytickosť
funkcie je v skutočnosti ekvivalentná jej holomorfnosti; nech pritom zvolíme akékoľvek pomenovanie,
ide o bezpochyby najvýznamnejšiu triedu funkcií skúmanú v komplexnej analýze. V tejto kapitole
dokážeme jeden smer tejto ekvivalencie: každá analytická funkcia je holomorfná. Navyše ukážeme, že
holomorfné sú aj derivácie analytických funkcií; každá analytická funkcia tak má derivácie všetkých
rádov. Čitateľa odkazujeme aj na [8].

Cestu k analytickým funkciám začneme skúmaním radov komplexných čísel – uvidíme, že mnohé
ich kľúčové vlastnosti sú rovnaké ako pri radoch reálnych čísel. Následne preskúmame základné vlast-
nosti mocninových radov, definujeme analytické funkcie a dokážeme vetu o derivovaní mocninových
radov ukazujúcu, že každá analytická funkcia je holomorfná. Definujeme tiež exponenciálnu funkciu
a goniometrické funkcie a opodstatníme tak zápis eiθ = cos θ + i sin θ, ktorý sme doposiaľ používali
čisto formálne. V krátkosti sa tiež dotkneme logaritmických a mocninových funkcií komplexnej pre-
mennej, ktoré sú vo všeobecnosti viachodnotové; náš prístup k takýmto funkciám bude zatiaľ pomerne
naivný a neskôr sa k tejto problematike ešte vrátime.

3.1 Nekonečné rady komplexných čísel

Aby sme sa mohli zaoberať mocninovými radmi, musíme najprv do komplexného oboru preniesť nie-
ktoré poznatky o nekonečných radoch čísel. Podobne ako pri limitách a spojitosti pôjde o priamočiare
zovšeobecnenie výsledkov známych z reálnej analýzy.

Nech (an)∞n=0 je postupnosť komplexných čísel. Potom hovoríme, že nekonečný rad komplexných
čísel

∑∞
n=0 an konverguje k súčtu s ∈ C, ak je s limitou postupnosti čiastočných súčtov tohto radu,

teda ak pre postupnosť (sn)∞n=0 danú pre všetky n ∈ N ako

sn =

n∑
k=0

ak

platí
s = lim

n→∞
sn.

V takom prípade tiež hovoríme, že s je súčtom radu
∑∞

n=0 an a píšeme
∞∑
n=0

an = s.

Ak pre nejaký rad neexistuje žiaden súčet s ∈ C, hovoríme, že tento rad diverguje.
Keďže sú uvedené definície navlas rovnaké ako pre rady reálnych čísel, dostávame nasledujúce

tvrdenie umožňujúce previesť skúmanie radov komplexných čísel na skúmanie radov reálnych čísel.
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Tvrdenie 3.1.1. Rad komplexných čísel
∑∞

n=0 an konverguje práve vtedy, keď konvergujú obidva rady
reálnych čísel

∑∞
n=0 Re an a

∑∞
n=0 Im an. V takom prípade je

∞∑
n=0

an =

∞∑
n=0

Re an + i

∞∑
n=0

Im an.

Dôkaz. Ide o bezprostredný dôsledok tvrdenia 2.2.7.

Nasledujúce tri tvrdenia sú priamymi dôsledkami analogických tvrdení pre rady reálnych čísel
a tvrdenia 3.1.1.

Tvrdenie 3.1.2. Nech
∑∞

n=0 an je konvergentný rad komplexných čísel. Potom limn→∞ an = 0 a po-
stupnosť (|an|)∞n=0 je zhora ohraničená.

Tvrdenie 3.1.3. Nech
∑∞

n=0 an je rad komplexných čísel a k ∈ N. Potom rad
∑∞

n=0 an konverguje
práve vtedy, keď konverguje rad

∑∞
n=k an :=

∑∞
n=0 an+k a v takom prípade je

∞∑
n=0

an =

k−1∑
n=0

an +

∞∑
n=k

an.

Tvrdenie 3.1.4. Nech
∑∞

n=0 an,
∑∞

n=0 bn sú konvergentné rady komplexných čísel a λ ∈ C. Potom:

a) Rad
∑∞

n=0 λan je konvergentný a
∞∑
n=0

λan = λ

∞∑
n=0

an.

b) Rad
∑∞

n=0 (an + bn) je konvergentný a

∞∑
n=0

(an + bn) =

( ∞∑
n=0

an

)
+

( ∞∑
n=0

bn

)
.

Podobne ako pre rady reálnych čísel hovoríme, že rad komplexných čísel
∑∞

n=0 an konverguje abso-
lútne, ak konverguje rad

∑∞
n=0|an|.

Tvrdenie 3.1.5. Nech
∑∞

n=0 an konverguje absolútne. Potom
∑∞

n=0 an konverguje.

Dôkaz. Keďže pre všetky a ∈ C je |Re a| ≤ |a| a |Im a| ≤ |a|, z porovnávacieho kritéria pre rady
reálnych čísel vyplýva, že rady

∑∞
n=0 Re an a

∑∞
n=0 Im an konvergujú absolútne. Stačí už teda využiť

známu skutočnosť, že z absolútnej konvergencie radu reálnych čísel vyplýva jeho konvergencia a odvolať
sa na tvrdenie 3.1.1.

Kritériá konvergencie nekonečných radov

Veta 3.1.6 (Porovnávacie kritérium konvergencie). Nech
∑∞

n=0 bn je konvergentný rad nezáporných
reálnych čísel a pre všetky n ∈ N je an komplexné číslo také, že |an| ≤ bn. Potom rad

∑∞
n=0 an

konverguje absolútne (a teda konverguje).

Dôkaz. Triviálny dôsledok porovnávacieho kritéria pre rady reálnych čísel.
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Veta 3.1.7 (D’Alembertovo kritérium konvergencie1). Nech
∑∞

n=0 an je rad komplexných čísel taký,
že existuje limita

` = lim
n→∞

|an+1|
|an|

.

Ak ` < 1, rad
∑∞

n=0 an konverguje absolútne. Ak ` > 1, rad
∑∞

n=0 an diverguje.

Dôkaz. Z d’Alembertovho kritéria konvergencie pre rady nezáporných reálnych čísel v prípade ` < 1
priamo vyplýva konvergencia radu

∑∞
n=0|an| – a teda aj absolútna konvergencia radu

∑∞
n=0 an. Ak na-

opak ` > 1, pre všetky dostatočne veľké n nutne |an+1| > |an|; nemôže teda platiť limn→∞ an = 0
a rad diverguje podľa tvrdenia 3.1.2.

Veta 3.1.8 (Cauchyho odmocninové kritérium). Nech
∑∞

n=0 an je rad komplexných čísel a nech
` = lim supn→∞

n
√
|an|. Ak ` < 1, rad

∑∞
n=0 an konverguje absolútne. Ak ` > 1, rad

∑∞
n=0 an diverguje.

Dôkaz. Ak ` < 1, pre všetky dostatočne veľké n ∈ N je n
√
|an| < q < 1, a teda aj |an| < qn pre nejaké

q ∈ (0, 1). Keďže rad
∑∞

n=0 q
n konverguje, stačí sa odvolať na porovnávacie kritérium a tvrdenie 3.1.3.

Ak naopak ` > 1, zrejme nemôže byť limn→∞ an = 0 a rad diverguje podľa tvrdenia 3.1.2.

Nasledujúce Dirichletovo kritérium konvergencie je pomerne „špecializované“ a neskôr ho využijeme
v príklade 3.2.4 demonštrujúcom možné správanie mocninových radov na kružnici konvergencie. Čitateľ
toto kritérium pravdepodobne ocení lepšie, ak sa najprv oboznámi so spomínaným príkladom.

Veta 3.1.9 (Dirichletovo kritérium konvergencie). Nech (an)∞n=0 je postupnosť nezáporných reálnych
čísel, (bn)∞n=0 je postupnosť komplexných čísel a sú splnené nasledujúce podmienky:

(i) Pre všetky n ∈ N je an ≥ an+1.

(ii) Platí limn→∞ an = 0.

(iii) Existuje konštanta M ≥ 0 taká, že pre všetky n ∈ N je
∣∣∣∑n

j=0 bj

∣∣∣ ≤M .

Potom rad
∑∞

n=0 anbn konverguje.

Dôkaz. Označme n-tý čiastočný súčet radu
∑∞

n=0 anbn symbolom Sn:

Sn :=
n∑
k=0

akbk.

Podobne označme

Tn :=
n∑
j=0

bj .

Potom

Sn = Tnan+1 +
n∑
k=0

Tk(ak − ak+1). (3.1)

Rad
∑∞

k=0 Tk(ak − ak+1) konverguje absolútne podľa porovnávacieho kritéria: pre všetky k ∈ N je
totiž |Tk(ak − ak+1)| = |Tk|(ak − ak+1) ≤M(ak − ak+1) a rad

∑∞
k=0M(ak − ak+1) konverguje, keďže

∞∑
k=0

M(ak − ak+1) = lim
k→∞

k∑
j=0

M(aj − aj+1) = M lim
k→∞

(a0 − ak+1) = Ma0.

Z predpokladov (ii) a (iii) vyplýva limn→∞ Tnan+1 = 0 a zo vzťahu (3.1) tak dostávame

lim
n→∞

Sn = lim
n→∞

Tnan+1 + lim
n→∞

n∑
k=0

Tk(ak − ak+1) = lim
n→∞

n∑
k=0

Tk(ak − ak+1) =

∞∑
k=0

Tk(ak − ak+1),

v dôsledku čoho konverguje aj rad
∑∞

n=0 anbn.
1Presnejšie ide o relatívne slabú verziu tohto kritéria.
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3.2 Mocninové rady

Pod mocninovým radom s komplexnými koeficientmi a stredom v bode a ∈ C rozumieme rad

∞∑
n=0

cn(z − a)n,

kde z je komplexná premenná a cn ∈ C pre všetky n ∈ N.

Príklad 3.2.1. Typickým príkladom mocninového radu je geometrický rad
∑∞

n=0 z
n. Z tvrdenia 3.1.2

je jasné, že tento rad diverguje pre všetky z ∈ C spĺňajúce |z| ≥ 1. Ak ale |z| < 1, je

∞∑
n=0

zn = lim
n→∞

n∑
k=0

zk = lim
n→∞

zn+1 − 1

z − 1
=

1

1− z
.

Rad
∑∞

n=0 z
n teda konverguje pre práve všetky z ∈ C spĺňajúce |z| < 1.

Kľúčovým pojmom súvisiacim s mocninovými radmi je polomer konvergencie radu. Hoci sa jeho
nasledujúca definícia môže na prvý pohľad zdať zvláštna, veta 3.2.3 nás hneď vzápätí ubezpečí, že je
v súlade s intuitívnou predstavou o tomto koncepte.

Definícia 3.2.2. Polomerom konvergencie mocninového radu
∑∞

n=0 cn(z − a)n s a ∈ C a cn ∈ C
pre všetky n ∈ N nazveme hodnotu % ∈ R≥0 ∪ {∞} danú ako

% := sup

{
|z − a|

∣∣∣∣∣ z ∈ C a číselný rad
∞∑
n=0

|cn(z − a)n| konverguje

}
.

Z pozorovaní učinených v príklade 3.2.1 teda okrem iného vyplýva, že polomerom konvergencie
geometrického radu

∑∞
n=0 z

n je % = 1. Tento rad navyše konverguje pre všetky z ∈ C spĺňajúce |z| < %
a diverguje pre všetky z ∈ C také, že |z| > %. Nasledujúca veta ukazuje, že rovnaká vlastnosť platí
aj vo všeobecnosti. Ako ale neskôr uvidíme v rámci príkladu 3.2.4, pre z na kružnici konvergencie
|z − a| = % sa situácia môže rad od radu líšiť.

Veta 3.2.3 (O polomere konvergencie). Nech
∑∞

n=0 cn(z − a)n je mocninový rad s komplexnými
koeficientmi a s polomerom konvergencie %. Potom:

(i) Pre všetky z ∈ C spĺňajúce |z − a| < % číselný rad
∑∞

n=0 cn(z − a)n konverguje absolútne.

(ii) Pre všetky z ∈ C spĺňajúce |z − a| > % číselný rad
∑∞

n=0 cn(z − a)n diverguje.

Polomer konvergencie % je navyše daný vzťahom

% =
1

lim supn→∞
n
√
|cn|

,

kde pre účely tejto vety je 1/0 =∞ a 1/∞ = 0.

Dôkaz. Na dôkaz tvrdenia (i) vezmime ľubovoľné z ∈ C také, že |z − a| < %. Podľa definície 3.2.2
existuje aspoň jedno w ∈ C, pre ktoré je |z − a| < |w − a| ≤ % a rad

∑∞
n=0 |cn(w − a)n| konverguje.

Keďže pre všetky n ∈ N je |cn(z − a)n| ≤ |cn(w − a)n|, rad
∑∞

n=0 cn(z − a)n konverguje absolútne
vďaka porovnávaciemu kritériu.
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Dokážeme teraz tvrdenie (ii). Sporom. Nech |z − a| > % a rad
∑∞

n=0 cn(z − a)n konverguje. Vďaka
tvrdeniu 3.1.2 potom existuje konštanta M ≥ 0 taká, že |cn(z − a)n| ≤ M pre všetky n ∈ N. Zvoľme
si ľubovoľné w ∈ C také, že |z − a| > |w − a| > %. Potom

1

M
|cn(w − a)n| = 1

M
|cn(z − a)n|

∣∣∣∣w − az − a

∣∣∣∣n ≤ ∣∣∣∣w − az − a

∣∣∣∣n .
Iste |(w − a)/(z − a)| < 1; podľa pozorovania z príkladu 3.2.1 teda rad

∑∞
n=0|(w − a)/(z − a)|n

konverguje a z porovnávacieho kritéria vyplýva, že konverguje aj rad
∑∞

n=0
1
M |cn(w − a)n|. Vďaka

tomu podľa tvrdenia 3.1.4 konverguje aj rad
∑∞

n=0|cn(w− a)n|. Keďže ale |w− a| > %, číslo % nemôže
byť polomerom konvergencie radu

∑∞
n=0 cn(z − a)n.

Dokážme napokon vzťah

% =
1

lim supn→∞
n
√
|cn|

. (3.2)

Z Cauchyho odmocninového kritéria vyplýva, že rad
∑∞

n=0 cn(z − a)n konverguje kedykoľvek

lim sup
n→∞

n
√
|cn(z − a)n| < 1 (3.3)

a diverguje kedykoľvek
lim sup
n→∞

n
√
|cn(z − a)n| > 1. (3.4)

Nerovnosť (3.3) je splnená vždy, keď existuje ε ∈ (0, 1) také, že pre dostatočne veľké n je

n
√
|cn| · |z − a| < 1− ε,

čo možno – ak pre účely tohto dôkazu prijmeme konvenciu (1− ε)/0 =∞ – ekvivalentne vyjadriť ako

|z − a| < 1− ε
n
√
|cn|

.

Rad teda konverguje vždy, keď existuje ε ∈ (0, 1) a δ > 0 tak, že

|z − a| < 1− ε
δ + lim supn→∞

n
√
|cn|

,

čo je pravda kedykoľvek, keď

|z − a| < 1

lim supn→∞
n
√
|cn|

.

Nerovnosť (3.4) je splnená kedykoľvek, keď existuje ε ∈ (0, 1) také, že pre nekonečne veľa n je

|z − a| > 1 + ε
n
√
|cn|

a podobne ako vyššie zisťujeme, že rad diverguje kedykoľvek

|z − a| > 1

lim supn→∞
n
√
|cn|

.

Z dokázaných tvrdení (i) a (ii) teda vyplýva, že skutočne platí vzťah (3.2).
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Príklad 3.2.4. Veta o polomere konvergencie nehovorí nič o konvergencii alebo divergencii mocni-
nového radu

∑∞
n=0 cn(z − a)n na jeho kružnici konvergencie – čiže v bodoch z, pre ktoré je hodnota

|z − a| rovná polomeru konvergencie %. Ukážeme teraz, že situácia tu môže byť pre rôzne mocninové
rady veľmi rozdielna.

a) V príklade 3.2.1 sme dokázali, že rad
∑∞

n=0 z
n má polomer konvergencie % = 1, pričom tento rad

diverguje na celej kružnici |z| = %.

b) Uvažujme mocninový rad
∑∞

n=1
1
nz

n. Pre polomer konvergencie tohto radu platí

%−1 = lim sup
n→∞

n
√

1/n = lim sup
n→∞

1

e(lnn)/n
= 1,

z čoho % = 1. Pre z = 1 ide o harmonický rad, o ktorom je známe, že diverguje. Pre z ∈ C \ {1}
spĺňajúce |z| = 1 môžeme na druhej strane pre všetky n ∈ N \ {0} položiť an := 1/n a bn := zn.
Pre všetky kladné prirodzené n zjavne an ≥ an+1 a limn→∞ an = 0; navyše∣∣∣∣∣

n∑
k=1

bk

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

zk

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=0

zk

∣∣∣∣∣ =

∣∣∣∣zn+1 − 1

z − 1

∣∣∣∣ ≤ 2

|z − 1|
.

Môžeme sa teda odvolať na Dirichletovo kritérium konvergencie,2 podľa ktorého rad
∑∞

n=1
1
nz

n

pre uvedené z konverguje. Rad teda konverguje na celej kružnici |z| = % s výnimkou bodu z = 1.

c) Uvažujme mocninový rad
∑∞

n=1
1
n2 z

n. Polomer konvergencie je opäť daný vzťahom

%−1 = lim sup
n→∞

n
√

1/n2 = lim sup
n→∞

1

e(2 lnn)/n
= 1,

čiže % = 1. Pre z = 1 dostávame rad
∑∞

n=1
1
n2 ; tam však pre n ≥ 2 máme

1

n2
≤ 1

n(n− 1)
=

1

n− 1
− 1

n
.

Pre všetky n ∈ N \ {0} teda

Sn :=

n∑
k=1

1

k2
≤ 1 +

n∑
k=2

(
1

k − 1
− 1

k

)
= 1 + 1− 1

n
≤ 2.

Postupnosť čiastočných súčtov (Sn)∞n=0 číselného radu
∑∞

n=1
1
n2 je teda zhora ohraničená; keďže je

aj neklesajúca, musí konvergovať k vlastnej limite, v dôsledku čoho konverguje aj rad
∑∞

n=1
1
n2 .

Použitím porovnávacieho kritéria tak dostávame konvergenciu mocninového radu
∑∞

n=1
1
n2 z

n

na celej kružnici |z| = %.

3.3 Analytické funkcie

Analytickou funkciou nazveme funkciu komplexnej premennej, ktorá je lokálne reprezentovateľná moc-
ninovým radom (s nenulovým polomerom konvergencie).

Definícia 3.3.1. Nech S ⊆ C je otvorená množina, nech f : S → C je funkcia a a ∈ S. Funkcia f
je analytická v bode a, ak existuje r > 0 také, že D(a, r) ⊆ S a pre všetky z ∈ D(a, r) je

f(z) =
∞∑
n=0

cn(z − a)n,

kde c0, c1, c2, . . . sú nejaké komplexné čísla a rad
∑∞

n=0 cn(z − a)n konverguje pre všetky z ∈ D(a, r).3
2Zjavne je možné rad preindexovať tak, aby začínal nultým členom.
3Uvedený rad má teda polomer konvergencie % ≥ r > 0.
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Definícia 3.3.2. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a T ⊆ S. Funkcia f
je analytická na množine T , ak je analytická v každom bode a ∈ T .

Príklad 3.3.3. Z príkladu 3.2.1 vyplýva, že funkcia f(z) = 1/(1− z) je analytická v bode 0, pričom

1

1− z
=

∞∑
n=0

zn

pre všetky z ∈ D(0, 1). V skutočnosti je však táto funkcia analytická aj na C \ {1}, hoci uvedený rad
pre z 6∈ D(0, 1) diverguje. Pre ľubovoľné a, z ∈ C \ {1} totiž

1

1− z
=

1

(1− a)− (z − a)
=

1

1− a
· 1

1− (z − a)/(1− a)

a pre z ∈ C \ {1} spĺňajúce ∣∣∣∣z − a1− a

∣∣∣∣ < 1

– to znamená pre z ∈ D(a, |1− a|) – je

1

1− z
=

1

1− a

∞∑
n=0

(
z − a
1− a

)n
=
∞∑
n=0

(z − a)n

(1− a)n+1
.

Príklad 3.3.4. Podobne pre ľubovoľné čísla c ∈ C\{0} a d ∈ C je funkcia f(z) = 1/(cz+d) analytická
na C \ {−d/c}. Ak d 6= 0 – čiže ak 0 6= −d/c – je v bode a = 0 táto funkcia daná mocninovým radom

1

cz + d
=

1

d
· 1

1 + (c/d)z
=

∞∑
n=0

(−1)n
cn

dn+1
zn

s polomerom konvergencie % = |d/c|. Pre všeobecné a ∈ C \ {−d/c} máme

1

cz + d
=

1

c(z − a) + (ca+ d)
=

1

ca+ d
· 1

1 + (c/(ca+ d))(z − a)
=
∞∑
n=0

cn

(ca+ d)n+1
(z − a)n,

kde polomer konvergencie mocninového radu je % = |(ca+ d)/c|.

3.4 Derivovanie mocninových radov

Dokážeme teraz, že mocninové rady možno derivovať člen po člene. To znamená, že každá funkcia f
analytická v bode a ∈ C je v tomto bode aj holomorfná, pričom funkcia f ′ je v bode a opäť analytická
a mocninový rad reprezentujúci f ′ v bode a získame zderivovaním jednotlivých členov mocninového
radu pre f . Ukážeme navyše, že polomer konvergencie mocninového radu pre deriváciu je rovnaký
ako pre mocninový rad reprezentujúci pôvodnú funkciu.

Keďže túto úvahu možno ľubovoľný počet ráz zopakovať, ľahko dôjdeme k záveru, že funkcia
analytická v bode a ∈ C má v tomto bode derivácie všetkých rádov, ktoré sú taktiež analytické.

Lema 3.4.1. Nech
∑∞

n=0 cn(z − a)n je mocninový rad s polomerom konvergencie % > 0. Polomer
konvergencie radu

∞∑
n=1

d

dz
cn(z − a)n =

∞∑
n=1

ncn(z − a)n−1 (3.5)

je potom tiež rovný %.
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Dôkaz. Rad (3.5) má vďaka tvrdeniu 3.1.4 rovnaký polomer konvergencie R ako rad

∞∑
n=1

ncn(z − a)n = (z − a)

∞∑
n=1

ncn(z − a)n−1.

Z vety 3.2.3 potom pre tento polomer konvergencie R dostávame

R−1 = lim sup
n→∞

n
√
|ncn| = lim sup

n→∞
n
√
n n
√
|cn| = lim sup

n→∞
n
√
|cn| = %−1,

kde predposledná rovnosť platí vďaka tomu, že limn→∞ n
√
n = 1. Presnejšie: pre všetky ε > 0 existuje

n0 ∈ N také, že pre všetky n ≥ n0 je
| n
√
n− 1| < ε.

Keďže
%−1 = lim sup

n→∞
n
√
|cn|

a z % > 0 vyplýva %−1 ∈ R≥0, z definície limes superior dostávame, že pre všetky ε > 0 existuje n1 ∈ N
také, že pre všetky n ≥ n1 je ∣∣∣∣ sup

m≥n

m
√
|cm| − %−1

∣∣∣∣ < ε.

Pre všetky n ≥ max{n0, n1} teda∣∣∣∣ sup
m≥n

(
m
√
m m
√
|cm|

)
− %−1

∣∣∣∣ =

∣∣∣∣ sup
m≥n

((
m
√
m− 1

)
m
√
|cm|+ m

√
|cm|

)
− %−1

∣∣∣∣ ≤
≤
∣∣∣∣ sup
m≥n

((
m
√
m− 1

)
m
√
|cm|

)
+ sup
m≥n

m
√
|cm| − %−1

∣∣∣∣ ≤
≤
∣∣∣∣ sup
m≥n

((
m
√
m− 1

)
m
√
|cm|

)∣∣∣∣+

∣∣∣∣ sup
m≥n

m
√
|cm| − %−1

∣∣∣∣ <
< ε sup

m≥n

(
m
√
|cm|

)
+ ε < ε(%−1 + ε) + ε.

Keďže %−1 ∈ R≥0 je konštanta, z uvedeného naozaj vyplýva lim supn→∞
n
√
n n
√
|cn| = %−1.

Veta 3.4.2. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a a ∈ S. Ak pre nejaké r > 0
a všetky z ∈ D(a, r) platí

f(z) =
∞∑
n=0

cn(z − a)n,

(kde mocninový rad konverguje), je funkcia f holomorfná na D(a, r) a pre všetky z ∈ D(a, r) je

f ′(z) =
∞∑
n=1

ncn(z − a)n−1.

Dôkaz. Budeme uvažovať iba a = 0. Z tohto špeciálneho prípadu vyplynie aj ten všeobecný – stačí
uvažovať funkciu f(z + a) a jej deriváciu.

Z reprezentácie funkcie f mocninovým radom na D(0, r) vyplýva, že má tento rad polomer kon-
vergencie % ≥ r. Preto má podľa lemy 3.4.1 polomer konvergencie % aj rad

∞∑
n=1

ncnz
n−1 =: g(z).
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Zostáva dokázať, že g(z) je na D(0, r) deriváciou funkcie f . Zvoľme preto ľubovoľné b ∈ D(0, r).
Pre všetky h ∈ C také, že b+ h ∈ D(0, r) potom

f(b+ h)− f(b)

h
− g(b) =

∞∑
n=1

cn

(
(b+ h)n − bn

h
− nbn−1

)
=
∞∑
n=2

cn

(
(b+ h)n − bn

h
− nbn−1

)
.

Stačí dokázať, že pravá strana tejto rovnosti speje pre h→ 0 k nule. Vďaka binomickej vete

(b+ h)n =

n∑
k=0

(
n

k

)
hkbn−k,

z čoho

(b+ h)n − bn

h
− nbn−1 =

∑n
k=1

(
n
k

)
hkbn−k

h
−
(
n

1

)
bn−1 =

n∑
k=2

(
n

k

)
hk−1bn−k =

=

n−2∑
j=0

(
n

j + 2

)
hj+1bn−j−2 = h

n−2∑
j=0

(
n

j + 2

)
hjbn−j−2.

Ak ďalej číselný rad
∑∞

n=0 dn konverguje absolútne, s použitím trojuholníkovej nerovnosti a limitného
prechodu ľahko dokážeme4 |

∑∞
n=0 dn| ≤

∑∞
n=0|dn|. Za predpokladu konvergencie radu z (3.6) nižšie

preto ∣∣∣∣∣
∞∑
n=2

cn

(
(b+ h)n − bn

h
− nbn−1

)∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
n=2

cn

h n−2∑
j=0

(
n

j + 2

)
hjbn−j−2

∣∣∣∣∣∣ =

= |h|

∣∣∣∣∣∣
∞∑
n=2

cn

n−2∑
j=0

n!

(j + 2)!(n− j − 2)!
hjbn−j−2

∣∣∣∣∣∣ ≤
≤ |h|

∞∑
n=2

|cn|
n−2∑
j=0

n!

(j + 2)!(n− j − 2)!
|h|j |b|n−j−2 ≤

≤ |h|
∞∑
n=2

|cn|n(n− 1)
n−2∑
j=0

(n− 2)!

j!(n− 2− j)!
|h|j |b|n−2−j =

= |h|
∞∑
n=2

|cn|n(n− 1)

n−2∑
j=0

(
n− 2

j

)
|h|j |b|n−2−j =

= |h|
∞∑
n=2

|cn|n(n− 1) (|h|+ |b|)n−2 . (3.6)

Dvojnásobným použitím lemy 3.4.1 zisťujeme, že rad
∞∑
n=2

cnn(n− 1)zn−2

má tiež polomer konvergencie %. Z definície polomeru konvergencie teda vyplýva, že pre h spĺňajúce
|b|+ |h| < % číselný rad

∞∑
n=2

|cn|n(n− 1) (|h|+ |b|)n−2

konverguje k nejakej reálnej konštante. Výraz (3.6) teda skutočne pre h→ 0 speje k nule.

4Ide o cvičenie 1 na konci tejto kapitoly.
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Dôsledok 3.4.3. Nech S ⊆ C je otvorená množina, f : S → C je funkcia a a ∈ S. Ak je funkcia f
analytická v bode a, je funkcia f v bode a holomorfná a funkcia f ′ je opäť analytická v bode a. V dôsledku
toho má funkcia f v bode a derivácie ľubovoľného rádu, pričom všetky sú analytické v a.

Týmto pozorovaním nateraz skúmanie vlastností analytických funkcií zanecháme. Neskôr sa k tejto
problematike ešte vrátime a dokážeme okrem iného aj opačnú implikáciu k predošlému zisteniu – že totiž
každá holomorfná funkcia je analytická. Tiež potom uvidíme, že lokálne reprezentácie analytických
funkcií pomocou mocninových radov sú vždy Taylorovými radmi danej funkcie (definovanými obdobne
ako v reálnom prípade).

3.5 Exponenciálna funkcia a goniometrické funkcie

Zavedieme teraz exponenciálnu funkciu a goniometrické funkcie komplexnej premennej. Ako je dobre
známe, na R sú tieto funkcie reprezentovateľné ich Maclaurinovými radmi. Komplexné obdoby týchto
radov využijeme na to, aby sme spomínané funkcie definovali na obore C.

Definícia 3.5.1.

(i) Exponenciálnu funkciu definujeme pre všetky z ∈ C predpisom

ez := 1 + z +
z2

2!
+
z3

3!
+ . . . =

∞∑
n=0

zn

n!
.

(ii) Funkciu sínus definujeme pre všetky z ∈ C predpisom

sin z := z − z3

3!
+
z5

5!
+ . . . =

∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
.

(iii) Funkciu kosínus definujeme pre všetky z ∈ C predpisom

cos z := 1− z2

2!
+
z4

4!
+ . . . =

∞∑
n=0

(−1)n
z2n

(2n)!
.

Poznámka 3.5.2. Korektnosť uvedenej definície nie je úplne evidentná; je totiž potrebné dokázať, že
mocninové rady v nej použité majú nekonečný polomer konvergencie. Polomer konvergencie % radu
definujúceho funkciu ez je ale daný ako

%−1 = lim sup
n→∞

n
√

1/n! = lim sup
n→∞

1

eln(n!)/n
≤ lim sup

n→∞

1

e(n/2) ln(n/2)/n
=

= lim sup
n→∞

√
2n

n
= 0

(kde použitá exponenciálna funkcia je reálna), z čoho % =∞. Nekonečný polomer konvergencie radov
pre sínus a kosínus potom vyplýva bezprostredne z porovnávacieho kritéria.

Keďže sme na definíciu všetkých troch funkcií použili komplexnú obdobu ich Taylorových radov
v reálnom obore, na R tieto funkcie splývajú s ich reálnymi náprotivkami. Ďalej už teda nemusíme
rozlišovať medzi ich reálnymi a komplexnými verziami.

V nasledujúcom tvrdení okrem iného vyjadríme pomocou reálnych funkcií sínus a kosínus hodnotu
exponenciálnej funkcie pre rýdzo imaginárne argumenty (stačí zvoliť z ∈ R). Odôvodníme tak aj zápis
komplexných čísel v exponenciálnom tvare, ktorý sme doposiaľ chápali čisto formálne. Na druhej
strane bude z nasledujúceho tvrdenia vyplývať, že vlastnosti „formálneho“ exponenciálneho tvaru
platia aj pre „ozajstnú“ exponenciálnu funkciu.
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Tvrdenie 3.5.3. Nech z ∈ C. Potom eiz = cos z + i sin z.

Dôkaz. Vyplýva bezprostredne z definície 3.5.1 a tvrdenia 3.1.4.

Dôsledok 3.5.4 (Eulerova rovnosť). Platí eiπ + 1 = 0.

Tvrdenie 3.5.5. Funkcie ez, sin z a cos z sú holomorfné na C, pričom (ez)′ = ez, sin′ z = cos z
a cos′ z = − sin z.

Dôkaz. Všetky tri funkcie sú analytické v bode 0 a zodpovedajúce mocninové rady majú nekonečný
polomer konvergencie. Stačí teda aplikovať vetu 3.4.2.

Tvrdenie 3.5.6. Nech z, w ∈ C. Potom ez+w = ezew.

Dôkaz. Zvoľme a ∈ C a položme f(z) := ezea−z. Z viet 2.5.3 a 2.5.6 potom f ′(z) = ezea−z−ezea−z = 0.
Podľa tvrdenia 2.5.8 je teda funkcia f konštantná. Navyše f(a) = eae0 = ea – pre všetky z ∈ C teda
f(z) = ea. Pre ľubovoľné z, w ∈ C teraz zvoľme a = z +w; zisťujeme, že f(z) = ezew = ez+w, čo bolo
treba dokázať.

Dôsledok 3.5.7. Nech z ∈ C. Potom ez = eRe zei Im z, |ez| = eRe z a Jarg ezK = {Im z + 2kπ | k ∈ Z}.

3.6 Argument, logaritmus a mocninové funkcie

Viaceré elementárne funkcie reálnej premennej sa pri pokuse o zovšeobecnenie do komplexného oboru
jemne vymykajú našej doterajšej predstave o funkciách komplexnej premennej ako o zobrazeniach
f : S → C pre nejakú množinu S ⊆ C – pre jedno z ∈ C totiž môžu nadobúdať viac ako jednu
zmysluplnú výstupnú hodnotu. Na viachodnotovosť sme už narazili pri argumente; teraz uvidíme, že
rovnaká situácia nastáva aj pri logaritmoch, či iných ako celočíselných mocninách.

V rámci tohto oddielu k viachodnotovým funkciám – alebo tiež multifunkciám – zaujmeme po-
merne naivný prístup a budeme sa z nich pokúšať vyrábať jednohodnotové funkcie vhodnou voľbou
argumentu. V kapitole 12 naše chápanie analytických funkcií prehĺbime a uvidíme, že na jednohodno-
tové a viachodnotové funkcie je v skutočnosti možné nazerať jednotným spôsobom.

V prvej kapitole sme videli, že argument komplexného čísla z nie je daný jednoznačne, ale určuje
celú množinu hodnôt Jarg zK: ide o takzvanú viachodnotovú funkciu alebo multifunkciu. Pre nenulové
komplexné čísla sa však rôzne argumenty môžu líšiť iba o celočíselný násobok 2π. Pre každé k ∈ Z
preto môžeme definovať jednohodnotovú funkciu argk : C \ {0} → C takú, že pre všetky z ∈ C \ {0} je

argk(z) = θ práve vtedy, keď θ ∈ Jarg zK ∩ ((2k − 1)π, (2k + 1)π],

t. j. vyberieme jednoznačne danú hodnotu argumentu z intervalu ((2k−1)π, (2k+1)π]. Takéto funkcie
nazývame vetvami viachodnotovej funkcie arg z. Každá vetva argk(z) je zjavne spojitá na C \ (−∞, 0]
a na takzvanom reze komplexnej roviny (−∞, 0) spojitá nie je. Pre všetky a ∈ (−∞, 0) ale

lim
z→a

Im z≥0

argk(z) = lim
z→a

Im z<0

argk+1(z);

vetva argk teda akoby „chcela spojito prejsť“ do vetvy argk+1. Možno si tiež všimnúť, že namiesto rezu
(−∞, 0) môžeme komplexnú rovinu narezať aj pozdĺž inej polpriamky z bodu 0 a dostaneme obdobnú
situáciu – v takom prípade len argument vyberáme z iných intervalov.
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V jednohodnotovú funkciu argumentu, ktorá by bola spojitá v bode 0, očividne dúfať nemôžeme:
v každom okolí bodu 0 totiž vieme nájsť komplexné číslo ľubovoľného argumentu. Neexistuje však
ani funkcia argumentu, ktorá by bola spojitá na C\{0}. To možno dokázať nasledovne: predpokladajme,
že takáto spojitá funkcia θ : C \ {0} → C existuje. Potom by bola spojitá aj funkcia f : R → R daná
pre všetky t ∈ R predpisom

f(t) =
1

2π
(θ(eit)− t).

Ľahko ale vidieť, že táto spojitá funkcia nadobúda iba celočíselné hodnoty – musí preto byť konštantná,
z čoho dostávame napríklad θ(e0) = θ(ei2π)− 2π. To je spor, pretože ei2π = e0 = 1.

Prirodzený logaritmus lnx kladného reálneho čísla x je – vďaka injektívnosti reálnej exponenciálnej
funkcie – definovaný ako jediné reálne číslo y, pre ktoré ey = x. Túto funkciu by sme teraz chceli rozšíriť
do komplexného oboru. Pre dané z ∈ C teda hľadáme všetky komplexné riešenia w rovnice

ew = z. (3.7)

Z dôsledku 3.5.7 vyplýva nenulovosť exponenciálnej funkcie na celom C; môžeme preto predpokladať,
že z 6= 0. Ak položíme w = u+iv, vďaka dôsledku 3.5.7 máme |ew| = eu a Jarg ewK = {v+2kπ | k ∈ Z}.
Rovnosť (3.7) je teda ekvivalentná dvojici rovností eu = |z| a v ∈ Jarg zK. Pre všetky z ∈ C \ {0} preto

ew = z práve vtedy, keď w = ln|z|+ iθ, kde θ ∈ Jarg zK.

To nás vedie k nasledujúcej definícii.

Definícia 3.6.1. Prirodzený logaritmus komplexného čísla z ∈ C \ {0} je množina

Jln zK := {ln|z|+ iθ | θ ∈ Jarg zK}.

Získavame tak ďalšiu dôležitú viachodnotovú funkciu. Z vyššie učinených úvah pritom vyplýva, že
w ∈ Jln zK práve vtedy, keď ew = z.

Uvažované argumenty môžeme opäť obmedziť na vhodný interval. Napríklad môžeme komplexnú
rovinu rozrezať pozdĺž polpriamky (−∞, 0] a pre ľubovoľné k ∈ Z uvažovať funkciu lnk : C \ {0} → C
definovanú pre všetky z ∈ C \ {0} predpisom

lnk(z) := ln|z|+ iθ, kde θ ∈ Jarg zK ∩ ((2k − 1)π, (2k + 1)π].

Vidíme potom, že funkcia Re lnk(z) = ln|z| je spojitá na C \ {0} a Im lnk(z) je – keďže ide o funkciu
argumentu obmedzenú na ((2k−1)π, (2k+1)π] – spojitá na C\(−∞, 0] a nespojitá na (−∞, 0). Funkcia
lnk(z) je teda podľa tvrdenia 2.2.7 tiež spojitá na C \ (−∞, 0] a nespojitá na (−∞, 0). Pre všetky
a ∈ (−∞, 0) navyše

lim
z→a

Im z≥0

lnk(z) = lim
z→a

Im z<0

lnk+1(z).

Funkcia lnk(z) je pre všetky k ∈ Z holomorfná na C \ (−∞, 0]. Jej zúženie na C \ (−∞, 0] je totiž
spojitou inverznou funkciou k funkcii ew zúženej na S = {w ∈ C | Imw ∈ ((2k − 1)π, (2k + 1)π)}.
Ak teda pre ľubovoľné z ∈ C \ (−∞, 0] položíme w = lnk(z), z vety 2.5.7 vyplýva diferencovateľnosť
funkcie lnk v bode z, pričom

ln′k(z) =
1

ew
=

1

elnk(z)
=

1

z
.

Funkcie lnk(z) teda nazývame aj holomorfnými vetvami prirodzeného logaritmu.
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Nech z ∈ C. Pre dané n ∈ N \ {0} najprv nájdime všetky n-té odmocniny čísla z; to znamená
všetky čísla w ∈ C, pre ktoré je splnená rovnosť

wn = z.

Ak z = reiθ a w = seiφ pre nejaké r, s ≥ 0 a θ, φ ∈ R, musí byť s = r1/n a nφ = θ + 2kπ pre nejaké
k ∈ {0, . . . , n− 1}. Preto kladieme

Jz1/nK :=
{
|z|1/nei(θ+2kπ)/n

∣∣∣ k ∈ {0, . . . , n− 1}
}

=
{
ei2kπ/n|z|1/neiθ/n

∣∣∣ k ∈ {0, . . . , n− 1}
}
, (3.8)

kde θ je ľubovoľný prvok Jarg zK. Takto by sme vedeli definovať aj racionálne mocniny komplexného
čísla, avšak na definíciu reálnych a komplexných mocnín potrebujeme zvoliť iný prístup – využiť funkciu
prirodzeného logaritmu komplexnej premennej.

Definícia 3.6.2. Nech z ∈ C \ {0} a α ∈ C. Potom

JzαK := {eαw | w ∈ Jln zK} =
{
eα(ln|z|+iθ)

∣∣∣ θ ∈ Jarg zK
}
.

Ľahko overíme, že definícia 3.6.2 je konzistentná s definíciou odmocnín prostredníctvom (3.8);
pre n ∈ N \ {0} totiž

e(ln|z|+iθ)/n = eln|z|/neiθ/n = |z|1/neiθ/n

a všetky rôzne θ ∈ Jarg zK tak dajú práve množinu (3.8). Máme teda definovanú ďalšiu spomedzi
najvýznamnejších multifunkcií.

Vráťme sa ešte na chvíľu k multifunkcii Jz1/nK pre prirodzené n ≥ 2. Obmedzme sa na argu-
menty z intervalu (−π, π] – čiže narežme komplexnú rovinu pozdĺž polpriamky (−∞, 0] – a definujme
pre k = 0, . . . , n− 1 funkciu fk : C \ {0} → C ako vetvu multifunkcie Jz1/nK, v ktorej vyberieme k-tu
spomedzi jej n-tých odmocnín: pre všetky z ∈ C \ {0} teda položme

fk(z) := ei2kπ/n|z|1/neiθ/n,

kde θ ∈ Jarg zK ∩ (−π, π] je argument z nami zvoleného intervalu. Pre k = 0, . . . , n − 1 a všetky
z ∈ C \ {0} potom fk(z)

n = z. Funkcie fk(z) sú navyše holomorfné na C \ (−∞, 0], keďže

fk(z) = elnk(z)/n,

kde lnk(z) je k-ta holomorfná vetva logaritmu; holomorfnosť funkcie fk na C \ (−∞, 0] tak vyplýva
z vety o derivácii zloženej funkcie. Ľahko tiež overíme, že funkcie fk(z) sú nespojité na (−∞, 0), pričom
ale pre všetky a ∈ (−∞, 0) je

lim
z→a

Im z≥0

fk(z) = lim
z→a

Im z<0

fk+1(z),

kde sčítanie v indexe funkcie f je modulo n. Funkcie f0, . . . , fn−1 teda nazývame holomorfnými vetvami
multifunkcie Jz1/nK. Ľahko tiež vidieť, že počiatočná voľba argumentu z intervalu (−π, π] nebola nijak
zásadná – pre argumenty vyberané z intervalu ((2` − 1)π, (2` + 1)] pre ` ∈ Z by sme vždy dostali
tých istých n holomorfných vetiev, akurát s cyklicky posunutými indexmi. Veľmi podobná je situácia
aj pri všeobecnom komplexnom exponente α; takáto mocninová funkcia však má pre α 6∈ Q nekonečne
veľa holomorfných vetiev.

Pri manipulácii s inými ako celočíselnými mocninami komplexných čísel je vždy namieste určitá
opatrnosť, pretože nie všetky vlastnosti umocňovania reálnych čísel na reálny exponent sú pre kom-
plexné čísla plnohodnotne zachované. V nasledujúcom si teda uvedieme aspoň dve spomedzi vlastností,
ktoré pri práci s mocninami komplexných čísel používať môžeme.
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Tvrdenie 3.6.3. Nech z ∈ C \ {0} a α, β ∈ C. Potom pre každé w ∈ Jzα+βK existujú u ∈ JzαK
a v ∈ JzβK také, že w = uv.

Dôkaz. Z definície 3.6.2 je
w = e(α+β)(ln|z|+iθ)

pre nejaké θ ∈ Jarg zK. Potom
u = eα(ln|z|+iθ) ∈ JzαK

a
v = eβ(ln|z|+iθ) ∈ JzβK,

pričom
uv = eα(ln|z|+iθ)eβ(ln|z|+iθ) = e(α+β)(ln|z|+iθ).

Poznámka 3.6.4. Na prvý pohľad sugestívne vyzerajúca rovnosť Jzα+βK = JzαKJzβK na rozdiel
od vlastnosti z tvrdenia 3.6.3 neplatí. Stačí si napríklad všimnúť, že

J11/3KJ12/3K = {1, ei2π/3, ei4π/3}{1, ei2π/3, ei4π/3} = {1, ei2π/3, ei4π/3} 6= {1} = J11K.

Kľúčovým faktorom pri dôkaze tvrdenia 3.6.3 bolo, že sme pri obidvoch mocninách uvažovali rovnaký
argument čísla z.

Identita (ab)α = aαbα, platná pre všetky a, b > 0 a α ∈ R, nemá žiadnu obdobu umožňujúcu
uvažovať komplexné základy aj exponenty. V nasledujúcom ale aspoň dokážeme, že odmocňovanie
komplexných čísel – a teda aj ich umocňovanie na racionálnu mocninu – sa v tomto zmysle správa
očakávaným spôsobom.

Tvrdenie 3.6.5. Nech a, b ∈ C \ {0} a n ∈ N \ {0}. Pre ľubovoľné u ∈ Ja1/nK a v ∈ Jb1/nK potom

J(ab)1/nK = Ja1/nKJb1/nK = uJb1/nK = Ja1/nKv.

Dôkaz. Evidentne stačí dokázať iba rovnosť J(ab)1/nK = Ja1/nKv. Nech θ ∈ Jarg aK a φ ∈ Jarg bK.
Podľa (3.8) existuje ` ∈ {0, . . . , n− 1}, pre ktoré je v = ei2`π/n|b|1/neiφ/n. Preto

Ja1/nKv =
{
ei2kπ/n|a|1/neiθ/n

∣∣∣ k ∈ {0, . . . , n− 1}
}
ei2`π/n|b|1/neiφ/n =

=
{
ei2(k+`)π/n|ab|1/nei(θ+φ)/n

∣∣∣ k ∈ {0, . . . , n− 1}
}

=

=
{
ei2kπ/n|ab|1/nei(θ+φ)/n

∣∣∣ k ∈ {0, . . . , n− 1}
}

=

= J(ab)1/nK,

keďže θ + φ ∈ Jarg(ab)K.

Cvičenia

1. Dokážte, že pre každý absolútne konvergentný rad komplexných čísel
∑∞

n=0 dn je∣∣∣∣∣
∞∑
n=0

dn

∣∣∣∣∣ ≤
∞∑
n=0

|dn|.

Trojuholníková nerovnosť teda v tomto zmysle platí aj pre nekonečné súčty.

2. Dokážte alebo vyvráťte: pre každé k ∈ N existuje mocninový rad
∑∞

n=0 cnz
n so stredom v bode 0

a s polomerom konvergencie 1, ktorý diverguje v práve k rôznych bodoch kružnice |z| = 1
(a vo zvyšných bodoch tejto kružnice konverguje).
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3. Dokážte, že pre všetky z ∈ C a k ∈ Z je (ez)k = ekz. Ako je to s (ez)α pre α ∈ C?

4. Dokážte, že pre všetky z ∈ C platia vzťahy

sin z =
eiz − e−iz

2i
a cos z =

eiz + e−iz

2
.

5. Funkcia kosínus je na R párna a funkcia sínus je na R nepárna. Zostáva táto vlastnosť v platnosti
aj na C?

6. Dokážte, že pre všetky z, w ∈ C platia súčtové vzorce

sin(z + w) = sin z cosw + cos z sinw,

cos(z + w) = cos z cosw − sin z sinw.

7. Funkcie sínus a kosínus sú na R ohraničené. Zostáva táto ich vlastnosť v platnosti aj na C?

8. Nájdite všetky z ∈ C také, že:

a) ez − 1 = 0,

b) ez + 1 = 0.

9. Nájdite všetky z ∈ C také, že:

a) sin z = 0,

b) cos z = 0.
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Kapitola 4

Integrovanie funkcií komplexnej
premennej

Budeme sa teraz nejaký čas venovať integrálom funkcií komplexnej premennej. Nepôjde pritom o samo-
účelné snaženie – integrovanie v komplexnej rovine sa neskôr ukáže okrem iného ako užitočný nástroj
na skúmanie rozličných vlastností analytických funkcií, o ktoré nám ide predovšetkým. Text tejto
kapitoly čiastočne vychádza z kníh [8] a [4].

4.1 Komplexné funkcie reálnej premennej

V súvislosti s integrálmi budeme potrebovať narábať s komplexnými funkciami reálnej premennej – čiže
s funkciami f : S → C, kde S ⊆ R. V podstate tu nejde o žiaden nový objekt: každú takúto funkciu f
totiž možno reprezentovať pomocou dvojice reálnych funkcií Re f a Im f definovaných pre všetky
t ∈ S predpismi (Re f)(t) := Re(f(t)) a (Im f)(t) := Im(f(t)); evidentne potom f = Re f + i Im f .
V stručnosti si teraz zhrnieme niekoľko základných faktov o takýchto funkciách.

Ako definície limity a spojitosti môžu pre takéto funkcie poslúžiť definície pre funkcie komplexnej
premennej z druhej kapitoly. Platí teda nasledujúce.

Tvrdenie 4.1.1. Nech S ⊆ R a f : S → C je funkcia.

a) Nech a ∈ R je hromadný bod množiny S. Vlastná limita limt→a f(t) potom existuje práve vtedy,
keď existujú obidve vlastné limity limt→a Re f(t) a limt→a Im f(t). V takom prípade

lim
t→a

f(t) = lim
t→a

Re f(t) + i lim
t→a

Im f(t).

b) Funkcia f je spojitá v bode a ∈ S (resp. na množine T ⊆ S) práve vtedy, keď sú v bode a
(resp. na množine T ) spojité obidve funkcie Re f a Im f .

Dôkaz. Ide o špeciálny prípad tvrdenia 2.2.7.

Ako definíciu derivácie môžeme takisto použiť tú z druhej kapitoly; derivácie však musíme uvažovať
v hromadných bodoch množiny S ⊆ C – a nielen v bodoch otvorených podmnožín C, ako tomu je
pri holomorfných funkciách.

Definícia 4.1.2. Nech S ⊆ R, f : S → C je funkcia a a ∈ S je hromadný bod množiny S. Deriváciou
funkcie f v bode a nazveme, ak existuje, hodnotu vlastnej limity

lim
t→a

f(t)− f(a)

t− a
.

Ak má funkcia f v bode a deriváciu, nazveme ju diferencovateľnou v bode a. Funkcia f je diferen-
covateľná na množine T ⊆ S, ak T pozostáva výhradne z hromadných bodov množiny S a f je
diferencovateľná v každom bode a ∈ S.
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Tvrdenie 4.1.3. Nech S ⊆ R a f : S → C je funkcia. Funkcia f je diferencovateľná v hromadnom bode
a ∈ S množiny S práve vtedy, keď sú v bode a diferencovateľné obidve funkcie Re f a Im f . V takom
prípade navyše

Re(f ′(a)) = (Re f)′(a),

Im(f ′(a)) = (Im f)′(a)

a
f ′(a) = (Re f)′(a) + i(Im f)′(a).

Dôkaz. Jednoduché cvičenie.

Po zvyšok tejto kapitoly budeme často pracovať s určitými integrálmi reálnych funkcií reálnej pre-
mennej. Môže pritom vždy ísť o Riemannov integrál alebo o ľubovoľný iný integrál taký, že všetky
funkcie po častiach spojité na intervale [α, β] – čiže všetky funkcie, ktoré sú na tomto intervale nespo-
jité v nanajvýš konečnom počte bodov – sú na intervale [α, β] integrovateľné, pričom hodnota tohto
integrálu sa zhoduje s hodnotou Riemannovho integrálu. Môže ísť teda napríklad aj o Lebesgueov
integrál; znalosť jeho teórie však u čitateľa nepredpokladáme.

Ako medzikrok k pojmu krivkového integrálu definujeme určitý integrál komplexnej funkcie reálnej
premennej; základom pre definíciu takéhoto integrálu je jeho očakávaná linearita.

Definícia 4.1.4. Nech α ≤ β sú reálne čísla a f : [α, β] → C je funkcia. Funkcia f je integrovateľná
na intervale [α, β], ak sú na tomto intervale integrovateľné funkcie Re f a Im f . V takom prípade
definujeme ∫ β

α
f(t) dt =

∫ β

α
(Re f(t) + i Im f(t)) dt :=

∫ β

α
Re f(t) dt+ i

∫ β

α
Im f(t) dt.

Poznámka 4.1.5. Z uvedeného vyplýva, že všetky komplexné funkcie reálnej premennej, po častiach
spojité na nejakom intervale, sú na tomto intervale integrovateľné.

Poznámka 4.1.6. V súlade s bežnou praxou budeme za integrovateľné považovať aj všetky funkcie
f : [α, β] \ F → C, kde F je konečná množina a ľubovoľná z funkcií f̂ : [α, β]→ C taká, že pre všetky
t ∈ [α, β] \ F je f̂(t) = f(t), je integrovateľná na [α, β]. Nech totiž funkciu f dodefinujeme na f̂
akýmkoľvek spôsobom, integrál ∫ β

α
f̂(t) dt =:

∫ β

α
f(t) dt

bude vždy ten istý.

4.2 Parametrické krivky

Určitý integrál funkcie jednej reálnej premennej sa obvykle definuje na intervale. V rámci prechodu
od jednorozmernej reálnej osi k dvojrozmernej komplexnej rovine sa vhodným zovšeobecnením tohto
konceptu javí byť integrovanie komplexných funkcií pozdĺž kriviek. Zavedieme preto niekoľko pojmov,
ktoré s krivkami súvisia.

Krivku v komplexnej rovine možno vo všeobecnosti zadať (najmenej) dvoma principiálne odlišnými
spôsobmi. Jednou možnosťou je chápať krivku ako „statický objekt“ , čiže ako vhodnú množinu bodov
komplexnej roviny, zadanú napríklad rovnicou. Tak napríklad zápis K = {z ∈ C | |z − a| = r} udáva
kružnicu so stredom a ∈ C a polomerom r > 0, zápis U = {z ∈ C | |Re z| = |Im z| ∧ |z| ≤

√
2} je

vyjadrením úsečky spájajúcej body −1− i a 1 + i, a podobne.
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Za účelom definície integrálu je však vhodnejší „dynamický“ pohľad, pri ktorom krivku chápeme ako
dráhu opísanú pohybujúcim sa bodom v nejakom časovom intervale. Ak sa bod začal pohybovať v čase
t = α a prestal sa pohybovať v čase t = β, je ním opísaná dráha jednoznačne určená funkciou, ktorá
pre každý čas z intervalu [α, β] vráti „aktuálnu polohu“ pohybujúceho sa bodu v komplexnej rovine.
Aby sme o opísanej dráhe mohli zmysluplne hovoriť ako o krivke, pohybujúci sa bod by nemal mať
možnosť „skákať“ z jedného miesta na druhé – zobrazenie udávajúce krivku by teda malo byť spojité.
Krivka je tu teda daná spojitou funkciou reálneho časového parametra t a nazývame ju preto krivkou
danou parametricky alebo parametrickou krivkou. Zvyčajne však budeme prívlastok „parametrická“
vynechávať a hovoriť jednoducho o krivke.

Definícia 4.2.1. Parametrická krivka je spojité zobrazenie γ : [α, β]→ C, kde α ≤ β sú reálne čísla.

Príklad 4.2.2. Úsečku začínajúcu v bode u ∈ C a končiacu v bode v ∈ C možno zadať ako paramet-
rickú krivku [u, v] : [0, 1]→ C danú pre všetky t ∈ [0, 1] predpisom

[u, v](t) = u+ t(v − u).

Pre úsečky používame rovnakú notáciu ako pre uzavreté intervaly; význam notácie [u, v] ale bude vždy
zrejmý z kontextu.

Kruhový oblúk so stredom a ∈ C a polomerom r > 0, vymedzený uhlami θ1 ≤ θ2, možno zadať ako
parametrickú krivku κ[θ1,θ2](a, r) : [θ1, θ2]→ C danú pre všetky t ∈ [θ1, θ2] predpisom

κ[θ1,θ2](a, r)(t) = a+ reit.

Pod kružnicou κ(a, r) so stredom a ∈ C a polomerom r > 0 rozumieme kruhový oblúk κ[0,2π](a, r).
Tieto tri pravdepodobne najdôležitejšie druhy parametrických kriviek sú znázornené na obrázku 4.1.

[u, v]

u = −3− 2i

v = 1 + 2i

(a) Úsečka [−3− 2i, 1 + 2i].

1
θ1

θ2

κ[θ1,θ2](1, 2)

(b) Kruhový oblúk κ[θ1,θ2](1,2).

1

κ(1, 2)

(c) Kružnica κ(1, 2).

Obr. 4.1: Úsečka, kruhový oblúk a kružnica.

Označenie 4.2.3. V nasledujúcom budeme často používať notáciu z predošlého príkladu – [u, v]
pre úsečku, κ[θ1,θ2](a, r) pre kruhový oblúk a κ(a, r) pre kružnicu.

Počiatočným bodom takto definovanej krivky γ nazveme bod γ(α) a jej koncovým bodom bod γ(β).
Symbolom γ∗ označíme množinu všetkých bodov ležiacich na krivke γ, t. j. γ∗ = {γ(t) | t ∈ [α, β]};
táto množina sa nazýva obrazom krivky γ. Krivku nazveme uzavretou, ak γ(α) = γ(β), a jednoduchou,
ak pre všetky t1 ≤ t2 z intervalu [α, β] môže rovnosť γ(t1) = γ(t2) nastať iba v prípade, že t1 = t2,
alebo súčasne t1 = α a t2 = β; jednoduchá krivka sa teda nikde sama so sebou „nekríži“ , pričom môže
alebo nemusí byť uzavretá. Jednoduchú a súčasne uzavretú krivku nazývame Jordanovou krivkou.
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Každá jednoduchá parametrická krivka udáva okrem svojho obrazu γ∗ aj smer, v ktorom je táto
množina bodov opísaná. Túto skutočnosť graficky vyjadrujeme šípkami, podobne ako na obrázku 4.2.
O jednoduchej uzavretej krivke navyše hovoríme, že je kladne orientovaná, ak je opísaná „proti smeru
hodinových ručičiek“ . Takáto definícia orientácie je značne neexaktná – ozajstnú definíciu sformulujeme
až neskôr s využitím krivkového integrálu.

γ

(a) Smer opísania krivky γ znázornený šípkou.

1

κ(1, 2)

(b) Kružnica κ(1, 2) je orientovaná kladne.

Obr. 4.2: Orientované krivky.

Poznámka 4.2.4. Grafické znázornenie na obrázku 4.2 vyjadruje spôsob, akým jednoduché paramet-
rické krivky obvykle chápeme – väčšinou ich stotožňujeme s ich obrazom spoločne s ich orientáciou.
Pri práci s krivkovými integrálmi sa týmto stotožnením zvyčajne nedopustíme chyby. Treba však mať
na pamäti, že táto skutočnosť nie je nijak samozrejmá: dve rovnako orientované krivky s rovnakými
obrazmi môžu byť definované pomocou rozdielnych funkcií časového parametra, a teda nemusí ísť o je-
den a ten istý objekt. Budeme preto neskôr musieť dokazovať, že v uvedenom zmysle „ekvivalentné“
krivky sa za určitých okolností naozaj „správajú rovnako“ .

Na krivkách tiež môžeme definovať niekoľko jednoduchých operácií. Pre každú krivku γ : [α, β]→ C
označíme symbolom−γ k nej opačnú krivku−γ : [α, β]→ C, definovanú pre všetky t ∈ [α, β] predpisom

(−γ)(t) = γ(α+ β − t).

Táto krivka má rovnaký obraz ako krivka γ, je však opísaná „opačným smerom“. Pre ľubovoľnú
dvojicu kriviek γ1 : [α1, β1]→ C a γ2 : [α2, β2]→ C takých, že γ1(β1) = γ2(α2) ďalej symbolom γ1 + γ2

označíme ich spojenie1, ktoré definujeme ako krivku γ1 + γ2 : [α1, β1 + β2 − α2]→ C danú pre všetky
t ∈ [α1, β1 + β2 − α2] ako

(γ1 + γ2)(t) =

{
γ1(t) ak t ∈ [α1, β1],
γ2(α2 − β1 + t) ak t ∈ [β1, β1 + β2 − α2].

Nakoniec definujme zúženie γ � [α̂, β̂] krivky γ : [α, β] → C na interval [α̂, β̂], kde α ≤ α̂ ≤ β̂ ≤ β,
ako krivku

(
γ � [α̂, β̂]

)
: [α̂, β̂]→ C spĺňajúcu

(
γ � [α̂, β̂]

)
(t) = γ(t) pre všetky t ∈ [α̂, β̂].

Poznámka 4.2.5. Notácia −γ pre opačnú krivku a γ1+γ2 pre spojenie dvoch kriviek je síce zaužívaná,
ale nie je konzistentná s operáciami na funkciách, ktoré sú nositeľkami rovnakých označení. Je preto
dôležité zakaždým rozlišovať, či krivku chápeme naozaj ako krivku, alebo nás zaujíma funkcia, pomocou
ktorej je táto krivka definovaná. V nasledujúcom to bude vždy zrejmé z kontextu.

1Operácia spojenia kriviek je zrejme asociatívna, čo nám umožňuje používať aj notáciu γ1 + . . .+ γn pre spojenie n
(vhodných) kriviek γ1, . . . , γn.
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Zmysel nasledujúcej definície hladkých a po častiach hladkých kriviek sa ukáže v súvislosti s kriv-
kovými integrálmi.

Definícia 4.2.6. Nech α ≤ β sú reálne čísla. Krivku γ : [α, β]→ C nazveme:

a) Hladkou2, ak je funkcia γ na intervale [α, β] spojite diferencovateľná.

b) Po častiach hladkou, ak je spojením niekoľkých hladkých kriviek.

V komplexnej analýze sa typicky pracuje s krivkami, ktoré sú spojením konečného počtu kruhových
oblúkov a úsečiek – príklad takejto krivky je na obrázku 4.3. Ľahko možno overiť, že všetky takéto
krivky sú po častiach hladké. V nasledujúcom budeme pracovať výhradne s po častiach hladkými
krivkami.

Obr. 4.3: Krivky vzniknuté spojením konečného počtu kruhových oblúkov a úsečiek sú v komplexnej analýze
najčastejšie používaným druhom po častiach hladkých kriviek.

