
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

A PUMPING LEMMA FOR FLIP-PUSHDOWN

LANGUAGES ∗

Peter Kostolányi1

Abstract. Flip-pushdown automata are pushdown automata with an
extra ability to reverse the contents of the pushdown store. A general-
isation of the Pumping lemma for context-free languages is presented,
which applies to the families of languages accepted by flip-pushdown
automata with k pushdown flips, for an arbitrary constant k. The
presented result gives rise to a new technique for disproving existence
of flip-pushdown automata with a constant number of flips, which is
significantly simpler compared to methods used for this purpose so far.

1991 Mathematics Subject Classification. 68Q45.

Introduction

Flip-pushdown automata can be described as ordinary nondeterministic push-
down automata with special transitions that can be used to reverse – or flip –
the contents of the pushdown store. The model as such has been introduced by
Sarkar [16], and many of its fundamental properties have been resolved soon after
by Holzer and Kutrib [11,12].

Already Sarkar has observed [16] that flip-pushdown automata with an un-
bounded number of pushdown flips are Turing-complete. For this reason, the
research has focused mainly on the setting, in which the number of flips is viewed
as a limited computational resource. In particular, the most interesting results so
far have been obtained on flip-pushdown automata with the number of pushdown
flips limited by a constant. By the Hierarchy theorem of Holzer and Kutrib [11],

Keywords and phrases: Pumping lemma; Flip-pushdown automaton; Flip-pushdown lan-

guage; Reversal-generating context-free grammar

∗ This work has been supported in part by the grant VEGA 1/0967/16.

1 Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Come-
nius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

flip-pushdown automata with k+1 flips are (strictly) stronger than flip-pushdown
automata with k flips.

With the aim to provide some new proof techniques, two families of grammars
have recently been introduced by the present author [14], which are equivalent
to flip-pushdown automata with a constant number of flips: reversal-generating
context-free grammars and parallel interleaving grammar systems. The latter
grammatical characterisation has already been applied in [14] to resolve the rela-
tion between flip-pushdown automata with a constant number of flips and ET0L-
systems, answering a question of Holzer and Kutrib [11].

In this paper, we take advantage of the characterisation in terms of reversal-
generating grammars and prove a pumping lemma for languages accepted by flip-
pushdown automata with k flips, for all k ≥ 1. This pumping lemma can be
viewed as a generalisation of the classical Pumping lemma for context-free lan-
guages [2, 13], and we demonstrate that it may be used to disprove the existence
of flip-pushdown automata for some specific languages. Such proofs appear to
be significantly simpler compared to proofs via previously known techniques. We
provide some representative examples in a separate section.

In addition, we show that the presented Pumping lemma for flip-pushdown
languages is optimal, in the sense that the bounds on subword lengths occurring
in its statement cannot be improved any further.

1. Flip-Pushdown Automata

Let us briefly review the fundamental definitions and results related to flip-
pushdown automata, which we shall use later in this paper. The following defini-
tion appeared for the first time in the paper of Sarkar [16].

Definition 1.1. A (nondeterministic) flip-pushdown automaton (abbr. NFPDA)
is an octuple A = (K,Σ,Γ, δ,∆, q0, Z0, F), where K is a finite set of states, Σ is
an input alphabet, Γ is a pushdown alphabet, δ is an “ordinary” transition function
from K × (Σ ∪ {ε})× Γ to finite subsets of K × Γ∗, ∆ is a flip transition function
from K to subsets of K, q0 in K is an initial state, Z0 in Γ is a bottom-of-pushdown
symbol, and F ⊆ K is a set of accepting states.

A configuration of the NFPDA A is a triple (q, w, s) in K×Σ∗×Γ∗, interpreted
in the same way as for “ordinary” PDA.

A computation step of the NFPDA A is a relation `A on its configurations,
defined separately for “ordinary” transitions (in the same way as for PDA), and for
flip transitions, which result in flipping the pushdown store. The formal definition
goes as follows: let p, q be in K, a be in Σ ∪ {ε}, u be in Σ∗, s, t be in Γ∗, and Z
be in Γ. For “ordinary” transitions, we define (p, au, sZ) `A (q, u, st) if (q, t) is in
δ(p, a, Z). For flip transitions, we define (p, u, Z0s) `A (q, u, Z0s

R) if q is in ∆(p).
If A is understood, we write ` instead of `A.

Remark 1.2. Two details in the definition of the computation step call for spe-
cial attention. First, when a flip transition is executed, the pushdown store is

TITLE WILL BE SET BY THE PUBLISHER 3

reversed except for the bottom-of-pushdown symbol. However, this (usual) defini-
tion is clearly equivalent to an alternative one, in which the entire pushdown store
is reversed. Indeed, let us abbreviate such “alternative” flip-pushdown automata
by NFPDA′. Then it is clear that each NFPDA′ can be simulated by an NFPDA
– it suffices to add a new bottom-of-pushdown symbol, which is not altered during
the computation. Conversely, each NFPDA can be simulated by an NFPDA′ –
instead of a flip transition of the NFPDA (which does not change the position of
Z0 on the bottom of the pushdown), it is sufficient to push Z0 to the top of the
pushdown, then flip the pushdown store (including the bottom-of-pushdown sym-
bol), and finally pop Z0 from its top. It is clear that in both simulations above,
the number of pushdown flips executed remains unchanged.

Secondly, flip transitions can be executed only when Z0 takes place on the
bottom of the pushdown store. Once again, this is the usual definition, which poses
no significant restriction: each flip-pushdown automaton can be transformed into
a normal form, in which the symbol on the bottom of the pushdown is always Z0.

The language L(A) accepted by A by final state is defined, similarly as for
“ordinary” PDA, by

L(A) = {w ∈ Σ∗ | ∃q ∈ F, s ∈ Γ∗ : (q0, w, Z0) `∗ (q, ε, s)},

and the language N(A) accepted by empty pushdown is defined by

N(A) = {w ∈ Σ∗ | ∃q ∈ K : (q0, w, Z0) `∗ (q, ε, ε)}.

We say that the NFPDA A operates in at most (exactly) k flips, if in every of its
computations, flip transitions are performed at most (exactly) k times.

Several results relating families of NFPDAs are known up to now. Holzer and
Kutrib have proved [11] the equivalence of NFPDA accepting by final state and
NFPDA accepting by empty pushdown, and have argued that the simulations
involved do not change the number of flips performed. Furthermore, NFPDA
operating in at most k flips are proved to be equivalent to NFPDA operating in
exactly k flips [11]. Finally, without any restriction on the number of pushdown
flips, NFPDA are known to be equivalent to Turing machines [16].

Definition 1.3. The family of languages accepted by NFPDA operating in k flips
is denoted by L (NFPDAk). Furthermore,

L (NFPDAfin) :=

∞⋃
k=0

L (NFPDAk).

The family of languages accepted by arbitrary NFPDA, equal to the family of re-
cursively enumerable languages [16], may occasionally be denoted by L (NFPDA).

