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Abstract. A recently introduced operation of geometrical closure on
formal languages is investigated. It is proved that the geometrical clo-
sure of a language from the positive variety V3/2, the level 3/2 of the
Straubing-Thérien hierarchy of star-free languages, always falls into the
variety RLT , which is a new variety consisting of specific R-trivial lan-
guages. As a consequence, each class of regular languages lying between
RLT and V3/2 is geometrically closed.
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1 Introduction

A geometrical closure is an operation on formal languages introduced recently
by Dubernard, Guaiana, and Mignot [8]. It is defined as follows: Take any lan-
guage L over some k-letter alphabet and consider the set called the figure of L
in [8], which consists of all elements of Nk corresponding to Parikh vectors of
prefixes of words from L. The geometrical closure of L is the language γ(L) of all
words w such that the Parikh vectors of all the prefixes of w lie in the figure of L.
This closure operator was inspired by the previous works of Blanpain, Cham-
parnaud, and Dubernard [4] and Béal et al. [3], in which geometrical languages
are studied – using the terminology from later paper [8], these can be described
as languages whose prefix closure is equal to their geometrical closure. Note that
this terminology was motivated by the fact that a geometrical language is com-
pletely determined by its (geometrical) figure. In the particular case of binary
alphabets, these (geometrical) figures were illustrated by plane diagrams in [8].

The class of all regular languages can be easily observed not to be geometri-
cally closed – that is, one can find a regular language such that its geometrical
closure is not regular [8] (see also the end of Section 2). One possible research
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aim could be to characterise regular languages L for which γ(L) is regular, or to
describe some robust classes of languages with this property. Another problem
posed in [8] is to find some subclasses of regular languages that are geometri-
cally closed. As we explain in Section 3, non-empty group languages have their
geometrical closure equal to the universal language Σ∗. For this reason, it makes
sense to look for more interesting geometrically closed subclasses among star-free
languages, which are known to be “group-free”. More precisely, a language L is
star-free if and only if the syntactic monoid ML of L is aperiodic, that is, if ML

does not contain non-trivial groups as subsemigroups.

It is well known that the star-free languages are classified into the Straubing-
Thérien hierarchy based on polynomial and Boolean operations. In particular,
the variety V1 (i.e., the variety of languages of level 1) is formed by piecewise
testable languages and the positive variety V3/2 is formed by polynomials built
from languages of level 1. We refer to the survey paper by Pin [12] for an introduc-
tion to the Straubing-Thérien hierarchy of star-free languages and the algebraic
theory of regular languages in general. This theory is based on Eilenberg cor-
respondence between varieties of regular languages and pseudovarieties of finite
monoids. Note that one well-known instance of Eilenberg correspondence, which
plays an essential role in our contribution, is given by the pseudovariety of finite
R-trivial monoids, for which the corresponding variety of languages is denoted
byR. Nevertheless, we emphasise that our contribution is rather elementary, and
it does not use sophisticated tools developed in the algebraic theory of regular
languages.

It was proved by Dubernard, Guaiana, and Mignot [8] that the class of all
binary languages from the positive variety V3/2 is geometrically closed. They have
obtained this result by decomposing the plane diagram of the figure of a given
language into specific types of basic subdiagrams, and using this decomposition
to construct a regular expression for the language γ(L).

We prove a generalisation of the above mentioned result in this contribution.
Our approach is to concentrate on the form of languages that may arise as γ(L)
for L taken from V3/2(Σ). In other words, we do not construct a concrete regular
expression for γ(L), but we determine what kind of expression exists for such
a language. In particular, we introduce a new variety of languages RLT , which
is a subvariety of the variety R. Note that there is a transparent description of
languages from R and also an effective characterisation via the so-called acyclic
automata (both are recalled in Section 4). The variety of languages RLT is
then characterised in the same manner: a precise description by specific regular
expressions and also an automata-based characterisation are given. The letters
LT in the notation RLT refer to a characteristic property of acyclic automata
in which “loops are transferred” along paths.

