
Two Grammatical Equivalents
of Flip-Pushdown Automata⋆

Peter Kostolányi

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University in Bratislava, Mlynská dolina, 842 48 Bratislava, Slovakia

Abstract. Flip-pushdown automata, introduced by Sarkar [7], are push-
down automata with an additional ability to reverse the contents of
their pushdown, and with the most interesting setting arising when the
number of such flips is limited by a constant. Two characterizations of
flip-pushdown automata (with a limited number of flips) in terms of
grammars are presented in this paper. First, the model is characterized
by context-free grammars with an extra ability to generate reversals,
which are called reversal-generating context-free grammars (RGCFG).
Next, a model of parallel word production called parallel interleaving
grammar system (PIGS) is introduced, for which the equivalence with
flip-pushdown automata is proved, linking flip-pushdown automata to
parallelism. The characterization in terms of PIGS is used to prove that
flip-pushdown automata (with a limited number of flips) are weaker than
ET0L systems, which solves an open problem of Holzer and Kutrib [2].

Keywords: Flip-Pushdown Automaton, Reversal-Generating Context-
Free Grammar, RGCFG, Parallel Interleaving Grammar System, PIGS

1 Introduction

Nondeterministic flip-pushdown automata (NFPDA) are an extension of ordi-
nary (nondeterministic) pushdown automata, given an additional ability to flip
the pushdown store, i.e., to reverse its contents. This flipping operation allows
to read the pushdown store at both of its ends and, in particular, to use it as
a dequeue.

Since dequeue automata can be used to simulate Turing machines, it is ob-
vious that when the number of pushdown flips is unlimited, flip-pushdown au-
tomata and Turing machines are equal in their computational power [7]. Thus,
the research focus has been mainly on flip-pushdown automata with the number
of flips limited by a constant. Flip-pushdown automata, limited in this way, are
known to be more powerful than ordinary pushdown automata, while retaining
virtually all of their pleasant properties, which makes the study of flip-pushdown
automata particularly interesting [2].

⋆ This work has been supported by the grants VEGA 1/0979/12 and UK/322/2014.

2 Peter Kostolányi

Flip-pushdown automata have been introduced by Sarkar in [7]. Since then,
many of their properties have been resolved. Most of these results have been
obtained by Holzer and Kutrib in [2] and [3].

However, up to now, there has been no type of grammar proved to be equiv-
alent to NFPDA with a limited number of flips. In this paper, we introduce such
grammars. First, we show that (limited) NFPDA are equivalent to an extension
of context-free grammars that we call reversal-generating context-free grammars
(RGCFG). Such grammars have an ability to generate reversals along with or-
dinary symbols, and are related to the flip-pushdown input-reversal technique
introduced by Holzer and Kutrib [2]. Next, we show that (limited) NFPDA
are equivalent to systems of parallel grammars that we call parallel interleav-
ing grammar systems (PIGS). PIGS appear to be a natural way of describing
parallel word productions, so the equivalence of NFPDA and PIGS establishes
a strong link between NFPDA and parallelism.

The viewpoint of grammars can make the reasoning about NFPDA-languages
much easier, as we demonstrate by providing an example application. In particu-
lar, Holzer and Kutrib have posed in [2] an open problem of the relation between
(limited) NFPDA and E0L systems and between (limited) NFPDA and ET0L
systems, and in both cases they have conjectured incomparability. The former
problem has been solved by Ďurǐs and Košta in [1], where they have proved that
NFPDA and E0L are in fact incomparable. In this paper, we solve the latter
problem by showing that the strict inclusion holds, i.e., NFPDA with a limited
number of flips are strictly weaker than ET0L systems.

2 Definitions

In this section, we shall review the formal definition of NFPDA and the cor-
responding families of languages, and briefly survey some of the basic results
obtained so far.

Definition 1. A (nondeterministic) flip-pushdown automaton (NFPDA) is a
tuple A = (K,Σ, Γ, δ,∆, q0, Z0, F), where K is a finite set of states, Σ is an
input alphabet, Γ is a pushdown alphabet, δ is an ordinary transition function
from K × (Σ ∪ {ε}) × Γ to finite subsets of K × Γ ∗, ∆ is a flip transition
function from K to subsets of K, q0 in K is an initial state, Z0 in Γ is a
bottom-of-pushdown symbol, and F ⊆ K is a set of accepting states.