4.3 Krivkový integrál

Definujeme teraz krivkové integrály komplexných funkcií komplexnej premennej. Ako už bolo povedané,
pôjde o zovšeobecnenie určitého integrálu funkcií reálnej premennej, pri ktorom budeme namiesto
intervalov integrovať pozdĺž kriviek v komplexnej rovine. Ako je dobre známe, pre funkciu g reálnej
premennej t integrovateľnú na intervale [0, 1] je∫ 0

1
g(t) dt = −

∫ 1

0
g(t) dt.

Očakávali by sme teda napríklad, že ak γ je úsečka dĺžky 1 zvierajúca so smerom reálnej osi uhol θ
a f je funkcia komplexnej premennej z taká, že pre každé t ∈ [0, 1] je f(γ(t)) = g(t), bude integrál
funkcie f pozdĺž γ spĺňať rovnosť ∫

γ
f(z) dz = eiθ

∫ 1

0
g(t) dt.

Pre všeobecnú krivku γ : [α, β] → C požadujeme podobnú vlastnosť: chceli by sme „sčítať nekonečne
veľa hodnôt funkcie f nad krivkou γ “ , pričom „každý infinitezimálny kúsok“ nad bodom γ(t) by sme

2Pojem hladkej krivky nemožno zamieňať s pojmom hladkej funkcie, čo je reálna funkcia s deriváciami všetkých rádov.
Pri hladkej krivke požadujeme iba existenciu jedinej spojitej derivácie.
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chceli prenásobiť „smerovým vektorom“ parametrickej krivky v danom bode, ktorý je daný jej derivá-
ciou (ak, pravda, existuje). Prichádzame tak k vzťahu∫

γ
f(z) dz =

∫ β

α
f(γ(t))γ′(t) dt,

ktorý môžeme odôvodniť aj symbolicky: ak z = γ(t), tak dz = γ′(t) dt. Derivácia γ′(t) však na danom
intervale nemusí všade existovať, prípadne nemusí byť spojitá; aby teda bol vyššie uvedený integrál
dobre definovaný, obmedzíme sa na po častiach hladké krivky. Tak prichádzame k nasledujúcej definícii.

Definícia 4.3.1. Nech S ⊆ C, f : S → C je spojitá funkcia a γ : [α, β] → C je po častiach hladká
krivka taká, že γ∗ ⊆ S. Integrál funkcie f pozdĺž krivky γ potom definujeme predpisom∫

γ
f(z) dz :=

∫ β

α
f(γ(t))γ′(t) dt.

Poznámka 4.3.2. Korektnosť uvedenej definície vyplýva z nasledujúceho: funkcie f aj γ sú spojité,
teda je spojité aj ich zloženie. Krivka γ je navyše po častiach hladká, čo znamená, že funkcia γ′ je
na intervale [α, β] – až na konečne veľa jeho bodov3 – dobre definovaná a po častiach spojitá. V dôsledku
toho je – po prípadnom dodefinovaní v konečne veľa bodoch – po častiach spojitá aj funkcia (f ◦ γ)γ′;
táto funkcia je teda integrovateľná.

Poznámka 4.3.3. Krivkový integrál možno definovať aj pre všeobecnejšiu triedu kriviek, než sú po čas-
tiach hladké krivky – takýto prístup by si však vyžadoval vybudovať pomerne netriviálnu teóriu, hoci
z hľadiska porozumenia fundamentálnym princípom komplexnej analýzy by sme tým veľa nezískali.
Aj pre praktické účely sú po častiach hladké krivky viac ako plne postačujúce.

Príklad 4.3.4. Vypočítame integrál z funkcie f(z) = z2 pozdĺž úsečky γ = [−i, 2i]:∫
γ
z2 dz =

∫ 1

0
(−i+ 3it)23idt = 3i

∫ 1

0
(−9t2 + 6t− 1) dt =

= 3i
[
−3t3 + 3t2 − t

]1
t=0

= 3i (−1− 0) = −3i.

Význam nasledujúceho tvrdenia nemožno preceniť – hovorí o azda najdôležitejších konkrétnych
integráloch v komplexnej analýze vôbec.

Tvrdenie 4.3.5. Nech a ∈ C, r > 0 a k ∈ Z. Potom∫
κ(a,r)

(z − a)k dz =

{
0 ak k ∈ Z \ {−1},
2πi ak k = −1.

Dôkaz. Platí∫
κ(a,r)

(z − a)k dz =

∫ 2π

0

(
reit
)k
ireit dt = irk+1

∫ 2π

0
ei(k+1)t dt =

= irk+1

∫ 2π

0
(cos(k + 1)t+ i sin(k + 1)t) dt =

= irk+1

(∫ 2π

0
cos(k + 1)tdt+ i

∫ 2π

0
sin(k + 1)t dt

)
=

=

 irk+1

([
sin(k+1)t
k+1

]2π

t=0
− i
[

cos(k+1)t
k+1

]2π

t=0

)
ak k ∈ Z \ {−1},

i [t]2πt=0 ak k = −1.

Na zavŕšenie dôkazu už len stačí využiť skutočnosť, že pre všetky ` ∈ Z je sin 2`π = sin 0 = 0
a cos 2`π = cos 0 = 1.

3V týchto bodoch ju však možno ľubovoľne dodefinovať, a teda túto skutočnosť v súlade s dobrým zvykom a po-
známkou 4.1.6 ignorujeme.
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4.4 Elementárne vlastnosti krivkového integrálu

Dokážeme najprv, že integrály pozdĺž opačných kriviek a pozdĺž spojení kriviek majú očakávateľné
hodnoty.

Tvrdenie 4.4.1. Nech S ⊆ C, f : S → C je spojitá funkcia a γ : [α, β] → C je po častiach hladká
krivka taká, že γ∗ ⊆ S. Potom:

(i) Platí ∫
−γ
f(z) dz = −

∫
γ
f(z) dz.

(ii) Ak γ = γ1 + γ2 pre nejaké dve po častiach hladké krivky γ1 : [α1, β1]→ C a γ2 : [α2, β2]→ C, tak∫
γ
f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Dôkaz.

(i) Z definície opačnej krivky dostávame∫
−γ
f(z) dz =

∫ β

α
f((−γ)(t))(−γ)′(t) dt = −

∫ β

α
f(γ(α+ β − t))γ′(α+ β − t) dt =

=

∫ α

β
f(γ(s))γ′(s) ds = −

∫ β

α
f(γ(s))γ′(s) ds = −

∫
γ
f(z) dz.

(ii) Z definície spojenia kriviek dostávame α = α1, β = β1 + β2 − α2 a∫
γ1+γ2

f(z) dz =

∫ β1+β2−α2

α1

f((γ1 + γ2)(t))(γ1 + γ2)′(t) dt =

=

∫ β1

α1

f(γ1(t))γ′1(t) dt+

∫ β1+β2−α2

β1

f(γ2(α2 − β1 + t))γ′2(α2 − β1 + t) dt =

=

∫ β1

α1

f(γ1(t))γ′1(t) dt+

∫ β2

α2

f(γ2(s))γ′2(s) ds =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Dôsledok 4.4.2. Nech S ⊆ C, f : S → C je spojitá funkcia a γ : [α, β] → C je po častiach hladká
krivka taká, že γ∗ ⊆ S. Ak γ = γ1 + . . .+ γn pre nejakú n-ticu po častiach hladkých kriviek

γ1 : [α1, β1]→ C, . . . , γn : [αn, βn]→ C,

tak ∫
γ
f(z) dz =

n∑
k=1

∫
γk

f(z) dz.

Príklad 4.4.3. Vypočítame integrál funkcie f(z) = z2 pozdĺž uzavretej krivky γ = [−2, 2]+κ[0,π](0, 2)
na obrázku 4.4. Táto integračná krivka je očividne po častiach hladká. Z tvrdenia 4.4.1 a definície
krivkového integrálu:∫

γ
z2 dz =

∫
[−2,2]

z2 dz +

∫
κ[0,π](0,2)

z2 dz =

∫ 1

0
(−2 + 4t)24 dt+

∫ π

0
(2eit)22ieit dt =

= 4

∫ 1

0
(16t2 − 16t+ 4) dt+ 8i

∫ π

0
cos 3tdt− 8

∫ π

0
sin 3t dt =

= 4

[
16t3

3
− 8t2 + 4t

]1

t=0

+ 8i

[
sin 3t

3

]π
t=0

+ 8

[
cos 3t

3

]π
t=0

=
16

3
+ 0− 16

3
= 0.
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2−2

γ

Obr. 4.4: Uzavretá integračná krivka γ.

V nasledujúcom dokážeme, že integrály pozdĺž po častiach hladkých kriviek „s rovnakým obra-
zom a smerom“, líšiacich sa iba parametrizáciou, majú za istých podmienok rovnaké hodnoty. Každú
po častiach hladkú krivku γ : [α, β] → C teda môžeme za určitých podmienok reparametrizovať –
t. j. napríklad zadať ako funkciu nejakého iného intervalu [α̂, β̂] – bez toho, aby sa zmenili hodnoty
integrálov pozdĺž nej. Podmienky, ktoré musí táto reparametrizácia spĺňať, bývajú v praxi v podstate
vždy splnené; to nás do určitej miery oprávňuje hovoriť o integráloch pozdĺž kriviek bez toho, aby sme
tieto krivky explicitne parametrizovali.4

Definícia 4.4.4. Nech γ : [α, β] → C je po častiach hladká krivka. Krivku γ̂ : [α̂, β̂] → C nazveme
reparametrizáciou krivky γ, ak existuje rastúca spojite diferencovateľná bijekcia ϕ : [α̂, β̂]→ [α, β] taká,
že γ̂ = γ ◦ ϕ.

Podmienka rastúcosti a bijektívnosti reparametrizácie vyjadruje vlastnosť opísania obidvoch kriviek
rovnakým smerom. Podmienka jej spojitej diferencovateľnosti je technická a využíva sa pri dôkaze
nasledujúceho tvrdenia.

Je zrejmé, že ak je γ po častiach hladká krivka a γ̂ jej reparametrizácia, je γ̂∗ = γ∗ a aj orientácia
obidvoch kriviek je rovnaká. Nasledujúce tvrdenie hovorí, že sú rovnaké aj všetky integrály spojitých
funkcií pozdĺž týchto dvoch kriviek.

Tvrdenie 4.4.5 (O reparametrizácii). Nech S ⊆ C, f : S → C je spojitá funkcia, γ : [α, β] → C je
po častiach hladká krivka taká, že γ∗ ⊆ S a γ̂ je reparametrizácia krivky γ. Potom γ̂ je po častiach
hladká a ∫

γ̂
f(z) dz =

∫
γ
f(z) dz.

Dôkaz. Vďaka dôsledku 4.4.2 stačí uvažovať prípad, keď je krivka γ hladká. Nech γ̂ : [α̂, β̂] → C
a ϕ : [α̂, β̂] → [α, β] je rastúca spojite diferencovateľná bijekcia taká, že γ̂ = γ ◦ ϕ. Keďže sú obidve
funkcie γ, ϕ diferencovateľné, je podľa vety 2.5.5 na intervale [α̂, β̂] diferencovateľná aj funkcia γ̂. Platí
pritom

γ̂′ = (γ′ ◦ ϕ) · ϕ′

a zo spojitosti funkcií γ′, ϕ a ϕ′ tak vďaka tvrdeniam 2.2.9(iii) a 2.2.10(iii) dostávame spojitú
diferencovateľnosť funkcie γ̂, ktorá preto musí byť – ak ju chápeme ako krivku – hladká.

4Presnejšie povedané: krivky používané v komplexnej analýze sú často zložené z úsečiek, kruhových oblúkov a po-
dobných „elementárnych“ kriviek, pre ktoré je známa nejaká ich „obvyklá“ parametrizácia (pre úsečky a kruhové oblúky
je to parametrizácia z príkladu 4.2.2). Podľa nasledujúceho tvrdenia o reparametrizácii môžeme intervaly parametrov
bezo zmeny hodnoty integrálu prinajmenšom škálovať a posúvať, prípadne vykonávať ďalšie transformácie v súlade
s technickými podmienkami tvrdenia. Ak teda niekedy budeme hovoriť o integrále pozdĺž krivky bez explicitne danej
parametrizácie, budeme mať na mysli niektorú z jej „obvyklých“ parametrizácií, ktorá prípadne môže byť „povoleným
spôsobom“ transformovaná.
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Zisťujeme teda, že∫
γ̂
f(z) dz =

∫ β̂

α̂
f(γ̂(t))γ̂′(t) dt =

∫ β̂

α̂
f(γ(ϕ(t)))γ′(ϕ(t))ϕ′(t) dt =

=

∫ β

α
f(γ(s))γ′(s) ds =

∫
γ
f(z) dz,

čo bolo treba dokázať.

Poznámka 4.4.6. V dôkazoch predošlých tvrdení sme po tichu použili metódu substitúcie pre určité
integrály reálnych funkcií komplexnej premennej; dôkaz, že táto metóda skutočne funguje, prenechá-
vame čitateľovi ako jednoduché cvičenie.

Viacero vlastností krivkových integrálov vyplýva priamo z vlastností určitých integrálov reálnych
funkcií reálnej premennej (napríklad Riemannovho integrálu). Tieto vlastnosti budeme zvyčajne pou-
žívať voľne – na ukážku uvedieme len dôkaz tvrdenia o linearite krivkových integrálov.

Tvrdenie 4.4.7 (Linearita krivkových integrálov). Nech S ⊆ C, f, g : S → C sú spojité funkcie,
a, b ∈ C a γ : [α, β]→ C je po častiach hladká krivka taká, že γ∗ ⊆ S. Potom∫

γ
(af(z) + bg(z)) dz = a

∫
γ
f(z) dz + b

∫
γ
g(z) dz.

Dôkaz. Funkcia af(z)+bg(z) musí byť podľa tvrdenia 2.2.9 spojitá, takže znenie dokazovaného tvrdenia
dáva zmysel. Z definície krivkového integrálu ďalej∫

γ
(af(z) + bg(z)) dz =

∫
γ
(af + bg)(z) dz =

∫ β

α
(af + bg)(γ(t))γ′(t) dt =

=

∫ β

α

(
af(γ(t))γ′(t) + bg(γ(t))γ′(t)

)
dt =

= a

∫ β

α
f(γ(t))γ′(t) dt+ b

∫ β

α
g(γ(t))γ′(t) dt =

= a

∫
γ
f(z) dz + b

∫
γ
g(z) dz,

čo bolo treba dokázať.

4.5 Veta o odhade

Nasledujúca veta je užitočná napríklad v prípadoch, keď je integrál ťažké vypočítať presne alebo
jednoducho v prípadoch, keď nás zaujíma najmä absolútna hodnota integrálu.

Veta 4.5.1. Nech S ⊆ C, f : S → C je spojitá funkcia a γ : [α, β] → C je po častiach hladká krivka
taká, že γ∗ ⊆ S. Potom ∣∣∣∣∫

γ
f(z) dz

∣∣∣∣ ≤ ∫ β

α

∣∣f(γ(t))γ′(t)
∣∣ dt.

Ak navyše existuje M ≥ 0 také, že pre všetky z ∈ γ∗ je |f(z)| ≤M , tak∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ ≤M · L(γ),

kde L(γ) označuje dĺžku krivky γ definovanú ako

L(γ) :=

∫ β

α
|γ′(t)|dt.
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Dôkaz. Z definície krivkového integrálu∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ =

∣∣∣∣∫ β

α
f(γ(t))γ′(t) dt

∣∣∣∣ .
Dokážeme, že ∣∣∣∣∫ β

α
f(γ(t))γ′(t) dt

∣∣∣∣ ≤ ∫ β

α

∣∣f(γ(t))γ′(t)
∣∣ dt. (4.1)

Skutočne: nech
∫ β
α f(γ(t))γ′(t) dt = reiθ pre nejaké r ≥ 0 a θ ∈ [0, 2π). Potom

r =

∫ β

α
e−iθf(γ(t))γ′(t) dt = Re

∫ β

α
e−iθf(γ(t))γ′(t) dt =

=

∫ β

α
Re
(
e−iθf(γ(t))γ′(t)

)
dt ≤

∫ β

α

∣∣∣e−iθf(γ(t))γ′(t)
∣∣∣ dt =

=

∫ β

α

∣∣f(γ(t))γ′(t)
∣∣ dt.

Keďže ale tiež

r =

∣∣∣∣∫ β

α
f(γ(t))γ′(t) dt

∣∣∣∣ ,
je nerovnosť (4.1) a tým aj prvá časť tvrdenia dokázaná. Ak ďalej M ≥ 0 je také, že |f(z)| ≤ M
pre všetky z ∈ γ∗, je∫ β

α

∣∣f(γ(t))γ′(t)
∣∣ dt =

∫ β

α
|f(γ(t))| ·

∣∣γ′(t)∣∣ dt ≤

≤
∫ β

α
M
∣∣γ′(t)∣∣ dt = M

∫ β

α

∣∣γ′(t)∣∣ dt = M · L(γ),

čo dokazuje aj druhú časť tvrdenia.

Poznámka 4.5.2. Pojem dĺžky po častiach hladkej krivky zo znenia predchádzajúcej vety súhlasí s jeho
bežnou definíciou v reálnej analýze – ak totiž pre t ∈ [α, β] označíme x(t) := Re γ(t) a y(t) := Im γ(t),
tak

L(γ) =

∫ β

α
|γ′(t)| dt =

∫ β

α

∣∣(Re γ)′(t) + i(Im γ)′(t)
∣∣ dt =

=

∫ β

α

∣∣x′(t) + iy′(t)
∣∣ dt =

∫ β

α

√
(x′(t))2 + (y′(t))2 dt.

Ak navyše x(t) = t a y(t) = f(t), dostávame známy vzorec

L(γ) =

∫ β

α

√
1 + (f ′(t))2 dt.

Z uvedených skutočností vyplýva, že dĺžka „bežných“ kriviek – akými sú napríklad úsečky alebo kruhové
oblúky – má skutočne vždy hodnotu, akú by sme očakávali.
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4.6 Krivkové integrály a primitívne funkcie

Primitívne funkcie možno pre funkcie komplexnej premennej definovať obdobne ako v reálnej analýze.

Definícia 4.6.1. Nech S ⊆ C je oblasť a f : S → C je funkcia. Hovoríme, že funkcia F : S → C
je primitívnou funkciou k funkcii f na oblasti S, ak je funkcia F na množine S holomorfná, pričom
pre všetky z ∈ S je F ′(z) = f(z).

Dokážeme teraz tvrdenie o vzťahu krivkových integrálov a primitívnych funkcií, ktoré je obdo-
bou základnej vety diferenciálneho a integrálneho počtu pre funkcie komplexnej premennej. Preto sa
tiež niekedy nazýva základnou vetou o krivkových integráloch – toto pomenovanie je však relatívne
zavádzajúce, keďže nasledujúca veta nedosahuje význam Cauchyho integrálnej vety, ktorú dokážeme
v nasledujúcej kapitole a ktorá je skutočným základným kameňom komplexnej analýzy.

Veta 4.6.2. Nech S ⊆ C je oblasť, f : S → C je spojitá funkcia, ku ktorej na S existuje primitívna
funkcia F : S → C a γ : [α, β]→ C je po častiach hladká krivka taká, že γ∗ ⊆ S. Potom∫

γ
f(z) dz = F (γ(β))− F (γ(α)).

Pre uzavretú po častiach hladkú krivku γ teda špeciálne∫
γ
f(z) dz = 0.

Dôkaz. Nech sú predpoklady vety splnené. Predpokladajme najprv, že je krivka γ hladká. Keďže je
funkcia F holomorfná na oblasti S ⊇ γ∗ = γ([α, β]) a funkcia γ je na intervale [α, β] diferencovateľná,
je – podľa vety 2.5.5 o derivácii zloženej funkcie – funkcia F ◦γ diferencovateľná na [α, β] a pre všetky
t ∈ [α, β] je

(F ◦ γ)′(t) = F ′(γ(t))γ′(t);

táto derivácia je navyše na [α, β] spojitá, pretože sú spojité funkcie γ, γ′ a F ′ = f . Zisťujeme teda, že∫
γ
f(z) dz =

∫ β

α
f(γ(t))γ′(t) dt =

∫ β

α
F ′(γ(t))γ′(t) dt =

=

∫ β

α
(F ◦ γ)′(t) dt =

∫ β

α
Re(F ◦ γ)′(t) dt+ i

∫ β

α
Im(F ◦ γ)′(t) dt =

= [Re(F ◦ γ)(t)]βt=α + i [Im(F ◦ γ)(t)]βt=α =

= (ReF (γ(β))− ReF (γ(α))) + i (ImF (γ(β))− ImF (γ(α))) =

= F (γ(β))− F (γ(α)).

Pre po častiach hladkú krivku γ : [α, β] → C existuje kladné prirodzené číslo n a hladké krivky
γ1 : [α1, β1]→ C, . . . , γn : [αn, βn]→ C také, že

γ = γ1 + . . .+ γn.

Špeciálne teda γ(α) = γ1(α1), γ(β) = γn(βn) a pre k = 1, . . . , n − 1 platí γk(βk) = γk+1(αk+1).
Z dôsledku 4.4.2 a z vyššie dokázaného tvrdenia pre hladké krivky potom dostávame∫

γ
f(z) dz =

n∑
k=1

∫
γk

f(z) dz =
n∑
k=1

(F (γk(βk))− F (γk(αk))) =

= F (γn(βn))− F (γ1(α1)) +
n−1∑
k=1

(F (γk(βk))− F (γk+1(αk+1))) = F (γ(β))− F (γ(α)),

čo bolo treba dokázať.
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Z dokázanej základnej vety o krivkových integráloch vyplýva, že pokiaľ k spojitej funkcii f existuje
na oblasti S primitívna funkcia, závisia krivkové integrály tejto funkcie iba na počiatočnom a kon-
covom bode integračnej krivky. Táto nezávislosť integrálu od integračnej krivky je dokonca existencii
primitívnej funkcie ekvivalentná, ako ukazuje nasledujúca veta.

Veta 4.6.3. Nech S ⊆ C je oblasť a f : S → C je spojitá funkcia. Potom sú nasledujúce tvrdenia
ekvivalentné:

(i) K funkcii f existuje na oblasti S primitívna funkcia.

(ii) Pre všetky dvojice po častiach hladkých kriviek γ1 : [α1, β1] → C, γ2 : [α2, β2] → C takých, že
γ∗1 , γ

∗
2 ⊆ S, γ1(α1) = γ2(α2) a γ1(β1) = γ2(β2) je∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

(iii) Pre všetky uzavreté po častiach hladké krivky γ : [α, β]→ C také, že γ∗ ⊆ S je∫
γ
f(z) dz = 0.

V prípade platnosti týchto ekvivalentných tvrdení navyše môže byť primitívna funkcia k f na S daná
pre všetky z ∈ S ako

F (z) =

∫
γ
f(w) dw,

kde γ je ľubovoľná po častiach hladká krivka s pevným počiatočným bodom z0 ∈ S nezávislým od z
a s koncovým bodom z taká, že γ∗ ⊆ S.

Dôkaz. Implikácia „(i)⇒ (ii)“ je dôsledkom vety 4.6.2. Dokážeme implikáciu „(ii)⇒ (iii)“ . Nech platí
tvrdenie (ii) a γ : [α, β] → C je uzavretá po častiach hladká krivka. Zvoľme bod µ ∈ [α, β] ľubovoľne
a označme γ1 := γ � [α, µ] a γ2 := γ � [µ, β] (obrázok 4.5). Potom γ1 a −γ2 sú krivky spĺňajúce
podmienky tvrdenia (ii), a teda ∫

γ1

f(z) dz =

∫
−γ2

f(z) dz.

Keďže γ = γ1 + γ2, z tvrdenia 4.4.1 vyplýva∫
γ
f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
−γ2

f(z) dz = 0,

čím je implikácia dokázaná.

S

γ

(a) Uzavretá krivka γ.

S

γ1

γ2

(b) Rozdelenie krivky γ na dve.

S

γ1

−γ2

(c) Výsledná dvojica kriviek.

Obr. 4.5: Situácia z dôkazu implikácie „(ii)⇒ (iii)“ .
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S

γ1

γ2

(a) Krivky γ1 a γ2.

S

γ1

−γ2

(b) Zmena orientácie krivky γ2.

S

γ

(c) Výsledná uzavretá krivka.

Obr. 4.6: Situácia z dôkazu implikácie „(iii)⇒ (ii)“ .

Opačnú implikáciu „(iii)⇒ (ii)“ dokážeme podobným spôsobom. Nech platí tvrdenie (iii) a nech
γ1 : [α1, β1] → C, γ2 : [α2, β2] → C sú po častiach hladké krivky také, že γ∗1 , γ∗2 ⊆ S, γ1(α1) = γ2(α2)
a γ1(β1) = γ2(β2). Položme γ := γ1 + (−γ2) (obrázok 4.6). Z platnosti tvrdenia (iii) a z tvrdenia 4.4.1
potom

0 =

∫
γ
f(z) dz =

∫
γ1

f(z) dz +

∫
−γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz,

z čoho už priamo dostávame ∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

Zostáva dokázať implikáciu „(ii) ⇒ (i)“ . Predpokladajme, že platí tvrdenie (ii), zvoľme pevné
z0 ∈ S a definujme funkciu F : S → C pre všetky z ∈ S predpisom

F (z) =

∫
γ
f(w) dw,

kde γ je ľubovoľná po častiach hladká krivka s počiatočným bodom z0 a koncovým bodom z spĺňajúca
γ∗ ⊆ S. Dokážeme, že funkcia F je na S holomorfná, pričom pre všetky z ∈ S je F ′(z) = f(z). Zvoľme
pevne z ∈ S. Z predpokladu platnosti tvrdenia (ii) a z tvrdenia 4.4.1 vyplýva, že pre všetky h ∈ C\{0}
spĺňajúce D(z, |h|) ⊆ S je

F (z + h)− F (z) =

∫
γ(h)

f(w) dw,

kde γ(h) je nejaká po častiach hladká krivka s počiatočným bodom z a koncovým bodom z+h taká, že
γ(h)∗ ⊆ S. Pre túto krivku tiež vďaka tvrdeniu (ii) platí∫

γ(h)
dw =

∫
[z,z+h]

dw =

∫ 1

0
hdt = h.

Preto

F (z + h)− F (z)

h
− f(z) =

1

h

(∫
γ(h)

f(w) dw − f(z)

∫
γ(h)

dw

)
=

1

h

∫
γ(h)

(f(w)− f(z)) dw. (4.2)

Zo spojitosti funkcie f v bode z vyplýva, že ku každému ε > 0 existuje δ > 0 také, že |f(w)−f(z)| < ε
kedykoľvek w ∈ S a |w − z| < δ. Z tvrdenia (ii) a z vety 4.5.1 potom pre h ∈ C \ {0} spĺňajúce
D(z, |h|) ⊆ S a |h| < δ vyplýva∣∣∣∣∣

∫
γ(h)

(f(w)− f(z)) dw

∣∣∣∣∣ =

∣∣∣∣∣
∫

[z,z+h]
(f(w)− f(z)) dw

∣∣∣∣∣ < ε|h|,
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z čoho dosadením do (4.2) pre takéto h dostávame∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ < ε|h|
|h|

= ε,

v dôsledku čoho
lim
h→0

F (z + h)− F (z)

h
= f(z).

Funkcia F je teda v bode z skutočne diferencovateľná a F ′(z) = f(z).

Poznámka 4.6.4. V situáciách, keď sú pre funkciu f na oblasti S splnené ekvivalentné podmienky
z predchádzajúcej vety, sa niekedy používa notácia∫ b

a
f(z) dz :=

∫
γ
f(z) dz,

kde γ je ľubovoľná po častiach hladká krivka s γ∗ ⊆ S, počiatočným bodom a a koncovým bodom b.
My túto notáciu – najmä kvôli hroziacej zámene s integrálom funkcie reálnej premennej – používať
nebudeme.

Poznámka 4.6.5. V nasledujúcej kapitole dokážeme jednu z najdôležitejších viet komplexnej analýzy
– tzv. Cauchyho integrálnu vetu. Tú možno interpretovať ako vetu hovoriacu o relatívne ľahko overi-
teľnej postačujúcej podmienke platnosti ekvivalentných tvrdení z vety 4.6.3; pôjde tak vlastne o akúsi
„praktickú verziu“ tejto vety.

Cvičenia

1. Dokážte, že obraz γ∗ krivky γ : [α, β]→ C je vždy kompaktná množina.

2. Vypočítajte∫
γ
z2 dz

pre:

a) γ = κ(0, 1),

b) γ = κ[−π/2,π/2](0, 1),

c) γ = [−i, 1] + [1, 0],

d) γ = [0,−i].

3. Nech γ = [−1, 1] + [1, i] + [i,−1]. Vypočítajte:

a)
∫
γ e

z dz,

b)
∫
γ cos z dz.

4. Použite základnú vetu o krivkových integráloch na dôkaz, že neexistuje funkcia prirodzeného
logaritmu, ktorá by bola holomorfná na C \ {0}.

5. Zhora odhadnite absolútnu hodnotu integrálov:

a)
∫

[1,2+2i]
1
z dz,

b)
∫
κ(3i,1)

ez

(z+i)(z−2)2 dz.
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Cauchyho integrálna veta I

Minulú kapitolu sme zakončili dôkazom základnej vety o krivkových integráloch, podľa ktorej je pre spo-
jitú funkciu f rovnosť ∫

γ
f(z) dz = 0 (5.1)

splnená pre všetky uzavreté po častiach hladké krivky γ v oblasti S práve vtedy, keď k funkcii f
existuje na S primitívna funkcia. Tieto podmienky sú navyše ekvivalentné, pre ľubovoľné dva pevne
dané body v S, nezávislosti krivkových integrálov funkcie f od voľby integračnej krivky γ s obrazom
v S spájajúcej tieto dva body.

Dokázať existenciu primitívnej funkcie nemusí byť vždy úplne jednoduché. V nasledujúcom preto
dokážeme Cauchyho integrálnu vetu (pre jednoducho súvislú oblasť), ktorá nám poskytne postaču-
júcu podmienku platnosti uvedených troch ekvivalentných tvrdení – vďaka nej budeme môcť usúdiť
na platnosť rovnosti (5.1) pre všetky uzavreté krivky v oblasti S iba na základe holomorfnosti funkcie f
na S a „veľmi jednoduchej“ topologickej vlastnosti oblasti S. Na overenie rovnosti (5.1) teda zvyčajne
stačí dokázať holomorfnosť funkcie f , čo je typicky omnoho jednoduchšie, než priamy dôkaz existencie
primitívnej funkcie.

K „ozajstnej“ Cauchyho integrálnej vete – čiže k jej verzii pre jednoducho súvislú oblasť – sa ale bu-
deme dopracúvať postupne. Dokážeme najprv dve slabšie verzie Cauchyho integrálnej vety, ktoré majú
charakter viac-menej pomocných výsledkov: Cauchyho integrálnu vetu pre trojuholník a Cauchyho
integrálnu vetu pre konvexnú oblasť. Následne s pomocou topologického pojmu homotópie prejdeme
od konvexných oblastí k ľubovoľným jednoducho súvislým oblastiam (intuitívne oblastiam „bez dier“).
V kapitole 10 neskôr dokážeme ešte jeden všeobecnejší variant Cauchyho integrálnej vety; verzia pre jed-
noducho súvislú oblasť však bude pre praktické účely plne postačujúca.

5.1 Cauchyho integrálna veta pre trojuholník

Pod trojuholníkom budeme chápať, v súlade so zdravým rozumom, ľubovoľnú uzavretú krivku γ v tvare
(hoci aj degenerovaného) trojuholníka – teda krivku γ = 4ABC := [A,B] + [B,C] + [C,A], kde
A,B,C ∈ C.

Tvrdenie 5.1.1 (Cauchyho integrálna veta pre trojuholník). Nech S ⊆ C je oblasť obsahujúca troju-
holník γ a celé jeho vnútro. Nech f : S → C je holomorfná na S. Potom∫

γ
f(z) dz = 0.
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Dôkaz. Trojuholník γ nahradíme menším trojuholníkom γN takým, že hodnota integrálu funkcie f
pozdĺž γN je oproti hodnote pôvodného integrálu „nezanedbateľná“ a súčasne je na tomto trojuholníku
funkcia f aproximovateľná vhodnou lineárnou funkciou. Pre lineárne funkcie existuje primitívna funkcia
na celom C; integrál aproximujúcej lineárnej funkcie pozdĺž γN tak bude nulový vďaka základnej vete
o krivkových integráloch. Integrál pôvodnej funkcie f pozdĺž γN tak bude mať hodnotu blízku nule,
pričom miera tejto blízkosti bude úmerná kvalite aproximácie. Keďže je však hodnota tohto integrálu
oproti pôvodnému integrálu „nezanedbateľná“ , budeme môcť aj hodnotu pôvodného integrálu zhora
odhadnúť stále menším a menším číslom, úmerne kvalite aproximácie. Tým dokážeme jeho nulovosť.

Presnejšie: pre degenerovaný trojuholník γ je dokazované tvrdenie zrejmé. Predpokladajme teda, že
je trojuholník γ nedegenerovaný a položme γ0 := γ. Predpokladajme ďalej, že pre nejaké n ∈ N máme
daný trojuholník γn = 4ABC, kde A,B,C ∈ C sú tri nekolineárne body. Označme stredy úsečiek
[A,B], [B,C] a [C,A] ako c, a, resp. b. Uvažujme trojuholníky γn+1[0] := 4abc, γn+1[1] := 4Acb,
γn+1[2] := 4Bac a γn+1[3] := 4Cba. Táto situácia je znázornená na obrázku 5.1.

A

B

C

c

a
b

Obr. 5.1: Rozdelenie trojuholníka 4ABC na štyri menšie trojuholníky.

Keďže na pravej strane nasledujúcej rovnosti integrujeme pozdĺž každej zo strán „vnútorného“
trojuholníka γn+1[0] obidvoma smermi práve raz, je

∫
γn

f(z) dz =
3∑

k=0

∫
γn+1[k]

f(z) dz.

Nutne preto musí existovať k ∈ {0, 1, 2, 3} také, že∣∣∣∣∣
∫
γn+1[k]

f(z) dz

∣∣∣∣∣ ≥ 1

4

∣∣∣∣∫
γn

f(z) dz

∣∣∣∣ ;
trojuholník γn+1[k] označme ako γn+1.

Takto dostávame postupnosť trojuholníkov (γn)∞n=0 s nasledujúcimi vlastnosťami:

1. Platí γ0 = γ.

2. Označme pre všetky n ∈ N ako ∆n kompaktnú množinu s hranicou γn – čiže uzáver vnútra
trojuholníka γn. Pre všetky n ∈ N je ∆n+1 ⊆ ∆n.

3. Pre všetky n ∈ N je L(γn) = 2−nL(γ).

4. Pre všetky n ∈ N je ∣∣∣∣∫
γn

f(z) dz

∣∣∣∣ ≥ 4−n
∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ . (5.2)
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Zvoľme teraz ľubovoľný bod1 z0 ∈
⋂∞
n=0 ∆n. Funkcia f je v bode z0 diferencovateľná – pre všetky

ε > 0 teda existuje δ > 0 také, že pre všetky z ∈ D(z0, δ) je∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε,

z čoho ∣∣f(z)− (f(z0) + (z − z0)f ′(z0))
∣∣ < ε |z − z0| . (5.3)

Ak teraz zvolíme N ∈ N také, že ∆N ⊆ D(z0, δ), pre všetky z ∈ ∆N zrejme

|z − z0| ≤ L(γN ) = 2−NL(γ)

a z (5.3) tak dostávame ∣∣f(z)−
(
f(z0) + (z − z0)f ′(z0)

)∣∣ < ε2−NL(γ).

Zo základnej vety o krivkových integráloch navyše∫
γN

(
f(z0) + (z − z0)f ′(z0)

)
dz = 0.

Ak teda na integrál funkcie f pozdĺž γN použijeme vetu o odhade, zisťujeme, že∣∣∣∣∫
γN

f(z) dz

∣∣∣∣ =

∣∣∣∣∫
γN

(
f(z)−

(
f(z0) + (z − z0)f ′(z0)

))
dz +

∫
γN

(
f(z0) + (z − z0)f ′(z0)

)
dz

∣∣∣∣ =

=

∣∣∣∣∫
γN

(
f(z)−

(
f(z0) + (z − z0)f ′(z0)

))
dz

∣∣∣∣ ≤ ε2−NL(γ)L(γN ) = ε4−NL(γ)2.

Podľa (5.2) teda ∣∣∣∣∫
γ
f(z) dz

∣∣∣∣ ≤ 4N
∣∣∣∣∫
γN

f(z) dz

∣∣∣∣ ≤ εL(γ)2;

keďže je ε > 0 ľubovoľné, nutne ∫
γ
f(z) dz = 0

a Cauchyho integrálna veta pre trojuholník je dokázaná.

5.2 Cauchyho integrálna veta pre konvexnú oblasť

Rozšírime teraz Cauchyho integrálnu vetu na prípad ľubovoľnej uzavretej po častiach hladkej krivky
obsiahnutej v nejakej konvexnej oblasti S. Konvexné oblasti sú pritom definované bežným spôsobom.

Definícia 5.2.1. Oblasť S ⊆ C je konvexná, ak pre všetky u, v ∈ S je [u, v]∗ ⊆ S.

Cauchyho integrálnu vetu pre konvexnú oblasť dokážeme tak, že nahliadneme existenciu primitívnej
funkcie pre všetky holomorfné funkcie na takejto oblasti. Využijeme pritom Cauchyho integrálnu vetu
pre trojuholník a podobné techniky ako v dôkaze vety 4.6.3.

1Pre každé n ∈ N zvoľme wn ∈ ∆n. Postupnosť (wn)∞n=0 je ohraničená a podľa Bolzanovej-Weierstrassovej vety z nej
tak možno vybrať konvergentnú podpostupnosť. Keďže je množina ∆n pre všetky n ∈ N uzavretá a ∆n+1 ⊆ ∆n, musí
byť limita tejto podpostupnosti prvkom všetkých množín ∆n – môžeme ju teda vziať za naše z0.
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Lema 5.2.2. Nech S ⊆ C je konvexná oblasť a f : S → C je spojitá funkcia taká, že pre ľubovoľný
trojuholník γ s γ∗ ⊆ S je ∫

γ
f(z) dz = 0.

Pre ľubovoľné pevné z0 ∈ S je potom funkcia F : S → C, daná pre všetky z ∈ S ako

F (z) :=

∫
[z0,z]

f(w) dw,

holomorfná na S, pričom F ′ = f .

Dôkaz. Zvoľme z ∈ S. Ukážeme, že funkcia F je v bode z diferencovateľná a F ′(z) = f(z).
Pre všetky h ∈ C spĺňajúce z + h ∈ S musí do konvexnej oblasti S patriť celý trojuholník

γ = 4z0z(z + h); táto situácia je znázornená na obrázku 5.2.

S

z0 z

z + h

Obr. 5.2: Trojuholník γ = 4z0z(z + h).

Z predpokladu lemy vyplýva∫
γ
f(w) dw =

∫
[z0,z]

f(w) dw +

∫
[z,z+h]

f(w) dw +

∫
[z+h,z0]

f(w) dw = 0,

z čoho ∫
[z0,z+h]

f(w) dw =

∫
[z0,z]

f(w) dw +

∫
[z,z+h]

f(w) dw,

a teda
F (z + h)− F (z) =

∫
[z,z+h]

f(w) dw.

Preto

F (z + h)− F (z)

h
− f(z) =

1

h

(∫
[z,z+h]

f(w) dw − f(z)

∫
[z,z+h]

dw

)
=

1

h

∫
[z,z+h]

(f(w)− f(z)) dw.

Zo spojitosti funkcie f v bode z ale vyplýva, že pre všetky ε > 0 existuje δ > 0 také, že pre všetky
w ∈ D(z, δ) je w ∈ S a |f(w)− f(z)| < ε. Pre h ∈ C \ {0} s |h| < δ teda z vety o odhade dostávame∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣∣1h
∫

[z,z+h]
(f(w)− f(z)) dw

∣∣∣∣∣ < ε|h|
|h|

= ε.

Preto
lim
h→0

F (z + h)− F (z)

h
= f(z)

a funkcia F má v bode z skutočne deriváciu f(z).
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Dôsledok 5.2.3. Nech S ⊆ C je konvexná oblasť a f : S → C je holomorfná na S. Potom existuje
funkcia F : S → C holomorfná na S taká, že F ′ = f .

Dôkaz. Z Cauchyho integrálnej vety pre trojuholník vyplýva, že pre každú funkciu f holomorfnú na S
sú splnené predpoklady lemy 5.2.2.

Môžeme teraz sformulovať samotnú Cauchyho integrálnu vetu pre konvexnú oblasť – stále však
pôjde o výsledok viac-menej predbežný.

Tvrdenie 5.2.4 (Cauchyho integrálna veta pre konvexnú oblasť). Nech S ⊆ C je konvexná oblasť
a f : S → C je holomorfná na S. Potom pre každú uzavretú po častiach hladkú krivku γ s γ∗ ⊆ S je∫

γ
f(z) dz = 0.

Dôkaz. Vyplýva bezprostredne z dôsledku 5.2.3 a zo základnej vety o krivkových integráloch.

5.3 Homotópie

Možnosti použitia Cauchyho integrálnej vety pre konvexné oblasti sú trochu obmedzené – často totiž
vzniká potreba integrovať funkciu pozdĺž krivky v oblasti, ktorá konvexná nie je. Rozšíriť Cauchyho
integrálnu vetu na prípad iných ako konvexných oblastí ale budeme môcť až po tom, čo preskúmame
deformácie kriviek a pôvodne topologický koncept homotópie pre špeciálny prípad parametrických
kriviek v komplexnej rovine.

Homotópie kriviek najprv definujeme všeobecne pre ľubovoľnú dvojicu parametrických kriviek –
pôjde pritom o zobrazenia udávajúce spojitú transformáciu jednej krivky na druhú. Neskôr nás ale
homotópie budú zaujímať predovšetkým v prípadoch, keď uvažované krivky navyše spĺňajú nejakú
ďalšiu vlastnosť: najčastejšie budeme pracovať s homotópiami po častiach hladkých kriviek, ktoré sú
buď uzavreté, alebo majú rovnaké počiatočné a koncové body. Pre každú z týchto vlastností neskôr
upravíme definíciu homotópií tak, aby príslušnú vlastnosť mali aj krivky získané ako medzivýsledky
spojitej transformácie, ktorá je homotópiou určená.

Definícia 5.3.1. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β]→ C sú krivky také, že γ∗, γ̂∗ ⊆ S. Hovoríme, že
krivky γ a γ̂ sú homotopické v S, ak existuje zobrazenie H : [0, 1] × [α, β] → S spĺňajúce nasledujúce
podmienky:

(i) Zobrazenie H je spojité: pre všetky (τ0, t0) ∈ [0, 1]×[α, β] a všetky ε > 0 teda existuje δ > 0 také,
že pre všetky (τ, t) ∈ [0, 1]× [α, β] spĺňajúce |τ − τ0| < δ a |t− t0| < δ je |H(τ, t)−H(τ0, t0)| < ε.

(ii) Pre všetky t ∈ [α, β] je H(0, t) = γ(t) a H(1, t) = γ̂(t).

Takéto zobrazenie H nazývame homotópiou z γ na γ̂.

Nasledujúce dve tvrdenia sú bezprostrednými dôsledkami faktu, že homotópie sú spojitými zo-
brazeniami na kompaktnej podmnožine [0, 1] × [α, β] metrického priestoru R2. Uvádzame ich však
aj s elementárnymi dôkazmi, ktoré znalosť teórie metrických priestorov nepredpokladajú.

Tvrdenie 5.3.2. Každá homotópia H : [0, 1]× [α, β]→ S, kde S ⊆ C je oblasť, je rovnomerne spojitá.
Pre všetky ε > 0 teda existuje δ > 0 také, že pre všetky τ1, τ2 ∈ [0, 1] a t1, t2 ∈ [α, β] spĺňajúce
|τ1 − τ2| < δ a |t1 − t2| < δ je |H(τ2, t2)−H(τ1, t1)| < ε.

Dôkaz. Za účelom sporu predpokladajme, že existuje ε > 0 také, že pre všetky δ > 0 možno nájsť
τ1,δ, τ2,δ ∈ [0, 1] a t1,δ, t2,δ ∈ [α, β] s |τ1,δ − τ2,δ| < δ, |t1,δ − t2,δ| < δ a |H(τ2,δ, t2,δ)−H(τ1,δ, t1,δ)| ≥ ε.
Z Bolzanovej-Weierstrassovej vety potom vyplýva existencia rastúcej postupnosti (nk)

∞
k=0 kladných

prirodzených čísel takej, že všetky štyri postupnosti (τ1,1/nk)∞k=0, (τ2,1/nk)∞k=0, (t1,1/nk)∞k=0 a (t2,1/nk)∞k=0
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konvergujú k vlastnej limite. Keďže sú obidva intervaly [0, 1] a [α, β] uzavreté a pre všetky k ∈ N je
|τ1,1/nk − τ2,1/nk | < 1/nk a |t1,1/nk − t2,1/nk | < 1/nk, zisťujeme, že existujú τ0 ∈ [0, 1] a t0 ∈ [α, β] také,
že

τ0 = lim
k→∞

τ1,1/nk = lim
k→∞

τ2,1/nk (5.4)

a
t0 = lim

k→∞
t1/nk = lim

k→∞
t2,1/nk . (5.5)

Zo spojitosti homotópie H vyplýva existencia čísla δ > 0 takého, že pre všetky τ ∈ [0, 1] a t ∈ [α, β]
spĺňajúce |τ − τ0| < δ a |t − t0| < δ je |H(τ, t) − H(τ0, t0)| < ε/2. Z toho vyplýva, že aj pre všetky
τ1, τ2 ∈ [0, 1] a t1, t2 ∈ [α, β] spĺňajúce |τ1 − τ0| < δ, |τ2 − τ0| < δ, |t1 − t0| < δ a |t2 − t0| < δ musí byť

|H(τ2, t2)−H(τ1, t1)| = |H(τ2, t2)−H(τ0, t0) +H(τ0, t0)−H(τ1, t1)| ≤
≤ |H(τ2, t2)−H(τ0, t0)|+ |H(τ0, t0)−H(τ1, t1)| < ε.

Pre dostatočne veľké k ∈ N ale vďaka (5.4) a (5.5) iste |τ1,1/nk − τ0| < δ, |τ2,1/nk − τ0| < δ,
|t1,1/nk − t0| < δ a |t2,1/nk − t0| < δ, pričom

|H(τ2,1/nk , t2,1/nk)−H(τ1,1/nk , t1,1/nk)| ≥ ε;

to odporuje pozorovaniu učinenému vyššie.

Tvrdenie 5.3.3. Nech S ⊆ C je oblasť a H : [0, 1] × [α, β] → S homotópia. Obraz H([0, 1] × [α, β])
homotópie H je potom kompaktná podmnožina množiny S.

Dôkaz. Nech a ∈ C je hromadný bod množiny H([0, 1] × [α, β]). Pre všetky n ∈ N \ {0} potom
existuje nejaké zn ∈ H([0, 1] × [α, β]) ∩ D′(a, 1/n). Existujú pritom τn ∈ [0, 1] a tn ∈ [α, β] také,
že zn = H(τn, tn). Z Bolzanovej-Weierstrassovej vety vyplýva existencia rastúcej postupnosti (nk)

∞
k=0

kladných prirodzených čísel takej, že postupnosti (τnk)∞k=0 a (tnk)∞k=0 konvergujú k vlastným limitám
τ0 resp. t0. Vďaka uzavretosti intervalov [0, 1] a [α, β] iste τ0 ∈ [0, 1] a t0 ∈ [α, β]. Dokážeme, že
H(τ0, t0) = a – keďže je a ľubovoľný hromadný bod množiny H([0, 1] × [α, β]), bude tým dokázaná
uzavretosť tejto množiny.

Za účelom sporu predpokladajme, že H(τ0, t0) = b 6= a. Keďže je zobrazenie H spojité, existuje
δ > 0 také, že pre všetky τ ∈ [0, 1] a t ∈ [α, β] spĺňajúce |τ − τ0| < δ a |t− t0| < δ je

|H(τ, t)−H(τ0, t0)| = |H(τ, t)− b| < |b− a|
2

.

Pre dostatočne veľké k ∈ N je ale súčasne |τnk − τ0| < δ, |tnk − t0| < δ a 1/nk < |b− a|/2. Nutne teda

|H(τnk , tnk)− a| = |znk − a| <
|b− a|

2
,

pričom súčasne

|H(τnk , tnk)− b| < |b− a|
2

.

Z trojuholníkovej nerovnosti ale potom dostávame

|b− a| ≤ |H(τnk , tnk)− a|+ |H(τnk , tnk)− b| < |b− a|,

čo je evidentný spor. Množina H([0, 1]× [α, β]) je teda uzavretá.
Zostáva dokázať ohraničenosť množiny H([0, 1] × [α, β]). Za účelom sporu predpokladajme, že je

táto množina neohraničená a pre všetky n ∈ N tak vieme nájsť zn ∈ H([0, 1]× [α, β]) také, že |zn| ≥ n.
Nech τn ∈ [0, 1] a tn ∈ [α, β] sú také, že zn = H(τn, tn). Z Bolzanovej-Weierstrassovej vety opäť
dostávame existenciu rastúcej postupnosti (nk)

∞
k=0 kladných prirodzených čísel takej, že postupnosti
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(τnk)∞k=0 a (tnk)∞k=0 konvergujú k vlastným limitám τ0 resp. t0, pričom vďaka uzavretosti intervalov
[0, 1] a [α, β] je τ0 ∈ [0, 1] a t0 ∈ [α, β]. Označme b = H(τ0, t0). Zo spojitosti funkcie H potom vyplýva,
že pre všetky ε > 0 existuje δ > 0 také, že pre všetky τ ∈ [0, 1] a t ∈ [α, β] spĺňajúce |τ − τ0| < δ
a |t− t0| < δ je

|H(τ, t)−H(τ0, t0)| = |H(τ, t)− b| < ε.

Pre dostatočne veľké k ∈ N ale zrejme |τnk − τ0| < δ a |tnk − t0| < δ, kým

|H(τnk , tnk)− b| = |znk − b| ≥ ε,

čím prichádzame k hľadanému sporu.

Homotópie udávajú spojitú transformáciu jednej krivky na druhú – v nasledujúcom ukážeme, že
aj všetky medzivýsledky tejto transformácie, získané zafixovaním prvého parametra homotópie, sú tiež
krivkami, t. j. spojitými zobrazeniami z intervalu [α, β] do C. Pre všetky homotópieH : [0, 1]×[α, β]→ S
a τ ∈ [0, 1] budeme ako Hτ označovať zobrazenie Hτ : [α, β] → S dané pre všetky t ∈ [α, β] ako
Hτ (t) = H(τ, t).

Tvrdenie 5.3.4. Nech S ⊆ C je oblasť, nech γ, γ̂ : [α, β] → C sú krivky také, že γ∗, γ̂∗ ⊆ S a nech
H : [0, 1] × [α, β] → S je homotópia z γ na γ̂. Pre všetky τ ∈ [0, 1] je potom aj Hτ : [α, β] → S krivka
v oblasti S.

Dôkaz. Zo spojitosti homotópie špeciálne vyplýva, že všetky t0 ∈ [α, β] a ε > 0 existuje δ > 0 také, že
pre všetky t ∈ [α, β] spĺňajúce |t− t0| < δ je

|Hτ (t)−Hτ (t0)| = |H(τ, t)−H(τ, t0)| < ε.

Zobrazenie Hτ : [α, β]→ S je preto spojité – ide teda o krivku v S.

Jednoduchý dôkaz nasledujúceho tvrdenia prenechávame čitateľovi ako užitočné cvičenie.

Tvrdenie 5.3.5. Nech S ⊆ C je oblasť. Relácia „byť homotopický v S “ je reláciou ekvivalencie na mno-
žine všetkých kriviek s obrazmi pod S.

Pre po častiach hladké krivky budeme od homotópií navyše vyžadovať, aby aj všetky medzivýsledky
príslušnej spojitej transformácie boli po častiach hladké krivky.

Definícia 5.3.6. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β] → C sú po častiach hladké krivky také, že
γ∗, γ̂∗ ⊆ S. Hovoríme, že γ a γ̂ sú homotopické v S ako po častiach hladké krivky, ak existuje homotópia
H : [0, 1]× [α, β]→ S taká, že pre všetky τ ∈ [0, 1] je Hτ : [α, β]→ S po častiach hladká krivka. Takúto
homotópiu H nazývame homotópiou po častiach hladkých kriviek z γ na γ̂.

Ak sú ďalej krivky γ, γ̂ : [α, β]→ C uzavreté, budeme aj od homotópií vyžadovať, aby boli všetky
medzivýsledky uzavretými krivkami; pre po častiach hladké uzavreté krivky prirodzene pridávame
aj požiadavku, aby boli medzivýsledky po častiach hladké.

Definícia 5.3.7. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β] → C sú uzavreté (po častiach hladké) krivky
také, že γ∗, γ̂∗ ⊆ S. Hovoríme, že γ a γ̂ sú homotopické v S ako uzavreté (po častiach hladké) krivky,
ak existuje homotópia H : [0, 1] × [α, β] → S taká, že pre všetky τ ∈ [0, 1] je Hτ : [α, β] → S uzav-
retá (po častiach hladká) krivka. Takúto homotópiu H nazývame homotópiou uzavretých (po častiach
hladkých) kriviek z γ na γ̂.

Pre krivky γ, γ̂ : [α, β]→ C s rovnakými počiatočnými a koncovými bodmi napokon tiež uvažujeme
homotópie, pre ktoré majú túto vlastnosť aj všetky medzivýsledky spojitej transformácie.



Predbežná verzia

68 5.3 Homotópie

Definícia 5.3.8. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β] → C sú (po častiach hladké) krivky také, že
γ∗, γ̂∗ ⊆ S, γ(α) = γ̂(α) a γ(β) = γ̂(β). Hovoríme, že γ a γ̂ sú homotopické v S ako (po častiach hladké)
krivky s rovnakými počiatočnými a koncovými bodmi, ak existuje homotópia H : [0, 1] × [α, β] → S
taká, že pre všetky τ ∈ [0, 1] je Hτ : [α, β] → S (po častiach hladká) krivka spĺňajúca Hτ (α) = γ(α)
a Hτ (β) = γ(β). Takúto homotópiu H nazývame homotópiou (po častiach hladkých) kriviek s rovna-
kými počiatočnými a koncovými bodmi z γ na γ̂.

Čitateľ určite ľahko dokáže, že aj práve definované silnejšie varianty homotopickosti určujú relácie
ekvivalencie na príslušných množinách kriviek s obrazmi pod S.

Podmienka z predchádzajúcich definícií, podľa ktorej musí byť interval parametrov [α, β] pre obidve
homotopické krivky rovnaký, je čisto technická a v skutočnosti sa často hovorí aj o homotopických dvo-
jiciach kriviek, pre ktoré sú tieto intervaly rôzne. Každú dvojicu kriviek totiž môžeme reparametrizovať
tak, aby boli výsledné intervaly parametrov pre obidve krivky rovnaké. Nasledujúce tvrdenie, ktorého
dôkaz prenechávame čitateľovi ako jednoduché cvičenie, túto bežnú prax do veľkej miery ospravedlňuje.

Tvrdenie 5.3.9. Nech S ⊆ C je oblasť, γ1, γ2 : [α, β] → C s γ∗1 , γ
∗
2 ⊆ S sú (po častiach hladké)

krivky [resp. uzavreté krivky / krivky s rovnakými počiatočnými a koncovými bodmi ], homotopické v S
ako (po častiach hladké) krivky [resp. uzavreté krivky / krivky s rovnakými počiatočnými a koncovými
bodmi ]. Nech α̂ < β̂ sú reálne čísla a γ̂1, γ̂2 : [α̂, β̂]→ C sú krivky také, že pre všetky t ∈ [α̂, β̂] je

γ̂1(t) = γ1

(
α+

t− α̂
β̂ − α̂

(β − α)

)
a γ̂2(t) = γ2

(
α+

t− α̂
β̂ − α̂

(β − α)

)
.

Potom sú krivky γ̂1 a γ̂2 homotopické v S ako (po častiach hladké) krivky [resp. uzavreté krivky / krivky
s rovnakými počiatočnými a koncovými bodmi ].

Hoci sú uvedené definície homotópií ako spojitých transformácií v topológii bežné, pre naše neskoršie
účely bude vhodnejší iný pohľad na homotopické krivky, založený na nasledujúcom pojme elementárnej
deformácie.

Definícia 5.3.10. Nech S ⊆ C je oblasť a γ, γ̂ sú krivky také, že γ∗, γ̂∗ ⊆ S. Hovoríme, že krivka γ̂
vznikne z krivky γ elementárnou deformáciou v S, ak existuje n ∈ N\{0} a krivky γ1, . . . , γn, γ̂1, . . . , γ̂n
s nasledujúcimi vlastnosťami:

(i) γ = γ1 + . . .+ γn a γ̂ = γ̂1 + . . .+ γ̂n.

(ii) Pre k = 1, . . . , n existuje konvexná oblasť Sk ⊆ S taká, že γ∗k , γ̂
∗
k ⊆ Sk.

Ak sú obidve krivky γ, γ̂ po častiach hladké (resp. uzavreté, prípadne s rovnakými počiatočnými
a koncovými bodmi), hovoríme o elementárnej deformácii po častiach hladkých kriviek (resp. uzavretých
kriviek, prípadne kriviek s rovnakými počiatočnými a koncovými bodmi).

Krivka γ̂ teda vznikne z krivky γ elementárnou deformáciou v S, ak vieme nájsť „reťaz“ konvexných
podoblastí S takých, že obidve krivky γ a γ̂ postupne prechádzajú cez tieto konvexné podoblasti a sú
nimi úplne pokryté. To je znázornené na obrázku 5.3.

Poznámka 5.3.11. V praxi nám zvyčajne nezáleží na počiatočno-koncovom bode γ(α) = γ(β) uzavre-
tej krivky γ : [α, β]→ C a podmienku (ii) predchádzajúcej definície tak pre uzavreté krivky v konečnom
dôsledku nahrádzame podmienkou γ0 + . . .+ γn−1 ∈ Rot(γ) a γ0 + . . .+ γn−1 ∈ Rot(γ), kde pre každú
uzavretú krivku γ : [α, β]→ C je Rot(γ) = {(γ � [µ, β]) + (γ � [α, µ]) | µ ∈ [α, β]}. Integrály pozdĺž kri-
viek v Rot(γ) ale majú očividne rovnakú hodnotu ako integrál pozdĺž γ; nedopúšťame sa teda žiadnej
zásadnej chyby.

Nasledujúca veta charakterizuje homotopické krivky pomocou elementárnych deformácií – tohto
pohľadu na homotopické krivky sa neskôr budeme držať pri dôkaze Cauchyho integrálnej vety pre jed-
noducho súvislú oblasť.
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S

γ
γ

Obr. 5.3: Elementárna deformácia uzavretej krivky γ na uzavretú krivku γ̂ (znázornené sú len tri konvexné
podoblasti).

Veta 5.3.12. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β] → C sú (po častiach hladké) krivky [resp. uzavreté
krivky / krivky s rovnakými počiatočnými a koncovými bodmi ] také, že γ∗, γ̂∗ ⊆ S. Potom γ a γ̂ sú
homotopické v S ako (po častiach hladké) krivky [resp. uzavreté krivky / krivky s rovnakými počia-
točnými a koncovými bodmi ] práve vtedy, keď γ̂ vznikne z γ postupnosťou elementárnych deformácií
(po častiach hladkých) kriviek [resp. uzavretých kriviek / kriviek s rovnakými počiatočnými a koncovými
bodmi ] v oblasti S.

Dôkaz. Predpokladajme najprv, že γ̂ vznikne z γ jedinou elementárnou deformáciou. Potom existuje
n ∈ N \ {0} a (po častiach hladké) krivky γ1, . . . , γn a γ̂1, . . . , γ̂n také, že platí γ1 + . . . + γn = γ
a γ̂1 + . . . + γ̂n = γ̂ a pre k = 1, . . . , n existuje konvexná oblasť Sk ⊆ S, pre ktorú γ∗k , γ̂

∗
k ⊆ Sk.

Bez ujmy na všeobecnosti ďalej predpokladajme, že existujú reálne čísla α = α1 ≤ α2 ≤ . . . ≤ αn
a β1 ≤ β2 ≤ . . . ≤ βn = β také, že pre k = 1, . . . , n sú γk a γ̂k zobrazeniami γk, γ̂k : [αk, βk] → C
a pre k = 1, . . . , n−1 je βk = αk+1. Pre k = 1, . . . , n teraz definujme zobrazenieHk : [0, 1]×[αk, βk]→ C
pre všetky τ ∈ [0, 1] a t ∈ [αk, βk] predpisom

Hk(τ, t) = γk(t) + τ(γ̂k(t)− γk(t));

od bodu γk(t) teda k bodu γ̂k(t) prechádzame postupne po úsečke; konvexnosť oblasti Sk pritom
zaručuje, že pre všetky τ ∈ [0, 1] a t ∈ [αk, βk] je Hk(τ, t) ∈ Sk. Homotópiu H : [0, 1] × [α, β] → C
z γ na γ̂ teraz môžeme pre všetky τ ∈ [0, 1] a t ∈ [α, β] definovať predpisom H(τ, t) = Hk(τ, t), kde
k ∈ {1, . . . , n} je také, že t ∈ [αk, βk].