We show that the geometrical closure of a language from the positive variety
V3/2 always falls into the variety RLT . As a consequence, each class of regular
languages lying between RLT and V3/2 is geometrically closed. In particular, the
positive variety V3/2 is geometrically closed regardless of the alphabet, as well
as is the variety R.
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2 Preliminaries

All automata considered in this paper are understood to be deterministic and
finite. An automaton is thus a five-tuple A = (Q,Σ, ·, ι, F ), where Q is a finite
set of states, Σ is a non-empty finite alphabet, · : Q × Σ → Q is a complete
transition function, ι ∈ Q is the unique initial state, and F ⊆ Q is the set of
final states. The minimal automaton of a given language L is denoted by DL.

By a (positive) variety of languages, we always understand what is called
a (positive) ∗-variety in [12]. We recall this notion for a reader’s convenience
briefly. A class of languages C is an operator, which determines, for each finite
non-empty alphabet Σ, a set C(Σ∗) of languages over Σ. A positive variety
is a class of regular languages V such that V(Σ∗) is closed under quotients,
finite unions and intersections, and the whole class is closed under preimages in
homomorphisms. A positive variety V is a variety if each V(Σ∗) is closed under
complementation. Note that an alphabet could be fixed in our contribution, so
homomorphisms among different alphabets play no role, and we could consider
lattices of languages [9] instead of varieties of languages. However, we prefer to
stay in the frame of the theory of (positive) varieties of languages as a primary
aim of this paper is to describe robust classes closed under geometrical closure.

Given words u, v over an alphabet Σ, we write u ≤ v if u is a prefix of v. We
also write, for each L ⊆ Σ∗,

pref↑(L) := {u ∈ Σ∗ | ∃w ∈ L : u ≤ w} = L · (Σ∗)−1,

pref↓(L) := {w ∈ Σ∗ | ∀u ∈ Σ∗ : u ≤ w =⇒ u ∈ L}.

We call these languages the prefix closure and the prefix reduction of L, respec-
tively. Both are prefix-closed, while pref↑(L) ⊇ L and pref↓(L) ⊆ L.

Proposition 1. Each positive variety V is closed under the operator pref↑.

Proof. It is well known that each regular language has finitely many right quo-
tients by words. Thus, for each alphabet Σ and each L ∈ V(Σ∗), the language

pref↑(L) = L · (Σ∗)−1 =
⋃

w∈Σ∗

Lw−1

is a finite union of right quotients of L, and its membership to V(Σ∗) follows. ⊓⊔

Let Σ = {a1, . . . , ak} be a linearly ordered alphabet. The Parikh vector of
a word w in Σ∗ is then given by Ψ(w) = (|w|a1

, . . . , |w|ak
), where |w|a denotes

the number of occurrences of the letter a in w. This notation extends naturally
to languages: we write Ψ(L) = {Ψ(w) | w ∈ L} for L ⊆ Σ∗. We denote by [w] the
equivalence class of the kernel relation of Ψ , i.e. [w] = {u ∈ Σ∗ | Ψ(u) = Ψ(w)}.
Then we also write, for each language L ⊆ Σ∗,

[L] =
⋃

w∈L

[w] = {u ∈ Σ∗ | Ψ(u) ∈ Ψ(L)}
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and we call [L] the commutative closure of L. A language L such that L = [L] is
called commutative. A class of languages C is said to be closed under commutation
if for each alphabet Σ, the language [L] belongs to C(Σ∗) whenever L ∈ C(Σ∗).

In the previous paragraph we consider the mapping Ψ : Σ∗ → N
k, where N is

the set of all non-negative integers. Following the ideas of [8], we introduce some
technical notations concerning N

k, whose elements are called vectors. We denote
by 0 the null vector of Nk. Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be vectors
and s ∈ {1, . . . , k} be an index. We write x →s y if ys−xs = 1 and, at the same
time, yi = xi for all i 6= s. Moreover, x → y means that x →s y for some index
s. A path in N

k is a finite sequence π = [x0, . . . ,xn] of vectors from N
k such that

x0 = 0 and xi−1 → xi for i = 1, . . . , n; more specifically, we say that π is a path
leading to xn. This means that a path always begins in 0 and each other vector
of the path is obtained from the previous one by incrementing exactly one of its
coordinates by one. If in addition x0, . . . ,xn all belong to a set F ⊆ N

k, we say
that π is a path in F and write π ⊆ F .

