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Abstract

We define and study alternating weighted automata over an arbitrary commutative semiring. Our model
generalises the concept of alternation of existential and universal states in the classical Boolean setting to
alternation of states performing addition and multiplication in the underlying commutative semiring. We
completely characterise the class of commutative semirings S, for which alternating and non-alternating
weighted automata over S are equally powerful, and we study some closure properties of the classes of
formal power series realised by alternating weighted automata.
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1. Introduction

Weighted automata, first introduced by Schützenberger [10], form a generalisation of nondeterministic
finite automata, in which each transition carries a weight (usually) taken from some semiring. This weight
represents some quantity related to the execution of a given transition, such as cost, reward, probability,
reliability, etc. Instead of merely recognising languages, weighted automata realise formal power series –
these generalise languages by assigning a weight from the underlying semiring to each word. The theory of
weighted automata now forms a vast body of knowledge with various modifications and generalisations of
the basic setting described above and with multiple practical applications as well. See the handbook [7] for
the survey of most important topics.

The study of alternation in weighted automata has so far been limited to several particular settings
directly motivated by problems arising in practice of quantitative formal verification. The branch of research
going in this direction was initiated by Chatterjee, Doyen, and Henzinger [3], who have studied alternation
in weighted automata over infinite words. Automata introduced in [3] compute the real weight of a single
run using one of several operations considered in the article (such as limit superior or discounted sum).
Branching is handled by two types of states, which correspond to the operations of minimum and maximum
on reals. These two operations can be seen as alternating with each other – the setting described in [3] can
thus be called “min-max”-alternation.

Alternating weighted automata over finite words have been studied by Almagor and Kupferman [1], who
have focused on two different forms of alternation over the tropical (min-plus) semiring of reals. In the first
variant, the “usual” states corresponding to the minimum operation alternate with states corresponding to
the maximum operation – this setting of “min-max”-alternation is essentially the same as the one studied by
Chatterjee, Doyen, and Henzinger [3], except that finite words are considered and the weight of a single run
is always computed by taking the sum. In the second variant studied in [1], states performing the minimum
alternate with summation states; this can be called “min-sum”-alternation. (Observe that addition in the
tropical semiring alternates with multiplication in the tropical semiring in this setting.) It is argued by
Almagor and Kupferman [1] that both variants are interesting for the purposes of formal verification.
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The aim of this article is to initiate the study of alternating weighted automata over a general commuta-
tive semiring (and over finite words), while taking a more theoretical point of view. We shall introduce and
study weighted automata over a commutative semiring S, in which states corresponding to addition over
S alternate with states corresponding to multiplication in S.1 This generalises both the classical Boolean
setting of alternating finite automata [2] and “min-sum”-alternation of Almagor and Kupferman [1].

Our model will not incorporate “min-max”-alternation of Almagor and Kupferman [1] and the settings
studied by Chatterjee, Doyen, and Henzinger [3]. However, any generalisation subsuming such models would
clearly require structures with at least three operations – that is, structures beyond semirings. It thus seems
to be reasonable to confine ourselves to the setting described above at this point. Nevertheless, we believe
that a good enough understanding of weighted alternation over semirings can form a natural starting point
for an even more general theory of alternating weighted automata. (We leave the task of developing such
theory for future research.) Moreover, we shall limit ourselves to commutative semirings in this article,
as commutativity appears to be a natural assumption when it comes to product states: non-commutative
semirings would require some fixed ordering of transitions leading from such states.

The problems that we shall deal with in this article can roughly be summarised as follows.

Definitions. One could imagine more than one natural and well motivated formalisation of the idea of al-
ternating weighted automata as described above. We shall therefore give two different definitions in this
article, representing two opposite sides of the spectrum. The definition of what we shall call simply alternat-
ing weighted automata mimics the customary definition of alternating finite automata without weights [2],
in which existential and universal mode can be “combined” in a single state, leading to the representation
of actions of symbols on states by means of Boolean formulae; in our weighted generalisation, a polynomial
over the underlying semiring corresponds to each pair consisting of a state and a symbol. On the contrary,
the definition of what we shall call two-mode alternating weighted automata follows strictly the intuitive idea
of dividing the set of states into summation states and product states. Moreover, spontaneous transitions
on the empty word ε will be allowed under some assumptions in two-mode alternating automata. We shall
prove that alternating weighted automata and two-mode alternating weighted automata are equivalent in
their expressive power and that ε-transitions can be removed from two-mode alternating automata. These
results can be viewed as a sign of certain robustness of the concept of alternating weighted automata and
hence also as an additional motivation for their study.

Systems of Equations. It is well known that (non-alternating) weighted automata are equivalent to systems
of linear equations [8]. We shall prove a similar result for alternating weighted automata, linking them
to what we shall call systems of H-polynomial equations (abbreviation for Hadamard-polynomial). These
systems can be roughly described as linear systems, in which some additional Hadamard products of formal
power series can take place.

Expressive Power. Weighted automata can be viewed just as a special case of alternating weighted automata
and for this reason, alternating weighted automata are at least as powerful as weighted automata. Almagor
and Kupferman showed that alternating weighted automata over the tropical semiring are strictly more
powerful than non-alternating automata over the same semiring [1]. On the other hand, it is a well known
fact that every alternating finite automaton (without weights) recognises a rational (regular) language [2].
We conclude that commutative semirings can be divided into two nonempty classes: the class of commutative
semirings, for which alternation gains extra expressive power and the class of commutative semirings, for
which alternating and non-alternating weighted automata are equally powerful. In our most significant
result, we shall give a complete characterisation of these two classes of commutative semirings.

Closure Properties. We shall observe that the class of formal power series realised by alternating weighted
automata over a commutative semiring S is closed under sum and Hadamard product for each S. On the
other hand, we shall prove that there exists a commutative semiring S such that this class is closed neither
under Cauchy product, nor under reversal.

1To be more precise, we shall also allow “mixing” of both modes in a single state, which is the usual approach for alternating
finite automata without weights [2].
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2. Preliminaries

A monoid is a triple (M, ·, 1), where M is a set, · is an associative binary operation on M , and 1 is
an element of M such that 1 · a = a · 1 = a holds for all a in M . A monoid (M, ·, 1) is commutative if ·
is commutative. A semiring is a quintuple (S,+, ·, 0, 1), where S is a set, + and · are binary operations
(addition and multiplication) on S, and 0, 1 are distinguished elements of S, such that (S,+, 0) is a commu-
tative monoid, (S, ·, 1) is a monoid, multiplication distributes over addition (both from left and from right),
and 0 · a = a · 0 = 0 holds for all a in S. A semiring (S,+, ·, 0, 1) is commutative if the monoid (S, ·, 1) is
commutative. We shall often write S instead of (S,+, ·, 0, 1) and denote multiplication by juxtaposition.

Let a be an element of a semiring S and n a nonnegative integer. We shall write na :=
∑n
i=1 a and

an :=
∏n
i=1 a. In particular, 0a = 0 and a0 = 1. Moreover, to avoid possible confusion with the integers,

we shall sometimes write 0S instead of 0 and 1S instead of 1 to denote the zero and the unity element of S.
More generally, we shall use the notation nS to denote the element n1S for a nonnegative integer n.

We say that a in S has finite additive order if the set {na | n ∈ N} is finite. Otherwise, we say that a
has infinite additive order. Similarly, we say that a has finite multiplicative order if the set {an | n ∈ N}
is finite, and we say that a has infinite multiplicative order otherwise. The reader can easily check that a
in S has finite additive order (or finite multiplicative order) if and only if na = ma (or an = am) for some
distinct nonnegative integers n,m.

A subsemiring of a semiring (S,+, ·, 0, 1) is a subset T of S that contains 0, 1 and that is closed under
addition and multiplication. If T is a subsemiring of S, then T forms a semiring together with the operations
+ and · restricted to T . One can easily show that if U is a collection of subsemirings of S, then

⋂
T∈U T

is a subsemiring of S as well. If X is a subset of S and U is the collection of all subsemirings of S that
contain X, we say that

⋂
T∈U T is the subsemiring generated by X. The subsemiring generated by X is the

smallest subsemiring of S (with respect to inclusion) that contains X. A semiring S is finitely generated if
it is generated by a finite subset of S and locally finite if every finitely generated subsemiring of S is finite.

For every commutative semiring S, we shall denote by S[x1, . . . , xn] the set of all polynomials in (com-
mutative) indeterminates x1, . . . , xn with coefficients in S. This set, together with the operations of addition
and multiplication of polynomials derived from the operations of the semiring S in the usual way, constitutes
a commutative semiring. A monomial in indeterminates x1, . . . , xn is a polynomial in S[x1, . . . , xn] such
that m = cxk11 x

k2
2 . . . xknn for some c in S and nonnegative integers k1, . . . , kn. For each such monomial m,

we shall denote the coefficient c of m by coef(m) and the exponent ki of the indeterminate xi by exp(m, i)
for i = 1, . . . , n. If k1 = k2 = . . . = kn = 0, we say that m is a constant. The whole semiring S[x1, . . . , xn] is
generated by its monomials. If P in S[x1, . . . , xn] can be written as a sum of nonconstant monomials,2 we say
that P has zero constant term. We shall denote the subset of S[x1, . . . , xn] consisting of all polynomials with
zero constant term by S[x1, x2, . . . , xn]const=0. Note that although this subset is closed under addition and
multiplication, it is not a subsemiring of S[x1, . . . , xn], since it does not contain the unity of S[x1, . . . , xn].

Moreover, for each commutative semiring S we shall write S(x1, x2, . . . , xn) to denote the set of all polyno-
mial functions corresponding to polynomials from S[x1, . . . , xn]. It is easy to see that the set S(x1, x2, . . . , xn)
constitutes a commutative semiring together with the pointwise addition and multiplication of functions.

A formal power series over a semiring S and over an alphabet Σ is a mapping r : Σ∗ → S. For every
w in Σ∗, the value r(w) is usually denoted by (r, w) and called the coefficient of w in r. The formal power
series r itself is then written as

r =
∑
w∈Σ∗

(r, w)w.

If there is a single w in Σ∗ such that (r, w) 6= 0, then r can also be written as r = (r, w)w; a scalar s in S
can be identified with the series sε. If (r, w) = 0 for all w in Σ∗, we shall write r = 0. Moreover, coefficients
equal to 1 can be omitted. The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.

Let r1 and r2 be in S⟪Σ∗⟫. The sum of r1 and r2 is a formal power series r1 + r2 in S⟪Σ∗⟫ such that
(r1 + r2, w) = (r1, w) + (r2, w) for all w in Σ∗. The Cauchy product of r1 and r2 is a formal power series

2This is in particular true if P = 0, which is an empty sum of nonconstant monomials.
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r1 · r2 in S⟪Σ∗⟫ such that
(r1 · r2, w) =

∑
v1,v2∈Σ∗
v1v2=w

(r1, v1)(r2, v2)

for all w in Σ∗. The Hadamard product of r1 and r2 is a formal power series r1 � r2 in S⟪Σ∗⟫ defined for
all w in Σ∗ by (r1 � r2, w) = (r1, w)(r2, w). The n-th power rn of a series r is defined inductively by

r0 = 1ε,

rn = rn−1 · r, n ≥ 1.

Similarly, we define a formal power series r�n inductively by

r� 0 =
∑
w∈Σ∗

1w,

r�n = r�n−1 � r, n ≥ 1.

A reversal of a word w = a1 . . . an in Σ∗, for a1, . . . , an in Σ, is a word wR = an . . . a1. A reversal of a formal
power series r in S⟪Σ∗⟫ is a series rR in S⟪Σ∗⟫ such that (rR, w) = (r, wR) holds for each w in Σ∗.

Let S be a semiring. A weighted automaton over S is a sextuple A = (Q,Σ, T, ν, ι, τ), where: Q is
a nonempty finite set of states; Σ is an alphabet; T is a finite set of transitions, with which we associate
mappings src, dst : T → Q and σ : T → Σ ∪ {ε}; ν : T → S is a transition weighting function; ι : Q → S is
an initial weighting function; τ : Q→ S is a terminal weighting function.

A weighted automaton can be viewed as a directed multigraph with labelled edges, where Q is the set
of vertices and T is the set of edges. The mappings src and dst assign a source and a destination to each
edge, while σ assigns labels.3

Let A = (Q,Σ, T, ν, ι, τ) be a weighted automaton, p in Q, and z in Σ∪{ε}. We shall write TA(p) for the
set of all transitions t in T such that src(t) = p and TA(p, z) for the set of all transitions t in T satisfying
src(t) = p and σ(t) = z. Moreover, we shall denote by T εA the set of all ε-labelled transitions in A. If clear
from the context, we shall often omit the subscript denoting the automaton in consideration.

In the presence of spontaneous ε-labelled transitions, the behaviour of a weighted automaton cannot
be at the same time defined for all semirings and for all automata. One of the usual solutions to this
problem is to define the behaviour for so-called cycle-free automata [8] only. An automaton is always
cycle-free if it does not contain a cycle of ε-labelled transitions. However, the definition is slightly more
general – under some conditions, a cycle-free weighted automaton might still contain such cycles. It does
not seem straightforward to make an analogous definition of cycle-free alternating weighted automata in
such a manner that the definition does not become awkward. We shall therefore confine ourselves to the
study of alternating weighted automata that contain no cycles of spontaneous transitions. We shall follow
the same approach for “ordinary” weighted automata as well, since we want to view them as a special case
of alternating weighted automata. We shall say that A is without ε-cycles if the directed graph with vertex
set Q and edge set T εA contains no cycle.