Je zrejmé, že H je skutočne homotópiou z γ na γ̂. Keďže ďalej obraz každého zo zobrazení Hk leží
pod Sk, musí obraz H ležať pod S – to dokazuje, že H je homotópia v S. Ľahko tiež vidieť, že ak sú
pre k = 1, . . . , n krivky γk a γ̂k po častiach hladké, musí byť pre všetky τ ∈ [0, 1] po častiach hladká aj
krivka Hk,τ : [αk, βk]→ S daná pre všetky t ∈ [αk, βk] ako Hk,τ (t) = γk(t)+τ(γ̂k(t)−γk(t)); v dôsledku
toho je po častiach hladká aj krivka Hτ : [α, β]→ S a H je homotópiou po častiach hladkých kriviek.
Podobne v prípade uzavretosti kriviek γ a γ̂ je γ(α) = γ(β) a γ̂(α) = γ̂(β), z čoho pre všetky τ ∈ [0, 1]
dostávame

Hτ (α) = γ(α) + τ(γ̂(α)− γ(α)) = γ(β) + τ(γ̂(β)− γ(β)) = Hτ (β),

takže H je homotópiou uzavretých kriviek. Ak napokon γ(α) = γ̂(α) a γ(β) = γ̂(β), pre všetky
τ ∈ [0, 1] je tiež

Hτ (α) = γ(α) + τ(γ̂(α)− γ(α)) = γ(α)

a
Hτ (β) = γ(β) + τ(γ̂(β)− γ(β)) = γ(β),

takže H je homotópiou kriviek s rovnakými počiatočnými a koncovými bodmi.
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Ak ďalej γ̂ : [α, β]→ C vznikne z γ : [α, β]→ C postupnosťou m elementárnych deformácií (po čas-
tiach hladkých) kriviek [resp. uzavretých kriviek / kriviek s rovnakými počiatočnými a koncovými
bodmi], z predchádzajúceho vyplýva, že existujú homotópie H [1], . . . ,H [m] : [0, 1]× [α, β]→ S (po čas-
tiach hladkých) kriviek [resp. uzavretých kriviek / kriviek s rovnakými počiatočnými a koncovými
bodmi] také, že pre všetky t ∈ [α, β] je H [1](0, t) = γ(t), H [m](1, t) = γ̂(t) a H [`](1, t) = H [`+1](0, t)
pre ` = 1, . . . ,m − 1. Potom ale ľahko vidieť, že zobrazenie H : [0, 1] × [α, β] → S, dané pre všetky
τ ∈ [0, 1] a t ∈ [α, β] ako H(τ, t) = H [`](τ ′, t), kde ` ∈ {1, . . . ,m} je také, že τ ∈ [(` − 1)/m, `/m]
a τ = (` − 1)/m + τ ′/m, je homotópiou (po častiach hladkých) kriviek [resp. uzavretých kriviek /
kriviek s rovnakými počiatočnými a koncovými bodmi] γ a γ̂ v oblasti S.

Predpokladajme nakoniec, že H : [0, 1] × [α, β] → S je homotópiou (po častiach hladkých) kri-
viek [resp. uzavretých kriviek / kriviek s rovnakými počiatočnými a koncovými bodmi] v oblasti S
z γ : [α, β] → C na γ̂ : [α, β] → C. Podľa tvrdenia 5.3.3 je obraz homotópie H – čiže množina
H([0, 1]× [α, β]) – kompaktnou podmnožinou T množiny S. Keby navyše ohraničená množina T obsa-
hovala body ľubovoľne blízko množiny C\S, s použitím Bolzanovej-Weierstrassovej vety by sme ľahko
našli hromadný bod množiny T , ktorý by bol súčasne prvkom C \ S. To by spoločne s uzavretosťou
množiny T bolo v spore s inklúziou T ⊆ S. Existuje teda ε > 0 také, že pre všetky a ∈ T je D(a, ε) ⊆ S.
Podľa tvrdenia 5.3.3 je ďalej homotópiaH na [0, 1]×[α, β] rovnomerne spojitá. V dôsledku toho existuje
δ > 0 také, že pre všetky dvojice bodov (τ1, t1), (τ2, t2) ∈ [0, 1]× [α, β] je |H(τ1, t1)−H(τ2, t2)| < ε/2
kedykoľvek súčasne |τ2 − τ1| < δ a |t2 − t1| < δ. Bez ujmy na všeobecnosti môžeme predpokladať, že
δ = 1/m pre nejaké kladné prirodzené číslo m. „Dostatočne hustým“ konečným pokrytím krivky Hk/m

okoliami s polomerom ε tak pre k = 0, . . . ,m − 1 získavame konvexné oblasti zaručujúce existenciu
elementárnej deformácie tejto krivky na krivku H(k+1)/m.2 Krivka γ̂ teda skutočne vznikne z γ po-
stupnosťou elementárnych deformácií (po častiach hladkých) kriviek [resp. uzavretých kriviek / kriviek
s rovnakými počiatočnými a koncovými bodmi] v oblasti S.

Dokážeme teraz, že ak krivka γ̂ vznikne v oblasti S elementárnou deformáciou z krivky γ̃ a krivka γ̃
vznikne elementárnou deformáciou z γ, bude rovnaká vlastnosť platiť aj v prípade, že „prostrednú“
krivku γ̃ nahradíme vhodnou lomenou čiarou s obrazom pod S. Pod lomenou čiarou tu máme na mysli
krivku π takú, že π = [a0, a1] + [a1, a2] + . . .+ [an−1, an] pre nejaké n ∈ N a a0, . . . , an ∈ C.

Lema 5.3.13. Nech S ⊆ C je oblasť a γ, γ̃, γ̂ : [α, β] → S sú krivky také, že γ∗, γ̃∗, γ̂∗ ⊆ S, pričom γ̃
vznikne elementárnou deformáciou krivky γ v S a γ̂ vznikne elementárnou deformáciou krivky γ̃ v S.
Potom existuje lomená čiara π taká, že π∗ ⊆ S, π vznikne elementárnou deformáciou krivky γ v S a γ̂
vznikne elementárnou deformáciou lomenej čiary π v S. Ak sú navyše krivky γ, γ̃ a γ̂ uzavreté, možno aj
lomenú čiaru π zvoliť ako uzavretú; ak γ, γ̃ a γ̂ sú také, že γ(α) = γ̃(α) = γ̂(α) a γ(β) = γ̃(β) = γ̂(β),
možno aj lomenú čiaru π : [α, β]→ C zvoliť tak, aby π(α) = γ(α) = γ̂(α) a π(β) = γ(β) = γ̂(β).

Dôkaz. Nech S1, . . . , Sn ⊆ S sú konvexné oblasti z definície 5.3.10 pre elementárnu deformáciu γ
na γ̃ a T1, . . . , Tm ⊆ S sú takéto konvexné oblasti pre elmentárnu deformáciu γ̃ na γ̂. Evidentne potom
existujú α1, . . . , αs ∈ R také, že α = α1 ≤ α2 ≤ . . . ≤ αs = β a pre k = 1, . . . , s−1 sú obidva body γ̃(αk)
a γ̃(αk+1) prvkami nejakého Sp pre p ∈ {1, . . . , n}, ako aj nejakého Tq pre q ∈ {1, . . . ,m}. Z konvexnosti
oblastí Sp a Tq potom dostávame [γ̃(αk), γ̃(αk+1)]∗ ⊆ Sp ∩ Tq. Vhodná reparametrizácia lomenej čiary
π = [γ̃(α1), γ̃(α2)] + [γ̃(α2), γ̃(α3)] + . . .+ [γ̃(αs−1), γ̃(αs)] tak má požadované vlastnosti.

Práve učinené pozorovanie teraz využijeme na dôkaz, že dve po častiach hladké krivky homotopické
v zmysle definície pre všeobecné krivky sú nutne homotopické aj ako po častiach hladké krivky. Ďalej
už teda medzi homotópiami pre všeobecné a po častiach hladké krivky nebudeme musieť rozlišovať.
Aj naďalej však budeme musieť rozlišovať medzi homotópiami uzavretých kriviek, homotópiami kriviek
s rovnakými počiatočnými a koncovými bodmi a homotópiami kriviek bez niektorej z týchto dvoch
vlastností – tieto druhy homotópií sú fundamentálne odlišné.

2Môžeme vziať napríklad okolia D(H(k/m,α+ jδ), ε) pre j = 0, . . . , b(β − α)/δc.
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Veta 5.3.14. Nech S ⊆ C je oblasť a γ, γ̂ : [α, β] → C sú po častiach hladké krivky [resp. uzavreté
krivky / krivky s rovnakými počiatočnými a koncovými bodmi ] také, že γ∗, γ̂∗ ⊆ S. Krivky γ, γ̂ sú potom
homotopické v S ako krivky [resp. uzavreté krivky / krivky s rovnakými počiatočnými a koncovými
bodmi ] práve vtedy, keď sú homotopické v S ako po častiach hladké krivky [resp. uzavreté krivky /
krivky s rovnakými počiatočnými a koncovými bodmi ].

Dôkaz. Keďže je každá homotópia po častiach hladkých kriviek zároveň aj homotópiou kriviek, je im-
plikácia sprava doľava triviálna. Opačná implikácia vyplýva zo skutočnosti, že ak sú γ a γ̂ homotopické
ako (všeobecné) krivky, musí podľa vety 5.3.12 po častiach hladká krivka γ̂ vzniknúť z po častiach hlad-
kej krivky γ postupnosťou elementárnych deformácií v S. Vďaka leme 5.3.13 môžeme predpokladať, že
všetky ďalšie krivky vystupujúce v tejto postupnosti elementárnych deformácií sú lomenými čiarami.
Keďže je ale každá lomená čiara zároveň aj po častiach hladkou krivkou, vznikne γ̂ z γ postupnosťou
elementárnych deformácií po častiach hladkých kriviek. Krivky γ a γ̂ teda sú – opäť podľa vety 5.3.12
– homotopické ako po častiach hladké krivky.

5.4 Veta o deformácii

Význam homotópií pre komplexnú analýzu je daný predovšetkým nasledujúcou vetou, podľa ktorej
majú integrály pozdĺž homotopických uzavretých po častiach hladkých kriviek rovnaké hodnoty.

Veta 5.4.1 (O deformácii). Nech S ⊆ C je oblasť, f : S → C je holomorfná na S a γ, γ̂ sú uzavreté
po častiach hladké krivky spĺňajúce γ∗, γ̂∗ ⊆ S a navzájom homotopické v S. Potom∫

γ
f(z) dz =

∫
γ̂
f(z) dz.

Dôkaz. Tvrdenie stačí dokázať pre prípad, keď γ̂ vznikne z γ elementárnou deformáciou. Nech teda
S0, . . . , Sn−1 ⊆ S sú konvexné oblasti a γ0, . . . , γn−1, γ̂0, . . . , γ̂n−1 sú po častiach hladké krivky také, že
pre k = 0, . . . , n− 1 je γ∗k , γ̂

∗
k ⊆ Sk, pričom γ0 + . . .+ γn−1 = γ a γ̂0 + . . .+ γ̂n−1 = γ̂.

γj

γj

Sj

Obr. 5.4: Krivka γ̂j = γj + [γj(β), γ̂j(β̂)] + (−γ̂j) + [γ̂j(α̂), γj(α)] (pozdĺž čiernych šípok).

Zvoľme teraz pevné j ∈ {0, . . . , n− 1} a predpokladajme, že γj je zobrazenie γj : [αj , βj ]→ C a γ̂j
je zobrazenie γ̂j : [α̂j , β̂j ] → C. Uvažujme krivku γ̃j := γj + [γj(βj), γ̂j(β̂j)] + (−γ̂j) + [γ̂j(α̂j), γj(αj)],
znázornenú na obrázku 5.4. Z Cauchyho integrálnej vety pre konvexnú oblasť potom∫

γ̃j

f(z) dz = 0.
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Súčasne ale pre k = 0, . . . , n−1 je [γk(βk), γ̂k(β̂k)] = −[γ̂k+1(α̂k+1), γk+1(αk+1)] (kde k+1 je modulo n),
z čoho ∫

γ
f(z) dz −

∫
γ̂
f(z) dz =

n−1∑
k=0

(∫
γk

f(z) dz −
∫
γ̂k

f(z) dz

)
=

n−1∑
k=0

∫
γ̃k

f(z) dz = 0.

Preto ∫
γ
f(z) dz =

∫
γ̂
f(z) dz,

čo bolo treba dokázať.

5.5 Jednoducho súvislé oblasti

Zavedieme teraz kľúčový pojem jednoducho súvislej oblasti. Intuitívne by malo byť zrejmé, že jedno-
duchá uzavretá krivka γ v oblasti S je homotopická s nejakým bodom a – ktorý chápeme ako krivku
γa : [α, β]→ C takú, že γa(t) = a pre všetky t ∈ [α, β] – práve vtedy, keď „vnútro krivky γ celé leží v S “
– zatiaľ pritom nechajme bokom fakt, že už samotný pojem „vnútra krivky“ je viac ako problematický.
Homotopickosť každej (nie nutne jednoduchej) uzavretej krivky v oblasti S s nejakým bodom v S teda
vyjadruje intuitívnu skutočnosť, že oblasť S „nemá diery“ . Práve takéto oblasti nazveme jednoducho
súvislými.

Definícia 5.5.1. Oblasť S ⊆ C je jednoducho súvislá, ak je každá uzavretá krivka γ s γ∗ ⊆ S homo-
topická v S s nejakým bodom a ∈ S (chápaným ako uzavretá krivka).

Na obrázku 5.5 sú znázornené dva príklady oblastí – prvá z nich je a druhá nie je jednoducho
súvislá.

S

(a) Jednoducho súvislá oblasť.

S

(b) Oblasť, ktorá nie je jednoducho súvislá.

Obr. 5.5: Ilustrácia pojmu jednoduchej súvislosti.

Príklad 5.5.2. Každá konvexná oblasť je očividne jednoducho súvislá. Na druhej strane napríklad
žiadne medzikružie nie je jednoducho súvislé – to ale vyplynie až z Cauchyho vety pre jednoducho
súvislú oblasť, ktorú onedlho dokážeme (napríklad integrál funkcie 1/(z− a) pozdĺž ľubovoľnej kladne
orientovanej kružnice v danom medzikruží, kde a je stred tohto medzikružia, má hodnotu 2πi; funkcia
1/(z − a) je ale na medzikruží holomorfná).

Množstvo rozličných pohľadov na homotopické krivky má celkom samozrejme za následok, že aj
jednoducho súvislé oblasti možno charakterizovať rozličnými spôsobmi. Niektoré z týchto charakteri-
zácií teraz dokážeme; intuitívne by však mali byť všetky nasledujúce tvrdenia zrejmé.

Tvrdenie 5.5.3. Nech S ⊆ C je oblasť. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Oblasť S je jednoducho súvislá.

(ii) Každá uzavretá krivka γ s γ∗ ⊆ S je homotopická v S s nejakým bodom a ∈ S.

(iii) Každá uzavretá po častiach hladká krivka γ s γ∗ ⊆ S je homotopická v S s nejakým bodom a ∈ S.

(iv) Každá uzavretá lomená čiara γ s γ∗ ⊆ S je homotopická v S s nejakým bodom a ∈ S.
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Dôkaz. Tvrdenie (ii) je našou definíciou jednoducho súvislých oblastí. Je ďalej zrejmé, že (ii) implikuje
(iii) a (iii) implikuje (iv). Zostáva dokázať, že (iv) implikuje (ii). Ak však pokryjeme uzavretú krivku γ
konečným počtom okolí3 typuD(z, ε), kde z ∈ γ∗ a pre ε > 0 jeD(z, ε) ⊆ S, môžeme v každom z týchto
okolí nahradiť daný úsek krivky γ úsečkou, pričom pôjde o elementárnu deformáciu. Každá uzavretá
krivka v každej oblasti S je teda homotopická s nejakou uzavretou lomenou čiarou, a tvrdenie (iv) teda
skutočne implikuje (ii).

Tvrdenie 5.5.4. Nech S ⊆ C je oblasť. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Oblasť S je jednoducho súvislá.

(ii) Každé dve uzavreté krivky γ1, γ2 : [α, β]→ C s γ∗1 , γ
∗
2 ⊆ S sú homotopické v S.

(iii) Každé dve uzavreté po častiach hladké krivky γ1, γ2 : [α, β]→ C s γ∗1 , γ
∗
2 ⊆ S sú homotopické v S.

(iv) Každé dve uzavreté lomené čiary γ1, γ2 : [α, β]→ C s γ∗1 , γ
∗
2 ⊆ S sú homotopické v S.

Dôkaz. Tvrdenia (ii) až (iv) sú navzájom ekvivalentné podľa rovnakej argumentácie, ako v predchá-
dzajúcom tvrdení. Zostáva dokázať, že napríklad tvrdenie (ii) je ekvivalentné jednoduchej súvislosti
oblasti S. Ak sú však všetky dvojice uzavretých kriviek homotopické v S, je nutne každá uzavretá
krivka homotopická aj s nejakým bodom (t. j. degenerovanou uzavretou krivkou). Ak je naopak každá
uzavretá krivka homotopická v S s nejakým bodom v S, je homotopická s každým bodom v S, pretože
v súvislej oblasti môžeme každú dvojicu bodov spojiť lomenou čiarou a túto čiaru pokryť okoliami
slúžiacimi ako konvexné oblasti pre postupnosť niekoľkých elementárnych deformácií. Tvrdenie (ii)
tak dostávame s využitím tranzitívnosti relácie „byť homotopický v S “ .

Na dôkaz poslednej z charakterizácií potrebujeme jednu pomocnú lemu, ktorá je však zaujímavým
tvrdením sama o sebe.

Lema 5.5.5. Nech S ⊆ C je oblasť, a ∈ S a γ : [α, β] → C s γ∗ ⊆ S a γ(α) = γ(β) = a je uzavretá
krivka. Potom je krivka γ homotopická v S s bodom a ako uzavretá krivka práve vtedy, keď sú γ s a
homotopické v S ako krivky s rovnakými počiatočnými a koncovými bodmi.

Dôkaz. Implikácia „sprava doľava“ je triviálna. Stačí teda dokázať, že homotopickosť γ s a, chápaných
ako uzavreté krivky, v oblasti S, má za následok, že sú γ s a homotopické v S aj ako krivky s rovnakými
počiatočnými a koncovými bodmi.

Bez ujmy na všeobecnosti predpokladajme, že aj bod a je daný uzavretou krivkou parametrizovanou
intervalom [α, β]. Nech H : [0, 1]× [α, β]→ S je homotópia uzavretých kriviek z γ na a.

Uvažujme krivku γ̂ : [α− 1, β + 1]→ C danú pre všetky t ∈ [α− 1, β + 1] takto:

γ̂(t) =


a ak t ∈ [α− 1, α],
γ(t) ak t ∈ [α, β],
a ak t ∈ [β, β + 1].

Je zrejmé, že γ̂ a γ sú – po reparametrizácii jednej z týchto kriviek v zmysle tvrdenia 5.3.9 – homotopické
krivky s rovnakými počiatočnými a koncovými bodmi (v oblasti S). Stačí preto dokázať, že γ̂ a a
sú homotopické v S ako krivky s rovnakými počiatočnými a koncovými bodmi. Tu môžeme využiť
homotópiu H a definovať zobrazenie

Ĥ : [0, 1]× [α− 1, β + 1]→ S

3To, že takéto konečné pokrytie vždy existuje, vyplýva napríklad z cvičenia 4 kapitoly 1 a zo skutočnosti, že množina γ∗

je – ako spojitý obraz kompaktnej podmnožiny R – nutne kompaktná. Detaily prenechávame čitateľovi ako cvičenie.



Predbežná verzia

74 5.6 Cauchyho integrálna veta pre jednoducho súvislú oblasť

pre všetky τ ∈ [0, 1] a t ∈ [α− 1, β + 1] takto:

Ĥ(τ, t) =


H(t− α+ 1, α) ak t ∈ [α− 1, α− 1 + τ ],
H(τ, α) ak t ∈ [α− 1 + τ, α],
H(τ, t) ak t ∈ [α, β],
H(τ, β) ak t ∈ [β, β + 1− τ ],
H(β + 1− t, β) ak t ∈ [β + 1− τ, β + 1].

Zrejme ide o homotópiu kriviek s rovnakými počiatočnými a koncovými bodmi – pre všetky τ ∈ [0, 1]
totiž Ĥ(τ, α − 1) = a a Ĥ(τ, β + 1) = a. Navyše Ĥ0 = γ̂ a – keďže trajektória bodu γ(α) = a je
pri homotópii H rovnaká ako trajektória (toho istého) bodu γ(β) = a, existuje uzavretá krivka γa
s počiatočným a zároveň koncovým bodom a taká, že Ĥ1 = γa + (−γa). Krivky γ̂ a γa + (−γa) sú teda
homotopické v S ako krivky s rovnakými počiatočnými a koncovými bodmi.

Krivka γa + (−γa) je evidentne homotopická v S s bodom a (pričom ide o homotópiu kriviek
s rovnakými počiatočnými a koncovými bodmi). V dôsledku toho sú teda v S homotopické, ako krivky
s rovnakými počiatočnými a koncovými bodmi, aj γ̂ s a a γ s a. Tým je dôkaz lemy dokončený.

Tvrdenie 5.5.6. Nech S ⊆ C je oblasť. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Oblasť S je jednoducho súvislá.

(ii) Každé dve krivky γ1, γ2 : [α, β] → C s γ∗1 , γ
∗
2 ⊆ S s rovnakými počiatočnými a koncovými bodmi

sú homotopické v S.

(iii) Každé dve po častiach hladké krivky γ1, γ2 : [α, β] → C s γ∗1 , γ
∗
2 ⊆ S s rovnakými počiatočnými

a koncovými bodmi sú homotopické v S.

(iv) Každé dve lomené čiary γ1, γ2 : [α, β] → C s γ∗1 , γ
∗
2 ⊆ S s rovnakými počiatočnými a koncovými

bodmi sú homotopické v S.

Dôkaz. Rovnaká argumentácia ako v tvrdení 5.5.3 opäť dokazuje ekvivalenciu tvrdení (ii) až (iv).
Zostáva dokázať ekvivalenciu týchto tvrdení s tvrdením (i).

Ak sú však každé dve krivky s rovnakými počiatočnými a koncovými bodmi homotopické v S, je
špeciálne aj každá uzavretá krivka v S homotopická s nejakým bodom na tejto krivke. Tieto krivky
homotopické ako krivky s rovnakými počiatočnými a koncovými bodmi sú homotopické aj ako uzavreté
krivky a oblasť S je jednoducho súvislá.

Nech je naopak oblasť S jednoducho súvislá – dokážeme, že platí (ii). Uvažujme krivky γ1, γ2

s γ∗1 , γ∗2 ⊆ S, so spoločným počiatočným bodom a ∈ S a spoločným koncovým bodom b ∈ S. Krivka
γ1 +(−γ2) je uzavretá, a teda homotopická s bodom a ako uzavretá krivka. Podľa lemy 5.5.5 sú krivky
γ1 + (−γ2) a a homotopické aj ako krivky s rovnakými počiatočnými a koncovými bodmi.

Krivka γ1 je – po vhodnej reparametrizácii – očividne homotopická s krivkou γ1 +b; bod b je navyše
homotopický s krivkou (−γ2)+γ2. V dôsledku toho je krivka γ1 homotopická s krivkou γ1 +(−γ2)+γ2

a z vyššie dokázaného vyplýva, že táto krivka je homotopická s krivkou a + γ2, ktorá je triviálne
homotopická s γ2. Krivky γ1 a γ2 sú teda homotopické, čo bolo treba dokázať.

5.6 Cauchyho integrálna veta pre jednoducho súvislú oblasť

Rozšírenie Cauchyho integrálnej vety na ľubovoľnú jednoducho súvislú oblasť je už v tomto momente
triviálnou záležitosťou. Namiesto o Cauchyho integrálnej vete pre jednoducho súvislú oblasť budeme
väčšinou hovoriť len o Cauchyho integrálnej vete – pôjde totiž o najvšeobecnejší variant tejto vety,
ktorý nateraz dokážeme.
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Veta 5.6.1 (Cauchyho integrálna veta). Nech S ⊆ C je jednoducho súvislá oblasť a f : S → C je
holomorfná na S. Potom pre každú uzavretú po častiach hladkú krivku γ s γ∗ ⊆ S je∫

γ
f(z) dz = 0.

Dôkaz. Keďže je oblasť S jednoducho súvislá, je krivka γ homotopická s nejakou degenerovanou krivkou
γ̂ takou, že γ̂∗ = {a} pre nejaký bod a ∈ C; ľahko vidieť, že takáto krivka γ̂ má všade nulovú deriváciu,
v dôsledku čoho je integrál ľubovoľnej spojitej funkcie pozdĺž nej nulový. Z vety o deformácii potom∫

γ
f(z) dz =

∫
γ̂
f(z) dz = 0,

čo bolo treba dokázať.

Podľa vety 4.6.3 je nulovosť integrálov funkcie f pozdĺž všetkých uzavretých po častiach hladkých
kriviek v danej oblasti ekvivalentná ďalším dvom podmienkam. Táto skutočnosť je natoľko dôležitá,
že ju zdôrazníme explicitne.

Dôsledok 5.6.2. Nech S ⊆ C je jednoducho súvislá oblasť a f : S → C je holomorfná na S. Potom:

a) Existuje funkcia F : S → C holomorfná na S taká, že F ′ = f . Táto funkcia navyše môže byť pre
ľubovoľné pevné z0 ∈ S daná pre všetky z ∈ S ako

F (z) =

∫
γ
f(w) dw,

kde γ je ľubovoľná po častiach hladká krivka s počiatočným bodom z0 a koncovým bodom z taká,
že γ∗ ⊆ S.

b) Pre každú dvojicu po častiach hladkých kriviek γ1, γ2 s γ∗1 , γ
∗
2 ⊆ S a zhodnými počiatočnými

a koncovými bodmi platí ∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

Dôkaz. Vyplýva bezprostredne z vety 5.6.1 a vety 4.6.3.

5.7 Jordanova a Jordanova-Schoenfliesova veta

Uvedieme teraz dve významné topologické vety vyznačujúce sa intuitívnou zrejmosťou ich tvrdení,
no na druhej strane značnou netriviálnosťou ich dôkazov – Jordanovu vetu (o kružnici) a Jordanovu-
Schoenfliesovu vetu. Tieto vety nebudeme dokazovať, ale občas ich budeme využívať. Vždy, keď sa tak
stane, explicitne na to upozorníme.

Jordanova veta hovorí o tom, že každá jednoduchá uzavretá krivka – čiže každá Jordanova krivka
– γ rozdeľuje komplexnú rovinu na dve podoblasti (t. j. súvislé otvorené podmnožiny). Jedna z nich je
pritom ohraničená a nazveme ju vnútrom krivky γ; ďalšia je neohraničená a nazveme ju vonkajškom
krivky γ. Hoci je toto tvrdenie intuitívne očividné, jeho dôkaz nie je zďaleka triviálny.

Veta 5.7.1 (Jordanova veta). Nech γ je jednoduchá uzavretá krivka. Množinu C \ γ∗ potom možno
vyjadriť ako disjunktné zjednotenie oblastí I(γ) a O(γ), kde I(γ) je ohraničená a O(γ) je neohraničená.
Oblasť I(γ) nazývame vnútrom krivky γ a oblasť O(γ) nazývame jej vonkajškom.

Pre naše účely bude podstatný ešte jeden súvisiaci fakt: vnútro každej Jordanovej krivky je nielen
súvislé, ale dokonca jednoducho súvislé. To je opäť intuitívne zrejmé, pretože vo vnútre jednoduchej
uzavretej krivky „nemajú ako vzniknúť diery“ . Dôkaz tohto tvrdenia je ešte náročnejší ako v prípade
Jordanovej vety – jeho základným kameňom je totiž nasledujúca netriviálna Jordanova-Schoenfliesova
veta; pod homeomorfizmom chápeme spojitú bijekciu ϕ : C→ C, ktorá má aj spojitú inverznú funkciu.
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Veta 5.7.2 (Jordanova-Schoenfliesova veta). Nech γ je jednoduchá uzavretá krivka. Potom existuje
homeomorfizmus ϕ : C→ C taký, že ϕ(I(γ)) = D(0, 1), ϕ(γ∗) = κ(0, 1)∗ a ϕ(O(γ)) = C \D(0, 1).

Jednoduchá súvislosť množiny I(γ) je dôsledkom Jordanovej-Schoenfliesovej vety, pretože jedno-
duchá súvislosť je topologický invariant : množina S ⊆ C je jednoducho súvislá práve vtedy, keď je
jednoducho súvislá množina ϕ(S) pre ľubovoľný homeomorfizmus ϕ. Homotópie a homeomorfizmy
totiž spolu možno skladať, pričom výsledkom je opäť homotópia; homeomorfným obrazom Jordanovej
krivky je pritom opäť Jordanova krivka a homeomorfným obrazom bodu je opäť bod. Druhá časť nasle-
dujúceho dôsledku vyplýva z toho, že sa hranica množiny I(γ) – čiže množina γ∗ – pri homeomorfizme
zobrazí na κ(0, 1)∗.

Dôsledok 5.7.3. Nech γ je jednoduchá uzavretá krivka. Potom je množina I(γ) jednoducho súvislá.
Pre všetky oblasti S ⊇ γ∗∪I(γ) navyše existuje jednoducho súvislá oblasť G ⊆ S taká, že G ⊇ γ∗∪I(γ).

Prijatie takto netriviálnych viet za „axiómy“ môže u čitateľa vzbudiť oprávnenú nevôľu. V nasle-
dujúcom ich ale budeme využívať relatívne minimalisticky:

• Jordanovu vetu a dôsledok 5.7.3 budeme okrem nasledujúceho oddielu potrebovať v kapitole 6
pri formulácii a dôkaze niektorých všeobecnejších variantov Cauchyho integrálneho vzorca. Vždy,
keď bude v znení alebo dôkaze niektorého tvrdenia Jordanova alebo Jordanova-Schoenfliesova
veta ukrytá, explicitne na to upozorníme.

• Slabšie varianty Cauchyho integrálneho vzorca dokážeme bez použitia spomínaných nedokáza-
ných tvrdení. Pre ďalšie krivky v praxi používané v súvislosti s Cauchyho integrálnym vzorcom –
napríklad pre uzavreté krivky zložené z konečného počtu úsečiek a kruhových oblúkov – je navyše
ľahké dokázať Jordanovu vetu aj dôsledok 5.7.3 ad hoc; nedôverčivý čitateľ teda môže závislosť
tvrdení od Jordanovej vety a dôsledku 5.7.3 interpretovať aj ako dodatočný predpoklad, ktorý je
pri ich použití potrebné overiť.

• Neskôr dokážeme iný – a dokonca ešte o niečo všeobecnejší – variant Cauchyho integrálneho
vzorca, pri formulácii a dôkaze ktorého nebude potrebná ani Jordanova veta, ani dôsledok 5.7.3.
Cesta k tomuto variantu Cauchyho integrálneho vzorca je ale o niečo menej intuitívna, než je
tomu pre varianty Jordanovu vetu využívajúce (čo je aj dôvodom, prečo sa týmito variantmi
vôbec budeme zaoberať).

5.8 Ďalšie tvrdenie o deformácii

Nasledujúce tvrdenie, pri formulácii a dôkaze ktorého budeme používať ako Jordanovu vetu, tak aj
dôsledok 5.7.3, využijeme v nasledujúcej kapitole pri dôkaze niektorých variantov Cauchyho integrál-
neho vzorca.

Tvrdenie 5.8.1. Nech S ⊆ C je oblasť, γ s γ∗ ∪ I(γ) ⊆ S kladne orientovaná jednoduchá uzavretá
po častiach hladká krivka, a ∈ I(γ) bod, s > 0 číslo také, že D(a, s) ⊆ I(γ) a f : S \D(a, s)→ C funkcia
holomorfná na S \D(a, s). Nech ďalej r > s je číslo také, že κ(a, r)∗ ⊆ I(γ). Potom∫

γ
f(z) dz =

∫
κ(a,r)

f(z) dz.

Dôkaz. Nech γ je zobrazenie typu γ : [α, β] → C. Veďme z bodu κ(a, r)(π/2) polpriamku v smere
rastúcej imaginárnej zložky; z ohraničenosti I(γ) vyplýva, že sa táto polpriamka v niektorom bode
γ(µ) po prvý raz pretne s krivkou γ. Podobne môžeme viesť polpriamku z bodu κ(a, r)(3π/2) v smere
klesajúcej imaginárnej zložky a táto sa s krivkou γ po prvý raz pretne v nejakom inom bode γ(ν).
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S

γ

a
s

κ(a, r)

Obr. 5.6: Krivky zo znenia tvrdenia 5.8.1.

Bez ujmy na všeobecnosti môžeme predpokladať, že µ = α, a teda γ(µ) = γ(α) = γ(β); v opačnom
prípade stačí krivku γ reparametrizovať. Označme teraz

γ1 := (κ(a, r) � [π/2, 3π/2]) + [κ(a, r)(3π/2), γ(ν)] + (− (γ � [α, ν])) + [γ(α), κ(a, r)(π/2)],

γ2 := (κ(a, r) � [3π/2, 2π]) + (κ(a, r) � [0, π/2]) + [κ(a, r)(π/2), γ(α)] + (− (γ � [ν, β])) +

+ [γ(ν), κ(a, r)(3π/2)].

Tieto krivky sú znázornené na obrázku 5.7.

S

γ1 a
s

κ(a, r)

γ2

Obr. 5.7: Konštrukcia kriviek γ1 a γ2 v dôkaze tvrdenia 5.8.1.

Krivky γ1 a γ2 sú jednoduché a uzavreté – z dôsledku 5.7.3 teda vyplýva, že γ∗1∪I(γ1) a γ∗2∪I(γ2) sú
podmnožinami nejakých jednoducho súvislých oblastí G1 resp. G2, ktoré navyše možno zvoliť tak, aby
boli obsiahnuté v S \D(a, s). Funkcia f je teda holomorfná na G1 aj na G2 a z Cauchyho integrálnej
vety dostávame ∫

−γ
f(z) dz +

∫
κ(a,r)

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz = 0,

z čoho už priamo vyplýva ∫
γ
f(z) dz =

∫
κ(a,r)

f(z) dz.

Tvrdenie je dokázané.
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Tvrdenie 5.8.1 môžeme použiť napríklad na zosilnenie tvrdenia 4.3.5 hovoriaceho o hodnotách prav-
depodobne najvýznamnejších konkrétnych integrálov v komplexnej analýze – v ňom už teraz nemusíme
uvažovať integrály pozdĺž kružníc okolo bodu a ∈ C; rovnaké hodnoty dostaneme aj integrovaním po-
zdĺž ľubovoľnej jednoduchej uzavretej po častiach hladkej krivky takej, že bod a leží v jej vnútri.

Dôsledok 5.8.2. Nech a ∈ C, γ je jednoduchá uzavretá po častiach hladká krivka taká, že a 6∈ γ∗

a k ∈ Z. Potom ∫
γ
(z − a)k dz =


0 ak k ∈ Z \ {−1},
2πi ak k = −1 a a ∈ I(γ),
0 ak k = −1 a a ∈ O(γ).

Dôkaz. Pre a ∈ I(γ) stačí použiť tvrdenie 4.3.5 a tvrdenie 5.8.1. Tvrdenie pre a ∈ O(γ) vyplýva
napríklad z Cauchyho integrálnej vety a dôsledku 5.7.3.

Cvičenia

1. Dokážte tvrdenie 5.3.5.

2. Dokážte tvrdenie 5.3.9.

3. Dokážte, že každá uzavretá krivka γ s γ∗ ⊆ D′(0, 1) je homotopická v D′(0, 1), ako uzavretá
krivka, s nejakou uzavretou krivkou γ̂ takou, že γ̂∗ ⊆ κ(0, 1/2)∗.

4. Nech S ⊆ C je oblasť, f : S → C je holomorfná na S a γ, γ̂ sú homotopické po častiach hladké
krivky s rovnakým počiatočným a koncovým bodom spĺňajúce γ∗, γ̂∗ ⊆ S. Dokážte, že potom∫

γ
f(z) dz =

∫
γ̂
f(z) dz.

5. Doplňte vynechané detaily v dôkaze tvrdenia 5.5.3.

6. Zistite, ktoré z nasledujúcich oblastí sú jednoducho súvislé:

a) S1 = C \ (−∞, 0];

b) S2 = C \ [−1, 0];

c) S3 = D(0, 1) \ (−1, 0];

d) S4 = D(0, 1) \ [−1/2, 0].

Svoje tvrdenia dokážte.
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Cauchyho integrálny vzorec I

Cauchyho integrálny vzorec umožňuje vyjadriť hodnotu holomorfnej funkcie f v bode a prostredníc-
tvom integrálu istej jemne pozmenenej funkcie pozdĺž krivky obkolesujúcej bod a. Ide pritom o jeden
z najdôležitejších stavebných kameňov komplexnej analýzy s množstvom zaujímavých dôsledkov nielen
pre vlastnosti holomorfných funkcií.

V rámci tejto kapitoly najprv sformulujeme a dokážeme samotný Cauchyho integrálny vzorec,
a to hneď v troch variantoch líšiacich sa triedou uvažovaných integračných kriviek. Následne tento
vzorec aplikujeme na dôkaz Liouvillovej vety, ktorej dôsledkom bude základná veta algebry: každý
polynóm stupňa n s komplexnými koeficientmi má práve n komplexných koreňov. Ďalej dokážeme,
že každá holomorfná funkcia má derivácie ľubovoľného rádu a odvodíme Cauchyho integrálne vzorce
pre jednotlivé derivácie. V závere kapitoly napokon dokážeme Morerovu vetu, ktorá je užitočným
nástrojom na dokazovanie holomorfnosti niektorých komplikovanejších funkcií.

6.1 Cauchyho integrálny vzorec

Cauchyho integrálny vzorec sformulujeme a dokážeme v troch jemne odlišných podobách. Najprv do-
kážeme „základnú verziu“ tohto vzorca, kde krivka obkolesujúca bod a je kladne orientovaná kružnica
so stredom v a – to bude naša veta 6.1.1. Využitím známych tvrdení o deformáciách kriviek ľahko
získame analogické tvrdenia aj pre iné typy uzavretých integračných kriviek. S nástrojmi nezávislými
od Jordanovej a Jordanovej-Schoenfliesovej vety pritom dospejeme k vete 6.1.2; s nástrojmi spolieha-
júcimi sa na tieto nedokázané tvrdenia zas dospejeme k vete 6.1.3.

Je dôležité si uvedomiť, že nasledujúca veta požaduje holomorfnosť funkcie nielen na kružnici κ(a, r),
ale aj v jej vnútri.

Veta 6.1.1 (Cauchyho integrálny vzorec, formulácia I). Nech S ⊆ C je oblasť, a ∈ S je bod, r > 0 je
polomer taký, že D(a, r) ⊆ S a f : S → C je holomorfná na S. Potom

f(a) =
1

2πi

∫
κ(a,r)

f(w)

w − a
dw.

Dôkaz. Ak v dokazovanom vzorci nahradíme premennú f(w) konštantou f(a), je podľa tvrdenia 4.3.5

1

2πi

∫
κ(a,r)

f(a)

w − a
dw =

f(a)

2πi

∫
κ(a,r)

1

w − a
dw = f(a).

Funkcia f je v bode a holomorfná – pre všetky ε > 0 preto existuje δ > 0 také, že pre w ∈ D(a, δ)∩ S
je ∣∣∣∣f(w)− f(a)

w − a

∣∣∣∣ ≤ ∣∣f ′(a)
∣∣+ ε.
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Pre r < δ tak z vety o odhade dostávame∣∣∣∣∣ 1

2πi

∫
κ(a,r)

f(w)

w − a
dw − f(a)

∣∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∫
κ(a,r)

f(w)

w − a
dw − 1

2πi

∫
κ(a,r)

f(a)

w − a
dw

∣∣∣∣∣ =

=

∣∣∣∣∣ 1

2πi

∫
κ(a,r)

f(w)− f(a)

w − a
dw

∣∣∣∣∣ ≤
≤ 2πr

2π

(∣∣f ′(a)
∣∣+ ε

)
= r

(∣∣f ′(a)
∣∣+ ε

)
.

Teda

lim
r→0

1

2πi

∫
κ(a,r)

f(w)

w − a
dw = f(a). (6.1)

Pre ľubovoľné R > r > 0 také, že D(a,R) ⊆ S sú ale kružnice κ(a,R) a κ(a, r) zjavne homotopické
v S \ {a}, pričom funkcia f(w)/(w − a) je holomorfná na S \ {a}. Z vety o deformácii preto vyplýva

1

2πi

∫
κ(a,R)

f(w)

w − a
dw =

1

2πi

∫
κ(a,r)

f(w)

w − a
dw

a vzťah (6.1) môže byť splnený len ak pre všetky r > 0 s D(a, r) ⊆ S je

1

2πi

∫
κ(a,r)

f(w)

w − a
dw = f(a).

Tým je dôkaz vety dokončený.

Z vety o deformácii vyplýva, že namiesto kružnice κ(a, r) môžeme v Cauchyho integrálnom vzorci
použiť ľubovoľnú uzavretú po častiach hladkú krivku γ homotopickú v oblasti S\{a} s nejakou takouto
kružnicou – samozrejme, pravda, za predpokladu, že funkcia f je holomorfná na S, pričom S obsahuje
nielen obrazy oboch homotopických kriviek γ a κ(a, r), ale aj celé vnútro kružnice κ(a, r).

Veta 6.1.2 (Cauchyho integrálny vzorec, formulácia II). Nech S ⊆ C je oblasť, a ∈ S je bod, f : S → C
je holomorfná na S a γ s γ∗ ⊆ S \ {a} je uzavretá po častiach hladká krivka homotopická v S \ {a}
s nejakou kružnicou κ(a, r), kde r > 0 a D(a, r) ⊆ S. Potom

f(a) =
1

2πi

∫
γ

f(w)

w − a
dw.

Dôkaz. Z vety 6.1.1 za uvedených predpokladov dostávame

f(a) =
1

2πi

∫
κ(a,r)

f(w)

w − a
dw.

Krivka γ je na S \ {a} homotopická s κ(a, r) a funkcia f(w)/(w− a) je holomorfná na S \ {a} – z vety
o deformácii preto dostávame

1

2πi

∫
γ

f(w)

w − a
dw =

1

2πi

∫
κ(a,r)

f(w)

w − a
dw = f(a),

čo bolo treba dokázať.
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Vďaka tvrdeniu 5.8.1 môžeme všeobecnejšiu verziu Cauchyho integrálneho vzorca sformulovať
o niečo intuitívnejším spôsobom – jednoducho vezmeme ľubovoľnú kladne orientovanú jednoduchú
uzavretú po častiach hladkú krivku obkolesujúcu bod a a budeme predpokladať, že f je holomorfná
na oblasti obsahujúcej túto krivku a celé jej vnútro. Už samotné znenie nasledujúcej vety však skryto
využíva Jordanovu vetu – len vďaka nej totiž máme definovanú množinu I(γ). Tvrdenie 5.8.1, ktoré
využívame v jej dôkaze, navyše predpokladá platnosť Jordanovej-Schoenfliesovej vety. Ide tak roz-
hodne o najmenej triviálnu verziu Cauchyho integrálneho vzorca, a to napriek tomu, že formulácia
nasledujúcej vety je oproti predchádzajúcej o poznanie intuitívnejšia.

Veta 6.1.3 (Cauchyho integrálny vzorec, formulácia III). Nech S ⊆ C je oblasť, a ∈ S je bod, f : S → C
je holomorfná na S a γ s γ∗ ∪ I(γ) ⊆ S je kladne orientovaná jednoduchá uzavretá po častiach hladká
krivka taká, že a ∈ I(γ). Potom

f(a) =
1

2πi

∫
γ

f(w)

w − a
dw.

Dôkaz. Stačí vziať r > 0 také, že κ(a, r)∗ ⊆ I(γ) a odvolať sa na vetu 6.1.1 spolu s tvrdením 5.8.1.

6.2 Liouvillova veta a základná veta algebry

Zaoberajme sa teraz na chvíľu funkciami, ktoré sú holomorfné na celej komplexnej rovine C – takéto
funkcie nazývame celými.

Definícia 6.2.1. Funkcia f : C→ C je celá, ak je holomorfná na C.

Typickými príkladmi celých funkcií sú napríklad polynomické funkcie, exponenciálna funkcia ez

a goniometrické funkcie sin z a cos z. Pri funkciách sin z a cos z sme si v rámci jedného z cvičení mali
možnosť všimnúť, že na rozdiel od ich reálnych náprotivkov tieto funkcie nie sú ohraničené. Dokážeme
teraz Liouvillovu vetu, podľa ktorej je táto vlastnosť spoločná všetkým nekonštantným celým funkciám.

Veta 6.2.2 (Liouvillova veta). Nech f : C → C je ohraničená celá funkcia. Potom je funkcia f na C
konštantná.

Dôkaz. Predpokladajme, že |f(z)| ≤ M pre nejaké pevné M ≥ 0 a všetky z ∈ C. Nech a, b ∈ C sú
ľubovoľné; ukážeme, že f(a) = f(b).

Zvoľme R > 0 dostatočne veľké v porovnaní s |a| aj s |b| – tak, aby bolo R ≥ 2 max{|a|, |b|}.
Pre všetky w ∈ κ(0, R)∗ potom |w − a| ≥ R

2 aj |w − b| ≥ R
2 . Z Cauchyho integrálneho vzorca teda

f(a)− f(b) =
1

2πi

∫
κ(0,R)

(
f(w)

w − a
− f(w)

w − b

)
dw =

a− b
2πi

∫
κ(0,R)

f(w)

(w − a)(w − b)
dw.

Z vety o odhade preto

|f(a)− f(b)| ≤ |a− b|
2π

· 2πR · M
R2

4

= 4|a− b|M
R
.

Keďže ale R ≥ 2 max{|a|, |b|} môže byť ľubovoľne veľké, nutne |f(a)− f(b)| = 0, z čoho f(a) = f(b);
veta je dokázaná.

Ako jednoduchý dôsledok Liouvillovej vety dostávame základnú vetu algebry. Tú sformulujeme ako
tvrdenie hovoriace, že pre každú nekonštantnú polynomickú funkciu p : C → C existuje a ∈ C také,
že p(a) = 0. Ak je totiž p : C → C polynomická funkcia a p̂ ∈ C[z] je k nej prislúchajúci polynóm,
je p(a) = 0 práve vtedy, keď p̂ = (z − a)r̂ pre nejaký iný polynóm r̂ ∈ C[z].1 Indukciou na stupeň
polynómu p̂ teda ľahko dokážeme, že polynóm stupňa n ∈ N s komplexnými koeficientmi má práve n
(nie nutne rôznych) komplexných koreňov, čo je ekvivalentná formulácia základnej vety algebry.

1Implikácia sprava doľava je zrejmá. Opačná implikácia vyplýva z vety o delení polynómov so zvyškom, podľa ktorej
existujú polynómy r̂, ŝ ∈ C[z] také, že p̂ = (z − a)r̂ + ŝ a stupeň polynómu ŝ je ostro menší ako stupeň polynómu z − a.
Polynóm ŝ je teda konštantný a z rovnosti p(a) = 0 vyplýva, že musí byť nulový.
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Veta 6.2.3 (Základná veta algebry). Nech p : C → C je nekonštantná polynomická funkcia. Potom
existuje a ∈ C také, že p(a) = 0.

Dôkaz. Predpokladajme za účelom sporu, že p je nekonštantná polynomická funkcia, ktorá je na C
nenulová. Funkcia 1/p je potom celá. Táto funkcia je navyše aj ohraničená: keďže pre z → ∞ máme
|p(z)| → ∞, musí existovať R ≥ 0 také, že pre všetky z ∈ C s |z| > R je |1/p(z)| ≤ 1. Množina D(0, R)
je ale kompaktná a funkcia 1/p je na nej spojitá – z vety o spojitosti na kompakte preto dostávame
existenciu M ≥ 0 takého, že pre všetky z ∈ C s |z| ≤ R je |1/p(z)| ≤M . V dôsledku toho∣∣∣∣ 1

p(z)

∣∣∣∣ ≤ max{1,M}

pre všetky z ∈ C. Funkcia 1/p je teda celá a súčasne ohraničená, čo znamená, že podľa Liouvillovej
vety musí byť konštantná, a preto musí byť konštantná aj funkcia p: spor.

6.3 Cauchyho vzorce pre derivácie

Dokážeme teraz, že každá holomorfná funkcia má v skutočnosti derivácie všetkých rádov. Navyše
ukážeme, že z Cauchyho integrálneho vzorca

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw,

kde γ je vhodná krivka obkolesujúca bod z, získame derivovaním integrandu podľa z vzorce pre jed-
notlivé derivácie – pre každé n ∈ N teda

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw. (6.2)

Na dôkaz existencie derivácií ľubovoľného rádu nie je nutný integrálny vzorec pre všetky rády: stačí
odvodiť integrálny vzorec pre prvú deriváciu a ukázať, že ním definovaná funkcia je holomorfná –
existencia derivácií vyšších rádov už potom vyplynie z jednoduchého induktívneho argumentu. Hoci je
takýto prístup o niečo jednoduchší, v nasledujúcom sa neuspokojíme len s existenciou derivácií vyšších
rádov, ale dokážeme aj samotný Cauchyho vzorec (6.2) pre derivácie vyšších rádov, ktorý je často
neoceniteľným nástrojom.

Veta 6.3.1 (Cauchyho vzorec pre vyššie derivácie, formulácia I). Nech S ⊆ C je oblasť, a ∈ S je bod,
r > 0 je polomer taký, že D(a, r) ⊆ S a f : S → C je holomorfná na S. Potom pre všetky n ∈ N
existuje n-tá derivácia funkcie f v bode a, pričom

f (n)(a) =
n!

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw.

Dôkaz. Pre n = 0 ide o Cauchyho integrálny vzorec, ktorý už máme dokázaný. Predpokladajme teda,
že tvrdenie platí pre n = k; funkcia f je potom v bode a diferencovateľná k-krát a k-ta derivácia je
daná integrálnym vzorcom zo znenia vety. Ukážeme, že tvrdenie platí aj pre n = k+1. Budeme pritom
dokazovať, že

lim
h→0

f (k)(a+ h)− f (k)(a)

h
=

(k + 1)!

2πi

∫
κ(a,r)

f(w)

(w − a)k+2
dw,

pričom na dôkaz použijeme základnú vetu o krivkových integráloch.
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Nech w ∈ κ(a, r)∗. Funkcia

Fw(ζ) =
1

(w − ζ)k+1

je na D(a, r) očividne primitívnou funkciou k funkcii (k + 1)/(w − ζ)k+2 (premennej ζ). Zo základnej
vety o krivkových integráloch teda pre všetky u ∈ D(a, r) dostávame

Fw(u) = (k + 1)

∫
[u0,u]

1

(w − ζ)k+2
dζ + C,

kde u0 ∈ D(a, r) je ľubovoľný pevne zvolený bod a C ∈ C je konštanta. Podobne funkcia

Gw(η) =
1

(w − η)k+2

je na D(a, r) primitívnou k funkcii (k + 2)/(w − η)k+3; pre u ∈ D(a, r) teda

Gw(u) = (k + 2)

∫
[u0,u]

1

(w − η)k+3
dη + C ′,

kde u0 ∈ D(a, r) je ľubovoľný pevne zvolený bod a C ′ ∈ C je konštanta.
Nech teraz h ∈ D(0, r). Z indukčného predpokladu, vety o deformácii a evidentnej homotopickosti

κ(a, r) s ľubovoľnou kružnicou κ(a+ h, s) pre 0 < s < r − |h| v oblasti S \ {a+ h} dostávame

f (k)(a+ h)− f (k)(a)

h
=

k!

h2πi

∫
κ(a,r)

f(w)

(
1

(w − a− h)k+1
− 1

(w − a)k+1

)
dw =

=
k!

h2πi

∫
κ(a,r)

f(w) (Fw(a+ h)− Fw(a)) dw =

=
(k + 1)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

1

(w − ζ)k+2
dζ

)
dw. (6.3)

Označme

∆(h) :=
f (k)(a+ h)− f (k)(a)

h
− (k + 1)!

2πi

∫
κ(a,r)

f(w)

(w − a)k+2
dw.

Stačí ukázať ∆(h)→ 0 pre h→ 0. Avšak pre |h| < r z (6.3) máme

∆(h) =
f (k)(a+ h)− f (k)(a)

h
− (k + 1)!

2πi

∫
κ(a,r)

f(w)

(w − a)k+2
dw =

=
(k + 1)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

1

(w − ζ)k+2
dζ − h

(w − a)k+2

)
dw =

=
(k + 1)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

(
1

(w − ζ)k+2
− 1

(w − a)k+2

)
dζ

)
dw =

=
(k + 1)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

(Gw(ζ)−Gw(a)) dζ

)
dw =

=
(k + 2)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

(∫
[a,ζ]

1

(w − η)k+3
dη

)
dζ

)
dw.

Keďže je množina κ(a, r)∗ kompaktná a funkcia f je na nej spojitá, existuje M ≥ 0 také, že pre všetky
w ∈ κ(a, r)∗ je |f(w)| ≤M . Pre takéto w tiež |w − a| = r; ak teda vezmeme |h| ≤ r/2, tak pre všetky
ζ ∈ [a, a + h] je |ζ − a| ≤ r/2 a v dôsledku toho pre všetky η ∈ [a, ζ] a všetky w ∈ κ(a, r)∗ platí
|w − η| ≥ r/2 – táto situácia je znázornená na obrázku 6.1.
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a
r

κ(a, r)

r/2

a+ h
ζ η

r/2

w

Obr. 6.1: Poloha bodov a, a+ h, w, ζ a η v rámci D(a, r).

Z vety o odhade teda dostávame

|∆(h)| =

∣∣∣∣∣(k + 2)!

h2πi

∫
κ(a,r)

f(w)

(∫
[a,a+h]

(∫
[a,ζ]

1

(w − η)k+3
dη

)
dζ

)
dw

∣∣∣∣∣ ≤
≤ (k + 2)!

2|h|π
· 2πr ·M · |h| · |h| · 1

(r/2)k+3
=

2k+3 ·M · |h| · (k + 2)!

rk+2

a pre h→ 0 skutočne ∆(h)→ 0. Tým je dôkaz dokončený.

Podobne ako pre „základný“ Cauchyho integrálny vzorec teraz môžeme využiť deformácie kriviek
na sformulovanie analogických viet pre o niečo všeobecnejšiu triedu kriviek obkolesujúcich a. Keďže
sú ich dôkazy navlas rovnaké ako vyššie, obmedzíme sa na vyslovenie týchto viet. Opäť však platí, že
kým prvá z nasledujúcich viet je nezávislá na Jordanovej a Jordanovej-Schoenfliesovej vete, tá druhá
ich platnosť predpokladá.

Veta 6.3.2 (Cauchyho vzorec pre vyššie derivácie, formulácia II). Nech S ⊆ C je oblasť, a ∈ S je
bod, f : S → C je holomorfná na S a γ s γ∗ ⊆ S je uzavretá po častiach hladká krivka homotopická
v S \ {a} s nejakou kružnicou κ(a, r), kde r > 0 a D(a, r) ⊆ S. Potom pre všetky n ∈ N existuje n-tá
derivácia funkcie f v bode a, pričom

f (n)(a) =
n!

2πi

∫
γ

f(w)

(w − a)n+1
dw.

Veta 6.3.3 (Cauchyho vzorec pre vyššie derivácie, formulácia III). Nech S ⊆ C je oblasť, a ∈ S je
bod, f : S → C je holomorfná na S a γ s γ∗ ∪ I(γ) ⊆ S je kladne orientovaná jednoduchá uzavretá
po častiach hladká krivka taká, že a ∈ I(γ). Potom pre všetky n ∈ N existuje n-tá derivácia funkcie f
v bode a, pričom

f (n)(a) =
n!

2πi

∫
γ

f(w)

(w − a)n+1
dw.

Ešte raz explicitne sformulujme už spomínaný dôsledok viet dokázaných vyššie: každá holomorfná
funkcia má derivácie všetkých rádov.

Dôsledok 6.3.4. Nech S ⊆ C je oblasť a f : S → C je holomorfná na S. Potom je pre všetky n ∈ N
na S dobre definovaná n-tá derivácia funkcie f , ktorá je takisto holomorfná na S.

Dôkaz. Pre každé z ∈ S stačí aplikovať (napríklad) vetu 6.3.1 pre r > 0 také, že D(z, r) ⊆ S.
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6.4 Morerova veta

Ďalšiu spomedzi klasických viet komplexnej analýzy,Morerovu vetu, možno chápať ako (takmer) opačné
tvrdenie ku Cauchyho integrálnej vete pre trojuholník – umožňuje totiž usúdiť na holomorfnosť fun-
kcie f na oblasti S za predpokladu nulovosti integrálov tejto funkcie pozdĺž všetkých trojuholníkov v S;
podmienkou je však spojitosť funkcie f na S.

Veta 6.4.1 (Morerova veta). Nech S ⊆ C je oblasť a f : S → C je spojitá funkcia taká, že pre ľubovoľný
trojuholník γ s γ∗ ⊆ S je ∫

γ
f(z) dz = 0.

Potom je funkcia f holomorfná na S.

Dôkaz. Stačí pre každé a ∈ S ukázať holomorfnosť funkcie f v bode a. Nech r > 0 je také, že
D(a, r) ⊆ S; oblasť D(a, r) je konvexná a z lemy 5.2.2 tak za predpokladov tejto vety vyplýva exis-
tencia primitívnej funkcie F : D(a, r) → C k funkcii f . Táto funkcia je na D(a, r) holomorfná a platí
pre ňu F ′ = f . Podľa dôsledku 6.3.4 má však každá holomorfná funkcia derivácie ľubovoľného rádu
– špeciálne teda musí na D(a, r) existovať aj druhá derivácia funkcie F , ktorá je nutne deriváciou
funkcie f na D(a, r): funkcia f je holomorfná na D(a, r), a teda aj v bode a.

Cvičenia

1. Vypočítajte∫
κ(a,r)

ez + 1

z
dz

pre

a) a = 3 a r = 2,

b) a = 2 a r = 3.

2. Vypočítajte∫
κ(i,1)

z2 − 1

z2 + 1
dz.

3. Vypočítajte∫
κ(0,1)

ez

z4
dz.

4. Nech f je funkcia holomorfná na D(0, R) pre nejaké R > 0 a nech r je také, že 0 < r < R. Nech
|f(z)| je pre z ∈ κ(0, r)∗ zhora ohraničená konštantou M ≥ 0. Dokážte odhad∣∣∣∣∣ 1

2πi

∫
κ(0,r)

f(w)

wn+1
dw

∣∣∣∣∣ ≤ r−nM.
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Kapitola 7

Taylorove rady

V tejto kapitole dokážeme, že holomorfné funkcie sú lokálne reprezentovateľné Taylorovými radmi
– funkcia holomorfná v nejakom bode a ∈ C je teda v tomto bode aj analytická a holomorfnosť
a analytickosť funkcie sú v skutočnosti totožné koncepty.

7.1 Rovnomerná a lokálne rovnomerná konvergencia

Dôkaz predoslaného tvrdenia vyžaduje integrovať nekonečné rady funkcií člen po člene, čo nie je vždy
prípustné. Techniky umožňujúce takúto „zámenu integrálu s nekonečnou sumáciou“ v istých prípadoch
odôvodniť sú založené na teórii rovnomernej konvergencie, ktorej základy teraz preskúmame. Spoločne
s rovnomernou konvergenciou definujeme aj jej o niečo slabší variant – takzvanú lokálne rovnomernú
konvergenciu – a niektoré z tvrdení tohto oddielu dokážeme už pre tento všeobecnejší koncept. Hoci
v súvislosti s Taylorovými radmi nám postačí pracovať iba s rovnomernou konvergenciou, znalosť
vlastností lokálne rovnomerne konvergentných postupností funkcií sa nám zíde neskôr v súvislosti
s funkciou gama.

Definícia 7.1.1. Nech S ⊆ C je množina a (fn)∞n=0 je postupnosť funkcií fn : S → C pre n ∈ N.
Hovoríme, že:

(i) Postupnosť (fn)∞n=0 konverguje bodovo k funkcii f : S → C, ak pre všetky z ∈ S a všetky ε > 0
existuje n0 ∈ N také, že pre všetky prirodzené n ≥ n0 je |fn(z)− f(z)| < ε. V takom prípade
píšeme fn → f pre n→∞.

(ii) Postupnosť (fn)∞n=0 konverguje rovnomerne k funkcii f : S → C, ak pre všetky ε > 0 existuje
n0 ∈ N také, že pre všetky prirodzené n ≥ n0 a všetky z ∈ S je |fn(z)− f(z)| < ε. V takom
prípade píšeme fn ⇒ f pre n→∞.

Nech ďalej T ⊆ S je množina, f̂n : T → C je pre všetky n ∈ N zúžením funkcie fn na T a f̂ : T → C
je zúžením f na T . Hovoríme, že postupnosť (fn)∞n=0 konverguje k f bodovo resp. rovnomerne na T ,
ak (f̂n)∞n=0 konverguje bodovo resp. rovnomerne k f̂ .

Rozdiel teda spočíva v tom, že pri bodovej konvergencii n0 závisí od z, kým pri rovnomernej
konvergencii možno pre všetky z zvoliť jedno spoločné n0.

Definícia 7.1.2. Nech S ⊆ C je množina a (fn)∞n=0 je postupnosť funkcií fn : S → C pre n ∈ N.
Hovoríme, že postupnosť (fn)∞n=0 konverguje lokálne rovnomerne k funkcii f : S → C, ak pre všetky
z ∈ S existuje r > 0 také, že na D(z, r)∩ S je fn ⇒ f pre n→∞. V takom prípade píšeme fn ⇒loc f
pre n→∞.

Lokálne rovnomernú konvergenciu na T ⊆ S definujeme prostredníctvom zúžení príslušných funkcií,
rovnako ako pri bodovej a rovnomernej konvergencii.
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Ak postupnosť funkcií konverguje k nejakej funkcii f rovnomerne, evidentne k nej konverguje aj
lokálne rovnomerne; z lokálne rovnomernej konvergencie tiež zrejme vyplýva bodová konvergencia.
Nasledujúce dva príklady ukazujú, že opačným smerom žiadna z týchto dvoch implikácií neplatí.

Príklad 7.1.3. Pre každé n ∈ N definujme funkciu fn : C→ C pre všetky z ∈ C ako

fn(z) =

{
1 ak |z| ≥ 1/(n+ 1),
(n+ 1)|z| inak.

Ľahko potom vidieť, že pre n→∞ je fn → f , kde f : C→ C je daná pre všetky z ∈ C ako

f(z) =

{
1 ak z 6= 0,
0 ak z = 0.

Postupnosť funkcií (fn)∞n=0 ale k funkcii f nekonverguje lokálne rovnomerne, pretože konvergencia nie
je rovnomerná na žiadnom okolí D(0, r) pre r > 0. Keby totiž na nejakom D(0, r) bolo fn ⇒ f , muselo
by napríklad aj pre ε = 1/2 existovať n0 ∈ N také, že pre všetky prirodzené n ≥ n0 a všetky z ∈ D(0, r)
je |fn(z)− f(z)| < ε. Bez ujmy na všeobecnosti ale predpokladajme r ≤ 1 a pre dané n0 uvažujme
z = r/3(n0 + 1). Pre n = n0 potom

|fn(z)− f(z)| =
∣∣∣∣r(n0 + 1)

3(n0 + 1)
− 1

∣∣∣∣ =
3− r

3
≥ 2

3
≥ 1

2
= ε

a dostávame spor. Postupnosť (fn)∞n=0 teda k f konverguje bodovo, ale nie lokálne rovnomerne.

Príklad 7.1.4. Uvažujme ďalej funkcie gn : D′(0, 1) → C dané pre všetky n ∈ N a z ∈ D′(0, 1)
ako gn(z) = zn. Pre n → ∞ je evidentne gn → 0; dokážeme, že aj gn ⇒loc 0. K danému z ∈ D′(0, 1)
zvoľme r = min{|z|/2, (1−|z|)/2}; existujú teda reálne čísla r1, r2 také, že 0 < r1 < r2 < 1 a pre všetky
w ∈ D(z, r) je

r1 ≤ |w| ≤ r2.

