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Abstract

Weighted finite automata over the field of rational numbers and unary alphabets are considered. The notion
of a characteristic polynomial is introduced for such automata as a means to provide a decidable necessary
and sufficient condition, under which a unary weighted automaton admits a deterministic, i.e., sequential
equivalent. The sequentiality problem for univariate rational series is thus proved to be decidable both over
the rational numbers and over the integers, confirming a conjecture of S. Lombardy and J. Sakarovitch;
its decidability over the nonnegative integers is observed as well. The decision algorithm proposed for these
tasks is shown to run in polynomial time. A determinisation algorithm for determinisable unary weighted
automata over the rational numbers is also described.

Keywords: Deterministic weighted automaton, Sequential weighted automaton, Reduced representation,
Characteristic polynomial, Cyclotomic polynomial

1. Introduction

Formal power series in several noncommuting variables form a well-known generalisation of formal lan-
guages, allowing one to replace a qualitative property of membership of a word in a language by a quantity
taken from a suitable domain such as a semiring. This corresponds on an effective level to a transition from
the usual descriptive mechanisms for formal languages – such as automata, grammars, rational expressions,
or MSO logics – to their weighted counterparts. Specifically, nondeterministic finite automata recognising
rational languages are generalised to weighted finite automata, which realise rational formal power series.
The reader is referred to [8, 18, 19, 41] for a general overview of the related theory.

One of the aspects involved in this generalisation is that the classical equivalence of nondeterministic
and deterministic finite automata does not lift to the quantitative setting – there are weighted automata
admitting no deterministic equivalents [34, 37]. Deterministic weighted automata – also called sequential [34]
or subsequential [36] by some authors2 – thus not only form a proper subclass of weighted automata, but
the corresponding class of series, called sequential in this article, also forms a proper subclass of the class
of rational series. As determinism is often a crucial requirement in practice, the problems of algorithmically
deciding determinisability of a weighted automaton, and of actually finding a deterministic equivalent when
possible, have both received significant attention in literature – they have been studied, in different forms
and often under some additional restrictions, over various classes of semirings [1, 31, 32, 34, 36, 37] (where
especially the tropical semirings are of special importance), as well as over strong bimonoids [15], including
research pertaining to the theory of weighted tree automata [16, 23].
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An interesting and relatively well-understood class of weighted automata is obtained by restricting
the weights to be taken from a field, or more generally a division ring. This is in fact the historically
first setting in which weighted automata were considered, going back to M.-P. Schützenberger [43]. The the-
ory of weighted automata and rational series over fields is characteristic by its use of linear algebra, which
becomes a powerful tool – see [8, 41, 42]. In particular, methods of linear algebra underlie a polynomial-time
minimisation algorithm for weighted automata over fields due to A. Cardon and M. Crochemore [12]; see
also J. Sakarovitch [42] for an exposition. This minimisation algorithm can also be used, e.g., to decide
equivalence of rational series over (effective) fields.

Nevertheless, relatively little is known about deterministic weighted automata and the sequentiality
problem for rational series over fields and their subrings. S. Lombardy and J. Sakarovitch have asked about
decidability of whether a rational series over the rational numbers or over the integers, given by a weighted
automaton, is sequential [34, Problem 1]. In other words, their question was: Is it decidable whether a given
weighted automaton over the rationals or over the integers admits a deterministic equivalent? They have
conjectured a positive answer, “at least in the case of one letter alphabet” [34].

There has been little progress on this problem. It has been claimed by S. Lombardy and J. Sakarovitch [34]
that decidability of the problem for those unary weighted automata over the rationals, whose minimal
equivalent automaton consists of at most two states, follows by the results on Fibonacci polynomials obtained
by G. Jacob, C. Reutenauer, and J. Sakarovitch [26]. In addition, J. Bell and D. Smertnig [7] have recently
proved an interesting characterisation of determinisable weighted automata over fields in terms of what they
call a linear hull of the minimal automaton; however, this characterisation is not effective.

We prove decidability of the determinisability problem for unary weighted automata over the rational
numbers, the integers, as well as the nonnegative integers – or equivalently, of the sequentiality problem
for univariate Q-rational, Z-rational, and N-rational series. The former two results confirm the “at least”
part of the conjecture of S. Lombardy and J. Sakarovitch [34]. In fact, we observe that the problem can be
decided in polynomial time – more precisely, with O(n3) arithmetic operations over Q performed, where n
is the number of states of the input automaton. We also show that the determinisation of a unary weighted
automaton, if possible, can be done algorithmically as well.

To arrive at these results, we first introduce the notion of a characteristic polynomial of a unary weighted
automaton over the rationals, defined via the characteristic polynomial of the single matrix of its associated
linear representation. We show that the minimisation algorithm of A. Cardon and M. Crochemore [12]
always computes a reduced representation whose matrix equals the companion matrix of its characteristic
polynomial, which we call the characteristic polynomial of the corresponding series. Next, we observe that,
in line with similar results from the theory of linear recurrence synthesis [10, Section 7.2], the characteristic
polynomial of an automaton is always divided by the characteristic polynomial of its realised series. We then
use this property, along with a special form of characteristic polynomials of deterministic automata, to prove
a sequentiality criterion for univariate rational series expressed in terms of their characteristic polynomials.
An elementary theory of linear difference equations is crucial for obtaining these results.

We finally take a look at the algorithmic side and show that the aforementioned sequentiality criterion
is decidable. The decision procedure relies heavily on the theory of cyclotomic polynomials and employs
several known algorithms of computer algebra as subroutines.

When it comes to the determinisation algorithm, which is easily implied by the algorithm deciding
determinisability, we show that the size of the deterministic automaton it produces is “almost optimal”
at least for some specific input automata. The algorithm thus establishes an “almost tight” upper bound
for the state complexity of determinisation of unary weighted automata over the rationals.

2. Preliminaries

We denote by N, Z, Q, R, and C, respectively, the sets of nonnegative integers, integers, rational numbers,
real numbers, and complex numbers. Given n ∈ N, we write [n] = {1, . . . , n}.

2



Fields are understood to be commutative, although the theory of weighted automata minimisation,
reviewed below, generalises to the noncommutative setting of division rings. Alphabets are assumed to be
finite and nonempty. The empty word over any alphabet Σ is denoted by ε. For S a set and m,n ∈ N,
we denote by Sm×n the set of all m× n matrices over S. The ring of all polynomials in a single variable z,
with coefficients from a ring R, is denoted by R[z]. The least common multiple of positive integers p1, . . . , ps
is denoted by lcm(p1, . . . , ps) and we write gcd(p1, . . . , ps) for their greatest common divisor.

2.1. Formal Power Series and Weighted Automata
A formal power series in several noncommuting variables from an alphabet Σ with coefficients in a semi-

ring S – or, more briefly, a formal power series over Σ and S – is a mapping r : Σ∗ → S. We write (r, w)
instead of r(w) for the value of r upon w ∈ Σ∗ and call this element of S the coefficient of r at w. The series r
itself is then written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over Σ and S is denoted by S⟪Σ∗⟫.
The sum of power series r, s ∈ S⟪Σ∗⟫ is the series r + s such that (r + s, w) = (r, w) + (s, w) for all

w ∈ Σ∗. The reason for abandoning the terminology and notation of mappings, and using those usual for
series instead, is related to the multiplicative operation used: The Cauchy product of series r, s ∈ S⟪Σ∗⟫ is
the series r · s such that for each w ∈ Σ∗,

(r · s, w) =
∑

u,v∈Σ∗
uv=w

(r, u)(s, v).

We indentify each a ∈ S with the series ra ∈ S⟪Σ∗⟫ such that (ra, ε) = a and (r, w) = 0 for all w ∈ Σ+, and
each w ∈ Σ∗ with the series rw ∈ S⟪Σ∗⟫ such that (rw, w) = 1 and (rw, x) = 0 for all x ∈ Σ∗ \ {w}. It is
well known [17] that (S⟪Σ∗⟫,+, ·, 0, 1) is again a semiring for every semiring S and alphabet Σ.

A family (ri | i ∈ I) of series from S⟪Σ∗⟫, for an arbitrary index set I, is said to be locally finite if the
set I(w) = {i ∈ I | (ri, w) 6= 0} is finite for all w ∈ Σ∗. One can then define the sum over this family by∑

i∈I
ri = r,

where r ∈ S⟪Σ∗⟫ is a series such that the coefficient (r, w) is given, for each w ∈ Σ∗, by a finite sum

(r, w) =
∑
i∈I(w)

(ri, w).

The left quotient of a formal power series r ∈ S⟪Σ∗⟫ by a word x ∈ Σ∗ is a formal power series x−1r
such that (x−1r, w) = (r, xw) for all w ∈ Σ∗.

Here we are mostly interested in the case when the alphabet Σ is unary, e.g., Σ = {c}, and the coefficients
are taken from some field F or its subring. We obtain the usual univariate formal power series in this case,
and the semiring F⟪c∗⟫ becomes an integral domain customarily denoted by FJcK.