Remark 1.4. This definition of the families L (NFPDAk) slightly differs from
the original definition used, e.g., by Holzer and Kutrib [11,12]. There, a language
Lk(A) is defined for every k and for every flip-pushdown automaton A – it consists

4 TITLE WILL BE SET BY THE PUBLISHER

of all words accepted by A in at most k pushdown flips. The family L (NFPDAk) is
then defined to contain languages Lk(A) for all flip-pushdown automata A (and to
contain no other languages). However, it is clear that for all NFPDA A operating
in k pushdown flips we have Lk(A) = L(A). Conversely, to any NFPDA A it
is possible to construct an NFPDA A′ operating in k pushdown flips, such that
L(A′) = Lk(A) – this may store the number of pushdown flips executed so far in
its state and reject if this number should exceed k.

This means that our definition of the families L (NFPDAk) is equivalent to the
original definition used previously.

Holzer and Kutrib have proved [11] that the families L (NFPDAk) form an
infinite hierarchy with respect to k. We shall refer to this fundamental result as
to the Hierarchy theorem.

Theorem 1.5 (Holzer and Kutrib [11]). The families L (NFPDAk) form an in-
finite hierarchy with respect to k:

L (CF) = L (NFPDA0) (L (NFPDA1) (L (NFPDA2) (. . .

Finally in this section, let us state the important Flip-pushdown input-reversal
theorem, proved by Holzer and Kutrib in [11] (the theorem has been originally
stated in a slightly different form).

Theorem 1.6 (Holzer and Kutrib [11]). Let k be in N. A language L is accepted
by empty pushdown by a NFPDA A1 = (K,Σ,Γ, δ,∆, q0, Z0, ∅) operating in k + 1
pushdown flips if and only if the language

LR = {uvR | (q0, u, Z0) `∗A1
(q1, ε, Z0s) with k flips, q2 ∈ ∆(q1),

and (q2, v, Z0s
R) `∗A1

(q3, ε, ε) without any flip}

is accepted by empty pushdown by some NFPDA A2 operating in k pushdown flips.
The same statement holds for NFPDA accepting by final state.

2. Reversal-Generating Grammars

Two characterisations of flip-pushdown automata in terms of grammars have re-
cently been introduced by the present author [14]. In this paper, we shall make use
of the characterisation relating NFPDA to reversal-generating context-free gram-
mars (RGCFG). Essentially, RGCFGs can be described as “ordinary” context-free
grammars with an extra ability to generate reversals along with ordinary terminal
symbols. In what follows, we shall briefly review some of the basic definitions and
results related to RGCFGs.

Definition 2.1. A reversal-generating context-free grammar (abbr. RGCFG) is
a quintuple G = (N,T, P, σ,r), where (N,T, P, σ) is a context-free grammar, and
r in T is a special reversal symbol.

TITLE WILL BE SET BY THE PUBLISHER 5

The definition of a derivation step is the same as for context-free grammars –
that is, for a reversal-generating grammar G = (N,T, P, σ,r), we write u ⇒G v
if and only if u⇒G′ v, where G′ is the context-free grammar G′ = (N,T, P, σ).

For a RGCFG G = (N,T, P, σ,r), we shall denote by LCF (G) the language
L(G′) generated by the context-free grammar G′ = (N,T, P, σ). The language
generated by the RGCFG G = (N,T, P, σ,r) consists of words generated by the
context-free grammar G′ – that is of words from LCF (G) – with the r-symbols
interpreted in the left-to-right order as reversals of the remaining part of the word.
Formally,

L(G) = {%(w) | w ∈ LCF (G)},

where % : T ∗ → (T − {r})∗ is the reversal-interpreting function defined by

%(w) =

{
w for w without an occurrence of r,
u%(vR) for w = urv, u without an occurrence of r, and v in T ∗.

For c in T and w in T ∗, we denote by |w|c the number of occurrences of c in w.
The RGCFG G is said to generate at most (exactly) k reversals, if for all words w
from LCF (G), |w|r ≤ k (|w|r = k).

Let us now establish some simple properties of reversal-generating context-free
grammars. First, let us prove a proposition relating the language L(G) to the
language LCF (G).

Proposition 2.2. Let G = (N,T, P, σ,r) be a RGCFG. Then

L(G) = {w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1 | w1rw2r . . .rw2n ∈ LCF (G)} ∪

∪ {w1w
R
2n+1w2w

R
2n . . . wnw

R
n+2wn+1 | w1rw2r . . .rw2n+1 ∈ LCF (G)}.

Proof. By definition, L(G) = {%(w) | w ∈ LCF (G)}, where % is the reversal-
interpreting function. Thus, it is sufficient to prove that for all n in N and all
words w1, . . . , w2n+1 in (T − {r})∗,

%(w1rw2r . . .rw2n) = w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1

and

%(w1rw2r . . .rw2n+1) = w1w
R
2n+1w2w

R
2n . . . wnw

R
n+2wn+1.

By induction on n. The claim is trivial for n = 0, as %(ε) = ε and %(w1) = w1.
Now, let us suppose that the claim holds for n = k. We shall prove that it holds

for n = k + 1. Indeed, we have

%(w1rw2r . . .rw2k+2) = w1%(wR
2k+2rw

R
2k+1r . . .rwR

2) =

= w1w
R
2k+2w2w

R
2k+1 . . . wk+1w

R
k+2,

6 TITLE WILL BE SET BY THE PUBLISHER

where the first equality is by definition of the reversal-interpreting function % and
the second equality follows by the induction hypothesis. Similarly,

%(w1rw2r . . .rw2k+3) = w1%(wR
2k+3rw

R
2k+2r . . .rwR

2) =

= w1w
R
2k+3w2w

R
2k+2 . . . w

R
k+3wk+2,

where the first equality is by the definition of % and the second equality follows by
what we have proved above. The proposition is proved. �

The following proposition implies that the “usual” normal forms for context-
free grammars, such as the Chomsky normal form [5, 13], generalize directly to
reversal-generating grammars.

Proposition 2.3. Let G1 = (N1, T1, P1, σ1,r1) and G2 = (N2, T2, P2, σ2,r2) be
RGCFGs. If LCF (G1) = LCF (G2), then L(G1) = L(G2).

Proof. Let LCF (G1) = LCF (G2). Then it follows that

L(G1) = {%(w) | w ∈ LCF (G1)} = {%(w) | w ∈ LCF (G2)} = L(G2)

and the proposition is proved. �

Each reversal-generating context-free grammar G = (N,T, P, σ,r) unambigu-
ously determines an “ordinary” context-free grammar G′ = (N,T, P, σ), such that
L(G′) = LCF (G). To transform the “ordinary” context-free grammar G′ into
some normal form means to construct an “ordinary” context-free grammar G′′,
such that L(G′′) = L(G′) = LCF (G) and G′′ satisfies some condition. However,
we can view the grammar G′′ as a reversal-generating context-free grammar G′′′,
for which Proposition 2.3 implies L(G′′′) = L(G).