Pre všetky ε > 0 a w ∈ D(z, r) je potom

|gn(w)− 0| = |wn| = |w|n < ε

práve vtedy, keď n ln|w| < ln ε, čo je pre ε < 1 splnené1 kedykoľvek

n >
ln ε

ln r2
.

Ak teda vezmeme n0 = d(ln ε)/(ln r2)e, pre všetky n ≥ n0 a w ∈ D(z, r) je |gn(w)− 0| < ε. Pre n→∞
tak skutočne gn ⇒loc 0. Postupnosť funkcií (gn)∞n=0 ale ku konštantne nulovej funkcii nekonverguje
rovnomerne, pretože v takom prípade by pre každé ε > 0 muselo existovať n0 ∈ N také, že pre všetky
prirodzené n ≥ n0 a z ∈ D′(0, 1) je

|gn(z)− 0| = |zn| = |z|n < ε.

Podobne ako vyššie ale zisťujeme, že napríklad pre ε = e−1 je táto nerovnosť splnená práve vtedy, keď

n >
ln ε

ln|z|
= − 1

ln|z|
;

špeciálne teda musí byť aj

n0 > −
1

ln|z|
.

Napríklad pre z = e−1/(n0+1) ∈ D′(0, 1) potom ale

n0 > n0 + 1,

čím prichádzame k sporu. Postupnosť funkcií (gn)∞n=0 teda ku konštantne nulovej funkcii konverguje
lokálne rovnomerne, ale nie rovnomerne.

1V nepodstatnom prípade ε ≥ 1 je nerovnosť splnená vždy.
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Ak postupnosť (fn)∞n=0 funkcií spojitých na oblasti S konverguje k funkcii f : S → C bodovo,
funkcia f nemusí byť spojitá – takáto situácia očividne nastáva aj v príklade 7.1.3 vyššie. Dokážeme
teraz, že limita rovnomerne alebo lokálne rovnomerne konvergentnej postupnosti spojitých funkcií je
naopak vždy spojitá.

Tvrdenie 7.1.5. Nech S ⊆ C je množina a (fn)∞n=0 je postupnosť funkcií, kde pre všetky n ∈ N je
funkcia fn : S → C spojitá na S. Ak pre nejakú funkciu f : S → C je fn ⇒loc f pre n→∞, je funkcia
f na S taktiež spojitá.

Dôkaz. Zvoľme ε > 0 a z ∈ S; potrebujeme nájsť δ > 0 také, že pre všetky w ∈ D(z, δ) ∩ S je
|f(z) − f(w)| < ε. Keďže fn ⇒loc f , existuje r > 0 a m ∈ N také, že pre všetky w ∈ D(z, r) ∩ S
je |fm(w) − f(w)| < ε/3. Funkcia fm je spojitá v bode z, a teda existuje η > 0 také, že pre všetky
w ∈ D(z, η) ∩ S je |fm(z)− fm(w)| < ε/3. Pre δ = min{η, r} a všetky w ∈ D(z, δ) ∩ S potom

|f(z)− f(w)| = |f(z)− fm(z) + fm(z)− fm(w) + fm(w)− f(w)| ≤
≤ |f(z)− fm(z)|+ |fm(z)− fm(w)|+ |fm(w)− f(w)| < ε,

čím je hľadané δ nájdené a tvrdenie dokázané.

Bodovú, rovnomernú a lokálne rovnomernú konvergenciu prirodzeným spôsobom definujeme aj
pre rady funkcií – pôjde vždy o rovnakú vlastnosť príslušnej postupnosti čiastočných súčtov.

Definícia 7.1.6. Nech S ⊆ C je množina a (fn)∞n=0 je postupnosť funkcií fn : S → C pre n ∈ N. Nech
je pre všetky n ∈ N funkcia Fn : S → C daná ako Fn := f0 + . . .+ fn. Potom hovoríme, že:

(i) Rad funkcií
∑∞

n=0 fn konverguje bodovo k funkcii F : S → C, ak k funkcii F konverguje bodovo
postupnosť (Fn)∞n=0.

(ii) Rad funkcií
∑∞

n=0 fn konverguje rovnomerne k funkcii F : S → C, ak k funkcii F konverguje
rovnomerne postupnosť (Fn)∞n=0.

(iii) Rad funkcií
∑∞

n=0 fn konverguje lokálne rovnomerne k funkcii F : S → C, ak k funkcii F konver-
guje lokálne rovnomerne postupnosť (Fn)∞n=0.

Veta 7.1.7 (Weierstrassovo kritérium rovnomernej konvergencie). Nech S ⊆ C je množina a (fn)∞n=0 je
postupnosť funkcií fn : S → C pre n ∈ N. Ak pre všetky n ∈ N existuje Mn ≥ 0 také, že pre všetky z ∈ S
je |fn(z)| ≤Mn a rad

∑∞
n=0Mn konverguje, tak rad funkcií

∑∞
n=0 fn na S konverguje rovnomerne.

Dôkaz. Ak sú predpoklady vety splnené, pre každé pevné z ∈ S a všetky n ∈ N je |fn(z)| ≤ Mn

a číselný rad
∑∞

n=0 fn(z) konverguje podľa porovnávacieho kritéria. V dôsledku toho rad
∑∞

n=0 fn
konverguje na S bodovo k nejakej funkcii F : S → C. Zostáva dokázať, že tento rad konverguje k F
aj rovnomerne. Pre všetky n ∈ N označme Fn := f0 + . . .+ fn. Pre každé z ∈ S a všetky n ∈ N potom

|F (z)− Fn(z)| =

∣∣∣∣∣
∞∑

k=n+1

fn(z)

∣∣∣∣∣ ≤
∞∑

k=n+1

Mk.

Keďže rad
∑∞

n=0Mn konverguje, pre všetky ε > 0 musí existovať n0 ∈ N také, že pre všetky n ≥ n0 je

∞∑
k=n+1

Mk < ε.

Pre n ≥ n0 potom aj |F (z)− Fn(z)| < ε, pre všetky z ∈ S: rad
∑∞

n=0 fn konverguje rovnomerne.
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Nasledujúca veta dáva rovnomernú konvergenciu do súvisu so zámenou limity a integrálu, ako
aj s integrovaním radov funkcií člen po člene. Pôjde o základný nástroj, ktorý využijeme pri dôkaze
reprezentovateľnosti holomorfných funkcií Taylorovými radmi. Rovnomernú konvergenciu by aj v na-
sledujúcej vete bolo v skutočnosti možné nahradiť lokálne rovnomernou konvergenciou – akurát dôkaz
by v takom prípade bol nepatrne technickejší. Túto úlohu prenechávame čitateľovi ako jedno z cvičení
na konci kapitoly.

Veta 7.1.8. Nech S ⊆ C je oblasť, (fn)∞n=0 je postupnosť spojitých funkcií fn : S → C pre n ∈ N a γ
je po častiach hladká krivka taká, že γ∗ ⊆ S. Potom:

(i) Ak fn ⇒ f pre nejakú funkciu f : S → C a n→∞, tak

lim
n→∞

∫
γ
fn(z) dz =

∫
γ

lim
n→∞

fn(z) dz =

∫
γ
f(z) dz.

(ii) Ak rad
∑∞

n=0 fn konverguje rovnomerne na S, tak

∞∑
n=0

∫
γ
fn(z) dz =

∫
γ

∞∑
n=0

fn(z) dz.

Dôkaz. Stačí dokázať tvrdenie (i); tvrdenie (ii) je jeho bezprostredným dôsledkom. Zvoľme ε > 0
ľubovoľne. Keďže fn ⇒ f , je funkcia f tiež spojitá a existuje n0 ∈ N také, že pre všetky prirodzené
n ≥ n0 a všetky z ∈ S je |fn(z)− f(z)| < ε. Pre n ≥ n0 teda z vety o odhade dostávame∣∣∣∣∫

γ
fn(z) dz −

∫
γ
f(z) dz

∣∣∣∣ =

∣∣∣∣∫
γ

(fn(z)− f(z)) dz

∣∣∣∣ ≤ L(γ)ε,

a teda skutočne

lim
n→∞

∫
γ
fn(z) dz =

∫
γ
f(z) dz.

Tým je dôkaz vety dokončený.

Dokážme ešte, že podobne ako v prípade spojitých funkcií je aj rovnomerná alebo lokálne rovno-
merná limita postupnosti holomorfných funkcií tiež vždy holomorfná.

Veta 7.1.9. Nech S ⊆ C je oblasť a (fn)∞n=0 je postupnosť funkcií, kde pre všetky n ∈ N je funkcia
fn : S → C holomorfná na S. Ak pre nejakú funkciu f : S → C je fn ⇒loc f pre n→∞, je funkcia f
na S taktiež holomorfná.

Dôkaz. Zvoľme ľubovoľné z ∈ S; dokážeme holomorfnosť funkcie f v bode z. Nech r > 0 je také, že
D(z, r) ⊆ S a fn ⇒ f na D(z, r) pre n→∞. Nech γ je ľubovoľný trojuholník s γ∗ ⊆ D(z, r). Vďaka
vete 7.1.8 a Cauchyho integrálnej vete pre trojuholník potom∫

γ
f(w) dw =

∫
γ

lim
n→∞

fn(w) dw = lim
n→∞

∫
γ
fn(w) dw = lim

n→∞
0 = 0.

Keďže je teda funkcia f spojitá podľa tvrdenia 7.1.5, z Morerovej vety vyplýva jej holomorfnosť
na D(z, r), a teda aj v bode z.
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7.2 Taylorove rady

Máme teraz k dispozícii všetky ingrediencie potrebné na dôkaz vety o lokálnej reprezentácii holomorf-
ných funkcií Taylorovými radmi.

Veta 7.2.1. Nech S ⊆ C je otvorená množina, a ∈ S je bod a f : S → C je holomorfná na D(a,R)
pre nejaké R > 0. Potom existujú jednoznačne dané konštanty cn pre n = 0, 1, 2, . . . také, že pre všetky
z ∈ D(a,R) je

f(z) =
∞∑
n=0

cn(z − a)n. (7.1)

(kde rad konverguje na D(a,R)). Koeficienty cn sú navyše pre všetky n ∈ N dané vzťahom

cn =
1

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw =

f (n)(a)

n!
,

kde 0 < r < R.2 Mocninový rad na pravej strane (7.1) potom nazývame Taylorovým radom funkcie f
v bode a; v prípade a = 0 hovoríme o Maclaurinovom rade.

Dôkaz. Nech z ∈ D(a,R) je dané. Zvoľme r tak, aby |z−a| < r < R; z Cauchyho vzorca pre derivácie
vyplýva, že vetu stačí dokázať pre toto pevné r. Podľa Cauchyho integrálneho vzorca navyše

f(z) =
1

2πi

∫
κ(a,r)

f(w)

w − z
dw. (7.2)

Nech teraz r′ je reálne číslo také, že |z − a| < r′ < r a T = {w ∈ D(a,R) | r′ < |w − a| < R}. Potom
κ(a, r)∗ ⊆ T a pre všetky w ∈ T je

1

w − z
=

1

w − a
· 1

1− z−a
w−a

,

kde |(z − a)/(w − a)| < 1; teda
1

w − z
=

∞∑
n=0

(z − a)n

(w − a)n+1
. (7.3)

Pre každé reálne číslo s také, že |(z − a)/(w − a)| < s < 1 a všetky n ∈ N máme∣∣∣∣ (z − a)n

(w − a)n+1

∣∣∣∣ ≤ 1

|w − a|
sn ≤ 1

r′
sn

a z Weierstrassovho kritéria rovnomernej konvergencie vyplýva, že rad (7.3), chápaný ako rad funkcií
premennej w, konverguje rovnomerne na T . Dosadením (7.3) do (7.2) a aplikovaním vety 7.1.8 teda
zisťujeme, že

f(z) =
1

2πi

∫
κ(a,r)

f(w)

w − z
dw =

1

2πi

∫
κ(a,r)

f(w)
∞∑
n=0

(z − a)n

(w − a)n+1
dw =

=
∞∑
n=0

1

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw(z − a)n =

∞∑
n=0

cn(z − a)n.

Zostáva dokázať jednoznačnosť postupnosti koeficientov (cn)∞n=0. Tá ale vyplýva z vety 3.4.2 o derivá-
ciách analytických funkcií: podľa nej totiž musí byť n!cn = f (n)(a), pričom n-té derivácie funkcie f sú
dané jednoznačne.

2Prípadne možno kružnicu κ(a, r) nahradiť všeobecnejšou krivkou rovnako ako vo variantoch II a III Cauchyho vzorca
pre derivácie.
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a

κ(a, r)

z
R

r′

Obr. 7.1: Situácia z dôkazu vety 7.2.1. Medzikružie ohraničené čiarkovanými kružnicami je oblasť T .

7.3 Ekvivalencia holomorfnosti s analytickosťou

Dôkazom vety o reprezentácii holomorfných funkcií Taylorovými radmi sme zároveň zavŕšili aj dôkaz
rovnosti tried holomorfných a analytických funkcií. Tento dôležitý výsledok teraz ešte sformulujeme
explicitne.

Dôsledok 7.3.1. Nech S ⊆ C je otvorená množina. Funkcia f : S → C je potom holomorfná v bode
a ∈ S práve vtedy, keď je analytická v bode a.

Dôkaz. Ak je funkcia f v bode a holomorfná, vyplýva jej analytickosť v tomto bode z vety 7.2.1.
Naopak každá analytická funkcia je holomorfná podľa dôsledku 3.4.3.

Cvičenia

1. Dokážte, že na kompaktnej množine postupnosť funkcií konverguje rovnomerne práve vtedy, keď
konverguje lokálne rovnomerne.

2. Dokážte, že vo vete 7.1.8 v skutočnosti možno predpoklad rovnomernej konvergencie nahradiť
slabším predpokladom lokálne rovnomernej konvergencie.

3. Každý mocninový rad
∑∞

n=0 cn(z − a)n s polomerom konvergencie % môžeme stotožniť s radom
funkcií

∑∞
n=0 fn, kde fn je pre všetky n ∈ N daná ako fn(z) = cn(z − a)n (pre z také, že∑∞

n=0 cn(z−a)n konverguje). Dokážte, že pri takejto interpretácii rad
∑∞

n=0 cn(z−a)n konverguje
rovnomerne na D(a, r) pre všetky r také, že 0 < r < %.

4. Ukážte, že rad
∑∞

n=0 cn(z−a)n s polomerom konvergencie % > 0 nemusí konvergovať rovnomerne
na D(a, %), ale musí tam konvergovať lokálne rovnomerne.

5. Nech pre nejaké r > 0 na D(0, r) je f(z) =
∑∞

n=0 anz
n a g(z) =

∑∞
n=0 bnz

n. Dokážte, že potom
sú na D(0, r) analytické aj funkcie f ± g a f · g a nájdite mocninové rady reprezentujúce tieto
funkcie.

6. Odôvodnite, prečo sú mocninové rady definujúce funkcie ez, sin z a cos z pre všetky z ∈ C
v skutočnosti aj Maclaurinovými radmi týchto funkcií.

7. Nájdite Maclaurinov rozvoj funkcie f(z) = 1
2z

3 cos 3z a jeho polomer konvergencie.
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8. Uvažujme holomorfné vetvy lnk : C\(−∞, 0]→ C prirodzeného logaritmu z oddielu 3.6 pre k ∈ Z.
Hlavnou holomorfnou vetvou logaritmu ďalej nazvime vetvu Ln z := ln0 z. Dokážte, že na D(0, 1)
je funkcia Ln(1 + z) daná Mercatorovým radom

Ln(1 + z) = z − z2

2
+
z3

3
− z4

4
+ . . . =

∞∑
n=1

(−1)n−1

n
zn.

Nájdite Maclaurinove rady na D(0, 1) aj pre všetky funkcie lnk(1 + z), kde k ∈ Z. Nájdite
Taylorove rady so stredom v bode 1 pre funkcie lnk z, kde k ∈ Z.

9. Uvažujme hlavnú vetvu mocninovej funkcie JzαK definovanú pre z ∈ C\ (−∞, 0] ako zα := eαLn z;
ide teda o holomorfnú vetvu multifunkcie JzαK na C \ (−∞, 0], pre ktorú je 1α = 1. Označme
ďalej f(z) = (1 + z)α, kde umocňujeme s použitím tejto hlavnej vetvy.

a) Dokážte, že pre všetky α ∈ C a z ∈ C \ (−∞, 0] je d
dz z

α = αzα−1.

b) Funkcia f je očividne holomorfná na D(0, 1). Z predchádzajúceho vzťahu odvoďte, že
pre všetky z ∈ D(0, 1) je (1 + z)f ′(z) = αf(z).

c) Ukážte, že pre z ∈ D(0, 1) je funkcia f(z) daná binomickým rozvojom

f(z) = (1 + z)α =
∞∑
n=0

(
α

n

)
zn,

kde pre α ∈ C a n ∈ N je (
α

n

)
=

∏n−1
k=0(α− k)

n!
.

d) Nájdite obdobné Maclaurinove rozvoje aj pre ďalšie holomorfné vetvy mocninovej funkcie
J(1 + z)αK na C \ (−∞, 0].

10. Nech f je celá funkcia. Dokážte, že ak |f(z)| ≤ C|z|k pre nejaké C ≥ 0, k ∈ N a všetky
z ∈ C \D(0, R) pre nejaké R > 0, tak je funkcia f polynomická stupňa najviac k.



Predbežná verzia



Predbežná verzia

Kapitola 8

Veta o jednoznačnosti

V nasledujúcom dokážeme vetu o jednoznačnosti, podľa ktorej je každá holomorfná funkcia f na ob-
lasti S jednoznačne daná svojimi hodnotami na ľubovoľnej podmnožine T ⊆ S takej, že T má v S
aspoň jeden hromadný bod. Celá informácia o holomorfnej funkcii f na množine S je teda „zakódovaná“
v jej hodnotách na – hoci aj oveľa „menšej“ – množine T . Okrem toho tiež dokážeme princíp maxima
modulu, podľa ktorého absolútna hodnota funkcie holomorfnej na oblasti nemôže nadobúdať žiadne
ostré lokálne maximá.

8.1 Korene holomorfných funkcií

Pod koreňmi funkcie komplexnej premennej v súlade s bežnou terminológiou chápeme body, v ktorých
funkcia nadobúda nulové hodnoty.

Definícia 8.1.1. Nech S ⊆ C a f : S → C je funkcia. Hovoríme, že bod a ∈ S je koreňom funkcie f ,
ak f(a) = 0.

Často sa zíde aj jemnejšia klasifikácia koreňov holomorfných funkcií podľa ich rádu – ide pritom
o minimálny rád derivácie funkcie f , ktorá je v danom bode nenulová.

Definícia 8.1.2. Nech f je funkcia holomorfná v bode a ∈ C. Pre m ∈ N hovoríme, že bod a je
koreňom funkcie f rádu m, ak f (k)(a) = 0 pre k = 0, . . . ,m−1 a f (m)(a) 6= 0. Ak žiadne takéto m ∈ N
neexistuje, hovoríme, že a je koreňom funkcie f rádu ∞.

Bod a je teda koreňom funkcie f práve vtedy, keď a je jej koreňom nenulového rádu; korene nulového
rádu podľa tejto terminológie koreňmi funkcie f (bez ďalšieho prívlastku) vôbec nie sú.

Korene konečného rádu možno charakterizovať aj viacerými ďalšími spôsobmi zhrnutými v nasle-
dujúcom tvrdení. Ako cvičenie prenechávame čitateľovi charakterizáciu koreňov nekonečného rádu.

Tvrdenie 8.1.3. Nech f je funkcia holomorfná v bode a ∈ C, pričom r > 0 je také, že pre všetky
z ∈ D(a, r) je funkcia f daná Taylorovým radom f(z) =

∑∞
n=0 cn(z − a)n. Nech m ∈ N. Potom sú

nasledujúce tvrdenia ekvivalentné:

(i) Bod a je koreňom rádu m funkcie f .

(ii) Platí c0 = . . . = cm−1 = 0 a cm 6= 0.

(iii) Existuje funkcia g holomorfná na D(a, r) taká, že g(a) 6= 0 a pre všetky z ∈ D(a, r) je funkcia f
daná ako f(z) = (z − a)mg(z).

(iv) Limita limz→a f(z)/(z − a)m existuje a je rovná nejakému nenulovému komplexnému číslu.
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Dôkaz. Tvrdenia (i) a (ii) sú ekvivalentné vďaka vete o Taylorových radoch: pre všetky n ∈ N totiž
nutne cn = f (n)(a)/n!. Ak ďalej c0 = . . . = cm−1 = 0 a cm 6= 0, môžeme položiť

g(z) :=
∞∑
n=m

cn(z − a)n−m,

pričom tento rad musí konvergovať pre všetky z ∈ D(a, r). Zjavne v takom prípade g(a) = cm 6= 0
a f(z) = (z − a)mg(z) pre všetky z ∈ D(a, r). Ak naopak f(z) = (z − a)mg(z) pre nejakú funkciu
g(z) =

∑∞
n=0 bn(z − a)n holomorfnú na D(a, r) s g(a) 6= 0, tak

f(z) = (z − a)mg(z) =
∞∑
n=m

bn−m(z − a)n

a z b0 = g(a) 6= 0 je zrejmé, že práve prvých m koeficientov Taylorovho rozvoja tejto funkcie v bode a
je nulových. To dokazuje ekvivalenciu tvrdení (ii) a (iii). Z platnosti (iii) a spojitosti holomorfnej
funkcie g v bode a tiež vyplýva

lim
z→a

f(z)

(z − a)m
= lim

z→a

(z − a)mg(z)

(z − a)m
= g(a),

kde g(a) 6= 0; teda (iii) implikuje (iv). Nech nakoniec pre nejaké C ∈ C \ {0} je

lim
z→a

f(z)

(z − a)m
= C.

Potom pre všetky ε > 0 existuje δ > 0 také, že f je holomorfná na D(a, δ) a pre všetky w ∈ D′(a, δ) je∣∣∣∣ f(w)

(w − a)m
− C

∣∣∣∣ < ε,

a teda aj
|f(w)| < (|C|+ ε)δm.

Z Cauchyho vzorca pre derivácie a vety o odhade potom pre n = 0, . . . ,m− 1 dostávame

∣∣∣f (n)(a)
∣∣∣ =

∣∣∣∣∣ n!

2πi

∫
κ(a,δ/2)

f(w)

(w − a)n+1
dw

∣∣∣∣∣ < n!

2π
· 2π · δ

2
· 2n+1(|C|+ ε)δm

δn+1
= n!2n(|C|+ ε)δm−n

a keďže ε > 0 a δ > 0 môžu byť ľubovoľne malé, nutne f (n)(a) = 0. Ak teda f(z) =
∑∞

n=0 cn(z − a)n,
je c0 = . . . = cm−1 = 0. Keďže ale na druhej strane

C = lim
z→a

f(z)

(z − a)m
= lim

z→a

∞∑
n=m

cn(z − a)n−m = cm,

dostávame cm = C 6= 0. Tvrdenie (iv) teda implikuje (ii), čím je dôkaz dokončený.

Označenie 8.1.4. Nech S ⊆ C a f : S → C je funkcia na S. Ako Z(f) označíme množinu všetkých
koreňov funkcie f v S, t. j.

Z(f) := {a ∈ S | f(a) = 0}.
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8.2 Veta o jednoznačnosti

Vetu o jednoznačnosti dokážeme pomocou dvoch lem hovoriacich o nulovosti holomorfnej funkcie na ob-
lasti za predpokladu, že je táto funkcia nulová na podmnožine danej oblasti spĺňajúcej isté podmienky.

Lema 8.2.1. Nech a ∈ C, r > 0 a funkcia f je holomorfná na D(a, r). Ak f(a) = 0 a bod a je
hromadným bodom množiny Z(f), tak f(z) = 0 pre všetky z ∈ D(a, r).

Dôkaz. Nech sú predpoklady lemy splnené. Z holomorfnosti funkcie f na D(a, r) vyplýva, že funkciu f
možno pre všetky z ∈ D(a, r) reprezentovať jej Taylorovým radom

f(z) =

∞∑
n=0

cn(z − a)n.

Ak cn = 0 pre všetky n ∈ N, tak pre každé z ∈ D(a, r) nutne f(z) = 0, čo je v súlade so znením
lemy. Ukážeme, že opačná možnosť vedie k sporu. Z tvrdenia 8.1.3 v takom prípade vyplýva, že je
a koreňom funkcie f rádu m ∈ N \ {0}. Rovnaké tvrdenie potom zaručuje aj existenciu funkcie g
holomorfnej na D(a, r) takej, že g(a) 6= 0 a pre všetky z ∈ D(a, r) je f(z) = (z− a)mg(z). Holomorfná
funkcia g musí byť v bode a spojitá – existuje preto δ > 0 také, že pre všetky z ∈ D(a, δ) je g(z) 6= 0;
pre z ∈ D′(a, δ) potom aj f(z) = (z − a)mg(z) 6= 0. Z toho vyplýva, že a je izolovaným bodom
množiny Z(f), čo je v spore s predpokladom, že ide o hromadný bod tejto množiny.

Lema 8.2.2. Nech S ⊆ C je oblasť a f : S → C je holomorfná na S. Ak má množina Z(f) v S aspoň
jeden hromadný bod, je funkcia f na S konštantne nulová.

Dôkaz. Nech a ∈ S je hromadný bod množiny Z(f). Pre každé δ > 0 potom existuje z ∈ D′(a, δ) ∩ S
také, že f(z) = 0. Zo spojitosti funkcie f v bode a teda vyplýva aj f(a) = 0. Ak teraz b ∈ S je
ľubovoľné, súvislosť oblasti S implikuje existenciu lomenej čiary γ z bodu a do bodu b. Keďže je γ∗

kompaktná, existuje ε > 0 také, že pre všetky z ∈ γ∗ jeD(z, ε) ⊆ S. Pokrytím lomenej čiary γ „reťazou“
prekrývajúcich sa okolí o polomere ε, kde stred každého ďalšieho okolia patrí aj do predchádzajúceho
okolia, tak s použitím lemy 8.2.1 zisťujeme, že aj f(b) = 0. Keďže je b ∈ S ľubovoľné, je lema
dokázaná.

Jednoduchým dôsledkom práve dokázanej lemy je už samotná veta o jednoznačnosti: každá funkcia f
holomorfná na oblasti S je jednoznačne daná jej hodnotami na ľubovoľnej podmnožine T oblasti S,
ktorá má v S aspoň jeden hromadný bod. V hodnotách funkcie f na množine T je teda „obsiahnutá
kompletná informácia“ o hodnotách f na celej oblasti S.

Veta 8.2.3 (O jednoznačnosti). Nech S ⊆ C je oblasť a f, g : S → C sú funkcie holomorfné na S. Nech
existuje množina T ⊆ S taká, že pre všetky z ∈ T je f(z) = g(z) a T má v S aspoň jeden hromadný
bod. Potom f = g.

Dôkaz. Stačí aplikovať lemu 8.2.2 na holomorfnú funkciu f − g.

Príklad 8.2.4. Predpokladajme, že f : C → C je holomorfná funkcia taká, že pre všetky z ∈ (0, 1)
je f(z) = sin z. Z vety o jednoznačnosti potom f(z) = sin z pre všetky z ∈ C. Na vyvodenie tohto
záveru by rovnako dobre postačovala aj rovnosť f(z) = sin z pre všetky z ∈ {1/n | n ∈ N \ {0}}, keďže
táto množina má v C hromadný bod 0. Rovnosť f(z) = sin z pre z ∈ {2kπ | k ∈ Z} už ale napríklad
postačujúca nie je, keďže v tomto prípade môže byť funkcia f napríklad aj konštantne nulová; to však
neodporuje vete o jednoznačnosti, keďže množina {2kπ | k ∈ Z} nemá v C žiaden hromadný bod.

Príklad 8.2.5. Ak pre nejakú dvojicu celých funkcií f, g : C→ C platí f(x) = g(x) pre všetky x ∈ R,
veta o jednoznačnosti zaručuje platnosť rovnosti f(z) = g(z) aj pre všetky z ∈ C. Takto možno
do komplexného oboru rozšíriť identity ako napríklad sin2 z + cos2 z = 1 alebo sin 2z = 2 sin z cos z.
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8.3 Princíp maxima modulu

Dokážeme teraz takzvaný princíp maxima modulu – t. j. absolútnej hodnoty funkcie. Pôjde o vetu
hovoriacu, že absolútna hodnota funkcie holomorfnej na oblasti nenadobúda na tejto oblasti žiadne
ostré lokálne maximá.

Veta 8.3.1 (Princíp maxima modulu). Nech f je funkcia holomorfná na D(a, r) pre nejaké a ∈ C
a r > 0. Ak |f(z)| ≤ |f(a)| pre všetky z ∈ D(a, r), tak je funkcia f na D(a, r) konštantná.

Dôkaz. Zvoľme ľubovoľné reálne s také, že 0 < s < r. Z Cauchyho integrálneho vzorca potom

f(a) =
1

2πi

∫
κ(a,s)

f(z)

z − a
dz =

1

2πi

∫ 2π

0

f(a+ seit)

seit
sieit dt =

1

2π

∫ 2π

0
f(a+ seit) dt,

z čoho

|f(a)| ≤ 1

2π

∫ 2π

0

∣∣f(a+ seit)
∣∣ dt ≤ 1

2π

∫ 2π

0
|f(a)|dt = |f(a)|.

Preto ∫ 2π

0

∣∣f(a+ seit)
∣∣ dt =

∫ 2π

0
|f(a)| dt,

a teda ∫ 2π

0

(
|f(a)| −

∣∣f(a+ seit)
∣∣) dt = 0.

Integrand je tu pritom spojitý a nezáporný na [0, 2π]; nutne teda
∣∣f(a+ seit)

∣∣ = |f(a)| pre všetky
t ∈ [0, 2π]. Z toho |f(z)| = |f(a)| pre všetky z ∈ κ(a, s)∗ – a keďže je s ľubovoľné reálne číslo spĺňajúce
0 < s < r, je |f(z)| = |f(a)| aj pre všetky z ∈ D(a, r).

Dokázali sme teda, že absolútna hodnota funkcie f je na D(a, r) konštantná. Zostáva dokázať, že
v takom prípade musí byť na D(a, r) konštantná aj samotná funkcia f .

Nech u, v sú funkcie dvoch reálnych premenných také, že pre z ∈ D(a, r) je u(Re z, Im z) = Re f(z)
a v(Re z, Im z) = Im f(z). Konštantnosť funkcie |f | na D(a, r) znamená, že pre nejaké c ≥ 0 a všetky
x, y ∈ R spĺňajúce x+ iy ∈ D(a, r) je

u(x, y)2 + v(x, y)2 = c2. (8.1)

Ak pritom c = 0, musia byť funkcie u(x, y) aj v(x, y) konštantne nulové a na D(a, r) je teda konštantne
nulová aj funkcia f . Môžeme preto predpokladať, že c > 0.

Zderivovaním oboch strán rovnosti (8.1) podľa x resp. podľa y potom dostávame

2u(x, y)
∂u

∂x
(x, y) + 2v(x, y)

∂v

∂x
(x, y) = 0

a
2u(x, y)

∂u

∂y
(x, y) + 2v(x, y)

∂v

∂y
(x, y) = 0,

čo možno s využitím Cauchyho-Riemannových podmienok po predelení dvomi prepísať ako

u(x, y)
∂u

∂x
(x, y)− v(x, y)

∂u

∂y
(x, y) = 0 (8.2)

a
u(x, y)

∂u

∂y
(x, y) + v(x, y)

∂u

∂x
(x, y) = 0. (8.3)
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Z toho napokon prenásobením funkciou u(x, y) resp. v(x, y) dostávame

u(x, y)2∂u

∂x
(x, y)− u(x, y)v(x, y)

∂u

∂y
(x, y) = 0

a

v(x, y)2∂u

∂x
(x, y) + u(x, y)v(x, y)

∂u

∂y
(x, y) = 0,

pričom sčítaním oboch rovností prichádzame k vzťahu

(
u(x, y)2 + v(x, y)2

) ∂u
∂x

(x, y) = c2∂u

∂x
(x, y) = 0.

Keďže c > 0, je parciálna derivácia funkcie u podľa x konštantne nulová a vďaka Cauchyho-Riemannovým
podmienkam dostávame rovnakú vlastnosť aj pre parciálnu deriváciu funkcie v podľa y.

Podobne po prenásobení (8.2) a (8.3) funkciou −v(x, y) resp. u(x, y) máme

v(x, y)2∂u

∂y
(x, y)− u(x, y)v(x, y)

∂u

∂x
(x, y) = 0

a

u(x, y)2∂u

∂y
(x, y) + u(x, y)v(x, y)

∂u

∂x
(x, y) = 0,

z čoho po sčítaní oboch rovností dostávame

(
u(x, y)2 + v(x, y)2

) ∂u
∂y

(x, y) = c2∂u

∂y
(x, y) = 0.

Konštantne nulová je teda aj parciálna derivácia funkcie u podľa y a vďaka Cauchyho-Riemannovým
podmienkam aj parciálna derivácia funkcie v podľa x.

Funkcie u aj v sú teda konštantné, v dôsledku čoho je na D(a, r) konštantná aj funkcia f .

Nasledujúce dva dôsledky práve dokázanej vety sa niekedy tiež nazývajú princípom maxima modulu.
Prvý z nich pritom explicitne hovorí o už predoslanej interpretácii predchádzajúcej vety.

Dôsledok 8.3.2. Nech S ⊆ C je oblasť, f je funkcia holomorfná na S a pre nejaké a ∈ S existuje
r > 0 také, že D(a, r) ⊆ S a pre všetky z ∈ D(a, r) je |f(z)| ≤ |f(a)|. Potom je f konštantná na S.

Dôkaz. Z predchádzajúcej vety vyplýva konštantnosť funkcie f na okolí D(a, r), ktoré má hromadný
bod v S. Z vety o jednoznačnosti teda dostávame konštantnosť funkcie f aj na celej oblasti S.

Dôsledok 8.3.3. Nech S ⊆ C je ohraničená oblasť a f je funkcia holomorfná na S a spojitá na S.
Potom |f | nadobúda maximum na hranici ∂S = S \ S množiny S.

Dôkaz. Množina S je kompaktná a spojitá funkcia |f | tak musí na S nadobúdať maximum. Pokiaľ ale
funkcia f nie je konštantná na S, podľa predchádzajúceho dôsledku nemôže funkcia |f | toto maximum
nadobúdať na S, a teda ho musí nadobúdať na ∂S. Ak naopak funkcia f na oblasti S konštantná je,
musí byť vďaka svojej spojitosti konštantná aj na S. Keďže evidentne ∂S 6= ∅, nadobúda |f | aj v tomto
prípade maximum na ∂S.
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Cvičenia

1. Nech je a ∈ C koreňom rádu p ∈ N holomorfnej funkcie f a zároveň koreňom rádu q ∈ N
holomorfnej funkcie g. Charakterizujte rád koreňa a funkcie f · g prostredníctvom čísel p a q.

2. Dokážte alebo vyvráťte: ak f : D(0, 1) → C je holomorfná na D(0, 1), pričom ±1 a ±i sú hro-
madnými bodmi Z(f), je funkcia f na D(0, 1) nutne konštantne nulová.

3. Nech f : C → C je celá funkcia. Dokážte, že ak f(z) ∈ R pre všetky z ∈ C také, že |z| = 1, je
funkcia f nutne konštantná.

4. Nech f : C→ C je celá funkcia. Dokážte, že ak limz→∞
f(z)
z = 0, je funkcia f nutne konštantná.
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Laurentove rady

V tejto kapitole si ukážeme, že za istých okolností možno funkciu komplexnej premennej rozvinúť
do patrične zovšeobecneného mocninového radu aj v bodoch, v ktorých táto funkcia nie je holomorfná.
Zameriame sa pritom na pomerne špeciálny prípad izolovaných singularít jednohodnotovej holomorfnej
funkcie, v ktorých možno funkciu rozvinúť do takzvaného Laurentovho radu; na rozdiel od Taylorových
radov môžu Laurentove rady obsahovať aj záporné mocniny. Následne bližšie preskúmame samotné
izolované singularity jednohodnotových holomorfných funkcií.

9.1 Laurentove rady

Ak funkcia f nie je holomorfná v bode a ∈ C, nemôže existovať ani Taylorov rozvoj funkcie f v bode a,
ktorým by bola funkcia f reprezentovaná na D(a, r) pre nejaké r > 0; pokiaľ pritom z funkcie f nedos-
taneme funkciu holomorfnú v bode a jednoduchou zmenou funkčnej hodnoty f(a), nie je táto funkcia
reprezentovaná Taylorovým rozvojom ani na žiadnom prstencovom okolí D′(a, r). Teraz však ukážeme,
že v bodoch a ∈ C takých, že funkcia f je holomorfná na D′(a, r), možno funkciu f rozvinúť do radu
nápadne pripomínajúceho Taylorov rad, avšak obsahujúceho vo všeobecnosti aj záporné mocniny –
takýto rad nazveme Laurentovým radom. Hoci je spomenutý prípad z hľadiska aplikácií najdôleži-
tejší, v skutočnosti dokonca dokážeme o niečo silnejšie tvrdenie: rovnaká vlastnosť platí aj pre funkcie
holomorfné na medzikruží so stredom v bode a.

Pred vyslovením samotnej vety o Laurentových radoch si musíme ujasniť spôsob, akým chápeme
obojstranne nekonečné rady: hovoríme, že rad komplexných čísel

∞∑
n=−∞

an

konverguje k súčtu s, ak rad
∑∞

n=0 an konverguje k súčtu s1, rad
∑∞

n=1 a−n konverguje k súčtu s2

a s1 + s2 = s. Obdobným spôsobom chápeme aj obojstranne nekonečné mocninové rady.

Veta 9.1.1. Nech f je funkcia holomorfná na medzikruží A = {z ∈ C | r1 < |z − a| < r2} pre nejaké
0 ≤ r1 < r2. Potom existuje jednoznačne daná postupnosť koeficientov (cn)∞n=−∞ taká, že pre všetky
z ∈ A je funkcia f daná Laurentovým radom

f(z) =
∞∑

n=−∞
cn(z − a)n

(kde rad konverguje na A). Pre všetky n ∈ Z je navyše koeficient cn daný ako

cn =
1

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw,

kde r je ľubovoľné reálne číslo také, že r1 < r < r2.
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Dôkaz. Nech z ∈ A je pevné. Zvoľme reálne čísla s1, s2 tak, aby r1 < s1 < |z − a| < s2 < r2. Spojme
kružnice κ(a, s1) a κ(a, s2) dvoma nepretínajúcimi sa úsečkami tak, aby bod z neležal na žiadnej z nich
a skonštruujme krivky γ1, γ2 tak, ako na obrázku 9.1b.

a
r1

r2

κ(a, s1)

κ(a, s2)

z

(a) Voľba hodnôt s1 a s2.

a

z γ1

γ2

(b) Krivky γ1 a γ2.

Obr. 9.1: Dôkaz vety 9.1.1.

Z Cauchyho integrálneho vzorca potom

f(z) =
1

2πi

∫
γ1

f(w)

w − z
dw

a z Cauchyho integrálnej vety pre jednoducho súvislú oblasť

0 =
1

2πi

∫
γ2

f(w)

w − z
dw.

Sčítaním obidvoch integrálov dostávame

f(z) =
1

2πi

∫
κ(a,s2)

f(w)

w − z
dw − 1

2πi

∫
κ(a,s1)

f(w)

w − z
dw. (9.1)

Pre w ∈ κ(a, s2)∗ ale |w − a| > |z − a| a

1

w − z
=

1

w − a
· 1

1− z−a
w−a

=
∞∑
n=0

(z − a)n

(w − a)n+1
,

kde rad konverguje rovnomerne pre w z nejakej oblasti obsahujúcej κ(a, s2)∗. Pre w ∈ κ(a, s1)∗ naopak
|w − a| < |z − a| a

1

w − z
= − 1

z − a
· 1

1− w−a
z−a

=
∞∑
k=0

− (w − a)k

(z − a)k+1
,

kde rad konverguje rovnomerne pre w z nejakej oblasti obsahujúcej κ(a, s1)∗. Dosadením do (9.1) tak
s použitím vety 7.1.8 zisťujeme, že

f(z) =
1

2πi

∫
κ(a,s2)

f(w)
∞∑
n=0

(z − a)n

(w − a)n+1
dw − 1

2πi

∫
κ(a,s1)

f(w)
∞∑
k=0

− (w − a)k

(z − a)k+1
dw =

=

∞∑
n=0

(
1

2πi

∫
κ(a,s2)

f(w)

(w − a)n+1
dw

)
(z − a)n +

∞∑
k=0

(
1

2πi

∫
κ(a,s1)

f(w)

(w − a)−k
dw

)
(z − a)−k−1 =

=

∞∑
n=0

(
1

2πi

∫
κ(a,s2)

f(w)

(w − a)n+1
dw

)
(z − a)n +

−1∑
n=−∞

(
1

2πi

∫
κ(a,s1)

f(w)

(w − a)n+1
dw

)
(z − a)n.
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Vďaka vete o deformácii môžeme integračné krivky κ(a, s1) a κ(a, s2) nahradiť krivkou κ(a, r). Dostá-
vame teda

f(z) =

∞∑
n=−∞

(
1

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw

)
(z − a)n =

∞∑
n=−∞

cn(z − a)n.

Zostáva dokázať jednoznačnosť koeficientov cn. Ak ale pre z ∈ A platí f(z) =
∑∞

k=−∞ dk(z − a)k

pre nejaké konštanty (dk)
∞
k=−∞, tak pre všetky n ∈ Z zisťujeme, že

cn =
1

2πi

∫
κ(a,r)

f(w)

(w − a)n+1
dw =

1

2πi

∫
κ(a,r)

∞∑
k=−∞

dk(w − a)k−n−1 dw =

=
1

2πi

∫
κ(a,r)

∞∑
k=0

dk(w − a)k−n−1 dw +
1

2πi

∫
κ(a,r)

∞∑
k=1

d−k(w − a)−k−n−1 dw.

Obidva nekonečné rady v integrandoch konvergujú rovnomerne podľa Weierstrassovho kritéria – zaMk

možno pri prvom z nich vziať napríklad |dk|qk−n−1
1 pre ľubovoľné reálne q1 také, že r < q1 < %1, kde %1

je polomer konvergencie radu
∑∞

k=0 dku
k a pri druhom rade napríklad |d−k|qk+n+1

2 pre reálne číslo q2

také, že 1/r < q2 < %2, kde %2 je polomer konvergencie radu
∑∞

k=1 d−ku
k. Preto

cn =

∞∑
k=0

dk
2πi

∫
κ(a,r)

(w − a)k−n−1 dw +

∞∑
k=1

d−k
2πi

∫
κ(a,r)

(w − a)−k−n−1 dw =

=
∞∑

k=−∞

dk
2πi

∫
κ(a,r)

(w − a)k−n−1 dw = dn, (9.2)

keďže integrál je v (9.2) nenulový len pre k = n a jeho hodnota je v takom prípade 2πi.

Poznámka 9.1.2. Podobne ako pri Cauchyho integrálnych vzorcoch alebo koeficientoch Taylorových
radov možno integrál pozdĺž kružnice κ(a, r) v znení vety 9.1.1 nahradiť integrálom pozdĺž ľubovoľnej
uzavretej po častiach hladkej krivky homotopickej v A s κ(a, r) (čo vyplýva priamo z vety o deformácii),
prípadne integrálom pozdĺž ľubovoľnej kladne orientovanej jednoduchej uzavretej po častiach hladkej
krivky γ s γ∗ ⊆ A takej, že D(a, r1) ⊆ I(γ) (kde je ale v konečnom dôsledku potrebné odvolať sa
na Jordanovu a Jordanovu-Schoenfliesovu vetu).

Poznámka 9.1.3. Pre disjunktné medzikružia so stredom v bode a ∈ C môžu byť Laurentove rozvoje
so stredom v a vo všeobecnosti rôzne. Typicky sa však budeme zaujímať o Laurentov rozvoj funkcie
na nejakom prstencovom okolí bodu a, ktorý je vďaka predchádzajúcej vete daný jednoznačne. Často
budeme nepresne hovoriť o Laurentovom rozvoji funkcie v bode a; v takom prípade máme vždy na mysli
(jediný) Laurentov rad na nejakom prstencovom okolí bodu a.

Príklad 9.1.4. Funkcia f(z) = 1/z je „sama svojím Laurentovým radom“ v bode z = 0 – to znamená
f(z) =

∑∞
n=−∞ cnz

n, kde c−1 = 1 a cn = 0 pre všetky n ∈ N \ {−1}.
Príklad 9.1.5. Uvažujme funkciu f(z) = 1/(z3 +z2). Laurentov rozvoj funkcie f v bode z = 0 možno
nájsť takto:

f(z) =
1

z2(z + 1)
=

1

z2

( ∞∑
n=0

(−1)nzn

)
=

∞∑
n=−2

(−1)nzn.

To znamená, že koeficienty pri zn sú pre n < 2 nulové. Ide pritom o Laurentov rad na prstencovom
okolí D′(0, 1). Užitočným cvičením môže byť nájdenie Laurentovho radu reprezentujúceho funkciu f
na medzikruží A = {z ∈ C | 1 < |z| < r} pre ľubovoľné r > 1.

Príklad 9.1.6. Laurentov rad funkcie sin(1/z) v bode z = 0 je daný ako

sin

(
1

z

)
=

∞∑
n=0

(−1)n
z−(2n+1)

n!
.

Je v ňom teda nekonečne veľa nenulových koeficientov pri záporných mocninách z.
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9.2 Izolované singularity a ich klasifikácia

Po zvyšok tejto kapitoly sa začneme vážnejšie zaoberať vlastnosťami bodov, v ktorých nejaká funkcia f
nie je holomorfná, hoci je holomorfná v ich blízkosti – presnejšie sa budeme zaoberať takzvanými
izolovanými singularitami jednohodnotových holomorfných funkcií, ktoré sú úzko späté s Laurentovými
radmi. Samotný pojem singularity funkcie zatiaľ definovať nebudeme; urobíme tak až neskôr v súvislosti
s analytickým predĺžením. Izolované singularity jednohodnotových funkcií budú – až na nepodstatný
prípad odstrániteľných singularít – špeciálnym prípadom singularít.

Definícia 9.2.1. Nech S ⊆ C je množina a f : S → C je funkcia. Hovoríme, že bod a ∈ C je izolovanou
singularitou funkcie f , ak existuje r > 0 také, že D′(a, r) ⊆ S, pričom funkcia f je holomorfná
na D′(a, r), ale nie je holomorfná1 v bode a.

Podmienka holomorfnosti funkcie f na D′(a, r) má za následok, že každú funkciu možno v jej
izolovaných singularitách rozvinúť do Laurentovho radu. Vlastnosti tohto radu sú pritom základom
pre jemnejšiu klasifikáciu izolovaných singularít.

Definícia 9.2.2. Nech S ⊆ C je množina, f : S → C je funkcia a a ∈ C je izolovaná singularita
funkcie f . Nech r > 0 je také, že f je holomorfná na D′(a, r), pričom pre z ∈ D′(a, r) je funkcia f daná
Laurentovým rozvojom

f(z) =

∞∑
n=−∞

cn(z − a)n.

Potom hovoríme, že a je:

a) Odstrániteľnou singularitou funkcie f , ak pre všetky celé čísla n < 0 je cn = 0.

b) Pólom funkcie f , ak existuje m ∈ N \ {0} také, že c−m 6= 0 a pre všetky celé čísla n < −m je
cn = 0. V takom prípade tiež hovoríme, že a je pólom rádu m.

c) Podstatnou izolovanou singularitou funkcie f , ak existuje nekonečne veľa rôznych celých čísel
n < 0 takých, že cn 6= 0.

Príklad 9.2.3. Z príkladov 9.1.4, 9.1.5 a 9.1.6 vyplýva, že funkcie

f1(z) =
1

z

a
f2(z) =

1

z3 + z2

majú v bode z = 0 pól. V prvom prípade ide o pól rádu 1, nazývaný tiež jednoduchým pólom; v druhom
prípade ide o pól rádu 2. Funkcia

f3(z) = sin

(
1

z

)
má v bode z = 0 podstatnú izolovanú singularitu. Príkladom funkcie s odstrániteľnou singularitou
v bode 0 môže byť napríklad funkcia f4 : C→ C daná pre všetky z ∈ C ako

f4(z) =

{
1 ak z 6= 0,
0 ak z = 0,

prípadne zúženie funkcie ez na C \ {0} a podobne.
1Samotný bod a pritom môže, ale nemusí patriť do S.
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9.3 Odstrániteľné singularity

V terminológii, ktorú zavedieme neskôr, sa odstrániteľné singularity za singularity vôbec nepokladajú.
Existencia odstrániteľnej singularity funkcie f v bode a totiž znamená, že na nejakom prstencovom
okolí D′(a, r) bodu a je

f(z) =
∞∑
n=0

cn(z − a)n.

pre nejakú postupnosť koeficientov (cn)∞n=0. Funkcia definovaná týmto mocninovým radom je naD(a, r)
holomorfná. Ak teda funkcia f nie je holomorfná v bode a, môže to byť iba z dvoch dôvodov: buď
nie je v bode a vôbec definovaná, alebo má v tomto bode hodnotu rôznu od c0. V oboch prípadoch
možno dodefinovaním resp. predefinovaním hodnoty f(a) na c0 získať holomorfnú funkciu. Prípad
odstrániteľných singularít je teda zanedbateľný, keďže predefinovanie funkcie v jednom izolovanom
bode zvyčajne nehrá veľkú rolu.

Veta 9.3.1 (Riemannova veta o odstrániteľných singularitách). Nech S ⊆ C je otvorená množina,
a ∈ S a f : S \{a} → C je funkcia holomorfná na S \{a}. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Existuje funkcia f̂ : S → C holomorfná v bode a taká, že pre všetky z ∈ S \ {a} je f̂(z) = f(z).

(ii) Existuje funkcia f̂ : S → C spojitá v bode a taká, že pre všetky z ∈ S \ {a} je f̂(z) = f(z).

(iii) Existuje r > 0 také, že D(a, r) ⊆ S a funkcia f je ohraničená na D′(a, r).

(iv) Existuje vlastná limita limz→a f(z) = L.

(v) limz→a f(z)(z − a) = 0.

Dôkaz. Z tvrdenia (i) vyplýva tvrdenie (ii) podľa vety 2.5.1. Platnosť tvrdenia (ii) ďalej znamená,
že ku každému ε > 0 vieme nájsť δ > 0 také, že pre všetky z ∈ D(a, δ) ∩ S je f̂(z) ∈ D(f̂(a), ε).
Ak teda zvolíme r > 0 tak, aby bolo r ≤ δ a súčasne D(a, r) ⊆ S, pre všetky z ∈ D′(a, r) je
|f(z)| = |f̂(z)| ≤ |f̂(a)|+ ε a funkcia f je teda ohraničená na D′(a, r).

Predpokladajme ďalej platnosť tvrdenia (iii) a uvažujme funkciu g : S → C danú pre všetky z ∈ S
ako

g(z) =

{
(z − a)2f(z) ak z 6= a,
0 ak z = a.

Funkcia g je evidentne holomorfná na S \ {a} a vďaka ohraničenosti funkcie f na D′(a, r) dostávame

g′(a) = lim
z→a

g(z)− g(a)

z − a
= lim

z→a

(z − a)2f(z)

z − a
= lim

z→a
(z − a)f(z) = 0.

Funkcia g je teda holomorfná na S. Podľa vety 7.2.1 teda pre ľubovoľné R > 0 spĺňajúce D(a,R) ⊆ S
a všetky z ∈ D(a,R) je

g(z) =
∞∑
n=0

cn(z − a)n

pre nejakú jednoznačne danú postupnosť koeficientov (cn)∞n=0. Keďže g(a) = g′(a) = 0, je c0 = c1 = 0.
Pre všetky z ∈ D(a,R) potom môžeme definovať hodnoty funkcie f̃ : D(a,R)→ C ako

f̃(z) =

∞∑
n=0

cn+2(z − a)n,

kde rad napravo evidentne konverguje pre všetky prípustné z. Pre všetky z ∈ D′(a,R) navyše

f̃(z) =
g(z)

(z − a)2
= f(z).
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Funkcia f̂ : S → C daná pre všetky z ∈ S ako

f̂(z) =

{
f̃(z) ak z ∈ D(a,R),
f(z) ak z ∈ S \D(a,R)

je potom holomorfným rozšírením funkcie f na S, čím sme dokázali tvrdenie (i).
Tvrdenia (i) až (iii) sú teda skutočne ekvivalentné a zostáva dokázať ich ekvivalenciu s tvrdeniami

(iv) až (v). Ak ale predpokladáme napríklad (ii), podľa tvrdenia 2.2.6 je

lim
z→a

f(z) = lim
z→a

f̂(z) = f̂(a),

a tvrdenie (iv) je dokázané pre L = f̂(a). Tvrdenie (iv) ďalej zrejme implikuje tvrdenie (v).
Predpokladajme napokon platnosť tvrdenia (v) – teda

lim
z→a

f(z)(z − a) = 0.

Pre ľubovoľné pevné ε > 0 potom existuje δ > 0 také, že funkcia f je na D′(a, δ) holomorfná
a pre všetky w ∈ D′(a, δ) je

|f(w)(w − a)| < ε;

pre ľubovoľné reálne číslo η spĺňajúce δ/2 < η < δ a všetky w ∈ κ(a, η)∗ teda aj

|f(w)| < 2ε

δ
. (9.3)

Funkcia f ďalej musí byť na D′(a, δ) daná svojím Laurentovým radom

f(z) =
∞∑

n=−∞
dn(z − a)n

pre nejakú postupnosť koeficientov (dn)∞n=−∞. Z vety 9.1.1, vety o odhade a (9.3) potom pre ľubovoľné
reálne η spĺňajúce δ/2 < η < δ a všetky záporné celé čísla n dostávame

|dn| =

∣∣∣∣∣ 1

2πi

∫
κ(a,η)

f(w)

(w − a)n+1
dw

∣∣∣∣∣ ≤ 1

2π
· 2π · δ · 2n+2ε

δn+2
=

2n+2ε

δn+1

a keďže ε > 0 a δ > 0 môžu byť ľubovoľne malé, nutne |dn| = dn = 0. Pre všetky z ∈ D′(a, δ) teda
v skutočnosti

f(z) =
∞∑
n=0

dn(z − a)n,

kde rad napravo udáva holomorfné rozšírenie funkcie f na D(a, δ). Pre funkciu f̂ : S → C danú ako

f̂(z) =

{ ∑∞
n=0 dn(z − a)n ak z ∈ D(a, δ),

f(z) ak z ∈ S \D(a, δ)

teda platí tvrdenie (i).

O Riemannovej vete o odstrániteľných singularitách hovoríme v súvislosti s vetou 9.3.1 preto, lebo
jej dôsledkom je nasledujúce kritérium odstrániteľnosti singularity.
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Dôsledok 9.3.2. Nech S ⊆ C je otvorená množina a f : S → C funkcia holomorfná na S s izolovanou
singularitou v bode a ∈ C. Nech r > 0 je také, že D′(a, r) ⊆ S a nech je pre všetky z ∈ D′(a, r) funkcia
f daná Laurentovým radom f(z) =

∑∞
n=−∞ cn(z − a)n. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Bod a je odstrániteľnou singularitou funkcie f .

(ii) Existuje funkcia f̂ holomorfná na D(a, r) taká, pre všetky z ∈ D′(a, r) je f(z) = f̂(z).

(iii) Existuje funkcia f̂ spojitá na D(a, r) taká, pre všetky z ∈ D′(a, r) je f(z) = f̂(z).

(iv) Funkcia f je ohraničená na nejakom prstencovom okolí bodu a.

(v) Existuje vlastná limita limz→a f(z) = L.

(vi) limz→a f(z)(z − a) = 0.

Dôkaz. Izolovaná singularita a ∈ C funkcie f je z definície odstrániteľná práve vtedy, keď pre všetky
celé čísla n < 0 je cn = 0. Pre všetky z ∈ D′(a, r) potom

f(z) =
∞∑
n=0

cn(z − a)n

a rad napravo určuje holomorfné rozšírenie funkcie f na D(a, r). Ak naopak existuje funkcia f̂ holo-
morfná na D(a, r) taká, že pre všetky z ∈ D′(a, r) je f(z) = f̂(z), sú hodnoty funkcie f na D′(a, r)
dané Taylorovým radom funkcie f̂ so stredom v bode a, ktorý je vďaka jednoznačnosti koeficientov
Laurentovho radu súčasne aj Laurentovým radom funkcie f na D′(a, r). Tento rad má nulové všetky
koeficienty pri záporných mocninách z a izolovaná singularita a tak musí byť odstrániteľná.

Dokázali sme teda ekvivalenciu tvrdení (i) a (ii). Ekvivalencia tvrdenia (ii) so zvyšnými tvrdeniami
vyplýva priamo z vety 9.3.1.

Sformulujme ešte ďalšie dva užitočné dôsledky Riemannovej vety o odstrániteľných singularitách.

Dôsledok 9.3.3. Nech S ⊆ C je otvorená množina, a ∈ S a f : S → C je funkcia holomorfná
na S \ {a}. Potom je funkcia f holomorfná v bode a práve vtedy, keď je v bode a spojitá.

Dôkaz. Vyplýva bezprostredne z ekvivalencie tvrdení (i) a (ii) vety 9.3.1.

Dôsledok 9.3.4. Nech S ⊆ C je otvorená množina, F ⊆ S je konečná množina, f : S → C je funkcia
holomorfná na S \ F a a ∈ F . Potom je funkcia f holomorfná v bode a práve vtedy, keď je v bode a
spojitá.

Dôkaz. Keďže je množina S otvorená, existuje ε > 0 také, že D(a, ε) ⊆ S. Ak navyše zvolíme toto
číslo ε tak, aby bolo

ε < min {|z − a| | z ∈ F \ {a}} ,

evidentne
D(a, ε) ⊆ (S \ F ) ∪ {a}.

Stačí sa teda opäť odvolať na vetu 9.3.1.
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9.4 Póly

Zaoberajme sa teraz bližšie pólmi. Charakterizujme najprv póly rádu m podobným spôsobom, ako
sme v tvrdení 8.1.3 charakterizovali korene rádu m a v dôsledku 9.3.2 odstrániteľné singularity.

Tvrdenie 9.4.1. Nech S ⊆ C je otvorená množina a f : S → C je funkcia holomorfná na S. Nech
a ∈ C a r > 0 sú také, že D′(a, r) ⊆ S a pre všetky z ∈ D′(a, r) je funkcia f daná Laurentovým radom
f(z) =

∑∞
n=−∞ cn(z − a)n. Nech m ∈ N \ {0}. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) Bod a je pólom rádu m funkcie f .

(ii) Existuje funkcia g holomorfná na D(a, r) taká, že g(a) 6= 0 a pre všetky z ∈ D′(a, r) je funkcia f
daná ako f(z) = g(z)/(z − a)m.

(iii) Limita limz→a f(z)(z − a)m existuje a je rovná nejakému nenulovému komplexnému číslu.

Dôkaz. Platnosť tvrdenia (i) znamená, že c−m 6= 0 a pre všetky celé čísla n < −m je cn = 0. Pre všetky
z ∈ D′(a, r) teda

f(z) =
∞∑

n=−m
cn(z − a)n,

kde koeficient c−m je nenulový. Ľahko teda vidieť, že na D′(a, r) je f(z) = g(z)/(z − a)m pre funkciu
g danú pre všetky z ∈ D(a, r) ako

g(z) =
∞∑
n=0

cn−m(z − a)n.

Rad napravo zrejme konverguje pre všetky z ∈ D(a, r); funkcia g je teda holomorfná na D(a, r), pričom
g(a) = c−m 6= 0. Tvrdenie (i) teda implikuje tvrdenie (ii).

Ak naopak platí (ii) pre nejakú holomorfnú funkciu g spĺňajúcu g(a) 6= 0 a danú na D(a, r) radom

g(z) =
∞∑
n=0

bn(z − a)n,

tak pre všetky z ∈ D′(a, r) je

f(z) =
g(z)

(z − a)m
=

∞∑
n=−m

bn+m(z − a)n,

pričom koeficient c−m = b0 = g(a) pri (z − a)−m je nenulový. Tvrdenia (i) a (ii) sú teda ekvivalentné.
Zostáva dokázať ekvivalenciu tvrdenia (iii) s predchádzajúcimi dvoma tvrdeniami. Z platnosti (ii)

a spojitosti holomorfnej funkcie g v bode a vyplýva

lim
z→a

f(z)(z − a)m = lim
z→a

(z − a)mg(z)

(z − a)m
= g(a),

kde g(a) 6= 0; tvrdenie (ii) teda implikuje (iii).
Nech naopak platí (iii) a C ∈ C \ {0} je také, že

lim
z→a

f(z)(z − a)m = C.

Pre všetky ε > 0 potom existuje δ > 0 také, že f je holomorfná na D′(a, δ) a pre všetky w ∈ D′(a, δ)
je

|f(w)(w − a)m − C| < ε;
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pre ľubovoľné reálne číslo η spĺňajúce δ/2 < η < δ a všetky w ∈ κ(a, η)∗ teda aj

|f(w)| < 2m(|C|+ ε)

δm
.

Ak teda f(z) =
∑∞

n=−∞ cn(z − a)n, pre n < −m dostávame

|cn| =

∣∣∣∣∣ 1

2πi

∫
κ(a,η)

f(w)

(w − a)n+1
dw

∣∣∣∣∣ < 1

2π
· 2π · δ · 2m+n+1(|C|+ ε)

δm+n+1
=

2m+n+1(|C|+ ε)

δm+n

a keďže ε > 0 a δ > 0 môžu byť ľubovoľne malé, nutne cn = 0. Naopak ale

C = lim
z→a

f(z)(z − a)m = lim
z→a

∞∑
n=−m

cn(z − a)n+m = lim
z→a

(
c−m +

∞∑
n=−m+1

cn(z − a)n+m

)
= c−m,

z čoho c−m = C 6= 0. Tvrdenie (iii) teda implikuje (i), čím je dôkaz dokončený.

Môžeme teraz sformulovať relatívne dôležité tvrdenie dávajúce do súvisu korene a póly.

Tvrdenie 9.4.2. Nech f je funkcia holomorfná v bode a ∈ C a m ∈ N \ {0}. Potom má funkcia f
v bode a koreň rádu m práve vtedy, keď má funkcia 1/f v bode a pól rádu m.