A weighted finite automaton over a semiring S and alphabet Σ is a quadruple A = (Q, σ, ι, τ), where
Q is a finite set of states, σ : Q × Σ × Q → S is a transition weighting function, ι : Q → S is an initial
weighting function, and τ : Q → S is a terminal weighting function. A transition of the automaton A is
a triple (p, c, q) ∈ Q × Σ × Q such that σ(p, c, q) 6= 0. A run of the automaton A is a word γ ∈ (QΣ)∗Q
such that (p, c, q) is a transition for all factors pcq of γ such that p, q ∈ Q and c ∈ Σ. Given a run
γ = q0c1q1c2q2 . . . qn−1cnqn with n ∈ N, q0, . . . , qn ∈ Q, and c1, . . . , cn ∈ Σ, let λ(γ) = c1c2 . . . cn ∈ Σ∗

denote the label of γ and σ(γ) = σ(q0, c1, q1)σ(q1, c2, q2) . . . σ(qn−1, cn, qn) ∈ S the value of γ; we also say
that γ is a run from q0 to qn. The monomial ‖γ‖ ∈ S⟪Σ∗⟫ realised by the run γ can then be defined by

‖γ‖ = (ι(q0)σ(γ)τ(qn))λ(γ).
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Let R(A) be the set of all runs of the automaton A. Then it is clear that the family of monomials
(‖γ‖ | γ ∈ R(A)) is locally finite. The behaviour of A can thus be defined by the infinite sum

‖A‖ =
∑

γ∈R(A)

‖γ‖.

In particular, observe that ‖A‖ = 0 in case the set Q is empty. A series r ∈ S⟪Σ∗⟫ is rational over S
if r = ‖A‖ for some weighted finite automaton A over S and Σ. We often only write that r ∈ S⟪Σ∗⟫
is rational, meaning that r is rational over S.

By a weighted automaton, we always understand a weighted finite automaton. In what follows, we
confine ourselves to state sets of the form Q = [n] for some n ∈ N; this is clearly without loss of generality.
Moreover, we write A = (n, σ, ι, τ) instead of A = ([n], σ, ι, τ).

A weighted automaton A = (n, σ, ι, τ) is deterministic if there is at most one state q ∈ Q such that
ι(q) 6= 0 and if σ(p, c, q) 6= 0 together with σ(p, c, q′) 6= 0 implies q = q′ for all p, q, q′ ∈ Q and c ∈ Σ. A series
r ∈ S⟪Σ∗⟫ is sequential if r = ‖A‖ for some deterministic weighted automaton A over S and Σ.

Weighted automata over words admit an alternative interpretation as linear representations. Let S be
a semiring and Σ an alphabet. A linear S-representation over Σ is a quadruple P = (n, i, µ, f), where n ∈ N
is its order, i ∈ S1×n is a vector of initial weights, µ : (Σ∗, ·) → (Sn×n, ·) is a monoid homomorphism, and
f ∈ Sn×1 is a vector of terminal weights. The series realised by P is then defined by

‖P‖ =
∑
w∈Σ∗

(iµ(w)f)w.

A series r ∈ S⟪Σ∗⟫ is recognisable if r = ‖P‖ for some linear S-representation P over Σ.
It is a fundamental result that the sets of recognisable and rational series in S⟪Σ∗⟫ coincide [41]. In fact,

there is a natural correspondence between weighted automata and linear representations: Given a weighted
automaton A = (n, σ, ι, τ) over S and Σ, let PA = (n, i, µ, f), where i = (ι(1), . . . , ι(n)), µ(c) = (ai,j)n×n is
given for each c ∈ Σ by ai,j = σ(i, c, j) for i, j = 1, . . . , n, and f = (τ(1), . . . , τ(n))T . It is clear that this
correspondence introduces a bijection between weighted automata3 and linear representations over S and Σ,
while ‖PA‖ = ‖A‖ for every A.

2.2. Minimisation of Weighted Automata over Fields
We now review the basic theory of weighted automata over fields, leading to the Cardon-Crochemore

minimisation algorithm [12]. The presentation of this subsection more or less follows J. Sakarovitch [42],
where the omitted proofs can be found; see also [8, 30, 41]. References to [42, 8, 41], which would otherwise
have been omnipresent, are mostly avoided in what follows.

Let a field F and an alphabet Σ be fixed for the rest of this subsection. The set F⟪Σ∗⟫ forms, together
with the operations of sum of series and multiplication of a series by a scalar4 from F, a vector space over F.
Given a series r ∈ F⟪Σ∗⟫, let the (left) quotient space of r be the subspace Q(r) of F⟪Σ∗⟫ generated by
the set {x−1r | x ∈ Σ∗} of all left quotients of r. This space is related to minimisation of weighted automata
by the following classical result.

Theorem 2.1. A series r ∈ F⟪Σ∗⟫ is rational if and only if the vector space Q(r) is finite-dimensional.
If so, the dimension of Q(r) equals the minimum number of states of a weighted automaton A over F and Σ
such that ‖A‖ = r.

A weighted automaton A whose number of states equals the dimension of Q(‖A‖) is thus called minimal,
while the corresponding linear representation is usually termed reduced. Note that minimal automata (or,
equivalently, reduced representations) are not unique in general.

3In case we confine ourselves to state sets of the form [n] for some nonnegative integer n.
4Although we have not introduced this operation explicitly, we have identified every scalar a with the power series ra.

Multiplication of r ∈ F⟪Σ∗⟫ by a ∈ F then coincides with the Cauchy product ra · r.
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Two other vector spaces can be associated with each weighted automaton A = (n, σ, ι, τ) or with the cor-
responding linear representation PA = (n, i, µ, f). The left vector space of A is the subspace Left(A) of F1×n

generated by the set {iµ(w) | w ∈ Σ∗}. Similarly, the right vector space of A is the subspace Right(A)
of Fn×1 generated by the set {µ(w)f | w ∈ Σ∗}. Moreover, let Λ[A] : Left(A)→ F⟪Σ∗⟫ be a linear mapping
given for all x ∈ Σ∗ by

Λ[A](iµ(x)) =
∑
w∈Σ∗

(iµ(x)µ(w)f)w.

The following theorem then gives two conditions equivalent to the minimality of a weighted automaton.

Theorem 2.2. Let A = (n, σ, ι, τ) be a weighted automaton over F and Σ. Then the following are equivalent:

(i) The automaton A is minimal, i.e., the dimension of Q(‖A‖) is n.

(ii) The dimension of both vector spaces Left(A) and Right(A) is n.

(iii) The dimension of Left(A) is n and Λ[A] is injective.

Moreover, Λ[A] is injective whenever Right(A) is of dimension n.

One needs a bit more in order to actually decide if a given weighted automaton A over F and Σ is minimal
or not – namely an effective method for computing the dimensions of Left(A) and Right(A). To this end, let
PA = (n, i, µ, f) and call L ⊆ Σ∗ a left subbasic language of A if it is finite, prefix-closed, and if the family
of vectors (iµ(w) | w ∈ L) is linearly independent in Left(A). If in addition (iµ(w) | w ∈ L) forms a basis
of Left(A), then call L ⊆ Σ∗ a left basic language of A. Right subbasic and basic languages are defined
similarly – just replace prefix-closed by suffix-closed, and consider the family (µ(w)f | w ∈ L) of vectors
from Right(A) instead.

The most important feature of basic languages is that they actually always exist. In addition, every
left (right) subbasic language of A is a subset of some left (right) basic language of A. This gives rise to
a simple iterative algorithm for computing the basic languages and hence also the dimensions of Left(A)
and Right(A).5

The Cardon-Crochemore minimisation algorithm is based on first transforming a weighted automaton A
to its equivalent B whose number of states equals the dimension of Right(B). By Theorem 2.2, this also
implies that Λ[B] is injective. Next, B is transformed to its equivalent C whose number of states equals
the dimension Left(C), while this transformation is conducted in a way that preserves injectivity of Λ[·]
– that is, Λ[C] is injective as well. The resulting automaton C is thus minimal by the condition (iii)
of Theorem 2.2. The details of the construction transforming B into C are summarised in the following
lemma; the essentially symmetrical transformation of A into B is not crucial for our purposes.

Lemma 2.3. Let B be a weighted automaton over F and Σ with PB = (k, i, µ, f). Let m be the dimension
of Left(B) and assume that m ≥ 1;6 let L = {w1, . . . , wm} with w1 = ε be a left basic language of B. Let X
be an m × k matrix with rows iµ(w1), . . . , iµ(wm), which is obviously of full row rank. Let X−1

r be a right
inverse matrix of X.7 Set

i′ = (1, 0, . . . , 0), µ′(c) = Xµ(c)X−1
r for all c ∈ Σ, and f ′ = Xf .

Let C be the weighted automaton over F and Σ with PC = (m, i′, µ′, f ′). Then ‖C‖ = ‖B‖ and the dimension
of Left(C) equals m. Moreover, Λ[C] is injective whenever Λ[B] is.

5The dimension of Left(A) is clearly equal to the cardinality of any left basic language of A, and similarly for right basic
languages.

6The case m = 0 is trivial and handled separately by the minimisation algorithm.
7Note that right inverses might not be unique. However, any of them can be used for our purposes. As the construction

of this lemma is later being used in the Cardon-Crochemore algorithm, we assume some deterministic method for computing
the right inverses being fixed.
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It is in fact possible to prove that the automaton C is conjugate to B by the matrix X – that is, still
using the notation from the previous lemma,

i′X = i, µ′(c)X = Xµ(c) for all c ∈ Σ, and f ′ = Xf .