A configuration of the NFPDA A is defined similarly as for ordinary PDA,
i.e., it is a triple (q, w, s), where q in K is a state, w in Σ∗ is an unread part
of the input word, and s in Γ ∗ is a content of the pushdown (written from the
bottom of the pushdown). A computation step of the NFPDA A is a relation
⊢A on its configurations defined as follows: for p, q in K, a in Σ ∪ {ε}, u in Σ∗,
s, t in Γ ∗, and Z in Γ , we define (p, au, sZ) ⊢A (q, u, st) if (q, t) is in δ(p, a, Z)
(ordinary transitions) and (p, u, Z0s) ⊢A (q, u, Z0s

R) if q is in ∆(p) (flip tran-
sitions). Observe that the flip transition function does not depend neither on
the input, nor on the contents of the pushdown. However, it may be easily seen

Two Grammatical Equivalents of Flip-Pushdown Automata 3

that this definition is equivalent to the definition with a flip transition function
∆ going from K × (Σ ∪ {ε}) × Γ to K. If A is understood from the context,
we shall write ⊢ instead of ⊢A. The language L(A) accepted by A by a final
state and the language N(A) accepted by A by empty pushdown are defined
as usual: L(A) = {w ∈ Σ∗ | ∃q ∈ F, s ∈ Γ ∗ : (q0, w, Z0) ⊢∗ (q, ε, s)}, and
N(A) = {w ∈ Σ∗ | ∃q ∈ K : (q0, w, Z0) ⊢∗ (q, ε, ε)}. We say that the NFPDA A
operates in at most (exactly) k flips, if in every its computation, the pushdown
store is reversed at most (exactly) k times. This can be easily turned into a
syntactic definition as well.

In [2], it is proved that NFPDA accepting by a final state and NFPDA
accepting by empty pushdown are equivalent, while the simulations involved do
not change the number of flips performed. Moreover, it is proved there that
NFPDA with at most k flips are equivalent to NFPDA with exactly k flips.
In [7], it is observed that NFPDA with unrestricted number of pushdown flips
are equivalent to Turing machines in their computational power.

Definition 2. We denote the family of languages accepted (either by a final
state or by empty pushdown) by some NFPDA operating in at most k flips by
L (NFPDAk). Further, we define

L (NFPDAfin) =

∞∪
k=0

L (NFPDAk),

and denote the family of languages accepted by arbitrary NFPDA by L (NFPDA)
(it is already shown that L (NFPDA) = L (RE)).

In the previous works [7], [2], and [3], these families of languages have been
defined in a slightly different manner. However, both definitions can be clearly
seen to be equivalent. In [2], it has been proved that the families L (NFPDAk)
form an infinite hierarchy, i.e.,

L (CF) = L (NFPDA0) (L (NFPDA1) (L (NFPDA2) (. . .

Finally, let us state the important Flip-pushdown input-reversal theorem, intro-
duced by Holzer and Kutrib in [2] (in a slightly different form).

Theorem 1 (Holzer, Kutrib [2]). Let k be in N. A language L is accepted by
empty pushdown by a NFPDA A1 = (K,Σ, Γ, δ,∆, q0, Z0, ∅) operating in k + 1
pushdown flips iff the language

LR = {uvR | (q0, u, Z0) ⊢∗
A1

(q1, ε, Z0s) with k flips, q2 ∈ ∆(q1),

and (q2, v, Z0s
R) ⊢∗

A1
(q3, ε, ε) without any flip}

is accepted by empty pushdown by some NFPDA A2 operating in k pushdown
flips. The same statement holds for NFPDA accepting by a final state.

4 Peter Kostolányi

3 Reversal-Generating Context-Free Grammars

In this section, we define an extension of context-free grammars that has an
additional ability to generate reversals. We shall call such context-free grammars
reversal-generating and we shall prove that they are equivalent to NFPDA. Our
definition of these grammars will be closely related to the flip-pushdown input-
reversal technique of Holzer and Kutrib [2]. In fact, word production by reversal-
generating grammars can be viewed as an inverse of this technique. While in the
flip-pushdown input-reversal technique one gets a word from a NFPDA-language
and transforms this word by a series of reversals into a word from a certain
context-free language, a reversal-generating grammar generates a context-free
language with special reversal symbols. By interpreting these reversal symbols
in an appropriate order, one actually performs an inverse of the flip-pushdown
input-reversal technique, and obtains a word from some NFPDA-language.

Definition 3. A reversal-generating context-free grammar (RGCFG) is a five-
tuple G = (N,T, P, σ,r), where (N,T, P, σ) is a context-free grammar, and r
is a special reversal symbol belonging to T .