Dôkaz. Ak má holomorfná funkcia f v bode a koreň rádu m, existuje r > 0 také, že pre všetky
z ∈ D(a, r) je

f(z) =
∞∑
n=m

cn(z − a)n,

kde cm 6= 0. Funkcia f potom musí byť pre nejaké δ spĺňajúce 0 < δ ≤ r nenulová na prstencovom
okolí D′(a, δ) bodu a; v opačnom prípade by totiž bod a bol hromadným bodom množiny koreňov
funkcie f , z lemy 8.2.1 by sme dostali nulovosť tejto funkcie na D(a, r) a z jednoznačnosti koeficientov
Taylorovho rozvoja by vyplynulo cm = 0. Z toho vyplýva, že funkcia 1/f je holomorfná na D′(a, δ).
Podľa tvrdenia 8.1.3 navyše existuje funkcia g holomorfná na D(a, r) taká, že pre z ∈ D(a, r) je
f(z) = (z − a)mg(z) a g(a) 6= 0. Funkcia g pritom musí byť nenulová na D(a, δ), pretože v opačnom
prípade by funkcia f nebola nenulová na D′(a, δ). Pre všetky z ∈ D′(a, δ) teda

1

f(z)
=

1

(z − a)mg(z)
=

1/g(z)

(z − a)m

a keďže je 1/g holomorfná na D(a, δ) a 1/g(a) 6= 0, je a pólom rádum funkcie 1/f podľa tvrdenia 9.4.1.
Ak má naopak funkcia 1/f v bode a pól rádu m, existuje r > 0 také, že pre všetky z ∈ D′(a, r) je

1

f(z)
=

∞∑
n=−m

dn(z − a)n,

kde d−m 6= 0. Funkcia

g(z) =

∞∑
n=0

dn−m(z − a)n

je potom holomorfná na D(a, r), pričom g(a) = d−m 6= 0 a pre všetky z ∈ D′(a, r) je

g(z) =
(z − a)m

f(z)
.



Predbežná verzia

110 Cvičenia

Zo spojitosti tejto funkcie teda vyplýva existencia reálneho čísla δ takého, že 0 < δ ≤ r a funkcia g je
na D(a, δ) nenulová. Na D(a, δ) je potom holomorfná aj funkcia 1/g(z), pričom evidentne 1/g(a) 6= 0.
Keďže navyše

f(z) =

(
1

g(z)

)
(z − a)m

pre všetky z ∈ D′(a, δ) a funkcie na oboch stranách tejto rovnosti sú holomorfné v a, platí táto rovnosť
podľa vety o jednoznačnosti pre všetky z ∈ D(a, δ) a funkcia f má podľa tvrdenia 8.1.3 v bode a koreň
rádu m.

9.5 Meromorfné funkcie

Zakončime túto kapitolu definíciou dôležitej triedy meromorfných funkcií – funkcia je meromorfná
na T ⊆ C, ak je holomorfná na T s výnimkou nejakej množiny izolovaných bodov, ktoré sú pólmi
funkcie. Čitateľ bude mať príležitosť preskúmať niektoré vlastnosti týchto funkcií v rámci cvičení.

Definícia 9.5.1. Nech S je otvorená množina a f : S → C funkcia. Hovoríme, že funkcia f je mero-
morfná v bode a ∈ C, ak nastane jedna z nasledujúcich dvoch možností:

(i) Bod a patrí do S a funkcia f je holomorfná v a.

(ii) Funkcia f má v a pól.

Hovoríme, že funkcia f je meromorfná na množine T ⊆ C, ak je meromorfná v každom bode a ∈ T .

Príklad 9.5.2. Každá racionálna funkcia f je (po odstránení prípadných odstrániteľných singularít)
meromorfná na C. Ak totiž

f(z) =
p(z)

q(z)

pre nejaké polynomické funkcie p, q : C → C, kde funkcia q nie je konštantne nulová a množina jej
koreňov je daná ako Z(q) = {α1, . . . , αn}, je funkcia f evidentne holomorfná na C\Z(q). Ak je navyše
pre k = 1, . . . , n koreň αk funkcie q rádu mk ∈ N \ {0}, existuje polynomická funkcia q̂ : C → C taká,
že q̂(αk) 6= 0 a pre všetky z ∈ C je q(z) = (z − αk)mk q̂(z). Ak súčasne p(αk) 6= 0, existuje r > 0 také,
že pre všetky z ∈ D′(αk, r) je

f(z) =
p(z)

q(z)
=

p(z)

(z − αk)mk q̂(z)
,

pričom funkcia p(z)/q̂(z) je holomorfná na D(αk, r) a p(αk)/q̂(αk) 6= 0. V dôsledku toho je podľa
tvrdenia 9.4.1 bod αk pólom funkcie f rádu mk. Ak naopak p(αk) = 0, je αk koreňom funkcie p
rádu m′k ∈ N \ {0}, v dôsledku čoho existuje polynomická funkcia p̂ : C → C taká, že p̂(αk) 6= 0
a pre všetky z ∈ C je p(z) = (z − αk)m

′
k p̂(z). Existuje teda r > 0 také, že pre všetky z ∈ D′(αk, r) je

f(z) =
p(z)

q(z)
=

(z − αk)m
′
k p̂(z)

(z − αk)mk q̂(z)
= (z − αk)m

′
k−mk

p̂(z)

q̂(z)
,

kde funkcia p̂(z)/q̂(z) je holomorfná na D(αk, r) a p̂(αk)/q̂(αk) 6= 0. Ak teda m′k ≥ mk, je bod αk
odstrániteľnou singularitou funkcie f ; ak m′k < mk, ide o pól funkcie f rádu mk −m′k. Funkcia f je
teda po odstránení prípadných odstrániteľných singularít naozaj meromorfná na C.
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Cvičenia

1. Nájdite Laurentove rozvoje nasledujúcich funkcií f1, f2, f3, f4 : C \ {0} → C v bode a = 0:

a) f1(z) = (sin z)/z;

b) f2(z) = (cos z)/z;

c) f3(z) = (sin z)/z5;

d) f4(z) = cos(1/z2).

V každom z uvedených prípadov je bod a = 0 izolovanou singularitou danej funkcie – zistite
pre jednotlivé funkcie druh tejto izolovanej singularity.

2. Nájdite Laurentov rozvoj funkcie

f(z) =
1

z(z − 1)(z − 2)

v bode a = 0 konvergentný na medzikruží:

a) A1 = D′(0, 1);

b) A2 = {z ∈ C | 1 < |z| < 2};
c) A3 = {z ∈ C | 2 < |z| < r} pre ľubovoľné r > 2.

3. Nech f je holomorfná na D′(a, r) pre nejaké a ∈ C a r > 0. Dokážte, že funkcia f je holomorfná
v bode a práve vtedy, keď limz→a f(z) = f(a).

4. Nech f je analytická v bode 0. Pozorujte, že funkcia 1/f je analytická v bode 0 práve vtedy,
keď f(0) 6= 0. Nech navyše pre nejaké r > 0 a všetky z ∈ D(a, r) je f(z) =

∑∞
n=0 anz

n. Nájdite
Maclaurinov rad funkcie 1/f (vyjadrite jeho koeficienty pomocou koeficientov a0, a1, a2 . . .).

5. Funkcia kosekans je pre všetky z ∈ C \ {kπ | k ∈ Z} daná predpisom

cosec z :=
1

sin z
.

Nájdite prvých niekoľko členov Laurentových radov funkcií cosec z a cosec2 z v bode a = 0.
Vysvetlite, ako by ste opísali n-té členy týchto radov.

6. Nech a ∈ C je pól funkcie f . Dokážte, že v takom prípade limz→a f(z) =∞ – t. j. |f(z)| pre z → a
rastie nad všetky medze.

7. Dokážte Casoratiho-Weierstrassovu vetu: ak a ∈ C je podstatná izolovaná singularita funkcie
f holomorfnej na nejakom prstencovom okolí D′(a, r) bodu a, tak pre každé ` ∈ C existuje
postupnosť bodov (an)∞n=0 z D′(a, r) taká, že limn→∞ an = a a limn→∞ f(an) = `.

8. Charakterizujte funkcie meromorfné na T ⊆ C pomocou Laurentových rozvojov v bodoch a ∈ T .

9. Nech T ⊆ C je oblasť a f, g sú funkcie meromorfné na T . Dokážte, že v takom prípade sú
po odstránení prípadných odstrániteľných singularít na T meromorfné aj funkcie f + g a f · g.
Charakterizujte Laurentove rozvoje funkcií f + g a f · g v bode a ∈ T pomocou Laurentových
rozvojov funkcií f a g.

10. Nech T ⊆ C je oblasť a f je funkcia meromorfná na T . Dokážte, že v takom prípade je po od-
stránení prípadných odstrániteľných singularít na T meromorfná aj funkcia 1/f . Charakterizujte
Laurentov rozvoj funkcie 1/f v bode a ∈ T pomocou Laurentovho rozvoja funkcie f .
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11. Nech T ⊆ C je oblasť.

a) Dokážte, že množina H(T ) funkcií holomorfných na T tvorí spolu s bežnými operáciami
sčítania a násobenia funkcií obor integrity.

b) Dokážte, že množina M(T ) funkcií meromorfných na T tvorí spolu s operáciami sčítania
a násobenia funkcií, nasledovaných odstránením prípadných odstrániteľných singularít, pole.

12. Nech f je funkcia meromorfná na C, ktorá je na prstencovom okolí D′(0, 1) daná Laurentovým
rozvojom s konečným počtom členov: pre všetky z ∈ D′(0, 1) je teda

f(z) =
M∑
n=m

anz
n,

kde m,M ∈ Z a pre n = m, . . . ,M je an ∈ C. Nájdite všetky možné počty pólov funkcie f v C.

Nech S ⊆ C je neohraničená oblasť. Potom hovoríme, že funkcia f : S → C má v nekonečne izolo-
vanú singularitu nejakého druhu, ak má izolovanú singularitu tohto druhu v bode 0 funkcia f̃ : T → C
daná pre všetky z ∈ T = {z ∈ C \ {0} | 1/z ∈ S} ako f̃(z) := f(1/z). Hovoríme tiež, že funkcia f je
holomorfná na C̃, ak ide o celú funkciu s odstrániteľnou singularitou v nekonečne a meromorfná na C̃,
ak ide o funkciu meromorfnú na C, ktorá má v nekonečne odstrániteľnú singularitu alebo pól.

13. Nájdite druh izolovanej singularity v nekonečne pre funkciu:

a) f1(z) = z5;

b) f2(z) = 1/z5;

c) f3(z) = sin z;

d) f4(z) = sin(1/z).

14. Dokážte, že:

a) Každá funkcia holomorfná na C̃ je konštantná.

b) Každá funkcia meromorfná na C̃ je racionálna.
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Cauchyho integrálny vzorec II
a Cauchyho integrálna veta II

Naše ďalšie úvahy začneme definíciou indexu bodu vzhľadom ku krivke, pomocou ktorého bude možné
exaktne merať „počet ovinutí“ uzavretej po častiach hladkej krivky okolo daného bodu,1 ako aj poriadne
– t. j. bez odkazu na matematicky pofidérne pojmy, akými sú smer hodinových ručičiek alebo ľavá
a pravá strana – definovať orientáciu jednoduchej uzavretej krivky.

S použitím tohto pojmu ďalej dokážeme zatiaľ najvšeobecnejšiu verziu Cauchyho integrálneho
vzorca, ktorá navyše nebude predpokladať platnosť Jordanovej ani Jordanovej-Schoenfliesovej vety –
namiesto pokusov o topologické uchopenie pojmov ako „krivka obkolesujúca daný bod“ totiž priamo
v jej formulácii využijeme pojem indexu, ktorého nenulovosť bude známkou toho, že krivka daný bod
aspoň raz ovinie. Nakoniec takto vylepšený Cauchyho integrálny vzorec použijeme na dôkaz všeobec-
ných variantov Cauchyho integrálnej vety a vety o deformácii. Vo formulácii týchto viet nebude zmienka
o žiadnej netriviálnej topologickej vlastnosti, akou je jednoduchá súvislosť – vlastnosť „neobkolesenia“
žiadneho bodu mimo oblasti, na ktorej je funkcia holomorfná, vyjadríme len prostredníctvom relatívne
elementárneho pojmu indexu. Text kapitoly čiastočne vychádza z [9, 11, 8].

10.1 Index bodu vzhľadom ku krivke

V predchádzajúcich kapitolách sme už niekoľkokrát narazili na integrál∫
γ

1

z − a
dz.

Ak je napríklad γ kladne orientovaná kružnica so stredom v a, je tento integrál rovný 2πi. Rovnaká
vlastnosť platí aj pre ľubovoľnú uzavretú po častiach hladkú krivku γ homotopickú v C\{a} s takouto
kružnicou alebo – ak siahneme po Jordanovej a Jordanovej-Schoenfliesovej vete – pre ľubovoľnú kladne
orientovanú jednoduchú uzavretú po častiach hladkú krivku γ s a ∈ I(γ). Nech je γ daná ktorýmkoľvek
z týchto spôsobov, bude mať integrál pozdĺž γ+γ hodnotu 4πi, integrál pozdĺž γ+γ+γ bude 6πi, atď.
Naopak integrál pozdĺž −γ bude −2πi a podobne ako vyššie vieme nájsť hodnoty integrálov aj pozdĺž
spojení niekoľkých takýchto kriviek.

Bez použitia Jordanovej vety nie je úplne jasné, čo si predstaviť pod „počtom ovinutí“ krivky γ
okolo a ∈ C. Túto veličinu však môžeme definovať na základe vyššie uvedených pozorovaní – dostávame
sa tak k dôležitému pojmu indexu bodu vzhľadom ku krivke.

Definícia 10.1.1. Nech γ je uzavretá po častiach hladká krivka a a ∈ C\γ∗. Indexom bodu a vzhľadom
ku krivke γ nazveme hodnotu

Indγ(a) =
1

2πi

∫
γ

1

z − a
dz.

1V angličtine sa preto pre index používa aj pomenovanie winding number.
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Príklad 10.1.2. Indκ(0,1)(1/2) = 1, Ind−κ(0,1)(1/2) = −1 a Indκ(0,1)+κ(0,1)(1/2) = 2.

Pojem indexu môžeme využiť aj na definíciu orientácie jednoduchej uzavretej krivky – stačí si všim-
núť, že pre kladne orientované kružnice a s nimi homotopické krivky je index ľubovoľného bodu v ich
vnútri vzhľadom k nim rovný jednej. S použitím Jordanovej vety teda možno orientáciu jednoduchej
uzavretej po častiach hladkej krivky γ definovať napríklad takto: γ je kladne orientovaná, ak pre všetky
a ∈ I(γ) je Indγ(a) = 1 a záporne orientovaná, ak pre všetky a ∈ I(γ) je Indγ(a) = −1.

My však uprednostníme nasledujúcu ekvivalentnú definíciu orientácie, ktorá – hoci je o niečo ťažšie
čitateľná, než tá opísaná vyššie – neobsahuje implicitnú odvolávku na Jordanovu vetu.

Definícia 10.1.3. Nech γ je jednoduchá uzavretá po častiach hladká krivka. Hovoríme, že γ je kladne
orientovaná, ak pre všetky a ∈ C \ γ∗ je Indγ(a) ≥ 0 a záporne orientovaná, ak pre všetky a ∈ C \ γ∗
je Indγ(a) ≤ 0.

10.2 Integrálna reprezentácia logaritmov

Za účelom skúmania ďalších vlastností indexu budeme potrebovať vetu o integrálnej reprezentácii ho-
lomorfných vetiev prirodzeného logaritmu. Z oddielu 3.6 vieme, že holomorfné vetvy logaritmu na ob-
lasti S – t. j. holomorfné funkcie f : S → C také, že pre všetky z ∈ S je f(z) ∈ Jln zK – môžeme definovať
kedykoľvek S = C \R, kde R je polpriamka začínajúca v bode 0. Z toho vyplýva, že holomorfné vetvy
logaritmu môžeme definovať aj na ľubovoľnej konvexnej oblasti neobsahujúcej bod 0.

Nasledujúcu vetu sformulujeme pre ľubovoľnú oblasť S, na ktorej možno definovať holomorfnú
vetvu logaritmu – môže teda ísť napríklad o oblasť C \ (−∞, 0] – a špeciálne pre ľubovoľnú konvexnú
oblasť neobsahujúcu bod 0.

Veta 10.2.1. Nech S ⊆ C je ľubovoľná oblasť, na ktorej je možné definovať holomorfnú vetvu prirodze-
ného logaritmu – alebo špeciálne ľubovoľná konvexná oblasť neobsahujúca bod 0. Nech lnS : S → C
je holomorfná vetva prirodzeného logaritmu na S, t. j. lnS je holomorfná a pre všetky z ∈ S je
lnS(z) ∈ Jln zK. Pre ľubovoľnú po častiach hladkú krivku γ : [α, β] → C s γ∗ ⊆ S, γ(α) = a a γ(β) = z
potom ∫

γ

1

w
dw = lnS(z)− lnS(a).

Ak teda navyše 1 ∈ S, γ(α) = 1 a lnS(1) = 0, tak

lnS(z) =

∫
γ

1

w
dw.

Dôkaz. Holomorfnú vetvu logaritmu možno definovať len pre oblasti S také, že 0 6∈ S; znenie vety teda
dáva zmysel. Zjavne stačí dokázať iba jej prvú časť. V oddiele 3.6 sme ale dokázali, že pre všetky k ∈ Z
a w ∈ C\(−∞, 0] je ln′k(w) = 1/w, pričom rovnaký argument evidentne možno použiť aj pre uvažovanú
holomorfnú vetvu lnS : pre všetky w ∈ S je

ln′S(w) =
1

w
.

Dokazované tvrdenie teda vyplýva priamo zo základnej vety o krivkových integráloch.
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10.3 Index a spojitý výber argumentu

Hoci je význam indexu intuitívne zrejmý, ozajstné odôvodnenie použitia tohto konceptu na meranie
„počtu ovinutí“ uzavretej krivky okolo bodu poskytuje až nasledujúca veta, ktorá ho dáva do súvisu
so spojitým výberom argumentu pozdĺž uzavretej krivky γ.

Veta 10.3.1. Nech γ : [α, β] → C je uzavretá po častiach hladká krivka a a ∈ C \ γ∗ je bod. Potom
existuje spojitá funkcia η : [α, β]→ R taká, že pre všetky t ∈ [α, β] je η(t) ∈ Jarg(γ(t)− a)K a

Indγ(a) =
1

2π
(η(β)− η(α)) .

Dôkaz. Nech S je ľubovoľná oblasť taká, že γ∗ ⊆ S a a 6∈ S. Nie je ťažké dokázať, že existuje ε > 0,
n ∈ N a reálne čísla α = t0 < . . . < tn = β také, že γ∗ ⊆ D0 ∪ . . .∪Dn−1 ⊆ S, kde pre k = 0, . . . , n− 1
je Dk := D(γ(tk), ε) a krivka γk := γ � [tk, tk+1] spĺňa γ∗k ⊆ Dk.2

Pre k = 0, . . . , n − 1 ďalej označme ako ln[k] ľubovoľnú vetvu prirodzeného logaritmu takú, že
ln[k](z − a) je holomorfná na Dk. Pre z ∈ Dk potom

ln[k](z − a) = ln|z − a|+ iθ[k](z − a),

kde θ[k] je funkcia taká, že θ[k](z−a) je spojitá na Dk a pre všetky z ∈ Dk je θ[k](z−a) ∈ Jarg(z−a)K.
Pre k = 0, . . . , n − 1 definujme funkciu ηk : [tk, tk+1] → R pre všetky t ∈ [tk, tk+1] predpisom

ηk(t) = θ[k](γ(t)− a). Keďže sú funkcie θ[k] a γ spojité, je spojitá aj funkcia ηk. Funkciu η : [α, β]→ R
teraz môžeme definovať pre k = 0, . . . , n− 1 a všetky t ∈ [tk, tk+1] ako

η(t) = ηk(t)−
k−1∑
j=0

(ηj(tj)− ηj−1(tj)) ;

je zrejmé, že takto získame funkciu spojitú na [α, β]. Od hodnoty ηk(t) navyše vždy odpočítavame
nejaký celočíselný násobok čísla 2π; pre všetky t ∈ [α, β] teda η(t) ∈ Jarg(γ(t) − a)K. Z vety 10.2.1
nakoniec dostávame

Indγ(a) =
1

2πi

∫
γ

1

z − a
dz =

1

2πi

n−1∑
k=0

∫
γk

1

z − a
dz =

1

2πi

n−1∑
k=0

(
ln[k](γ(tk+1)− a)− ln[k](γ(tk)− a)

)
=

=
1

2πi

n−1∑
k=0

(
iθ[k](γ(tk+1)− a)− iθ[k](γ(tk)− a)

)
=

1

2π

n−1∑
k=0

(ηk(tk+1)− ηk(tk)) =

=
1

2π

n−1∑
k=0

(η(tk+1)− η(tk)) =
1

2π
(η(β)− η(α)) ,

čím je dôkaz vety dokončený.

Dôsledok 10.3.2. Nech γ : [α, β]→ C je uzavretá po častiach hladká krivka a a ∈ C\γ∗ je bod. Potom
je Indγ(a) celé číslo.

Dôkaz. Z predchádzajúcej vety vyplýva existencia spojitej funkcie η : [α, β] → R takej, že pre všetky
t ∈ [α, β] je η(t) ∈ Jarg(γ(t) − a)K a Indγ(a) = (η(β)− η(α)) /2π. Keďže ale γ(α) = γ(β), nutne
η(β)− η(α) = 2kπ pre nejaké k ∈ Z, z čoho už priamo vyplýva celočíselnosť hodnoty Indγ(a).

2Ide o náplň cvičenia 1 na konci tejto kapitoly.
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10.4 Zámena poradia integrovania

Než prejdeme k hlavným výsledkom tejto kapitoly – teda k všeobecnému Cauchyho integrálnemu vzorcu
a Cauchyho integrálnej vete – dokážeme tri na seba nadväzujúce tvrdenia o integráloch, z ktorých
posledné sa nám pri dôkaze všeobecného Cauchyho integrálneho vzorca zíde. Dôkazy tvrdenia 10.4.1
a tvrdenia 10.4.2 sú prevzaté z [3], kde sa o problematike zámeny integrálov v reálnej analýze možno
dočítať viac.

Nech X,T ⊆ R. Pripomeňme si, že funkcia f : X × T → R je spojitá na X × T , ak pre každé
(x, t) ∈ X × T a všetky ε > 0 existuje δ > 0 také, že pre všetky (x′, t′) ∈ X × T s |x − x′| < δ
a |t− t′| < δ je |f(x, t)− f(x′, t′)| < ε. Z toho špeciálne vyplýva, že pre každé t ∈ T je spojitá funkcia
f(·, t) premennej x a súčasne je pre každé x ∈ X spojitá funkcia f(x, ·) premennej t.

Tvrdenie 10.4.1. Nech a ≤ b sú reálne čísla a f : [a, b]→ R je spojitá funkcia. Potom existuje c ∈ [a, b]
také, že ∫ b

a
f(x) dx = f(c)

∫ b

a
dx = f(c)(b− a).

Dôkaz. Pre a = b je tvrdenie triviálne. Predpokladajme teda, že a < b. Nech m = inf{f(x) | x ∈ [a, b]}
a M = sup{f(x) | x ∈ [a, b]}. Potom

m(b− a) =

∫ b

a
m dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
M dx = M(b− a),

z čoho

m ≤ 1

b− a

∫ b

a
f(x) dx ≤M.

Funkcia f spojitá na uzavretom intervale [a, b] musí na [a, b] aspoň raz nadobudnúť hodnotu m, ako
aj hodnotu M . Preto na [a, b] aspoň raz nadobúda každú hodnotu z intervalu [m,M ]; špeciálne teda
existuje aj c ∈ [a, b] také, že

f(c) =
1

b− a

∫ b

a
f(x) dx,

čiže

f(c)(b− a) =

∫ b

a
f(x) dx.

Tým je lema dokázaná.

Nasledujúce tvrdenie je špeciálnym prípadom takzvanej Fubiniho vety z teórie miery a integrálu.

Tvrdenie 10.4.2. Nech a ≤ b a c ≤ d sú reálne čísla a f : [a, b]× [c, d]→ R je spojitá na [a, b]× [c, d].
Potom ∫ d

c

∫ b

a
f(x, t) dx dt =

∫ b

a

∫ d

c
f(x, t) dtdx.

Dôkaz. Pre každé x ∈ [a, b] je funkcia f(x, ·) spojitá na uzavretom intervale [c, d], a teda musí byť
rovnomerne spojitá. Pre všetky ε > 0 teda existuje δ > 0 také, že pre všetky α, β ∈ [c, d] s |α− β| < δ
je |f(x, α)− f(x, β)| < ε. Funkcia

F (t) =

∫ b

a
f(x, t) dx

je teda (rovnomerne) spojitá na [c, d], lebo pre všetky α, β ∈ [c, d] s |α− β| < δ je

|F (α)− F (β)| =
∣∣∣∣∫ b

a
(f(x, α)− f(x, β)) dx

∣∣∣∣ < ε(b− a).
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Podobne možno dokázať, že funkcia

G(x) =

∫ d

c
f(x, t) dt

je spojitá na [a, b]. Všetky integrály zo znenia lemy teda existujú.
Prakticky rovnako ako pre funkcie jednej reálnej premennej definované na uzavretom intervale –

prípadne ako pre homotópie v tvrdení 5.3.2 – by sme navyše dokázali, že aj samotná funkcia f , spojitá
na kompaktnej množine [a, b] × [c, d], musí byť rovnomerne spojitá: pre všetky ε > 0 existuje δ > 0
také, že pre všetky (x, t), (x′, t′) ∈ [a, b] × [c, d] s |x − x′| < δ a |t − t′| < δ je |f(x, t) − f(x′, t′)| < ε.
Pre dané ε > 0 zvoľme n ∈ N tak, aby platili nerovnosti

b− a
n

< δ a
d− c
n

< δ

a pre j = 0, . . . , n položme aj = a+ (b− a)j/n a cj = c+ (d− c)j/n. Potom∫ d

c

∫ b

a
f(x, t) dx dt =

n∑
j=1

n∑
k=1

∫ cj

cj−1

∫ ak

ak−1

f(x, t) dx dt. (10.1)

Pre k = 1, . . . , n a j = 1, . . . , n teraz dvojnásobným aplikovaním tvrdenia 10.4.1 zisťujeme, že existujú
čísla xk ∈ [ak−1, ak] a tj ∈ [cj−1, cj ] také, že∫ cj

cj−1

∫ ak

ak−1

f(x, t) dx dt = f(xk, tj)(ak − ak−1)(cj − cj−1).

Z (10.1) potom ∫ d

c

∫ b

a
f(x, t) dx dt =

n∑
j=1

n∑
k=1

f(xk, tj)(ak − ak−1)(cj − cj−1).

Analogickou argumentáciou možno dokázať, že pre k = 1, . . . , n a j = 1, . . . , n existujú čísla
x′k ∈ [ak−1, ak] a t′j ∈ [cj−1, cj ] také, že∫ b

a

∫ d

c
f(x, t) dt dx =

n∑
k=1

n∑
j=1

f(x′k, t
′
j)(ak − ak−1)(cj − cj−1).

Vďaka voľbe čísla n potom∣∣∣∣∫ d

c

∫ b

a
f(x, t) dx dt−

∫ b

a

∫ d

c
f(x, t) dtdx

∣∣∣∣ =

=

∣∣∣∣∣∣
n∑
j=1

n∑
k=1

(
f(xk, tj)− f(x′k, t

′
j)
)

(ak − ak−1)(cj − cj−1)

∣∣∣∣∣∣ <
<

n∑
j=1

n∑
k=1

ε(ak − ak−1)(cj − cj−1) = ε(b− a)(d− c).

Keďže môže byť ε > 0 ľubovoľne malé, nutne∫ d

c

∫ b

a
f(x, t) dx dt =

∫ b

a

∫ d

c
f(x, t) dt dx,

čo bolo treba dokázať.
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Tvrdenie 10.4.3. Nech S, T ⊆ C sú otvorené množiny, f : S × T → C je spojitá na S × T a γ1, γ2 sú
po častiach hladké krivky také, že γ∗1 ⊆ S a γ∗2 ⊆ T . Potom∫

γ2

∫
γ1

f(z, w) dz dw =

∫
γ1

∫
γ2

f(z, w) dw dz.

Dôkaz. Vďaka linearite krivkových integrálov stačí uvažovať prípad, keď sú krivky γ1 a γ2 hladké.
Vďaka vete o reparametrizácii ďalej možno bez ujmy na všeobecnosti predpokladať, že sú tieto krivky
dané zobrazeniami γ1 : [0, 1]→ S a γ2 : [0, 1]→ T . Z definície krivkového integrálu potom∫

γ2

∫
γ1

f(z, w) dz dw =

∫ 1

0

∫ 1

0
f(γ1(x), γ2(t))γ′1(x) dx γ′2(t) dt =

=

∫ 1

0

∫ 1

0
f(γ1(x), γ2(t))γ′1(x)γ′2(t) dx dt.

Keďže sú krivky γ1 a γ2 hladké, je funkcia g(x, t) = f(γ1(x), γ2(t))γ′1(x)γ′2(t) spojitá na [0, 1]× [0, 1].
Tvrdenie 10.4.2 možno priamočiaro rozšíriť aj na prípad spojitých komplexných funkcií dvoch reálnych
premenných; preto ∫

γ2

∫
γ1

f(z, w) dz dw =

∫ 1

0

∫ 1

0
f(γ1(x), γ2(t))γ′1(x)γ′2(t) dx dt =

=

∫ 1

0

∫ 1

0
f(γ1(x), γ2(t))γ′1(x)γ′2(t) dtdx =

=

∫
γ1

∫
γ2

f(z, w) dw dz,

čo bolo treba dokázať.

10.5 Všeobecný Cauchyho integrálny vzorec

Postupne teraz využijeme pojem indexu bodu vzhľadom ku krivke na sformulovanie a dôkaz všeobecnej
verzie Cauchyho integrálneho vzorca. Hoci samotný dôkaz bude o niečo zdĺhavejší, než tomu bolo
pri predchádzajúcich variantoch Cauchyho integrálneho vzorca, z hľadiska použitých metód pôjde
o pomerne elementárny výsledok. Jeho formulácia ani dôkaz nebudú závisieť od nedokázaných tvrdení
ako Jordanova a Jordanova-Schoenfliesova veta a samotné znenie vety sa zaobíde aj bez relatívne
pokročilých topologických pojmov, akými sú homotópie a jednoducho súvislé oblasti.

Varianty Cauchyho integrálneho vzorca, s ktorými sme sa stretli doposiaľ, vyjadrovali hodnotu
f(a) holomorfnej funkcie f : S → C na oblasti S v bode a ∈ S pomocou integrálu pozdĺž kladne
orientovanej jednoduchej uzavretej krivky γ obkolesujúcej bod a, avšak neobkolesujúcej žiaden bod
b 6∈ S – prípadne pozdĺž nejakej uzavretej krivky, ktorá je v S \ {a} s takouto krivkou homotopická.
Vo všeobecnom Cauchyho integrálnom vzorci už uzavretá krivka γ obkolesujúca bod a nebude nutne
jednoduchá a kladne orientovaná – bod a teda napríklad môže ovinúť aj viackrát, a to prípadne aj
„v smere hodinových ručičiek“ . To sa v znení vety prejaví tým, že namiesto samotnej hodnoty f(a)
budeme integrálom vyjadrovať súčin

Indγ(a)f(a).

Podmienku neobkolesenia žiadneho bodu b 6∈ S uzavretou krivkou γ napokon vyjadríme požiadavkou
Indγ(b) = 0 pre všetky b ∈ C \ S.

V skutočnosti ale bude takýto Cauchyho integrálny vzorec až naším dôsledkom 10.5.4. V samotnej
vete 10.5.3 budeme pracovať s ešte ďalším drobným zovšeobecnením uvedeného: namiesto pre uzavreté
krivky ju totiž sformulujeme pre tzv. cykly.
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Reťazou nazveme ľubovoľnú konečnú postupnosť Γ = (γ1, . . . , γn), kde n ∈ N a γ1, . . . , γn sú
po častiach hladké krivky. Píšeme potom Γ = γ1 + . . .+ γn a Γ∗ = γ∗1 ∪ . . .∪ γ∗n. Pre funkciu f spojitú
na oblasti S s Γ∗ ⊆ S definujeme ∫

Γ
f(z) dz :=

n∑
k=1

∫
γk

f(z) dz.

Integrujeme teda „pozdĺž niekoľkých kriviek naraz“ . Uvedená notácia nie je úplne jednoznačná, pretože
+ môže označovať ako spojenie kriviek, tak aj “formálne +” z definície reťaze. Nie je to však na škodu,
pretože v situáciách, keď táto nejednoznačnosť prichádza do úvahy, sú hodnoty integrálov pri obidvoch
interpretáciách tie isté.

Na reťaziach možno zaviesť podobné operácie ako na krivkách: pre reťaze Γ = γ1 + . . . + γn
a Γ̂ = γ̂1 + . . . + γ̂m píšeme −Γ = (−γ1) + . . . + (−γn) a Γ + Γ̂ = γ1 + . . . + γn + γ̂1 + . . . + γ̂m.
Dĺžku L(Γ) reťaze Γ = γ1 + . . .+ γn definujeme ako L(Γ) = L(γ1) + . . .+ L(γn).

Cyklom nazveme reťaz Γ = γ1 + . . . + γn takú, že všetky po častiach hladké krivky γ1, . . . , γn sú
uzavreté. Na cykly možno prirodzeným spôsobom rozšíriť aj pojem indexu: pre všetky a ∈ C \ Γ∗

kladieme
IndΓ(a) :=

1

2πi

∫
Γ

1

z − a
dz.

Pre cyklus Γ = γ1 + . . .+ γn pritom

IndΓ(a) =
1

2πi

∫
Γ

1

z − a
dz =

n∑
k=1

1

2πi

∫
γk

1

z − a
dz =

n∑
k=1

Indγk(a).

Všeobecný Cauchyho integrálny vzorec sformulovaný v reči uzavretých kriviek – t. j. dôsledok 10.5.4
nižšie – dostaneme z vety 10.5.3 obmedzením sa na cykly pozostávajúce z jedinej uzavretej krivky.
Keďže naopak integrál pozdĺž cyklu dostaneme súčtom niekoľkých integrálov pozdĺž uzavretých kriviek,
mohlo by sa zovšeobecnenie z uzavretých kriviek na cykly zdať na prvý pohľad pomerne lacným.
V skutočnosti ale veta 10.5.3 z dôsledku 10.5.4 nijak bezprostredne vyplývať nebude: ak totiž cyklus
Γ = γ1 + . . .+ γn spĺňa podmienku IndΓ(b) = 0 pre všetky b ∈ C \ S, nemusí byť obdobná podmienka
splnená aj pre uzavreté krivky γ1, . . . , γn, ktoré v skutočnosti bod b mimo oblasti S obkolesovať môžu.
Napríklad môže byť Γ = γ + (−γ), kde Indγ(b) 6= 0; potom

IndΓ(b) = Indγ(b) + Ind−γ(b) = Indγ(b)− Indγ(b) = 0.

Veta 10.5.3 tak bude okrem všetkých situácií explicitne alebo implicitne zahrnutých v dôsledku 10.5.4
zahŕňať aj niektoré fundamentálne odlišné situácie – a práve vďaka nim je zovšeobecnenie na cykly
opodstatnené. Jednou z aplikácií tohto prístupu bude aj variant vety o deformácii v znení vety 10.7.1,
ktorý by sme iba s použitím dôsledku 10.5.4 tak ľahko nedokázali.

Než ale vyslovíme samotnú vetu 10.5.3 o všeobecnej verzii Cauchyho integrálneho vzorca, dokážme
dve lemy, ktoré budeme pri jej dôkaze potrebovať.

Lema 10.5.1. Nech S ⊆ C je otvorená množina a f : S → C je funkcia holomorfná na S. Funkcia
g : S × S → C, daná pre všetky z, w ∈ S predpisom

g(z, w) =

{
f(w)−f(z)

w−z ak w 6= z,
f ′(z) ak w = z,

je potom spojitá na S × S: pre všetky (z, w) ∈ S × S a ε > 0 existuje δ > 0 také, že pre všetky
(u, v) ∈ S × S spĺňajúce u ∈ D(z, δ) a v ∈ D(w, δ) je |g(u, v)− g(z, w)| < ε.
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Dôkaz. Spojitosť funkcie g je zrejmá vo všetkých bodoch (z, w) ∈ S × S takých, že z 6= w – zostáva
dokázať jej spojitosť v bodoch (a, a) pre a ∈ S. Nech teda a ∈ S je pevné a ε > 0. Zo spojitosti funkcie
f ′ v bode a potom pre nejaké δ > 0 a všetky ζ ∈ D(a, δ)∩S dostávame |f ′(ζ)− f ′(a)| < ε. Pre všetky
(u, v) ∈ S × S také, že u, v ∈ D(a, δ) tak pre u = v = b máme

|g(u, v)− g(a, a)| = |g(b, b)− g(a, a)| =
∣∣f ′(b)− f ′(a)

∣∣ < ε;

ak navyše bez ujmy na všeobecnosti D(a, δ) ⊆ S a u, v ∈ D(a, δ) sú rôzne, s použitím vety o odhade
zisťujeme, že

|v − u| · |g(u, v)− g(a, a)| = |(v − u) (g(u, v)− g(a, a))| =
∣∣(f(v)− f(u))− (v − u)f ′(a)

∣∣ =

=

∣∣∣∣∣
∫

[u,v]
f ′(ζ) dζ −

∫
[u,v]

f ′(a) dζ

∣∣∣∣∣ =

∣∣∣∣∣
∫

[u,v]

(
f ′(ζ)− f ′(a)

)
dζ

∣∣∣∣∣ <
< |v − u|ε.

V oboch prípadoch teda |g(u, v)− g(a, a)| < ε a spojitosť funkcie g je dokázaná.

Lema 10.5.2. Nech Γ je cyklus. Na každej oblasti S ⊆ C \ Γ∗ je potom funkcia IndΓ konštantná.
Navyše existuje M > 0 také, že na oblasti C \D(0,M) je funkcia IndΓ konštantne nulová.

Dôkaz. Funkcia IndΓ(z) premennej z je podľa dôsledku 10.3.2 celočíselná. Dokážeme, že je táto funkcia
súčasne spojitá na C \ Γ∗.

Nech z ∈ C \ Γ∗ je dané pevne. Zvoľme oblasť T ⊆ C tak, aby bolo Γ∗ ⊆ T a z 6∈ T . Nech r > 0 je
také, že pre všetky w ∈ T je |w − z| > 2r.

Uvažujme teraz ľubovoľnú postupnosť (zn)∞n=0 bodov z C \Γ∗ takú, že limn→∞ zn = z. Postupnosť
funkcií (1/(w − zn))∞n=0 premennej w potom pre n → ∞ konverguje k funkcii 1/(w − z) rovnomerne
na T – keďže totiž zn → z pre n→∞, pre všetky ε > 0 existuje n0 ∈ N také, že pre všetky n ≥ n0 je
|zn − z| < ε a súčasne |zn − z| < r. Pre všetky w ∈ T potom ale tiež |w − zn| > r, z čoho∣∣∣∣ 1

w − zn
− 1

w − z

∣∣∣∣ =

∣∣∣∣ zn − z
(w − zn)(w − z)

∣∣∣∣ < ε

2r2
.

Keďže je r > 0 fixná konštanta, je týmto rovnomerná konvergencia dokázaná. Vďaka vete 7.1.8 teda

lim
n→∞

IndΓ(zn) = lim
n→∞

1

2πi

∫
Γ

1

w − zn
dw =

1

2πi

∫
Γ

lim
n→∞

1

w − zn
dw =

1

2πi

∫
Γ

1

w − z
dw = IndΓ(z)

a funkcia IndΓ je spojitá v bode z vďaka vete 2.2.13 a tvrdeniu 2.2.6. Keďže je z ∈ C \ Γ∗ ľubovoľné,
je táto celočíselná funkcia spojitá na C\Γ∗ – ako taká teda musí byť na ľubovoľnej oblasti konštantná.

Z kompaktnosti množiny Γ∗ navyše vyplýva existencia konštantyM > 0 takej, že pre všetky w ∈ Γ∗

je |w| ≤ M . Na oblasti C \ D(0,M) je funkcia IndΓ konštantná, pričom pre všetky z ∈ C \ D(0,M)
súčasne z vety o odhade dostávame

|IndΓ(z)| =
∣∣∣∣ 1

2πi

∫
Γ

1

w − z
dw

∣∣∣∣ ≤ 1

2π
L(Γ)

1

|z| −M
.

Keďže môže byť |z| ľubovoľne veľké, pre všetky z ∈ C \D(0,M) nutne IndΓ(z) = 0.



Predbežná verzia

Cauchyho integrálny vzorec II a Cauchyho integrálna veta II 121

Môžeme teraz vysloviť a dokázať samotný všeobecný variant Cauchyho integrálneho vzorca.

Veta 10.5.3 (Cauchyho integrálny vzorec, formulácia IV). Nech S ⊆ C je otvorená množina, a ∈ S
je bod, f : S → C je holomorfná na S a Γ s Γ∗ ⊆ S \ {a} je cyklus taký, že pre všetky b ∈ C \ S je
IndΓ(b) = 0. Potom

IndΓ(a)f(a) =
1

2πi

∫
Γ

f(w)

w − a
dw.

Dôkaz. Funkcia g : S × S → C, daná pre všetky z, w ∈ S predpisom

g(z, w) =

{
f(w)−f(z)

w−z ak w 6= z,
f ′(z) ak w = z,

je spojitá podľa lemy 10.5.1. Môžeme teda definovať funkciu h : S → C pre všetky z ∈ S predpisom

h(z) =
1

2πi

∫
Γ
g(z, w) dw.

Dokážeme, že pre a ∈ S \ Γ∗ je
h(a) = 0. (10.2)

Potom už bude Cauchyho integrálny vzorec dokázaný, lebo
1

2πi

∫
Γ

f(w)

w − a
dw =

1

2πi

∫
Γ

(
g(a,w) +

f(a)

w − a

)
dw = h(a) +

1

2πi

∫
Γ

f(a)

w − a
dw = IndΓ(a)f(a).

K rovnosti (10.2) pritom prídeme tak, že funkciu h rozšírime na celú funkciu H : C → C, o ktorej
dokážeme, že je konštantne nulová.

Ako prvý krok k tomuto cieľu dokážeme, že funkcia h je spojitá na S. Nech z ∈ S je pevné a T ⊆ S
je ohraničená otvorená množina taká, že z ∈ T , Γ∗ ⊆ T a T ⊆ S. Funkcia g spojitá na S × S je potom
na kompaktnej množine T × T nutne rovnomerne spojitá: pre všetky ε > 0 existuje δ > 0 také, že
pre všetky z1, w1, z2, w2 ∈ T spĺňajúce |z1 − z2| < δ a |w1 − w2| < δ je |g(z1, w1) − g(z2, w2)| < ε.3

Uvažujme ale ľubovoľnú postupnosť (zn)∞n=0 prvkov T takú, že zn → z pre n→∞. Pre všetky δ > 0
potom existuje n0 ∈ N také, že pre všetky n ≥ n0 je |zn−z| < δ. Z obidvoch zistení dohromady vyplýva,
že pre všetky ε > 0 existuje n0 ∈ N také, že pre všetky n ≥ n0 a všetky w ∈ T je |g(zn, w)−g(z, w)| < ε.
Postupnosť funkcií (g(zn, ·))∞n=0 teda na T konverguje rovnomerne k funkcii g(z, ·). Preto

lim
n→∞

h(zn) = lim
n→∞

1

2πi

∫
Γ
g(zn, w) dw =

1

2πi

∫
Γ

lim
n→∞

g(zn, w) dw =
1

2πi

∫
Γ
g(z, w) dw = h(z)

a funkcia h je v bode z spojitá vďaka vete 2.2.13 a tvrdeniu 2.2.6. Keďže je z ∈ S ľubovoľné, funkcia h
je spojitá na S.

Ako ďalší krok dokážeme, že funkcia h je holomorfná na S. Funkcia g(z, w) premennej z je pre fixné
w ∈ S holomorfná na S – pre z 6= w je to očividné a v bode z = w si vďaka dôsledku 9.3.3
a tvrdeniu 2.2.6 stačí uvedomiť, že z holomorfnosti funkcie f vyplýva limz→w g(z, w) = g(w,w). Nech
teraz γ∆ je ľubovoľný trojuholník taký, že γ∗∆ ⊆ S. Zo spojitosti funkcie g a tvrdenia 10.4.3 potom∫

γ∆

h(z) dz =

∫
γ∆

1

2πi

∫
Γ
g(z, w) dw dz =

1

2πi

∫
Γ

∫
γ∆

g(z, w) dz dw = 0,

pretože ∫
γ∆

g(z, w) dz = 0

pre všetky w ∈ S vďaka holomorfnosti funkcie g(·, w) a Cauchyho integrálnej vete pre trojuholník.
Keďže je funkcia h spojitá na S a trojuholník γ∆ s obrazom v S je ľubovoľný, z Morerovej vety
vyplýva, že aj funkcia h je holomorfná na S.

3Už po niekoľký raz tu narážame na špeciálny prípad tvrdenia o rovnomernej spojitosti každého spojitého zobrazenia
na kompaktnom metrickom priestore. Čitateľ, ktorý s teóriou metrických priestorov nie je oboznámený, ho istotne ľahko
dokáže podobným spôsobom ako pre spojité reálne funkcie definované na uzavretom intervale, resp. ako pre homotópie
v tvrdení 5.3.2.
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Nech ďalej S′ = {z ∈ C \ Γ∗ | IndΓ(z) = 0}. Z predpokladov vety vyplýva C \ S ⊆ S′, a teda aj
S∪S′ = C. Keďže je podľa lemy 10.5.2 funkcia IndΓ(z) premennej z na ľubovoľnej oblasti konštantná,
je množina S′ otvorená. Z tej istej lemy tiež vyplýva, že množina S′ obsahuje všetky z ∈ C s dostatočne
veľkou absolútnou hodnotou.

Definujme teraz funkciu ĥ : S′ → C pre všetky z ∈ S′ predpisom

ĥ(z) =
1

2πi

∫
Γ

f(w)

w − z
dw.

Ukážeme, že ĥ je spojitá na S′. Vezmime pevné z ∈ S′ a ohraničené otvorené množiny T ′ ⊆ S′ a T ⊆ S
také, že z ∈ T ′ a Γ∗ ⊆ T , pričom T ′ ⊆ S′, T ⊆ S a T ′ ∩ T = ∅. Funkcia f(w)/(w − z) o premenných
z a w (v tomto poradí) je očividne spojitá na T ′ × T ; je tam teda aj rovnomerne spojitá: pre všetky
ε > 0 existuje δ > 0 také, že pre všetky z1, z2 ∈ T ′ a w1, w2 ∈ T spĺňajúce nerovnosti |z1 − z2| < δ
a |w1 −w2| < δ je |f(w1)/(w1 − z1)− f(w2)/(w2 − z2)| < ε. Uvažujme ľubovoľnú postupnosť (zn)∞n=0

prvkov T ′ takú, že zn → z pre n → ∞. Pre všetky δ > 0 potom existuje n0 ∈ N také, že pre všetky
n ≥ n0 je |zn − z| < δ. Dohromady dostávame, že pre všetky ε > 0 existuje n0 ∈ N také, že pre všetky
n ≥ n0 a všetky w ∈ T je |f(w)/(w − zn) − f(w)/(w − z)| < ε. Postupnosť funkcií f(w)/(w − zn)
premennej w teda na T pre n→∞ konverguje rovnomerne k funkcii f(w)/(w − z). Preto

lim
n→∞

ĥ(zn) = lim
n→∞

1

2πi

∫
Γ

f(w)

w − zn
dw =

1

2πi

∫
Γ

lim
n→∞

f(w)

w − zn
dw =

1

2πi

∫
Γ

f(w)

w − z
dw = ĥ(z)

a funkcia ĥ je v bode z spojitá. Keďže je z ∈ S′ ľubovoľné, je funkcia ĥ spojitá na S′.
Ukážeme ešte, že ĥ je holomorfná na S′. Pre pevné w ∈ Γ∗ je funkcia f(w)/(w − z) očividne

holomorfná na S′ ako funkcia premennej z. Uvažujme ďalej ľubovoľný trojuholník γ∆ s γ∗∆ ⊆ S′.
Zjavne existujú otvorené množiny T ′ ⊆ S′ a T ⊆ S také, že γ∗∆ ⊆ T ′, Γ∗ ⊆ T a T ′ ∩ T = ∅. Funkcia
f(w)/(w− z) o premenných z a w (v tomto poradí) je potom evidentne spojitá na T ′× T . S použitím
tvrdenia 10.4.3 teda dostávame∫

γ∆

ĥ(z) dz =

∫
γ∆

1

2πi

∫
Γ

f(w)

w − z
dw dz =

1

2πi

∫
Γ

∫
γ∆

f(w)

w − z
dz dw = 0,

kde posledný krok je dôsledkom rovnosti ∫
γ∆

f(w)

w − z
dz = 0

vyplývajúcej z holomorfnosti funkcií f(w)/(w − z) o premennej z pre pevné w ∈ Γ∗ a z Cauchyho
integrálnej vety pre trojuholník. Keďže je však trojuholník γ∆ ľubovoľný a funkcia ĥ je na S′ spojitá,
vďaka Morerovej vete môžeme usúdiť na holomorfnosť funkcie ĥ na S′.

Rozšírme teraz funkciu h na celú funkciu H. Pre všetky z ∈ S ∩ S′ je

h(z) =
1

2πi

∫
Γ
g(z, w) dw =

1

2πi

∫
Γ

f(w)− f(z)

w − z
dw = ĥ(z)− f(z) IndΓ(z) = ĥ(z).

Možno teda korektne definovať funkciu H : C→ C danú pre všetky z ∈ C predpisom

H(z) =

{
h(z) ak z ∈ S,
ĥ(z) ak z ∈ S′.

Z holomorfnosti funkcií h a ĥ na otvorených množinách S resp. S′ navyše vyplýva, že funkcia H je
holomorfná na C – je to celá funkcia.
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Zostáva dokázať, že funkcia H – a tým pádom aj funkcia h – je konštantne nulová. Tu však stačí
využiť fakt, že množina S′ obsahuje všetky z ∈ C spĺňajúce |z| > M pre nejaké M ≥ 0. Pre z ∈ C
také, že |z| > M teda

|H(z)| =
∣∣∣ĥ(z)

∣∣∣ =

∣∣∣∣ 1

2πi

∫
Γ

f(w)

w − z
dw

∣∣∣∣ ≤ 1

2π
L(Γ)

M ′

|z| −M
, (10.3)

kde M ′ ≥ 0 je také, že pre všetky w ∈ Γ∗ je |f(w)| ≤ M ′. Funkcia H je v dôsledku toho ohraničená
napríklad na množine C \ D(0,M + 1). Množina D(0,M + 1) je ale kompaktná a spojitá funkcia H
na nej musí byť taktiež ohraničená. Funkcia H je teda ohraničená na C. Keďže je ale súčasne H celá,
z Liouvillovej vety vyplýva jej konštantnosť na C a z (10.3) vyplýva, že touto konštantou musí byť
nula.

Explicitne ešte sformulujme špeciálny prípad vety 10.5.3, v ktorom namiesto integrálov pozdĺž
cyklov uvažujeme iba integrály pozdĺž uzavretých po častiach hladkých kriviek.

Dôsledok 10.5.4 (Cauchyho integrálny vzorec, formulácia V). Nech S ⊆ C je oblasť, a ∈ S je bod,
f : S → C je holomorfná na S a γ s γ∗ ⊆ S \ {a} je uzavretá po častiach hladká krivka taká, že
pre všetky b ∈ C \ S je Indγ(b) = 0. Potom

Indγ(a)f(a) =
1

2πi

∫
γ

f(w)

w − a
dw.

Dôkaz. Stačí aplikovať vetu 10.5.3 na cyklus Γ pozostávajúci z jedinej uzavretej krivky γ.

10.6 Všeobecná Cauchyho integrálna veta

Všeobecná Cauchyho integrálna veta je jednoduchým dôsledkom práve dokázaného všeobecného va-
riantu Cauchyho integrálneho vzorca.

Veta 10.6.1 (Cauchyho integrálna veta, všeobecná verzia I). Nech S ⊆ C je otvorená množina,
f : S → C je holomorfná na S a Γ s Γ∗ ⊆ S je cyklus taký, že pre všetky b ∈ C \ S je IndΓ(b) = 0.
Potom ∫

Γ
f(z) dz = 0.

Dôkaz. Nech a ∈ S \Γ∗. Definujme funkciu g : S → C pre všetky z ∈ S ako g(z) = (z− a)f(z). Potom
g(a) = 0 a zo všeobecného Cauchyho integrálneho vzorca dostávame∫

Γ
f(z) dz = 2πi

1

2πi

∫
Γ

g(z)

z − a
dz = 2πi g(a) IndΓ(a) = 0,

čo bolo treba dokázať.

Dôsledok 10.6.2 (Cauchyho integrálna veta, všeobecná verzia II). Nech S ⊆ C je oblasť, f : S → C
je holomorfná na S a γ s γ∗ ⊆ S je uzavretá po častiach hladká krivka taká, že pre všetky b ∈ C \ S je
Indγ(b) = 0. Potom ∫

γ
f(z) dz = 0.

Dôkaz. Stačí aplikovať vetu 10.6.1 na cyklus Γ pozostávajúci z jedinej uzavretej krivky γ.
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10.7 Všeobecná veta o deformácii

Ďalším užitočným dôsledkom všeobecného variantu Cauchyho integrálneho vzorca je nasledujúci vše-
obecný variant vety o deformácii.

Veta 10.7.1 (Veta o deformácii, všeobecná verzia). Nech S ⊆ C je otvorená množina, f : S → C je
holomorfná na S a Γ1,Γ2 s Γ∗1,Γ

∗
2 ⊆ S sú cykly také, že pre všetky b ∈ C \ S je IndΓ1(b) = IndΓ2(b).

Potom ∫
Γ1

f(z) dz =

∫
Γ2

f(z) dz.

Dôkaz. Uvažujme cyklus Γ = Γ1 + (−Γ2). Pre všetky b ∈ C \ S potom

IndΓ(b) = IndΓ1(b) + Ind−Γ2(b) = IndΓ1(b)− IndΓ2(b) = 0.

Z vety 10.6.1 teda∫
Γ1

f(z) dz −
∫

Γ2

f(z) dz =

∫
Γ1

f(z) dz +

∫
−Γ2

f(z) dz =

∫
Γ
f(z) dz = 0,

z čoho ∫
Γ1

f(z) dz =

∫
Γ2

f(z) dz

a veta je dokázaná.

Dôsledok 10.7.2. Nech S ⊆ C je oblasť, f : S → C je holomorfná na S a γ1, γ2 s γ∗1 , γ
∗
2 ⊆ S sú

uzavreté po častiach hladké krivky také, že pre všetky b ∈ C \ S je Indγ1(b) = Indγ2(b). Potom∫
γ1

f(z) dz =

∫
γ2

f(z) dz.

Dôkaz. Stačí aplikovať vetu 10.7.1 na cyklus Γ pozostávajúci z jedinej uzavretej krivky γ.

Cvičenia

1. Nech S je oblasť a γ : [α, β]→ C s γ∗ ⊆ S krivka. Dokážte, že existuje ε > 0, n ∈ N a reálne čísla
α = t0 < . . . < tn = β také, že pre k = 0, . . . , n − 1, Dk := D(γ(tk), ε) a γk := γ � [tk, tk+1] je
γ∗k ⊆ Dk ⊆ S a γ∗ ⊆ D0 ∪ . . . ∪Dn−1 ⊆ S.

2. V dôkaze tvrdenia 10.4.2 sme využívali skutočnosť, že funkcia f : [a, b] × [c, d] → R, spojitá
na svojom definičnom obore [a, b] × [c, d], musí byť aj rovnomerne spojitá.4 Dokážte toto tvr-
denie podobným spôsobom ako pre funkcie jednej reálnej premennej, resp. ako pre homotópie
v tvrdení 5.3.2.

3. Zistite, ktoré výsledky z predchádzajúcich kapitol boli v konečnom dôsledku použité na dôkaz
vety 10.5.3. Pokúste sa identifikovať čo možno najjednoduchšiu cestu od základných poznatkov
o holomorfných funkciách až po túto vetu.

4Ide pritom o špeciálny prípad tvrdenia, podľa ktorého sú rovnomerne spojité všetky spojité zobrazenia definované
na kompaktnom metrickom priestore.
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Rezíduá

Cauchyho vetu o rezíduách, ktorú v tejto kapitole dokážeme, možno z určitého pohľadu vnímať ako
zastrešujúci výsledok klasickej teórie funkcií komplexnej premennej – okrem toho, že ide o silný nástroj
na výpočet krivkových integrálov, je táto veta spoločným zovšeobecnením Cauchyho integrálnej vety,
Cauchyho integrálneho vzorca, aj Cauchyho vzorca pre derivácie. S použitím Cauchyho vety o rezíduách
následne dokážeme aj rad ďalších dôležitých teoretických výsledkov – Cauchyho princíp argumentu,
Rouchého vetu, vetu o otvorenom zobrazení a vetu o inverznej funkcii.

11.1 Cauchyho veta o rezíduách

Základný poznatok potrebný na dôkaz Cauchyho vety o rezíduách už máme k dispozícii: ak je funkcia
f holomorfná na prstencovom okolí D′(a, r) bodu a ∈ C pre nejaké r > 0, možno ju na D′(a, r)
reprezentovať jej Laurentovým rozvojom

f(z) =
∞∑

n=−∞
cn(z − a)n.

Koeficienty cn sú pre všetky n ∈ Z dané integrálnym vzorcom

cn =
1

2πi

∫
κ(a,s)

f(w)

(w − a)n+1
dw,

kde 0 < s < r. V špeciálnom prípade n = −1 potom dostávame
1

2πi

∫
κ(a,s)

f(w) dw = c−1, (11.1)

pričom kružnicu κ(a, s) možno nahradiť aj ľubovoľnou inou uzavretou po častiach hladkou krivkou γ
homotopickou v D′(a, r) s touto kružnicou, prípadne – ak sa implicitne odvoláme na Jordanovu
a Jordanovu-Schoenfliesovu vetu – ľubovoľnou kladne orientovanou jednoduchou uzavretou po čas-
tiach hladkou krivkou γ s γ∗ ⊆ D′(a, r) takou, že bod a leží v jej vnútri. Vidíme teda, že koeficient c−1

je veľkého významu pre výpočet integrálov funkcie f pozdĺž kriviek okolo bodu a. Pre meromorfné
funkcie je tento význam natoľko veľký, že si koeficient c−1 vyslúžil vlastné pomenovanie.

Definícia 11.1.1. Nech S ⊆ C je oblasť, f : S → C je funkcia s pólom v bode a ∈ C. Nech je pre nejaké
r > 0 na prstencovom okolí D′(a, r) ⊆ S funkcia f daná Laurentovým radom

f(z) =
∞∑

n=−m
cn(z − a)n,

kde m ∈ N \ {0} a c−m 6= 0. Rezíduum funkcie f v bode a je potom koeficient

Res(f, a) := c−1.

Poznámka 11.1.2. Účinný návod na výpočet rezíduí dáva cvičenie 3 na konci tejto kapitoly.
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Cauchyho veta o rezíduách je zovšeobecnením vzťahu (11.1) pre meromorfné funkcie – hovorí,
že až na konštantný faktor 2πi možno integrál každej funkcie f meromorfnej na oblasti S pozdĺž
ľubovoľnej kladne orientovanej jednoduchej uzavretej krivky γ v oblasti S, neprechádzajúcej cez pól
funkcie f , vyjadriť ako súčet rezíduí funkcie f cez všetky póly vo vnútri krivky γ. Túto vetu pritom
dokážeme v dvoch variantoch. Prvý bude priamo sledovať uvedenú intuitívnu formuláciu, avšak medzi
jej implicitnými predpokladmi bude aj Jordanova a Jordanova-Schoenfliesova veta. Druhý variant,
využívajúci pojem indexu, bude od spomínaných dvoch nedokázaných tvrdení nezávislý a o niečo
všeobecnejší; formulácia samotnej vety však bude o čosi menej intuitívna.

Dokážme najprv veľmi jednoduchú lemu, ktorá sa nám zíde pri dôkaze obidvoch variantov Cauchyho
vety o rezíduách.

Lema 11.1.3. Nech S ⊆ C je oblasť a funkcia f je meromorfná na S. Nech A je množina všetkých
pólov funkcie f v S. Potom množina A nemôže mať v S žiaden hromadný bod.

Dôkaz. Sporom – nech a ∈ S je hromadný bod množiny A. Pre všetky r > 0 potom existuje izolovaná
singularita z ∈ D′(a, r); funkcia f teda nie je holomorfná na D′(a, r) pre žiadne r > 0. V dôsledku toho
nemôže byť funkcia f v bode a holomorfná a bod a nemôže byť ani izolovanou singularitou funkcie f .
Funkcia f teda nie je meromorfná v bode a: spor.

Veta 11.1.4 (Cauchyho veta o rezíduách, formulácia I). Nech S ⊆ C je oblasť, funkcia f je meromorfná
na S a γ s γ∗ ∪ I(γ) ⊆ S je kladne orientovaná jednoduchá uzavretá po častiach hladká krivka taká, že
f je holomorfná na γ∗. Množina A všetkých pólov funkcie f v I(γ) je potom konečná a

1

2πi

∫
γ
f(z) dz =

∑
a∈A

Res(f, a).

Dôkaz. Podľa Jordanovej vety je oblasť I(γ) ohraničená – množina γ∗ ∪ I(γ) je teda kompaktná.
Za účelom sporu predpokladajme, že je množina A nekonečná. Nech (an)∞n=0 je ľubovoľná postupnosť
po dvoch rôznych bodov z A. Keďže je množina A ⊆ I(γ) ohraničená, podľa Bolzanovej-Weierstrassovej
vety sa z postupnosti (an)∞n=0 musí dať vybrať konvergentná podpostupnosť (ank)∞k=0. Ak označíme
limitu tejto postupnosti ako a, nutne a ∈ γ∗ ∪ I(γ). Keďže sú prvky postupnosti (an)∞n=0 po dvoch
rôzne, je a hromadným bodom množiny A. Existencia takéhoto bodu ale odporuje leme 11.1.3.

Množina A je teda skutočne konečná. Pre všetky a ∈ A je funkcia f na nejakom prstencovom okolí
D′(a, r) s r > 0 reprezentovaná Laurentovým radom

f(z) =
∞∑

n=−m
cn(z − a)n,

kde m ∈ N. Označme ga takzvanú hlavnú časť tohto Laurentovho radu:

ga(z) :=

−1∑
n=−m

cn(z − a)n.