Given a word w = ai1 . . . ain in Σ∗, we write π(w) for the unique path
[x0, . . . ,xn] in N

k such that 0 = x0 →i1 x1 →i2 . . . →in xn. Conversely, for each
path π = [x0, . . . ,xn] in N

k, there is a unique word w such that π(w) = π. We
denote this unique word w by ‖π‖. For each F ⊆ N

k, we denote ‖F‖ the set
{‖π‖ | π ⊆ F}. Note that the language ‖F‖ is prefix-closed.

Moreover, we put fig(L) = Ψ(pref↑(L)) for each L ⊆ Σ∗. The set fig(L) ⊆ N
k

is a connex figure in the sense of [8], i.e., for each x ∈ fig(L), there is a path π
leading to x such that π ⊆ fig(L).

Finally, the geometrical closure of L is a language γ(L) = ‖ fig(L)‖. A class
of languages C is said to be geometrically closed if the language γ(L) belongs to
C(Σ∗) whenever L does, for each alphabet Σ.

Note that the class of all regular languages is not geometrically closed, as
observed in [8]. For instance, the language L = a∗(ab)∗ is regular, while its
geometrical closure γ(L) = {w ∈ {a, b}∗ | ∀u ≤ w : |u|a ≥ |u|b} is the prefix
closure of the Dyck language.

3 A Characterisation of the Geometrical Closure

We now characterise the operation of geometrical closure via three simpler op-
erations: the prefix closure, the commutative closure, and the prefix reduction.
This characterisation is a key to our later considerations.

Proposition 2. If L is a language over Σ, then γ(L) = pref↓
([

pref↑(L)
])

.

Proof. By definition,

γ(L) = ‖fig(L)‖ =
∥

∥Ψ(pref↑(L))
∥

∥ .

If w ∈ γ(L), then there is a path π = [x0, . . . ,xn] ⊆ Ψ(pref↑(L)) such that
w = ‖π‖. For an arbitrary prefix u of w, we have π(u) = [x0, . . . ,xm] for some
m ≤ n. It follows that Ψ(u) = xm belongs to Ψ(pref↑(L)). Hence u ∈ [pref↑(L)]
and w belongs to pref↓([pref↑(L)]).
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On the other hand, if w belongs to pref↓([pref↑(L)]), then all prefixes u of w
belong to [pref↑(L)]. Thus Ψ(u) is in Ψ(pref↑(L)) for each u ≤ w, and π(w) is
a path in Ψ(pref↑(L)), implying that w is in ‖Ψ(pref↑(L))‖ = γ(L). ⊓⊔

As a direct consequence of Proposition 1 and Proposition 2, we obtain the
following sufficient condition, under which a positive variety of languages is ge-
ometrically closed.

Corollary 3. Each positive variety of regular languages closed under prefix re-
duction and commutation is geometrically closed.

Some positive varieties of languages V are geometrically closed for trivial
reasons – for instance all V such that γ(L) = Σ∗ for all non-empty L ∈ V(Σ∗).
Let us observe that this is the case for L whenever pref↑(L) = Σ∗. The proof of
the following lemma is easy to see. We just note that by an absorbing state we
mean a state p satisfying p · a = p for every a ∈ Σ.

Lemma 4. Let L be a regular language over an alphabet Σ and DL be the min-
imal automaton of L. Then the following conditions are equivalent:
(i) pref↑(L) = Σ∗;
(ii) for each state p in DL, there exists a final state reachable from p;
(iii) every absorbing state p in DL is final.