A derivation step of G is defined as for the context-free grammar G′ =
(N,T, P, σ). The only difference is in the definition of the generated language.
We define L(G) = {ϱ(w) | w ∈ L(G′)}, where ϱ : T ∗ → (T − {r})∗ is the
reversal-interpreting function defined inductively by

ϱ(w) =

{
w for w without an occurrence of r,
uϱ(vR) for w = urv, u without an occurrence of r, and v in T ∗.

That is, reversal symbols are interpreted in the left-to-right order. We illus-
trate this by the following example.

Example 1. Let us consider a RGCFG G = (N,T, P, σ,r), such that (N,T, P, σ)
generates a language consisting of words having the form urvrxryrz. Then,
for every such word, the language L(G) contains the word

ϱ(urvrxryrz) = uϱ(zRryRrxRrvR) = uzRϱ(vrxry) =

= uzRvϱ(yRrxR) = uzRvyRϱ(x) = uzRvyRx.

The following proposition can be proved easily by induction, so we omit its
proof.

Proposition 1. Let G = (N,T, P, σ,r) be a RGCFG and let us denote the
context-free grammar (N,T, P, σ) by G′. Then,

L(G) = {w1w
R
2nw2w

R
2n−1 . . . wnw

R
n+1 | w1rw2r . . .rw2n ∈ L(G′)} ∪

∪ {w1w
R
2n+1w2w

R
2n . . . wnw

R
n+2wn+1 | w1rw2r . . .rw2n+1 ∈ L(G′)}.

Two Grammatical Equivalents of Flip-Pushdown Automata 5

Similarly as in the case of NFPDA, we shall be interested mainly in reversal-
generating grammars generating a limited number of reversal symbols. We shall
call RGCFG generating at most k reversal symbols k-reversal-generating. It can
be observed that this can be easily turned into a syntactic constraint, and that
the condition of generating at most k reversal symbols is equivalent to the condi-
tion of generating exactly k reversal symbols. Further, a reversal-aware normal
form of k-reversal generating CFGs can be considered, such that every nonter-
minal is aware of which reversals it produces in a terminal word. This can be
formalized by taking a set of nonterminal symbols of the form N = N ′×2{1,...,k},
where the second projection of each nonterminal is a (possibly empty) set of in-
dices, corresponding to reversal symbols it generates in a terminal word. Ob-
viously, these sets always consist of contiguous numbers. A proof that this is
indeed a normal form is easy, and left to the reader.

Definition 4. We denote the family of languages generated by k-reversal gen-
erating context-free grammars by L (RGCFGk). Furthermore, we define

L (RGCFGfin) =
∞∪
k=0

L (RGCFGk).

We denote the family of languages generated by unrestricted reversal-generating
context-free grammars by L (RGCFG).

Finally, we may proceed to the main theorem of this section, asserting that
NFPDA and RGCFG are equivalent.

Theorem 2. For all k in N, the identity L (NFPDAk) = L (RGCFGk) holds.

Proof. First, let G be a RGCFG producing k reversal symbols. An equivalent
NFPDA A performing k pushdown flips can be defined similarly as in the stan-
dard simulation of context-free grammars on pushdown automata (see, e.g., [4]).
Let us initialize Psim to be the set of production rules of G. The automaton
A first makes its pushdown store contain the word Z0σ, where Z0 is a fixed
bottom-of-pushdown symbol (different from the terminals and nonterminals of
G), and σ is an initial nonterminal of G. Next, the following procedure is re-
peated: If a nonterminal of G is on the top of the pushdown, read nothing from
the input and rewrite the nonterminal on the pushdown using some production
rule in Psim. If r is on the top of the pushdown, erase it, perform a flip, and
reverse the right-hand sides of production rules in Psim. If any other terminal is
on the top of the pushdown, erase it, and read the same symbol from the input.
If it is not possible, A gets stuck. The automaton accepts if Z0 is on the top of
the pushdown (and the whole input is read). Clearly, L(A) = L(G).