Ľahko vidieť, že funkcia ga je pre všetky a ∈ A je holomorfná na S \ {a}. Ak teda definujeme

g(z) := f(z)−
∑
a∈A

ga(z),

má funkcia g(z) na S iba odstrániteľné singularity. Môžeme ich teda odstrániť a predpokladať, že je
funkcia g na S holomorfná.
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Z Cauchyho integrálnej vety pre jednoducho súvislú oblasť a dôsledku 5.7.3 potom∫
γ
g(z) dz = 0.

Pre každé a ∈ A ďalej z integrálneho vzorca pre koeficient c−1 Laurentovho radu a z tvrdenia 5.8.1
dostávame

1

2πi

∫
γ
ga(z) dz = Res(ga, a) = Res(f, a).

Preto

1

2πi

∫
γ
f(z) dz =

1

2πi

∫
γ

(
g(z) +

∑
a∈A

ga(z)

)
dz =

=
1

2πi

∫
γ
g(z) dz +

∑
a∈A

1

2πi

∫
γ
ga(z) dz =

∑
a∈A

Res(f, a),

čo bolo treba dokázať.

Poznámka 11.1.5. Ak je funkcia f holomorfná na γ∗ ∪ I(γ) ⊆ S, je množina A z predchádzajúcej
vety prázdna a samotná veta teda hovorí, že∫

γ
f(z) dz = 0.

Ide teda o variant Cauchyho integrálnej vety.1

Ak je funkcia f holomorfná na γ∗ ∪ I(γ), je pre a ∈ I(γ) funkcia

g(z) =
f(z)

z − a

holomorfná na (γ∗∪I(γ))\{a}, pričom v bode amá funkcia g jednoduchý pól. Na nejakom prstencovom
okolí bodu a teda

g(z) =
∞∑

n=−1

cn(z − a)n.

Funkcia

(z − a)g(z) =
∞∑
n=0

cn−1(z − a)n

má v bode a odstrániteľnú singularitu, a teda

lim
z→a

(z − a)g(z) = lim
z→a

f(z) = c−1.

Pre rezíduum funkcie g v bode a preto platí

Res(g, a) = c−1 = lim
z→a

f(z) = f(a)

a z Cauchyho vety o rezíduách dostávame

1

2πi

∫
γ

f(z)

z − a
dz = f(a).

Ako špeciálny prípad Cauchyho vety o rezíduách teda dostávame aj Cauchyho integrálny vzorec.
1Predpoklady na funkciu f a krivku γ sú tu trochu iné, než vo variantoch Cauchyho integrálnej vety, s ktorými sme

sa doposiaľ stretli. Špeciálnym prípadom druhého variantu Cauchyho vety o rezíduách, ktorý dokážeme nižšie, však bude
všeobecná Cauchyho integrálna veta v podobe, v akej sme ju vyslovili v rámci dôsledku 10.6.2.
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Ak je napokon f holomorfná na γ∗ ∪ I(γ) a m ∈ N, je pre a ∈ I(γ) funkcia

g(z) =
f(z)

(z − a)m+1

opäť holomorfná na (γ∗ ∪ I(γ)) \ {a}, pričom v bode a má funkcia g pól rádu m + 1. Na nejakom
prstencovom okolí bodu a teda

g(z) =

∞∑
n=−(m+1)

cn(z − a)n.

Funkcia

(z − a)m+1g(z) =

∞∑
n=0

cn−(m+1)(z − a)n

má v bode a odstrániteľnú singularitu. Môžeme ju teda odstrániť, čím dostaneme funkciu f(z); podľa
vety o Taylorových radoch potom

c−1 =
f (m)(a)

m!
.

V dôsledku toho

Res(g, a) = c−1 =
f (m)(a)

m!

a z Cauchyho vety o rezíduách máme

m!

2πi

∫
γ

f(z)

(z − a)m+1
dz = f (m)(a).

Ako špeciálny prípad Cauchyho vety o rezíduách tak dostávame aj Cauchyho vzorec pre derivácie.

V rámci cvičení sme už videli viacero situácií, kedy je možné krivkový integrál vyrátať veľmi
jednoducho s použitím Cauchyho integrálneho vzorca alebo Cauchyho vzorca pre derivácie. To však
vyžaduje, aby bola integrovaná funkcia f už vyjadrená alebo ľahko vyjadriteľná v tvare

f(z) =
g(z)

(z − a)m+1
,

kde g je v bode a holomorfná. Vieme už, že takýmto spôsobom možno vyjadriť ľubovoľnú funkciu, ktorá
má v bode a pól rádu m+1; prevod do kýženého tvaru však nemusí byť technicky jednoduchý. Navyše
môže integračná krivka obkolesovať aj viacero pólov a Cauchyho integrálny vzorec, ani Cauchyho vzorec
pre derivácie, už použiť nemôžeme. Práve v uvedených situáciách je na výpočet krivkových integrálov
veľmi užitočným nástrojom Cauchyho veta o rezíduách.

Príklad 11.1.6. Uvažujme integrál ∫
κ(0,1)

1

z3 cos z
dz.

Na D′(0, π/2) máme

1

cos z
=

(
1− z2

2!
+
z4

4!
+O(z6)

)−1

=
1

1−
(
z2

2! −
z4

4! +O(z6)
) =

= 1 +

(
z2

2!
− z4

4!
+O(z6)

)
+

(
z2

2!
− z4

4!
+O(z6)

)2

+O(z6) =

= 1 +
z2

2
− z4

24
+
z4

4
+O(z6) = 1 +

z2

2
+

5z4

24
+O(z6),
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z čoho
1

z3 cos z
=

1

z3
+

1

2z1
+

5z1

24
+O(z3)

a
Res

(
1/(z3 cos z), 0

)
=

1

2
.

Bod 0 je pritom jediným pólom integrovanej funkcie na D(0, π/2); vo zvyšných bodoch D(0, π/2) je
táto funkcia holomorfná. Z Cauchyho vety o rezíduách preto∫

κ(0,1)

1

z3 cos z
dz = 2πiRes

(
1/(z3 cos z), 0

)
= πi.

Príklad 11.1.7. Vypočítajme teraz integrál∫
κ(0,2)

z

(z − 1)(z2 + 1)
dz.

Integrovanú funkciu tu možno upraviť nasledovne:

z

(z − 1)(z2 + 1)
=

z

(z − 1)(z − i)(z + i)
.

Zisťujeme teda, že na D(0, 2) má integrovaná funkcia tri jednoduché póly: 1 a ±i; na κ(0, 2)∗ je
integrovaná funkcia holomorfná. Z úvah učinených v rámci poznámky 11.1.5 vyplývajú nasledujúce
vzťahy:

Res

(
z

(z − 1)(z − i)(z + i)
, 1

)
=

1

(1− i)(1 + i)
=

1

2
,

Res

(
z

(z − 1)(z − i)(z + i)
, i

)
=

i

(i− 1)(i+ i)
=

1

2(i− 1)
= − i+ 1

4
,

Res

(
z

(z − 1)(z − i)(z + i)
,−i
)

=
−i

(−i− 1)(−i− i)
= − 1

2(i+ 1)
=
i− 1

4
.

Z Cauchyho vety o rezíduách tak dostávame∫
κ(0,2)

z

(z − 1)(z2 + 1)
dz = 2πi

∑
a∈{1,i,−1}

Res (z/(z − 1)(z − i)(z + i), a) =

= 2πi

(
1

2
− i+ 1

4
+
i− 1

4

)
= 0.

Cauchyho vetu o rezíduách možno často využiť aj na výpočet reálnych integrálov, ako ukazuje
nasledujúci príklad prebratý z [5].

Príklad 11.1.8. Uvažujme nevlastný integrál∫ ∞
−∞

1

x2 + 1
dx.

Vypočítajme najprv pre všetky r > 1 krivkový integrál∫
[−r,r]+κ[0,π](0,r)

1

z2 + 1
dz

pozdĺž integračnej krivky [−r, r] + κ[0,π](0, r) znázornenej na obrázku 11.1.
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i

0

Obr. 11.1: Integračná krivka [−r, r] + κ[0,π](0, r).

Keďže je integrovaná funkcia
1

z2 + 1
=

1

(z − i)(z + i)

holomorfná na tejto krivke a meromorfná v jej vnútri, pričom jedinou izolovanou singularitou v jej
vnútri je jednoduchý pól i s

Res
(
1/(z2 + 1), i

)
= − i

2
,

podľa Cauchyho vety o rezíduách dostávame∫
[−r,r]+κ[0,π](0,r)

1

z2 + 1
dz = 2πiRes

(
1/(z2 + 1), i

)
= π.

Z vety o odhade však súčasne ∣∣∣∣∣
∫
κ[0,π](0,r)

1

z2 + 1
dz

∣∣∣∣∣ ≤ πr 1

r2 − 1

a pre r →∞ táto hodnota speje k nule. Preto∫ ∞
−∞

1

x2 + 1
dx = lim

r→∞

∫
[−r,r]

1

z2 + 1
dz =

= lim
r→∞

∫
[−r,r]+κ[0,π](0,r)

1

z2 + 1
dz = π.

Dokážme teraz druhý variant Cauchyho vety o rezíduách, využívajúci pojem indexu bodu vzhľadom
ku krivke – bude o niečo všeobecnejší, než ten predchádzajúci a navyše nebude predpokladať platnosť
Jordanovej a Jordanovej-Schoenfliesovej vety.

Veta 11.1.9 (Cauchyho veta o rezíduách, formulácia II). Nech S ⊆ C je oblasť, funkcia f je me-
romorfná na S a γ s γ∗ ⊆ S je uzavretá po častiach hladká krivka taká, že f je holomorfná na γ∗

a pre všetky b ∈ C \S je Indγ(b) = 0. Nech A je množina všetkých pólov funkcie f v S. Potom existuje
nanajvýš konečne veľa bodov a ∈ A s Indγ(a) 6= 0, pričom2

1

2πi

∫
γ
f(z) dz =

∑
a∈A

Indγ(a) Res(f, a).

2V nasledujúcom sumujeme iba cez nenulové prvky, ktorých je konečne veľa.
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Dôkaz. Podľa lemy 10.5.2 existuje M > 0 také, že funkcia Indγ je na C \ D(0,M) nulová. Z toho
vyplýva, že množina T = {z ∈ C\γ∗ | Indγ(z) 6= 0}∪γ∗ – a teda aj množina A′ = {a ∈ A | Indγ(a) 6= 0}
– je podmnožinou nejakej ohraničenej oblasti D. Navyše tiež existuje ε > 0 také, že pre všetky z ∈ γ∗ je
D(z, ε) ⊆ D∩S. Pre ľubovoľné w na hranici otvorenej množiny D∩S (t. j. w ∈ D ∩ S ∩ C \ (D ∩ S))
potom okolie D(w, ε) neobsahuje žiaden bod z γ∗ a funkcia Indγ tak na tomto okolí musí byť – opäť
podľa lemy 10.5.2 – konštantná. Toto okolie však súčasne obsahuje aspoň jeden bod b ∈ C \ (D ∩ S);
ak ale b 6∈ S, je Indγ(b) = 0 podľa predpokladov vety a ak b 6∈ D, máme Indγ(b) = 0 vďaka inklúzii
T ⊆ D. Na okolí D(w, ε) je teda funkcia Indγ(z) nulová a množina A′ je v dôsledku toho obsiahnutá
v nejakej kompaktnej podmnožine ohraničenej množiny D ∩ S – z jej nekonečnosti by teda, rovnako
ako v dôkaze prvého variantu Cauchyho vety o rezíduách, vyplynula existencia hromadného bodu
množiny A v S, čo by odporovalo leme 11.1.3. Množina A′ je teda skutočne konečná.

Ďalej už postupujeme podobne ako v dôkaze prvého variantu Cauchyho vety o rezíduách. Pre všetky
a ∈ A′ je funkcia f na nejakom prstencovom okolí D′(a, r) s r > 0 reprezentovaná Laurentovým radom

f(z) =
∞∑

n=−m
cn(z − a)n,

kde m ∈ N. Označme ga hlavnú časť tohto Laurentovho radu:

ga(z) :=

−1∑
n=−m

cn(z − a)n.

Ľahko vidieť, že funkcia ga je pre všetky a ∈ A′ je holomorfná na S \ {a}. Ak teda definujeme

g(z) := f(z)−
∑
a∈A′

ga(z),

má funkcia g(z) v oblasti S \ (A \A′) iba odstrániteľné singularity.3 Odstráňme ich a predpokladajme,
že je funkcia g na S \ (A \A′) holomorfná.

Keďže pre všetky b ∈ C \ (S \ (A \A′)) = (C \S)∪ (A \A′) je Indγ(b) = 0, zo všeobecnej Cauchyho
integrálnej vety máme ∫

γ
g(z) dz = 0.

Pre každé a ∈ A′ ďalej zo základnej vety o krivkových integráloch a definície indexu dostávame

1

2πi

∫
γ
ga(z) dz =

1

2πi

∫
γ

−1∑
n=−m

cn(z − a)n dz =
1

2πi

∫
γ
c−1(z − a)−1 dz =

= c−1 Indγ(a) = Indγ(a) Res(ga, a) = Indγ(a) Res(f, a).

Preto

1

2πi

∫
γ
f(z) dz =

1

2πi

∫
γ

(
g(z) +

∑
a∈A′

ga(z)

)
dz =

=
1

2πi

∫
γ
g(z) dz +

∑
a∈A′

1

2πi

∫
γ
ga(z) dz =

∑
a∈A′

Indγ(a) Res(f, a) =

=
∑
a∈A

Indγ(a) Res(f, a),

čo bolo treba dokázať.
3Dôkaz, že S \ (A \A′) je skutočne oblasť, prenechávame čitateľovi ako jednoduché cvičenie.
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11.2 Cauchyho princíp argumentu

Naším ďalším cieľom bude dokázať takzvaný Cauchyho princíp argumentu, ktorý umožňuje vyjadriť
rozdiel počtu koreňov a počtu pólov nejakej meromorfnej funkcie, obkolesených jednoduchou uzavretou
krivkou γ, pomocou integrálneho vzorca. Dokážeme tu iba variant implicitne využívajúci Jordanovu
a Jordanovu-Schoenfliesovu vetu; dôkaz variantu založeného na pojme indexu a nezávislého od týchto
nedokázaných tvrdení prenechávame čitateľovi ako užitočné cvičenie.4

Nasledujúcu lemu budeme potrebovať na odôvodnenie zmysluplnosti našich ďalších tvrdení.

Lema 11.2.1. Nech S ⊆ C je oblasť, T je ohraničená množina taká, že T ⊆ S a f je funkcia mero-
morfná na S, ktorá na S nie je konštantne nulová. Potom má funkcia f v T nanajvýš konečne veľa
koreňov a nanajvýš konečne veľa pólov.

Dôkaz. Konečnosť počtu pólov možno dokázať podobne ako v dôkaze Cauchyho vety o rezíduách:
množina T je kompaktná a z nekonečnosti množiny pólov A funkcie f v T by tak vyplývala existencia
hromadného bodu množiny A v S. To by bol spor s lemou 11.1.3.

Keby mala na druhej strane funkcia f v množine T nekonečne veľa koreňov, rovnaká argumentácia
by zaručovala existenciu hromadného bodu a množiny Z(f) v S; z tvrdenia 9.4.1(iii) pritom ľahko
vidieť, že bod a nemôže byť pólom funkcie f . Pomocou vety o jednoznačnosti tak zisťujeme, že funkcia f
musí byť konštantne nulová na svojom definičnom obore. Takáto funkcia však nemá žiaden pól, čo spolu
s meromorfnosťou funkcie f na S znamená, že je f konštantne nulová na S. To odporuje predpokladom
lemy.

Prv, než vyslovíme a dokážeme samotný Cauchyho princíp argumentu, dokážeme na ilustráciu jeho
o niečo slabšiu verziu.

Tvrdenie 11.2.2. Nech S ⊆ C je oblasť, funkcia f je holomorfná na S a γ s γ∗ ∪ I(γ) ⊆ S je kladne
orientovaná jednoduchá uzavretá po častiach hladká krivka taká, že pre všetky z ∈ γ∗ je f(z) 6= 0.
Potom

1

2πi

∫
γ

f ′(z)

f(z)
dz = Z,

kde Z ∈ N je počet koreňov funkcie f v I(γ), pričom koreň rádu m ≥ 1 je započítaný m-krát.

Dôkaz. Tvrdenie dáva zmysel vďaka leme 11.2.1 a skutočnosti, že I(γ) je ohraničená množina taká, že
I(γ) = γ∗ ∪ I(γ) ⊆ S.

Nech a ∈ I(γ) je koreň funkcie f rádu m ≥ 1. Podľa tvrdenia 8.1.3 potom existuje r > 0 také, že
pre všetky z ∈ D(a, r) je

f(z) = (z − a)mg(z),

kde g je holomorfná na D(a, r) a g(a) 6= 0. Na D(a, r) potom tiež

f ′(z) = m(z − a)m−1g(z) + (z − a)mg′(z),

z čoho
f ′(z)

f(z)
=

m

z − a
+
g′(z)

g(z)
.

Keďže g(a) 6= 0, je funkcia g′(z)/g(z) holomorfná v bode a, a teda Res(f ′/f, a) = m. Keďže je koreň
a ∈ I(γ) ľubovoľný a keďže je funkcia f ′(z)/f(z) holomorfná vo všetkých bodoch b ∈ S takých, že
f(b) 6= 0, z Cauchyho vety o rezíduách dostávame

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈Z(f)∩I(γ)

Res(f ′/f, a) = Z,

čo bolo treba dokázať.
4Ide o cvičenie 8 na konci tejto kapitoly.
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Veta 11.2.3 (Cauchyho princíp argumentu). Nech S ⊆ C je oblasť, funkcia f je meromorfná na S
a γ s γ∗ ∪ I(γ) ⊆ S je kladne orientovaná jednoduchá uzavretá po častiach hladká krivka taká, že f je
holomorfná na γ∗ a pre všetky z ∈ γ∗ je f(z) 6= 0. Potom

1

2πi

∫
γ

f ′(z)

f(z)
dz = Z − P,

kde Z ∈ N je počet koreňov funkcie f v I(γ) a P ∈ N je počet pólov funkcie f v I(γ), pričom každý
koreň a pól rádu m je započítaný m-krát.

Dôkaz. Podobne ako v dôkaze tvrdenia 11.2.2 zisťujeme, že pre každý koreň a ∈ I(γ) funkcie f rádu m
je Res(f ′/f, a) = m. Nech teraz b ∈ I(γ) je pól funkcie f rádu k ≥ 1. Podľa tvrdenia 9.4.1 potom
existuje s > 0 také, že pre všetky z ∈ D′(b, s) je

f(z) =
h(z)

(z − a)k

pre nejakú funkciu h holomorfnú na D′(b, s) takú, že h(b) 6= 0. Na D′(b, s) potom tiež

f ′(z) = −k h(z)

(z − a)k+1
+

h′(z)

(z − a)k
,

z čoho
f ′(z)

f(z)
=
−k
z − a

+
h′(z)

h(z)
.

Keďže h(b) 6= 0, je funkcia h′(z)/h(z) holomorfná v bode b, a teda Res(f ′/f, b) = −k. Ak navyše
c ∈ I(γ) nie je koreňom ani pólom funkcie f , je funkcia f ′(z)/f(z) v tomto bode holomorfná. Ak teda
označíme ako P (f) množinu všetkých pólov funkcie f , z Cauchyho vety o rezíduách dostávame

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈Z(f)∩I(γ)

Res(f ′/f, a) +
∑

b∈P (f)∩I(γ)

Res(f ′/f, b) = Z − P.

Tým je veta dokázaná.

Poznámka 11.2.4. Integrál z predchádzajúcej vety možno interpretovať aj ako integrál funkcie 1/z
pozdĺž krivky f ◦γ, čiže ako index bodu 0 vzhľadom ku krivke f ◦γ. Vďaka súvisu so spojitým výberom
argumentu teda ide o „celkový nárast argumentu“ hodnoty f(z) pozdĺž krivky γ; odtiaľ pomenovanie
„Cauchyho princíp argumentu“ .

11.3 Rouchého veta

Vyslovme a dokážme ešte jeden zaujímavý dôsledok Cauchyho princípu argumentu – tzv. Rouchého
vetu. Opäť sa pritom obmedzíme iba na jej variant implicitne predpokladajúci platnosť Jordanovej
a Jordanovej-Schoenfliesovej vety.

Veta 11.3.1 (Rouchého veta). Nech S ⊆ C je oblasť, funkcie f, g sú holomorfné na S a γ s γ∗∪I(γ) ⊆ S
je jednoduchá uzavretá po častiach hladká krivka taká, že pre všetky z ∈ γ∗ je |f(z)| > |g(z)|. Potom
majú funkcie f a f + g rovnaký počet koreňov v I(γ).

Dôkaz. Nech t ∈ [0, 1]. Z predpokladov vety vyplýva, funkcia f + tg je holomorfná na S a pre všetky
z ∈ γ∗ je f(z) + tg(z) 6= 0. Z tvrdenia 11.2.2 (prípadne z Cauchyho princípu argumentu) teda vyplýva,
že

1

2πi

∫
γ

f ′(z) + tg′(z)

f(z) + tg(z)
dz = ±ζ(t),

kde ζ(t) je počet koreňov funkcie f + tg v I(γ).
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Dokážeme, že funkcia ζ : [0, 1]→ N je spojitá, čím zároveň dokážeme aj jej konštantnosť. Pre všetky
t1, t2 ∈ [0, 1] je

ζ(t2)− ζ(t1) = ± t2 − t1
2πi

∫
γ

g′(z)f(z)− f ′(z)g(z)

(f(z) + t1g(z))(f(z) + t2g(z))
dz.

Keďže je množina γ∗ kompaktná, funkcia g′(z)f(z) − f ′(z)g(z) na nej nadobúda maximum M ≥ 0
a funkcia (f(z) + t1g(z))(f(z) + t2g(z)), ktorá je na γ∗ nutne nenulová, na nej nadobúda minimum
m > 0. Pre všetky z ∈ γ∗ je teda∣∣∣∣ g′(z)f(z)− f ′(z)g(z)

(f(z) + t1g(z))(f(z) + t2g(z))

∣∣∣∣ ≤ M

m
.

Z toho

|ζ(t2)− ζ(t1)| =
∣∣∣∣ t2 − t12πi

∫
γ

g′(z)f(z)− f ′(z)g(z)

(f(z) + t1g(z))(f(z) + t2g(z))
dz

∣∣∣∣ ≤ |t2 − t1|2π
L(γ)

M

m
.

Pre všetky ε > 0 teda pre dostatočne malé |t2 − t1| máme

|ζ(t2)− ζ(t1)| < ε

a funkcia ζ je naozaj (rovnomerne) spojitá. Musí byť teda konštantná, z čoho vyplýva, že všetky funkcie
f + tg s t ∈ [0, 1] majú rovnaký počet koreňov v I(γ). Špeciálne teda majú rovnako veľa koreňov v I(γ)
aj funkcie f = f + 0g a f + g = f + 1g.

11.4 Veta o otvorenom zobrazení a veta o inverznej funkcii

Rouchého vetu teraz aplikujeme na dôkaz dôležitého tvrdenia o holomorfných funkciách – tzv. vety
o otvorenom zobrazení. Dôsledkom tejto vety ďalej bude veta o inverznej funkcii, ktorú možno chápať
ako zosilnenie vety 2.5.7 o derivácii inverznej funkcie pre prípad holomorfných funkcií.

Definícia 11.4.1. Nech S ⊆ C je otvorená množina a f : S → C funkcia. Hovoríme, že f je otvorené
zobrazenie na S, ak pre všetky otvorené množiny T ⊆ S je f(T ) otvorená množina.

Veta 11.4.2 (Veta o otvorenom zobrazení). Nech S ⊆ C je oblasť a f : S → C nekonštantná funkcia
holomorfná na S. Potom je funkcia f otvoreným zobrazením na S.

Dôkaz. Nech T ⊆ S je otvorená množina a b ∈ f(T ). Dokážeme existenciu čísla ε > 0 takého, že
D(b, ε) ⊆ f(T ).

Keďže b ∈ f(T ), existuje a ∈ T také, že b = f(a). Funkcia f je na S nekonštantná, takže funkcia
f(z) − f(a) premennej z nemôže byť na S konštantne nulová. Z vety o jednoznačnosti teda vyplýva,
že pre nejaké δ > 0 také, že D(a, δ) ⊆ T musí byť funkcia f(z)− f(a) nenulová na D′(a, δ).

Zvoľme reálne číslo r také, že 0 < r < δ a uvažujme kružnicu κ(a, r). Keďže ide o kompaktnú
množinu, absolútna hodnota |f(z)−f(a)| spojitej funkcie f(z)−f(a) na κ(a, r)∗ nadobúda minimumm.
Vďaka nenulovosti funkcie f(z) − f(a) na D′(a, δ) je m > 0. Pre všetky w ∈ D(b,m) a z ∈ κ(a, r)∗

ďalej
|(f(a)− f(z)) + (f(z)− w)| = |f(a)− w| < m ≤ |f(z)− f(a)|,

takže funkcie
f(z)− f(a)

a
f(z)− w = (f(z)− f(a)) + ((f(a)− f(z)) + (f(z)− w))

premennej z majú podľa Rouchého vety rovnaký počet koreňov v D(a, r). Keďže teda má funkcia
f(z)− f(a) práve jeden koreň v D(a, r), musí tam mať práve jeden koreň aj každá z funkcií f(z)− w
pre w ∈ D(b,m). Pre každé w ∈ D(b,m) teda existuje z ∈ D(a, r) také, že f(z) = w – a teda
D(b,m) ⊆ f(D(a, r)) ⊆ f(T ). Na zavŕšenie dôkazu teda stačí vziať ε = m.
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Veta 11.4.3 (Veta o inverznej funkcii, formulácia I). Nech S ⊆ C je otvorená množina a f : S → C
injektívna funkcia holomorfná na S. Pre T = f(S) je potom inverzná funkcia f−1 : T → C k funkcii f
holomorfná na T a pre všetky a ∈ S s f(a) = b je

(
f−1

)′
(b) =

1

f ′(a)
.

Dôkaz. Vďaka vete 2.5.7 stačí dokázať, že funkcia f−1 je na T spojitá. Nech teda b ∈ T a ε > 0
– dokážeme, že existuje δ > 0 také, že pre všetky w ∈ D(b, δ) je f−1(w) ∈ D(a, ε). Podľa vety
o otvorenom zobrazení je ale f(D(a, ε)) otvorená množina, pričom vďaka rovnosti b = f(a) musí byť
b ∈ f(D(a, ε)). Existuje teda δ > 0 také, že D(b, δ) ⊆ f(D(a, ε)) a pre všetky w ∈ D(b, δ) tak existuje
z ∈ D(a, ε) také, že w = f(z) – čiže f−1(w) = z ∈ D(a, ε).

Poznámka 11.4.4. Z tvrdenia v cvičení 5 kapitoly 2 ľahko vidieť, že bijektívna funkcia f : S → T je
otvoreným zobrazením práve vtedy, keď je inverzná funkcia f−1 : T → S spojitá. V našom dôkaze vety
o inverznej funkcii sme v podstate iba aplikovali toto pozorovanie.

Nasledujúce tvrdenie hovorí, že holomorfná funkcia f s nenulovou deriváciou v bode a musí byť
na nejakom okolí tohto bodu injektívna. Z vety o inverznej funkcii teda vyplýva, že nenulovosť derivácie
funkcie f v bode a je postačujúcou podmienkou existencie holomorfnej inverznej funkcie k zúženiu
funkcie f na nejaké okolie bodu a.

Tvrdenie 11.4.5. Nech S ⊆ C je otvorená množina, a ∈ S a f : S → C je holomorfná na S.
Ak f ′(a) 6= 0, existuje r > 0 také, že D(a, r) ⊆ S a zúženie funkcie f na D(a, r) je injektívne.

Dôkaz. Z lemy 10.5.1 vyplýva existencia r > 0 takého, že pre všetky z, w ∈ D(a, r) je

|f(w)− f(z)| ≥ |f
′(a)||w − z|

2
.

Ak pritom z 6= w, je vďaka predpokladu f ′(a) 6= 0 výraz na pravej strane nerovnosti kladný, a teda aj
|f(w)− f(z)| > 0 – z toho f(z) 6= f(w).

Dôsledok 11.4.6 (Veta o inverznej funkcii, formulácia II). Nech S ⊆ C je otvorená množina a nech
f : S → C funkcia holomorfná na S. Nech a ∈ S je bod taký, že f ′(a) 6= 0. Potom existuje r > 0 také,
že funkcia f je injektívna na D(a, r) a pre T = f(D(a, r)) je inverzná funkcia f−1 : T → C k tomuto
zúženiu funkcie f holomorfná na T . Pre všetky z ∈ D(a, r) s f(z) = w pritom

(
f−1

)′
(w) =

1

f ′(z)
.

Dôkaz. Bezprostredne z vety 11.4.3 a tvrdenia 11.4.5.

Cvičenia

1. a) Nájdite rezíduá funkcie f1(z) = (eiz − 1)/(z2 + 1)2 v bodoch i a −i. Vypočítajte integrály
tejto funkcie pozdĺž kriviek κ(i, 10−100) a κ(i, 10100).

b) Nájdite rezíduá funkcie f2(z) = eiz/(z3−1) v bodoch 1, ei2π/3 a ei4π/3. Vypočítajte integrály
tejto funkcie pozdĺž kriviek κ(ei2π/3, 10−100) a κ(ei2π/3, 10100).

2. Vypočítajte integrál∫ ∞
−∞

1

(x2 + 1)(x2 + 2)
dx.
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3. Nech S ⊆ C je oblasť a f : S → C funkcia s pólom rádu m ∈ N \ {0} v bode a ∈ C. Dokážte, že
v takom prípade je

Res(f, a) =
1

(m− 1)!
lim
z→a

dm−1

dzm−1
((z − a)mf(z)) .

4. Zovšeobecnite Cauchyho vetu o rezíduách aj na prípad funkcií s odstrániteľnými a podstatnými
izolovanými singularitami.

5. Uvažujme funkciu f : C \ {i,−i} → C, danú pre všetky z ∈ C \ {−i, i} ako

f(z) =
−5iz − 1

2π(z2 + 1)
.

Nájdite všetky I ∈ C také, že pre nejakú uzavretú po častiach hladkú krivku γ s γ∗ ⊆ C \{i,−i}
je

I =

∫
γ
f(z) dz.

6. Zistite, či existuje funkcia f meromorfná na C taká, že pre všetky n ∈ N \ {0} má funkcia f
v bode n pól, pričom Res(f, n) = n. Ak áno, skonštruujte takú funkciu; ak nie, dokážte.

7. Zistite, či existuje meromorfná funkcia f na nejakej oblasti S ⊆ C taká, že pre všetky α ∈ R
existuje pól a ∈ S funkcie f , pre ktorý je Res(f, a) = α. Ak áno, skonštruujte takú funkciu;
ak nie, dokážte.

8. Dokážte nasledujúci variant Cauchyho princípu argumentu, založený na pojme indexu a nezávislý
od Jordanovej a Jordanovej-Schoenfliesovej vety: nech S ⊆ C je oblasť, funkcia f je meromorfná
na S a γ s γ∗ ⊆ S je uzavretá po častiach hladká krivka taká, že f je holomorfná a nenulová na γ∗

a pre všetky b ∈ C \ S je Indγ(b) = 0. Nech Z(f) je množina koreňov a P (f) je množina pólov
funkcie f . Potom je v oboch týchto množinách iba konečný počet prvkov s nenulovým indexom
vzhľadom ku krivke γ a

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
a∈Z(f)

Indγ(a) deg(a)−
∑

b∈P (f)

Indγ(b) deg(b),

kde deg(w) označuje rád koreňa resp. pólu w.

9. Nájdite počet koreňov funkcie z2 + 5− eiz takých, že Im z > 0.
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Analytické predĺženie

Technika analytického predĺženia – do veľkej miery založená na vete o jednoznačnosti, ktorú sme už
dokázali – umožňuje rozšíriť analytickú (čiže holomorfnú) funkciu f , definovanú na nejakom obore S,
na „maximálny možný definičný obor“ obsahujúci S. Napríklad funkciu

f(z) =

∞∑
n=0

zn =
1

1− z
,

definovanú na okolí D(0, 1), možno pomocou analytického predĺženia rozšíriť na funkciu 1/(1− z) de-
finovanú na C \ {1}. Takto rozšírená funkcia je vždy daná jednoznačne; ukáže sa však, že môže byť
aj viachodnotová. Náš doterajší prístup k viachodnotovým funkciám – spočívajúci v ad hoc výbere jed-
nohodnotových vetiev – už tým pádom nebude dlhšie únosný. Namiesto toho budeme musieť zrevidovať
samotné naše chápanie analytických funkcií tak, aby tento koncept prirodzene zahŕňal aj viachodnotové
funkcie. Dospejeme tak k dôležitému pojmu globálnych analytických funkcií, ktoré budú reprezento-
vať vo všeobecnosti viachodnotové analytické funkcie na svojom „maximálnom možnom definičnom
obore“ . Odporúčaným doplňujúcim čítaním k tejto kapitole sú príslušné partie kníh [7, 6, 9].

12.1 Rozšírenie definičného oboru funkcie a viachodnotovosť

V komplexnej analýze sa často ocitáme v situácii, keď možno funkciu rozšíriť na väčší definičný obor,
než na akom bola pôvodne definovaná. Nech napríklad f : D(0, 1)→ C je pre všetky z ∈ D(0, 1) daná
ako

f(z) =
∞∑
n=0

zn.

Podľa štandardného vzorca pre súčet geometrického radu pre všetky z ∈ D(0, 1) máme

f(z) =
1

1− z
;

funkcia g : C \ {1} → C daná pre všetky z ∈ C \ {1} ako

g(z) =
1

1− z
je ale analytická na C \ {1}. Našli sme teda funkciu g(z), ktorá sa na D(0, 1) zhoduje s funkciou f ,
ale jej definičný obor je väčší: C \ {1}. Keďže má množina D(0, 1) v C \ {1} hromadný bod, z vety
o jednoznačnosti vyplýva, že ide o jedinú analytickú funkciu g(z) s touto vlastnosťou. Hovoríme, že
takto definovaná funkcia g : C\{1} → C je analytickým predĺžením funkcie f .1 V analytické predĺženie
funkcie f na celú komplexnú rovinu C dúfať nemôžeme – to možno jednoducho dokázať s použitím
jednoznačnosti Laurentových radov alebo prostredníctvom Liouvillovej vety.

1Ozajstnú definíciu analytického predĺženia sformulujeme až nižšie.
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Pre analytickú funkciu f : S → C, kde S ⊆ C je oblasť, sa teda ponúkajú prirodzené otázky:

• Možno funkciu f rozšíriť na analytickú funkciu definovanú na oblasti T ) S?

• Ak áno, z vety o jednoznačnosti vyplýva, že existuje práve jedna taká funkcia – ako ju ale možno
nájsť?

a %

b

%′c

Obr. 12.1: Weierstrassova technika analytického predĺženia pomocou mocninových radov.

Karl Weierstrass prišiel s technikou postupného rozširovania definičného oboru analytickej funkcie
založenej na nasledujúcom pozorovaní. Predpokladajme, že je funkcia f analytická v nejakom bode
a ∈ C. Jej Taylorov rad v bode a má potom nenulový polomer konvergencie %. Zvoľme ľubovoľný
bod b ∈ D(a, %). Funkcia f je v tomto bode nutne analytická, a teda je reprezentovateľná Taylorovým
radom so stredom v b. Tento rad určite konverguje naD(b, %−|b−a|); jeho polomer konvergencie %′ však
niekedy môže byť aj väčší a v takom prípade sme práve rozšírili definičný obor pôvodnej analytickej
funkcie. Môžeme teraz rovnaký postup opakovať s ľubovoľným ďalším bodom c nového definičného
oboru. Táto situácia je znázornená na obrázku 12.1.

V skutočnosti ale pri analytickom predĺžení vôbec nie je nutné narábať s mocninovými radmi
a ich polomermi konvergencie. Ak máme danú analytickú (t. j. holomorfnú) funkciu f na ľubovoľnom
kruhovom okolí D1 (prípadne aj na oblasti iného typu) a nájdeme analytickú funkciu g na nejakom
inom okolí D2 takom, že D1 ∩D2 6= ∅, pričom na tomto prieniku sa obidve funkcie zhodujú, našli sme
jediné predĺženie funkcie f na D1 ∪D2. Tento postup môžeme ľubovoľne veľa ráz opakovať. Situácia
je znázornená na obrázku 12.2.

D1

D2

D3

f : D1 → C

g : D2 → C

h : D3 → C

Obr. 12.2: Základná myšlienka analytického predĺženia.

Uvidíme, že ak je možné analytickú funkciu f : S → C na oblasti S predĺžiť na nejakú nadoblasť
T ⊇ S, vždy ju tam možno predĺžiť rovnakým spôsobom ako vyššie, aj keď vo všeobecnosti môže byť
potrebných nekonečne veľa krokov.
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Pri takomto postupnom predlžovaní funkcie sa však môže pomerne „zákerným“ spôsobom prejaviť
jej viachodnotovosť. Nech napríklad D0 = D(1, 1/2) a ln[0] : D0 → C označuje holomorfnú vetvu priro-
dzeného logaritmu na D0 takú, že ln[0](1) = 0.2 Postupne pokrývajme kladne orientovanú jednotkovú
kružnicu „reťazou“ prekrývajúcich sa okolí D0, D1, D2, . . . o polomere 1/2 a so stredmi

a0 = 1, a1 = eiπ/4, a2 = eiπ/2, a3 = ei3π/4, a4 = −1, . . .

tak, ako na obrázku 12.3. OkolieDk sa pre všetky k ∈ N prekrýva sDk+1 a ľahko vidieť, že ak pre všetky
k ∈ N je ln[k] : Dk → C holomorfná vetva prirodzeného logaritmu na Dk taká, že ln[k](ak) = ikπ/4, tak
pre všetky z ∈ Dk∩Dk+1 je ln[k](z) = ln[k+1](z). Takto však postupne prídeme k okoliu D8 so stredom
v bode a8 = ei2π = 1, pre ktoré zisťujeme, že ln[8](1) = i2π. Obkrúžením kladne orientovanej jednotko-
vej kružnice sme sa teda nevrátili k pôvodnej vetve prirodzeného logaritmu ln[0] spĺňajúcej ln[0](1) = 0,
ale plynule sme prešli k inej vetve. Ľahko vidieť, že pomocou niekoľkých takýchto „obkrúžení“ kladne
alebo záporne orientovanej jednotkovej kružnice by sme vedeli získať ľubovoľnú vetvu prirodzeného
logaritmu (napríklad) na D(1, 1/2).

0 1

Obr. 12.3: Analytické predĺženie prirodzeného logaritmu, pri ktorom sa prejaví jeho viachodnotovosť.

Viachodnotovosť analytických funkcií už teda, zdá sa, nemôžeme ďalej zametať pod koberec.
Aby pojem analytického predĺženia funkcie dával naozajstný zmysel, musíme zrevidovať samotné naše
pojatie pojmu analytickej funkcie tak, aby zahŕňalo aj viachodnotové funkcie – „maximálnym“ analy-
tickým predĺžením akejkoľvek vetvy logaritmu tak bude „ozajstný viachodnotový logaritmus“ .

12.2 Analytické prvky a analytické predĺženie

Sformalizujeme teraz ideu analytického predĺženia podľa „reťazcov“ prekrývajúcich sa okolí, ktorú
sme si na neformálnej úrovni vysvetlili v predchádzajúcom oddiele. Základným stavebným kameňom
pre nás pritom bude takzvaný analytický prvok – pôjde o kruhové okolie, na ktorom je definovaná nejaká
analytická funkcia. V literatúre sa však vyskytujú aj rôzne iné definície analytických prvkov – môže sa
napríklad požadovať, aby polomerom kruhového okolia so stredom v a ∈ C bol polomer konvergencie
Taylorovho radu danej analytickej funkcie so stredom v a; iné definície zas namiesto kruhových okolí
pripúšťajú ľubovoľnú oblasť. Všetky podobné prístupy sú však vo svojej podstate ekvivalentné a líšia
sa len v detailoch.

2Ide teda o zúženie hlavnej vetvy Ln z = ln0(z) prirodzeného logaritmu definovanej na C \ (−∞, 0].
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Definícia 12.2.1. Analytický prvok je dvojica (f,D), kdeD = D(a, r) je kruhové okolie nejakého bodu
a ∈ C o polomere r > 0 alebo D = D(a,∞) := C a f : D → C je funkcia holomorfná na D. Hovoríme
potom, že a ∈ C je stredom3 analytického prvku (f,D) a r > 0 je jeho polomerom. Ak je navyše S ⊆ C
oblasť a D ⊆ S, hovoríme, že (f,D) je analytický prvok v oblasti S.

Definícia 12.2.2. Nech S ⊆ C je oblasť a (f,D), (g,E) sú analytické prvky v S. Hovoríme, že:

a) Prvok (g,E) je priamym analytickým predĺžením prvku (f,D) v oblasti S, ak D ∩ E 6= ∅
a pre všetky z ∈ D ∩ E je f(z) = g(z).

b) Prvok (g,E) je analytickým predĺžením prvku (f,D) v oblasti S, ak existuje n ∈ N a postupnosť
analytických prvkov (f1, D1), . . . , (fn, Dn) v S takých, že (f1, D1) = (f,D), (fn, Dn) = (g,E)
a pre k = 1, . . . , n− 1 je prvok (fk+1, Dk+1) priamym analytickým predĺžením prvku (fk, Dk).

Ak S = C, hovoríme iba o priamom analytickom predĺžení resp. o analytickom predĺžení.

Tvrdenie 12.2.3. Nech S ⊆ C je oblasť. Relácia „byť priamym analytickým predĺžením v S “ je
reflexívna a symetrická. Relácia „byť analytickým predĺžením v S “ je reláciou ekvivalencie na množine
všetkých analytických prvkov v oblasti S.

Dôkaz. Zrejmé.

Tvrdenie 12.2.4. Nech (f,D) je analytický prvok, E je kruhové okolie a (g1, E), (g2, E) sú priame
analytické predĺženia prvku (f,D). Potom (g1, E) = (g2, E).

Dôkaz. Ak (g1, E), (g2, E) sú priame analytické predĺženia prvku (f,D), z definície nutne D ∩ E 6= ∅
a z otvorenosti týchto dvoch množín vyplýva, že D ∩ E má v E hromadný bod. Navyše pre všetky
z ∈ D ∩ E je g1(z) = g2(z) = f(z). Z vety o jednoznačnosti preto g1 = g2 a (g1, E) = (g2, E).

Poznámka 12.2.5. Príklad prirodzeného logaritmu z úvodného oddielu ukazuje, že nemôže byť prav-
divá žiadna obdoba tvrdenia 12.2.4 pre všeobecné – čiže nie nutne priame – analytické predĺženie.
Táto skutočnosť je základným zdrojom viachodnotovosti analytických funkcií.

Ľubovoľné dva analytické prvky (f,D), (g,E) také, že D a E majú rovnaký stred a pre všetky
z ∈ D∩E je f(z) = g(z), sú očividne navzájom svojimi priamymi analytickými predĺženiami. V takom
prípade píšeme (f,D) ≡ (g,E) a obidva prvky aj v určitých situáciách stotožňujeme.4 Zrejme pritom
ide o reláciu ekvivalencie.

12.3 Globálne analytické funkcie

Môžeme teraz využiť definície z predchádzajúceho oddielu na zavedenie pojmu globálnej analytickej
funkcie, ktorá bude daná nejakou ďalej nepredĺžiteľnou množinou analytických prvkov takou, že každé
dva prvky z tejto množiny sú vzájomne svojimi analytickými predĺženiami. Pôjde teda o všeobecnosti
aj viachodnotové funkcie definované na „maximálnom možnom definičnom obore“ . Neskôr definujeme
aj vetvy globálnych analytických funkcií – a práve tento pojem sa ukáže byť vhodným zovšeobecnením
konceptu analytickej funkcie do „viachodnotového sveta“ .

3Za stred analytického prvku s okolím C možno považovať každé komplexné číslo a. Ak teda budeme neskôr hovoriť
o „dvojiciach analytických prvkov s rovnakým stredom“, špeciálnym prípadom bude aj taká dvojica prvkov, kde aspoň
jeden z nich je s okolím C.

4Stotožnenie takýchto dvojíc analytických prvkov vychádza z pôvodného Weierstrassovho pojatia analytických prv-
kov, kde je funkcia f daná mocninovým radom v nejakom bode a a zodpovedajúcim okolím D je D(a, %) pre polomer
konvergencie % tohto mocninového radu. Vďaka vete o Taylorových radoch je potom D(a, %) jednoznačne daným maxi-
málnym okolím D so stredom v bode a takým, že (f,D) je analytický prvok. Všetky ostatné analytické prvky tohto typu
teda môžeme s prvkom (f,D) bez veľkej ujmy stotožniť.
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Definícia 12.3.1. Nech E je množina všetkých analytických prvkov a ∼ je relácia ekvivalencie na E
taká, že pre dvojicu analytických prvkov (f,D), (g,E) je (f,D) ∼ (g,E) práve vtedy, keď jeden
z týchto prvkov je analytickým predĺžením druhého. Globálna analytická funkcia je ľubovoľná trieda
ekvivalencie f relácie ∼, čiže ľubovoľný prvok f ∈ E / ∼.

Často býva užitočné pracovať aj s „lokálnymi globálnymi analytickými funkciami“ , čiže s obdobou
globálnych analytických funkcií definovanou na základe analytického predĺženia v nejakej oblasti S ⊆ C.
Takéto funkcie budeme (nešťastne) volať globálnymi analytickými funkciami v S.

Definícia 12.3.2. Nech S ⊆ C je oblasť, ES je množina všetkých analytických prvkov v S a ∼S je
relácia ekvivalencie na ES taká, že pre analytické prvky (f,D), (g,E) v S je (f,D) ∼S (g,E) práve
vtedy, keď jeden z nich je analytickým predĺžením toho druhého v S. Globálna analytická funkcia
v oblasti S je ľubovoľná trieda ekvivalencie f relácie ∼S , čiže ľubovoľný prvok f ∈ ES/ ∼S .

Poznámka 12.3.3. Globálna analytická funkcia je teda globálna analytická funkcia v oblasti C.

Každá globálna analytická funkcia f (v oblasti S) je teda nejaká množina analytických prvkov
(v oblasti S), pričom pre každý analytický prvok (f,D) ∈ f patria do f práve všetky analytické prvky,
ktoré sú (v oblasti S) analytickým predĺžením prvku (f,D). Pracovať priamo s touto definíciou by ale
bolo značne ťažkopádne. Zavedieme preto terminológiu a notáciu, ktorá bude mať bližšie k intuitívnej
predstave o globálnej analytickej funkcii.

Nech f je globálna analytická funkcia v nejakej oblasti S ⊆ C. Definičným oborom funkcie f
nazveme zjednotenie všetkých množín D takých, že f obsahuje nejaký prvok (f,D). Ľahko vidieť, že
tento definičný obor je opäť oblasť. Pre všetky z z definičného oboru funkcie f označíme Jf(z)K množinu
všetkých hodnôt funkcie f v bode z, danú ako

Jf(z)K = {f(z) | (f,D) ∈ f ; z ∈ D}.

Ak je v nejakom bode z definičného oboru funkcie f množina Jf(z)K jednoprvková, hovoríme, že funkcia
f je v bode z jednohodnotová; inak hovoríme, že je viachodnotová. Na príklade prirodzeného logaritmu
vidieť, že globálna analytická funkcia môže naozaj byť aj viachodnotová. Ak je globálna analytická
funkcia f v oblasti S jednohodnotová v každom bode z ∈ S, stotožňujeme túto funkciu s „bežnou“ –
a očividne analytickou – funkciou f : S → C takou, že pre všetky z ∈ S je f(z) dané ako jediný prvok
množiny Jf(z)K.

Vetvou globálnej analytickej funkcie f na oblasti T ⊆ S ďalej nazveme globálnu analytickú funkciu
fT v oblasti T takú, že fT ⊆ f . Ľahko možno dokázať, že špeciálne každý analytický prvok (f,D) ∈ f
je – po stotožnení s globálnou analytickou funkciou v oblasti D – jednohodnotovou vetvou funkcie f .
Zneužívajúc terminológiu tiež hovoríme, že f je analytickým predĺžením ľubovoľnej svojej vetvy (a teda
aj ľubovoľného svojho analytického prvku).

Napriek svojej relatívne komplikovanej definícii je tak pojem vetvy globálnej analytickej funkcie
prirodzeným zovšeobecnením pojmu analytickej funkcie, ako sme ho chápali doteraz.

12.4 Analytické predĺženie pozdĺž krivky

V úvodnom oddiele tejto kapitoly sme holomorfnú vetvu prirodzeného logaritmu analyticky predlžovali
pozdĺž jednotkovej kružnice – videli sme pritom, že orientácia a počet jej „obkrúžení“ boli rozhodujúce
pre to, akú vetvu sme získali na konci celého procesu. Myšlienku takéhoto analytického predĺženia
pozdĺž krivky teraz sformalizujeme – pôjde o predĺženie, v ktorom jednotlivé analytické prvky vyberáme
tak, aby ich stredy ležali na danej krivke, pričom stredom prvého okolia je počiatočný bod a stredom
posledného okolia je koncový bod tejto krivky. Táto situácia je znázornená na obrázku 12.4. Dokážeme,
že analytické predĺženie pozdĺž krivky skutočne závisí iba od tejto krivky a nie od konkrétneho výberu
analytických prvkov so stredmi na tejto krivke.
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Obr. 12.4: Analytické predĺženie pozdĺž krivky z bodu a do bodu b.

Definícia 12.4.1. Nech (f,D) je analytický prvok so stredom a ∈ C a (g,E) je analytický prvok
so stredom b ∈ C. Nech γ : [α, β] → C je krivka. Hovoríme, že prvok (g,E) je analytickým predĺžením
prvku (f,D) pozdĺž krivky γ, ak existuje n ∈ N, reálne čísla α = t0 ≤ . . . ≤ tn = β a analytické prvky
(f1, D1), . . . , (fn, Dn), pre ktoré sú splnené nasledujúce podmienky:

(i) Platí γ(α) = a, γ(β) = b, (f1, D1) = (f,D) a (fn, Dn) = (g,E).

(ii) Pre k = 1, . . . , n je (γ � [tk−1, tk])
∗ ⊆ Dk a stred okolia Dk leží v γ∗.

(iii) Pre k = 1, . . . , n− 1 je (fk+1, Dk+1) priamym analytickým predĺžením prvku (fk, Dk).

Poznámka 12.4.2. Hodnoty t0, . . . , tn z predchádzajúcej definície je vždy možné bez ujmy na vše-
obecnosti predpokladať po dvoch rôzne tak, aby bolo α = t0 < . . . < tn = β (a to aj v prípade
zhodnosti niektorých okolí).

Poznámka 12.4.3. Každé analytické predĺženie možno chápať ako analytické predĺženie pozdĺž krivky,
ba dokonca pozdĺž lomenej čiary. Stačí pospájať úsečkami stredy analytických prvkov vystupujúcich
v definícii analytického predĺženia.

Dokážeme teraz, že „výsledok“ analytického predĺženia pevne daného analytického prvku (f,D)
pozdĺž pevne danej krivky γ je vždy jednoznačne daný – ľubovoľné dve analytické predĺženia (f,D)
pozdĺž γ sú totiž v relácii ≡.
Tvrdenie 12.4.4. Nech (f,D) je analytický prvok so stredom a ∈ C, γ : [α, β]→ C je krivka taká, že
γ(α) = a a (g1, E1), (g2, E2) sú analytické predĺženia (f,D) pozdĺž γ. Potom (g1, E1) ≡ (g2, E2).

Dôkaz. Nech (f1, D1), . . . , (fn, Dn) sú analytické prvky z definície 12.4.1, vďaka ktorým je prvok
(g1, E1) analytickým predĺžením (f,D) pozdĺž γ; nech α = t0 < . . . < tn = β sú zodpovedajúce
indexy v zmysle poznámky 12.4.2. Nech (f̂1, D̂1), . . . , (f̂m, D̂m) sú takéto analytické prvky pre (g2, E2)
a α = t̂0 < . . . < t̂m = β sú príslušné indexy. Potom existuje ε > 0 také, že pre všetky t ∈ [α, β]
je okolie D[t] := D(γ(t), ε) súčasne podmnožinou Dk pre k ∈ {1, . . . , n} také, že t ∈ [tk−1, tk] =: Ik
a podmnožinou D̂j pre j ∈ {1, . . . ,m} také, že t ∈ [t̂j−1, t̂j ] =: Îj .5 Evidentne α ∈ I1∩ Î1 a β ∈ In∩ Îm.

Pre všetky t ∈ [α, β] definujme funkcie f [t] : D[t] → C a f̂ [t] : D[t] → C ako f [t](z) = fk(z)
a f̂ [t](z) = f̂j(z) pre všetky z ∈ D[t] a k ∈ {1, . . . , n}, j ∈ {1, . . . ,m} také, že t ∈ Ik ∩ Îj . Ak pritom
t = tp pre p ∈ {1, . . . , n− 1}, je súčasne t ∈ Ip a t ∈ Ip+1 – a podobne ak t = t̂q pre q ∈ {1, . . . ,m− 1},
je súčasne t ∈ Îq a t ∈ Îq+1. Uvedená definícia funkcií f [t] a f̂ [t] je ale napriek tomu korektná, pretože
pre t = tp jeD[t] ⊆ Dp∩Dp+1 a keďže (fp+1, Dp+1) je priamym analytickým predĺžením prvku (fp, Dp),
musí pre všetky z ∈ Dp∩Dp+1 byť fp(z) = fp+1(z); podobne pre t = t̂q je D[t] ⊆ D̂q ∩ D̂q+1 a keďže je
(f̂q+1, D̂q+1) priamym analytickým predĺžením (f̂q, D̂q), je f̂q(z) = f̂q+1(z) pre všetky z ∈ D̂q ∩ D̂q+1.

5Príslušnosť okolí Dk a D̂j k intervalom obsahujúcim t je potrebné zdôrazniť, pretože krivka γ nemusí byť jednoduchá.
Môžu teda existovať t, t′ ∈ [α, β] také, že t 6= t′, ale γ(t) = γ(t′) a v takom prípade je tento bod stredom dvoch zhodných
okolí D[t] a D[t′]. Je ich teda nutné medzi sebou odlíšiť v prípade, že zodpovedajú rôznym Dk resp. D̂j .
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Keďže sú navyše f [t] a f̂ [t] pre všetky t ∈ [α, β] zúženiami holomorfných funkcií, sú obe tieto funkcie
holomorfné na D[t]; v nasledujúcom tak môžeme skúmať analytické prvky (f [t], D[t]) a (f̂ [t], D[t])
v závislosti na parametri t ∈ [α, β]. Stačí pritom ukázať, že f [β] = f̂ [β] – keďže totiž pre všetky
z ∈ D[β] ⊆ Dn ∩ D̂m je f [β](z) = fn(z) a f̂ [β](z) = f̂m(z), pričom D[β] má v oblasti Dn ∩ D̂m

hromadný bod, z rovnosti f [β] = f̂ [β] pomocou vety o jednoznačnosti dostaneme fn(z) = f̂m(z)
pre všetky z ∈ Dn ∩ D̂m; okolia Dn a D̂m pritom majú rovnaký stred γ(β), z čoho vyplynie, že nutne
(g1, E1) = (fn, Dn) ≡ (f̂m, D̂m) = (g2, E2).

Nech teraz α = t̃0 < . . . < t̃s = β sú indexy také, že pre ` = 1, . . . , s existujú k ∈ {1, . . . , n}
a j ∈ {1, . . . ,m} také, že Ĩ` := [t̃` − 1, t̃`] ⊆ Ik ∩ Îj . Indukciou vzhľadom na ` = 1, . . . , s dokážeme,
že pre všetky t ∈ Ĩ` je f [t] = f̂ [t].

Pre ` = 1 a ľubovoľné t ∈ Ĩ1 je t ∈ I1 ∩ Î1 – funkcia f [t] je teda zúžením f1 na D[t] a funkcia f̂ [t]
je zúžením f̂1 na D[t]. Avšak (f1, D1) = (f̂1, D̂1) = (f,D), takže naozaj f [t] = f̂ [t].

Nech teraz tvrdenie platí pre ` = q < s a uvažujme ` = q + 1. Potom t̃q ∈ Ĩq a súčasne t̃q ∈ Ĩq+1.
Z indukčného predpokladu teda f [t̃q] = f̂ [t̃q]. Pre k ∈ {1, . . . , n} a j ∈ {1, . . . ,m} také, že Ĩq+1 ⊆ Ik∩Îj
ale súčasne D[t̃q] ⊆ Dk ∩ D̂j , pričom D[t̃q] má v oblasti Dk ∩ D̂j hromadný bod a pre všetky z ∈ D[t̃q]

je fk(z) = f [t̃q](z) = f̂ [t̃q](z) = f̂j(z). Z vety o jednoznačnosti teda dostávame fk(z) = f̂j(z) pre všetky
z ∈ Dk ∩ D̂j . Pre ľubovoľné t ∈ Ĩq+1 ale D[t] ⊆ Dk ∩ D̂j , pričom f [t] je zúžením fk na D[t] a f̂ [t] je
zúžením f̂j na D[t]. Z uvedeného teda vyplýva, že f [t] = f̂ [t].

Pre všetky t ∈ [α, β] teda skutočne f [t] = f̂ [t] – a špeciálne f [β] = f̂ [β], čo bolo treba dokázať.

Tvrdenie 12.4.5. Nech S ⊆ C je oblasť a (f,D), (g,E) sú analytické prvky v S také, že (g,E) je
analytickým predĺžením (f,D) pozdĺž krivky γ : [α, β] → C s γ∗ ⊆ S. Potom je (g,E) analytickým
predĺžením (f,D) v oblasti S.

Dôkaz. Nech sú (f1, D1), . . . , (fn, Dn) analytické prvky, vďaka ktorým je analytický prvok (g,E) ana-
lytickým predĺžením (f,D) pozdĺž krivky γ; nech ďalej α = t0 < . . . < tn = β sú príslušné indexy
v zmysle poznámky 12.4.2. Pre k = 1, . . . , n uvažujme interval Ik := [tk−1, tk] a príslušné zúženie
γk := γ � Ik krivky γ; množina γ∗k je potom kompaktná, a teda existuje ε > 0 také, že pre všetky z ∈ γ∗k
je D(z, ε) ⊆ S∩Dk. Vďaka kompaktnosti γ∗k tiež existuje jej konečné pokrytie okoliami D̂k,1, . . . , D̂k,mk

so stredom v γ∗k a o polomere ε, pričom γ(tk−1) ∈ D̂k,1 a γ(tk) ∈ D̂k,mk . Pre k = 1, . . . , n a ` = 1, . . . ,mk

potom možno funkciu f̂k,` : D̂k,` → C korektne definovať pre všetky z ∈ D̂k,` ako f̂k,`(z) = fk(z).
Ľahko vidieť, že (f,D), (f̂1,1, D̂1,1), . . . , (f̂1,m1 , D̂1,m1), . . . , (f̂n,1, D̂n,1), . . . , (f̂n,mn , D̂n,mn), (g,E) je po-
stupnosť analytických prvkov, vďaka ktorým je (g,E) analytickým predĺžením (f,D) v oblasti S.

V definícii analytického predĺženia pozdĺž krivky sme – najmä kvôli súladu tohto pojmu s intuíciou
– požadovali, aby stredy jednotlivých analytických prvkov ležali na danej krivke. Dokážeme teraz
tvrdenie, podľa ktorého je táto podmienka nepodstatná za predpokladu, že je krivka stále jednotlivými
analytickými prvkami pokrytá. Jeho znenie je znázornené aj na obrázku 12.5.

a
γ

γ̂

Obr. 12.5: Tvrdenie 12.4.6.
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Tvrdenie 12.4.6. Nech (f,D) je analytický prvok so stredom a ∈ C, γ : [α, β] → C je krivka taká,
že γ(α) = a, (g,E) je analytické predĺženie (f,D) pozdĺž γ a (f1, D1), . . . , (fn, Dn) sú analytické
prvky zodpovedajúce tomuto predĺženiu podľa definície 12.4.1. Nech γ̂ : [α̂, β̂] → C je krivka taká, že
γ̂(α̂) = γ(α) a γ̂(β̂) = γ(β), pričom existujú čísla α = t̂0 < . . . < t̂n = β také, že pre k = 1, . . . , n
krivka γ̂k := γ̂ � [t̂k−1, t̂k] spĺňa γ̂∗k ⊆ Dk. Potom existuje analytické predĺženie (ĝ, Ê) prvku (f,D)

pozdĺž γ̂, pričom (ĝ, Ê) ≡ (g,E).

Dôkaz. Myšlienka dôkazu spočíva v pokrytí krivky γ̂ dostatočne malými okoliami tak, aby každé
z týchto okolí bolo podmnožinou príslušného „veľkého“ okolia Dk. Následne možno skúmať analy-
tické predĺženie prvku (f,D) pozdĺž γ̂, využívajúce tieto okolia – vďaka tvrdeniu 12.4.4 na výbere
okolí nezáleží.

Presnejšie: keďže je pre k = 1, . . . , nmnožina γ̂∗k ⊆ Dk kompaktná, existuje ε > 0 také, že pre všetky
z ∈ γ̂∗k je D(z, ε) ⊆ Dk. Vďaka kompaktnosti γ̂∗k potom existuje aj nejaké konečné pokrytie γ̂∗k okoliami
tohto typu. Vyberme takéto konečné pokrytie pre každú z kriviek γ̂k pre k = 1, . . . , n a zahrňme doň
vždy aj okolia D(γ̂(t̂k−1), ε) a D(γ̂(t̂k), ε). Zisťujeme potom, že existujú čísla α̂ = s0 < . . . < sm = β̂
také, že pre k = 0, . . . , n je t̂k = sj pre nejaké j ∈ {0, . . . ,m}, a pre j = 0, . . . ,m okolie D̂j so stredom
v sj , pričom D̂0 = D a pre j = 1, . . . ,m je (γ̂ � [sj−1, sj ])

∗ ⊆ D̂j a D̂j ⊆ Dk pre k ∈ {1, . . . , n} spĺňa-
júce sj ∈ [t̂k−1, t̂k]. Ak na takomto okolí D̂j definujeme funkciu f̂j : D̂j → C predpisom f̂j(z) = fk(z)

pre všetky z ∈ D̂j a ak vezmeme f0 = f , bude pre j = 1, . . . ,m analytický prvok (f̂j , D̂j) eviden-
tne priamym analytickým predĺžením prvku (D̂j−1, f̂j−1). Naozaj teda existuje analytické predĺženie
(ĝ, Ê) = (f̂m, D̂m) prvku (f,D) pozdĺž krivky γ̂, pričom pre všetky z ∈ D̂m ⊆ Dn je f̂m(z) = fn(z).
Nutne teda musí byť ĝ(z) = f̂m(z) = fn(z) = g(z) pre všetky z ∈ Ê, z čoho vyplýva, že naozaj
(ĝ, Ê) ≡ (g,E).