See also [5, 6] for the theory of weighted automata conjugacy.
The Cardon-Crochemore minimisation algorithm [12], which takes upon input a weighted automaton

A = (n, σ, ι, τ) over F and Σ and outputs its minimal equivalent C, consists roughly of the following steps:

1. Find a right basic language R of A. If R = ∅, output the automaton with no states and halt.
2. Using a construction similar to that of Lemma 2.3, find an automaton B with k states such that
‖B‖ = ‖A‖ and Right(B) is of dimension k.

3. Find a left basic language L of B. If L = ∅, output the automaton with no states and halt.
4. Using the construction from Lemma 2.3, find and output an automaton C with m states such that
‖C‖ = ‖B‖ and Left(C) is of dimension m.

It can be shown that the algorithm always runs in polynomial time O(|Σ|n3), measured in the number
of scalar operations of the field F performed.

Let A,A′ be weighted automata over F and Σ with PA = (n, i, µ, f) and PA′ = (n, i′, µ′, f ′). These
automata are termed similar if there exists an invertible matrix P ∈ Fn×n such that

i = i′P, µ(c) = P−1µ′(c)P for all c ∈ Σ, and f = P−1f ′.

Similarity thus obviously is a stronger – and symmetric – form of conjugacy. See [41, Proposition III.4.10]
for the proof of the following proposition.

Proposition 2.4. Let r ∈ F⟪Σ∗⟫ be a rational series with two minimal weighted automata A,B such that
‖A‖ = ‖B‖ = r. Then the automata A and B are similar.

The construction of Lemma 2.3 is applied as a final step of the Cardon-Crochemore algorithm unless
the realised series is 0. Then i′µ′(w) represents, for all w ∈ Σ∗, the coordinates of iµ(w) relative to the
basis (iµ(w1), . . . , iµ(wm)) – indeed, utilising conjugacy of the automata B and C, it is not hard to prove by
induction on the length of w that i′µ′(w)X = iµ(w). The following proposition, which we state explicitly
for later reference, then follows as an easy corollary.

Proposition 2.5. Let A be a weighted automaton over F and Σ, and B, C the equivalent automata obtained
from A by the Cardon-Crochemore algorithm, the minimal automaton C having at least one state. Let
PC = (m, i′, µ′, f ′) and L = {w1, . . . , wm} be the left basic language of B with w1 = ε. Then i′µ′(wj) = ej,
the j-th vector of the standard basis of Rm, for j = 1, . . . ,m. In particular, i′ = i′µ(w1) = (1, 0, . . . , 0).8

Remark 2.6. Over a unary alphabet Σ = {c}, nonempty left basic languages of automata are necessarily
of the form L = {ε, c, c2, c3, . . . , cm} for some m ∈ N. For the rest of this article, we assume without loss
of generality that the words from L are always numbered in increasing order (with respect to their length)
while running the Cardon-Crochemore algorithm: w1 = ε, w2 = c, . . . , wm = cm. The equality i′µ′(wj) = ej
appearing in the preceding proposition thus can be rewritten as i′µ′(cj) = ej in this particular case.

2.3. Systems of Difference Equations
We now present some basic facts about linear systems of difference equations – i.e., recurrences – that

we make use of in what follows. See, e.g., [22, 29] for more information about this topic.
More precisely, we are interested in autonomous and homogeneous systems, which take the form

xt+1 = Axt for all t ∈ N, (1)

8The latter assertion can, of course, be directly seen from the statement of Lemma 2.3 as well.
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where A ∈ Cn×n is a matrix and (xt)
∞
t=0 with xt = (x1(t), . . . , xn(t))T for all t ∈ N is the unknown sequence

of vectors. In an initial value problem for (1), we are in addition given the vector x0 and the task is
to determine the vectors xt for all t ∈ N \ {0}. It is easy to see that the unique solution to such initial value
problem is always given by xt = Atx0 for all t ∈ N. By transforming the matrix A into the Jordan normal
form, it is not hard to observe that each xj(t) for j ∈ [n] can be expressed as

xj(t) =
∑
λ∈σ

α(λ)−1∑
k=0

bλ,k

(
t

k

)
λt−k for all t ∈ N, (2)

where σ denotes the spectrum of A, the algebraic multiplicity of an eigenvalue λ of A is denoted by α(λ),
and bλ,k are complex constants for λ ∈ σ and k = 0, . . . , α(λ)− 1. Equivalently,

xj(t) =
∑

λ∈σ\{0}

α(λ)−1∑
k=0

aλ,kt
kλt +

∑
λ∈σ∩{0}

α(λ)−1∑
k=0

aλ,kδt,k for all t ∈ N, (3)

where aλ,k ∈ C for λ ∈ σ and k = 0, . . . , α(λ)− 1 are constants and δa,b is the Kronecker delta,

δa,b =

{
1 if a = b,
0 if a 6= b.

Note that the spectrum of A consists precisely of the roots of the characteristic polynomial of the matrix A,
defined by chA(z) = det(zIn−A), where In is the identity n×nmatrix. In addition, the algebraic multiplicity
of an eigenvalue λ is precisely the multiplicity of λ as a root of chA(z). Thus (3) could be rewritten using
just roots of chA(z) and their multiplicities – we mostly use this viewpoint in this article.

Now, both (2) and (3) express the function xj : N → C as a linear combination of other functions from
the vector space CN. It is a fact of fundamental importance that the functions taking place in these linear
combinations are linearly independent. More precisely, every finite set of distinct functions of the form

f(t) =

(
t

k

)
λt−k (4)

for some λ ∈ C and k ∈ N is linearly independent in CN, as well as every finite set of distinct functions
of the form

f(t) = tkλt or f(t) = δt,k (5)

for some λ ∈ C \ {0} and k ∈ N. As we need a slightly stronger property than mere linear independence,
we briefly sketch the reasoning leading to these observations.

In order to establish linear independence of functions f1, . . . , fn ∈ CN, one can utilise the so-called
Casorati matrices.9 For each t ∈ N, define the Casorati matrix Cas(t) of the functions f1, . . . , fn by

Cas(t) =


f1(t) f2(t) · · · fn(t)

f1(t+ 1) f2(t+ 1) · · · fn(t+ 1)
...

...
. . .

...
f1(t+ n− 1) f2(t+ n− 1) · · · fn(t+ n− 1)

 .

It is not hard to see that f1, . . . , fn are linearly independent whenever Cas(t) is of full rank for some t ∈ N.
Now, if f1, . . . , fn are pairwise distinct functions of the form λt for λ ∈ C, then Cas(0) is a Vandermonde
matrix, which is known to have a nonzero determinant – hence Cas(0) is of full rank, and the said functions
are linearly independent. If f1, . . . , fn are functions of the form (4) for λ ∈ σ ⊆ C and k = 0, . . . , α(λ) − 1

9The determinant of a Casorati matrix, the so-called Casoratian, is a discrete counterpart of the Wrońskian, an important
tool in the theory of linear differential equations.
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for each λ ∈ σ, then Cas(0) becomes a generalised Vandermonde matrix, which is also known to have
a nonzero determinant [27]. These functions are thus linearly independent as well. Finally, if f1, . . . , fn are,
for some σ ⊆ C, functions of the form tkλt for λ ∈ σ \ {0} and k = 0, . . . , α(λ) − 1, and of the form δt,k
for λ ∈ σ ∩ {0} and k = 0, . . . , α(λ) − 1, then it is easy to see that their Casorati matrix Cas(0) can be
obtained from a generalised Vandermonde matrix via several elementary column operations. Hence, Cas(0)
is of full rank and f1, . . . , fn are linearly independent. The observation that Cas(0) is of full rank is, in some
sense, even more important for our purposes than the actual linear independence of f1, . . . , fn. We state
this property as a theorem for future reference.

Theorem 2.7. Let σ ⊆ C be a finite set and α(λ) ∈ N \ {0} for each λ ∈ σ. Let f1, . . . , fn : N → C
be precisely the functions f(t) = tkλt for λ ∈ σ \ {0} and k = 0, . . . , α(λ) − 1 together with f(t) = δt,k
for λ ∈ σ ∩ {0} and k = 0, . . . , α(λ) − 1. Then the Casorati matrix Cas(0) for f1, . . . , fn is of full rank.
As a result, any collection of pairwise distinct functions of the form (5) is linearly independent in CN.

Let us also recall that the companion matrix of a monic polynomial p(z) = zn+an−1z
n−1 + . . .+a1z+a0

with complex coefficients is defined by

Cp(z) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 .

The characteristic polynomial chCp(z)
(z) of the matrix Cp(z) is the polynomial p(z) itself. Linear systems

of difference equations with matrices of this type can be used to model linear n-th order difference equations.

2.4. Cyclotomic Polynomials
Let us finally review the basic theory of cyclotomic polynomials, later used to decide determinisability

of unary weighted automata over Q. See D. S. Dummit and R. M. Foote [21, Section 13.6] for an exposition
and missing proofs.

Definition 2.8. Let n ∈ N \ {0}. The n-th cyclotomic polynomial Φn(z) is then given by

Φn(z) =
∏

k=1,...,n
gcd(k,n)=1

(
z − e2kπi/n

)
.

In other words, Φn(z) is the monic polynomial whose roots are precisely the primitive complex n-th roots
of unity. It is a basic fact that actually Φn(z) ∈ Z[z] and that this polynomial is always irreducible over Q.
This means that cyclotomic polynomials are precisely the minimal polynomials of the primitive roots of unity
over Q. The definition also directly implies that the degree of Φn(z) is given by ϕ(n) for all n ∈ N \ {0},
where ϕ denotes the Euler’s totient function – that is, ϕ(n) is the number of integers from [n] coprime
to n. The following formula, which we present as a theorem for later reference, follows in a straightforward
manner from Definition 2.8.