Now, let us prove the remaining inclusion. Let A be a NFPDA performing
k flips. Obviously, by a minor change of its transition function, it is possible
to obtain a NFPDA A′, which behaves exactly like A, except that before every
pushdown flip, it is forced to read some new special symbol # (and which cannot
accept the input if some #-transition is not followed by a pushdown flip). Clearly,

6 Peter Kostolányi

L(A′) consists of words u = u1#u2# . . .#uk+1, such that u1u2 . . . uk+1 can be
accepted by A with k flips performed at the positions marked in u by symbols
#. Now, by applying the flip-pushdown input-reversal technique [2] (see also
Theorem 1 of the present paper) k times, one obtains the language

L′ = {u1#u3# . . .#uk#uR
k+1#uR

k−1# . . .#uR
2 | u1#u2# . . .#uk+1 ∈ L(A′)},

if k is odd, and the language

L′ = {u1#u3# . . .#uk+1#uR
k #uR

k−2# . . .#uR
2 | u1#u2# . . .#uk+1 ∈ L(A′)},

if k is even (this can be easily proved by induction). The Flip-pushdown input-
reversal theorem implies that the language L′ is context-free. Consider a context-
free grammar G′ generating L′, and define a RGCFG G to be the same as G′,
but generating r instead of #. Then, it follows by Proposition 1 that

L(G) = {u1u2 . . . uk+1 | u1#u2# . . .#uk+1 ∈ L(A′)} = L(A).

The theorem is proved. ⊓⊔

Corollary 1. L (NFPDAfin) = L (RGCFGfin).

4 Parallel Interleaving Grammar Systems

In this section, we shall introduce systems of parallel grammars, which we shall
call parallel interleaving grammar systems (PIGS). Roughly said, languages gen-
erated by PIGS consist of words u1v1u2v2 . . . umvm, where u1#u2# . . .#um is
generated by one context-free grammar, and v1#v2# . . .#vm is generated by
another one. Here, # is a special switch symbol marking points in which the
grammars interleave. The number of switch symbols generated need not be the
same for both grammars, but the principle sketched above can be clearly gener-
alized to hold in this setting as well.

Thus, we have two context-free grammars interleaving each other. However,
these two grammars need not generate their words from scratch, but some se-
quential precomputation may take place. This means that first, an initial senten-
tial form is precomputed sequentially, and this is then used by both grammars to
start the generative process from. We shall prove that if the language of sequen-
tially precomputed sentential forms is regular, then PIGS (with some restriction
on the number of switch symbols) are equivalent to NFPDA (with a restriction
on the number of pushdown flips).

To sum up, the generative process of PIGS can be divided into three stages.
First, a sequential precomputation takes place, resulting in some sentential form.
Next, this sentential form is used as an axiom by two context-free grammars,
both of which (asynchronously) produce a terminal word with special switch
symbols #. Finally, these two words are combined into the final output by the
following procedure: start by copying the word generated by the first grammar.
When a switch symbol is encountered, do not copy it to the output, but continue
by copying the word generated by the second grammar, etc.

Two Grammatical Equivalents of Flip-Pushdown Automata 7

Definition 5. A parallel interleaving grammar system with two context-free
grammars and with a regular set of axioms (PIGS(2,CF,Reg)) is a six-tuple
G = (N,T, P1, P2,#, I), where N is a finite set of nonterminals, T is a finite set
of terminals, N ∩ T = ∅, P1, P2 ⊆ N × (N ∪ T)∗ are two finite sets of context-
free production rules, # in T is a switch symbol, and I ⊆ (N ∪ T)∗ is a regular
language of initial sentential forms (axioms).

Remark 1. In order to make the above definition strictly finitary, the regular set
I may be replaced, e.g., by a regular grammar generating I.

Remark 2. The notation PIGS(2,CF,Reg) has been chosen in regard to possible
future generalizations: PIGS consisting of more than two grammars can be stud-
ied, and some other family of grammars, and/or axiom sets can be considered.
We believe that these generalizations are worth of research interest.

A derivation step of the first grammar of G is a binary relation ⇒G,1 (or
simply ⇒1, if G is understood) on (N ∪T)∗ defined as follows: u ⇒G,1 v iff there
are words u1, u2, x in (N ∪ T)∗ and a nonterminal ξ in N , such that u = u1ξu2,
v = u1xu2, and ξ → x is in P1. A derivation step of the second grammar of G,
⇒G,2 (or ⇒2, if G is understood), is defined similarly. The language generated
by the first grammar of G from the axiom x is defined by

L(G, 1, x) = {w ∈ T ∗ | x ⇒∗
1 w},

and we make an analogous definition for the second grammar of G as well. Let
us define a locally regulated shuffle w1 �# w2 of words w1, w2 to be the output
φ(w1, w2) of the word combining function φ defined by

φ(u1#u2# . . .#ui, v1#v2# . . .#vj) = u1v1u2v2 . . . ujvjuj+1 . . . ui

for i ≥ j, and by

φ(u1#u2# . . .#ui, v1#v2# . . .#vj) = u1v1u2v2 . . . uivivi+1 . . . vj

for i ≤ j. For languages L1, L2, let us define

L1 �# L2 = {w1 �# w2 | w1 ∈ L1, w2 ∈ L2}.