It can be shown that every cycle-free weighted automaton is equivalent to some weighted automaton
that contains no ε-labelled transitions at all [8]. In a sense, this fact justifies our choice to consider weighted
automata without ε-cycles only.

Let S be a semiring and A = (Q,Σ, T, ν, ι, τ) a weighted automaton over S without ε-cycles. For each p
in Q, let us define a formal power series |A|p in S⟪Σ∗⟫ recursively as follows:

1. The coefficient of ε in |A|p is defined by

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|dst(t), ε).

3Note that the definition allows parallel edges (transitions) with the same label in the graph. This makes our definition
rather unusual in comparison with definitions of the majority of authors [7]. It is nevertheless obvious that the expressive power
of weighted automata remains the same. Parallel transitions with the same label will play a significant role in our definition of
alternating weighted automata – we have thus chosen to allow them in non-alternating weighted automata as well.
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2. If c is in Σ and w is in Σ∗, then

(|A|p, cw) =
∑

t∈T (p,c)

ν(t) · (|A|dst(t), w) +
∑

t∈T (p,ε)

ν(t) · (|A|dst(t), cw).

The behaviour of A is a formal power series |A| in S⟪Σ∗⟫ defined for all w in Σ∗ by

(|A|, w) =
∑
p∈Q

ι(p) · (|A|p, w).

A weighted automaton A realises a formal power series r if |A| = r. We say that a formal power series
r in S⟪Σ∗⟫ is rational over S if it is realised by some weighted automaton over S.

The theory of weighted automata and formal power series in non-commutative variables now forms a rich
and active field of research. We have confined ourselves to stating several most important definitions in this
section. For a more comprehensive source of information, we refer the reader to the handbook [7].

3. An Introductory Example

Before defining alternating weighted automata formally, let us first describe them on an intuitive level us-
ing a simple example. More precisely, the model that we shall intuitively describe in what follows corresponds
to two-mode alternating weighted automata defined in Section 5. Either an additive or a multiplicative mode
is assigned to each state of a two-mode alternating weighted automaton, which makes these automata easy
to depict by diagrams. On the other hand, our basic definition of alternating weighted automata is given in
Section 4 and allows “mixing” of both modes in a single state. Both models are nevertheless proved to be
equivalent in their expressive power in Subsection 5.5.

Additional examples similar to the one below will be given in Subsection 5.2, following the formal
definition of two-mode alternating weighted automata.

Example 3.1. In Figure 1, a two-mode alternating weighted automaton A over the alphabet Σ = {a, b}
and over the semiring (N,+, ·, 0, 1) of natural numbers with standard addition and multiplication is depicted.
States of A are labelled either with “+” or with “×”. This label corresponds to the mode of the given state:
states labelled by “+” are called sum states and states labelled by “×” are called product states. Apart from
this additional feature, Figure 1 conforms to the usual conventions for diagrams of weighted automata.

For each state p of A, we first define a formal power series |A|p, which may be described as the series
realised by A if the run of the automaton was forced to start in p (having initial weight 1). If p is a sum
state, then the definition of the power series |A|p is the same as for (non-alternating) weighted automata;
the coefficient of ε in |A|p is equal to the terminal weight of p and for every c in Σ and w in Σ∗, the
coefficient of cw in |A|p is

∑
t∈T (p,c) ν(t)(|A|dst(t), w), where T (p, c) is the set of all transitions that start

at p and are labelled with c, where ν(t) denotes the weight of the transition t, and where dst(t) denotes
the destination state of the transition t.4 If p is a product state, the power series |A|p is defined as follows:
the coefficient of ε in |A|p is equal to the terminal weight of p and for each c in Σ and w in Σ∗, the coefficient
of cw in |A|p is

∏
t∈T (p,c) ν(t)(|A|dst(t), w), with the notation having the same meaning as above. In case

T (p, c) is empty, we define (|A|p, cw) = 0. The reason why the states of a two-mode alternating weighted
automaton are called sum states and product states is now evident: a sum state performs addition to
calculate the weight of a word w, while a product state performs multiplication. The behaviour of the two-
mode alternating weighted automaton A is defined in the same way as it was defined for (non-alternating)
weighted automata, i.e., (|A|, w) =

∑
p∈Q ι(p)(|A|p, w) for all w in Σ∗, where Q is the set of states of A and

ι(p) denotes the initial weight of p.
Let us finally examine the behaviour of the automaton A. Clearly, we have (|A|, ε) = 1 and (|A|, b) = 0.

The reader can easily check that for all w in Σ∗, we have (|A|, aw) = 2(|A|, w) + 1, (|A|, bbw) = 3(|A|, w)2,
and (|A|, baw) = 0. These relations fully describe the formal power series |A|.

4For simplicity, A has been chosen so that it contains no ε-labelled transitions. This restriction makes the definition of
behaviour of two-mode alternating weighted automata simpler compared to the definition given in Section 5.
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Figure 1: The automaton A.

4. Definition of Alternating Weighted Automata

We shall now define alternating weighted automata formally. As we have already mentioned, our basic
model of alternating weighted automata will be slightly more general than the one informally described in
Section 3. We shall not require the set of states to be partitioned into summation states and product states;
instead, we shall allow both modes to be “combined” in a single state. In Section 5, we shall give a definition
of two-mode alternating weighted automata, which directly formalises the intuitive idea of dividing the states
into two sets. We shall nevertheless observe that both models are equivalent in their expressive power.

The generalised approach that we shall follow in our definition of alternating weighted automata is usual
in the Boolean setting when defining alternating finite automata without weights. In a typical definition [2],
states of an alternating finite automaton need not be marked as existential or universal. Instead, a Boolean
formula ψ[q, c] is assigned to each state q and each symbol c (this formula is often required to be positive).
For instance, if the state set is {q1, . . . , q6} and if ψ[q1, a] = (x2 ∧ x4) ∨ (x3 ∧ x5 ∧ x6), then there is a valid
(accepting) run on a word aw starting in q1 if and only if there are either valid runs on w starting both in
q2 and in q4, or valid runs on w starting in q3, q5, and q6.

We shall generalise this representation of transitions to the weighted setting by replacing positive Boolean
formulae by polynomials without constants over the underlying semiring. A positive Boolean formula can
obviously be viewed as a polynomial without constants over the Boolean semiring (B,∨,∧, 0, 1).

Definition 4.1. Let S be a commutative semiring. An alternating weighted automaton over the semiring
S is a quintuple A = (Q,Σ, ψ, P0, τ), where: Q is a nonempty finite set of states with |Q| = n; Σ is an
alphabet; ψ : (Q × Σ) → S[x1, . . . , xn]const=0 is a polynomial assigning function; P0 in S[x1, . . . , xn]const=0

is an initial polynomial; τ : Q→ S is a terminal weighting function.

For each alternating weighted automaton A, we shall always assume some linear ordering on its states
to be given. Although this linear ordering is not part of the definition above, it is nevertheless important, as
we shall see in the following definition of behaviour. Moreover, whenever we refer to “the i-th state”, where
i is a positive integer, we mean the i-th state with respect to the linear ordering of states of the automaton
in consideration. For each alternating weighted automaton A = (Q,Σ, ψ, P0, τ), each p in Q, and each c
in Σ, the polynomial ψ[p, c] can also be denoted by ψ[i, c] if p is the i-th state of A. In some cases, we shall
also write τ(i) instead of τ(p). We shall also shortly introduce some other notation, in which states are
interchangeable with their numerical order.
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We may now define the behaviour of an alternating weighted automaton A over S. Similarly as for
non-alternating weighted automata, we shall first define a series |A|p for each state p, which may be seen as
the behaviour of A if the run of A was forced to start in state p (with initial weight 1S). The behaviour |A|
of A is then obtained from these auxiliary series by applying the initial polynomial.

Definition 4.2. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over some commutative
semiring S, let n = |Q|. For each p in Q, we define a formal power series |A|p (also denoted by |A|i if p is
the i-th state) in S⟪Σ∗⟫ as follows:

1. The coefficient of ε in |A|p is given by
(|A|p, ε) = τ(p).

2. For each c in Σ and w in Σ∗, the coefficient of cw in |A|p is given by

(|A|p, cw) = ψ[p, c]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

The behaviour of A is a formal power series |A| in S⟪Σ∗⟫ defined for all w in Σ∗ by

(|A|, w) = P0

(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

Alternating weighted automata clearly form a generalisation of “ordinary” (non-alternating) weighted
automata. Indeed, let S be a commutative semiring. Define L to be the set of all polynomials of the
form s1x1 + s2x2 + . . . + snxn, where n is a nonnegative integer, s1, . . . , sn are in S, and x1, . . . , xn are
indeterminates. An alternating weighted automaton A = (Q,Σ, ψ, P0, τ) over S can be called “sum-only”
if the polynomial P0 is in L and so are the polynomials ψ[p, c] for each p in Q and c in Σ. One can easily
see that a (non-alternating) weighted automaton without ε-labelled transitions can be viewed as a sum-only
alternating weighted automaton and vice versa.

In the rest of this section, we shall introduce an important notion of what we shall call evaluation
polynomials. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton with |Q| = n. Assume that
a word w = a1a2 . . . am is given, where a1, . . . , am are in Σ, and that our task is to calculate the coefficient
of w in |A|. One obvious approach is the “bottom-up evaluation”. We start with the values τ(p) for each p
in Q. Substituting these values into the polynomial ψ[p, am], we can evaluate (|A|p, am) for each p in Q. If
we substitute these values into the polynomial ψ[p, am−1], we can evaluate (|A|p, am−1am) for each p in Q.
By repeating this process, we are eventually able to evaluate (|A|p, a1a2 . . . am). If we now substitute these
values into the polynomial P0, we obtain the weight of the word w.

Another approach to calculate the weight of the word w is the “top-down” method. We start with the
polynomial P0. Substituting xi = ψ[i, a1] for i = 1, . . . , n into the polynomial P0, we obtain a polynomial P1.
In the next step, we substitute xi = ψ[i, a2] for i = 1, . . . , n into the polynomial P1 and obtain a polynomial
P2. This process is repeated, successively constructing polynomials P3, P4, . . ., until the polynomial Pm is
constructed. If we now substitute xi = τ(i) for i = 1, . . . , n into the polynomial Pm, we obtain the weight of
the word w. The same approach can be used if one wishes to calculate the coefficient of the word w in |A|i
for some i in {1, . . . , n}. The only difference is that we start with the polynomial xi instead of P0 in this
case. We shall call the polynomials that can be constructed in one of these ways evaluation polynomials.

Definition 4.3. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over a commutative semi-
ring S, let n = |Q|. For each p in Q and w in Σ∗, we define the evaluation polynomial PA[p, w] (also denoted
by PA[i, w] if p is the i-th state in A) in S[x1, . . . , xn] as follows:

1. If p is the i-th state of A, then
PA[p, ε] = xi.

2. If c is in Σ and w is in Σ∗, then

PA[p, wc] = PA[p, w]
(
ψ[1, c], ψ[2, c], . . . ψ[n, c]

)
.
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For all w in Σ∗, we define the evaluation polynomial PA[w] in S[x1, . . . , xn] by

PA[w] = P0

(
PA[1, w], PA[2, w], . . . , PA[n,w]

)
.

The straightforward proof of the following lemma is left to the reader. It should nevertheless be clear
from our discussion above.

Lemma 4.4. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton, let n = |Q|. If v, w are in Σ∗

and p is in Q, then

(|A|p, vw) = PA[p, v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
,

(|A|, vw) = PA[v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

5. Two-Mode Alternating Weighted Automata

We shall now give an alternative definition of alternating weighted automata, introducing what we
shall call two-mode alternating weighted automata. These can be viewed simply as weighted automata,
states of which are partitioned into two subsets: summation states and product states. We shall allow
spontaneous ε-labelled transitions in two-mode alternating weighted automata, provided there is no cycle of
such transitions. The possibility of ε-labelled transitions can be useful in some constructions, which would
otherwise often be less intuitive. Nevertheless, we shall prove in Subsection 5.4 that spontaneous transitions
are not strictly necessary: for each two-mode alternating weighted automaton, there is an equivalent two-
mode automaton that contains no ε-labelled transitions.

We shall prove in Subsection 5.5 that two-mode alternating weighted automata are equivalent in expres-
sive power to alternating weighted automata in the sense of Definition 4.1. However, this formal justification
is hopefully not necessary to convince the reader that both models are the same in their essence.

Two-mode alternating weighted automata can be particularly useful when gaining intuition about al-
ternation in weighted automata, which largely stems from the fact that they can be naturally depicted by
diagrams (see Section 3). Moreover, we shall see that two-mode automata admit a characterisation of their
behaviour in terms of run trees, a fairly intuitive concept that we shall introduce in Subsection 5.3. On the
other hand, this is at the expense of the definitions being a bit cumbersome compared to the definitions
presented in Section 4.