Theorem 2.9. For all n ∈ N \ {0},
zn − 1 =

∏
k|n

Φk(z).

Hence, every cyclotomic polynomial Φn(z) divides zp − 1 for all p that are multiples of n. Moreover,
by utilising the irreducibility of cyclotomic polynomials, we easily arrive at the following observation, again
presented as a theorem for later reference.

Theorem 2.10. Let f(z) ∈ Q[z] be a monic polynomial such that all roots of f(z) over C are complex roots
of unity. Then f(z) is a product of cyclotomic polynomials. If in addition the roots of f(z) are all simple,
then f(z) is a product of pairwise distinct cyclotomic polynomials.
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3. The Characteristic Polynomial of a Unary Weighted Automaton

We now draw our attention to the main objects of our study – that is, to weighted automata over
the rational numbers and unary alphabets, and to the corresponding rational series from Q⟪c∗⟫, i.e., QJcK.
Of course, as the set Q forms a field with the usual addition and multiplication, the findings reviewed
in Subsection 2.1 and 2.2 still remain valid in this setting.

Let us start by defining the characteristic polynomials of unary weighted automata over Q, which we
later use as a key ingredient in our determinisability criteria and corresponding decision algorithms. In what
follows, we denote by In the n× n identity matrix over Q.

Definition 3.1. Let A = (n, σ, ι, τ) be a weighted automaton over Q and Σ = {c} with PA = (n, i, µ, f)
and n > 0. The characteristic polynomial chA(z) of A is the characteristic polynomial of the matrix µ(c),
i.e.,

chA(z) = chµ(c)(z) = det (zIn − µ(c)) ,

where In is the n× n identity matrix.

Remark 3.2. Note that the characteristic polynomial defined in this way is always monic.

Observe that the characteristic polynomial of an automaton does not depend on its initial and final
weights, but just on the single matrix µ(c) of the associated linear representation, with the characteristic
polynomial of which it coincides. Now, if A and B are similar weighted automata over Q and Σ = {c}
with PA = (n, i, µ, f) and PB = (n, i′, µ′, f ′), then the matrices µ(c) and µ′(c) are clearly similar as well.
As it is well known that the characteristic polynomials of similar matrices are always equal, we readily arrive
at the following observation.

Proposition 3.3. Let A and B be similar unary weighted automata over Q, both having at least one state.
Then chA(z) = chB(z).

Recall Proposition 2.4, according to which any two minimal automata of some fixed rational series over
a field are similar. By combining this with Proposition 3.3, we obtain the following corollary.

Corollary 3.4. Let r ∈ Q⟪c∗⟫ \ {0} be a rational series. Then all minimal weighted automata C with
‖C‖ = r share the same characteristic polynomial.

Characteristic polynomials, defined above for automata, thus can serve as characteristics of rational series
as well. This is made explicit by the following definition, in which the notion of a characteristic polynomial
is extended to rational series. Correctness of this definition follows by the corollary above.

Definition 3.5. Let r ∈ Q⟪c∗⟫ \ {0} be a rational series. The characteristic polynomial chr(z) of r is
the common characteristic polynomial of all minimal automata C such that ‖C‖ = r.

Note that the degree of the characteristic polynomial of a rational series always equals the dimension
of the quotient space Q(r).

To compute the characteristic polynomial of a rational series r ∈ Q⟪c∗⟫ \ {0}, it is clearly sufficient
to apply the Cardon-Crochemore algorithm in order to obtain a minimal automaton C such that ‖C‖ = r,
and to subsequently compute the characteristic polynomial of the single matrix of the associated linear rep-
resentation PC . However, we now observe that the second step is in fact not necessary, due to a specific form
of the automaton obtained via the Cardon-Crochemore algorithm, from which the characteristic polynomial
can be “directly read”.
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Proposition 3.6. Let r ∈ Q⟪c∗⟫ \ {0} be a rational series, A an arbitrary weighted automaton over Q
and Σ = {c} satisfying ‖A‖ = r, and C the minimal automaton for r obtained by the Cardon-Crochemore
algorithm upon input A. Let PC = (n, i, µ, f). Then µ(c) is the companion matrix of the characteristic
polynomial chr(z) = zn + an−1z

n−1 + . . .+ a1z + a0 of the series r, i.e.,

µ(c) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

 .

Proof. By the observation made in Remark 2.6,

iµ(cj) = ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

)

for j = 1, . . . , n. Thus i = e1 and the j-th row of µ(c) is given, for j = 1, . . . , n − 1, by the vector ej+1.
As a consequence, the first n−1 rows of the matrix µ(c) are as described in the statement of the proposition,
which means that

µ(c) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1


for some a0, . . . , an−1 ∈ Q; the minus signs have been introduced just for convenience. The matrix µ(c) thus
is the companion matrix of its characteristic polynomial chµ(c)(z) = zn + an−1z

n−1 + . . .+ a1z + a0. Now,
chµ(c)(z) = chC(z) and as C is minimal, chC(z) = chr(z). The matrix µ(c) therefore indeed is the companion
matrix of the characteristic polynomial of r.

4. The Fundamental Property of Characteristic Polynomials

The characteristic polynomial of a unary weighted automaton may differ from the characteristic polyno-
mial of its realised series in case the automaton is not minimal. Nevertheless, we now prove the following
fundamental property of characteristic polynomials of automata, which we later use to obtain a decidable
determinisability criterion: Given a unary weighted automaton A over Q, the characteristic polynomial
ch‖A‖(z) of the series ‖A‖ divides the characteristic polynomial chA(z) of the automaton A (if ‖A‖ 6= 0).
In other words, if λ is a root of ch‖A‖(z) of multiplicity α(λ), then it also is a root of multiplicity at least
α(λ) for the polynomial chA(z).

Remark 4.1. The main finding of this section is not fully original, as it can be seen, in its essence,
as an alternative formulation of certain results from the theory of linear recurrence synthesis centred around
the Berlekamp-Massey algorithm – see, e.g., [10, Section 7.2]. Nevertheless, the viewpoint of this section
is more expedient for our purposes.

We need the following two lemmata to arrive at the aforementioned observation.

Lemma 4.2. Let A = (n, σ, ι, τ) be a weighted automaton over Q. Then the minimal weighted automaton
over Q equivalent to A is the same as the minimal weighted automaton over C equivalent to A.

Proof. It is easy to see that the Cardon-Crochemore algorithm, presented with an input automaton A over
a field F, produces the same result even if A is interpreted as an automaton over some extension K of F.
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A unary weighted automaton A = (n, σ, ι, τ) over Q and Σ = {c} with PA = (n, i, µ, f) and n > 0
can clearly be interpreted as an initial problem for the first-order linear autonomous system of difference
equations

xt+1 = µ(c)xt for all t ∈ N,

where the initial conditions are given by x0 = f . The j-th component of the column vector xt represents,
for all t ∈ N and j = 1, . . . , n, the coefficient of ct in the series realised by an automaton obtained from A
by changing the initial weights so that ι(j) = 1 and ι(k) = 0 for k ∈ [n] \ {j}. Accordingly, the coefficient
of ct in ‖A‖ can be expressed, for all t ∈ N, as(

‖A‖, ct
)

= i · xt.

This implies that if we denote by V the set of all complex roots of chA(z) = chµ(c)(z) – i.e., the spectrum
of µ(c) – and by α(λ) the multiplicity of a root λ ∈ V of chA(z) – i.e., the algebraic multiplicity of λ
as an eigenvalue of µ(c) – then there exist uniquely determined aλ,k ∈ C for λ ∈ V and k = 0, . . . , α(λ)− 1
such that (

‖A‖, ct
)

=
∑

λ∈V \{0}

α(λ)−1∑
k=0

aλ,kt
kλt +

∑
λ∈V ∩{0}

α(λ)−1∑
k=0

aλ,kδt,k

for all t ∈ N. We now prove that the constants aλ,α(λ)−1 are nonzero for all λ ∈ V in case the automaton A
is minimal.

Lemma 4.3. Let A be a minimal unary weighted automaton over Q and Σ = {c} with PA = (n, i, µ, f)
and n > 0. Let V be the set of all complex roots of chA(z) and α(λ), for each λ ∈ V , its multiplicity
as a root of chA(z). Then there exist uniquely determined aλ,k ∈ C for λ ∈ V and k = 0, . . . , α(λ)− 1 such
that aλ,α(λ)−1 6= 0 for every λ ∈ V and

(
‖A‖, ct

)
=

∑
λ∈V \{0}

α(λ)−1∑
k=0

aλ,kt
kλt +

∑
λ∈V ∩{0}

α(λ)−1∑
k=0

aλ,kδt,k for all t ∈ N. (6)

Proof. Existence of some uniquely determined constants aλ,k ∈ C for λ ∈ V and k = 0, . . . , α(λ) − 1
satisfying (6) has already been observed above. It remains to prove that aλ,α(λ)−1 is nonzero for each λ ∈ V .