Then, we define the language generated by G by

L(G) =
∪
x∈I

L(G, 1, x)�# L(G, 2, x).

Remark 3. Every language L, generated by some PIGS(2,CF,Reg), can be ex-
pressed by L =

∪
w∈R τ1(w)�# τ2(w), where R is a regular language, and τ1, τ2

are context-free substitutions.

Remark 4. The operation �# can be regarded as an analogy of shuffles on
trajectories, studied in [5], with a local control instead of a global one. Thus, we
believe it is worth of research attention.

8 Peter Kostolányi

Similarly as in the case of NFPDA and RGCFG, we shall be interested mostly
in PIGS generating a limited number of switch symbols. We shall call a PIGS
(i, j)-switch-generating, if its first grammar generates i switch symbols, and its
second grammar generates j switch symbols (it can be easily seen that this is
equivalent to the condition of generating at most i resp. j switch symbols). By
a direct analogy with reversal-aware RGCFGs, a switch-aware normal form of
(i, j)-switch-generating PIGS can be defined (cf. Section 3). However, two sets
of indices – one for each grammar – have to be remembered here for every
nonterminal.

Definition 6. We denote the family of languages generated by (i, j)-switch gen-
erating PIGS(2,CF,Reg) by L (PIGS(i,j)(2,CF,Reg)). Further, we define

L (PIGSfin(2,CF,Reg)) =
∪

i,j≥0

L (PIGS(i,j)(2,CF,Reg)),

and we denote the family of languages generated by unrestricted PIGS(2,CF,Reg)
by L (PIGS(2,CF,Reg)).

Now, we may present the main result of this paper, characterizing languages
accepted by NFPDA in terms of PIGS.

Theorem 3. For all k ≥ 1, L (NFPDAk) = L (PIGS⌈ k−1
2 ⌉,⌊ k−1

2 ⌋(2,CF,Reg)).

Proof. We shall use Theorem 2, i.e., we shall prove our statement by showing
that the identity

L (RGCFGk) = L (PIGS⌈ k−1
2 ⌉,⌊ k−1

2 ⌋(2,CF,Reg))

holds for all k ≥ 1. In the rest of the proof, we shall assume that k is odd. The
proof for the case when k is even is analogous.

First, let G = (N,T, P, σ,r) be a k-reversal-generating RGCFG in the
reversal-aware normal form. We shall construct a ((k − 1)/2, (k − 1)/2)-switch-
generating PIGS(2,CF,Reg)G′ = (N ′, T ′, P ′

1, P
′
2,#, I ′), such that L(G′) = L(G).

We shall call nonterminals, from which the middle (i.e., the (k+1)/2-st) reversal
symbol is generated, middle nonterminals. Obviously, the initial nonterminal σ
is middle, and there is at most one middle nonterminal in each sentential form.

Now, for each word w generated by G, consider a derivation such that pro-
duction rules from middle nonterminals are used first, followed by all other
rules. The first stage of the derivation has a form σ ⇒∗ urv, where u, v are
in (N ∪T)∗, and it follows by Proposition 1 that u ⇒∗ w1r . . .rw(k+1)/2 =: x,
v ⇒∗ w(k+3)/2r . . .rwk+1 =: y, where w = w1w

R
k+1 . . . w(k+1)/2w

R
(k+3)/2. Thus,

it is obviously sufficient to construct G′ so that its first grammar generates x,
and its second grammar generates yR (in both cases with r replaced by #), for
all words x, y as above (and nothing else is generated by G′).

In order to do this, let us first observe that a regular language R and homo-
morphisms h1, h2 do exist, such that

{(h1(z), h2(z)) | z ∈ R}

Two Grammatical Equivalents of Flip-Pushdown Automata 9

is exactly the set of all pairs (u, vR), such that G generates urv in the first
stage of some derivation, where the reversal symbol between u and v is middle.
The language R may be, for instance, defined to be a language over the alphabet
of production rules of G, consisting of all valid chains of production rules from
middle nonterminals, together forming a complete first stage of some derivation.