12.5 Jednohodnotové globálne analytické funkcie

Analytický prvok v nejakej oblasti S so stredom v bode a nazveme neobmedzene predĺžiteľným v S,
ak existuje jeho analytické predĺženie pozdĺž ľubovoľnej krivky v oblasti S začínajúcej v bode a.

Definícia 12.5.1. Nech S ⊆ C je oblasť a (f,D) je analytický prvok v S so stredom a ∈ S. Hovoríme,
že prvok (f,D) je neobmedzene predĺžiteľný v S, ak pre ľubovoľnú krivku γ : [α, β]→ C takú, že γ∗ ⊆ S
a γ(α) = a existuje analytické predĺženie prvku (f,D) pozdĺž γ.

Zaviedli sme už konvenciu stotožňovania jednohodnotových globálnych analytických funkcií f v ob-
lasti S s „bežnými“ analytickými funkciami f : S → C – každá jednohodnotová globálna analytická
funkcia f v S totiž zrejme takúto funkciu f definuje. Ukážeme teraz, že aj naopak ku každej „bežnej“
analytickej funkcii f : S → C zodpovedá jednohodnotová globálna analytická funkcia f v S; každý ana-
lytický prvok tejto funkcie je navyše v S neobmedzene predĺžiteľný. Toto pozorovanie – ktoré pre jeho
dôležitosť sformulujeme ako vetu – umožňuje pojmy „bežnej“ analytickej funkcie na S a jednohodno-
tovej globálnej analytickej funkcie v S nadobro stotožniť.

Veta 12.5.2. Nech S ⊆ C je oblasť a f : S → C je holomorfná funkcia. Potom existuje jednohodnotová
globálna analytická funkcia f v S taká, že pre všetky z ∈ S je Jf(z)K = {f(z)}. Každý analytický prvok
funkcie f je navyše neobmedzene predĺžiteľný v S a

f = {(fD, D) | ∃a ∈ S ∃r ∈ (0,∞) ∪ {∞} : D = D(a, r) ⊆ S; ∀z ∈ D : fD(z) = f(z)}.

Dôkaz. Pre každé T ⊆ S označme ako fT : T → C zúženie funkcie f na T . Nech a ∈ S, r ∈ (0,∞)∪{∞}
a D = D(a, r) je okolie také, že D ⊆ S. Stačí dokázať, že pre ľubovoľnú voľbu takéhoto D je analytický
prvok (fD, D) neobmedzene predĺžiteľný v S, pričom pre každú krivku γ : [α, β]→ C s γ∗ ⊆ S, γ(α) = a
a γ(β) = b je analytickým predĺžením prvku (fD, D) pozdĺž γ prvok (fE , E) pre nejaké E = D(b, s),
kde s ∈ (0,∞) ∪ {∞} a E ⊆ S.



Predbežná verzia

Analytické predĺženie 145

Nech je ale takáto krivka γ daná. Uvažujme pokrytie krivky γ okoliami D1, . . . , Dn ⊆ S so stredmi
v γ∗ takými, že D1 = D a pre nejaké reálne čísla α = t0 < . . . < tn = β a k = 1, . . . , n je
(γ � [tk−1, tk])

∗ ⊆ Dk. Potom (fD1 , D1) = (fD, D) a ľahko vidieť, že pre k = 1, . . . , n − 1 je analy-
tický prvok (fDk+1

, Dk+1) priamym analytickým predĺžením prvku (fDk , Dk). Analytickým predĺžením
prvku (fD, D) pozdĺž γ je tak prvok (fDn , Dn), pričom zrejme (fDn , Dn) ≡ (fE , E). Preto je (fE , E)
naozaj (až na ≡ jediným) analytickým predĺžením (fD, D) pozdĺž γ. Keďže γ môže byť ľubovoľná
krivka s danými vlastnosťami, je prvok (fD, D) neobmedzene predĺžiteľný v S.

12.6 Veta o monodrómii

Dokážeme teraz vetu o monodrómii, ktorá sa právom pokladá za jednu z najdôležitejších viet o analy-
tickom predĺžení. Hovorí nasledujúce: ak je oblasť S jednoducho súvislá a nejaká globálna analytická
funkcia f v S obsahuje analytický prvok neobmedzene predĺžiteľný v S, tak je funkcia f na S jedno-
hodnotová a splýva s „bežnou“ holomorfnou funkciou f : S → C.

Po ceste k vete monodrómii v skutočnosti dokážeme aj o niečo silnejšie tvrdenie: ak je S ľubovoľná
– teda nie nutne jednoducho súvislá – oblasť a (f,D) je neobmedzene predĺžiteľný analytický prvok
v S, tak je jeho analytické predĺženie rovnaké pozdĺž ľubovoľných dvoch kriviek homotopických v S
a začínajúcich v strede okolia D.

Veta 12.6.1. Nech S ⊆ C je oblasť, a ∈ S je bod, D ⊆ S je kruhové okolie so stredom v bode a,
γ, γ̂ : [α, β] → C s γ∗, γ̂∗ ⊆ S, γ(α) = γ̂(α) = a a γ(β) = γ̂(β) sú krivky homotopické v S ako krivky
s rovnakými počiatočnými a koncovými bodmi a (f,D) je analytický prvok neobmedzene predĺžiteľný
v S. Nech (g,E) je analytické predĺženie prvku (f,D) pozdĺž γ a (ĝ, Ê) je jeho predĺženie pozdĺž γ̂.
Potom (g,E) ≡ (ĝ, Ê).

Dôkaz. Tvrdenie dokážeme pre prípad, že krivka γ̂ vznikne z γ elementárnou deformáciou; rozšírenie
na prípad homotopických kriviek je už potom vďaka vete 5.3.12 iba otázkou jednoduchého induktívneho
argumentu. Rámcová myšlienka dôkazu – definovať dostatočné množstvo kriviek6 „medzi γ a γ̂ “ a každé
dve po sebe idúce z týchto kriviek pokryť spoločnou konečnou postupnosťou okolí pod S tak, aby bolo
možné aplikovať tvrdenie 12.4.6 – je znázornená na obrázku 12.6.

a

γ
γ̂

S1

S2

S3

S4

Obr. 12.6: Myšlienka dôkazu vety 12.6.1.

K danej dvojici kriviek prislúcha nejaké pokrytie konvexnými oblasťami S1, . . . , Sn a rozdelenie
na podkrivky γ1, . . . , γn a γ̂1, . . . , γ̂n ako v definícii 5.3.10. Bez ujmy na všeobecnosti môžeme predpo-
kladať, že pre k = 1, . . . , n sú krivky γk a γ̂k parametrizované rovnakým intervalom [αk, βk]. Z konvex-
nosti množiny Sk vyplýva, že pre všetky t ∈ [αk, βk] leží úsečka [γk(t), γ̂k(t)] celá v Sk. To znamená,

6V princípe pôjde o krivky „vyrobené“ homotópiou z γ na γ̂.
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že pre všetky q ∈ [0, 1] môžeme definovať krivku γk[q] : [αk, βk]→ S pre všetky t ∈ [αk, βk] predpisom

γk[q](t) = γ(t) + q(γ̂(t)− γ(t)).

Pre každé q ∈ [0, 1] je spojenie týchto kriviek, γ[q] := γ1[q] + . . . + γn[q], krivkou vedúcou z bodu
a = γ(α) = γ̂(α) do bodu γ(β) = γ̂(β); navyše platí γ[q]∗ ⊆ S.

Množina
Q :=

⋃
q∈[0,1]

γ[q]∗

je kompaktná, a teda existuje ε > 0 také, že pre všetky z ∈ Q je D(z, ε) ⊆ S. Ak navyše

d = sup{|γ̂k(t)− γk(t)| | k ∈ {1, . . . , n}; t ∈ [αk, βk]},

vezmime m ∈ N \ {0} také, že d/m < ε/2. Pre j = 0, . . . ,m − 1 a k = 1, . . . , n potom množinu
γk[j/m]∗∪γk[(j+1)/m]∗ môžeme pokryť kruhovými okoliami typu D(z, ε), kde z ∈ γk[j/m]∗. Množina
γk[j/m]∗ ∪ γk[(j + 1)/m]∗ je navyše kompaktná, a teda existuje aj takéto konečné pokrytie.

Keďže je analytický prvok (f,D) neobmedzene predĺžiteľný v S, musí existovať jeho analytické
predĺženie pozdĺž každej z kriviek γ[j/m] pre j = 0, . . . ,m. Po zjednotení spomínaných konečných
pokrytí γk[j/m]∗ ∪ γk[(j + 1)/m]∗ cez všetky k ∈ {1, . . . , n} a pridaní najviac dvoch ďalších okolí
o polomere ε (so stredmi v spoločnom počiatočnom resp. koncovom bode uvažovaných kriviek) tak sú
pre j = 0, . . . ,m − 1 a krivky γ[j/m], γ[(j + 1)/m] splnené predpoklady tvrdenia 12.4.6. Pre analy-
tické predĺženia (gj , Ej), (gj+1, Ej+1) prvku (f,D) pozdĺž kriviek γ[j/m] resp. γ[(j + 1)/m] teda platí
(gj , Ej) ≡ (gj+1, Ej+1). Keďže však γ[0] = γ, γ[1] = γ̂ a relácia ≡ je tranzitívna, nutne (g,E) ≡ (ĝ, Ê),
čo bolo treba dokázať.

Z práve dokázanej vety možno už ako pomerne jednoduchý dôsledok odvodiť aj samotnú vetu
o monodrómii.

Veta 12.6.2 (O monodrómii). Nech S ⊆ C je jednoducho súvislá oblasť a f je globálna analytická
funkcia v S obsahujúca nejaký analytický prvok (f,D) neobmedzene predĺžiteľný v S. Potom je funkcia
f na S jednohodnotová.

Dôkaz. Predpokladajme, že globálna analytická funkcia f v S za daných predpokladov nie je jednohod-
notová. Potom existuje dvojica analytických prvkov (g1, E1), (g2, E2) v f s rovnakým stredom b ∈ S
takých, že (g1, E1) 6≡ (g2, E2). Keďže prvky (g1, E1), (g2, E2) a (f,D) všetky patria do f , sú všetky
tieto prvky navzájom svojimi analytickými predĺženiami v S – videli sme pritom, že v takom prípade
ide aj o analytické predĺženia pozdĺž nejakých kriviek.

Nech (f,D) má stred a ∈ S a nech γ s γ∗ ⊆ S je krivka z bodu a do bodu b taká, že (g1, E1) je
analytickým predĺžením prvku (f,D) podľa γ. Nech γ̂ s γ̂∗ ⊆ S je krivka z a do b taká, že (g2, E2) je
predĺžením prvku (f,D) podľa γ̂. Krivky γ a γ̂ potom podľa tvrdenia 5.5.6 musia byť v jednoducho
súvislej oblasti S homotopické ako krivky s rovnakými počiatočnými a koncovými bodmi. Prvok (f,D)
je navyše neobmedzene predĺžiteľný v S a z vety 12.6.1 tak dostávame (g1, E1) ≡ (g2, E2): spor.

12.7 Riemannove plochy

Pri štúdiu globálnych analytických funkcií sa často zíde ich prirodzená geometrická interpretácia po-
mocou takzvaných Riemannových plôch. Viachodnotové funkcie definované na nejakej podmnožine
komplexnej roviny totiž môžeme rovnako dobre považovať aj za jednohodnotové funkcie definované
na ploche takej, že analytické predĺženie pozdĺž dvoch „neekvivalentných“ kriviek z nejakého bodu a
vždy vedie do rôznych bodov na tejto ploche. Tak napríklad prirodzený logaritmus možno reprezentovať
na „špirálovej ploche“ okolo z = 0, kde každá holomorfná vetva logaritmu (napríklad) na C \ (−∞, 0]
zodpovedá jednému „poschodiu“ tejto špirály. Riemannovými plochami sa pre značnú rozsiahlosť a ne-
triviálnosť tejto problematiky zaoberať nebudeme – čitateľa len odkážeme na [7].
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Cvičenia

1. Nájdite globálnu analytickú funkciu obsahujúcu ako svoju vetvu:

a) Funkciu f(z) =
∑∞

n=0 z
n definovanú na D(0, 1).

b) Hlavnú vetvu Ln z = ln0(z) prirodzeného logaritmu definovanú na C \ (−∞, 0].

c) Hlavnú vetvu e(Ln z)/n mocninovej funkcie z1/n pre nejaké prirodzené n ≥ 2, definovanú
na C \ (−∞, 0].

d) Hlavnú vetvu eαLn z mocninovej funkcie zα pre α ∈ C, definovanú na C \ (−∞, 0].

e) Nejakú funkciu meromorfnú na C.

2. Ak existuje, nájdite globálnu analytickú funkciu f s definičným oborom S takú, že pre všetky
z ∈ S je Jf(z)K alebo jednoprvková, alebo dvojprvková množina, pričom obidva tieto prípady
nastanú pre aspoň jedno z ∈ S.

3. Ak existuje, nájdite globálnu analytickú funkciu f takú, že pre všetky n ∈ N\{0} existuje z ∈ C,
pre ktoré je Jf(z)K presne n-prvková množina.

4. Videli sme, že každé analytické predĺženie je analytickým predĺžením pozdĺž nejakej lomenej
čiary. Dokážte, že rovnaké tvrdenie je pravdivé aj pre analytické predĺženia pozdĺž lomených čiar
γ = [a0, a1] + [a1, a2] + . . . + [an−1, an] takých, že n ∈ N, a0, an ∈ C a pre k = 1, . . . , n − 1 je
ak = pk + iqk, kde pk, qk ∈ Q.

5. Dokážte Poincarého-Volterrovu vetu, podľa ktorej je pre každú globálnu analytickú funkciu f
a každé z ∈ C množina Jf(z)K nanajvýš spočítateľne nekonečná.
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Singularity

V súvislosti s Laurentovými radmi sme sa už zaoberali izolovanými singularitami jednohodnotových
analytických funkcií. Koncept analytického predĺženia nám v nasledujúcom umožní definovať a skúmať
singularity vo všeobecnosti – to znamená tak, aby tento pojem zahŕňal ako neizolované singularity, tak
aj singularity viachodnotových analytických funkcií.1

13.1 Definícia singularity

Pod singularitou analytického prvku (f,D) budeme rozumieť bod na hranici kruhového okolia D taký,
že neexistuje žiadne priame analytické predĺženie prvku (f,D) so stredom v tomto bode.

Definícia 13.1.1. Nech (f,D) je analytický prvok. Bod b ∈ C je singularitou analytického prvku
(f,D), ak b ∈ D \ D a neexistuje žiaden analytický prvok (g,E) so stredom v b, ktorý je priamym
analytickým predĺžením prvku (f,D).

Poznámka 13.1.2. Namiesto b ∈ D \ D by sme v definícii singularity mohli požadovať iba b ∈ D;
pre každé b ∈ D totiž zrejme existuje priame analytické predĺženie prvku (f,D) so stredom v b – stačí
vziať funkciu f na okolí bodu b dostatočne malom na to, aby bolo celé súčasťou D. Príslušnosť bodu b
do D je naopak zásadná – singularitou totiž chceme nazvať iba bod v bezprostrednej blízkosti oblasti,
na ktorej je funkcia definovaná a analytická.

Definíciu singularít globálnej analytickej funkcie v oblasti S musíme sformulovať o niečo opatrnejšie,
s použitím pojmu analytického predĺženia pozdĺž krivky – pôjde o „prekážky“ pri analytickom predĺžení
pozdĺž kriviek. Ľahko vidieť, že ak pre nejakú krivku γ : [α, β] → C existuje analytické predĺženie
nejakého analytického prvku (f,D) pozdĺž γ � [α, τ ], kde τ ∈ [α, β), tak takéto predĺženie musí
existovať aj pozdĺž γ � [α, t] pre všetky t z nejakého intervalu [τ, τ + ε], kde ε > 0. Ak teda existuje
nejaké τ ∈ [α, β] také, že neexistuje analytické predĺženie (f,D) pozdĺž γ � [α, τ ], nutne musí existovať
aj najmenšie také τ . Táto myšlienka je v pozadí za nasledujúcou definíciou.

Definícia 13.1.3. Nech S ⊆ C je oblasť a f je globálna analytická funkcia v S. Bod b ∈ C je singularita
funkcie f , ak existuje analytický prvok (f,D) funkcie f so stredom v bode a ∈ S a krivka γ : [α, β]→ C
s γ(α) = a, γ(β) = b a nasledujúcimi vlastnosťami:

(i) Pre všetky t ∈ [α, β) je γ(t) ∈ S a existuje analytické predĺženie prvku (f,D) pozdĺž γ � [α, t].

(ii) Neexistuje žiadne analytické predĺženie prvku (f,D) pozdĺž krivky γ.

1Čiže globálnych analytických funkcií v nejakej oblasti S ⊆ C, resp. ekvivalentne vetiev nejakej globálnej analytickej
funkcie.
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Poznámka 13.1.4. Singularitou globálnej analytickej funkcie teda nazveme ľubovoľný bod b, ktorý
je singularitou aspoň jednej z jej vetiev.2 Nemusí pritom ísť o singularitu každej vetvy definovanej
v blízkosti bodu b, ako možno vidieť na príklade funkcie 1/ ln z. Dá sa ukázať, že táto funkcia – okrem
toho, že je singulárna v bode 0 – má singularitu aj v bode 1: ide o jednoduchý pól spôsobený tým,
že existuje vetva prirodzeného logaritmu taká, že ln 1 = 0. Existujú však aj iné vetvy prirodzeného
logaritmu na okolí bodu 1, pričom zodpovedajúce vetvy funkcie 1/ ln z sú v bode 1 analytické.

Dokážeme teraz, že singularity analytických prvkov funkcie f sú súčasne aj singularitami samotnej
tejto funkcie.

Tvrdenie 13.1.5. Nech S ⊆ C je oblasť, f je globálna analytická funkcia v S a (f,D) je analytický
prvok funkcie f . Ak b ∈ C je singularita prvku (f,D), je tento bod aj singularitou funkcie f .

Dôkaz. Nech a je stred kruhového okolia D. Bod b leží na hranici tohto kruhového okolia. Uvažujme
úsečku [a, b]. Pre všetky t ∈ [0, 1) zjavne existuje analytické predĺženie prvku (f,D) pozdĺž úsečky
[a, b] � [0, t] – je ním ľubovoľný analytický prvok (g,E) taký, že E je kruhové okolie bodu [a, b](t)
obsiahnuté v D a g je zúženie funkcie f na E. Analytické predĺženie prvku (f,D) pozdĺž [a, b] ale
neexistuje, pretože by zrejme bolo priamym analytickým predĺžením prvku (f,D) so stredom v jeho
singularite b.

Poznámka 13.1.6. Existuje globálna analytická funkcia f so singularitou v bode b ∈ C taká, že b nie
je singularita žiadneho analytického prvku (f,D) funkcie f .

Poznámka 13.1.7. Je jednoduchým cvičením dokázať, že singularitami jednohodnotovej analytickej
funkcie f : D → C, kde D ⊆ C je nejaké kruhové okolie, sú práve všetky singularity analytického prvku
(f,D). Tento fakt budeme v nasledujúcom voľne využívať.

V minulej kapitole sme videli, že každú „bežnú“ jednohodnotovú analytickú funkciu f : S → C
na nejakej oblasti S ⊆ C možno chápať aj ako globálnu analytickú funkciu na tejto oblasti. Mali by sme
sa teda presvedčiť o tom, že izolované singularity – tak, ako sme ich chápali doteraz – sú singularitami
aj podľa novej definície. Presnejšie teraz ukážeme, že táto vlastnosť platí pre póly a podstatné izolované
singularity; odstrániteľné singularity už ďalej za singularity považovať nebudeme.

Tvrdenie 13.1.8. Nech S ⊆ C je oblasť, f : S → C je holomorfná na S a b ∈ C je pól alebo podstatná
izolovaná singularita funkcie f . Potom je bod b singularitou funkcie f .

Dôkaz. Z definície izolovanej singularity vyplýva, že pre nejaké r > 0 musí byť D′(b, r) ⊆ S. Vezmime
ľubovoľné a ∈ D′(b, r/2) a D := D(a, |b − a|) ⊆ D′(b, r); nech fD je zúženie f na D. Potom je
(fD, D) analytickým prvkom funkcie f . Keby teraz bod b nebol singularitou funkcie f , muselo by
existovať analytické predĺženie (g,E) prvku (fD, D) pozdĺž úsečky [a, b]. Bez ujmy na všeobecnosti
predpokladajme, že E = D(b, s), kde 0 < s < r. Funkcia g sa zhoduje s funkciou f na množine
D(b, s) ∩D a prstencové okolie D′(b, s), na ktorom sú definované obidve funkcie f a g, má hromadný
bod v D(b, s) ∩ D. Z vety o jednoznačnosti teda vyplýva, že pre všetky z ∈ D′(b, s) je f(z) = g(z)
a vďaka jednoznačnosti koeficientov Laurentových radov zisťujeme, že Laurentovým radom funkcie f
v bode b musí byť Taylorov rad funkcie g v tomto bode. Bod b teda môže byť nanajvýš odstrániteľnou
singularitou funkcie f , čo je spor s predpokladmi tvrdenia.

2Každá globálna analytická funkcia je totiž zároveň aj svojou vetvou, a teda každá singularita globálnej analytickej
funkcie je naozaj singularitou niektorej jej vetvy. Ak je naopak b ∈ C singularitou niektorej vetvy globálnej analytickej
funkcie f , musí byť tento bod „prekážkou“ pri analytickom predĺžení nejakého prvku (f,D) z danej vetvy pozdĺž nejakej
krivky γ; ten istý prvok (f,D) a tú istú krivku γ ale potom môžeme použiť na dôkaz, že b je singularitou funkcie f .
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13.2 Singularity na kružnici konvergencie Taylorovho radu

Zaoberajme sa teraz na chvíľu „maximálnymi“ analytickými prvkami – čiže obormi konvergencie
Taylorových radov analytických funkcií. Ukážeme najprv, že na hranici každého takéhoto analytic-
kého prvku, ak je ohraničený, musí byť aspoň jedna singularita.

Veta 13.2.1. Nech f je funkcia holomorfná v bode a ∈ C, s Taylorovým rozvojom

f(z) =
∞∑
n=0

cn(z − a)n (13.1)

o konečnom polomere konvergencie % > 0. Potom na hranici κ(a, %)∗ analytického prvku (f,D(a, %))
existuje aspoň jedna singularita tohto prvku.

Dôkaz. Za účelom sporu predpokladajme, že žiaden bod z ∈ κ(a, %)∗ nie je singularitou (f,D(a, %)).
Pre všetky w ∈ κ(a, %)∗ potom existuje priame analytické predĺženie (g[w], D(w, ε[w])) analytického
prvku (f,D(a, %)) so stredom v bode w, kde ε[w] > 0. Systém

(D(w, ε[w]) | w ∈ κ(a, %)∗ )

je otvoreným pokrytím kružnice κ(a, %)∗; z kompaktnosti tejto kružnice teda vyplýva, že existuje
konečná množina bodov J ⊆ κ(a, %)∗ taká, že (D(w, ε[w]) | w ∈ J ) je konečným otvoreným pokrytím
κ(a, %)∗. Nech ε > 0 je také, že pre všetky z ∈ κ(a, %)∗ platí D(z, ε) ⊆

⋃
w∈J D(w, ε[w]). Ľahko potom

vidieť, že funkcia F : D(a, %+ ε)→ C definovaná pre všetky z ∈ D(a, %+ ε) predpisom

F (z) =

{
f(z) ak |z − a| < %,
g[w](z) ak w ∈ J je také, že z ∈ D(w, ε[w])

je holomorfná na D(a, % + ε) a na D(a, %) sa zhoduje s funkciou f . Z vety o Taylorových radoch tak
vyplýva, že polomer konvergencie radu (13.1) musí byť aspoň %+ ε: spor.

Príklad 13.2.2. Polomer konvergencie Maclaurinovho radu funkcie

1

1− z
=

∞∑
n=0

zn

je rovný jednej, pričom jedinou jej singularitou v κ(0, 1)∗ je bod a = 1. Rad pritom nekonverguje v žiad-
nom bode κ(0, 1)∗. Divergencia Taylorovho radu v nejakom bode na hranici jeho oboru konvergencie
teda ešte nie je zárukou existencie singularity v tomto bode.

Príklad 13.2.3. Z príkladu 3.2.4 tiež vieme, že mocninový rad s konečným polomerom konvergencie
% > 0 môže konvergovať na celej kružnici konvergencie; funkcia týmto radom daná pritom podľa
vety 13.2.1 musí mať v κ(0, %)∗ aspoň jednu singularitu. Konvergencia Taylorovho radu v bode na hranici
jeho oboru konvergencie teda nevylučuje existenciu singularity v danom bode.

Príklad 13.2.4. Ukážeme teraz, že funkcia

f(z) =
∞∑
n=0

z2n

definovaná na D(0, 1) – kde polomer konvergencie radu je očividne rovný jednej – má singularitu
v každom bode κ(0, 1)∗: hovoríme, že množina κ(0, 1)∗ tvorí prirodzenú hranicu funkcie f .

Skutočne – ľahko vidieť, že pre všetky z ∈ D(0, 1) je

f(z) = z + f(z2) = z + z2 + f(z4) = . . . =
s−1∑
j=0

z2j + f(z2s), (13.2)

kde s ∈ N je ľubovoľné.
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Ak teda špeciálne pre nejaké n ∈ N vezmeme za z ľubovoľnú 2n-tú odmocninu jednej prenásobenú
nejakým r ∈ (0, 1) – t. j. z = rei2kπ/2

n , kde n ∈ N, k ∈ {0, . . . , 2n − 1} a r ∈ (0, 1) – tak z (13.2)
pre s = n dostávame

f(rei2kπ/2
n
) =

n−1∑
j=0

r2jei2kπ/2
n−j

+ f(r2n).

Pre fixné n potom
lim
r→1

∣∣∣f(rei2kπ/2
n
)
∣∣∣ ≥ −n+ lim

r→1

∣∣f(r2n)
∣∣ =∞, (13.3)

kde posledná rovnosť vyplýva zo skutočnosti, že vďaka kladnosti čísla r pre všetky s ∈ N platí

∣∣f(r2n)
∣∣ =

∣∣∣∣∣∣
s−1∑
j=0

r2n+j
+ f(r2n+s

)

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
s−1∑
j=0

r2n+j

∣∣∣∣∣∣ ,
a teda aj

lim
r→1

∣∣f(r2n)
∣∣ ≥ lim

r→1

∣∣∣∣∣∣
s−1∑
j=0

r2n+j

∣∣∣∣∣∣ = s

pre všetky s ∈ N. Z (13.3) a z Riemannovej vety o odstrániteľných singularitách teda vyplýva, že
v žiadnej 2n-tej odmocnine jednej nemôže existovať priame analytické predĺženie prvku (f,D(0, 1)) –
ide teda o jeho singularitu. Navyše je zrejmé, že množina singularít analytického prvku (f,D(0, 1))
na κ(0, 1)∗ musí byť uzavretá.3 Keďže ale{

ei2kπ/2n
∣∣ n ∈ N; k ∈ {0, . . . , 2n − 1}

}
= κ(0, 1)∗,

musí byť množina týchto singularít rovná celej kružnici κ(0, 1)∗, čo bolo treba dokázať.

13.3 Základná klasifikácia singularít

Singularity globálnych analytických funkcií v danej oblasti S možno v prvom rade rozdeliť na izolované
a neizolované (alebo podstatné4). Pojem izolovanej singularity pritom bude zahŕňať izolované singula-
rity jednohodnotových funkcií – čiže póly a podstatné izolované singularity5 – tak, ako sme ich chápali
doteraz, ako aj singularity viachodnotového typu, ktorými budú takzvané body vetvenia.

Definícia 13.3.1. Nech S ⊆ C je oblasť a f je globálna analytická funkcia v S. Bod b ∈ C je izolovaná
singularita funkcie f , ak existuje r > 0, analytický prvok (f,D) funkcie f so stredom v bode a ∈ S
a krivka γ : [α, β]→ C s γ(α) = a, γ(β) = b a nasledujúcimi vlastnosťami:

(i) Pre všetky t ∈ [α, β) je γ(t) ∈ S a existuje analytické predĺženie prvku (f,D) pozdĺž γ � [α, t].

(ii) Neexistuje žiadne analytické predĺženie prvku (f,D) pozdĺž γ.

(iii) Nech τ ∈ [α, β) je také, že (γ � [τ, β])∗ ⊆ D(b, r) a (g,E) je analytické predĺženie prvku (f,D)
pozdĺž γ � [α, τ ] také, že E ⊆ D′(b, r). Potom je (g,E) neobmedzene predĺžiteľný v D′(b, r).

Bod b ∈ C je neizolovaná alebo podstatná singularita funkcie f , ak preň existuje prvok (f,D) a krivka γ
s vlastnosťami (i) a (ii) tak, že pre žiadne r > 0 nie je splnená vlastnosť (iii).

3Ak existuje priame analytické predĺženie (g,E) prvku (f,D(0, 1)) so stredom v nejakom bode a ∈ κ(0, 1)∗, existuje
toto predĺženie aj vo všetkých bodoch κ(0, 1)∗ ∩ E; komplement množiny týchto singularít je teda otvorená množina.

4 „Podstatná singularita“ je teda niečo iné ako „podstatná izolovaná singularita“ .
5Odstrániteľné singularity už za singularity nepovažujeme.
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Izolovaná singularita je teda prekážkou pri analytickom predĺžení pozdĺž krivky γ, ale ide o je-
dinú takúto prekážku na celom okolí D(b, r).6 Z uvedenej definície je bezprostredne zrejmé, že každá
izolovaná singularita globálnej analytickej funkcie f v S je skutočne singularitou funkcie f .

Poznámka 13.3.2. V nasledujúcom budeme trochu nepresne hovoriť o analytickom predĺžení pozdĺž
kružnice κ(b, s) pre ľubovoľný analytický prvok so stredom v κ(b, s)∗. Rozumieme pritom samo sebou, že
ide o kružnicu „zrotovanú“ tak, aby jej začiatok a koniec bol zhodný so stredom daného analytického
prvku. Rovnakú konvenciu budeme občas používať aj pre ľubovoľnú jednoduchú uzavretú krivku γ
prechádzajúcu cez stred daného analytického prvku.

Póly a podstatné izolované singularity jednohodnotových funkcií sú zjavne špeciálnymi prípadmi
izolovaných singularít. Mali by sme ešte tieto pojmy definovať aj pre globálne analytické funkcie v ne-
jakej oblasti S, resp. pre ich vetvy.

Pre takúto funkciu f budeme hovoriť o singularite b ∈ C jednohodnotového typu práve vtedy, keď
je jednohodnotová – pri označení z predchádzajúcej definície – vetva funkcie f na D′(b, r) obsahujúca
analytický prvok (g,E). To znamená, že analytickým predĺžením ľubovoľného analytického prvku tejto
vetvy pozdĺž ľubovoľnej krivky v D′(b, r) s pevným koncovým bodom získame vždy (až na ≡) ten istý
prvok. Ľahko pritom vidieť, že táto požiadavka je ekvivalentná tomu, aby existoval nejaký analytický
prvok (f̂ , D̂) tejto vetvy a nejaká kružnica κ(b, s) s κ(b, s)∗ ⊆ D′(b, r) taká, že analytickým predĺžením
prvku (f̂ , D̂) pozdĺž κ(b, s) je (až na ≡) opäť (f̂ , D̂). Takéto predĺženie totiž definuje „bežnú“ jedno-
hodnotovú holomorfnú funkciu na nejakom medzikruží so stredom v bode b, ktoré je celé obsiahnuté
v D′(b, r), pričom táto funkcia je daná hodnotami uvažovanej vetvy funkcie f . Ľahko vidieť, že ko-
nečným počtom priamych analytických predĺžení prvkov tejto funkcie možno získať jednohodnotovú
holomorfnú funkciu F na ľubovoľnom medzikruží

A(r1, r2) = {z ∈ C | r1 < |z − b| < r2},

kde 0 < r1 < r2 < r. Ak je ale γ1, γ2 ľubovoľná dvojica kriviek vD′(b, r) s počiatočným bodom v strede
nejakého prvku (FD, D) – kde FD je zúženie F na D – a s rovnakým koncovým bodom, musí existovať
medzikružie A(r1, r2) také, že γ∗1 , γ∗2 ⊆ A(r1, r2) a predĺžením prvku (FD, D) pozdĺž obidvoch kriviek
získame (až na ≡) ten istý prvok. Jednohodnotová funkcia F je teda globálnou analytickou funkciou
v D′(b, r). Keďže ale funkcia F súčasne obsahuje analytický prvok (f̂ , D̂), je rovná F a jednohodnotová
aj pôvodne uvažovaná vetva funkcie f .

Okolo izolovaných singularít jednohodnotového typu sa teda vetvy globálnych analytických funkcií
správajú rovnako ako „bežné“ holomorfné funkcie v blízkosti svojich izolovaných singularít. Možno
ich tam teda lokálne rozvinúť do Laurentovho radu a podľa charakteru tohto radu môžeme izolované
singularity jednohodnotového typu rozdeliť na póly a podstatné izolované singularity.

Definícia 13.3.3. Nech S ⊆ C je oblasť a f je globálna analytická funkcia v S. Bod b ∈ C nazveme
bodom vetvenia7 funkcie f , ak je izolovanou singularitou f , ktorá nie je jednohodnotového typu.8

Bod b je teda bodom vetvenia, ak je viachodnotová – pri označeniach z definície 13.3.1 – vetva
funkcie f na D′(b, r) obsahujúca analytický prvok (g,E). Z predchádzajúcich úvah vyplýva, že táto
situácia nastane práve vtedy, keď je analytickým predĺžením nejakého analytického prvku (f̂ , D̂) z tejto
vetvy pozdĺž nejakej kružnice κ(b, s) s κ(b, s)∗ ⊆ D′(b, r) analytický prvok, ktorý s (f̂ , D̂) nie je
v relácii ≡. To je ďalej ekvivalentné existencii takejto kružnice pre každý prvok danej vetvy.

6Je dôležité uvedomiť si, že toto nie je ekvivalentné neexistencii ďalšej singularity v tomto okolí – takáto singularita
sa v D(b, r) nachádzať môže, ale v takom prípade musí ísť o singularitu inej vetvy funkcie f .

7Alebo singularitou viachodnotového typu.
8Opäť treba upozorniť na to, že kvôli možnej „viacvetvovosti“ funkcie táto formulácia nie je ekvivalentná formulácii

„b je izolovaná singularita a súčasne b nie je singularita jednohodnotového typu“.
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13.4 Klasifikácia bodov vetvenia a Puiseuxove rady

Nasledujúca veta prebratá z knihy [7] sumarizuje základné poznatky umožňujúce jemnejšiu klasifikáciu
bodov vetvenia.

Veta 13.4.1. Nech b ∈ C a r > 0. Nech (f,D) s D ⊆ D′(b, r) je analytický prvok neobmedzene
predĺžiteľný v D′(b, r) a f je (jediná) globálna analytická funkcia v D′(b, r) obsahujúca prvok (f,D).
Označme H := {w ∈ C | Rew < ln r}. Potom:

a) Existuje jednohodnotová analytická funkcia f∗ : H → C taká, že pre všetky w ∈ H je

f∗(w) ∈ Jf(b+ ew)K.

b) Ak navyše existuje k ∈ N \ {0} také, že pre (niektorú takúto) funkciu f∗ a všetky w ∈ H je

f∗(w) = f∗(w + i2kπ)

a k je najmenšie s touto vlastnosťou, tak pre každý analytický prvok (f̂ , D̂) funkcie f je k zároveň
aj najmenšie kladné prirodzené číslo také, že analytickým predĺžením (f̂ , D̂) pozdĺž spojenia k
kružníc κ(b, s) so stredom v bode b a prechádzajúcich cez stred â prvku (f̂ , D̂) je (až na ≡)
opäť prvok (f̂ , D̂). Všeobecnejšie možno namiesto kružnice κ(b, s) uvažovať ľubovoľnú jednoduchú
uzavretú krivku γ s γ∗ ⊆ D′(b, r) takú, že â ∈ γ∗ a b ∈ I(γ).9

c) Ak takéto k ∈ N \ {0} neexistuje, je analytickým predĺžením každého analytického prvku (f̂ , D̂)
funkcie f pozdĺž spojenia ľubovoľného kladného počtu zhodne orientovaných kružníc so stredom v b
prechádzajúcich cez stred â prvku (f̂ , D̂) analytický prvok, ktorý s prvkom (f̂ , D̂) nie je v relácii ≡
– a podobne pre ľubovoľnú jednoduchú uzavretú krivku γ s γ∗ ⊆ D′(b, r), â ∈ γ∗ a b ∈ I(γ).

d) Ak existuje k z tvrdenia b), nadobúda f v každom z ∈ D′(b, r) najviac k rôznych hodnôt a prvky
funkcie f so stredom z tvoria presne k tried ekvivalencie relácie ≡. Inak existuje nekonečne veľa
týchto tried ekvivalencie.

e) Ak je k z tvrdenia b) rovné jednej, bod b buď nie je singularitou funkcie f , alebo je jej singularitou
jednohodnotového typu. Ak k ≥ 2 alebo k ∈ N \ {0} z tvrdenia b) vôbec neexistuje, je b bodom
vetvenia funkcie f .

Dôkaz. Označme ako lnD ľubovoľnú holomorfnú vetvu prirodzeného logaritmu na C \ {seiα | s ≥ 0}
pre nejaké α ∈ R také, že pre všetky z ∈ D je α 6∈ Jarg(z − b)K; ľahko vidieť, že také α musí určite
existovať. Z jednej strany túto funkciu spojite rozšírme aj na {seiα | s > 0}. Pre všetky z ∈ C \ {0}
a nejaké m ∈ Z teda

lnD(z) = ln|z|+ iθ, kde θ ∈ Jarg zK ∩ [2mπ + α, 2(m+ 1)π + α).

Pre funkciu L : D′(b, r)→ C, danú pre všetky z ∈ D′(b, r) predpisom L(z) := lnD(z − b), je potom

L(D′(b, r)) = H ∩ {z ∈ C | 2mπ + α ≤ Im z < 2(m+ 1)π + α}.

Táto situácia je znázornená na obrázku 13.1.
Prstencové okolie D′(b, r) sa teda cez L zobrazí na jeden pás v H. Idea dôkazu spočíva v tom,

že každú krivku γ v D′(b, r) možno pomocou „vhodne predĺženej“ funkcie L zobraziť na krivku λ
v H, ktorá už môže prechádzať aj cez viac takýchto pásov – čo zodpovedá tomu, že vetva L môže
spojite prejsť v inú vetvu zodpovedajúcej globálnej analytickej funkcie v D′(b, r). Tým rozlíšime medzi
rovnakými bodmi na krivke γ, ktoré však dosiahneme po rôznom počte „obkrúžení“ bodu b.

9V duchu poznámky 13.3.2 je potrebné kružnicu κ(b, s) resp. krivku γ „zrotovať“ tak, aby jej počiatočným a koncovým
bodom bol bod â.
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Obr. 13.1: Definičný obor a možný obraz funkcie L(z).

Analytický prvok (f,D) je neobmedzene predĺžiteľný v D′(b, r) – pre každú krivku γ : [α, β] → C
spĺňajúcu γ∗ ⊆ D′(b, r), s počiatočným bodom v strede a ∈ D′(b, r) prvku (f,D), existuje nejaké
analytické predĺženie prvku (f,D) pozdĺž γ. Pozdĺž γ tiež možno analyticky predĺžiť funkciu L, čím
získame spojitý výber funkcie prirodzeného logaritmu zo z− b pozdĺž tejto krivky – a teda aj (spojitú)
krivku λ : [α, β]→ C s λ∗ ⊆ H takú, že λ(α) = L(a) a pre všetky t ∈ [α, β] je λ(t) ∈ Jln(γ(t)− b)K.

Uvažujme teraz analytický prvok (ϕ,∆) pre nejaké kruhové okolie ∆ ⊆ L(D) so stredom v L(a)
a funkciu ϕ : ∆ → C danú pre všetky w ∈ ∆ ako ϕ(w) = f(b + ew) – dokážeme, že existuje jeho
analytické predĺženie pozdĺž krivky λ v H. Nech LD je zúženie funkcie L na D. K pokrytiu krivky λ
„dostatočne malými“ kruhovými okoliami ∆ = ∆1, . . . ,∆n ⊆ H potom možno nájsť kruhové oko-
lia D1, . . . , Dn ⊆ D′(b, r) také, že analytické predĺženie prvku (LD, D) pozdĺž γ je dané postupnos-
ťou analytických prvkov (LD, D) = (L1, D1), . . . , (Ln, Dn), analytické predĺženie prvku (f,D) pozdĺž
krivky γ je dané postupnosťou analytických prvkov (f,D) = (f1, D1), . . . , (fn, Dn) a pre j = 1, . . . , n
je ∆j ⊆ Lj(Dj). Na ∆j tak pre j = 1, . . . , n môžeme definovať funkciu ϕj : ∆j → C pre všetky w ∈ ∆j

ako
ϕj(w) = fj(b+ ew)

a ľahko vidieť, že postupnosť prvkov (ϕ1,∆1), . . . , (ϕn,∆n) určuje analytické predĺženie prvku (ϕ,∆)
pozdĺž krivky λ v oblasti H.

Keďže môže byť krivka γ v D′(b, r) ľubovoľná, môže byť ľubovoľná aj krivka λ v H; analytickými
predĺženiami prvku (ϕ,∆) v H je teda definovaná globálna analytická funkcia f∗ v H, ktorá je ne-
obmedzene predĺžiteľná v jednoducho súvislej oblasti H. Podľa vety o monodrómii potom musí byť
funkcia f∗ jednohodnotová. Navyše je zrejmé, že pre takto definovanú funkciu f∗ musí pre každé w ∈ H
existovať analytický prvok (f [w], D[w]) v f taký, že na nejakom okolí bodu w je f∗(w) = f [w](b+ ew).
Pre všetky w ∈ H preto

f∗(w) ∈ Jf(b+ ew)K,

čím je dokázané tvrdenie a).
Takáto funkcia f∗ samozrejme nie je daná jednoznačne, ale je determinovaná počiatočnou voľbou

funkcie L, resp. zodpovedajúcej vetvy prirodzeného logaritmu.
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Dokážeme tvrdenie b). Nech je prirodzené k ≥ 1 z jeho znenia dané. Analytický prvok (f̂ , D̂)
so stredom â ∈ D′(b, r) musí byť analytickým predĺžením prvku (f,D) pozdĺž nejakej krivky (alebo
dokonca lomenej čiary) γ s γ∗ ⊆ D′(b, r). Rovnako ako vyššie teda môžeme nájsť krivku λ končiacu
v nejakom bode w0 ∈ H takom, že b+ ew0 = â a na nejakom okolí bodu w0 je f∗(w) = f̂(b+ ew). Nech
je funkcia L̂ daná pre (f̂ , D̂) rovnako ako L pre (f,D); nech L̂D̂ je zúženie L̂ na D̂.

Analytickému predĺženiu (ĝ, Ê) prvku (f̂ , D̂) pozdĺž k kladne orientovaných kružníc so stredom
v b prechádzajúcich cez â zodpovedá, rovnako ako vyššie, analytické predĺženie (L̂Ê , Ê) prvku (L̂D̂, D̂)
pozdĺž týchto k kružníc, ako aj analytické predĺženie funkcie f∗ pozdĺž úsečky [w0, w0+i2kπ]. Ak je teda
(f∗∆1

,∆1) analytický prvok f∗ so stredom w0 taký, že ∆1 ⊆ L̂D̂(D̂) a (f∗∆2
,∆2) je analytický prvok f∗

so stredom w0+i2kπ taký, že ∆2 ⊆ L̂Ê(Ê) a ∆2 má rovnaký polomer ako ∆1 (čo môžeme predpokladať
bez ujmy na všeobecnosti), vďaka periodicite funkcie f∗ musí pre všetky w ∈ ∆2 byť

ĝ(b+ ew) = f∗∆2
(w) = f∗(w) = f∗(w − i2kπ) = f∗∆1

(w − i2kπ) = f̂(b+ ew−i2kπ) = f̂(b+ ew),

a teda aj (ĝ, Ê) ≡ (f̂ , D̂).
Treba ešte dokázať, že číslo k je najmenšie s touto vlastnosťou. Keby pre nejaké j ∈ {1, . . . , k− 1}

bol analytickým predĺžením prvku (f̂ , D̂) pozdĺž j uvažovaných kružníc (až na ≡) opäť prvok (f̂ , D̂),
musel by z rovnakých dôvodov ako vyššie byť analytickým predĺžením prvku (f∗∆1

,∆1) funkcie f∗

pozdĺž [w0, w0 + i2jπ] prvok (f∗∆3
,∆3) funkcie f∗ taký, že pre všetky w ∈ ∆3 je10

f∗(w) = f∗∆3
(w) = f∗∆1

(w − i2jπ) = f∗(w − i2jπ).

Množina ∆3 má však v H hromadný bod a z vety o jednoznačnosti tak vyplýva platnosť vzťahu

f∗(w) = f∗(w + i2jπ)

pre všetky w ∈ H – čo je zrejmý spor s voľbou čísla k.
Toto tvrdenie možno zovšeobecniť aj na prípad jednoduchej uzavretej krivky γ v D′(b, r) s â ∈ γ∗

a b ∈ I(γ). Keďže je každá takáto krivka homotopická s jednoduchou uzavretou po častiach hladkou
krivkou (alebo dokonca s lomenou čiarou), môžeme predpokladať, že je krivka γ po častiach hladká.
Vďaka súvisu indexu so spojitým výberom argumentu potom zisťujeme, že analytické predĺženie prvku
(f̂ , D̂) pozdĺž k takýchto kriviek zodpovedá predĺženiu f∗ pozdĺž krivky λ s počiatočným bodom w0

a koncovým bodom w0 + i Indγ(b)2kπ. Zvyšok argumentácie je rovnaký ako vyššie.
Na dôkaz tvrdenia c) si (pre kružnicu) stačí rovnako ako vyššie uvedomiť, že keby bol analytic-

kým predĺžením prvku (f̂ , D̂) pozdĺž j uvažovaných kružníc (až na ≡) opäť prvok (f̂ , D̂), muselo by
pre všetky w z nejakého okolia bodu w0 + i2jπ byť

f∗(w) = f∗(w − i2jπ)

a z vety o jednoznačnosti tak aj
f∗(w) = f∗(w + i2jπ)

pre všetky w ∈ H; to by bol spor s neexistenciou takéhoto j. Rovnako ako vyššie možno tvrdenie
zovšeobecniť aj na iné jednoduché uzavreté krivky.

Tvrdenie d) je bezprostredným dôsledkom tvrdení b) a c), rovnako ako tvrdenie e).

Prirodzene sa ponúka myšlienka klasifikácie bodov vetvenia na základe čísla k z predchádzajúcej
vety. Ak takéto k pre bod vetvenia b existuje, budeme hovoriť, že b je bodom vetvenia rádu k − 1.11

10Opäť bez ujmy na všeobecnosti predpokladáme rovnosť polomerov okolí ∆1 a ∆3.
11Pričom singularity jednohodnotového typu a body, ktoré nie sú singularitami, by sme mohli nazvať bodmi vetvenia

rádu 0.
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Definícia 13.4.2. Nech S ⊆ C je oblasť, f je globálna analytická funkcia v S a b ∈ C je bod vetvenia
funkcie f , uvažovaný v súvislosti s neexistenciou analytického predĺženia nejakého prvku (f,D) funkcie
f pozdĺž krivky γ : [α, β] → C s počiatočným bodom v strede prvku (f,D) a koncovým bodom b.
Nech r > 0 a τ ∈ [α, β) sú také, že (γ � [τ, β])∗ ⊆ D(b, r) a (g,E) s E ⊆ D′(b, r) je analytické
predĺženie prvku (f,D) pozdĺž γ � [α, τ ], ktoré je neobmedzene predĺžiteľné v D′(b, r). Pre prirodzené
k ≥ 2 potom hovoríme, že b je bodom vetvenia rádu k − 1, ak je k najmenšie kladné prirodzené číslo
také, že analytickým predĺžením prvku (g,E) pozdĺž k kladne orientovaných kružníc so stredom b,
prechádzajúcich cez stred prvku (g,E), je (až na ≡) opäť prvok (g,E). Ak žiadne takéto k neexistuje,12

nazývame b bodom vetvenia rádu ∞.

Poznámka 13.4.3. Podobne ako niekoľkokrát vyššie je v uvedenej definícii zamlčaný jeden podstatný
aspekt: rád bodu vetvenia b ∈ C nezávisí len na tomto bode, ale aj na vetve, v ktorej ho uvažujeme –
čiže presnejšie na analytickom prvku (f,D) a krivke γ z predchádzajúcej definície. Nie je teda vylúčená
ani situácia, kde b je v niektorých vetvách bodom vetvenia rádu r1, v iných vetvách bodom vetvenia
rádu r2 6= r1 a v ešte ďalších vetvách vôbec nie je bodom vetvenia.

Príklad 13.4.4. Pre každú vetvu funkcie z1/n s n ∈ N \ {0, 1}, definovanú na oblasti S obsahujúcej
nejaké prstencové okolie nuly, je b = 0 bodom vetvenia rádu n− 1.

Príklad 13.4.5. Pre každú vetvu funkcie ln z, definovanú na oblasti S obsahujúcej nejaké prstencové
okolie nuly, je b = 0 bodom vetvenia rádu ∞.

Dokážeme teraz veľmi dôležitú vetu o singulárnych rozvojoch funkcií v bodoch vetvenia konečného
rádu – takéto rozvoje budeme nazývať Puiseuxovými radmi13 a pôjde o zovšeobecnenie Laurentových
radov, pri ktorom sa v rade vyskytujú aj racionálne mocniny (z−a); tie sú už samotné multifunkciami,
čo je v súlade so skutočnosťou, že má daný rad vyjadrovať viachodnotovú funkciu. Prípadné rozšírenie
nasledujúcej vety na prípad k = 1 by zahŕňalo aj vetu o Laurentových radoch.

Veta 13.4.6. Nech a ∈ C, r > 0 a f je globálna analytická funkcia v D′(a, r) taká, že ľubovoľný
analytický prvok (f,D) funkcie f je neobmedzene predĺžiteľný v D′(a, r), pričom a je bodom vetvenia
funkcie f rádu k − 1, kde k ≥ 2 je prirodzené číslo. Potom existuje jednoznačne daná postupnosť
koeficientov (cn)∞n=−∞ taká, že pre všetky z ∈ D′(a, r) je

f(z) =
∞∑

n=−∞
cn(z − a)n/k

(kde rad konverguje).14 Uvedený rad nazývame Puiseuxovým radom funkcie f v bode a.

Dôkaz. Uvažujme zobrazenie M : D′(a, r)→ C dané pre všetky z ∈ D′(a, r) predpisom

M(z) = (z − a)1/k

pre nejakú vetvu funkcie z1/k holomorfnú na C \ {seiα | s ≥ 0} pre nejaké α ∈ R, z jednej strany
spojite rozšírenú aj na {seiα | s > 0}; pre všetky z ∈ C \ {a} je teda M(z) = eln|z−a|/k+iθ/k, kde
θ ∈ Jarg(z − a)K ∩ [2mπ + α, 2(m+ 1)π + α) pre nejaké m ∈ Z. Pre nejaké β ∈ R potom

M(D′(a, r)) = D′(0, r1/k) ∩ {z ∈ C | β ≤ arg z < β + 2π/k}.

Táto situácia je (pre k = 3 a β = 0) znázornená na obrázku 13.2.
12V takom prípade nemôže uvedená vlastnosť platiť ani pre k = 1, pretože vtedy by podľa predchádzajúcej vety bod b

nebol bodom vetvenia, ale nanajvýš singularitou jednohodnotového typu.
13Niekde sa tiež možno stretnúť s pomenovaniami ako Newtonov-Puiseuxov rad alebo zovšeobecnený Laurentov rad.
14Je dôležité uvedomiť si, že ide o rad multifunkcií. Uvedený zápis pritom chápeme tak, že zakaždým vyberieme jednu

konkrétnu vetvu funkcie (z − a)1/k, ktorú použijeme na výpočet (z − a)n/k pre všetky n ∈ Z. Takto dostávame presne k
jednohodnotových vetiev funkcie f(z) na každom kruhovom okolí D ⊆ D′(a, r).
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a

D′(a, r)

0

D′(0, r1/k)

Obr. 13.2: Definičný obor a možný obraz funkcie M(z).

Vezmime ľubovoľné D ⊆ D′(a, r) také, že uvažovaná vetva funkcie (z − a)1/k je na D holomorfná
a ľubovoľný analytický prvok (f,D) funkcie f . Na kruhovom okolí ∆ ⊆M(D) potom môžeme definovať
funkciu f◦ : ∆→ C pre všetky u ∈ ∆ predpisom

f◦(u) = f(a+ uk).

Podobne ako v dôkaze vety 13.4.1 zodpovedá každému analytickému predĺženiu prvku (f,D) pozdĺž
krivky γ : [α, β] → C s γ∗ ⊆ D′(a, r) predĺženie prvku (f◦,∆) pozdĺž krivky µ : [α, β] → C takej,
že µ∗ ⊆ D′(0, r1/k), µ(α) je stred prvku (f◦,∆) a pre všetky t ∈ [α, β] je µ(t) ∈ J(γ(t) − a)1/kK.
Ak je navyše predĺžením (f,D) pozdĺž γ prvok (fγ , Dγ), musí byť predĺžením (f◦,∆) pozdĺž µ prvok
(f◦µ,∆µ) taký, že (ak je Dµ dostatočne malé) pre všetky u ∈ ∆µ je f◦µ(u) = fγ(a+uk). Tieto predĺženia
môžu byť ľubovoľné – prvok (f◦,∆) je teda neobmedzene predĺžiteľný v D′(0, r1/k), čím je daná aj
globálna analytická funkcia f◦ v tomto prstencovom okolí.

Ak je špeciálne krivka γ daná ako spojenie k kladne orientovaných kružníc cez stred prvku (f,D), je
krivka µ zjavne uzavretá. Keďže je a bodom vetvenia rádu k− 1, je predĺžením (f,D) pozdĺž takýchto
k kružníc (až na ≡) opäť prvok (f,D). Predĺženie prvku (f◦,∆) pozdĺž krivky µ teda tiež musí byť
(až na ≡) opäť (f◦,∆). Z vety 13.4.1 preto vyplýva, že f◦ je na D′(0, r1/k) jednohodnotová; v bode 0
má teda táto funkcia jednoznačne daný Laurentov rozvoj

f◦(u) =
∞∑

n=−∞
cnu

n.

Pre všetky u ∈ D′(0, r1/k) tak existuje analytický prvok (f̂ , D̂) funkcie f taký, že

f̂(a+ uk) =
∞∑

n=−∞
cnu

n

a aj opačne pre každý prvok (f̂ , D̂) funkcie f existuje vetva funkcie (z − a)1/k taká, že

f̂(z) =
∞∑

n=−∞
cn(z − a)n/k.
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Keďže pre každé z ∈ D′(a, r) existuje presne k neekvivalentných analytických prvkov funkcie f so stre-
dom v z, musia sa tieto líšiť iba vo voľbe vetvy funkcie (z − a)1/k a nutne

f(z) =
∞∑

n=−∞
cn(z − a)n/k,

kde koeficienty (cn)∞n=−∞ sú dané jednoznačne. Tým je dôkaz vety dokončený.

Práve dokázanú vetu o Puiseuxových radoch ešte využijeme na ďalšiu klasifikáciu bodov vetvenia.
Terminológia z nasledujúcej definície je inšpirovaná charakterom bodov vetvenia algebraických funkcií
(ako napríklad z1/n pre prirodzené n ≥ 2) a prirodzených logaritmov.

Definícia 13.4.7. Nech S ⊆ C je oblasť, f je globálna analytická funkcia v S a b ∈ C je bod vetvenia
funkcie f . Potom hovoríme, že b je:

a) Algebraický bod vetvenia, ak je b konečného rádu k − 1 ≥ 1 a existuje m ∈ Z také, že funkcia f
má v bode b Puiseuxov rozvoj

f(z) =

∞∑
n=m

cn(z − b)n/k.

Ak navyše m ≥ 0, hovoríme o obyčajnom bode vetvenia.

b) Logaritmický bod vetvenia, ak je b nekonečného rádu.

c) Transcendentný bod vetvenia, ak b nie je algebraický bod vetvenia – čiže ak ide o logaritmický
bod vetvenia, alebo o bod vetvenia konečného rádu k − 1 ≥ 1 taký, že v Puiseuxovom rozvoji

f(z) =
∞∑

n=−∞
cn(z − a)n/k

existuje nekonečne veľa rôznych n < 0 takých, že cn 6= 0.

Poznámka 13.4.8. Algebraické body vetvenia sa často namiesto prostredníctvom Puiseuxových radov
definujú prostredníctvom existencie vlastnej alebo nevlastnej limity funkcie v danom bode – pre nás
to bude ekvivalentná charakterizácia algebraických bodov vetvenia, dôkaz ktorej je náplňou jedného
z nasledujúcich cvičení.

Cvičenia

1. Zistite, či je bod a = 0 singularitou niektorej vetvy nasledujúcich funkcií:

a) f1(z) =
√
z;

b) f2(z) =
√

1− z;
c) f3(z) = e

√
z;

d) f4(z) =
√

1/z;
e) f5(z) =

√
1 + 1/z;

f) f6(z) =
√
z(z − 1);

g) f7(z) = 3
√
z
√
z − 1;

h) f8(z) = 1
z

√
1− z;

i) f9(z) = 1
z

√
2z(z − 1).

V prípade, že je bod a singularitou, zistite typ tejto singularity. Ak existuje, nájdite Puiseuxov
(alebo Laurentov, či Taylorov) rozvoj tej-ktorej vetvy v bode a.
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2. Zistite, či existuje funkcia f , holomorfná a reálna na R, taká, že nejaké jej analytické predĺženie
má aspoň jeden bod vetvenia. Ak áno, nájdite takú funkciu. Ak nie, dokážte.

3. Dokážte, že bod vetvenia b funkcie f konečného rádu je algebraický práve vtedy, keď existuje
vlastná alebo nevlastná limita príslušnej vetvy funkcie f v bode b.
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Kapitola 14

Funkcia gama

V rámci tejto kapitoly sa zameriame na dôležitú špeciálnu funkciu, známu pod označením Γ. Pôjde
o funkciu holomorfnú na C \ {0,−1,−2, . . .}, ktorú – ako ukážeme – bude možné chápať aj ako spojité
rozšírenie faktoriálu prirodzených čísel. Odporúčaným doplňujúcim čítaním k tejto kapitole je Artinov
klasický text o reálnej funkcii gama [2].

14.1 Definícia funkcie gama

Začnime s definíciou funkcie Γ pre z ∈ C spĺňajúce Re z > 0 – jej korektnosť ale vôbec nebude zrejmá
a vyplynie až z diskusie, ktorá za ňou nasleduje. Neskôr funkciu Γ analyticky predĺžime na definičný
obor C\{0,−1,−2, . . .}. Pre všetky reálne t > 0 a α ∈ C chápeme tα ako eα ln t, kde ln je reálna funkcia
prirodzeného logaritmu.

Definícia 14.1.1. Nech z ∈ C je také, že Re z > 0. Potom kladieme

Γ(z) =

∫ ∞
0

e−ttz−1 dt. (14.1)

Všimnime si najprv, že integrál (14.1), ktorý je očividne nevlastný sprava, môže byť nevlastný
aj zľava – napr. pre x ∈ (0, 1) je totiž limt→0+ e−ttx−1 =∞. To znamená, že definíciu funkcie Γ treba
v skutočnosti chápať (napríklad) ako

Γ(z) =

∫ 1

0
e−ttz−1 dt+

∫ ∞
1

e−ttz−1 dt = lim
ε→0

∫ 1

ε
e−ttz−1 dt+ lim

h→∞

∫ h

1
e−ttz−1 dt. (14.2)

Dokážeme najprv, že nevlastný integrál z definície funkcie Γ konverguje v prípade, že za z vezmeme
kladné reálne číslo x – obidve limity zo vzťahu (14.2) teda v takom prípade existujú a sú vlastné.

Tvrdenie 14.1.2. Nevlastný integrál ∫ ∞
0

e−ttx−1 dt.

konverguje pre všetky reálne čísla x > 0.

Dôkaz. Pre všetky ε > 0 a t ∈ [ε, 1] je 0 < e−ttx−1 ≤ tx−1, z čoho∫ 1

ε
e−ttx−1 dt ≤

∫ 1

ε
tx−1 dt =

[
tx

x

]1

t=ε

=
1

x
− εx

x
.

Uvedený integrál je teda pre všetky ε > 0 zhora ohraničený konštantou 1/x a pre ε→ 0 jeho hodnota
rastie – musí teda existovať aj limita

lim
ε→0

∫ 1

ε
e−ttx−1 dt.
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Podobne pre všetky h ≥ 1 a t ∈ [1, h] z Maclaurinovho rozvoja funkcie ew zrejme pre všetky m ∈ N
vyplýva

et >
tm

m!
,

z čoho
e−t <

m!

tm

a
0 < e−ttx−1 <

m!

tm+1−x .

Ak teda vezmeme m ≥ x+ 1, je m+ 1− x > 1 a∫ h

1
e−ttx−1 dt ≤

∫ h

1

m!

tm+1−x dt = m!

[
− 1

(m− x)tm−x

]h
t=1

= m!

(
1

m− x
− 1

(m− x)hm−x

)
≤ m!

m− x
.

Integrál je teda opäť pre všetky h ≥ 1 zhora ohraničený konštantou m!/(m − x) a pre h → ∞ jeho
hodnota rastie – existuje teda aj limita

lim
h→∞

∫ h

1
e−ttx−1 dt.

Podľa (14.2) tak musí konvergovať aj nevlastný integrál zo znenia tvrdenia.

V nasledujúcich tvrdeniach postupne dokážeme, že integrál (14.1) z definície funkcie Γ konverguje
nielen pre reálne x > 0, ale skutočne aj pre všetky komplexné čísla z také, že Re z > 0.