As a result, every reversal-generating context-free grammar can be transformed,
e.g., into the Chomsky normal form [5,13], into the Greibach normal form [10,13],
or into the Double Greibach normal form [9,15]. Moreover, the number of reversal
symbols generated by the grammars obviously remains unchanged under these
transformations.

Remark 2.4. The converse of the implication of Proposition 2.3 does not hold. To
see this, let us consider a reversal-generating grammar G1 = (N1, T1, P1, σ1,r1),
such that N1 = {σ1}, T1 = {a,r}, and P1 = {σ1 → a}. Moreover, let us take
a reversal-generating grammar G2 = (N2, T2, P2, σ2,r2), such that N2 = {σ2},
T2 = {a,r}, and P2 = {σ2 → ar}. As can be easily observed, we obtain
LCF (G1) = {a} 6= {ar} = LCF (G2). However, L(G1) = L(G2) = {a}.

Next, we shall prove that for each RGCFG generating at most k reversals, there
is an equivalent RGCFG generating exactly k reversals. So the situation appears
to be similar as for flip-pushdown automata, where NFPDA operating in exactly
k pushdown flips have the same computational power as NFPDA operating in at
most k pushdown flips.

TITLE WILL BE SET BY THE PUBLISHER 7

Proposition 2.5. Let G1 be a RGCFG generating at most k reversal symbols.
Then a RGCFG G2 exists, such that L(G2) = L(G1) and G2 generates exactly k
reversal symbols.

Proof. Let G = (N,T, P, σ,r) be a RGCFG in Chomsky normal form, generating
at most k reversals, such that L(G) = L(G1). We shall construct a RGCFG
G2 = (N2, T, P2, σ2,r), generating exactly k reversals, such that L(G2) = L(G).

The main idea is that in each derivation, the grammar G2 first “guesses” the
number m ≤ k of reversal symbols to be generated by the grammar G. Next, the
derivation proceeds in the same way as in the grammar G, but it is allowed to
generate a terminal word only if it indeed produces m reversal symbols – that is,
the “guess” from the beginning has to be verified.

At the end of the derivation, k−m additional reversal symbols are produced at
the position where they have no effect on the interpretation of the generated word.
By Proposition 2.2, this is always alongside the d(m+ 1)/2e-th reversal symbol of
the original generated word.

In order to add the right number of reversal symbols in the end, the number m
has to be stored as an additional component in nonterminals used in the derivation
after making the initial “guess”.

Moreover, in order to be able to identify the d(m + 1)/2e-th reversal symbol,
the nonterminals are further extended by numbers 1 ≤ i ≤ j ≤ m, meaning
that the given nonterminal generates the i-th to the j-th reversal symbol of the
resulting word. If a nonterminal generates no reversal symbols, then i = j = 0.
When a nonterminal is being rewritten to two nonterminals, it is “guessed” how
these values are distributed between them. These “guesses” are then verified when
producing reversal symbols (then i = j 6= 0 has to hold) and “ordinary” terminal
symbols (then i = j = 0 has to hold). This also verifies the number m “guessed”
in the beginning of the derivation.

Formally, N2 = {σ2} ∪N × {1, . . . , k}3 ∪N × {1, . . . , k} × {(0, 0)}, σ2 is a new
nonterminal, and the set of production rules P2 is given by

P2 = {σ2 → (σ, 0, 0, 0)rk} ∪ {σ2 → (σ,m, 1,m) | 1 ≤ m ≤ k}
∪ {(ξ,m, i, j)→ (α,m, i, t)(β,m, t+ 1, j) | 1 ≤ i ≤ t < j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ,m, i, j)→ (α,m, i, j)(β,m, 0, 0) | 1 ≤ i ≤ j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ,m, i, j)→ (α,m, 0, 0)(β,m, i, j) | 1 ≤ i ≤ j ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ,m, 0, 0)→ (α,m, 0, 0)(β,m, 0, 0) | 0 ≤ m ≤ k; ξ → αβ ∈ P}
∪ {(ξ,m, d(m+ 1)/2e, d(m+ 1)/2e)→rk−m+1 | 1 ≤ m ≤ k; ξ →r ∈ P}
∪ {(ξ,m, i, i)→r | 1 ≤ i ≤ m ≤ k; i 6= d(m+ 1)/2e; ξ →r ∈ P}
∪ {(ξ,m, 0, 0)→ c | 0 ≤ m ≤ k; c ∈ (T − {r}) ∪ {ε}; ξ → c ∈ P}.

It should be clear that L(G2) = L(G) and that G2 always generates exactly k
reversal symbols. The proposition is proved. �

8 TITLE WILL BE SET BY THE PUBLISHER

We shall call the normal form introduced by the following proposition the
Reversal-aware normal form. Intuitively, a reversal-generating grammar is in the
reversal-aware normal form if each nonterminal always generates the same occur-
rences of r-symbols. That is, a nonterminal is always “aware” of which reversal
symbols it produces.

Proposition 2.6. Let G1 = (N1, T, P1, σ1,r) be a RGCFG generating exactly k
reversals. Then a RGCFG G2 = (N2, T, P2, σ2,r) generating k reversals exists,
such that L(G2) = L(G1) and for each ξ in N2, one of the following two properties
holds:

(i) The nonterminal ξ does not generate reversal symbols. That is, |w|r = 0
holds for all w in T ∗, such that ξ ⇒∗ w.

(ii) Numbers i, j in {1, . . . , k} do exist, such that the nonterminal ξ always
generates the i-th to the j-th reversal symbol of the final word. That is,
for all x, y, w in T ∗, such that σ2 ⇒∗ xξy ⇒∗ xwy, |x|r = i − 1, and
|y|r = k − j.

Proof. The idea is very similar to the one used in the proof of Proposition 2.5 – to
each nonterminal, we add two numbers i and j providing information about the
reversal symbols it produces. Such a grammar is obviously in the reversal-aware
normal form.

Formally, let G = (N,T, P, σ,r) be a RGCFG in Chomsky normal form, equiv-
alent to G1 and generating exactly k reversals. We shall construct the gram-
mar G2 = (N2, T, P2, σ2,r) as follows: N2 = N × {1, . . . , k}2 ∪ N × {(0, 0)},
σ2 = (σ, 1, k), and

P2 = {(ξ, i, j)→ (α, i, t)(β, t+ 1, j) | 1 ≤ i ≤ t < j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, i, j)→ (α, i, j)(β, 0, 0) | 1 ≤ i ≤ j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, i, j)→ (α, 0, 0)(β, i, j) | 1 ≤ i ≤ j ≤ k; ξ → αβ ∈ P}
∪ {(ξ, 0, 0)→ (α, 0, 0)(β, 0, 0) | ξ → αβ ∈ P}
∪ {(ξ, i, i)→r | 1 ≤ i ≤ k; ξ →r ∈ P}
∪ {(ξ, 0, 0)→ c | c ∈ (T − {r}) ∪ {ε}; ξ → c ∈ P}.