Suppose that the alphabet ΣR of R and N ∪T are disjoint. Now, set I ′ = R,
and define P ′

1 to contain rules simulating h1, i.e., rewriting all symbols c from
ΣR by h1(c), and, furthermore, all production rules of G with r replaced by #.
Formally, P ′

1 = {c → h(h1(c)) | c ∈ ΣR} ∪ {ξ → h(x) | ξ → x ∈ P}, where h
is a homomorphism such that h(r) = # and h(c) = c for c in (N ∪ T)− {r}.
Furthermore, define P ′

2 to contain rules simulating h2 and rules of G with their
right side reversed (and with r replaced by #). This can be formally written as
P ′
2 = {c → h(h2(x)) | c ∈ ΣR} ∪ {ξ → h(x)R | ξ → x ∈ P}. Finally, let us set

N ′ = N ∪ ΣR, T
′ = (T ∪ {#}) − {r}, and the PIGS G′ is completely defined.

By what has been noted above, it is clear that L(G′) = L(G).
Now, we shall prove the remaining inclusion. Suppose that we are given a

((k−1)/2, (k−1)/2)-switch-generating PIGS(2,CF,Reg)G = (N,T, P1, P2,#, I).
We shall construct a k-reversal-generating RGCFG G′ = (N ′, T ′, P ′, σ′,r), such
that L(G′) = L(G). Let GI = (NI , TI , PI , σI) be a regular grammar generating
I, such that NI and N×{1, 2}∪T ∪{r} are disjoint. Let us define G′ as follows:
N ′ = NI ∪N × {1, 2}, T ′ = (T ∪ {r})− {#}, σ′ = σI , and

P ′ = {ξ → h1(x)ηh2(x)
R | x ∈ T ∗

I , η ∈ NI , ξ → xη ∈ PI} ∪
∪ {ξ → h1(x)rh2(x)

R | x ∈ T ∗
I , ξ → x ∈ PI} ∪

∪ {(ξ, 1) → h1(x) | ξ → x ∈ P1} ∪ {(ξ, 2) → h2(x)
R | ξ → x ∈ P2},

where h1, h2 : (N ∪ T)
∗ → (N ′ ∪ T ′)

∗
are homomorphisms defined by h1(ξ) =

(ξ, 1), h2(ξ) = (ξ, 2) for ξ in N , h1(#) = h2(#) = r and h1(c) = h2(c) = c
for c in T − {#}. It is obvious that the context-free grammar (N ′, T ′, P ′, σ′)
generates words w1r . . .rw(k+1)/2rwR

(k+3)/2r . . .rwR
k+1 such that the first

grammar of G generates w1# . . .#w(k+1)/2, and the second grammar generates
wk+1# . . .#w(k+3)/2. Then, L(G

′) = L(G) follows directly by Proposition 1. ⊓⊔

Corollary 2. L (NFPDAfin) = L (PIGSfin(2,CF,Reg)).

Proof. The inclusion L (NFPDAfin) ⊆ L (PIGSfin(2,CF,Reg)) follows directly
by Theorem 3. The remaining inclusion holds, since for all i, j in N, we have
L (PIGSi,j(2,CF,Reg)) ⊆ L (PIGSmax{i,j},max{i,j}(2,CF,Reg)), which, by The-
orem 3, equals L (NFPDA2max{i,j}+1). ⊓⊔

5 A Relation to ET0L Systems

In this section, we shall present an example application of the characterization
of NFPDA in terms of PIGS: We shall prove that flip-pushdown automata (with
a constant number of flips) are strictly weaker than ET0L systems (for the
definition, see, e.g., [6]).

10 Peter Kostolányi

The problem of the relation between flip-pushdown automata and ET0L
systems has been posed by Holzer and Kutrib in [2]. There, they have conjectured
that both NFPDA and E0L, and NFPDA and ET0L are incomparable. Ďurǐs
and Košta have already confirmed the former conjecture [1]. In this section, we
shall prove that the latter conjecture does not hold, i.e., NFPDA are strictly
weaker than ET0L systems.

Theorem 4. L (NFPDAfin) (L (ET0L).

Proof. It has been already known that L (NFPDAfin) ̸⊇ L (ET0L). This can be
proved, e.g., by showing that the language L = {anbncn | n ∈ N} is in L (ET0L),
but not in L (NFPDAfin). For more information, see [2].

Thus, it remains to prove that L (NFPDAfin) ⊆ L (ET0L). We shall show
this by applying Theorem 3, i.e., we shall prove that for all nonnegative integers
i, j and every (i, j)-switch-generating PIGS(2,CF,Reg) G = (N,T, P1, P2,#, I),
there is an ET0L system S = (V,P, x,Σ), such that L(S) = L(G). Without
loss of generality, we may suppose that i = j, that G is in the switch-aware
normal form, and that I ⊆ N∗. Further, let GI = (NI , TI , PI , σI) be a regular
grammar generating I, such that PI ⊆ NI × (TINI ∪ {ε}), NI ∩ (N ∪ T) = ∅,
and TI ⊆ N . Finally, we shall assume that G generates switch symbols only by
rules of the form α → #, with α in N .