Suppose for the purpose of contradiction that aλ,α(λ)−1 = 0 for some λ ∈ V and form the polynomial

p(z) = (z − λ)α(λ)−1
∏

κ∈V \{λ}

(z − κ)α(κ)

of degree n−1 with complex coefficients. Let C ∈ C(n−1)×(n−1) be the companion matrix of p(z) and consider
a unary weighted automaton B over C and Σ = {c} such that PB = (n − 1, i′, µ′, f ′) for i′ = (1, 0, . . . , 0),
µ′(c) = C, and f ′ =

(
(‖A‖, c0), . . . , (‖A‖, cn−2)

)T . We claim that ‖B‖ = ‖A‖.
For κ ∈ V , let β(κ) be the multiplicity of κ as a root of the polynomial p(z), i.e., β(κ) = α(κ) for κ 6= λ

and β(λ) = α(λ) − 1. Clearly chB(z) = p(z), so that there exist uniquely determined constants bκ,k ∈ C
for κ ∈ V and k = 0, . . . , β(κ)− 1 such that

(
‖B‖, ct

)
=

∑
κ∈V \{0}

β(κ)−1∑
k=0

bκ,kt
kκt +

∑
κ∈V ∩{0}

β(κ)−1∑
k=0

bκ,kδt,k (7)

for all t ∈ N. The initial value problem corresponding to B takes the form

xt+1 = µ′(c)xt for all t ∈ N

with x0 = f ′. As µ′(c) = C is a companion matrix and i′ = (1, 0, . . . , 0), the solution xt satisfies

xt =
(
(‖B‖, ct), (‖B‖, ct+1), . . . , (‖B‖, ct+n−2)

)T
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for all t ∈ N. The initial conditions x0 = f ′ then imply that (‖B‖, ct) = (‖A‖, ct) for t = 0, . . . , n − 2.
Combining this observation with (6), (7), and the assumption that aλ,α(λ)−1 = 0, we obtain the following
system of linear equations in n−1 unknowns aκ,k−bκ,k for κ ∈ V and k = 0, . . . , β(κ)−1: For t = 0, . . . , n−2,

∑
κ∈V \{0}

β(κ)−1∑
k=0

aκ,kt
kκt +

∑
κ∈V ∩{0}

β(κ)−1∑
k=0

aκ,kδt,k =
∑

κ∈V \{0}

β(κ)−1∑
k=0

bκ,kt
kκt +

∑
κ∈V ∩{0}

β(κ)−1∑
k=0

bκ,kδt,k,

or, equivalently,

∑
κ∈V \{0}

β(κ)−1∑
k=0

(aκ,k − bκ,k)tkκt +
∑

κ∈V ∩{0}

β(κ)−1∑
k=0

(aκ,k − bκ,k)δt,k = 0.

The matrix of this system is clearly equal to the Casorati matrix Cas(0) of the functions tkκt for κ ∈ V \{0}
and k = 0, . . . , β(κ) − 1 and δt,k for k = 0, . . . , β(0) − 1 in case 0 ∈ V . As this matrix is of full rank by
Theorem 2.7, we find out that aκ,k − bκ,k = 0 – i.e., aκ,k = bκ,k – for all κ ∈ V and k = 0, . . . , β(κ) − 1.
Thus indeed ‖A‖ = ‖B‖ by (6), (7), and the equality aλ,α(λ)−1 = 0.

We have thus constructed a unary weighted automaton B over C and Σ = {c} that is smaller than A,
while ‖B‖ = ‖A‖. However, we have assumed that A is a minimal weighted automaton over Q and Σ = {c}
with behaviour ‖A‖ – a contradiction with Lemma 4.2.

We are now in a position to prove the fundamental property of characteristic polynomials that we have
already anticipated at the beginning of this section.

Theorem 4.4. Let A be a unary weighted automaton over Q and Σ = {c} with ‖A‖ 6= 0. Then if λ is
a (complex ) root of ch‖A‖(z) of multiplicity α(λ), it is also a root of chA(z) of multiplicity at least α(λ).

Proof. As ch‖A‖(z) is by definition the characteristic polynomial of any of the minimal automata for ‖A‖
(which is well-defined as ‖A‖ 6= 0), it follows by Lemma 4.3 that

(
‖A‖, ct

)
=

∑
λ∈V \{0}

α(λ)−1∑
k=0

aλ,kt
kλt +

∑
λ∈V ∩{0}

α(λ)−1∑
k=0

aλ,kδt,k (8)

for all t ∈ N, where V denotes the set of all complex roots of ch‖A‖(z), multiplicity of each root λ ∈ V
of ch‖A‖(z) is denoted by α(λ), and aλ,k, for λ ∈ V and k = 0, . . . , α(λ)− 1, are complex numbers such that
aλ,α(λ)−1 6= 0 for all λ ∈ V . By the discussion preceding Lemma 4.3, we also have

(
‖A‖, ct

)
=

∑
λ∈W\{0}

β(λ)−1∑
k=0

bλ,kt
kλt +

∑
λ∈W∩{0}

β(λ)−1∑
k=0

bλ,kδt,k (9)

for all t ∈ N, where W is the set of all complex roots of chA(z), multiplicity of each λ ∈ W as a root
of chA(z) is denoted by β(λ), and bλ,k, for λ ∈W and k = 0, . . . , β(λ)− 1, are some complex constants.

Now, suppose for contradiction that some κ ∈ V is either not a root of chA(z) – i.e., κ 6∈ W – or it
is a root of chA(z) of multiplicity smaller than α(κ) – i.e., β(κ) < α(κ). In both cases we observe that
the right hand side of (8) contains the term

F (t) =

{
aκ,α(κ)−1t

α(κ)−1κt if κ 6= 0,
aκ,α(κ)−1δt,α(κ)−1 if κ = 0

with aκ,α(κ)−1 6= 0, while no nonzero factor of this term takes place on the right hand side of (9). As any
finite set of distinct functions of the form f(t) = tkλt for k ∈ N and λ ∈ C \ {0} or f(t) = δt,k for k ∈ N is
linearly independent by Theorem 2.7, the right hand sides of (8) and (9) cannot evaluate to the same value
for all t ∈ N. This contradicts the fact that the left hand side is the same both in (8) and in (9).
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Let us end up our preliminary study of characteristic polynomials of automata by restating the preceding
theorem in slightly different words.

Corollary 4.5. Let A be a unary weighted automaton over Q and Σ = {c} such that ‖A‖ 6= 0. Then
the polynomial ch‖A‖(z) divides the polynomial chA(z).

5. Basic Observations About Deterministic Weighted Automata over Unary Alphabets

We now take a look at unary deterministic weighted automata over Q, which can be assumed to be
of a very simple particular form, and identify the characteristic polynomials of such automata.

Call a weighted automaton A = (n, σ, ι, τ) accessible if for every q ∈ [n], there exists p ∈ [n] with ι(p) 6= 0
such that there is at least one run γ from p to q.10 It is clear that every weighted automaton A admits
an accessible equivalent, which is deterministic whenever A is. As a result, an automaton is determinisable if
and only if it admits an accessible deterministic equivalent. We may therefore confine ourselves to accessible
deterministic automata in what follows.

Let A = (n, σ, ι, τ) be an accessible deterministic unary weighted automaton over Q and Σ = {c}.
If n > 0, there has to be precisely one state q0 ∈ [n] such that ι(q0) 6= 0. For each t ∈ N, there clearly exists
at most one run γt of A with label ct from the state q0. Moreover, the automaton always takes the form
of a directed path or a “directed path leading to a cycle”11 – in the former case, there are distinct states
q0, . . . , qn−1 ∈ [n] such that γt leads to qt for t = 0, . . . , n− 1, while there is no run γt for t ≥ n; in the latter
case, there are distinct states q0, . . . , qn−1 ∈ [n] and an index s ∈ {0, . . . , n − 1} such that γt leads to qt
for t = 0, . . . , s− 1 and γt′ leads to qs+((t′−s) mod (n−s)) for all t′ ∈ N such that t′ ≥ s. The two possibilities
are depicted in Fig. 1a and Fig. 1b, respectively.

q0 q1 . . . qn−2 qn−1

(a) The first possibility: a directed path.

q0 q1 . . . qs

qs+1

.

.

.

qn−1

(b) The second possibility: a “directed path leading to a cycle”.

Figure 1: Two possible forms of an accessible deterministic unary weighted automaton over Q with n > 0 states.
All transitions are labelled by the same letter c and each is given some nonzero weight. The arrow leading to q0
indicates that q0 is the only state with nonzero initial weight; in addition, every state might or might not have
a nonzero terminal weight (this is not shown in the figure).

10Recall our definition of runs, according to which a run consists of several transitions, each of which has a nonzero weight.
Thus necessarily σ(γ) 6= 0 for automata over Q.

11The directed path can be of zero length in both cases.
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This observation reflects directly in the possible forms of the matrix µ(c) of the linear representation
PA = (n, i, µ, f) associated to an accessible deterministic unary weighted automaton A over Q and Σ = {c}
with n > 0: There always exists a permutation matrix P ∈ {0, 1}n×n such that

Pµ(c)P−1 =



0 a1,2 0 · · · 0 0 · · · 0 0
0 0 a2,3 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · as−1,s 0 · · · 0 0
0 0 0 · · · 0 as,s+1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · an−2,n−1 0
0 0 0 · · · 0 0 · · · 0 an−1,n

0 0 0 · · · an,s 0 · · · 0 0


, (10)

where s ∈ [n], aj,j+1 ∈ Q \ {0} for j = 1, . . . , n − 1, and an,s ∈ Q, while these elements are in Z or N
whenever A is an automaton over Z or N, respectively.12

Characteristic polynomials of matrices taking the form just described can be easily determined – we thus
arrive at the following result.