The grammar G2 is obviously equivalent to G and in the reversal-aware normal
form. The proposition is proved. �

The families of languages generated by reversal-generating context-free gram-
mars are denoted in analogy with the families of languages accepted by flip-
pushdown automata.

Definition 2.7. The family of languages generated by RGCFG producing k re-
versal symbols is denoted by L (RGCFGk). Furthermore,

L (RGCFGfin) :=

∞⋃
k=0

L (RGCFGk).

TITLE WILL BE SET BY THE PUBLISHER 9

The following theorem proved by the present author [14] asserts that RGCFG
producing k reversal symbols are equivalent to flip-pushdown automata operating
in k flips.

Theorem 2.8 (K. [14]). For all k in N, L (NFPDAk) = L (RGCFGk) holds.
As a direct consequence, L (NFPDAfin) = L (RGCFGfin).

Proof. Follows by Lemma 2.9, by Lemma 2.10, and by the fact that NFPDA ac-
cepting by empty pushdown store have the same computational power as NFPDA
accepting by final state [11]. �

Lemma 2.9. Let k be in N and G = (N,T, P, σ,r) be a RGCFG generating at
most k reversals. Then a flip-pushdown automaton A = (K,Σ,Γ, δ,∆, q0, Z0, F)
exists, such that A operates in at most k pushdown flips and N(A) = L(G).

Proof. We shall modify the standard simulation [13] of a leftmost derivation of an
“ordinary” context-free grammar by an “ordinary” pushdown automaton. During
the entire computation of A, a special symbol Z0 will be placed on the bottom
of the pushdown store – the simulation itself will take place above this special
symbol. If an “ordinary” terminal symbol c in T − {r} is found at the top of
the pushdown, the automaton A pops this symbol from the pushdown and reads
the same symbol from the input. If r is found at the top of the pushdown, the
automaton A flips its pushdown store. Finally, if a nonterminal ξ in N is found
at the top of the pushdown, the automaton A nondeterministically rewrites it
according to some production rule ξ → x ∈ P – if the number of pushdown flips
performed so far is even, then ξ is replaced by x and if the number of flips is odd,
then ξ is replaced to xR. This means that the parity of the number of pushdown
flips performed (or the number of r-symbols processed) has to be stored in the
state of the automaton A.

Formally, let us take K = {qinit, qeven, qodd, q′even, q′odd, qfin}, Σ = T − {r},
Γ = N ∪ T ∪ {Z0}, q0 = qinit, let Z0 be a new symbol, F = ∅, and let the
transition functions δ and ∆ be given as follows:

δ(qinit, ε, Z0) 3 (qeven, Z0σ),

δ(qeven, c, c) 3 (qeven, ε) for all c in T − {r},
δ(qodd, c, c) 3 (qodd, ε) for all c in T − {r},

δ(qeven, ε,r) 3 (q′even, ε),

δ(qodd, ε,r) 3 (q′odd, ε),

∆(q′even) 3 {qodd},
∆(q′odd) 3 {qeven},

δ(qeven, ε, ξ) 3 (qeven, x
R) for all ξ → x in P,

δ(qodd, ε, ξ) 3 (qodd, x) for all ξ → x in P,

δ(qeven, ε, Z0) 3 (qfin, ε),

δ(qodd, ε, Z0) 3 (qfin, ε).

10 TITLE WILL BE SET BY THE PUBLISHER

No further transitions are defined in A. Let us note that the same automaton with
F = {qfin} instead of F = ∅ accepts the same language by accepting state.

Without loss of generality, we may suppose that the original grammar G is in the
Reduced normal form (see, e.g., [13]), in which at least one terminal word can be
derived from each sentential form (to be more precise, this is not true if L(G) = ∅,
but this case is trivial). Then, obviously, each sentential form of G contains at
most k reversal symbols. As a result, A operates in at most k pushdown flips. �

Lemma 2.10. Let k be in N and A = (K,Σ,Γ, δ,∆, q0, Z0, F) be an NFPDA
operating in exactly k pushdown flips. Then a reversal-generating context-free
grammar G = (N,T, P, σ,r) exists, such that G generates exactly k reversals and
L(G) = L(A)

Proof. By a minor change to the transition function of A, it is obviously possible
to obtain a flip-pushdown automaton A′, which operates in the same way as A,
but which has to read some new special symbol # before each pushdown flip (and
the only thing A′ may do after reading # is to flip the pushdown store).

Formally, the construction goes as follows: A′ = (K ′,Σ′,Γ′, δ′,∆′, q′0, Z
′
0, F

′),
where K ′ = K×{1, 2}, Σ′ = Σ∪{#}, Γ′ = Γ, q′0 = (q0, 1), Z ′0 = Z0, F ′ = F ×{1},
and the transition functions δ′ and ∆′ are given as follows:

δ′((q, 1), c, Z) = {((p, 1), t) | (p, t) ∈ δ(q, c, Z)} for all q in K, c in Σ, Z in Γ,

δ′((q, 1),#, Z) = {((p, 2), Z) | p ∈ ∆(q)} for all q in K,Z in Γ,

∆′((q, 2)) = {(q, 1)} for all q in K.

The language L(A′) obviously consists of words u = u1#u2# . . .#uk+1, such
that u1u2 . . . uk+1 is accepted by A with k pushdown flips on the positions marked
by #. If k is odd, it is easy to prove by induction that by applying Theorem 1.6
k times, we obtain the language

L′ = {u1#u3# . . .#uk#uRk+1#uRk−1# . . .#uR2 | u1#u2# . . .#uk+1 ∈ L(A′)}.

Similarly, if k is even, the k-fold application of Theorem 1.6 yields the language

L′ = {u1#u3# . . .#uk+1#uRk #uRk−2# . . .#uR2 | u1#u2# . . .#uk+1 ∈ L(A′)}.

By Theorem 1.6, the language L′ is context-free in both cases. Let us now consider
a context-free grammar G′, such that L(G′) = L′. Let G be a reversal-generating
context-free grammar defined in the same way as G′, except that it produces
reversal symbols r instead of symbols #. It then follows by Proposition 2.2 that

L(G) = {u1u2 . . . uk+1 | u1#u2# . . .#uk+1 ∈ L(A′)} = L(A),

and the lemma is proved. �

TITLE WILL BE SET BY THE PUBLISHER 11

3. The Pumping Lemma

Let us now present the main result of this paper: the Pumping lemma for flip-
pushdown languages. Our pumping lemma is a generalisation of the well-known
Pumping lemma for context-free languages [2] (for an expository treatment, see,
e.g., [13]), and can be used as an efficient tool for proving that a given language
is not in L (NFPDAk) for some particular k (or for all k). In the proof of the
Pumping lemma, we shall rely on Theorem 2.8 – we shall base our argumentation
on reversal-generating grammars instead of directly on flip-pushdown automata.