5.1. Definitions
Definition 5.1. Let S be a commutative semiring. A two-mode alternating weighted automaton over the
semiring S is a septuple A = (Q⊕, Q⊗,Σ, T, ν, ι, τ), where: Q⊕ and Q⊗ are finite sets of states such that
Q⊕ ∪Q⊗ 6= ∅ and Q⊕ ∩Q⊗ = ∅; Σ is an alphabet; T is a finite set of transitions, with which we associate
mappings src, dst : T → (Q⊕ ∪ Q⊗) and σ : T → Σ ∪ {ε}; ν : T → S is a transition weighting function;
ι : (Q⊕ ∪Q⊗)→ S is an initial weighting function; τ : (Q⊕ ∪Q⊗)→ S is a terminal weighting function.

A two-mode alternating weighted automaton can be viewed as a directed multigraph with labelled and
weighted edges, where Q⊕ ∪Q⊗ is the set of vertices and T is the set of edges, while src, dst, σ, and ν are
mappings that assign a source, a destination, a label, and a weight to each edge. The elements of Q⊕ and
Q⊗ shall be called sum states and product states, respectively.

Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton, let p be in Q⊕ ∪ Q⊗,
and z in Σ ∪ {ε}. We shall write TA(p) to denote the set of all transitions t in T such that src(t) = p and
TA(p, z) to denote the set of all transitions t in T satisfying src(t) = p and σ(t) = z. We shall denote the set
of all ε-labelled transitions in A by T εA. If clear from the context, we shall often omit the subscript denoting
the automaton in consideration.

The behaviour of a two-mode alternating weighted automaton will be defined only if the automaton
contains no cycles of ε-labelled transitions.
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Definition 5.2. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over some
commutative semiring S. We say that A is without ε-cycles if the directed graph with vertex set Q⊕ ∪Q⊗
and edge set T ε contains no cycle.

From now on, all two-mode alternating weighted automata are assumed to be without ε-cycles (we shall
usually not state this explicitly).

We are now prepared to define the behaviour |A| of a two-mode alternating weighted automaton A. Once
again, this is done via introducing an auxiliary series |A|p for each state p of the automaton A, which can be
interpreted as the behaviour of A when all runs in A are forced to start in p (with initial weight 1S). Apart
from the intuitive meaning of sum states and product states explained already in Section 3, we have to pay
some extra attention to boundary cases. For instance, if there is no c-labelled or ε-labelled transition leading
from some state p, we shall define the coefficient of each word beginning by c in |A|p to be 0S regardless if
p is a sum state or a product state. (Note that for product states, this is not consistent with the definition
via empty product.) Similarly, terminal weights are added instead of multiplied to the rest of the expression
in the definition of (|A|p, ε) for a product state p. These choices are motivated mainly by the alternative
characterisation of behaviour via run trees, introduced later in Subsection 5.3. However, it is not hard to
see that similar details have no effect on the expressive power of the model.

Definition 5.3. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton (without
ε-cycles) over a commutative semiring S. For each p in Q⊕∪Q⊗, we define a series |A|p in S⟪Σ∗⟫ as follows:

1. If p is in Q⊕, then the coefficient of ε in |A|p is given by

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|dst(t), ε).

Moreover, for each c in Σ and w in Σ∗,

(|A|p, cw) =
∑

t∈T (p,c)

ν(t) · (|A|dst(t), w) +
∑

t∈T (p,ε)

ν(t) · (|A|dst(t), cw).

2. If p is in Q⊗, then the coefficient of ε in |A|p is given by

(|A|p, ε) =

{
τ(p) +

∏
t∈T (p,ε)

ν(t) · (|A|dst(t), ε) if T (p, ε) 6= ∅,

τ(p) otherwise.

Moreover, for each c in Σ and w in Σ∗,

(|A|p, cw) =


( ∏
t∈T (p,c)

ν(t) · (|A|dst(t), w)

)
·

( ∏
t∈T (p,ε)

ν(t) · (|A|dst(t), cw)

)
if T (p, c) ∪ T (p, ε) 6= ∅,

0S otherwise.

The behaviour of A is a formal power series |A| in S⟪Σ∗⟫ defined for all w ∈ Σ∗ by

(|A|, w) =
∑

p∈Q⊕∪Q⊗
ι(p) · (|A|p, w).

Evaluation polynomials, which we have defined for alternating weighted automata, can be defined for
two-mode alternating weighted automata as well. Again, we shall always assume some linear ordering of
states of the automaton in consideration to be given a priori. Whenever we refer to “the i-th state”, we mean
the i-th state with respect to this linear ordering; if p is the i-th state of A, we shall also write |A|i, ι(i),
and τ(i) instead of |A|p, ι(p), and τ(p), respectively.
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Definition 5.4. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over some
commutative semiring S, let n = |Q⊕ ∪Q⊗|. For each w in Σ∗ and p in Q⊕ ∪Q⊗, we define the evaluation
polynomial PA[p, w] (also denoted by PA[i, w] if p is the i-th state of A) in S[x1, . . . , xn] as follows:

1. If p is the i-th state in Q⊕ ∪Q⊗, then
PA[p, ε] = xi.

2. If p is in Q⊕, c is in Σ, and w is in Σ∗, then

PA[p, cw] =
∑

t∈T (p,c)

ν(t) · PA[dst(t), w] +
∑

t∈T (p,ε)

ν(t) · PA[dst(t), cw].

3. If p is in Q⊗, c is in Σ, and w is in Σ∗, then

PA[p, cw] =


( ∏
t∈T (p,c)

ν(t) · PA[dst(t), w]

)
·

( ∏
t∈T (p,ε)

ν(t) · PA[dst(t), cw]

)
if T (p, c) ∪ T (p, ε) 6= ∅,

0S otherwise.

For each w in Σ∗, we define the evaluation polynomial PA[w] in S[x1, . . . , xn] by

PA[w] =
∑

p∈Q⊕∪Q⊗
ι(p) · PA[p, w].

The following lemma is an analogy to Lemma 4.4. We leave the proof of this fact for the reader.

Lemma 5.5. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton, and let us
denote n = |Q⊕ ∪Q⊗|. If v, w are in Σ∗ and p is in Q⊕ ∪Q⊗, then

(|A|p, vw) = PA[p, v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
,

(|A|, vw) = PA[v]
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
.

5.2. Examples
Let us now demonstrate the abilities of two-mode alternating weighted automata on several examples.

Note that none of the automata constructed below contains transitions labelled by ε. It is thus obvious that
they can be directly interpreted as alternating weighted automata in the sense of Definition 4.1 as well.5

Figure 2: The automaton A1.

Example 5.6. In Figure 2, we give a diagram of a two-mode alternating weighted automaton A1 over the
alphabet Σ1 = {a} and over the semiring of natural numbers with standard operations of addition and
multiplication. It can be easily seen that the coefficient of an in |A1| is n! for all nonnegative integers n.
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Figure 3: The automaton A2.

Example 5.7. In Figure 3, a diagram of a two-mode alternating weighted automaton A2 over the alphabet
Σ2 = {1̂} and over some commutative semiring S is depicted. The semiring S is assumed to contain
an element s. It is then easy to see that (|A2|, (1̂)n) = s2n

for all n in N.

Example 5.8. Let us now slightly generalise the previous example. In Figure 4, we give a diagram of
a two-mode alternating weighted automaton A3 over an alphabet Σ3 = {0̂, 1̂} and over some commutative
semiring containing an element s. From now on, we shall often label arrows in diagrams of two-mode
alternating weighted automata by sets of symbols with or without coefficients. If an arrow leading from
state p to state q is labelled with a set containing sc, where s is a coefficient taken from the semiring in
consideration and c is a symbol, then there is a transition from p to q with label c and weight s. If some
symbol in the set has no explicitly given coefficient, then this coefficient is understood to be 1S . The label
representing a set {d1, d2, . . . , dm} is usually written simply as d1, d2, . . . , dm, omitting the braces. The
diagram in Figure 4 contains three arrows that should be interpreted in this way.

Each word w over the alphabet Σ3 = {0̂, 1̂} can be viewed as a binary representation of some nonnegative
integer; we shall write int(w) to denote this number. The reader can check that for each w in Σ∗3, the
coefficient of w in |A3| is sint(w).

Figure 4: The automaton A3.

Example 5.9. We shall now give an example of a (non-alternating) weighted automaton A4 over some
commutative semiring S, which we shall later modify into a two-mode alternating weighted automaton. The
automaton A4 is depicted in Figure 5; the alphabet Σ4 of the automaton A4 consists of the symbol “+” and
of symbols ŝ1, . . . , ŝk for some particular elements s1, s2, . . . , sk of S.

Let L′ be the language that consists of all words w over Σ4 such that w = ŝi1 ŝi2 . . . ŝim , where m
is a nonnegative integer and i1, . . . , im are in {1, . . . , k}. For each such w, we define elem(w) to be the
semiring element

∏m
j=1 sij . Moreover, let Lelem be the language consisting of all words w over Σ4 such that

w = +u1 + u2 . . .+ um for some nonnegative integer m and ui in L′ for i = 1, . . . ,m. For each such w, we
define elem(w) =

∑m
i=1 elem(ui). It is easy to see that (|A4|, w) = elem(w) for each w in Lelem. Coefficients

of words from Σ∗4 − Lelem in |A4| are not important for our purposes.

5We shall see in Subsection 5.5 that two-mode alternating weighted automata are equivalent to alternating weighted au-
tomata in expressive power. This means that any two-mode alternating weighted automaton can be reworked to an alternating
weighted automaton and vice versa.
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Figure 5: The automaton A4.

Figure 6: The automaton A5.

Example 5.10. We shall now modify the (non-alternating) weighted automaton A4 into a two-mode al-
ternating weighted automaton A5 over S and over the alphabet Σ5 = Σ4 ∪ {x}. This new automaton is
depicted in Figure 6. We can see that (|A5|, xmu) = (elem(u))m for each nonnegative integer m and each
word u in Lelem. The automaton A5 has the ability to calculate exponents of semiring elements.

Example 5.11. We can go even further with the previous example. Let Σ6 = Σ5 ∪ {⊕,#}. Let L′′ consist
of all words w over Σ6 such that w = ⊕xm1 ⊕xm2 . . .⊕xml for some nonnegative integers l and m1, . . . ,ml.
For each such w, let the polynomial

∑l
i=1 x

mi in S[x] be denoted by poly[w]. In Figure 7, we give a diagram
of a two-mode alternating weighted automaton A6 over S and Σ6 such that (|A6|, u#v) = poly[u](elem(v))
for each u in L′′ and v in Lelem.

Example 5.12. Even more generally, let Σ7 = Σ6∪
{
〈, 〉
}
(i.e., Σ7 consists of symbols from Σ6 and symbols

for angle brackets). Let Lpoly consist of all words w over Σ7 such that w = ⊕〈u1〉xm1⊕〈u2〉xm2 . . .⊕〈ul〉xml

for some nonnegative integers l and m1, . . . ,ml and words u1, . . . , ul in Lelem. For each such w, let the
polynomial

∑l
i=1 elem(ui)x

mi in S[x] be denoted by poly[w]. In Figure 8, a two-mode alternating weighted
automaton A7 over S and Σ7 is depicted such that (|A7|, u#v) = poly[u](elem(v)) for each u in Lpoly and
v in Lelem. The automaton A7 has the ability to substitute into polynomials.

5.3. Run Trees
We shall now observe that the behaviour of a two-mode alternating weighted automaton admits a rela-

tively natural characterisation in terms of run trees.

Figure 7: The automaton A6.
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Figure 8: The automaton A7.

One can think of a run on a word w = a1 . . . am (with m in N and a1, . . . , am in Σ) in a two-mode
alternating weighted automaton as follows: if a sum state is “visited” by the run before reading ak for some
k in {1, . . . ,m}, then the run chooses to follow precisely one transition leading from that state, which has
to be labelled either by ak, or by ε; if a product state is “visited”, the run has to follow all ak-labelled and
ε-labelled transitions leading from the state. Moreover, if a sum state is “visited” after am is read, the run
either chooses to follow precisely one ε-labelled transition, or halts; in a product state, the run either follows
all ε-labelled transitions leading from the given state, or halts. The flow of a run in a two-mode alternating
weighted automaton on a word w can thus be viewed as a rooted tree, which branches whenever the run
passes a product state – we shall call this rooted tree a run tree on w.

The weight of a run tree will simply be given by the product of weights of all its constituent transitions,
the initial weight of its root, and the terminal weights of its leaves. We shall prove that for each two-mode
alternating weighted automaton A and each w over its input alphabet, the coefficient of w in the behaviour
of A equals the sum of weights of all run trees on w in A.

To give a formal definition of run trees, let us first recall that a rooted tree is a triple T = (X,E, r),
where X is a nonempty finite set of nodes, E ⊆

(
X
2

)
is a set of edges, and r in X is a distinguished node

called the root, with the usual conditions of connectedness and acyclicity. For each x in X, we shall denote
by d(x) the depth of x, i.e., the distance of x from the root (in particular, d(r) = 0). A leaf in T is a node
x in X, for which there is no y in X such that d(x) < d(y) and {x, y} is in E. We shall denote the set of all
leaves in T by `(T ). It is obvious that either d(y) = d(x) + 1 or d(x) = d(y) + 1 holds for each edge {x, y}
in E; we shall write {x, y} = xy in the former case and {x, y} = yx in the latter case.6 It is also clear that
precisely one node x in X exists for each y in X − {r} such that xy is in E; we shall call this node x the
parent of y and write x = par(y). Furthermore, we shall write ω(x) = {xy ∈ E | y ∈ X} for the set of all
outgoing edges of a node x in X.