The conditions of Lemma 4 are satisfied in particular for all non-empty group
languages. The variety G, consisting of all languages L such that the syntactic
monoid ML is a group, is geometrically closed as a consequence. This result can
be extended to languages of the form L = L0a1L1 . . . aℓLℓ, where each ai is
a letter, and each Li is a non-empty group language. Indeed, for every u ∈ Σ∗,
there is some w ∈ L0 such that u ≤ w, and one can find at least one wi ∈ Li for
every i = 1, . . . , ℓ. Then u is a prefix of the word wa1w1 . . . aℓwℓ ∈ L. This implies
that pref↑(L) = Σ∗. We may thus conclude that the variety G1/2, consisting of
languages of level 1/2 in the group hierarchy, is geometrically closed. (The reader
not familiar with the group hierarchy is referred to [12].)

In the rest of the paper, we move our attention to star-free languages.

4 Languages Recognised by LT-acyclic Automata

We now introduce the class of languages RLT , which plays a central role in our
main result. For every alphabet Σ, the set RLT (Σ

∗) consists of languages which
are finite unions of languages of the form

L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n, (1)

where Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn ⊆ Σ and ai ∈ Σ \Σi−1 for i = 1, . . . , n.

The previous definition is similar to definitions of other classes of languages
that have already been studied in literature. First of all, if we omit the condition
Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn, we get a definition of languages from the variety R
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corresponding to R-trivial monoids, which we recall in more detail later. Let
us conclude here just that RLT ⊆ R. Secondly, if we also require ai ∈ Σi

in (1) for i = 1, . . . , n, then we obtain a variety of languages considered by
Pin, Straubing, and Thérien [13] and corresponding to a pseudovariety of finite
monoids denoted R1. Finally, if we drop in (1) the condition ai 6∈ Σi−1 and then
we generate a variety, then we obtain the variety of languages corresponding to
the pseudovariety JMK considered by Almeida [1, p. 236].

Since we want to characterise languages from RLT in terms of automata,
we recall the characterisation of languages from R first. An automaton A =
(Q,Σ, ·, ι, F ) is acyclic if every cycle in A is a loop. This means that if p ·w = p
for some p ∈ Q and w ∈ Σ∗, then also p · a = p for every letter a occurring in w.
The defining condition means that one can number the states in Q as 1, . . . , |Q|
in such a way that the state p · a, with p ∈ Q and a ∈ Σ, is always greater than
or equal to p. For this reason, these automata are called extensive in [11, p. 93].
It is known that they recognise precisely R-trivial languages [6].

We say that an acyclic automaton A = (Q,Σ, ·, ι, F ) has a loop transfer
property, if p · a = p implies (p · b) · a = p · b for every p ∈ Q and a, b ∈ Σ.
We then call A an LT-acyclic automaton for short. This means that if there is
an a-labelled loop in a state p in an LT-acyclic automaton, then there is also
an a-labelled loop in each state reachable from p. We may thus equivalently
take b ∈ Σ∗ in the previous definition. The first aim of this section is to show
that languages recognised by LT-acyclic automata are precisely those from RLT .
We do so via a series of elementary lemmas.

Lemma 5. For a language L of the form (1), the automaton DL is LT-acyclic.

Proof. Let L be a language L = Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n of the form (1). For every

i = 1, . . . , n, we denote Γi−1 = Σ \ (Σi−1 ∪ {ai}) and we also put Γn = Σ \Σn.
Then it is an easy exercise to show that the automaton in Fig. 1 is the minimal
automaton of L and that it is an LT-acyclic automaton. ⊓⊔

. . .

Σ0 Σ1 Σn−1 Σn

Σ

a1 a2 an−1 an

Γ0

Γ1
Γn−1

Γn

Fig. 1. An LT-acyclic automaton for the language of the form (1).



Geometrically Closed Positive Varieties of Languages 7

Lemma 6. Let L, K be languages over an alphabet Σ recognised by LT-acyclic
automata. Then L ∪K is also recognised by an LT-acyclic automaton.

Proof. The language L∪K can be recognised by the direct product of a pair of
automata that recognise the languages L and K. It is a routine to check that
a finite direct product of LT-acyclic automata is an LT-acyclic automaton. ⊓⊔

The previous two lemmas show that every language from RLT is recognised
by an LT-acyclic automaton. The following lemma strengthens this observation
by implying that the minimal automaton of a language from RLT is LT-acyclic.