The classical Pumping lemma for context-free languages can be stated either
with two constants p and q, or with only one constant, which can be chosen to
be the maximum of p and q. The situation in our case is similar. For aesthetic
reasons, we shall state the Pumping lemma for flip-pushdown languages with only
one constant q, but it can be restated with three different constants as well.

Theorem 3.1. Let k ≥ 1 be a positive integer and L be a language in L (NFPDAk).
Then a nonnegative integer q exists, such that for all w in L, |w| ≥ q, words
x, u, y, v, z can be found, satisfying the following conditions:

(1) The word w can be factored as w = xuyvz.

(2) Either |uyv| ≤ q, or |uyv| ≥ |w|2k − q with |uv| ≤ q.
(3) The word uv is nonempty.
(4) For all i in N, xuiyviz is in L.

Proof. Let L be in L (NFPDAk). We shall specify q at the end of the proof,
although we shall make several assumptions of the form q ≥ q′ during the course
of the proof. By Theorem 2.8, Proposition 2.5, and Proposition 2.6, there is
a reversal-generating context-free grammar G′ = (N ′, T, P ′, σ,r) in the Reversal-
aware normal form and always generating exactly k reversals, such that L(G′) = L.
The Reversal-aware normal form allows us to divide the set of nonterminals of G′

into reversal-generating and non-reversal-generating nonterminals – we shall rely
on this distinction in what follows.

Let w be a word in L and w′ be a word in LCF (G′), such that one gets w after
interpreting the reversal symbols in w′. Let a derivation tree R′ of w′ in G′ be
fixed. Let q1 be a constant that is guaranteed for G′, viewed as a context-free
grammar, by the classical Pumping lemma for context-free languages.1 We shall
later choose the value of q so that q ≥ q1.

Now, suppose there is a node in the derivation tree R′, corresponding to some
non-reversal-generating nonterminal ξ, such that at least q terminal symbols are
among its descendants – that is σ ⇒∗ rξt ⇒∗ rst = w′ for some ξ in N , r, t in
T ∗, and s in (T − {r})∗ with |s| ≥ q. Then s can be pumped according to the
Pumping lemma for context-free languages, i.e., s = s1s2s3s4s5, |s2s3s4| ≤ q1 ≤ q,
s2s4 is nonempty, and rs1s

i
2s3s

i
4s5t is in LCF (G′) for all i in N. This situation is

depicted in Figure 1.

1If the Pumping lemma is stated with two constants, q1 is the maximum of these two con-
stants. Furthermore, we assume that the same constant applies to all grammars obtained from

G′ by changing the initial nonterminal. Again, this is easily assured by taking the maximum.

12 TITLE WILL BE SET BY THE PUBLISHER

σ

.

ξ

s
w′

Reversal symbols in w′

“Pumpable” subtree
(if |s| ≥ q1)

Figure 1. If a non-reversal-generating nonterminal ξ produces
at least q1 terminals, the corresponding subtree can be pumped
according to the Pumping lemma for context-free languages.

As ξ is non-reversal-generating, s does not contain any reversal symbol, which
means that either w = r′s1s2s3s4s5t

′ for some r′, t′ and r′s1s
i
2s3s

i
4s5t

′ is in L for
all i in N, or w = r′′sR5 s

R
4 s

R
3 s

R
2 s

R
1 t
′′ for some r′′, t′′ and r′′sR5 (sR4)isR3 (sR2)isR1 t

′′ is
in L for all i in N.

It is obvious that in the first case we have |s2s3s4| ≤ q and that in the second
case we have |sR4 sR3 sR2 | ≤ q. This means that the conditions from the statement of
our lemma are satisfied either with x = r′s1, u = s2, y = s3, v = s4, z = s5t

′, or
with x = r′′sR5 , u = sR4 , y = sR3 , v = sR2 , z = sR1 t

′′.
Let us now consider the remaining case, in which there is no such nonterminal ξ

in the derivation tree R′. This means that if a non-reversal-generating nonterminal
occurs in the tree, then it has less than q1 ≤ q terminal descendants.

Under this assumption, let us define a reversal-generating context-free grammar
G = (N,T, P, σ,r) as follows:

(1) The set of terminals T , the initial nonterminal σ, and the reversal symbol
r are the same as for G′.

(2) The set of nonterminals N consists precisely of the reversal-generating
nonterminals from N ′ (and as k ≥ 1, σ is in N).

TITLE WILL BE SET BY THE PUBLISHER 13

(3) The set of production rules P is obtained from P ′ by deleting production
rules from non-reversal-generating nonterminals, and by replacing non-
reversal-generating nonterminals on the right hand sides of the rest of the
rules by all possible terminal words shorter than q1, derivable in G′ from
the original non-reversal-generating nonterminal.

Formally, let η → u1ξ1u2 . . . ξjuj+1 be a production rule from the orig-
inal set P ′, such that η is a reversal-generating nonterminal from N ′,
ξ1, . . . , ξn are non-reversal-generating nonterminals from N ′, and words
u1, . . . , uj+1 consist solely of terminal symbols and reversal-generating
nonterminals from N ′. Moreover, let x1, . . . , xj be words in T ∗, such
that |x1|, . . . , |xj | < q1 and ξi ⇒∗G′ xi for i = 1, . . . , j – clearly, the
set of all such x1, . . . , xj is finite. Then P contains the production rule
η → u1x1u2 . . . xjuj+1. The set P contains no other production rules.

Obviously, LCF (G) ⊆ LCF (G′) and L(G) ⊆ L(G′) = L. Moreover, it is clear
that w′ is in LCF (G) – hence w is in L(G). This altogether means that it suf-
fices to “prove the lemma for L(G) instead of L”. The grammar G clearly is
in the Reversal-aware normal form as well, and contains only reversal-generating
nonterminals.

In order to simplify the analysis, we shall assume that the right hand side of
each production rule of G either consists of at most one terminal and at most
one nonterminal, or consists only of nonterminals. This normal form can easily
be achieved by introducing new reversal-generating nonterminals and replacing
production rules by “chains” of new production rules. Obviously, all properties of
G listed above remain unchanged under this transformation.

So let us focus on the grammar G and fix a derivation tree R of w′ (that is,
w without interpreted reversal symbols) in G. In the rest of the proof, we shall
assume that the number k of reversal symbols generated is odd – in other words,
k + 1 = 2n for some n in N. The proof for k even is similar.

By Proposition 2.2, the word w′ generated by G viewed as a context-free gram-
mar, and the word w obtained by the interpretation of reversal symbols in w′, may
be written as

w′ = w1rw2r . . .rwnrwn+1r . . .rw2n w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1 = w

for some w1, . . . , w2n in (T − {r})∗. The key to the proof is to inspect which
production rules have lead to the production of particular symbols occurring in
w1, . . . , w2n, while using the fact that G is in the Reversal-aware normal form and
has only reversal-generating nonterminals.