We shall now use the notion of a rooted tree to define run trees of a given two-mode automaton A.
More precisely, we shall first define what we shall call quasi run trees, in which the initial weight of the root
might not be the same as the initial weight of the corresponding state, but can be arbitrarily assigned. We
shall define a p-run tree to be a quasi run tree such that the root corresponds to state p and has initial

6That is, we shall write edges as directed from the root towards the leaves.
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weight assigned to 1S – such trees will be particularly useful in inductive proofs, as we shall see that they
correspond to the series |A|p. Finally, we shall say that a quasi run tree is a run tree if the initial weight of
the root is the same as the initial weight of the corresponding state.

Let us now define quasi run trees. We shall first introduce an auxiliary notion of a structural run tree,
which can be seen as a rooted tree together with mappings assigning states to nodes and transitions to edges
that are consistent with each other, and with a semiring element representing the initial weight of the root.
By imposing several additional conditions, we shall be finally able to refine the notion of structural run trees
in order to obtain a definition of quasi run trees, as described above.

Formally, letA = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over a semiring S.
We may then define a structural run tree of A to be a quadruple R = (T , st, tr, %), where: T = (X,E, r) is
a rooted tree; st : X → Q⊕ ∪Q⊗ is a mapping assigning states of the automaton A to nodes; tr : E → T is
a mapping assigning transitions of A to edges such that src(tr(xy)) = st(x) and dst(tr(xy)) = st(y) holds
for each xy in E; % in S is the initial weight of a root. Moreover, let us define a mapping wordR : X → Σ∗

inductively by wordR(r) = ε and wordR(x) = wordR(par(x))σ(tr(par(x)x)) for each x in X − {r}. We
shall simply write word instead of wordR when R is understood.

We shall say that a structural run tree R = (T , st, tr, %) of A with T = (X,E, r) is a quasi run tree of
A on w = a1 . . . am in Σ∗ (with m in N and a1, . . . , am in Σ) if the following conditions are satisfied:

1. The equality word(x) = w holds for each leaf x in `(T ). (This also obviously implies that word(x) is
a prefix of w for each x in X.)

2. If x in X − `(T ) is a node such that st(x) is in Q⊕, then ω(x) is a singleton.
3. If x in X − `(T ) is a node such that st(x) is in Q⊗ and word(x) = a1 . . . ak for some k in {0, . . . ,m},

then tr(xy) 6= tr(xz) holds for all xy, xz in E such that xy 6= xz, and

tr(ω(x)) =

{
T (st(x), ak+1) ∪ T (st(x), ε) if k < m,
T (st(x), ε) if k = m.

We shall say that R is a quasi run tree of A if it is a quasi run tree of A on some word w in Σ∗.
Moreover, for each quasi run tree R = (T , st, tr, %) of a two-mode alternating weighted automaton

A = (Q⊕, Q⊗,Σ, T, ν, ι, τ), where T = (X,E, r), we shall define its weight |R| by

|R| = % ·

(∏
e∈E

ν(tr(e))

)
·

 ∏
x∈`(T )

τ(st(x))

 .

Finally, let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over S, p be in
Q⊕ ∪Q⊗, and w = a1 . . . am be in Σ∗ (with m in N and a1, . . . , am in Σ). We shall define a p-run tree of A
on w to be a quasi run tree R = ((X,E, r), st, tr, %) of A on w such that st(r) = p and % = 1S . Moreover,
we shall define a run tree of A on w to be a quasi run tree R = ((X,E, r), st, tr, %) of A on w such that
% = ι(st(r)). We shall denote the set of all p-run trees of A on w by Rp(A, w) and the set of all run trees
of A on w by R(A, w).

Example 5.13. Consider a two-mode alternating weighted automaton A over the alphabet Σ = {a, b} and
over the semiring N of natural numbers with standard addition and multiplication, depicted in Figure 9.
In addition to its mode, each state of the automaton A is labelled by its name in Figure 9; the set of states
of A is thus {1, 2, 3}.

In Figure 10, all run trees of A on the word ab are shown. Nodes of the run trees are labelled by the
corresponding state and by “+” or “×” depending on the mode of that state. Each edge is labelled according
to the corresponding transition. Moreover, there is an ingoing arrow to the root in each of the depicted run
trees. This is always labelled by the initial weight of the root (for run trees, this is the same as the initial
weight of the state corresponding to the root). Similarly, there are outgoing arrows from the leaves of each
of the run trees – these are labelled by terminal weights of the corresponding states.
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Figure 9: The two-mode alternating weighted automaton A.

Figure 10: All run trees of the automaton A from Figure 9 on the word ab.

We may now prove a characterisation of the behaviour |A| of a two-mode alternating weighted automaton
A in terms of weights of run trees of A. We shall do this by first proving an auxiliary lemma characterising
the series |A|p, for each state p of A, in terms of weights of p-run trees; the statement about |A| can be
obtained as an easy consequence of this result.

Recall that all two-mode alternating weighted automata are understood to be without ε-cycles. This
obviously implies that a partial ordering ≺ can be defined on states of each such two-mode alternating
weighted automaton A, such that p ≺ q if and only if p is reachable from q by a sequence of ε-labelled
transitions. The minimal elements with respect to this partial ordering are clearly the states of A with no
outgoing ε-labelled transitions. We shall use these properties implicitly in the proof of the following lemma.

Lemma 5.14. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over a semiring
S, let p be in Q⊕ ∪Q⊗, and w in Σ∗. Then

(|A|p, w) =
∑

R∈Rp(A,w)

|R|.

Proof. By induction on |w| and on the partial ordering ≺ introduced above. First, let w = ε and T (p, ε) = ∅.
It follows by Definition 5.3 that (|A|p, w) = τ(p). On the other hand, it is clear that the only p-run tree of
A on w = ε consists of a single node – this is at the same time a root and a leaf – corresponding to the
state p. The weight of such tree is τ(p) as well.

Next, let w = ε and T (p, ε) 6= ∅, and suppose that the statement to be proved holds for w = ε and for
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all states in dst(T (p, ε)). If p is in Q⊕, then it follows by Definition 5.3 that

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) · (|A|dst(t), ε).

By the induction hypothesis, this rewrites to

(|A|p, ε) = τ(p) +
∑

t∈T (p,ε)

ν(t) ·
∑

R′∈Rdst(t)(A,ε)

|R′| =
∑

R∈Rp(A,ε)

|R|,

where the second equality follows by the fact that Rp(A, ε) consists of a tree with a single node corresponding
to p (this has weight τ(p)) and for each transition t in T (p, ε), of a tree rooted in a node corresponding to p
that is connected by an edge corresponding to t to the root of some subtree R′ from Rdst(t)(A, ε) (this has
weight ν(t) · |R′|). If p is in Q⊗, then Definition 5.3 gives us

(|A|p, ε) = τ(p) +
∏

t∈T (p,ε)

ν(t) · (|A|dst(t), ε),

which rewrites by the induction hypothesis to

(|A|p, ε) = τ(p) +
∏

t∈T (p,ε)

ν(t) ·
∑

R′t∈Rdst(t)(A,ε)

|R′t| =
∑

R∈Rp(A,ε)

|R|.

Here, the second equality follows by the fact that Rp(A, ε) consists of a tree with a single node corresponding
to p (this has weight τ(p)) and of trees rooted in a node corresponding to p that is connected by edges in
one-to-one correspondence with transitions t in T (p, ε) to roots of some subtrees R′t in Rdst(t)(A, ε) (each
such tree has weight

∏
t∈T (p,ε) ν(t) · |R′t|).

Now, suppose that the statement holds for some w in Σ∗ and for all states of A, and consider a word cw
for some c in Σ. If p is a state in Q⊕ such that T (p, ε) = ∅, then it follows by Definition 5.3 that

(|A|p, cw) =
∑

t∈T (p,c)

ν(t) · (|A|dst(t), w).

By the induction hypothesis, this rewrites to

(|A|p, cw) =
∑

t∈T (p,c)

ν(t) ·
∑

R′∈Rdst(t)(A,w)

|R′| =
∑

R∈Rp(A,cw)

|R|,

where the second equality follows by the fact that Rp(A, cw) consists of all trees rooted in a node corre-
sponding to p that is connected by an edge corresponding to a c-labelled transition t to the root of some
subtree R′ in Rdst(t)(A, w). If p is in Q⊗, T (p, ε) = ∅, and T (p, c) 6= ∅, then Definition 5.3 gives us

(|A|p, cw) =
∏

t∈T (p,c)

ν(t) · (|A|dst(t), w).

By the induction hypothesis, this rewrites to

(|A|p, cw) =
∏

t∈T (p,c)

ν(t) ·
∑

R′t∈Rdst(t)(A,w)

|R′t| =
∑

R∈Rp(A,cw)

|R|,

where the second equality follows by the fact that Rp(A, cw) consists of trees rooted in a node corresponding
to p that is connected by edges in one-to-one correspondence with transitions t in T (p, c) to roots of some
subtrees R′t in Rdst(t)(A, w). If T (p, ε) = ∅ and T (p, c) = ∅, then (|A|p, cw) = 0, which is equal to the sum
of |R| over R from the obviously empty set Rp(A, cw). Finally, if p is a state such that T (p, ε) 6= ∅, then
the reasoning is similar as above; however, both c-labelled transitions and ε-labelled transitions leading to
states preceding p in the partial ordering ≺ have to be taken into account.

16



Theorem 5.15. Let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be a two-mode alternating weighted automaton over a semi-
ring S, and let w be in Σ∗. Then

(|A|, w) =
∑

R∈R(A,w)

|R|.

Proof. A run tree with root corresponding to a state p can be viewed as a p-run tree with the initial weight
of the root changed from 1S to ι(p). Moreover, this clearly introduces a bijection between run trees with
root corresponding to p and p-run trees. Hence,

(|A|, w) =
∑

p∈Q⊕∪Q⊗
ι(p)|A|p =

∑
p∈Q⊕∪Q⊗

∑
R∈Rp(A,w)

ι(p)|R| =
∑

R∈R(A,w)

|R|,

and the theorem is proved.

5.4. Elimination of Spontaneous Transitions
We have allowed spontaneous ε-labelled transitions in our definition of two-mode alternating weighted

automata mainly in order to make constructions involving such automata easier and more intuitive. We
shall now show that this feature of our definition has no effect on the expressive power of the model: we
shall prove that ε-labelled transitions can be removed from two-mode alternating automata. We shall say
that a two-mode alternating weighted automaton A is ε-free if it contains no ε-labelled transitions.

Theorem 5.16. Let A1 be a two-mode alternating weighted automaton over a commutative semiring S.
Then there exists an ε-free two-mode alternating weighted automaton A2 over S such that |A2| = |A1|.

Proof. Let A1 = (Q⊕1 , Q
⊗
1 ,Σ, T1, ν1, ι1, τ1) and |Q⊕1 ∪ Q

⊗
1 | = n1. We shall construct an ε-free two-mode

alternating weighted automaton A2 = (Q⊕2 , Q
⊗
2 ,Σ, T2, ν2, ι2, τ2) over S such that |A2| = |A1|.

The idea behind the construction is to examine evaluation polynomials for words of length two in A1

– that is, polynomials PA1
[p, ab] for p in Q⊕1 ∪ Q

⊗
1 and a, b in Σ. Each such polynomial can be written in

the standard form as a sum m1 + . . .+mk of some monomials m1, . . . ,mk. One can then proclaim p to be
a sum state in A2 and lead k transitions labelled by a from p to some new product states corresponding
to the monomials m1, . . . ,mk. If m = cxi11 . . . x

in1
n1 is any of these monomials, then one might weight the

transition from p to the new state corresponding to m by c. Moreover, for j = 1, . . . , n1, one might add ij
transitions labelled by b and weighted by 1S from the new state corresponding to m to the j-th state of the
original automaton. The evaluation polynomial PA2

[p, ab] will then clearly be the same as PA1
[p, ab].

However, one has to address some additional technical details in order to make the construction work.
First, in order to deal with runs ending by sequences of ε-labelled transitions, the terminal weight of each
state p from Q⊕1 ∪Q

⊗
1 in A2 has to be set to (|A1|p, ε) (the terminal weight of the new states corresponding

to monomials will be 0S). Moreover, the construction described up to now works for words of even length
only. In order to deal with words of odd length, we shall add one new state qd with terminal weight 1S and
no outgoing transitions, and lead an ε-labelled transition weighted by (|A1|p, c) from p to qd for each p from
Q⊕1 ∪Q

⊗
1 and each c in Σ.

Let us now describe the construction formally. For each p in Q⊕1 ∪ Q
⊗
1 and w in Σ∗, the evaluation

polynomial PA1 [p, w] can be written as a sum of distinct nonzero monomialsm1,m2, . . . ,mk in S[x1, . . . , xn].
Let M(p, w) = {m1, . . . ,mk}.