Lemma 7. Let L be a language recognised by an LT-acyclic automaton. Then
the minimal automaton of L is also LT-acyclic.

Proof. Let A = (Q,Σ, ·, ι, F ) be an LT-acyclic automaton such that ‖A‖ = L.
The minimal automaton DL is a homomorphic image of some subautomaton of
A [14]. It is clear that a subautomaton of an LT-acyclic automaton is LT-acyclic.
Thus we may assume that A has all states reachable from the initial state ι.

Let ϕ : Q → P be a surjective mapping, which is a homomorphism from the
automaton A onto an automaton B = (P,Σ, •, ϕ(ι), ϕ(F )). We claim that B is
acyclic. To prove this claim, let p ∈ P and w ∈ Σ∗ be such that p•w = p. Then we
choose some state q′ from ϕ−1(p). For that q′, we have q′ ·wm ∈ ϕ−1(p) for every
natural number m. Since the sequence q′, q′ · w, q′ · w2, . . . contains only finitely
many states, there are natural numbers n andm such that q′ ·wn+m = q′ ·wn = q.
SinceA is acyclic, we have q·a = q for every letter a occurring in w. Consequently,
p • a = ϕ(q) • a = ϕ(q · a) = ϕ(q) = p. We showed that B is acyclic.

Now let p ∈ P and a ∈ Σ be such that p • a = p. It follows from the previous
paragraph that there is q ∈ ϕ−1(p) such that q · a = q. Since A is LT-acyclic, we
see that (q ·b)·a = q ·b for every b ∈ Σ. Thus p•ba = ϕ(q ·ba) = ϕ(q ·b) = p•b. We
showed that B is an LT-acyclic automaton. In particular, it is true for DL. ⊓⊔

Let us also prove a converse to the statements established above.

Lemma 8. Let A be an LT-acyclic automaton over an alphabet Σ. Then ‖A‖
belongs to RLT (Σ

∗).

Proof. Let A = (Q,Σ, ·, ι, F ) and let R be the set of all valid runs in the au-
tomaton A, which do not use loops:

R = {(q0, a1, q1, a2, . . . , an, qn) | n ∈ N; q0, . . . , qn ∈ Q; a1, . . . , an ∈ Σ;

q0 = ι; qn ∈ F ; ∀j ∈ {1, . . . , n} : qj−1 6= qj ∧ qj−1 · aj = qj}.

We see that the set R is finite. Moreover, for each q in Q, let Σq denote the
alphabet Σq = {c ∈ Σ | q · c = q}. Then

Lw := Σ∗
q0a1Σ

∗
q1a2 . . . anΣ

∗
qn ⊆ ‖A‖

is a language of the form (1) for each w = (q0, a1, q1, a2, . . . , an, qn) in R and

‖A‖ =
⋃

w∈R

Lw.

Hence the language ‖A‖ belongs to RLT (Σ
∗). ⊓⊔
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The following theorem provides a summary of the previous lemmas.

Theorem 9. For a language L ⊆ Σ∗, the following statements are equivalent:
(i) L belongs to RLT (Σ

∗).
(ii) L is recognised by an LT-acyclic automaton.
(iii) The minimal automaton of L is LT-acyclic.

Proof. The statement (i) implies (ii) by Lemma 5 and Lemma 6. The statement
(ii) implies (iii) by Lemma 7. Finally, (iii) implies (i) by Lemma 8. ⊓⊔

One may prove that RLT is a variety of languages in several different ways. It
is possible to prove directly that the class RLT is closed under basic language op-
erations. It is also possible to prove that the class of LT-acyclic automata forms
a variety of actions in the sense of [7]. Here we complete the previous charac-
terisation by showing the algebraic counterpart of the class RLT ; namely, we
characterise the corresponding pseudovariety of finite monoids by pseudoidenti-
ties. We do not want to recall the notion of pseudoidentities in general. Let us
only recall the implicit operation xω here. If we substitute for x some element s
in a finite monoid M , then the image of xω is sω, which is a unique idempotent
in the subsemigroup of M generated by s. It could be useful to know that, for
a fixed finite monoid M , there is a natural number m such that sω = sm for
each s ∈ M .