Let us first introduce some notation. The functions ζ1, ζ2 : N → {1, . . . , k}
assign to a given nonterminal ξ the index of the leftmost and the rightmost reversal
symbol generated by ξ, respectively. For i = 1, . . . , 2n, the annotation of wi is
a word A(wi) in N∗, such that the symbol on the j-th position of A(wi), denoted
by A(wi)[j], is ξ if and only if the symbol wi[j] has been (directly) produced, in the
derivation tree R, by some production rule from the nonterminal ξ. This notation
extends to subwords of wi as well.

14 TITLE WILL BE SET BY THE PUBLISHER

Now, let us make some observations, largely based on elementary properties of
derivation trees:

1. For j = 1, . . . , |w1|, we have ζ1(A(w1)[j]) = 1.
2. For j = 1, . . . , |w2n|, we have ζ2(A(w2n)[j]) = k.

The situation described in Observations 1 and 2 is depicted in Figure 2.

w1 w2 w2n.

σ

.

ξ η

Figure 2. Each terminal symbol of w1 has to be produced from
some reversal-generating nonterminal ξ. Necessarily, ζ1(ξ) = 1.
Similarly for the terminal symbols of w2n (recall that k+1 = 2n).

3. For i = 2, . . . , 2n − 1, the word wi can be factorized into two possibly
empty factors, wi = yizi, so that ζ2(A(yi)[j]) = i − 1 for j = 1, . . . , |yi|
and ζ1(A(zi)[j]) = i for j = 1, . . . , |zi|.

4. In addition to the observation above, ζ1 is always less than or equal to i−1
on each A(yi), and ζ2 is always greater than or equal to i and decreasing
on each A(zi) (but it is not globally decreasing).

The situation described in Observations 3 and 4 is depicted in Figure 3.

5. If A(wi)[j] = A(wi)[j
′] for some i and j < j′, then either the subword

wi[j] . . . wi[j
′ − 1] or the subword wi[j + 1] . . . wi[j

′] can be pumped in
w′, together with some other associated subword s of w′. This is because
the grammar is in the reversal-aware normal form, has no non-reversal-
generating nonterminals, and each production rule generates at most one
terminal symbol. Thus, if two distinct terminal symbols wi[j] and wi[j

′]

TITLE WILL BE SET BY THE PUBLISHER 15

wi

yi zi

σ

.

ξ η

α β

Figure 3. According to our assumptions, if a terminal is on the
right hand side of a production rule, then this right hand side
contains at most one nonterminal. This implies Observation 3.
Observation 4 should be clear from the figure.

are generated by the same nonterminal ξ, it means that there is an an-
cestral chain in the tree R, beginning and ending in ξ, with wi[j] being
the child of the upper ξ and wi[j

′] being the child of the lower ξ, or vice
versa. In the first case, the subword wi[j] . . . wi[j

′−1] can be pumped and
in the second case, the subword wi[j + 1] . . . wi[j

′] can be pumped, since
the ancestral chain can be arbitrarily repeated. Returning to observations
1–3, the first case occurs if and only if i = 1 or both wi[j] and wi[j

′]
belong to zi, and the second case occurs if and only if i = 2n or both
wi[j] and wi[j

′] belong to yi. The main aim in what follows is to make
the associated subword s to be furthest possible from wi[j] . . . wi[j

′ − 1]
resp. wi[j + 1] . . . wi[j

′] after interpreting the reversal symbols. Now, one

should see that obtaining the gap of |w|2k − q would essentially prove the
Pumping lemma. In the sequel, we shall call words wi[j] . . . wi[j

′−1] (resp.
wi[j + 1] . . . wi[j

′]) as above pumpable subwords, although possibly some
other subwords may be pumped as well.

The situation described in Observation 5 is depicted in Figure 4.

16 TITLE WILL BE SET BY THE PUBLISHER

wi

. . .

σ

. . .

ξ

ξ

Figure 4. A pumpable subword of wi and its associated subword.

We are now prepared to make the key observation. Recall that for the inter-
pretation of reversal symbols in w′, we have

w′ = w1rw2r . . .rwnrwn+1r . . .rw2n w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1 = w.

As w1 appears at the beginning of w, all pumpable subwords in w1 have their
associated subwords on the right of w1 (in w, i.e., after interpreting the reversal
symbols). Similarly, wn+1 appears (reversed) at the end of w, so all pumpable
subwords in wn+1 have their associated subwords in w on the left of wR

n+1.
Now, take wi = yizi for some i, 2 ≤ i ≤ n. It is a direct corollary of Observation

3 above that all pumpable subwords of yi have their associated subwords in some
of the subwords w1, . . . , wi−1. All these subwords are on the left of wi after inter-
preting the reversal symbols. Again by Observation 3, all pumpable subwords of zi
have their associated subwords in some of the subwords wi+1, . . . , w2n. Moreover,
it follows from Observation 4 that for all j1, j2, such that i+1 ≤ j1 < j2 ≤ 2n, the
pumpable subwords of zi having their associated subwords in wj2 appear before
the pumpable subwords of zi having their associated subwords in wj1 . In partic-
ular, pumpable subwords of zi having their associated subwords in w on the left
of wi appear before pumpable subwords of zi having their associated subwords on
the right of wi. To sum up, the word wi can be divided as wi = liri, where all

TITLE WILL BE SET BY THE PUBLISHER 17

pumpable subwords of li have, after the interpretation of reversal symbols, their
associated subwords on the left of wi, and all pumpable subwords of ri have their
associated subwords on the right of wi.

A symmetrical reasoning can be performed for i with n+ 2 ≤ i ≤ 2n, resulting
in a factorization wR

i = lRi r
R
i , where all pumpable subwords of lRi have, after the

interpretation of reversal symbols, their associated subwords on the left of wR
i ,

and all pumpable subwords of rRi have their associated subwords on the right of
wR

i . Moreover, in accordance with what has been observed above, we shall denote
r1 = w1 and lRn+1 = wR

n+1.
Thus, the word w can be written as

w = r1l
R
2nr

R
2nl2r2l

R
2n−1r

R
2n−1 . . . lnrnl

R
n+1,

with the word w being factored into exactly 2(2n) − 2 = 2k subwords. By the

Pigeonhole principle, at least one of these subwords is of length at least |w|2k . Sup-
pose that this subword is li for some i, 1 ≤ i ≤ n (the reasoning for the case
that this subword is ri, l

R
i or rRi is absolutely identical). Recall the definition of

pumpable subwords given above. As there are only finitely many nonterminals in
N , it follows by the Pigeonhole principle that a constant q2 (dependent only on
the grammar G) exists, such that there has to be a pumpable subword v′ in the

suffix of li of length q2, provided |w|2k ≥ q2. As v′ is a subword of a suffix of length
q2, |v′| ≤ q2. Now, let us take a look at the associated subword u′ of v′. This
may be arbitrarily long and appears on the left of v′. If |u′| ≤ q2, let us denote
u = u′ and v = v′. If |u′| > q2, then it follows by the Pigeonhole principle that u′

contains a pumpable subword u of length at most q2. It should be clear that the
associated subword of u – let us denote it by v – lies within v′.