First, let Q⊕2 = Q⊕1 ∪Q
⊗
1 ∪ {qd}, where qd is a new state that is not in Q⊕1 ∪Q

⊗
1 , and let Q⊗2 consist of

all pairs (m, b), where b is in Σ and m is in M(p, ab) for some p in Q⊕1 ∪Q
⊗
1 and a in Σ. Let us assume some

linear ordering of states of A2 to be given, in which states from Q⊕1 ∪Q
⊗
1 keep their numerical order from

the ordering of states of A1. Let n2 = |Q⊕2 ∪Q
⊗
2 |.

The set of transitions T2 will be constructed from the following sets:7

• Tα that consists of all tuples (p, c, s, qd), where p is in Q⊕1 ∪Q
⊗
1 , c is in Σ, and s = (|A1|p, c).

7See Section 2 for the definition of the notation coef(m) and exp(m, j) for a monomial m.
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• Tβ that consists of all tuples (p, a, s, (m, b)), where p is in Q⊕1 ∪Q
⊗
1 , a, b are in Σ, m is a monomial in

M(p, ab), and s = coef(m).

• Tγ that consists of all tuples ((m, a), a, 1S , p, i), where m is in S[x1, ..., xn], a is in Σ, (m, a) is in Q⊗2 ,
p is the j-th state in Q⊕1 ∪Q

⊗
1 , and i is an integer such that 1 ≤ i ≤ exp(m, j).

Now, let us take T2 = Tα ∪ Tβ ∪ Tγ . For each t in T2, let us define src(t), σ(t), ν(t), and dst(t) to be the
first, the second, the third, and the fourth entry of t, respectively.

Finally, we shall define the initial and the terminal weighting functions for all p in Q⊕2 ∪Q
⊗
2 by

ι2(p) =

{
ι1(p) if p is in Q⊕1 ∪Q

⊗
1 ,

0S otherwise,

τ2(p) =


(|A1|p, ε) if p is in Q⊕1 ∪Q

⊗
1 ,

1S if p = qd,

0S otherwise.

We shall now show that |A2| = |A1|. We shall first prove by induction on |w| that (|A2|p, w) = (|A1|p, w)
for every p in Q⊕1 ∪Q

⊗
1 and w in Σ∗.

First, let w = ε. Since A2 is ε-free, we have (|A2|p, ε) = τ2(p) = (|A1|p, ε). Next, let w = c for some c
in Σ. Since A2 is ε-free, we have

(|A2|p, c) =
∑

t∈TA2
(p,c)

ν2(t) · τ2(dst(t)).

There is a single transition td in TA2
(p, c) that leads to qd and this transition satisfies ν2(td) = (|A1|p, c) and

τ2(dst(td)) = 1. Each other transition t in TA2
(p, c) ends in Q⊗2 and hence τ2(dst(t)) = 0 by the definition

of τ2. It follows that
(|A2|p, c) = ν2(td) · τ2(dst(td)) = (|A1|p, c).

Finally, assume that (|A2|q, v) = (|A1|q, v) for some v in Σ∗ and each q in Q⊕1 ∪Q
⊗
1 , and let w = abv for

some a, b in Σ. The reader can easily check that PA2
[p, ab] = PA1

[p, ab]. By Lemma 5.5, we obtain

(|A2|p, w) = PA2
[p, ab]((|A2|1, v), . . . , (|A2|n2

, v)) = PA1
[p, ab]((|A1|1, v), . . . , (|A1|n1

, v)) = (|A1|p, w).

It is now easy to show that |A2| = |A1|. Indeed, for every w in Σ∗, we have

(|A2|, w) =
∑

p∈Q⊕2 ∪Q
⊗
2

ι2(p) · (|A2|p, w).

If p is in Q⊕1 ∪ Q
⊗
1 , then ι2(p) = ι1(p) and (|A2|p, w) = (|A1|p, w), as we have already proved. For every

other state p in Q⊕2 ∪Q
⊗
2 , we have ι2(p) = 0. These facts imply that

(|A2|, w) =
∑

p∈Q⊕1 ∪Q
⊗
1

ι1(p) · (|A1|p, w) = (|A1|, w).

The theorem is proved.

5.5. Equivalence with Alternating Weighted Automata
We have already mentioned that the definition of two-mode alternating weighted automata can be viewed

just as an alternative definition of alternating weighted automata. The following theorem justifies this claim.

Theorem 5.17. A formal power series r over a commutative semiring S and over an alphabet Σ is realised
by an alternating weighted automaton over S if and only if it is realised by a two-mode alternating weighted
automaton over S.
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Proof. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over S. We shall construct a two-mode
alternating weighted automaton A′ = (Q⊕, Q⊗,Σ, T, ν, ι, τ ′) over S such that |A′| = |A|.

For each p in Q and c in Σ, the polynomial ψ[p, c] can be written as a sum of distinct nonzero monomials
m1,m2, . . . ,mk. Let M(p, c) = {m1, . . . ,mk} and M =

⋃
p∈Q,c∈ΣM(p, c). Similarly, the polynomial P0 can

be written as a sum of distinct nonzero monomials m′1,m′2, . . . ,m′l. Let M0 = {m′1, . . . ,m′l}.
First, let us take Q⊕ = Q and Q⊗ = M ∪M0. The set T will be constructed from the following two

components:

• The set Tα that consists of all tuples (p, c, s,m), where p is in Q, c is in Σ, m is a monomial inM(p, c),
and s = coef(m).

• The set Tβ that consists of all tuples (m, ε, 1S , p, i), where m is in M ∪M0, p is the j-th state in Q
(with respect to the ordering of states of A) and i is an integer such that 1 ≤ i ≤ exp(m, j).

Let us now take T = Tα ∪ Tβ . Moreover, for each t in T , let us define src(t), σ(t), ν(t), and dst(t) to be
the first, the second, the third, and the fourth entry of t, respectively.

Ifm is a monomial inM0, let us define ι(m) = coef(m). For every other state p in Q⊕∪Q⊗, let ι(p) = 0S .
Finally, let τ ′(p) = τ(p) for all p in Q and τ ′(p) = 0S for every other state p in Q⊕ ∪Q⊗.

It is an easy exercise to show that |A′| = |A|. We shall thus leave the proof for the reader.
For the converse, let A = (Q⊕, Q⊗,Σ, T, ν, ι, τ) be an ε-free two-mode alternating weighted automaton

over S with n = |Q⊕ ∪ Q⊗|. We shall construct an alternating weighted automaton A′ = (Q,Σ, ψ, P0, τ
′)

over S such that |A′| = |A|.
Let Q = Q⊕ ∪ Q⊗ and let Q keep the linear ordering of Q⊕ ∪ Q⊗. Let us take P0 =

∑n
i=1 ι(i)xi, and

for each p in Q and c in Σ, let ψ[p, c] = PA[p, c]. The terminal weighting function τ ′ can then be defined by
τ ′(p) = τ(p) for each p in Q.

It is straightforward to show that |A′| = |A|. We shall omit the proof of this fact as well.

6. Systems of H-Polynomial Equations

The equivalence of (non-alternating) weighted automata and systems of linear equations is a well known
result [8] that can be viewed as a weighted analogy of the classical result relating finite automata to right-
linear (regular) grammars [9]. We shall now prove a similar characterisation for alternating weighted au-
tomata, relating them to what we shall call systems of H-polynomial equations. Here, “H-polynomial” is
an abbreviation for “Hadamard-polynomial” – indeed, our H-polynomial systems can be viewed as linear
systems that may contain some additional Hadamard products of formal power series. In yet another words,
a H-polynomial system over a semiring S and over an alphabet Σ is simply an appropriately normalised
system of polynomial equations over the semiring

(
S⟪Σ∗⟫,+,�, 0,∑w∈Σ∗ 1w

)
.

Definition 6.1. A system of H-polynomial equations P over a commutative semiring S and over an al-
phabet Σ in indeterminates X1, X2, . . . , Xn is a system of n equations

Xi =

li∑
j=1

(
si,jai,j ·

( n⊙
k=1

X
�mi,j,k

k

))
+ tiε, i = 1, . . . , n, (1)

where: li is a nonnegative integer; si,j and ti are in S for i = 1, . . . , n and j = 1, . . . , li; ai,j is in Σ for
i = 1, . . . , n and j = 1, . . . , li; mi,j,k is a nonnegative integer for i = 1, . . . , n, j = 1, . . . , li, and k = 1, . . . , n;
the inequality

∑n
k=1mi,j,k > 0 holds for i = 1, . . . , n and j = 1, . . . , li.

An n-tuple (r1, r2, . . . , rn) of power series in S⟪Σ∗⟫ is a solution to P if

ri =

li∑
j=1

(
si,jai,j ·

( n⊙
k=1

r
�mi,j,k

k

))
+ tiε

holds for i = 1, . . . , n. We shall write |P|i to denote ri for i = 1, . . . , n.
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Proposition 6.2. Each system P of H-polynomial equations over a commutative semiring S and over an
alphabet Σ has precisely one solution.

Proof. Let P consist of n equations of the form (1). For i = 1, . . . , n, we shall inductively define a formal
power series ri in S⟪Σ∗⟫. Let the coefficient of ε in ri be ti. For each c in Σ, let Jc,i be the set of indices j,
for which ai,j = c, and let us define

(ri, cw) =
∑
j∈Jc,i

(
si,j ·

n∏
k=1

(rk, w)mi,j,k

)
for each w in Σ∗. These relations define the formal power series ri for i = 1, . . . , n. Clearly, the n-tuple
(r1, r2, . . . , rn) is a solution to P. Moreover, this n-tuple is evidently the only possible solution to P.

We claim that a power series r over a commutative semiring S and over an alphabet Σ is realised by an
alternating weighted automaton over S if and only if there is a system P of H-polynomial equations over
S and Σ such that |P|1 = r. In order to prove this characterisation, we shall need the following lemma.

Lemma 6.3. Let A = (Q,Σ, ψ, P0, τ) be an alternating weighted automaton over a commutative semiring S.
Then there exists an alternating weighted automaton A′ = (Q′,Σ, ψ′, P ′0, τ

′) over S such that P ′0 = x1 and
|A′| = |A|.

Proof. Let n = |Q|. We shall construct an alternating weighted automaton A′′ = (Q′′,Σ, ψ′′, P ′′0 , τ
′′) with

n + 1 states such that P ′′0 = xn+1 and |A′′| = |A|. Once this is done, the initial polynomial P ′′0 can be
changed to x1 if the states of A′′ are suitably rearranged.

Let us define Q′′ = Q ∪ {q0}, where q0 is a new state that is not in Q. The numerical order of
q0 is n + 1, while the rest of states in Q′′ keeps its ordering from Q. For each c in Σ, let us define
ψ′′[q0, c] = P0(ψ[1, c], ψ[2, c], . . . , ψ[n, c]), and let the terminal weight of the state q0 be defined by τ ′′(q0) =
P0(τ(1), τ(2), . . . , τ(n)). For each p in Q′′ − {q0} and c is in Σ, let ψ′′[p, c] = ψ[p, c] and τ ′′(p) = τ(p).
Finally, let P ′′0 = xn+1. It is easy to show that |A′′| = |A|.

We are now ready to prove a theorem characterising formal power series realised by alternating weighted
automata in terms of systems of H-polynomial equations.

Theorem 6.4. Let r be a formal power series over a commutative semiring S and over an alphabet Σ. An
alternating weighted automaton A over S such that |A| = r exists if and only if there exists a system P of
H-polynomial equations over S and Σ such that |P|1 = r.

Proof. Let P be a system of H-polynomial equations over S and Σ that consists of n equations of the
form (1). We shall construct an alternating weighted automaton A = (Q,Σ, ψ, P0, τ) such that |A| = |P|1.

Let Q = {1, 2, . . . , n}. For every i in Q and c in Σ, let Jc,i be the set of indices j with ai,j = c, and let

ψ[i, c] =
∑
j∈Jc,i

si,j

n∏
k=1

x
mi,j,k

i .

Let P0 = x1 and τ(i) = ti for every i in Q. The proof of the fact |A| = |P|1 is left for the reader.
For the converse, let A = (Q,Σ, ψ, P0, τ) with |Q| = n be an alternating weighted automaton over S.

We shall construct a system P of H-polynomial equations over S and Σ such that |P|1 = |A|.
By Lemma 6.3, we can assume that P0 = x1. The system of H-polynomial equations P shall consist of

n equations. Let us construct the i-th equation of P for i = 1, . . . , n. For each c in Σ, we can write

ψ[i, c] =

lc∑
j=1

sc,j

n∏
k=1

x
mc,j,k

k ,
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where lc is a nonnegative integer, sc,j is in S for j = 1, . . . , lc, the exponent mc,j,k is a nonnegative integer
for j = 1, . . . , lc and k = 1, . . . , n, and

∑n
k=1mc,j,k > 0 for j = 1, . . . , lc. Let the i-th equation of P be

Xi =
∑
c∈Σ

( lc∑
j=1

sc,jc ·
( n⊙
k=1

X
�mc,j,k

k

))
+ τ(i)ε.

It is easy to show that |P|1 = |A|.