Theorem 10. Let Σ be an alphabet, L ⊆ Σ∗, and ML the syntactic monoid
of L. The following statements are equivalent:
(i) L belongs to RLT (Σ

∗).
(ii) ML satisfies the pseudoidentities (xy)ωx = (xy)ω and xωyx = xωy.
(iii) ML satisfies the pseudoidentity (xy)ωzx = (xy)ωz.

Proof. Let DL = (Q,Σ, ·, ι, F ) be the minimal automaton of the language L.
Then ML can be viewed as the transition monoid of DL (see [12, p. 692]).
Elements of ML are thus transitions of DL determined by words from Σ∗. More
formally, for u ∈ Σ∗, we denote by fu the transition given by the rule p 7→ p · u
for each p ∈ Q. Let m be a natural number such that sω = sm for each s in ML.

Let us prove that (i) implies (ii). Suppose that L belongs to RLT (Σ
∗). Then

DL is an LT-acyclic automaton by Theorem 9. In particular, the language L
is R-trivial as we already mentioned. Hence, the monoid ML is R-trivial, i.e.,
ML satisfies the pseudoidentity (xy)ωx = (xy)ω . Next, let x, y be mapped to
elements in ML which are given by words v, w ∈ Σ∗. We now need to check that
fvmfwfv = fvmfw. Since DL is acyclic, we have (p · vm) · a = p · vm for every
p ∈ Q and a ∈ Σ occurring in v. Since DL is an LT-acyclic automaton, the loop
labelled by a in state p · vm is transferred to every state reachable from p · vm.
In particular, for every letter a occurring in v, there is a loop labelled by a in
the state (p · vm) · w. The equality fvmfwfv = fvmfw follows.

Next, let us show that the pseudoidentity (xy)ωzx = (xy)ωz is a consequence
of pseudoidentities from item (ii). We may interpret x, y, z as arbitrary elements
of any finite monoid M satisfying these pseudoidentities. Let m be such that
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sω = sm for each s ∈ M . Then we use the second pseudoidentity from (ii)
repetitively, and we get

(xy)ωz = (xy)ωzxy = (xy)ωz(xy)2 = . . . = (xy)ωz(xy)m = (xy)ωz(xy)ω. (2)

By the first pseudoidentity from (ii), we get (xy)ωz(xy)ω = (xy)ωz(xy)ωx. Then
we obtain (xy)ωz(xy)ωx = (xy)ωzx using the equality (2). Thus we get (xy)ωz =
(xy)ωz(xy)ω = (xy)ωz(xy)ωx = (xy)ωzx.

Finally, in order to prove that (iii) implies (i), suppose that ML satisfies
the pseudoidentity (xy)ωzx = (xy)ωz. Taking z = 1, it follows that ML satisfies
the pseudoidentity (xy)ωx = (xy)ω. Hence, L is R-trivial and DL is acyclic.
Moreover, let p ∈ Q and a ∈ Σ be such that p · a = p, and take arbitrary
b ∈ Σ. Then faωfb in ML maps p to p · b. Similarly, faωfbfa in ML maps p to
p · ba. However, taking x 7→ a, y 7→ 1, and z 7→ b in (xy)ωzx = (xy)ωz gives us
faωfbfa = faωfb. Therefore, p · ba = p · b. So, we see that there is a loop labelled
by a in the state p · b. We proved that DL is an LT-acyclic automaton and L
belongs to RLT (Σ

∗) by Theorem 9. ⊓⊔

Corollary 11. The class RLT is a variety of languages corresponding to the
pseudovariety of finite monoids RLT given by

RLT = J(xy)ωzx = (xy)ωzK = J(xy)ωx = (xy)ω , xωyx = xωyK.

Let us also note that Jxωyx = xωyK is known to describe the pseudovariety
of finite monoids MK; cf. Almeida [1, p. 212], who attributes this result to Pin.
Therefore, RLT = R ∩MK.