Proposition 5.1. Let A = (n, σ, ι, τ) with n > 0 be an accessible deterministic unary weighted automaton
over Q and Σ = {c}. Then either

chA(z) = zn,

or
chA(z) = zn − bzk

for some b ∈ Q \ {0} and k ∈ {0, . . . , n − 1}. In the latter case, b ∈ Z \ {0} whenever A is an automaton
over Z, and b ∈ N \ {0} whenever A is an automaton over N.

Proof. Let PA = (n, i, µ, f). Then (10) has to hold for some permutation matrix P ∈ {0, 1}n×n, s ∈ [n],
aj,j+1 ∈ Q\{0} for j = 1, . . . , n−1, and an,s ∈ Q; if A is over Z or N, then these elements belong to the same
set as well. Clearly

chA(z) = chPµ(c)P−1(z) = zs−1

zn−s+1 − an,s
n−1∏
j=s

aj,j+1

 = zn − an,szs−1
n−1∏
j=s

aj,j+1. (11)

If an,s = 0, then (11) boils down to chA(z) = zn. Otherwise, set

b = an,s

n−1∏
j=s

aj,j+1

and k = s− 1; the equation (11) then rewrites as chA(z) = zn − bzk.

Corollary 5.2. Let A = (n, σ, ι, τ) with n > 0 be an accessible deterministic unary weighted automaton
over Q and Σ = {c}. Then the roots of the characteristic polynomial chA(z) can be described as follows:

(i) Zero can be a possibly multiple root of chA(z).

(ii) If zero is not a root of chA(z) of multiplicity n, let p = n if it is not a root of chA(z) at all, and p = n−k
if it is a root of multiplicity k. Then there exists b ∈ Q \ {0} such that the remaining roots of chA(z)
are all simple and given by β · e2`πi/p for ` = 0, . . . , p− 1 and any β ∈ C such that βp = b.

12If s = 0, then an,s is in the first column and there is no element as−1,s.
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6. Deciding Determinisability and Determinisation

The aim of this section is to collect our hitherto findings and to proceed to the actual main result of this
article – a decidable determinisability criterion for unary weighted automata over Q – and to some related
points, such as the variant of the main result for automata over Z and N, or the existence of a determinisation
algorithm. Nevertheless, we first need one further auxiliary proposition, which can be viewed as a stronger13
converse of Proposition 5.1 and Corollary 5.2.

Proposition 6.1. Let r ∈ Q⟪c∗⟫ \ {0} be a rational series.

(i) If the characteristic polynomial chr(z) divides zq for some q ∈ N\{0}, then r = ‖A‖ for a deterministic
unary weighted automaton A over Q and Σ = {c} with PA = (q, i, µ, f), where i = (1, 0, . . . , 0), µ(c)
is the companion matrix of zq, i.e.,

µ(c) =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1
0 0 0 · · · 0 0


,

and f =
(
(r, c0), (r, c1), . . . , (r, cq−1)

)T .
(ii) If chr(z) divides zq − bzh for some q ∈ N \ {0}, b ∈ Q \ {0}, and h ∈ {0, . . . , q − 1} – i.e., the roots

of chr(z) are elements of the set {β ·e2kπi/p | k ∈ {0, . . . , p−1}}∪{0} for p = q−h and some β ∈ C such
that βp = b, while all these roots, possibly except zero, are simple – then r = ‖A‖ for a deterministic
unary weighted automaton A over Q and Σ = {c} with PA = (q, i, µ, f), where i = (1, 0, . . . , 0), µ(c)
is the companion matrix of zq − bzh, i.e.,

µ(c) =



0 1 0 · · · 0 0 · · · 0 0
0 0 1 · · · 0 0 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 1 0 · · · 0 0
0 0 0 · · · 0 1 · · · 0 0
...

...
...

. . .
...

...
. . .

...
...

0 0 0 · · · 0 0 · · · 1 0
0 0 0 · · · 0 0 · · · 0 1
0 0 0 · · · b 0 · · · 0 0︸ ︷︷ ︸

h+1


,

and f =
(
(r, c0), (r, c1), . . . , (r, cq−1)

)T .
Proof. The statement (i) is obviously true; let us thus prove (ii). Let

V = {β · e2kπi/p | k ∈ {0, . . . , p− 1}} ∪ {0}.

Moreover, let V ′ ⊆ V be the set of actual roots of chr(z), and h′ ≤ h the multiplicity of zero as a root
of chr(z) (or 0 if zero is not a root of chr(z) at all). By the reasoning preceding Lemma 4.3, we obtain

(
r, ct

)
=

∑
λ∈V ′\{0}

aλ,0λ
t +

h′−1∑
k=0

a0,kδt,k

13It is just assumed in its statement that chr(z) divides zq or zq − bzh.
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for some constants aλ,0 ∈ C for λ ∈ V ′ \ {0} and a0,0, . . . , a0,h′−1 ∈ C, and for all t ∈ N. By setting aλ,0 = 0
for all λ ∈ V \ V ′ and a0,h′ = a0,h′+1 = . . . = a0,h−1 = 0, this can be rewritten as

(
r, ct

)
=

∑
λ∈V \{0}

aλ,0λ
t +

h−1∑
k=0

a0,kδt,k (12)

for all t ∈ N. Now, as µ(c) is the companion matrix of zq − bzh, all elements of V \ {0} are simple roots
of chA(z) and if h > 0, zero is a root of multiplicity h. Thus, again by the reasoning preceding Lemma 4.3,

(
‖A‖, ct

)
=

∑
λ∈V \{0}

bλ,0λ
t +

h−1∑
k=0

b0,kδt,k (13)

for some constants bλ,0 ∈ C for λ ∈ V \ {0} and b0,0, . . . , b0,h−1 ∈ C, and for all t ∈ N. Moreover, clearly

(‖A‖, ct) = (r, ct) for t = 0, . . . , q − 1.

Thus, by (12) and (13),

∑
λ∈V \{0}

aλ,0λ
t +

h−1∑
k=0

a0,kδt,k =
∑

λ∈V \{0}

bλ,0λ
t +

h−1∑
k=0

b0,kδt,k for t = 0, . . . , q − 1.

As the q × q Casorati matrix Cas(0) of the functions λt for λ ∈ V \ {0} and δt,k for k = 0, . . . , h − 1 is
of full rank by Theorem 2.7, we obtain aλ,0 = bλ,0 for all λ ∈ V and a0,k = b0,k for k = 0, . . . , h− 1. Hence,
(‖A‖, ct) = (r, ct) for all t ∈ N – or, in other words, ‖A‖ = r.

We are now prepared to prove the main theorem of this article providing a determinisability criterion
for unary weighted automata over the rationals, which we later show to be decidable in polynomial time.
To be more precise, we formulate this criterion in three different, yet obviously equivalent, ways, as conditions
(ii) to (iv) of the following theorem. We still assume that the behaviour of the automaton in question is
a nonzero series, as otherwise the automaton is trivially determinisable.

Theorem 6.2. Let A = (n, σ, ι, τ) with ‖A‖ 6= 0 be a unary weighted automaton over Q and Σ = {c}. Then
the following are equivalent:

(i) The automaton A is determinisable, i.e., there exists a deterministic weighted automaton B over Q
and Σ = {c} such that ‖B‖ = ‖A‖.

(ii) The characteristic polynomial ch‖A‖(z) of the series realised by the automaton A divides either zq

for some q ∈ N \ {0}, or zq − bzh for some q ∈ N \ {0}, b ∈ Q \ {0}, and h ∈ {0, . . . , q − 1}.

(iii) The characteristic polynomial ch‖A‖(z) can be written either as

ch‖A‖(z) = zk

for some k ∈ N \ {0}, or as
ch‖A‖(z) = zkf(z),

where k ∈ N and f(z) ∈ Q[z] is a monic polynomial of degree d > 0 that divides zp − b for some
p ∈ N \ {0} and b ∈ Q \ {0}.

(iv) The roots of ch‖A‖(z) all belong to the set {β · e2kπi/p | k ∈ {0, . . . , p− 1}} ∪ {0} for some p ∈ N \ {0}
and β ∈ C such that βp ∈ Q, while all these roots, possibly except zero, are simple.
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Proof. The statement (ii) is clearly equivalent both to (iii) via zq − bzh = zh(zq−h − b) and p = q − h,
and to (iv) via β = 0 if ch‖A‖(z) divides some zq, eventually via p = q − h and βp = b otherwise.

It thus remains to prove the equivalence of, e.g., (i) and (ii). In case the automaton A is determinisable,
there exists an accessible deterministic weighted automaton B = (q, σ′, ι′, τ ′) over Q and Σ = {c} such that
‖B‖ = ‖A‖; as ‖A‖ 6= 0, necessarily q > 0. Then either

chB(z) = zq,

or
chB(z) = zq − bzh

for some b ∈ Q\{0} and h ∈ {0, . . . , q−1} by Proposition 5.1, and ch‖A‖(z) divides chB(z) by Corollary 4.5.
Conversely, if ch‖A‖(z) divides zq or zq − bzh for some q ∈ N \ {0}, b ∈ Q \ {0}, and h ∈ {0, . . . , q − 1},

then A is determinisable by Proposition 6.1.

Our next aim is to show that the equivalent conditions given by the preceding theorem are decidable,
i.e., to describe an algorithm deciding determinisability of unary weighted automata over Q.