7. Expressive Power

Since (non-alternating) weighted automata are just a special case of alternating weighted automata, the
latter are at least as powerful as the former. A natural question is if alternating weighted automata are strictly
more powerful. A positive answer to this question was already given by Almagor and Kupferman [1], who
constructed a simple alternating weighted automaton over the tropical semiring (R∪{∞},min,+,∞, 0), and
proved that no non-alternating weighted automaton over the same semiring is equivalent to this automaton.
As a consequence, alternating weighted automata over the tropical semiring are strictly more powerful than
non-alternating weighted automata over the tropical semiring. However, not the same can be said about the
Boolean semiring, where it is well known that a language recognised by a Boolean alternating automaton is
necessarily rational (regular) [2]. In other words, alternating and non-alternating weighted automata over
the Boolean semiring are equally powerful.

We conclude that commutative semirings can be divided into two nonempty classes: the class of commu-
tative semirings, for which alternating and non-alternating weighted automata are equally powerful and the
class of commutative semirings, for which alternating weighted automata are strictly more powerful than
their non-alternating counterparts. Let S denote the former class, i.e., let S be the class of all commutative
semirings S such that the behaviour of every alternating weighted automaton over S is rational over S. For
the rest of this section, we shall be proving the following characterisation of the class S .

Theorem 7.1. Let S be a commutative semiring. Then the following assertions are equivalent:

1. Alternating weighted automata over S are equally expressive as (non-alternating) weighted automata
over S (i.e., S is in S ).

2. The semiring S is locally finite.

As a first step, let us prove the following simple characterisation of locally finite commutative semirings,
which we shall use to establish one of the implications of Theorem 7.1.

Lemma 7.2. Let S be a commutative semiring. Then S is locally finite if and only if each element of S is
of finite multiplicative order.

Proof. Suppose that S is locally finite. In particular, this implies that the subsemiring Ts generated by s is
finite for each s in S. The subsemiring Ts contains si for all nonnegative integers i and hence, there is only
a finite number of such elements. This means that s has finite multiplicative order.

For the converse, suppose that every element of S has finite multiplicative order. First of all, let us note
that then every element of S has finite additive order as well. Since 2S has finite multiplicative order, there
exist two distinct nonnegative integers k1 and k2 such that (2S)k1 = (2S)k2 . We have

2k11S = (2k1)S = (2S)k1 = (2S)k2 = (2k2)S = 2k21S ,

which shows that there exist two distinct nonnegative integers l1 = 2k1 and l2 = 2k2 such that l11S = l21S .
Therefore, if t is in S, then l1t = (l11S)t = (l21S)t = l2t. We have thus shown that l1t = l2t for two distinct
nonnegative integers l1, l2, which means that t has finite additive order.

Now, let T be a subsemiring of S generated by elements s1, s2, . . . , sn in S. We shall show that T is
finite. Let M be a subset of S that consists of all elements

∏n
i=1 s

ki
i , where ki is a nonnegative integer for

i = 1, . . . , n. Since si has finite multiplicative order for i = 1, . . . , n, the set M is finite. Moreover, let K
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be a subset of S that consists of all elements
∑
t∈M ktt, where kt is a nonnegative integer for every t in M .

Since every t in M has finite additive order, we can see that K is finite as well. Furthermore, it is easy to
show that K is a subsemiring of S that contains s1, . . . , sn and is contained in every subsemiring of S that
contains s1, . . . , sn. This means that K is a subsemiring generated by s1, . . . , sn and hence, K = T . This
proves that T is finite; the semiring S is thus locally finite.

Our next aim is to prove the following direction of Theorem 7.1: if S is locally finite, then S is in S .
We shall first prove this claim when S is finitely generated, and hence finite.

The construction presented in the proof of the following lemma generalises the usual construction in
the Boolean setting [2], in which a nondeterministic finite automaton equivalent to a given alternating
finite automaton has states corresponding to finite conjunctions of variables corresponding to states of the
original automaton, with no variable repeated. For instance, if the original alternating automaton has
states q1, . . . , q6, then x2 ∧ x3 ∧ x6 can be a state of the equivalent nondeterministic finite automaton. Such
conjunctions are clearly in bijection with the set of all Boolean functions “realised” by arbitrary conjunctions
in the same variables, i.e., by monomials from B[x1, . . . , xn] with coefficient 1.

The set of functions from a finite set to itself is always finite. As a result, the set of polynomial functions
“realised” by monomials in S[x1, . . . , xn] with coefficient 1S is finite whenever S is finite. In our construction,
we shall simply replace the finite conjunctions described above by such “monomial functions”.

Lemma 7.3. Let S be a finite commutative semiring. Then S is in S .

Proof. Let A = (Q,Σ, ψ, P0, τ) with |Q| = n be an alternating weighted automaton over S. We shall
construct a (non-alternating) weighted automaton A′ = (Q′,Σ, T, ν, ι, τ ′) over S such that |A′| = |A|.

Since S is finite, there are finitely many functions µ1, µ2, . . . , µl in S(x1, . . . , xn) corresponding to mono-
mials from S[x1, . . . , xn] with coefficient 1S . Each polynomial function η in S(x1, . . . , xn) is clearly a linear
combination of µ1, . . . , µl, i.e., we can write η =

∑l
i=1 siµi, where si is in S for i = 1, . . . , l. For i = 1, . . . , l,

let mi be a monomial from S[x1, . . . , xn] such that µi is its corresponding polynomial function.
Let us define Q′ = {1, 2, . . . , l}. For each k in Q′ and each c in Σ, we shall construct the set of transitions

T (k, c) leading from k and labelled by c. Let η be the polynomial function that corresponds to the polynomial
mk(ψ[1, c], ψ[2, c], . . . , ψ[n, c]). We can write η =

∑l
i=1 siµi, where si is in S for i = 1, . . . , l. For i = 1, . . . , l,

let T (k, c) contain a transition tk,i with ν(tk,i) = si leading to i if and only if si is nonzero. We may now
define T =

⋃
k∈Q′,c∈Σ T (k, c).

Next, let φ0 be the polynomial function that corresponds to the polynomial P0. Then we can write
φ0 =

∑l
i=1 siµi, where si is in S for i = 1, . . . , l. For each k in Q′, let us take ι(k) = sk. Finally, let us

define τ ′(k) = µk(τ(1), τ(2), . . . , τ(n)) for each k in Q′.
Let us now show that |A′| = |A|. First, we shall prove that

(|A′|k, w) = µk
(
(|A|1, w), (|A|2, w), . . . , (|A|n, w)

)
(2)

holds for each k in Q′. The proof will be done by mathematical induction on the length of the word w.
For w = ε, we have (|A|i, ε) = τ(i) for i = 1, . . . , n. Since A′ is ε-free, it follows that

(|A′|k, ε) = τ ′(k) = µk(τ(1), . . . , τ(n)) = µk
(
(|A|1, ε), . . . , (|A|n, ε)

)
.

We have thus proved (2) for w = ε.
Now, suppose that (2) holds for w = v for some v in Σ∗. We shall prove that it holds also for w = cv, where

c is in Σ. Let η be the polynomial function that corresponds to the polynomialmk(ψ[1, c], ψ[2, c], . . . , ψ[n, c]).
For each i in Q′, let si be the weight of the c-labelled transition of A′ leading from k to i (if there is no
such transition, let si = 0S). By the definition of T , we have η =

∑l
i=1 siµi. Since A′ is ε-free, we also have

(|A′|k, cv) =
∑l
i=1 si(|A′|i, v). Moreover, by the induction hypothesis, (|A′|i, v) = µi

(
(|A|1, v), . . . , (|A|n, v)

)
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for i = 1, . . . , l. These facts imply

(|A′|k, cv) =

l∑
i=1

si(|A′|i, v) =

l∑
i=1

siµi
(
(|A|1, v), . . . , (|A|n, v)

)
= η

(
(|A|1, v), . . . , (|A|n, v)

)
=

= µk

(
ψ[1, c]

(
(|A|1, v), . . . , (|A|n, v)

)
, . . . , ψ[n, c]

(
(|A|1, v), . . . , (|A|n, v)

))
=

= µk
(
(|A|1, cv), . . . , (|A|n, cv)

)
.

We have thus proved (2) for w = cv.
Finally, we shall prove that (|A′|, w) = (|A|, w) for all w in Σ∗. Let φ0 be the polynomial function

that corresponds to the polynomial P0. By the definition of the initial weighting function ι, we have
φ0 =

∑l
i=1 ι(i)µi. This fact together with (2) implies

(|A′|, w) =

l∑
i=1

ι(i)(|A′|i, w) =

l∑
i=1

ι(i)µi
(
(|A|1, w), . . . , (|A|n, w)

)
= φ0

(
(|A|1, w), . . . , (|A|n, w)

)
= (|A|, w).

The lemma is proved.

We now wish to prove the more general claim: if S is locally finite, then S is in S , regardless of whether
S is finite or not. This claim follows easily from the special case proved above. The reason is that even if S
is not finite, every alternating weighted automaton over S still “makes use” just of some finite part of S. Let
us suppose that A is some two-mode alternating weighted automaton over S. If X is the set of all elements
of S that are either carried by some transition of A or are assigned to some state as an initial or a terminal
weight, then A can be viewed as a two-mode alternating weighted automaton over the semiring T generated
by X. The set X is clearly finite, so the semiring T is finitely generated. The same reasoning stands also if
A is a (general) alternating weighted automaton. That is, for every alternating weighted automaton A over
a commutative semiring S, there exists a finitely generated subsemiring T of S and an alternating weighted
automaton A′ over T such that |A′| = |A|.

Lemma 7.4. Let S be a locally finite commutative semiring. Then S is in S .

Proof. Let A be an alternating weighted automaton over S. Then there exists a finitely generated subsemi-
ring T of S and an alternating weighted automaton A′ over T such that |A′| = |A|. The semiring T is finite
and so it is in S by Lemma 7.3. Therefore, there exists a (non-alternating) weighted automaton B over T
such that |B| = |A′| = |A|. Clearly, B can be viewed as a (non-alternating) weighted automaton over S.

To finish the proof of Theorem 7.1, it remains to prove the following claim: if a commutative semiring
S is in S , then S is locally finite. We shall apply Lemma 7.2 and prove an equivalent statement: if S is
in S , then each element of S is of finite multiplicative order. This is the most intricate part of our proof of
Theorem 7.1, which requires some preparations.

For every nonnegative integer n, let 〈n〉 denote the binary representation of n (〈n〉 is a word over the
alphabet {0, 1}). Let X = {s1, s2, . . . , sz} be a finite subset of a commutative semiring S. It is easy to
construct an alternating weighted automaton AX over S and over the alphabet {0, 1,#} such that

(|AX |, 〈k1〉#〈k2〉# . . .#〈kz〉) =

z∏
i=1

skii (3)

for every z-tuple of nonnegative integers k1, k2, . . . , kz.8 A diagram of one such automaton for z = 3 is
depicted in Figure 11. For every finite subset X = {s1, . . . , sz}, let us denote the series |AX | by rX . We
claim that if the formal power series rX is rational over S for every finite subset X of S, then every element
of S has finite multiplicative order. We shall now give some definitions that will help us to prove this.

8Note that (3) does not specify value of |AX | on each word in {0, 1,#}∗. However, this is not important for our purposes.
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Figure 11: A two-mode alternating weighted automaton AX over the alphabet {0, 1,#} and over a commutative
semiring S, where X = {s1, s2, s3} for some particular elements s1, s2, s3 of S. The formal power series |AX | satisfies
(|AX |, 〈k1〉#〈k2〉#〈k3〉) = sk1

1 sk2
2 sk3

3 for every triplet of nonnegative integers k1, k2, k3.

For every finite subset X = {s1, s2, . . . , sz} of S and every nonnegative real number C, let GX(C) be
the set that consists of all elements s in S such that

s =

z∏
i=1

skii

for some nonnegative integers k1, k2, . . . , kz satisfying
∑z
i=1 ki ≤ C.9 Furthermore, for every pair of non-

negative real numbers C,D, let HX(C,D) be the set that consists of all elements s in S such that

s =

k∑
i=1

gi,

where k is a nonnegative integer satisfying k ≤ D and gi is in GX(C) for i = 1, . . . , k. If X contains only
one element s, we shall usually write Gs(C) and Hs(C,D) instead of G{s}(C) and H{s}(C,D).

The sets GX(C) and HX(C,D) are clearly finite for every finite subset X of S and for every pair of
nonnegative real numbers C,D. Moreover, if X consists of z elements, then the sizes of these sets can be
estimated, using the standard formula for combinations with repetition10, by

|GX(C)| ≤
(
bCc+ z

z

)
≤ (C + z)z,

|HX(C,D)| ≤
(
bDc+ |GX(C)|
|GX(C)|

)
≤ (D + |GX(C)|)|GX(C)| ≤ (D + (C + z)z)(C+z)z .

9This is really interesting only if C is a natural number, as obviously GX(C) = GX(bCc) for all X and C. The reason why
GX(C) is defined with nonnegative real C is that we shall often substitute estimated values for C, which would otherwise have
to be rounded. The same remark applies to the notation HX(C,D) introduced below.