5 The Main Result

Let us now return to the geometrical closure and prove the main result of this
paper: each class of languages lying between the variety of languages RLT and the
positive variety V3/2 is geometrically closed. This strengthens the result from [8]
mentioned in the Introduction.

The route that we take to this result (Theorem 16) consists of three steps:

1. We recall that the class V3/2 is closed under commutation [10, 5]. Although
it is not necessary to obtain our main result, we refine this observation by
proving that a commutative closure of a V3/2-language is piecewise testable.

2. We prove that each commutative V3/2-language belongs to RLT .
3. We observe that the variety RLT is closed under prefix reduction.

These three observations imply that the geometrical closure of a V3/2-language
belongs to RLT , from which our main result follows easily.

Recall the result of Arfi [2], according to which a language belongs to V3/2

if and only if it is given by a finite union of languages Σ∗
0a1Σ

∗
1a2 . . . anΣ

∗
n,

where a1, . . . , an are letters from Σ and Σ0, . . . , Σn are subalphabets of Σ. It
follows by a more general result of Guaiana, Restivo, and Salemi [10], or of
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Bouajjani, Muscholl, and Touili [5] that V3/2 is closed under commutation, and
this observation is a first step to Theorem 16.

Let us show that a commutative closure of a V3/2-language is in fact piecewise
testable.

Lemma 12. A commutative closure of a V3/2-language is piecewise testable.

Proof. Let an alphabet Σ be fixed. It is clear that if L1, . . . , Lm ⊆ Σ∗ are
languages, then

[

m
⋃

i=1

Li

]

=
m
⋃

i=1

[Li].

As a result, it is enough to prove piecewise testability of [L] for all languages
L = Σ∗

0a1Σ
∗
1a2 . . . anΣ

∗
n, with a1, . . . , an ∈ Σ and Σ0, . . . , Σn ⊆ Σ.

Let L be of this form. Denote Σ′ = Σ0 ∪ . . . ∪ Σn, and x = a1 . . . an. We
claim that

[L] = {w ∈ Σ∗ | ∀a ∈ Σ′ : |w|a ≥ |x|a; ∀b ∈ Σ \Σ′ : |w|b = |x|b } . (3)

Indeed, if w is in [L], then Ψ(w) = Ψ(u) for some u ∈ L, while clearly |u|a ≥ |x|a
for each a in Σ′, and |u|b = |x|b for each b in Σ \Σ′. Conversely, let w in Σ∗ be
such that |w|a ≥ |x|a for each a in Σ′, and |u|b = |x|b for each b in Σ \Σ′. Then
Ψ(w) = Ψ(v) for v in Σ∗ given by v = v0a1v1a2 . . . anvn, where vi (i = 0, . . . , n)
is given as follows: if Σi \ (Σ0 ∪ . . . ∪Σi−1) = {b1, . . . , bj}, then

vi = b
|w|b1−|x|b1
1 . . . b

|w|bj−|x|bj
j .

The word v is in L by construction, hence w belongs to [L].
It remains to observe that the language [L] given by (3) is piecewise testable.

However, this language is equal to

[L] =
⋂

a∈Σ′

(Σ∗a)|x|aΣ∗ ∩
⋂

b∈Σ\Σ′

(

(Σ∗b)|x|bΣ∗ ∩
(

(Σ∗b)|x|b+1Σ∗
)C

)

. (4)

The language on the right-hand side of (4) is piecewise testable. ⊓⊔

We now proceed to prove that the geometrical closure of each language from
V3/2 belongs to RLT .

Lemma 13. Every commutative language L from V3/2 belongs to RLT .

Proof. If we take into account the proof of Lemma 12 and the fact that RLT

is closed under finite unions, it is enough to prove that every language of the
form (3) belongs to RLT . We may also use the expression (4) for that language.
For each letter a ∈ Σ and a natural number m, we may write (Σ∗a)mΣ∗ =
((Σ \ {a})∗a)mΣ∗. This shows that the language (Σ∗a)mΣ∗ belongs to RLT .
Since RLT is a variety, we see that also the language ((Σ∗a)mΣ∗)C belongs to
RLT . Altogether, the language (4) belongs to the variety RLT . ⊓⊔
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Finally, let us observe that the variety RLT is closed under prefix reduction.