Thus, in both cases we have two subwords, u and v of w, yielding a factorization

w = xuyvz.

It follows that |uyv| ≥ |li| − q2 ≥ |w|2k − q2 and |uv| ≤ 2q2. Furthermore, we have

already mentioned the condition |w|
2k ≥ q2, which implies that the reasoning is

valid only for w, such that |w| ≥ 2kq2. Thus, the Pumping lemma is proved for
q = max{q1, 2kq2}. �

Remark 3.2. In the Introduction, we have claimed that our Pumping lemma for
flip-pushdown languages is a generalisation of the classical Pumping lemma for
context-free languages. This assertion may be viewed as slightly problematic, as
the Pumping lemma for flip-pushdown languages only holds for L (NFPDAk) with
k ≥ 1, while the family of context-free languages identifies with L (NFPDA0) (and
it is known that L (NFPDAi) (L (NFPDAi+1) for all i in N). However, setting

k = 0, the term |w|
2k − q intuitively becomes ∞, thus the condition |uyv| ≥ |w|2k − q

cannot be satisfied and might be omitted. In this way we obtain the Pumping
lemma for context-free languages, which justifies our claim.

18 TITLE WILL BE SET BY THE PUBLISHER

Remark 3.3. For all k ∈ N, k ≥ 1, the language Lk defined by

Lk = {#w1$w1#w2$w2# . . .#wk$wk# | w1, . . . , wk ∈ {a, b}∗}

is in L (NFPDAk) [11]. Intuitively, it is obvious that the only possible way of
pumping words w from Lk is to pump two occurrences of some wi, while both
occurrences have to be pumped “approximately at the same position”, so the
distance between both pumped factors is approximately the length of wi. If the
words wi are of the same length for all i, then the length of each wi is approximately
|w|
2k . As a consequence, the bound |uyv| ≥ |w|2k − q of our Pumping lemma cannot
be improved by more than a constant.

4. Example Applications

In the proof of their Hierarchy theorem [11], Holzer and Kutrib have considered
languages of the following form, defined for all positive integers k:

Lk = {#w1$w1#w2$w2# . . .#wk$wk# | w1, . . . , wk ∈ {a, b}∗}.

As they have observed, the language Lk+1 is in L (NFPDAk+1), but is not in
L (NFPDAk). The original proof of the latter result is somewhat complicated –
it is first argued that if Lk+1 is in L (NFPDAk), then one can transform Lk+1

to a context-free language by applying exactly k times the Flip-pushdown input-
reversal theorem [11] (reproduced as Theorem 1.6 in the present paper). Next,
a generalized Ogden’s lemma of Bader and Moura [1] is applied to this context-
free language, and finally the Flip-pushdown input-reversal theorem is undone.

In what follows, we shall use our Pumping lemma to obtain the same result. Our
proof shall be significantly simpler than the original one by Holzer and Kutrib [11].

Example 4.1. In order to demonstrate the main idea, we shall first prove that
the language

L2 = {#w1$w1#w2$w2# | w1, w2 ∈ {a, b}∗}.
is not in L (NFPDA1). We shall tackle the general case later in Example 4.2.

Suppose that L2 is in L (NFPDA1). Let q be a constant guaranteed for L2 by
the Pumping lemma for languages in L (NFPDA1).

Without loss of generality, assume q > 0 and take

w = #a2qb2q$a2qb2q#a2qb2q$a2qb2q#.

Then, by the Pumping lemma, words x, u, y, v, z can be found, such that the
properties (1)–(4) are satisfied. By the second condition, either |uyv| ≤ q, or

|uyv| ≥ |w|
2 − q with |uv| ≤ q. It can be easily verified that the case |uyv| ≤ q

immediately leads to a contradiction, as the language L2 is not context-free.

TITLE WILL BE SET BY THE PUBLISHER 19

Let us suppose that |uyv| ≥ |w|2 − q. In other words,

|uyv| ≥ |w|
2
− q =

16q + 5

2
− q > 7q + 2.

As |uv| ≤ q, we obtain

|uy| > 6q + 2.

It should be clear that in order for xu2yv2z to be in L2, u and v have to be both
nonempty and their first letters have to be the same. Moreover, neither u nor v
may contain # or $.

Given |uy| > 6q + 2, the above requirements are satisfied only if y contains the
middle # – that is, if u belongs to the first half of w, and v belongs to the second
half of w. However, the contradiction is immediate in this case.

Example 4.2. Let k ≥ 1. We shall prove that the language

Lk+1 = {#w1$w1#w2$w2# . . .#wk+1$wk+1# | w1, . . . , wk+1 ∈ {a, b}∗}

is not in L (NFPDAk).
Suppose that Lk+1 is in L (NFPDAk). Let q be a constant guaranteed for Lk+1

by the Pumping lemma for languages in L (NFPDAk).
Without loss of generality, we may assume q > 0. Let us set

w1 = w2 = . . . = wk+1 =
(
a2qb2q

)k
and take

w = #w1$w1#w2$w2# . . .#wk+1$wk+1#.

Clearly, w is in Lk+1, so the Pumping lemma implies the existence of words
x, u, y, v, z, such that the properties (1)–(4) are satisfied. By the second condi-

tion, either |uyv| ≤ q, or |uyv| ≥ |w|
2k − q with |uv| ≤ q. The case |uyv| ≤ q

immediately leads to a contradiction, as the language Lk+1 is not context-free.

For this reason, we may suppose that |uyv| ≥ |w|2k − q. In other words,

|uyv| ≥ |w|
2k
− q =

8k(k + 1)q + 2k + 3

2k
− q > (4k + 3)q + 1.

As |uv| ≤ q, we obtain

|uy| > (4k + 2)q + 1.

In order for xu2yv2z to be in Lk+1, u and v have to be both nonempty and their
first letters have to be the same. Moreover, neither u nor v may contain # or $.

If uyv is not contained in a subword wi$wi for some i, then the contradiction
is immediate. So let us suppose that uyv is contained in such a subword.

The word wi is, by definition, composed of k “blocks” of the form a2qb2q, and
the total length of wi is 4kq. Given |uy| > (4k + 2)q + 1, the above requirements
can be satisfied only if u does not begin in the same block of wi (in the first

20 TITLE WILL BE SET BY THE PUBLISHER

occurrence of wi) as v (in the second occurrence of wi). The contradiction follows
easily.

Example 4.3. As a last example, we shall prove that the language

L = {anbncn | n ∈ N}

is not in L (NFPDAfin). This fact is well known and can easily be proved using
alternative methods [11]. However, our aim is to demonstrate that the Pumping
lemma for flip-pushdown languages can be utilized to prove that a language is not
in L (NFPDAfin).