10The size of GX(C) can obviously be estimated from above by the number of nonnegative integer solutions to the inequality
k1+ . . .+kz ≤ bCc, which is the same as the number of nonnegative integer solutions to the equation k1+ . . .+kz+kz+1 = bCc.
Thus, the estimate is given by the number of bCc-combinations with repetition of a multiset containing z+1 distinct elements.
The estimate for the size of HX(C,D) is obtained similarly.
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For our purposes, we shall manage with the weaker estimates

|GX(C)| ≤ (C + z)z, (4)

|HX(C,D)| ≤ (D + (C + z)z)(C+z)z . (5)

Recall that our goal is to prove that if S is a commutative semiring in S , then each element of S is of
finite multiplicative order. In a nutshell, we shall do this by proving that if S is in S , then Gs(2n) contains
less than 2n elements for each s in S and all sufficiently large n (it is clear that s is of finite multiplicative
order in that case). To get this result, we shall prove that Gs(2n) is contained, if n is large enough, in a set
HY (C(n), D(n)) for some suitable Y , C(n), and D(n), so that the estimate (5) can be used to obtain the
upper bound 2n for its size.

We shall prove this containment of the sets Gs(2n) in some suitable HY (C(n), D(n)) gradually in the
following three lemmata. The first of them, Lemma 7.5, is a variation on a well-known property of weighted
automata [4, 5]. We shall nevertheless give a proof for convenience.

Lemma 7.5. Let S be a commutative semiring and Σ be an alphabet. If r in S⟪Σ∗⟫ is rational over S, then
there exists a finite subset Y of S and a nonnegative real number C so that (r, w) is in HY (|w|+ 1, C|w|)
for every w in Σ∗.

Proof. Let r be realised by a weighted automaton A = (Q,Σ, T, ν, ι, τ) over S. We can assume that A is
ε-free and that ι(p) = 0 for every p in Q except for some q0 in Q for which ι(q0) = 1. (It is a well known fact
that every rational power series is realised by some weighted automaton that satisfies these conditions [8].)
Clearly, we can also assume that there are no parallel transitions with the same label in A.

Let Y be the set that consists of all elements of S that are carried by some transition in T or are assigned
to some state in Q as a terminal weight, i.e.,

Y = {ν(t) | t ∈ T} ∪ {τ(p) | p ∈ Q}.

Let C = |Q|. We claim that for each p in Q and w in Σ∗, the coefficient of w in |A|p is in HY (|w|+ 1, C|w|).
Once we prove this claim, the proof of Lemma 7.5 is finished, as |A| = |A|q0 . We shall prove the claim by
induction on the length of w.

If w = ε, then (|A|p, w) = τ(p). Since τ(p) is in Y , the coefficient of w in |A|p belongs to the set
HY (1, 1) = HY (|w|+ 1, C|w|). Let us now assume that w = cv for some c in Σ and v in Σ∗. We have

(|A|p, cv) =
∑

t∈T (p,c)

ν(t) · (|A|dst(t), v). (6)

By the induction hypothesis, (|A|dst(t), v) is in HY (|v|+1, C|v|) for every t in T (p, c) and so ν(t) ·(|A|dst(t), v)

is in HY (|v|+ 2, C|v|) for every t in T (p, c). Moreover, there are no more than C = |Q| transitions in T (p, c),
since A has no parallel transitions with the same label. So the sum in (6) is taken over at most C elements
from HY (|v|+ 2, C|v|) and hence, (|A|p, w) is in HY (|v|+ 2, C|v|+1) = HY (|w|+ 1, C|w|).

Recall that rX is a series satisfying (rX , 〈k1〉#〈k2〉# . . .#〈kz〉) = sk11 · s
k2
2 · . . . · skzz for each finite subset

X = {s1, . . . , sz} of S and all nonnegative integers k1, k2, . . . , kz with their binary representations denoted by
〈k1〉, 〈k2〉, . . . , 〈kz〉. Recall also that this series is always realised by an alternating weighted automaton AX .
All logarithms are understood to be binary in what follows.

Lemma 7.6. Let S be a commutative semiring in S . For every finite subset X of S, there exists a non-
negative integer n1, a nonnegative real number D1, and a finite subset Y of S such that the inclusion
GX(n) ⊆ HY (D1 log n, nD1) holds for all n ≥ n1.

Proof. Let X = {s1, s2, . . . , sz}. Since S is in S , the series rX is rational over S. Let Y be a finite subset
of S and C be a real number such that C ≥ 1 and

(rX , w) ∈ HY (|w|+ 1, C|w|) (7)
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for all w over the alphabet {0, 1,#}. Existence of such Y and C is guaranteed by Lemma 7.5. Let n1 be an
integer and D1 be a real number such that

z(log n+ 2) + 1 ≤ D1 log n and C2znz logC ≤ nD1 (8)

holds for every n ≥ n1.
Let n be an integer satisfying n ≥ n1, let s be inGX(n). Our goal is to prove that s is inHY (D1 log n, nD1).

We can write

s =

z∏
i=1

skii ,

where
∑z
i=1 ki ≤ n. The element s is also the coefficient of the word w := 〈k1〉#〈k2〉# . . .#〈kz〉 in rX . The

reader can easily check that |w| ≤ z(log n+ 2). By (7), the element s is in

HY (z(log n+ 2) + 1, Cz(logn+2)) = HY (z(log n+ 2) + 1, C2znz logC).

By (8), this set is included in HY (D1 log n, nD1). So s is in HY (D1 log n, nD1) and the lemma is proved.

Lemma 7.7. Let S be a commutative semiring in S . For every s in S, there exists a nonnegative integer n0,
nonnegative real numbers C1, C2, and a finite subset Y of S such that Gs(2n) is included in HY (C1 log n, nC2)
for all n ≥ n0.

Proof. Let n1 be an integer, D1 be a real number, and X be a finite subset of S such that

Gs(n) ⊆ HX(D1 log n, nD1) (9)

holds for every n ≥ n1. Existence of such n1, D1, and X is guaranteed by Lemma 7.6. Assume that D1 ≥ 1.
If X does not contain 2S , let us add this semiring element to X (this has no effect on the inclusion (9)).
Similarly, let n2 be an integer, D2 be a real number, and Y be a finite subset of S such that

GX(n) ⊆ HY (D2 log n, nD2) (10)

holds for every n ≥ n2. Let us denote z = |Y |. Let n3 be an integer and C1 be a real number such that

D2 log(2D1n) ≤ C1 log n, (11)

holds for every n ≥ n3. Let n4 be an integer and C2 be a real number such that

1
2 (2D1n)D2+1(D1n+ z)z ≤ nC2 (12)

holds for every n ≥ n4. Finally, let n0 = max{n1, n2, n3, n4}.
Let n be an integer satisfying n ≥ n0, let t be inGs(2n). Our goal is to prove that t is inHY (C1 log n, nC2).

By (9), t is in HX(D1 log 2n, (2n)D1) = HX(D1n, 2
D1n). This means that we can write

t =
∑

g∈GX(D1n)

kgg, (13)

where kg is a nonnegative integer satisfying
kg ≤ 2D1n (14)

for every g in GX(D1n). Let us pick some g from GX(D1n) and examine the semiring element h := kgg. If
we take into account the binary representation of the integer kg, we can see that

kg =

l∑
i=0

2mi
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for some l ≤ log(kg) and mi ≤ log(kg) for i = 0, 1, . . . , l. We thus have

h =

l∑
i=0

hi, (15)

where hi := (2S)mig for i = 0, 1, . . . , l. Since g is in GX(D1n), the element hi is in GX(mi + D1n) for
i = 0, 1, . . . , l. The set GX(mi + D1n) is included in GX(2D1n), since mi ≤ log kg ≤ log 2D1n = D1n (the
second inequality follows from (14)). Furthermore, the inclusion (10) implies that GX(2D1n) is included
in HY (D2 log(2D1n), (2D1n)D2). We conclude that hi is in HY (D2 log(2D1n), (2D1n)D2) for i = 0, 1, . . . , l.
Together with (15), this implies that h is in HY (D2 log(2D1n), (2D1n)D2 l). As l ≤ log(kg) ≤ log 2D1n = D1n
(the second inequality follows from (14)), this set is a subset of

HY (D2 log(2D1n), (2D1n)D2D1n) = HY (D2 log(2D1n), 1
2 (2D1n)D2+1).

Therefore, h is in HY (D2 log(2D1n), 1
2 (2D1n)D2+1). The element h was chosen as kgg for arbitrary g in

GX(D1n), so we conclude that

kgg ∈ HY (D2 log(2D1n), 1
2 (2D1n)D2+1) (16)

for each g in GX(d1n).
Finally, let us return to equality (13). By (4), GX(D1n) contains no more than (D1n + z)z elements.

Together with (16), this upper bound implies that t is in HY (D2 log(2D1n), 1
2 (2D1n)D2+1(D1n + z)z). By

inequalities (11) and (12), this set is included in HY (C1 log n, nC2). We have thus shown that t is in
HY (C1 log n, nC2) and the lemma is proved.

We are now ready to prove the last ingredient needed to establish Theorem 7.1.

Lemma 7.8. If a commutative semiring S is in S , then every element of S is of finite multiplicative order.

Proof. Let s be in S. We shall prove that s has finite multiplicative order. Let n0 be an integer, C1, C2

be real numbers and Y be a finite subset of S such that Gs(2n) is included in HY (C1 log n, nC2) for all
n ≥ n0. We have just proven in Lemma 7.7 that this assumption is valid. Let z = |Y |. By (5), the size of
HY (C1 log n, nC2) is at most

((C1 log n+ z)z + nC2)(C1 logn+z)z = 2log((C1 logn+z)z+nC2 )(C1 logn+z)z .

Clearly, there exists an integer n1 such that |HY (C1 log n, nC2)| < 2n for all n ≥ n1. If n = max{n0, n1},
then Gs(2n) is a subset of HY (C1 log n, nC2) and thus also |Gs(2n)| < 2n. This implies that sm1 = sm2 for
two distinct nonnegative integers m1,m2, which means that s has finite multiplicative order.

Now we may finally collect the results obtained in this section to prove Theorem 7.1.

Proof of Theorem 7.1. By Lemma 7.4, the second assertion of Theorem 7.1 implies the first. On the other
hand, it follows by Lemma 7.8 coupled with Lemma 7.2 that the first assertion implies the second.

Now that we have proved Theorem 7.1, we can use it to examine the expressive power of alternat-
ing weighted automata over some particular commutative semirings. The class of commutative semirings,
for which alternating and non-alternating weighted automata are equally powerful, includes the following
semirings:

• All finite commutative semirings, e.g., the Boolean semiring (B,∨,∧, 0, 1), the semiring (Zk,+, ·, 0, 1)
of integers modulo k (for some k ≥ 2) with standard operations of addition and multiplication, etc.

• The semiring (P(U),∪,∩, ∅, U) on the powerset P(U) of an arbitrary set U with union as addition
and intersection as multiplication (or more generally, any bounded distributive lattice [6]).
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On the contrary, we shall now list some commutative semirings, for which alternating weighted automata
are strictly more powerful than (non-alternating) weighted automata:

• The semiring (R,+, ·, 0, 1) of real numbers with the standard operations of addition and multiplication.

• The tropical semiring of reals, i.e., the semiring (R ∪ {∞},min,+,∞, 0) on the set of real numbers
with positive infinity, together with minimum as addition and the standard addition of real numbers
as multiplication.

• The arctic semiring of reals, i.e., the semiring (R ∪ {−∞},max,+,−∞, 0) on the set of real numbers
with negative infinity, together with maximum as addition and the standard addition of real numbers
as multiplication.

• The semiring of polynomials S[x1, . . . , xn] for an arbitrary commutative semiring S and any positive
integer n.

• The semiring (2{a}
∗
,∪, ·, ∅, {ε}) of formal languages over a singleton alphabet {a}, together with union

as addition and concatenation as multiplication.

8. Closure Properties

For any individual commutative semiring S, one can examine the closure properties of the class of formal
power series realised by alternating weighted automata over S. Naturally, these closure properties might
vary for different semirings. We shall examine several standard operations on formal power series in this
section and for each one of them, we shall determine if the class of formal power series realised by alternating
weighted automata over S is closed under the operation in consideration for all commutative semirings S.

Let us start with the sum and Hadamard product of formal power series. We shall prove that the class
of series realised by alternating weighted automata is closed under these two operations. The constructions
that we shall use to establish this fact are straightforward: for each pair of alternating weighted automata
A1 and A2, we shall construct an automaton A, which essentially contains A1 and A2 as “two independent
subautomata”. We shall then specify the initial polynomial of A so that the automaton realises the sum or
the Hadamard product of these two “subautomata” – i.e., |A| = |A1|+ |A2| or |A| = |A1| � |A2|.

Theorem 8.1. Let S be a commutative semiring. The class of formal power series realised by alternating
weighted automata over S is closed under sum.

Proof. Let A1 = (Q1,Σ1, ψ1, P0,1, τ1) and A2 = (Q2,Σ2, ψ2, P0,2, τ2) be alternating weighted automata over
S with |Q1| = n1 and |Q2| = n2. Let us assume that Q1 ∩ Q2 = ∅. We shall construct an alternating
weighted automaton A = (Q,Σ1 ∪ Σ2, ψ, P0, τ) over S such that |A| = |A1|+ |A2|.

First, let us take Q = Q1 ∪Q2. Let us fix an ordering of states in Q so that the i-th state of A1 is the
i-th state of A and the i-th state of A2 is the (i+ n1)-th state of A.