Lemma 14. Let L be a language from RLT (Σ
∗) for some alphabet Σ. Then

pref↓(L) belongs to RLT (Σ
∗) as well.

Proof. Let L be recognised by some LT-acyclic automaton A = (Q,Σ, ·, ι, F ). If
ι 6∈ F , then L does not contain the empty word, and consequently pref↓(L) = ∅,
which belongs to RLT (Σ

∗). So we may assume that ι ∈ F .

Now, simply saying, we claim that the language pref↓(L) is recognised by
the automaton A′ constructed from A by replacing all non-final states with
a single absorbing non-final state τ . More precisely, we construct an automaton
A′ = (F ∪ {τ}, Σ, •, ι, F ), where τ is a new state, for which we define τ • a = τ
for each a ∈ Σ. Furthermore, for each p ∈ F and a ∈ Σ, we put p • a = p · a if
p · a ∈ F , and p • a = τ otherwise. As A contains no cycle other than a loop,
the constructed automaton A′ has the same property. Moreover, any state of
A′ reachable in A′ from some p in F ∪ {τ} is either reachable from p in A, or
equal to τ . As τ • c = τ for each c in Σ, this implies that A′ is an LT-acyclic
automaton and pref↓(L) belongs to RLT (Σ

∗) by Theorem 9. ⊓⊔

Theorem 15. Let Σ be an alphabet and L ∈ V3/2(Σ
∗). Then γ(L) ∈ RLT (Σ

∗).

Proof. We have γ(L) = pref↓
([

pref↑(L)
])

by Proposition 2. As V3/2 is a positive

variety of languages, pref↑(L) belongs to V3/2(Σ
∗) whenever L belongs to this set

by Proposition 1. The language
[

pref↑(L)
]

is thus a commutative V3/2-language

by [10, 5]. (Note that the language
[

pref↑(L)
]

is actually commutative piece-

wise testable, by Lemma 12.) It follows by Lemma 13 that
[

pref↑(L)
]

belongs

to RLT (Σ
∗), and by Lemma 14 that the language γ(L) = pref↓

([

pref↑(L)
])

belongs to RLT (Σ
∗) as well. ⊓⊔

We are now prepared to state the main result of this article merely as an
alternative formulation of the theorem above.

Theorem 16. Let C be a class of languages containing RLT , which is contained
in V3/2. Then C is geometrically closed.

There are many important (positive) varieties studied in the literature for
which the main result can be applied.

Corollary 17. The following classes are geometrically closed: the positive va-
riety V3/2, the variety R, the variety RLT , the variety of all JMK-recognisable
languages, the variety of all DA-recognisable languages.

The variety of all DA-recognisable languages coincides with the intersection
of V3/2 and its dual. This class has a natural interpretation in terms of logical
descriptions of levels in Straubing-Thérien hierarchy (see Section 5 in [15]).
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6 Conclusions

We have introduced a new variety of languages RLT and we have proved that
geometrical closures of languages from V3/2 fall into RLT . As a consequence,
we have seen that many natural classes of star-free languages are geometrically
closed, namely those between the variety RLT and the positive variety V3/2. On
the contrary, the variety of all piecewise testable languages V1 is not geometri-
cally closed. The example is not included in the paper due to space limitations.

There are some interesting questions in connection to the paper. First of all,
one may ask how to effectively construct a regular expression for the geometrical
closure γ(L) for a given language L from V3/2. Note that it is effectively testable,
for a given deterministic finite automaton A, whether the language ‖A‖ belongs
to V3/2 (see [12, p. 725]). It is not clear to us whether a regular expression for
‖A‖ can be effectively computed from A.

Nevertheless, the main open question related to the topic is to clarify the be-
haviour of the geometrical closure outside the class V3/2.
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