Since L (CF) ⊆ L (ET0L), it is possible to simulate both context-free gram-
mars of G by an ET0L-system. Thus, the only problem is with interleaving. To
overcome this, we have to generate regular axioms of G already appropriately
interleaved. The only serious problem here is when a nonterminal from an axiom
generates a switch symbol (in one or both of the grammars of G), since then it
can generate symbols in two different contiguous parts of the final word, and it
may produce some other nonterminals that generate symbols in even other con-
tiguous parts of the final word (between the two contiguous parts it generates
symbols in directly). In that case, we shall split the nonterminal into two parts
that will be rewritten always in parallel. These parts may be split even further.

Besides this, it is important to mark each symbol with the number (1 or 2)
of the grammar of G it corresponds to. Then, after generating the interleaved
and marked axioms, it is possible to simulate both grammars on these axioms
(with the presence of split nonterminals described above).

Now, we shall describe the formal construction. In what follows, h1 and h2

are homomorphisms, such that h1(ξ) = (ξ, 1) and h2(ξ) = (ξ, 2) for ξ in N ∪NI ,
and h1(c) = h2(c) = c for c in T . Next, for ξ in N , we define ζ1(ξ) to be (s, t)
if ξ generates switch symbols s to t in the first grammar of G, and to be (0, 0)
if it generates none. The notation ζ2(ξ) has a similar meaning for the second
grammar of G. The derivation of S will proceed in four phases, with the right
order enforced by symbols Π1,Π2,Π3, and Π4 in V −Σ. In the s-th phase, the
symbol Πs is present in the sentential form. Moreover, every table of production
rules designated for the s-th phase contains rules Πs → Πs and Πt → F for
t ̸= s, where F in V −Σ is a special fail symbol. The only rule from F in each
table is F → F . Thus, the sentential form containing F cannot be terminated.

Two Grammatical Equivalents of Flip-Pushdown Automata 11

The axiom x of S will be h1(σI)$1h2(σI)$i+2$2$i+3 . . . $i+1$2i+2Π1, where
$s is a symbol in V −Σ denoting the end of the s-th contiguous part of the word
being generated. These symbols will be erased in the end.

In the first phase, appropriately interleaved axioms of G are generated. For
each rule α → xβ of GI , there is one separate table Pα→xβ in P. If ζ1(x) = (0, 0),
then there is a rule h1(α) → h1(x)h1(β) in Pα→xβ , and similarly for ζ2(x) =
(0, 0). If ζ1(x) = (s, t) ̸= (0, 0), then there are rules h1(α) → (h1(x), left),
$k → LkRk$k for s < k ≤ t and $t+1 → (h1(x), right)h1(β)$t+1 in Pα→xβ ,
and similarly for the second grammar (these rules correspond to the splitting of
nonterminals). Symbols Lk and Rk are placeholders for the further subdivision of
split nonterminals. It follows from our assumption of all switch-producing rules
having the form α → # that all these symbols will be rewritten sometimes. In
addition, there are rules h1(ξ) → F and h2(ξ) → F for all ξ in NI , ξ ̸= α in this
table. This is in order to assure that in the first phase, only the tables of rules
corresponding to the nonterminal of GI present in the sentential form are used.
Moreover, there are rules Π1 → Π1 and Πs → F for s > 1 in this table. For all
other symbols y, there is a rule y → y.

For each rule α → ε of GI , there is one separate table Pα→ε in P. This
contains rules h1(α) → ε, h2(α) → ε. Further, for all ξ in NI , ξ ̸= α, there are
rules h1(ξ) → F and h2(ξ) → F . Since this table is used at the end of the first
phase, there is a rule Π1 → Π2. Similarly as above, rules Πs → F for s > 1 are
present, and for all other symbols y, there is a rule y → y.

In the second phase, split (switch-producing) nonterminals are rewritten. We
shall only describe the tables corresponding to the first grammar of G, since the
tables for the second grammar are analogous. Let ξ in N be a nonterminal, such
that ζ1(ξ) ̸= (0, 0). Then, for each rule ξ → uηv in P1 with u, v in (N ∪ T)∗ and
ζ1(η) = ζ1(ξ) (note that the only switch-generating nonterminal on the right

side is η), there is a table P
(1)
ξ→uηv in P containing the rules (h1(ξ), left) →

h1(u)(h1(η), left), (h1(ξ), right) → (h1(η), right)h1(v), Π2 → Π2, Πs → F for
s ̸= 2, and y → y for all other symbols y. This table can be used also if (split) ξ
is not present – in that case, the sentential form is not changed.