For each P in S[x1, . . . , xn2
], we shall write shift(P ) for the polynomial in S[xn1+1, xn1+2, . . . , xn1+n2

]
that is obtained from P after replacing each occurrence of the indeterminate xi by xi+n1 for i = 1, . . . , n2.
Now, if p is in Q1, let us define ψ[p, c] = ψ1[p, c] for each c in Σ1 and ψ[p, c] = 0 for each c in Σ2 − Σ1. If p
is in Q2, we shall define ψ[p, c] = shift(ψ2[p, c]) for each c in Σ2 and ψ[p, c] = 0 for each c in Σ1 − Σ2.

Finally, let P0 = P0,1 + shift(P0,2), and let each state in Q keep its terminal weight from A1 or A2. It is
easy to show that |A| = |A1|+ |A2|.

Theorem 8.2. Let S be a commutative semiring. The class of formal power series realised by alternating
weighted automata over S is closed under Hadamard product.

Proof. Let A1 = (Q1,Σ1, ψ1, P0,1, τ1) and A2 = (Q2,Σ2, ψ2, P0,2, τ2) be alternating weighted automata over
S with |Q1| = n1 and |Q2| = n2. An alternating weighted automaton A = (Q,Σ1 ∪Σ2, ψ, P0, τ) over S such
that |A| = |A1| � |A2| can be constructed similarly to the automaton realising the sum from the proof of
Theorem 8.1. The only difference is in the initial polynomial P0, where one takes P0 = P0,1 · shift(P0,2). It
is easy to show that if A is constructed in this way, then |A| = |A1| � |A2| holds.
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We shall now show that there exists a commutative semiring S such that the class of formal power
series realised by alternating weighted automata over S is closed neither under reversal, nor under Cauchy
product. More specifically, we shall show this for the semiring B[y] of polynomials in indeterminate y with
coefficients in the Boolean semiring B (isomorphic to the semiring of finite languages over a unary alphabet).

Let Σ = {a, b,#} and let rB be a series in B[y]⟪Σ∗⟫ such that (rB , a
i#bj) = (1 + yi)j for each pair of

nonnegative integers i, j and (rB , w) = 0 for all other w in Σ∗. For each i and j, we can equivalently write
(rB , a

i#bj) =
∑j
k=0 y

ki. We shall first prove that rB is not realised by an alternating weighted automaton
over B[y]. Later, we shall show that the reversal of rB can be realised by an alternating weighted automaton
and that rB can be expressed as a Cauchy product of two series realised by alternating automata.

To prove that rB cannot be realised by an alternating weighted automaton, some preparations need to
be made. Let S be a commutative semiring and X an arbitrary set. Let SX be the semiring of all functions
from X to S with the usual addition and multiplication of functions: that is, the sum of functions f1, f2 in
SX is a function f1 + f2 in SX such that (f1 + f2)(x) = f1(x) + f2(x) for all x in X and the product of
functions f1, f2 in SX is a function f1f2 in SX such that (f1f2)(x) = f1(x)f2(x) for all x in X. In the proof
of Lemma 8.3, we shall work with the semiring (B[y])N.

Let S be a commutative semiring, X be an arbitrary set, and F be a set of functions from X to S. We
shall say that functions in F have the same support if f1(x) = 0S if and only if f2(x) = 0S for each f1, f2 in
F and all x in X. Moreover, let P be a polynomial in S[x1, . . . , xn]. We shall denote by #(P ) the number
of terms in P – that is, the smallest number k such that P can be obtained as a sum of k monomials. If
m is a monomial in S[x1, . . . , xn], we shall denote by Jm the set of all indices i in {1, . . . , n} such that xi
occurs in m.

Lemma 8.3. The formal power series rB is not realised by an alternating weighted automaton over B[y].

Proof. Suppose for the purpose of contradiction that rB is realised by an alternating weighted automaton
A = (Q,Σ, ψ, P0, τ) over B[y]. Let n = |Q|. For i = 1, . . . , n, let fi be a mapping from N to B[y] such that
fi(k) = (|A|i, bk) for all nonnegative integers k. For each nonnegative integer i, let gi be a mapping from N
to B[y] such that gi(k) = (1 + yi)k for all nonnegative integers k, and let Pi = PA[ai#]. We have

gi(k) = (|A|, ai#bk) = PA[ai#]
(
(|A|1, bk), . . . , (|A|n, bk)

)
= Pi(f1(k), . . . , fn(k)) (17)

for all nonnegative integers k. Let us now interpret each coefficient c in Pi as a constant function hc from N
to B[y] with hc(k) = c for all k. Thus, Pi can be viewed as a polynomial in (B[y])N[x1, . . . , xn]. Under this
interpretation, the equation (17) says that Pi(f1, . . . , fn) = gi for every nonnegative integer i.

Let i be a nonnegative integer. The polynomial Pi can be written as a sum of some monomials with
nonzero coefficients. For each such monomial m, we would like the functions in {fj}j∈Jm to have the
same support. Of course, this might not be the case. To make this true, we shall modify the polynomials
P1, P2, P3, . . . to polynomials P ′1, P ′2, P ′3, . . . in (B[y])N[x1, . . . , xn′ ] (where n′ is some nonnegative integer) and
replace the set of functions F = {f1, . . . , fn} by some other set of functions F ′ = {f ′1, . . . , f ′n′} in (B[y])N.
This needs to be done in such a way that we still have P ′i (f ′1, . . . , f ′n′) = gi for every nonnegative integer i.

Let us first construct F ′. For i = 1, . . . , n, let χi be a function from N to B[y] such that χi(k) = 0 if
fi(k) = 0 and χi(k) = 1 otherwise. Let us define F ′ to be the set of all functions f

∏
j∈J χj , where f is in

F and J is a subset of {1, . . . , n}. The set F ′ is clearly finite; let n′ be its size and let F ′ = {f ′1, . . . , f ′n′}.
We shall now show how the polynomial P ′i can be constructed for a given nonnegative integer i. We can

write Pi =
∑
m∈M cmm, whereM is a finite set of monomials with coefficient 1 and cm is a constant function

in (B[y])N for eachm inM . Then gi =
∑
m∈M cmm(f1, . . . , fn). Letm be inM and let us look at the function

m(f1, . . . , fn). By its definition, this function can be obtained as a finite product of functions from F . For
each j in Jm, let us replace each occurrence of fj in this product by fj

∏
k∈Jm χk. We obtain a product

of functions in F ′ that evaluates to m(f1, . . . , fn) and all functions in this product have the same support.
Now it is clear that we can find a monomial m′ with coefficient 1 such that m′(f ′1, . . . , f ′n′) = m(f1, . . . , fn)
and functions in {f ′j}j∈Jm′ have the same support. We can do this for each m inM , and so we conclude that
we can construct a polynomial P ′i such that P ′i (f ′1, . . . , f ′n′) = Pi(f1, . . . , fn) = gi and functions in {f ′j}j∈Jm′
have the same support for each monomial m′ that occurs in P ′i .
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Now, let J∞ be the set of indices j in {1, . . . , n′} such that xj occurs in P ′i for infinitely many indices i.
We shall show that for every j in J∞ and every nonnegative integer k, the number of terms in the polynomial
f ′j(k) in B[y] is at most 1 (i.e., either f ′j(k) = yi for some positive integer i, or f ′j(k) = 1, or f ′j(k) = 0). In
order to obtain a contradiction, let us suppose that f ′j(k) = yl1 + yl2 + B1 for some j in J∞, nonnegative
integers k, l1, and l2 satisfying l1 < l2, and B1 in B[y]. Let i be a nonnegative integer such that i > l2 − l1
and P ′i contains xj (such i exists, since xj occurs in infinitely many polynomials in {P ′1, P ′2, P ′3, . . .}). Let m
be a monomial in P ′i that contains xj . We can write m = xjm

′, where m′ is a nonzero monomial. Thus,

m(f ′1, . . . , f
′
n′)(k) = f ′j(k)m′(f ′1, . . . , f

′
n′)(k) = (yl1 + yl2 +B1)m′(f ′1, . . . , f

′
n′)(k).

As f ′j(k) is nonzero and functions in {f ′j}j∈Jm have the same support, m′(f ′1, . . . , f ′n′)(k) is nonzero as well.
We can write m′(f ′1, . . . , f ′n′)(k) = yl3 +B2, where l3 is a nonnegative integer and B2 is in B[y]. (Note that
yl3 might be 1 and B2 might be 0.) We have

m(f ′1, . . . , f
′
n′)(k) = (yl1 + yl2 +B1)m′(f ′1, . . . , f

′
n′)(k) = (yl1 + yl2 +B1)(yl3 +B2) = yl1+l3 + yl2+l3 +B3

for some B3 in B[y]. We conclude that P ′i (f ′1, . . . , f ′n′)(k) = yl1+l3 + yl2+l3 +B4 for some B4 in B[y] and

k∑
j′=0

(yi)j
′

= gi(k) = P ′i (f
′
1, . . . , f

′
n′)(k) = yl1+l3 + yl2+l3 +B4.

This is clearly a contradiction, since i > l2 − l1.
We have thus proved that if j is in J∞ and k is a nonnegative integer, then the number of terms in f ′j(k) is

at most 1. Let i be a nonnegative integer such that every indeterminate that occurs in P ′i is in {xj}j∈J∞ . We
can write P ′i =

∑
m∈M cmm, whereM is some finite set of monomials with coefficient 1 and cm is a constant

function in (B[y])N. Let k be a nonnegative integer. We have gi(k) =
∑
m∈M cm(k)m(f ′1, . . . , f

′
n′)(k). Since

the number of terms in f ′j(k) is at most 1 for every j in Jm, the number of terms in m(f ′1, . . . , f
′
n′)(k) is also

at most 1 for every monomial m in M . This implies that the number of terms in cm(k)m(f ′1, . . . , f
′
n′)(k) is

at most the number of terms in cm(k) = cm(0) for each monomial m in M . We conclude that the number of
terms in gi(k) =

∑
m∈M cm(k)m(f ′1, . . . , f

′
n′)(k) is at most

∑
m∈M #(cm(0)) for all nonnegative integers k.

This is clearly a contradiction.

We are now finally prepared to prove that the class of formal power series realised by alternating weighted
automata over B[y] is closed neither under reversal, nor under Cauchy product.

Theorem 8.4. The class of formal power series realised by alternating weighted automata over B[y] is not
closed under reversal.

Proof. In Figure 12, a two-mode alternating weighted automatonA over B[y] is depicted such that |A|R = rB .
By Lemma 8.3, the series rB is not realised by an alternating weighted automaton over B[y]. This means
that the class of formal power series realised by alternating weighted automata over the semiring B[y] is not
closed under reversal.

Theorem 8.5. The class of formal power series realised by alternating weighted automata over B[y] is not
closed under Cauchy product.

Proof. In Figure 13, a two-mode alternating weighted automaton A1 over B[y] and Σ = {a, b,#} is depicted
such that (|A1|, ai#bj) = yij holds for each pair of nonnegative integers i, j and such that (r1, w) = 0 for
all other w in Σ∗. Moreover, it is easy to construct an alternating weighted automaton A2 over B[y] and
Σ such that (|A2|, w) = 1 for each w in {b}∗ and (r2, w) = 0 for all other w in Σ∗. The reader can easily
check that r1r2 = rB . By Lemma 8.3, the series rB is not realised by an alternating weighted automaton
over B[y]. This means that the class of formal power series realised by alternating weighted automata over
B[y] is not closed under Cauchy product.
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Figure 12: A two-mode alternating weighted automaton A, which realises the reversal of rB .

Figure 13: A two-mode alternating weighted automaton A1 such that (|A1|, ai#bj) = yij for each pair of nonneg-
ative integers i, j and (|A1|, w) = 0 for all other words w in {a, b,#}∗.

9. Conclusion

We have defined and initiated the study of alternating weighted automata over an arbitrary commutative
semiring S. The model introduced in this article generalises both classical alternating finite automata
(without weights) [2] and “min-sum”-alternating automata over the tropical semiring of reals introduced by
Almagor and Kupferman [1]. We have shown that the usual equivalent approaches to the formal definition of
alternating finite automata (without weights) remain equivalent in our weighted setting as well and proved
an equational characterisation of formal power series realised by alternating weighted automata.

In our main result, we have proved a complete characterisation of the class of commutative semirings,
for which alternating and non-alternating weighted automata are equally powerful: a commutative semiring
belongs to this class if and only if it is locally finite. Alternating weighted automata are strictly more
powerful than their non-alternating counterparts for commutative semirings that are not locally finite.

We have also observed that the class of formal power series realised by alternating weighted automata
over S is closed under sum and Hadamard product for every commutative semiring S. On the other hand,
we have proved that this class is not closed under reversal and Cauchy product for at least one commutative
semiring S.

One might still think of some reasonable and well motivated settings, which can be described as a form
of alternation in weighted automata, but cannot be incorporated into the framework of alternating weighted
automata over semirings. Most notably, this is the case of “min-max”-alternation [1, 3], for which a suitable
generalisation seems to require structures with at least three operations. A systematic research of weighted
alternation at this higher level of generality is the main task that we leave open for future research. Moreover,
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an interesting question that we have not touched upon in this article is the power of finite alternation in
two-mode alternating weighted automata. Finally, we believe that an extension to infinite words can be
beneficial mainly due to possible applications in quantitative formal verification [3].
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