Suppose that L is in L (NFPDAk) for some k ≥ 1. Let q be a constant guar-
anteed for L by the Pumping lemma.

Take w = aqbqcq in L. It follows that there are words x, u, y, v, z, such that
the properties (1)–(4) of the Pumping lemma are satisfied for w. It can be easily
seen that if u or v contains two or more different symbols, then xu2yv2z does not
belong to a∗b∗c∗, and hence is not in L. On the other hand, if u ∈ e∗ and v ∈ f∗
for some e and f in {a, b, c}, then clearly xu2yv2z = aibjck, where either i 6= j, or
i 6= k. Thus, xu2yv2z is not in L and a contradiction follows.

It should be noted that the bound |uyv| ≥ |w|
2k − q is irrelevant when proving

that a language is not in L (NFPDAfin), as k can be arbitrarily large.

Conclusion

We have formulated and proved a pumping lemma for the families of languages
accepted by flip-pushdown automata with a number of flips limited by a constant.
The lemma provides an efficient tool for disproving existence of flip-pushdown
automata for specific languages. In particular, it is possible to apply the lemma
to prove that a given language does not belong to L (NFPDAk) for some specific
k or that the language does not belong to L (NFPDAfin). As demonstrated by
the examples of Section 4, in particular by Example 4.2, proofs using our pumping
lemma might be significantly simpler compared to proofs via previously known
techniques.

In addition to proving the result for its own sake, the techniques used have
hopefully convinced the reader about the power of the grammatical viewpoint on
flip-pushdown automata.

In [14], the present author has described two families of grammars, which are
(after some suitable restriction) equivalent to flip-pushdown automata with a con-
stant number of flips: reversal-generating context-free grammars (RGCFG) and
parallel interleaving grammar systems (PIGS). Holzer and Kutrib [11] have asked
a question regarding the relation of flip-pushdown automata with a constant num-
ber of flips to E0L systems and to ET0L systems. The former question has already
been successfully settled by Ďurǐs and Košta [7], who have proved that the families
L (NFPDAfin) and L (E0L) are incomparable. As an example application of par-
allel interleaving grammar systems, it has been proved in [14] that flip-pushdown

TITLE WILL BE SET BY THE PUBLISHER 21

automata with a constant number of flips are strictly weaker than ET0L systems,
which has settled the latter problem.

The characterisation in terms of reversal-generating context-free grammars has
only been used in [14] to prove the characterisation in terms of PIGS. That is, the
pumping lemma presented in this paper is the first direct application of reversal-
generating grammars to the theory of flip-pushdown languages.

Of course, the presented pumping lemma is not the only possible application
of RGCFGs that naturally comes to mind. For instance, Ďurǐs and Košta have
obtained a relatively technical proof [6] of the fact that spontaneous transitions in
flip-pushdown automata with a constant number of flips can be removed (without
affecting the number of flips). The proof via reversal-generating grammars is
considerably simpler: as every reversal-generating context-free grammar G can
be viewed as an “ordinary” context-free grammar, the result can be established
relatively easily by using the fact that G can be transformed into the Double
Greibach normal form [9,15].

In a similar spirit, the simulation of reversal-generating grammars by flip-
pushdown automata (described in the proof of Lemma 2.9) solves in affirmative
an open problem of Ďurǐs and Košta [6], who have asked if each language from
L (NFPDAfin) can be accepted by a flip-pushdown automaton with a constant
number of states (that is independent of the number of flips).

The author also believes that reversal-generating context-free grammars may
be used to unify certain concepts. In particular, Bordihn, Holzer, and Kutrib
have introduced so called input-reversal pushdown automata [3], a model in some
sense symmetric to flip-pushdown automata, for which they have proved its equiv-
alence to linear indexed grammars [8]. It should be immediate that input-reversal
pushdown automata are equivalent to a modification of RGCFGs, in which rever-
sal symbols are interpreted in the right-to-left order. This makes the symmetry
between input-reversal and flip-pushdown automata even more evident.

Finally, it seems likely that a RGCFG-like characterisation may be obtained for
several other families of automata, such as hairpin automata of Bordihn, Holzer,
and Kutrib [4].

References

[1] C. Bader and A. Moura. A generalization of Ogden’s lemma. J. ACM, 29(2):404–407, 1982.

[2] Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure

grammars. Z. Phonetik. Sprachwiss. Kommunikationsforsch., 14(2):143–172, 1961.
[3] H. Bordihn, M. Holzer, and M. Kutrib. Input reversals and iterated pushdown automata:

A new characterization of Khabbaz geometric hierarchy of languages. In C. C. Calude,
E. Calude, and M. J. Dinneen, editors, DLT 2004, volume 3340 of LNCS, pages 102–113.
Springer, 2004.

[4] H. Bordihn, M. Holzer, and M. Kutrib. Hairpin finite automata. J. Autom. Lang. Comb.,

16(2–4):71–74, 2011.
[5] N. Chomsky. On certain formal properties of grammars. Inf. Control, 2(2):137–167, 1959.

[6] P. Ďurǐs and M. Košta. Flip-pushdown automata: nondeterministic ε-moves can be removed.
In M. Lopatková, editor, ITAT 2011, pages 15–22, 2011.

22 TITLE WILL BE SET BY THE PUBLISHER

[7] P. Ďurǐs and M. Košta. Flip-pushdown automata with k pushdown reversals and E0L sys-

tems are incomparable. Inf. Process. Lett., 114(8):417–420, 2014.
[8] J. Duske and R. Parchmann. Linear indexed languages. Theor. Comput. Sci., 32:47–60,

1984.

[9] J. Engelfriet. An elementary proof of Double Greibach normal form. Inf. Process. Lett.,
44(6):291–293, 1992.

[10] S. A. Greibach. A new normal-form theorem for context-free phrase structure grammars. J.

ACM, 12(1):42–52, 1965.
[11] M. Holzer and M. Kutrib. Flip-pushdown automata: k + 1 pushdown reversals are better

than k. In J. Baeten et al., editors, ICALP 2003, volume 2719 of LNCS, pages 490–501.

Springer, 2003.
[12] M. Holzer and M. Kutrib. Flip-pushdown automata: Nondeterminism is better than deter-

minism. In Z. Ésik and Z. Fülöp, editors, DLT 2003, volume 2710 of LNCS, pages 361–372.

Springer, 2003.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Pearson, third edition, 2006.

[14] P. Kostolányi. Two grammatical equivalents of flip-pushdown automata. In G. F. Italiano

et al., editors, SOFSEM 2015, volume 8939 of LNCS, pages 302–313. Springer, 2015.
[15] D. J. Rosenkrantz. Matrix equations and normal forms for context-free grammars. J. ACM,

14(3):501–507, 1967.

[16] P. Sarkar. Pushdown automaton with the ability to flip its stack. Electronic Colloquium on
Computational Complexity (ECCC), 8, 2001.

Communicated by (The editor will be set by the publisher).

...