Let A = (n, σ, ι, τ) be a unary weighted automaton over Q and Σ = {c}, determinisability of which is
in question. By applying the Cardon-Crochemore minimisation algorithm, it is easy to decide if ‖A‖ = 0,
as this happens if and only if the equivalent minimal automaton B = (m,σ′, ι′, τ ′) is empty, i.e., if m = 0.
If so, the automaton A is determinisable. In the opposite case the minimisation algorithm computes,
in the sense of Proposition 3.6, the characteristic polynomial ch‖A‖(z) of the series ‖A‖. It is then trivial
to decide whether ch‖A‖(z) = zk for some k ∈ N \ {0}, in which case A is determinisable by Theorem 6.2.14

We may thus suppose that the characteristic polynomial ch‖A‖(z) can be factored as ch‖A‖(z) = zkf(z)
for some k ∈ N and some monic polynomial f(z) ∈ Q[z] of degree d > 0 with nonzero constant coefficient.
Deciding whether A is determinisable reduces, by Theorem 6.2, to finding out if f(z) divides zp− b for some
p ∈ N \ {0} and b ∈ Q \ {0}. As (zp − b)(zp + b) = z2p − b2, we may assume without loss of generality that
actually b > 0. The condition of f(z) dividing zp − b for some p ∈ N \ {0} and positive b ∈ Q is equivalent
to saying that the roots of f(z) are all simple and contained in the set { p

√
b · e2kπi/p | k ∈ {0, . . . , p − 1}}

for some p ∈ N \ {0} and positive b ∈ Q, where p
√
b denotes the positive real p-th root of b.

Let us now write the polynomial f(z) as

f(z) = zd + ad−1z
d−1 + . . .+ a1z + a0

for a0, a1, . . . , ad−1 ∈ Q with a0 6= 0. Then if the roots of f(z) indeed all take the form p
√
b·e2kπi/p for some k,

we necessarily get |a0| = bd/p, i.e., p
√
b = d

√
|a0|.

Consider the companion matrix C of the polynomial f(z),

C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ad−1

 ,

whose eigenvalues are precisely the roots of f(z). If the roots of f(z) are of the form described above, all
eigenvalues of the matrix

A =
1

|a0|
Cd

must be (not necessarily distinct) roots of unity – in other words, applying Theorem 2.10, the characteristic
polynomial chA(z) ∈ Q[z] is a product of (not necessarily distinct) cyclotomic polynomials. Thus, if we find
out that this characteristic polynomial is not a product of cyclotomic polynomials, we can conclude that
the automaton A is not determinisable.

14Obviously k = m in this case.
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In case the polynomial chA(z) is a product of cyclotomic polynomials, write

chA(z) =

s∏
j=1

Φpj (z),

where s, p1, . . . , ps ∈ N \ {0}. Then each Φpj (z), for j = 1, . . . , s, gives ϕ(pj) roots of the polynomial chA(z),
which are all of the form e2kπi/pj for some k ∈ {0, . . . , pj − 1};15 denote the set of all these roots by Vj .
All roots of chA(z) are thus of the form e2kπi/ lcm(p1,...,ps) for some k ∈ {0, . . . , lcm(p1, . . . , ps)− 1}.

Each root ω = e2kπi/pj ∈ Vj for j = 1, . . . , s surely corresponds to exactly one root of f(z),16 which
has to be d

√
|a0| · e2(k+`pj)πi/(pjd) for some ` ∈ {0, . . . , d − 1}, i.e., d

√
|a0| times one of the d-th roots of ω.

This observation can be used to determine all roots of the polynomial f(z), but there is no need to do so.
Instead, as we shortly demonstrate, it suffices find out whether all roots of f(z) are simple. This can be
easily done via computing the greatest common divisor of f(z) with its formal derivative f ′(z) – see,
for instance, [21, Section 13.5].

In case there are repeated roots of f(z), we may conclude by Theorem 6.2 that A is not determinisable.
Otherwise the roots of f(z) are all simple, and we may set p = d · lcm(p1, . . . , ps) and b = |a0|p/d. We then
find out that all these roots are contained in the set

{ p
√
b · e2kπi/p | k ∈ {0, . . . , p− 1}}.

Moreover, the number b is necessarily rational, as b = |a0|p/d = |a0|d·lcm(p1,...,ps)/d = |a0|lcm(p1,...,ps) ∈ Q.
We may thus conclude, again by Theorem 6.2, that the automaton A is determinisable.

Let us now summarise the algorithm for deciding determinisability of unary weighted automata over Q.
We first provide a high-level description, while the details concerning implementation of certain particular
steps can be found below.

Algorithm 6.3 (Deciding determinisability of unary weighted automata over Q).

Input: A unary weighted automaton A = (n, σ, ι, τ) over Q and Σ = {c}.

1. Find a minimal automaton B = (m,σ′, ι′, τ ′) equivalent to A using the Cardon-Crochemore algorithm.
2. Check if m = 0.

a) If so, return “A is determinisable” and halt.
b) Otherwise “read” the characteristic polynomial ch‖A‖(z) and continue by the next step.

3. Check if ch‖A‖(z) = zk for some k ∈ N \ {0}.
a) If so, return “A is determinisable” and halt.
b) Otherwise continue by the next step.

4. Compute the factorisation ch‖A‖(z) = zkf(z), where k ∈ N and f(z) is a monic polynomial of degree
d > 0 with nonzero constant coefficient a0.

5. Compute the matrix A = (1/|a0|)Cd, where C is the companion matrix of f(z).
6. Compute the characteristic polynomial chA(z) of A.
7. Check if chA(z) is a product of (not necessarily distinct) cyclotomic polynomials.

a) If not, return “A is not determinisable” and halt.
b) Otherwise continue by the next step.

8. Check if all roots of f(z) are simple.
a) If so, return “A is determinisable”.
b) Otherwise return “A is not determinisable”.

15Of course, not all values of k are actually possible here in general.
16More precisely, to a root λ such that λd/|a0| = ω. If λ is a multiple root, then ω is a root of at least the same multiplicity,

so that each λ indeed has an ω to which it corresponds. Similarly in the case of multiple λ with the same λd.
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Some comments are in place as to the implementation of certain steps of the above algorithm and their
time complexity, measured by the number of arithmetic operations over Q. Regarding time complexity, our
aim is to show that at most O(n3) such operations are performed during any execution of Algorithm 6.3
upon an input automaton with n states, in case a suitable implementation is used.

Step 1 of Algorithm 6.3 consists of calling the Cardon-Crochemore minimisation algorithm, which runs
with O(n3) arithmetic operations – and, as we show below, it is the least effective step of the algorithm.
The way how to “read” the characteristic polynomial ch‖A‖(z) in Step 2 from the minimal automaton
computed by the Cardon-Crochemore algorithm was explained in Proposition 3.6. The next two steps
of the algorithm are trivial and negligible when it comes to time complexity.

The cost of computing the companion matrix C in Step 5 is clearly negligible. The power Cd of the d×d
matrix C can clearly be computed within

O(M(d) log d) = O(M(n) log n)

arithmetic operations, where M(n) is the number of operations needed for multiplication of n× n matrices.
Thus, if the matrix multiplication is realised, e.g., by the Strassen algorithm [44] or by the “fastest” algorithm
known up to date [2], the arithmetic complexity of Step 5 goes well below O(n3). Similarly, the characteristic
polynomial of a d× d matrix can be computed in O(M(d) log d) operations [28, 20], so we obtain the same
bound for Step 6.

Step 7 can be considered the crux of Algorithm 6.3. There is a variety of methods that could be employed
in order to check whether a polynomial is or is not a product of cyclotomic polynomials. Let us first describe
an elementary approach, for which an O(n3) upper bound on arithmetic operations is easily established.
First observe that since chA(z) is of degree d, every cyclotomic polynomial dividing chA(z) has to be of degree
at most d. The degree of a cyclotomic polynomial Φk(z) equals ϕ(k). At the same time, it is known that

ϕ(k) >
k

eγ ln ln k + 3/(ln ln k)

for all k ≥ 3, where γ is the Euler–Mascheroni constant – see [40, Theorem 15] and [4, Theorem 8.8.7].
This implies existence of an effectively computable function B(d) = O

(
d1+δ

)
with 0 < δ < 1/2 such

that k ≤ B(d) for all cyclotomic polynomials Φk(z) dividing chA(z) of degree d. We can then perform
trial division of chA(z) by the cyclotomic polynomials Φ1(z), . . . ,ΦB(d)(z), in this order, while attempting
division by each polynomial possibly multiple times until a nonzero remainder is obtained. At the end of this
process, we surely obtain all cyclotomic factors of the polynomial chA(z), so that it finally suffices to check
whether there is a factor of positive degree remaining or not. The whole procedure thus involves computing
the cyclotomic polynomials Φ1(z), . . . ,ΦB(d)(z), while it is well known that Φk(z) can be computed using
O(k(log k)2(log log k)) operations – see, e.g., J. von zur Gathen and J. Gerhard [45, Algorithm 14.48];
for other possibilities of computing the cyclotomic polynomials, consult A. Arnold and M. Monagan [3].
The overall number of arithmetic operations needed to compute Φ1(z), . . . ,ΦB(d)(z) thus is in

O
(
B(d)2 (logB(d))

2
(log logB(d))

)
= O

(
d2+2δ (log d)

2
(log log d)

)
= O

(
d3
)

= O
(
n3
)
.