Tvrdenie 14.1.3. Nech f : [1,∞)→ C je spojitá funkcia. Ak konverguje nevlastný integrál∫ ∞
1
|f(t)| dt,

konverguje aj nevlastný integrál ∫ ∞
1

f(t) dt.

Dôkaz. Konvergencia nevlastného integrálu ∫ ∞
1
|f(t)| dt,

znamená existenciu vlastnej limity

lim
h→∞

∫ h

1
|f(t)| dt.

Špeciálne teda aj pre všetky rastúce postupnosti (hn)∞n=0 čísel z [1,∞) také, že limn→∞ hn =∞, musí
existovať vlastná limita

lim
n→∞

∫ hn

1
|f(t)| dt.

Postupnosť týchto integrálov tak musí byť cauchyovská – pre všetky ε > 0 existuje n0 ∈ N také, že
pre všetky prirodzené n,m spĺňajúce n0 ≤ n < m je∣∣∣∣∫ hm

1
|f(t)| dt−

∫ hn

1
|f(t)| dt

∣∣∣∣ < ε,

čiže ∣∣∣∣∫ hm

hn

|f(t)| dt

∣∣∣∣ < ε.
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V dôsledku toho ale aj ∣∣∣∣∫ hm

hn

f(t) dt

∣∣∣∣ < ε,

t. j. ∣∣∣∣∫ hm

1
f(t) dt−

∫ hn

1
f(t) dt

∣∣∣∣ < ε

a postupnosť integrálov (∫ hn

1
f(t) dt

)∞
n=0

je tiež cauchyovská pre všetky rastúce postupnosti (hn)∞n=0 čísel z [1,∞) také, že limn→∞ hn = ∞.
Preto existuje vlastná limita

lim
h→∞

∫ h

1
f(t) dt,

a teda aj nevlastný integrál ∫ ∞
1

f(t) dt

musí konvergovať.

Tvrdenie 14.1.4. Nech f : (0, 1]→ C je spojitá funkcia. Ak konverguje nevlastný integrál∫ 1

0
|f(t)|dt,

konverguje aj nevlastný integrál ∫ 1

0
f(t) dt.

Dôkaz. Stačí po substitúcii u = 1/t aplikovať predchádzajúce tvrdenie.

Tvrdenie 14.1.5. Nevlastný integrál ∫ ∞
0

e−ttz−1 dt.

konverguje pre všetky z ∈ C také, že Re z > 0. Definícia 14.1.1 je teda korektná.

Dôkaz. Z tvrdení 14.1.3 a 14.1.4 vyplýva, že stačí pre všetky z ∈ C s Re z > 0 dokázať konvergenciu
nevlastného integrálu ∫ ∞

0

∣∣e−ttz−1
∣∣ dt.

Pre všetky t ∈ (0,∞) ale∣∣e−ttz−1
∣∣ = e−t

∣∣∣e(z−1) ln t
∣∣∣ = e−t

∣∣∣eRe(z−1) ln tei Im(z−1) ln t
∣∣∣ = e−t

∣∣∣eRe(z−1) ln t
∣∣∣ =

= e−t
∣∣∣tRe(z)−1

∣∣∣ = e−ttRe(z)−1.

Integrál ∫ ∞
0

e−ttRe(z)−1 dt

však existuje vďaka tvrdeniu 14.1.2.
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14.2 Rekurentný vzťah a súvis s faktoriálom

Funkciu Γ sme definovali pre všetky z ∈ C s Re z > 0 pomocou nevlastného integrálu

Γ(z) =

∫ ∞
0

e−ttz−1 dt = lim
ε→0

∫ 1

ε
e−ttz−1 dt+ lim

h→∞

∫ h

1
e−ttz−1 dt,

z čoho

Γ(z + 1) = lim
ε→0

∫ 1

ε
e−ttz dt+ lim

h→∞

∫ h

1
e−ttz dt. (14.3)

Toto pozorovanie teraz využijeme na odvodenie rekurentného vzťahu pre hodnoty funkcie Γ a následne
aj na vyjadrenie faktoriálu prirodzených čísel pomocou tejto funkcie.

Tvrdenie 14.2.1. Pre všetky z ∈ C s Re z > 0 je Γ(z + 1) = zΓ(z).

Dôkaz. Nech a, b sú reálne čísla také, že 0 < a ≤ b. Integrál

∫ b

a
e−ttz dt

môžeme pomocou metódy per partes upraviť nasledovne:

∫ b

a
e−ttz dt =

[
−e−ttz

]b
t=a

+ z

∫ b

a
e−ttz−1 dt = −e−bbz + e−aaz + z

∫ b

a
e−ttz−1 dt.

Z rovnosti (14.3) potom

Γ(z + 1) = lim
ε→0

(
−e−1 + e−εεz + z

∫ 1

ε
e−ttz−1 dt

)
+ lim
h→∞

(
−e−hhz + e−1 + z

∫ h

1
e−ttz−1 dt

)
=

= −e−1 + e−1 + z

∫ ∞
0

e−ttz−1 dt = zΓ(z),

čo bolo treba dokázať.

Ľahko teraz nájdeme hodnotu funkcie Γ(z) v bode z = 1:

Γ(1) =

∫ ∞
0

e−t dt = lim
h→∞

∫ h

0
e−t dt = lim

h→∞

[
−e−t

]h
t=0

= lim
h→∞

(
−e−h + 1

)
= 1.

Prichádzame teda k dôležitému pozorovaniu, vďaka ktorému možno funkciu gama chápať ako spojité
rozšírenie faktoriálu prirodzených čísel.

Veta 14.2.2. Pre všetky n ∈ N \ {0} je Γ(n) = (n− 1)!.

Dôkaz. Pre n = 1 je Γ(1) = 1 = 0!. Ak teraz Γ(n) = (n− 1)! pre nejaké n ∈ N \ {0}, z tvrdenia 14.2.1
dostávame Γ(n+ 1) = nΓ(n) = n(n− 1)! = n!.
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14.3 Rozšírenie definičného oboru

Funkciu Γ sme definovali na polrovine S = {z ∈ C | Re z > 0} a hodnoty Γ(z) pre z ∈ S sme
v tvrdení 14.2.1 vyjadrili rekurentným vzťahom

Γ(z) =
Γ(z + 1)

z
.

Indukciou vzhľadom na n by sme ľahko dokázali, že pre všetky z ∈ S a n ∈ N je

Γ(z) =
Γ(z + n)

z(z + 1) . . . (z + n− 1)
=

Γ(z + n)∏n−1
k=0(z + k)

. (14.4)

Tento vzťah teraz využijeme na dodefinovanie funkcie Γ na C \ {0,−1,−2, . . .}.

Definícia 14.3.1. Nech z ∈ C\{0,−1,−2, . . .} je také, že pre nejaké n ∈ N\{0} je −n < Re z ≤ −n+1
(pričom z 6= −n+ 1). Potom kladieme

Γ(z) =
Γ(z + n)

z(z + 1) . . . (z + n− 1)
=

Γ(z + n)∏n−1
k=0(z + k)

.

Definíciami 14.1.1 a 14.3.1 je teda daná funkcia Γ: C \ {0,−1,−2, . . .} → C. Neskôr dokážeme,
že táto funkcia je na svojom definičnom obore analytická – definícia 14.3.1 teda hovorí o analytickom
predĺžení funkcie Γ z definície 14.1.1. Zanedlho tiež uvidíme, že body 0,−1,−2, . . . sú pólmi funkcie Γ.

Všimnime si ešte, že rekurentný vzťah pre hodnoty funkcie Γ z tvrdenia 14.2.1 v skutočnosti platí
pre všetky z ∈ C \ {0,−1,−2, . . .}.

Veta 14.3.2. Pre všetky z ∈ C \ {0,−1,−2, . . .} je Γ(z + 1) = zΓ(z).

Dôkaz. Ak Re z > 0, vyplýva platnosť rekurentného vzťahu z tvrdenia 14.2.1. Ak naopak existuje
prirodzené číslo n ∈ N \ {0} také, že −n < Re z ≤ −n+ 1, z definície 14.3.1 je

Γ(z) =
Γ(z + n)∏n−1
k=0(z + k)

.

Pre n = 1 tak priamo dostávame

Γ(z) =
Γ(z + 1)

z
,

t. j.
Γ(z + 1) = zΓ(z).

Pre n ≥ 2 rovnako z definície 14.3.1 dostávame

Γ(z) =
Γ(z + n)∏n−1
k=0(z + k)

a
Γ(z + 1) =

Γ(z + n)∏n−2
k=0(z + 1 + k)

.

To ale znamená, že

Γ(z + 1) =
Γ(z + n)∏n−2

k=0(z + 1 + k)
=

Γ(z + n)∏n−1
k=1(z + k)

= z
Γ(z + n)∏n−1
k=0(z + k)

= zΓ(z).

Rekurentný vzťah zo znenia vety tak naozaj platí pre všetky z ∈ C \ {0,−1,−2, . . .}.



Predbežná verzia

166 14.4 Analytickosť, singularity a niektoré funkčné hodnoty

14.4 Analytickosť, singularity a niektoré funkčné hodnoty

Analytickosť funkcie Γ dokážeme tak, že na polrovine S = {z ∈ C | Re z > 0} – čiže na jej pôvodnom
definičnom obore v zmysle definície 14.1.1 – ju vyjadríme ako lokálne rovnomernú limitu postupnosti
analytických – čiže holomorfných – funkcií. Vďaka vete 7.1.9 tak na S bude musieť byť holomorfná
– čiže analytická – aj samotná funkcia Γ. Analytickosť funkcie Γ na rozšírenom definičnom obore
C \ {0,−1,−2, . . .} následne ľahko vyplynie z definície 14.3.1.

V rámci tohto oddielu budeme pre všetky n ∈ N\{0} uvažovať funkciu fn : S → C, danú pre všetky
z ∈ S ako

fn(z) =

∫ n

1/n
e−ttz−1 dt.

Lema 14.4.1. Pre všetky n ∈ N \ {0} je funkcia fn : S → C analytická na S = {z ∈ C | Re z > 0}.

Dôkaz. Dokážeme najprv, že funkcia fn je spojitá. K danému z ∈ S a ε > 0 zvoľme δ > 0 tak, aby
bolo D(z, δ) ⊆ S a aby pre všetky h ∈ D(0, δ) a všetky t ∈ [1/n, n] bolo∣∣∣th − 1

∣∣∣ < ε;

keďže z definície th = eh ln t, takéto δ > 0 určite existuje. Pre všetky h ∈ D(0, δ) potom aj

|fn(z + h)− fn(z)| =

∣∣∣∣∣
∫ n

1/n
e−ttz+h−1 dt−

∫ n

1/n
e−ttz−1 dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ n

1/n
e−ttz−1(th − 1)

∣∣∣∣∣ <
< ε

∫ n

1/n

∣∣e−ttz−1
∣∣ = εfn(Re z).

Týmto je dokázaná spojitosť funkcie fn v bode z – keďže navyše z ∈ S môže byť ľubovoľné, je
funkcia fn spojitá na S.

Nech teraz γ : [α, β] → C je trojuholník taký, že γ∗ ⊆ S. Trojuholník γ je spojením troch úsečiek
a pre každú úsečku σ : [0, 1] → C je e−ttσ(u)−1σ′(u) evidentne spojitou funkciou dvoch premenných
t ∈ [1/n, n] a u ∈ [0, 1]. Vďaka tvrdeniu 10.4.2, holomorfnosti funkcie e−ttz−1 = e−t+(z−1) ln t jednej
premennej z na S pre všetky t ∈ [1/n, n] a Cauchyho integrálnej vete pre trojuholník teda∫

γ
fn(z) dz =

∫
γ

∫ n

1/n
e−ttz−1 dtdz =

∫ n

1/n

∫
γ
e−ttz−1 dz dt =

∫ n

1/n
0 dt = 0.

Podľa Morerovej vety tak dostávame holomorfnosť funkcie fn na S.

Lema 14.4.2. Na S = {z ∈ C | Re z > 0} je fn ⇒loc Γ pre n→∞.

Dôkaz. Pre všetky n ∈ N \ {0} a z ∈ S je

|Γ(z)− fn(z)| =

∣∣∣∣∣
∫ 1/n

0
e−ttz−1 dt+

∫ ∞
n

e−ttz−1 dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1/n

0
e−ttz−1 dt

∣∣∣∣∣+

∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ ≤
≤
∫ 1/n

0

∣∣e−ttz−1
∣∣ dt+

∫ ∞
n

∣∣e−ttz−1
∣∣ dt =

∫ 1/n

0
e−ttRe z−1 dt+

∫ ∞
n

e−ttRe z−1 dt.
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Pre ľubovoľném ∈ N spĺňajúcem ≥ Re z+1 potom môžeme využiť odhad e−t < m!/tm vyplývajúci
z Maclaurinovho rozvoja funkcie ew a dostaneme

|Γ(z)− fn(z)| ≤
∫ 1/n

0
tRe z−1 dt+

∫ ∞
n

m!

tm+1−Re z
dt = lim

ε→0

∫ 1/n

ε
tRe z−1 dt+ lim

h→∞

∫ h

n

m!

tm+1−Re z
dt =

= lim
ε→0

[
tRe z

Re z

]1/n

t=ε

+ lim
h→∞

(
m!

[
− 1

(m− Re z)tm−Re z

]h
t=n

)
=

= lim
ε→0

(
(1/n)Re z

Re z
− εRe z

Re z

)
+m! lim

h→∞

(
1

(m− Re z)nm−Re z
− 1

(m− Re z)hm−Re z

)
=

=
(1/n)Re z

Re z
+

m!

(m− Re z)nm−Re z
.

Pre dané a ∈ S teraz zvoľme r > 0 tak, aby bolo r < Re a. Potom D(a, r) ⊆ S; nech ďalej p, q > 0
sú také, že pre všetky z ∈ D(a, r) je 0 < p ≤ Re z ≤ q. Pre všetky n ∈ N \ {0} a z ∈ D(a, r) potom
z dokázaného vyplýva

|Γ(z)− fn(z)| ≤ (1/n)p

p
+

(q + 1)!

n
,

pričom výraz na pravej strane pre n→∞ očividne speje k nule. Na D(a, r) teda fn ⇒ Γ pre n→∞,
z čoho dostávame fn ⇒loc Γ na S, keďže uvažovaný bod a ∈ S je ľubovoľný.

Veta 14.4.3. Funkcia Γ je analytická na C \ {0,−1,−2, . . .}.

Dôkaz. Na S = {z ∈ C | Re z > 0} je funkcia Γ podľa lem 14.4.1 a 14.4.2 lokálne rovnomernou limitou
postupnosti analytických funkcií. Vďaka vete 7.1.9 je teda na S analytická aj funkcia Γ.

S pomocou vety 14.3.2 by sme navyše indukciou vzhľadom na n ľahko dokázali, že pre všetky
z ∈ C \ {0,−1,−2, . . .} a n ∈ N je1

Γ(z) =
Γ(z + n)

z(z + 1) . . . (z + n− 1)
=

Γ(z + n)∏n−1
k=0(z + k)

.

Pre všetky n ∈ N \ {0} a a ∈ C \ {0,−1,−2, . . .} spĺňajúce −n < Re a ≤ −n + 1 tak existuje r > 0
také, že D(a, r) ⊆ C \ {0,−1,−2, . . .} a pre všetky z ∈ D(a, r) je z + n ∈ S a

Γ(z) =
Γ(z + n)

z(z + 1) . . . (z + n− 1)
=

Γ(z + n)∏n−1
k=0(z + k)

.

Funkcia na pravej strane tejto rovnosti je pritom evidentne holomorfná na D(a, r); v bode a tak musí
byť holomorfná aj funkcia Γ. Keďže a môže byť ľubovoľný bod množiny (C \ {0,−1,−2, . . .}) \ S, je
týmto dokázaná analytickosť funkcie Γ na C \ {0,−1,−2, . . .}.

Ukážme ešte, že funkciu Γ nemožno analyticky predĺžiť na žiaden väčší definičný obor – body
0,−1,−2, . . . sú totiž izolovanými singularitami funkcie Γ.

Tvrdenie 14.4.4. Body 0,−1,−2, . . . sú jednoduché póly funkcie Γ.

Dôkaz. Nech a = −n pre nejaké n ∈ N. Potom

lim
z→a

(z − a)Γ(z) = lim
z→−n

(z + n)Γ(z) = lim
z→−n

(z + n)
Γ(z + n+ 1)

z(z + 1) . . . (z + n)
=

= lim
z→−n

Γ(z + n+ 1)

z(z + 1) . . . (z + n− 1)
=

Γ(1)

(−n)(−n+ 1) . . . (−1)
=

(−1)n

n!
.

Táto limita je vlastná a nenulová; a je tak jednoduchým pólom funkcie Γ podľa tvrdenia 9.4.1(iii).

1Pre z ∈ S ide o rovnosť (14.4); novým pozorovaním na tomto mieste je, že rovnaká rovnosť platí aj pre zvyšné
z ∈ C \ {0,−1,−2, . . .}.
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Zakončime tento oddiel nájdením niekoľkých dôležitejších hodnôt funkcie Γ. Nájdenie hodnoty
v bode 1/2 si pritom vyžaduje spočítať relatívne netriviálny integrál.

Tvrdenie 14.4.5. Γ(1/2) =
√
π.

Dôkaz. Pokúsme sa vypočítať integrál (14.1) pre z = 1/2 pomocou substitúcie x =
√
t – zisťujeme, že

Γ(1/2) =

∫ ∞
0

e−tt−1/2 dt =

∫ ∞
0

e−x
2
x−12x dx = 2

∫ ∞
0

e−x
2

dx =

∫ ∞
−∞

e−x
2

dx. (14.5)

Zostáva vypočítať hodnotu nevlastného integrálu na pravej strane, známeho ako Gaussov integrál.
Urobíme tak s využitím Cauchyho vety o rezíduách.

Nech a =
√

2π(1 + i). Keďže a2 = i4π, sú riešeniami rovnice

1 + e−az = 0

o neznámej z práve všetky

z ∈
{
a

4
+
ka

2
| k ∈ Z

}
=: P.

Môžeme potom definovať funkciu f : C \ P → C pre všetky z ∈ C \ P ako

f(z) =
e−z

2

1 + e−az
;

táto funkcia je evidentne holomorfná na C \ P , pričom v každom z ∈ P má jednoduchý pól.
Uvažujme teraz pre všetky r ≥ 1 obdĺžnikovú integračnú krivku

γr = [−r, r] +
[
r, r + i

√
π/2

]
+
[
r + i

√
π/2,−r + i

√
π/2

]
+
[
−r + i

√
π/2,−r

]
.

Funkcia f je potom holomorfná na γ∗r a meromorfná na I(γr), pričom jediným pólom funkcie f v I(γr)
je bod a/4. Rezíduum funkcie f v bode a pritom môžeme nájsť tak, že funkciu 1 + e−az v menovateli
vyjadríme na okolí jej koreňa a/4 ako

1 + e−az = (z − a/4)g(z),

kde g je na tomto okolí holomorfná. Z Taylorovho rozvoja funkcie 1+e−az v bode a/4 potom evidentne
vyplýva, že funkčnú hodnotu g(a/4) dostaneme ako hodnotu derivácie funkcie 1 + e−az v bode a/4 –
teda

g(a/4) = −ae−a2/4.

Z toho

Res(f, a/4) = Res

(
e−z

2

1 + e−az
,
a

4

)
=

e−a
2/16

−ae−a2/4
=

e−iπ/4

−ae−iπ
= − i

2
√
π

a z Cauchyho vety o rezíduách preto∫
γr

f(z) dz = 2πiRes(f, a/4) = 2πiRes

(
e−z

2

1 + e−az
,
a

4

)
=
√
π.

Z vety o odhade navyše∣∣∣∣∣
∫
[
r,r+i
√
π/2

] f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

0

e
−
(
r+it
√
π/2

)2

1 + e
−a
(
r+it
√
π/2

) i√π/2 dt

∣∣∣∣∣∣ ≤ e−r2+π/2
√
π/2
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a ∣∣∣∣∣
∫
[
−r+i
√
π/2,−r

] f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

0

e
−
(
−r+i
√
π/2−it

√
π/2

)2

1 + e
−a
(
−r+i
√
π/2−it

√
π/2

) (−i
√
π/2) dt

∣∣∣∣∣∣ ≤ e−r2+π/2
√
π/2,

takže
lim
r→∞

∫
[
r,r+i
√
π/2

] f(z) dz = lim
r→∞

∫
[
−r+i
√
π/2,−r

] f(z) dz = 0.

V dôsledku toho

√
π = lim

r→∞

∫
γr

f(z) dz = lim
r→∞

(∫
[−r,r]

f(z) dz +

∫
[
r+i
√
π/2,−r+i

√
π/2

] f(z) dz

)
=

= lim
r→∞

(∫ r

−r
f(x) dx−

∫ r

−r
f(x+ i

√
π/2) dx

)
= lim

r→∞

∫ r

−r

(
f(x)− f(x+ i

√
π/2)

)
dx =

= lim
r→∞

∫ r

−r

(
f(x)− f(x+ a/2−

√
π/2)

)
dx = lim

r→∞

∫ r

−r
(f(x)− f(x+ a/2)) dx =

=

∫ ∞
−∞

(f(x)− f(x+ a/2)) dx, (14.6)

kde predposledná rovnosť vyplýva zo zrejmej skutočnosti

lim
r→∞

(∫ r

r−
√
π/2

f(x+ a/2) dx−
∫ −r
−r−
√
π/2

f(x+ a/2) dx

)
= 0.

Pre všetky z ∈ C teraz

1 + e−a(z+a/2) = 1 + e−aze−a
2/2 = 1 + e−aze−i2π = 1 + e−az,

takže

f(z)− f(z + a/2) =
e−z

2 − e−(z+a/2)2

1 + e−az
=
e−z

2
(1 + e−az)

1 + e−az
= e−z

2
.

Integrál (14.6) teda môžeme vyjadriť ako∫ ∞
−∞

(f(x)− f(x+ a/2)) dx =

∫ ∞
−∞

e−x
2

dx =
√
π

a vďaka (14.5) teda aj Γ(1/2) =
√
π, čo bolo treba dokázať.

S použitím vety 14.3.2 následne ľahko prídeme k hodnotám funkcie Γ zhrnutým v tabuľke 14.1.

Bod z Hodnota Γ(z) Bod z Hodnota Γ(z)

−3 jednoduchý pól 1/2
√
π

−5/2 − 8
15

√
π 1 0! = 1

−2 jednoduchý pól 3/2 1
2

√
π

−3/2 4
3

√
π 2 1! = 1

−1 jednoduchý pól 5/2 3
4

√
π

−1/2 −2
√
π 3 2! = 2

0 jednoduchý pól 7/2 15
8

√
π

Tabuľka 14.1: Niektoré hodnoty funkcie Γ.
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14.5 Reprezentácia pomocou limity

Pre všetky n ∈ N \ {0} definujme funkciu Γn : C \ {0,−1,−2, . . .} → C ako

Γn(z) =
nzn!

z(z + 1) . . . (z + n)
=

nzn!∏n
k=0(z + k)

pre všetky z ∈ C \ {0,−1,−2, . . .}, kde výraz nz opäť chápeme ako ez lnn, kde ln je reálny prirodzený
logaritmus. V rámci tohto oddielu dokážeme, že pre všetky z ∈ C \ {0,−1,−2, . . .} je

Γ(z) = lim
n→∞

Γn(z) = lim
n→∞

nzn!

z(z + 1) . . . (z + n)
.

Začnime dôkazom integrálnej reprezentácie funkcií Γn pre n ∈ N \ {0}.

Lema 14.5.1. Nech n ∈ N \ {0} a S = {z ∈ C | Re z > 0}. Pre všetky z ∈ S potom

Γn(z) =

∫ n

0

(
1− t

n

)n
tz−1 dt.

Dôkaz. Všimnime si najprv, že po substitúcii u = t/n dostaneme∫ n

0

(
1− t

n

)n
tz−1 dt =

∫ 1

0
(1− u)n(un)z−1n du = nz

∫ 1

0
(1− u)nuz−1 du.

Indukciou vzhľadom na n dokážeme, že pre všetky n ∈ N \ {0} a z ∈ S je

nz
∫ 1

0
(1− u)nuz−1 du = Γn(z). (14.7)

Pre n = 1 a všetky z ∈ S je

nz
∫ 1

0
(1− u)nuz−1 du =

∫ 1

0
(1− u)uz−1 du =

∫ 1

0
uz−1 du−

∫ 1

0
uz du =

= lim
ε→0

∫ 1

ε
uz−1 du− lim

ε→0

∫ 1

ε
uz du = lim

ε→0

[
uz

z

]1

u=ε

− lim
ε→0

[
uz+1

z + 1

]1

u=ε

=

= lim
ε→0

(
1

z
− εz

z

)
− lim
ε→0

(
1

z + 1
− εz+1

z + 1

)
=

1

z
− 1

z + 1
=

1

z(z + 1)
=

=
1z1!

z(z + 1)
= Γ1(z).

Nech teraz rovnosť (14.7) platí pre n = k ∈ N\{0}. Pre n = k+1 a ľubovoľné z ∈ S potom integrujme
po častiach:

(k + 1)z
∫ 1

0
(1− u)k+1uz−1 du = (k + 1)z lim

ε→0

∫ 1

ε
(1− u)k+1uz−1 du =

= (k + 1)z lim
ε→0

([
(1− u)k+1u

z

z

]1

u=ε

−
∫ 1

ε

(
−(k + 1)(1− u)k

uz

z

)
du

)
=

= (k + 1)z lim
ε→0

(
−(1− ε)k+1 ε

z

z
+

∫ 1

ε
(k + 1)(1− u)k

uz

z
du

)
=

= (k + 1)z lim
ε→0

∫ 1

ε
(k + 1)(1− u)k

uz

z
du =

=
(k + 1)z+1

z
lim
ε→0

∫ 1

ε
(1− u)kuz du =

=
(k + 1)z+1

z

∫ 1

0
(1− u)kuz du.
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Z indukčného predpokladu teda

(k + 1)z
∫ 1

0
(1− u)k+1uz−1 du =

(k + 1)z+1Γk(z + 1)

zkz+1
=

(k + 1)z+1kz+1k!

zkz+1(z + 1) . . . (z + 1 + k)
=

=
(k + 1)z(k + 1)!

z(z + 1) . . . (z + k + 1)
= Γk+1(z),

čo bolo treba dokázať.

Pripomeňme si Bernoulliho nerovnosť, ktorá hovorí, že pre všetky reálne x ≥ −1 a n ∈ N je

(1 + x)n ≥ 1 + nx.

Pre n = 0 je skutočne (1 + x)0 = 1 ≥ 1; ak ďalej nerovnosť platí pre n = k ∈ N, pre n = k + 1
s využitím indukčného predpokladu a nezápornosti čísel 1 + x a kx2 dostávame

(1 + x)k+1 = (1 + x)k(1 + x) ≥ (1 + kx)(1 + x) = 1 + (k + 1)x+ kx2 ≥ 1 + (k + 1)x.

Lema 14.5.2. Nech n ∈ N \ {0}. Pre všetky t ∈ [−n, n] potom

0 ≤ e−t −
(

1− t

n

)n
≤ t2 e

−t

n
.

Dôkaz. Pre všetky x ∈ R je ex ≥ 1 + x: pre x ≤ −1 je toto pozorovanie triviálne, pretože ex je kladné,
kým 1 + x nie je; pre x ≥ −1 zas s použitím Bernoulliho nerovnosti dostávame

ex = lim
m→∞

(
1 +

x

m

)m
≥ lim

m→∞
(1 + x) = 1 + x.

Zvoľme x = −t/n. Zisťujeme potom, že

e−t/n ≥ 1− t

n
,

z čoho – keďže t/n ≤ 1 –

e−t ≥
(

1− t

n

)n
,

a teda aj

0 ≤ e−t −
(

1− t

n

)n
,

čo dokazuje prvú z nerovností. Podobne pre x = t/n dostávame

et/n ≥ 1 +
t

n
,

z čoho – keďže t/n ≥ −1 –

et ≥
(

1 +
t

n

)n
.

S použitím Bernoulliho nerovnosti teda

e−t − t2 e
−t

n
= e−t

(
1− t2

n

)
≤ e−t

(
1− t2

n2

)n
= e−t

(
1− t

n

)n(
1 +

t

n

)n
≤

≤ e−t
(

1− t

n

)n
et =

(
1− t

n

)n
,

z čoho napokon dostávame aj druhú dokazovanú nerovnosť

e−t −
(

1− t

n

)n
≤ t2 e

−t

n
.



Predbežná verzia

172 14.5 Reprezentácia pomocou limity

Môžeme teraz pristúpiť k dôkazu samotnej vety o reprezentácii funkcie Γ pomocou limity funkcií Γn
pre n→∞.

Veta 14.5.3. Pre všetky z ∈ C \ {0,−1,−2, . . .} je

Γ(z) = lim
n→∞

Γn(z) = lim
n→∞

nzn!

z(z + 1) . . . (z + n)
.

Dôkaz. Uvažujme najprv ľubovoľné z ∈ C také, že Re z > 0 a pre n ∈ N \ {0} skúmajme hodnotu

|Γ(z)− Γn(z)| =
∣∣∣∣∫ ∞

0
e−ttz−1 dt− Γn(z)

∣∣∣∣ =

=

∣∣∣∣∫ n

0
e−ttz−1 dt+

∫ ∞
n

e−ttz−1 dt−
∫ n

0

(
1− t

n

)n
tz−1 dt

∣∣∣∣ =

=

∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1 dt+

∫ ∞
n

e−ttz−1 dt

∣∣∣∣ ≤
≤
∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1 dt

∣∣∣∣+

∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ .
Dokážeme, že obidve absolútne hodnoty v súčte na pravej strane nerovnosti spejú pre n→∞ k nule.
S použitím lemy 14.5.2 pre prvú z nich dostávame∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1 dt

∣∣∣∣ ≤ ∫ n

0

∣∣∣∣(e−t − (1− t

n

)n)
tz−1

∣∣∣∣ dt =

=

∫ n

0

((
e−t −

(
1− t

n

)n)
tRe z−1

)
dt ≤

∫ n

0

t2e−t

n
tRe z−1 dt =

=
1

n

∫ n

0
e−ttRe z+1 dt ≤ 1

n

∫ ∞
0

e−ttRe z+1 dt =
1

n
Γ(Re z + 2);

skutočne teda
lim
n→∞

∣∣∣∣∫ n

0

(
e−t −

(
1− t

n

)n)
tz−1 dt

∣∣∣∣ = 0.

Podobne pre druhú absolútnu hodnotu dostávame∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ ≤ ∫ ∞
n

∣∣e−ttz−1
∣∣ dt =

∫ ∞
n

e−ttRe z−1 dt.

Pre ľubovoľné m ∈ N spĺňajúce m ≥ Re z + 1 teda∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ ≤ ∫ ∞
n

m!

tm+1−Re z
dt = lim

h→∞

∫ h

n

m!

tm+1−Re z
dt =

= lim
h→∞

(
m!

[
− 1

(m− Re z)tm−Re z

]h
t=n

)
=

= lim
h→∞

(
m!

(
1

(m− Re z)nm−Re z
− 1

(m− Re z)hm−Re z

))
=

=
m!

(m− Re z)nm−Re z
.

Ak teda q ∈ N je také, že Re z ≤ q, je∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ ≤ (q + 1)!

n
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a skutočne tak aj v tomto prípade prichádzame k záveru, že

lim
n→∞

∣∣∣∣∫ ∞
n

e−ttz−1 dt

∣∣∣∣ = 0.

Týmto je veta dokázaná pre z ∈ C také, že Re z > 0. Pre zvyšné z ∈ C\{0,−1,−2, . . .} existuje m ∈ N
také, že −m < Re z ≤ −m+ 1. Potom Re(z +m) > 0, a teda

Γ(z) =
Γ(z +m)

z(z + 1) . . . (z +m− 1)
=

=
1

z(z + 1) . . . (z +m− 1)
lim
n→∞

nz+mn!

(z +m)(z +m+ 1) . . . (z +m+ n)
=

= lim
n→∞

nz+mn!

z(z + 1) . . . (z + (m+ n))
= lim

n→∞

nzn!

z(z + 1) . . . (z + n)
,

čím je veta dokázaná.

14.6 Bohrova-Mollerupova veta

Dokážeme teraz Bohrovu-Mollerupovu vetu, podľa ktorej je reálna funkcia gama jedinou funkciou spĺňa-
júcou tri veľmi jednoduché vlastnosti. Presnejšie povedané: dokážeme, že každá funkcia s týmito troma
vlastnosťami musí byť rovná funkcii gama. Nebudeme ale zatiaľ dokazovať, že funkcia gama tieto tri
vlastnosti naozaj má – pri dvoch z nich to bude zrejmé, zatiaľ však necháme otvorenú otázku loga-
ritmickej konvexnosti funkcie gama. To znamená, že zatiaľ nebudeme môcť predpokladať neprázdnosť
triedy funkcií spĺňajúcich dané tri vlastnosti (a teda ani netriviálnosť Bohrovej-Mollerupovej vety).
Tá vyplynie až z našich neskorších úvah okolo Stirlingovej aproximácie.

Definícia 14.6.1. Nech I ⊆ R je nedegenerovaný interval. Funkcia f : I → R je konvexná, ak pre všetky
a ∈ I je

f(x)− f(a)

x− a
neklesajúcou funkciou premennej x na I.

Dvakrát diferencovateľná funkcia je pritom na I konvexná práve vtedy, keď je jej druhá derivácia
na I nezáporná.

Definícia 14.6.2. Nech I ⊆ R je nedegenerovaný interval. Funkcia f : I → (0,∞) je logaritmicky
konvexná na I, ak je na I konvexná funkcia ln ◦f .

Veta 14.6.3 (Bohrova-Mollerupova veta). Nech X ⊆ R je množina taká, že (0,∞) ⊆ X a x+ 1 ∈ X
kedykoľvek x ∈ X. Nech f : X → R je funkcia taká, že:

(i) Pre všetky x ∈ X je f(x+ 1) = xf(x).

(ii) Funkcia f je na intervale (0,∞) kladná a logaritmicky konvexná.

(iii) Platí f(1) = 1.

Pre všetky x ∈ X potom f(x) = Γ(x).

Dôkaz. Rovnosť f(x) = Γ(x) stačí ukázať pre všetky x ∈ (0, 1]; pre zvyšné x ∈ X potom vyplynie
z vlastnosti (i) a vety 14.3.2.

Z logaritmickej konvexnosti funkcie f na (0,∞) pre všetky x ∈ (0, 1] a všetky prirodzené čísla n ≥ 2
dostávame

ln(f(n− 1))− ln(f(n))

(n− 1)− n
≤ ln(f(n+ x))− ln(f(n))

(n+ x)− n
≤ ln(f(n+ 1))− ln(f(n))

(n+ 1)− n
.
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Keďže z vlastností (i) a (iii) evidentne vyplýva f(n) = (n − 1)!, možno uvedené nerovnosti prepísať
aj ako

ln(n− 1) ≤ ln(f(n+ x))− ln(n− 1)!

x
≤ lnn,

z čoho
ln ((n− 1)x(n− 1)!) ≤ ln (f(n+ x)) ≤ ln (nx(n− 1)!) .

Vďaka monotónnosti prirodzeného logaritmu teda

(n− 1)x(n− 1)! ≤ f(n+ x) ≤ nx(n− 1)!,

čo je to isté ako

(n− 1)x(n− 1)! ≤ f(x)
n−1∏
k=0

(x+ k) ≤ nx(n− 1)!.

Z toho

(n− 1)x(n− 1)!

x(x+ 1) . . . (x+ n− 1)
≤ f(x) ≤ nx(n− 1)!

x(x+ 1) . . . (x+ n− 1)
=

nxn!

x(x+ 1) . . . (x+ n)

x+ n

n
.

Keďže navyše tieto nerovnosti platia pre všetky prirodzené n ≥ 2, dostávame

Γn(x) ≤ f(x) ≤ Γn(x)
x+ n

n
,

pre všetky prirodzené n ≥ 2. Preto

Γ(x) = lim
n→∞

Γn(x) ≤ f(x)

a súčasne
Γ(x) = lim

n→∞
Γn(x) = lim

n→∞
Γn(x)

x+ n

n
≥ f(x);

nutne teda f(x) = Γ(x), čo bolo treba dokázať.

14.7 Stirlingova aproximácia a Legendreov vzťah

Naším najbližším cieľom bude asymptoticky odhadnúť funkciu Γ(x) pre x→∞ pomocou elementárnej
funkcie. Dokážeme najprv dve pomocné tvrdenia, ktoré sa nám za tým účelom zídu.

Tvrdenie 14.7.1. Pre všetky k ∈ N \ {0} je(
1 +

1

k

)k
< e <

(
1 +

1

k

)k+1

.

Dôkaz. Keďže

e = lim
k→∞

(
1 +

1

k

)k
= lim

k→∞

(
1 +

1

k

)k (
1 +

1

k

)
= lim

k→∞

(
1 +

1

k

)k+1

,

stačí ukázať rastúcosť postupnosti
(
(1 + 1/k)k

)∞
k=1

a klesajúcosť postupnosti
(
(1 + 1/k)k+1

)∞
k=1

.
V prvom prípade potrebujeme ukázať, že pre všetky k ∈ N \ {0} je(

1 +
1

k + 1

)k+1

>

(
1 +

1

k

)k
,
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čiže (
1 + 1

k+1

1 + 1
k

)k (
1 +

1

k + 1

)
> 1.

S použitím Bernoulliho nerovnosti ale skutočne dostávame(
1 + 1

k+1

1 + 1
k

)k (
1 +

1

k + 1

)
=

(
k(k + 2)

(k + 1)2

)k k + 2

k + 1
=

(
1− 1

(k + 1)2

)k k + 2

k + 1
≥

≥
(

1− k

(k + 1)2

)
k + 2

k + 1
= 1 +

1

(k + 1)3
> 1.

Podobne pre druhú postupnosť potrebujeme ukázať, že pre všetky k ∈ N \ {0} je(
1 +

1

k + 1

)k+2

<

(
1 +

1

k

)k+1

,

čiže (
1 + 1

k

1 + 1
k+1

)k+1

>
k + 2

k + 1
.

S použitím Bernoulliho nerovnosti ale opäť zisťujeme, že(
1 + 1

k

1 + 1
k+1

)k+1

=

(
(k + 1)2

k(k + 2)

)k+1

=

(
1 +

1

k(k + 2)

)k+1

≥ 1 +
k + 1

k(k + 2)
> 1 +

k + 1

(k + 1)2
=
k + 2

k + 1
,

čím je tvrdenie dokázané.

Tvrdenie 14.7.2. Pre všetky n ∈ N \ {0} je

e
(n
e

)n
< n! < en

(n
e

)n
.

Dôkaz. Prenásobením nerovností z tvrdenia 14.7.1 pre k = 1, . . . , n− 1 dostávame
n−1∏
k=1

(k + 1)k

kk
< en−1 <

n−1∏
k=1

(k + 1)k+1

kk+1
,

čo je to isté ako
nn−1

(n− 1)!
< en−1 <

nn

(n− 1)!
.

Prenásobením týchto nerovností číslom n! dostávame

nn < n!en−1 < nn+1

a predelením číslom en−1 napokon prichádzame k dokazovaným nerovnostiam

e
(n
e

)n
< n! < en

(n
e

)n
.

Z tvrdenia 14.7.2 a vety 14.2.2 vyplýva, že prinajmenšom pre prirodzené čísla x ≥ 1 bude

xxe−x+1 < Γ(x+ 1) < xx+1e−x+1,

z čoho vďaka vzťahu Γ(x) = Γ(x+ 1)/x dostávame

exx−1e−x < Γ(x) < exxe−x.

Funkciu Γ sa teda pre x ∈ (0,∞) pokúsme vyjadriť ako

Γ(x) = axx−1/2e−xeµ(x),

kde a ∈ R je vhodná konštanta a µ je vhodná funkcia. Skúsme teda nájsť konštantu a a funkciu µ
tak, aby funkcia axx−1/2e−xeµ(x) mala všetky tri vlastnosti z Bohrovej-Mollerupovej vety. Zíde sa nám
pritom nasledujúca lema.
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Lema 14.7.3. Nech I ⊆ R je nedegenerovaný interval.

a) Súčet konvexných funkcií na I je konvexná funkcia.

b) Súčin logaritmicky konvexných funkcií na I je logaritmicky konvexná funkcia.

c) Limita (bodovo konvergentnej ) postupnosti konvexných funkcií na I je konvexná funkcia.

d) Súčet nekonečného radu konvexných funkcií na I je konvexná funkcia.

Dôkaz. Na dôkaz tvrdenia a) najprv uvažujme ľubovoľnú dvojicu konvexných funkcií f, g : I → R.
Pre všetky a ∈ I sú potom

f(x)− f(a)

x− a
a

g(x)− g(a)

x− a
neklesajúce funkcie premennej x na I. Neklesajúcou je však v takom prípade aj funkcia

(f(x) + g(x))− (f(a) + g(a))

x− a

premennej x a funkcia f + g tak musí byť tiež konvexná.
Ak sú ďalej funkcie f, g : I → R logaritmicky konvexné, sú funkcie ln f a ln g konvexné a podľa

práve dokázaného tvrdenia tak konvexnou musí byť aj funkcia ln f + ln g = ln(fg). Funkcia fg je teda
tiež logaritmicky konvexná a dokázané je aj tvrdenie b).

Na dôkaz tvrdenia c) si stačí všimnúť, že konvexnosť funkcie f : I → R je ekvivalentná požiadavke

f(x1)−f(a)
x1−a − f(x2)−f(a)

x2−a
x1 − x2

≥ 0

pre všetky a, x1, x2 ∈ I. Ľahko vidieť, že pre limitu postupnosti funkcií spĺňajúcich takúto nerovnosť
zostáva táto vlastnosť zachovaná.

Tvrdenie d) je napokon dôsledkom tvrdení a) a c).

Nájdime teraz najprv funkciu µ : (0,∞) → R, pre ktorú funkcia f(x) = xx−1/2e−xeµ(x) spĺňa
podmienky (i) a (ii) Bohrovej-Mollerupovej vety. Pre ľubovoľnú funkciu f takéhoto tvaru je

f(x+ 1)

f(x)
=

(x+ 1)x+1/2e−(x+1)eµ(x+1)

xx−1/2e−xeµ(x)
=

(
1 +

1

x

)x+1/2

xe−1eµ(x+1)−µ(x).

Aby funkcia f vyhovovala podmienke (i) Bohrovej-Mollerupovej vety, musí byť tento podiel rovný x –
nutne teda

µ(x)− µ(x+ 1) = ln

((
1 +

1

x

)x+1/2

e−1

)
= (x+ 1/2) ln

(
1 +

1

x

)
− 1 =: g(x). (14.8)

Funkciu µ definujeme pre všetky x ∈ (0,∞) ako

µ(x) =
∞∑
n=0

g(x+ n). (14.9)

Dokážeme teraz, že tento rad skutočne konverguje – platnosť vzťahu (14.8), a tým pádom aj pod-
mienky (i) Bohrovej-Mollerupovej vety pre funkciu f , je v takom prípade evidentná. Popritom doká-
žeme aj konvexnosť funkcie g.
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Tvrdenie 14.7.4. Funkcia g : (0,∞)→ R, daná pre všetky x ∈ (0,∞) ako

g(x) = (x+ 1/2) ln

(
1 +

1

x

)
− 1,

je konvexná. Rad
∞∑
n=0

g(x+ n) (14.10)

pritom konverguje pre všetky x ∈ (0,∞), pričom

0 ≤
∞∑
n=0

g(x+ n) ≤ 1

12x
.

Dôkaz. Uvažujme rad

1

2
ln

1 + y

1− y
=

1

2
(ln(1 + y)− ln(1− y)) =

1

2

(
2y

1
+

2y3

3
+

2y5

5
+ . . .

)
=
y

1
+
y3

3
+
y5

5
+ . . . ,

ktorý konverguje pre všetky reálne čísla y spĺňajúce |y| < 1. Vezmime y = 1/(2x+ 1); výsledný rad

1

2
ln

(
1 +

1

x

)
=

1

2
ln

1 + 1
2x+1

1− 1
2x+1

=
1

2x+ 1
+

1

3(2x+ 1)3
+

1

5(2x+ 1)5
+ . . .

potom konverguje pre všetky x ∈ (0,∞), lebo |1/(2x+ 1)| < 1 pre všetky takéto x. Prenásobením
predchádzajúcej rovnosti výrazom (2x+ 1) a odpočítaním jednej dostávame

g(x) =

(
x+

1

2

)
ln

(
1 +

1

x

)
− 1 =

1

3(2x+ 1)2
+

1

5(2x+ 1)4
+

1

7(2x+ 1)6
+ . . . (14.11)

Keďže sú všetky členy nekonečného radu funkcií napravo evidentne konvexné na (0,∞), musí byť podľa
lemy 14.7.3 konvexná aj funkcia g. Tým je dokázaná prvá časť tvrdenia.

Rad (14.11) nám ale tiež umožňuje odhadnúť hodnotu funkcie g(x): pre všetky x ∈ (0,∞) je

0 ≤ g(x) =
1

3(2x+ 1)2
+

1

5(2x+ 1)4
+

1

7(2x+ 1)6
+ . . . ≤

≤ 1

3(2x+ 1)2
+

1

3(2x+ 1)4
+

1

3(2x+ 1)6
+ . . . =

=
1

3(2x+ 1)2

(
1 +

1

(2x+ 1)2
+

1

(2x+ 1)4
+ . . .

)
=

=
1

3(2x+ 1)2

1

1− 1
(2x+1)2

=
1

3(2x+ 1)2 − 3
=

=
1

12x2 + 12x
=

1

12x(x+ 1)
=

1

12x
− 1

12(x+ 1)
.

Konvergenciu radu (14.10) a odhad pre jeho súčet teda dostaneme nasledovne:

0 ≤
∞∑
n=0

g(x+ n) ≤
∞∑
n=0

(
1

12(x+ n)
− 1

12(x+ n+ 1)

)
=

1

12x
.

Tvrdenie je dokázané.
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Funkcia µ je teda naozaj dobre definovaná; z predchádzajúceho tvrdenia navyše dostávame užitočný
odhad

0 ≤ µ(x) ≤ 1

12x
(14.12)

pre všetky x ∈ (0,∞). Funkcia f(x) = xx−1/2e−xeµ(x) je teda, pre funkciu µ definovanú vzťahom (14.9),
tiež dobre definovaná a vyhovuje podmienke (i) Bohrovej-Mollerovej vety. Dokážeme teraz, že vyhovuje
aj podmienke (ii), t. j. je logaritmicky konvexná.

Tvrdenie 14.7.5. Funkcia f(x) = xx−1/2e−xeµ(x) je kladná a logaritmicky konvexná na (0,∞).

Dôkaz. Funkcia xx−1/2e−x premennej x je na (0,∞) logaritmicky konvexná, pretože

ln
(
xx−1/2e−x

)
= ln

(
e(lnx)(x−1/2)−x

)
= (lnx)

(
x− 1

2

)
− x,

z čoho pre derivácie tejto funkcie pre x ∈ (0,∞) dostávame(
ln
(
xx−1/2e−x

))′
=
x− 1/2

x
+ lnx− 1

a (
ln
(
xx−1/2e−x

))′′
=

1

2x2
+

1

x
> 0.

Vďaka leme 14.7.3 teda stačí dokázať, je logaritmicky konvexná funkcia eµ(x) – to pritom bude isté,
ak dokážeme, že funkcia µ je na intervale (0,∞) konvexná. Keďže

µ(x) =

∞∑
n=0

g(x+ n),

stačí vďaka leme 14.7.3 dokázať konvexnosť funkcií g(x + n) pre všetky n ∈ N; tá je ale ekvivalentná
konvexnosti funkcie g(x) dokázanej v rámci tvrdenia 14.7.4.

Funkcia f(x) = xx−1/2e−xeµ(x) teda spĺňa podmienky (i) a (ii) Bohrovej-Mollerupovej vety. Rov-
nako dobre tak tieto podmienky spĺňa aj ľubovoľná funkcia fα(x) = αxx−1/2e−xeµ(x) pre α > 0.
Zostáva teda zvoliť konštantu α > 0 tak, aby bola pre funkciu fα splnená aj podmienka (iii) Bohrovej-
Mollerupovej vety, t. j. aby bolo

fα(1) = αe−1eµ(1) = 1.

Táto rovnosť je, samozrejme, splnená pre α = a := e1−µ(1) – podľa Bohrovej-Mollerupovej vety teda

Γ(x) = fa(x)

pre všetky x ∈ (0,∞). V dôsledku toho tiež zisťujeme, že funkcia Γ naozaj spĺňa všetky tri podmienky
Bohrovej-Mollerupovej vety – je teda okrem iného aj logaritmicky konvexná na intervale (0,∞).

Z rovnosti Γ(x) = fa(x) a odhadu (14.12) pre nejakú funkciu θ : (0,∞)→ [0, 1] a všetky x ∈ (0,∞)
dostávame

Γ(x) = axx−1/2e−xeµ(x) = axx−1/2e−x+θ(x)/(12x) (14.13)

a keďže navyše pre všetky n ∈ N je n! = Γ(n+ 1) = nΓ(n), tak aj

n! = ann+1/2e−n+θ(n)/(12n). (14.14)

Z týchto dvoch vzťahov odvodíme Stirlingove aproximácie pre funkciu gama resp. pre faktoriál.
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Naším najbližším cieľom bude vyjadriť konštantu a jednoduchším spôsobom. Za tým účelom uva-
žujme pre všetky p ∈ N \ {0} funkciu ϕp : (0,∞)→ R, danú pre všetky x ∈ (0,∞) ako

ϕp(x) = pxΓ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
. (14.15)

Ukážeme, že táto funkcia takisto spĺňa podmienky (i) a (ii) Bohrovej-Mollerupovej vety.
Keďže je funkcia Γ(x) kladná a logaritmicky konvexná na (0,∞), z vety o derivácii zloženej funkcie

vyplýva, že na tomto intervale musia byť kladné a logaritmicky konvexné aj funkcie

Γ

(
x

p

)
,Γ

(
x+ 1

p

)
, . . . ,Γ

(
x+ p− 1

p

)
.

Funkcia px je na intervale (0,∞) takisto logaritmicky konvexná, pretože

d2

dx2
ln(px) =

d2

dx2
x ln p = 0.

Vďaka leme 14.7.3 a (14.7.3) tak musí byť logaritmicky konvexná aj funkcia ϕp(x).
Uvažujme ďalej funkčnú hodnotu hodnotu ϕp(x+ 1). S použitím vety 14.3.2 zisťujeme, že

ϕp(x+ 1) = px+1Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
Γ

(
x+ p

p

)
=

= pxpΓ

(
x

p
+ 1

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
=

= pxp
x

p
Γ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
=

= xpxΓ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
=

= xϕp(x).

Funkcia ϕp teda naozaj spĺňa podmienky (i) a (ii) Bohrovej-Mollerupovej vety, a teda existuje kon-
štanta ap > 0 taká, že

ϕp(x) = apΓ(x)

pre všetky x ∈ (0,∞). Špeciálne pre x = 1 je Γ(x) = 1, z čoho

ap = pΓ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p

p

)
. (14.16)

Môžeme teraz pristúpiť k identifikácii hľadanej konštanty a – dokážeme, že a =
√

2π. Popritom
tiež ukážeme, že pre všetky p ∈ N \ {0} je ap =

√
pap−1 = p1/2(2π)(p−1)/2.

Tvrdenie 14.7.6. Nech x ∈ (0,∞). Potom Γ(x) =
√

2πxx−1/2e−xeµ(x) a pre všetky p ∈ N \ {0} je
ϕp(x) = p1/2(2π)(p−1)/2Γ(x).

Dôkaz. Vieme, že pre všetky kladné reálne x je Γ(x) = fa(x) = axx−1/2e−xeµ(x); dokazované tvrdenie
je teda naozaj ekvivalentné rovnostiam a =

√
2π a ap =

√
pap−1.

Z vety 14.5.3 pre k = 1, . . . , p dostávame

Γ

(
k

p

)
= lim

n→∞

nk/pn!(
k
p

)(
k
p + 1

)
. . .
(
k
p + n

) = lim
n→∞

nk/pn!pn+1

k(k + p) . . . (k + np)
,
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takže

Γ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p

p

)
= lim

n→∞

n(1+...+p)/p(n!)ppnp+p∏n
j=0

∏p
k=1(k + jp)

= lim
n→∞

n(p+1)/2(n!)ppnp+p

(np+ p)!
. (14.17)

Súčasne ale zrejme

lim
n→∞

(np+ p)!

(np)!(np)p
= lim

n→∞

(np)!(np+ 1) . . . (np+ p)

(np)!(np)p
= 1.

Zo vzťahov (14.16) a (14.17) teda dostávame

ap = pΓ

(
1

p

)
Γ

(
2

p

)
. . .Γ

(
p

p

)
= p lim

n→∞

n(p+1)/2(n!)ppnp+p

(np+ p)!

(np+ p)!

(np)!(np)p
=

= p lim
n→∞

(n!)ppnp

(np)!n(p−1)/2
. (14.18)

Podľa (14.14) pritom
(n!)p = apnnp+p/2e−npeθ(n)p/(12n)

a
(np)! = a(np)np+1/2e−npeθ(np)/(12np).

Po dosadení do (14.18) dostávame

ap = p lim
n→∞

apnnp+p/2e−npeθ(n)p/(12n)pnp

a(np)np+1/2e−npeθ(np)/(12np)n(p−1)/2
=
√
pap−1 lim

n→∞
eθ(n)p/(12n)−θ(np)/(12np) =

√
pap−1.

Špeciálne pre p = 2 navyše vďaka (14.16) zisťujeme, že

a =
a2√

2
=

2Γ(1/2)Γ(1)√
2

=
√

2π,

čo bolo treba dokázať.

Môžeme teraz vysloviť samotnú vetu o Stirlingových aproximáciách pre reálnu funkciu Γ, ako aj
pre faktoriál prirodzených čísel.

Veta 14.7.7 (Stirlingove aproximácie). Pre reálne x→∞ je

Γ(x) =
√

2π
1√
x

(x
e

)x(
1 +O

(
1

x

))
a pre prirodzené n→∞ je

n! =
√

2πn
(n
e

)n(
1 +O

(
1

n

))
.

Dôkaz. Bezprostredne zo vzťahu (14.13) a tvrdenia 14.7.6 pre nejakú funkciu θ : (0,∞)→ [0, 1] a všetky
x ∈ (0,∞) dostávame

Γ(x) =
√

2πxx−1/2e−x+θ(x)/(12x);

podobne vďaka (14.14) pre všetky n ∈ N máme

n! =
√

2πnn+1/2e−n+θ(n)/(12n).

Pre x→∞ teraz

eθ(x)/(12x) ≤ e1/12x = 1 +
1

12x
+

1

(12x)22!
+ . . . = 1 +O

(
1

x

)
;

podobne teda aj pre n→∞ máme

eθ(n)/(12n) = 1 +O

(
1

n

)
a veta je dokázaná.



Predbežná verzia

Funkcia gama 181

Po ceste k Stirlingovým aproximáciám sme navyše dokázali aj nasledujúce dva výsledky, ktoré stoja
za osobitnú zmienku.

Veta 14.7.8 (Gaussov súčinový vzorec). Pre všetky p ∈ N \ {0} a z ∈ C \ {0,−1,−2, . . .} je

Γ

(
z

p

)
. . .Γ

(
z + p− 1

p

)
=

(2π)(p−1)/2

pz−1/2
Γ(z).

Dôkaz. Podľa tvrdenia 14.7.6 pre všetky p ∈ N \ {0} a x ∈ (0,∞) platí

ϕp(x) = pxΓ

(
x

p

)
Γ

(
x+ 1

p

)
. . .Γ

(
x+ p− 1

p

)
= p1/2(2π)(p−1)/2Γ(x),

z čoho dostávame rovnosť

Γ

(
x

p

)
. . .Γ

(
x+ p− 1

p

)
=

(2π)(p−1)/2

px−1/2
Γ(x)

pre všetky x ∈ (0,∞). Keďže má interval (0,∞) v C \ {0,−1,−2, . . .} hromadný bod, z vety o jedno-
značnosti dostávame aj dokazovanú rovnosť

Γ

(
z

p

)
. . .Γ

(
z + p− 1

p

)
=

(2π)(p−1)/2

pz−1/2
Γ(z).

pre všetky z ∈ C \ {0,−1,−2, . . .}.

Veta 14.7.9 (Legendreov vzťah). Pre všetky z ∈ C \ {0,−1,−2, . . .} je

Γ
(z

2

)
Γ

(
z + 1

2

)
=

√
π

2z−1
Γ(z).

Dôkaz. Vyplýva bezprostredne z Gaussovho súčinového vzorca pre p = 2.

14.8 Súvis so sínusom

Na záver tejto kapitoly venovanej funkcii gama ešte dokážme vetu, ktorá túto funkciu dáva do súvisu
s goniometrickou funkciou sin z.

Veta 14.8.1. Pre všetky z ∈ C \ Z je

Γ(z)Γ(1− z) =
π

sin(πz)
.

Dôkaz. Pre všetky z ∈ C \ Z položme

ϕ(z) := Γ(z)Γ(1− z) sin(πz).

Ukážeme postupne, že funkcia ϕ je na svojom definičnom obore konštantná. Všimnime si najprv, že
pre všetky z ∈ C \ Z je

ϕ(z + 1) = Γ(z + 1)Γ(−z) sin(π(z + 1)) = (zΓ(z))

(
Γ(1− z)
−z

)
(− sin(πz)) =

= Γ(z)Γ(1− z) sin(πz) = ϕ(z).
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Funkcia ϕ je teda prinajmenšom periodická. Uvažujme teraz súčin

ϕ
(z

2

)
ϕ

(
z + 1

2

)
= Γ

(z
2

)
Γ
(

1− z

2

)
sin
(πz

2

)
Γ

(
z + 1

2

)
Γ

(
1− z

2

)
sin
(πz

2
+
π

2

)
=

= Γ
(z

2

)
Γ

(
z + 1

2

)
Γ

(
1− z

2

)
Γ

(
(1− z) + 1

2

)
sin
(πz

2

)
cos
(πz

2

)
.

Aplikovaním Legendreovho vzťahu v bode z a v bode 1− z tak dostávame

ϕ
(z

2

)
ϕ

(
z + 1

2

)
=

√
π

2z−1
Γ(z)

√
π

2−z
Γ(1− z) sin

(πz
2

)
cos
(πz

2

)
=

= πΓ(z)Γ(1− z)2 sin
(πz

2

)
cos
(πz

2

)
= πΓ(z)Γ(1− z) sin(πz) = πϕ(z). (14.19)

Dokážeme teraz, že funkcia ϕ má iba odstrániteľné singularity – a možno ju teda dodefinovať
na celú funkciu. Funkcia ϕ je ale zjavne analytická na C \ Z; možnými singularitami tejto funkcie sú
tak jedine body a ∈ Z. Pre a = 0 a všetky z ∈ D′(0, 1) ale

ϕ(z) = Γ(z)Γ(1− z) sin(πz) =
Γ(1 + z)

z
Γ(1− z)

(
πz − π3z3

3!
+
π5z5

5!
− π7z7

7!
+ . . .

)
=

= Γ(1 + z)Γ(1− z)
(
π − π3z2

3!
+
π5z4

5!
− π7z6

7!
+ . . .

)
;

na D′(0, 1) je teda funkcia ϕ(z) zhodná s funkciou analytickou v bode 0, a teda môže mať v bode 0 iba
odstrániteľnú singularitu – jej hodnotu v bode 0 môžeme dodefinovať na Γ(1)Γ(1)π = π. Z periodicity
funkcie ϕ napokon vyplýva, že rovnako môžeme na π dodefinovať aj hodnoty funkcie ϕ vo všetkých
bodoch a ∈ Z, ktoré tak musia byť odstrániteľnými singularitami funkcie ϕ. Vo výsledku tak dostávame
celú funkciu ϕ̂ : C→ C takú, že pre všetky z ∈ C \Z je ϕ̂(z) = ϕ(z). Z (14.19) a vety o jednoznačnosti
navyše pre túto funkciu dostávame vzťah

ϕ̂
(z

2

)
ϕ̂

(
z + 1

2

)
= πϕ̂(z) (14.20)

pre všetky z ∈ C – teda aj pre body a ∈ Z, v ktorých pôvodná funkcia ϕ nebola definovaná.
Môžeme napokon dokázať konštantosť funkcie ϕ̂ – a tým pádom aj pôvodne uvažovanej funkcie ϕ.

Uvažujme najprv x ∈ R; funkcia ϕ̂ je evidentne kladná na intervale [0, 1] a vďaka jej periodickosti
tak musí byť kladná aj na R. Môžeme teda definovať funkciu g : R → R pre všetky x ∈ R ako
g(x) := d2

dx2 ln ϕ̂(x). Z rovnosti (14.20) potom pre všetky x ∈ R dostávame

g(x) =
1

4
g
(x

2

)
+

1

4
g

(
x+ 1

2

)
. (14.21)

Ako druhá derivácia analytickej funkcie navyše musí byť funkcia g na svojom definičnom obore R
spojitá; špeciálne je preto spojitá aj na intervale [0, 1]. Z toho vyplýva existencia M ≥ 0 takého, že
pre všetky x ∈ [0, 1] je |g(x)| ≤ M ; vďaka periodickosti funkcie ϕ̂ tak opäť |g(x)| ≤ M aj pre všetky
x ∈ R. Z (14.21) ale súčasne pre ľubovoľné takéto M ≥ 0 a všetky x ∈ R dostávame

|g(x)| ≤ 1

4

∣∣∣g (x
2

)∣∣∣+
1

4

∣∣∣∣g(x+ 1

2

)∣∣∣∣ ≤ M

4
+
M

4
=
M

2
,

z čoho vyplýva, že v skutočnosti možno vziať aj M = 0. Funkcia g tak musí byť na R konštantne
nulová – funkcia ln ϕ̂ preto musí byť na R lineárna alebo konštantná; keďže je ale súčasne periodická,
môže byť jedine konštantná. Konštantná na R tak musí byť aj funkcia ϕ̂ a z vety o jednoznačnosti
následne vyplýva konštantnosť tejto funkcie aj na C.

Vieme pritom, že ϕ̂(0) = π – pre všetky z ∈ C teda musí byť ϕ̂(z) = π. Pre všetky z ∈ C \ Z je
teda

Γ(z)Γ(1− z) =
ϕ(z)

sin(πz)
=

ϕ̂(z)

sin(πz)
=

π

sin(πz)
,

čo bolo treba dokázať.
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Cvičenia

1. Dokážte, že funkcia gama nemá žiadne korene.

2. Dokážte, že pre všetky x ∈ (0,∞) je

Γ(k)(x) =

∫ ∞
0

e−ttx−1(ln t)k dt.
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