Now, let us consider rules with two switch-producing nonterminals on the
right side, i.e., ξ → uαvβw in P1, where ζ1(ξ) = (s, t) ̸= (0, 0), ζ1(α) = (s, k),
ζ1(β) = (k + 1, t) for some s ≤ k < t and u, v, w in (N ∪ T)∗. To every

such rule, there is a table P
(1)
ξ→uαvβw in P containing the following production

rules: (h1(ξ), left) → h1(u)(h1(α), left), Lk+1 → (h1(α), right)h1(v), Rk+1 →
(h1(β), left), and (h1(ξ), right) → (h1(β), right)h1(w). Further, for every non-
terminal η ̸= ξ generating the k-th and the (k + 1)-st switch symbol, this table
contains the rules (h1(η), left) → F and (h1(η), right) → F . This is in order
to assure that if in some terminable derivation, Lk+1 or Rk+1 is rewritten using
this table, then this derivation step is valid, i.e., (h1(ξ), left) and (h1(ξ), right)
were present. However, when neither Lk+1 nor Rk+1 is present in the sentential
form, this table can be used (with no effect). Finally, the table contains rules
Π2 → Π2, Πs → F for s ̸= 2, and y → y for all other symbols y. The case of
more than two switch-producing nonterminals on the right side is analogous.

12 Peter Kostolányi

For all rules of the type α → # in P1, there is a table P
(1)
α→# in P, with rules

(h1(α), left) → ε, (h1(α), right) → ε, Π2 → Π2, Πs → F for s ̸= 2, and y → y
for all other symbols y.

A table used for finalizing the second phase has rules Π2 → Π3, Πs → F for
s ̸= 2, and y → y for all other symbols y. This table may be used also if the
second phase is not finished yet, however, as we shall see, the sentential form
cannot be terminated in that case (F will be produced in the third phase).

In the third phase, the rest of nonterminals is rewritten. For each rule ξ → u

in P1, where ζ1(ξ) = (0, 0) and u is in (N ∪T)∗, there is a table P
(1)
ξ→u in P, with

rules h1(ξ) → h1(u), and h1(ξ) → h1(ξ). Further, for all (split) switch-producing
nonterminals η and all symbols Rk and Lk, it contains rules that rewrite them
to F . Finally, it contains rules Π3 → Π3, Πs → F for s ̸= 3, and y → y for all
other symbols y. Similarly for rules ξ → u in P2.

A table for finalizing the third phase is similar to the table for finalizing the
second phase.

Finally, there is only one table designated to the fourth phase. For each
nonterminal, it contains rules rewriting it to F (that is, the third phase has to
be finished). Moreover, it contains rules $k → ε for all k, 1 ≤ k ≤ 2i+2, Π4 → ε,
Πs → F for s ̸= 4, and y → y for all other symbols y. ⊓⊔

6 Acknowledgements

Many thanks go to Branislav Rovan and Pavel Labath, for the insightful com-
ments they have made on the preliminary version of this paper.

References

1. Ďurǐs, P., Košta, M.: Flip-Pushdown Automata with k Pushdown Reversals and
E0L Systems are Incomparable. Inform. Process. Lett. 114, 417–420 (2014)

2. Holzer, M., Kutrib, M.: Flip-Pushdown Automata: k + 1 Pushdown Reversals Are
Better than k. In: Baeten, J.C.M. et al. (eds.) ICALP 2003. LNCS, vol. 2719, pp.
490–501. Springer-Verlag, Berlin Heidelberg (2003)

3. Holzer, M., Kutrib, M.: Flip-Pushdown Automata: Nondeterminism is Better than
Determinism. In: Ésik, Z., Fülöp, Z. (eds.): DLT 2003. LNCS, vol. 2710, pp. 361–372.
Springer-Verlag, Berlin Heidelberg (2003)

4. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation 2nd ed. Addison-Wesley, Reading (2001)

5. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic con-
straints. Theor. Comput. Sci. 197, 1–56 (1998)

6. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L Systems. Academic
Press, London (1980)

7. Sarkar, P.: Pushdown automaton with the ability to flip its stack. Report No. 81,
Electronic Colloquium on Computational Complexity (2001)