The division with remainder can be done with O(d(log d)(log log d)) operations [45, Algorithm 9.5]17 for poly-
nomials of degree bounded by d, while the method described performs at most d successful and at most B(d)
unsuccessful divisions. In effect, the total number of operations needed to perform the divisions is in

O(B(d)d (log d) (log log d)) = O
(
d2+δ (log d) (log log d)

)
= O

(
d3
)

= O
(
n3
)
.

As a result, we may conclude that at most O(n3) arithmetic operations over Q are needed for Step 7.

17As we are interested in solving the problem using arithmetic operations of Q only, we do not take into account the methods
relying on the FFT.
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However, note that there is a possibly faster approach than the one described above: F. Beukers
and C. J. Smyth [9] have described an effective algorithm, based upon similar ideas as the “Graeffe”
cyclotomicity test of R. J. Bradford and J. H. Davenport [11], for finding what they call the cyclotomic
part of a given polynomial g(z), i.e., the product of all distinct cyclotomic polynomials dividing g(z). Now,
it is clear that a polynomial is a product of cyclotomic polynomials if and only if its square-free part is
a product of distinct cyclotomic polynomials. Hence, to find out whether chA(z) is a product of cyclotomic
polynomials, it suffices to compute its square-free part – i.e., to divide chA(z) by the greatest common di-
visor of chA(z) and its formal derivative [45, Algorithm 14.19] – and to apply the aforementioned algorithm
of F. Beukers and C. J. Smyth [9].

Finally, Step 8 can be realised via computing the greatest common divisor of f(z) and its formal derivative
– the roots of f(z) are all simple if and only if the result is of degree zero [21, Section 13.5]. This can be
done within

O
(
d (log d)

2
(log log d)

)
= O

(
d3
)

= O
(
n3
)

arithmetic operations over the rational numbers [45, Algorithm 14.19]. We may thus conclude as follows.

Theorem 6.4. Given any input automaton A = (n, σ, ι, τ), the Algorithm 6.3 correctly decides whether A
is determinisable, while O(n3) arithmetical operations over Q are performed.

Let us now collect some closely related observations. In the first place, let us note that determinisability
of unary weighted automata over Z and N is decidable as well. We need the following variant of Theorem 6.2
in order to arrive at this observation.

Proposition 6.5. Let A = (n, σ, ι, τ) with ‖A‖ 6= 0 be a unary weighted automaton over Z and Σ = {c}.
Then the following are equivalent:

(i) The automaton A is determinisable over Z.

(ii) The characteristic polynomial ch‖A‖(z) of ‖A‖ satisfies either ch‖A‖(z) = zk for some k ∈ N \ {0},
or ch‖A‖(z) = zkf(z) for k ∈ N and a monic polynomial f(z) ∈ Q[z] of degree d > 0 dividing zp − b
for some p ∈ N \ {0} and b ∈ Z \ {0}.

(iii) The characteristic polynomial ch‖A‖(z) of ‖A‖ satisfies either ch‖A‖(z) = zk for some k ∈ N \ {0},
or ch‖A‖(z) = zkf(z) for k ∈ N and a monic polynomial f(z) ∈ Q[z] of degree d > 0 dividing zp − b
for some p ∈ N \ {0} and b ∈ N \ {0}.

If in addition ‖A‖ ∈ N⟪c∗⟫, then the above statements are equivalent to determinisability of A over N.

Proof. If A is determinisable, then there exists an accessible deterministic weighted automaton B over Z
and Σ = {c} such that ‖B‖ = ‖A‖. Then Proposition 5.1 gives us either chB(z) = zq for some q ∈ N \ {0},
or chB(z) = zm(zp − b) for some m ∈ N, p ∈ N \ {0}, and b ∈ Z \ {0}, while ch‖A‖(z) divides chB(z)
by Corollary 4.5. This proves (ii). Moreover, we have already observed that (ii) implies (iii) by means
of (zp − b)(zp + b) = z2p − b2.

Finally, let us assume (iii) and construct a deterministic weighted automaton C over Q and Σ = {c}
equivalent to A using Proposition 6.1. Let PC = (`, i, µ, f). Then it is clear that the entries of i and µ(c) are
all in N and that every entry of f is equal to a coefficient of some word in ‖C‖ = ‖A‖. Thus, ‖A‖ ∈ Z⟪c∗⟫
implies that the entries of f are in Z, so that C is an automaton over Z and A is determinisable over Z.
Similarly, if ‖A‖ ∈ N⟪c∗⟫, then the entries of f have to be in N, and A is determinisable over N.

We can now prove a Fatou-like property, which trivially implies that determinisation of unary weighted
automata over Z and N is decidable. Note that the property for N holds although Z is not a Fatou extension
of N, i.e., there are series with nonnegative integer coefficients that are rational over Z, but not rational
over N [8, Example 7.2.1] – even over a unary alphabet [8, Exercise 8.1.3].
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Theorem 6.6. A unary weighted automaton over Z (over N) is determinisable over Z (over N) if and only if
it is determinisable over Q.

Proof. Let A be a unary weighted automaton over Z determinisable over Q. It is well known that every
weighted automaton over Z admits an equivalent minimal automaton over Q that is at the same time an au-
tomaton over Z [8, Section 7.1]. This means that ch‖A‖(z) ∈ Z[z]. At the same time, we have observed in our
discussion following Theorem 6.2 that if A with ‖A‖ 6= 0 is determinisable over Q and ch‖A‖(z) = zkf(z)
as above, then f(z) has to divide, for some p ∈ N \ {0}, the polynomial zp − b, where b is a power of |a0|
for a0 being the constant coefficient of f(z). Thus b ∈ N and A is determinisable over Z by Proposition 6.5.
The same result easily follows when ch‖A‖(z) = zk for some k ∈ N \ {0}. If moreover A is an automaton
over N, then it is determinisable over N, again by Proposition 6.5.

The following corollary of Theorem 6.4 and Theorem 6.6 summarises our findings using the terminology
of rational power series.

Corollary 6.7. The sequentiality problem is decidable for univariate rational series over Q, Z, and N.

Remark 6.8. Recall that a weighted automaton A = (n, σ, ι, τ) is crisp-deterministic [15, 16, 23] if it
is deterministic and at the same time, the outputs of the transition weighting function σ and the initial
weighting function ι are limited to be contained in {0, 1}.18 It is not hard to see – and essentially already
known [15, 34] – that a rational series r ∈ F⟪Σ∗⟫, for some field F and alphabet Σ, is realised by a crisp-
deterministic automaton if and only if it is of finite image, i.e., if the set Im(r) = {(r, w) | w ∈ Σ∗} is
finite; see also [15, Theorem 7.4] for a similar result in a more general setting of strong bimonoids. Indeed,
‖A‖ is obviously of finite image for a crisp-deterministic automaton A. Conversely, every rational series r
with finite image is known to be sequential [34, Proposition 12]. Then, given an accessible deterministic
weighted automaton A such that ‖A‖ = r 6= 0, it is straightforward to prove that the set of values σ(γ)
of runs γ from the unique initial state to q is finite for each state q of A. One can thus change all (nonzero)
transition weights to 1, while taking account of the original value of a run using a finite number of states,
and incorporating these values into terminal weights.

The finite image property of rational series over Q is well known to be decidable via reduction to the finite-
ness problem for matrix semigroups [25, 35]; see also [8, Section 9.1] and [24, Section 5].

Now, using similar reasoning as in the proof of Proposition 6.5, it is easy to show that a unary weighted
automaton A over Q and Σ = {c} with ‖A‖ 6= 0 admits a crisp-deterministic equivalent if and only if either
ch‖A‖(z) = zk for some k ∈ N \ {0}, or ch‖A‖(z) = zkf(z) for k ∈ N and a monic polynomial f(z) ∈ Q[z]
of degree d > 0 dividing zp − 1 for some p ∈ N \ {0}. The latter happens if and only if f(z) is a product
of distinct cyclotomic polynomials, which can be easily checked (see the analysis following Algorithm 6.3).
This observation implies a new polynomial-time algorithm for deciding the finite image property of univariate
rational series over Q.

Next, let us observe that Algorithm 6.3 can be easily modified so that a deterministic equivalent of its
input automaton A is constructed whenever A is determinisable. Indeed, if it is found out that ch‖A‖(z) = zk

for some k ∈ N \ {0} in Step 3, then a deterministic equivalent can be constructed as in the case (i)
of Proposition 6.1. Otherwise, it follows from our analysis of Step 7 that it can be not only decided there
whether chA(z) is a product of cyclotomic polynomials, but the cyclotomic factors Φp1 , . . . ,Φps of chA(z)
can actually be determined. If A is found to be determinisable, then the analysis of Algorithm 6.3 implies
that ch‖A‖(z) = zkf(z) for k ∈ N and a monic polynomial f(z) ∈ Q[z] of degree d > 0, both found in Step 4,
where f(z) divides zp − |a0|p/d for p = d · lcm(p1, . . . , ps) and a0 the constant coefficient of f(z). Thus,
ch‖A‖(z) divides zk+p − |a0|p/dzk and a deterministic equivalent of A can be constructed as in the case (ii)
of Proposition 6.1.

18The term “crisp-deterministic” comes from the theory of fuzzy languages [33], which can be viewed as formal power series
over the semiring ([0, 1],max,min, 0, 1) [39]. Here, crisp-deterministic automata are deterministic weighted automata that use,
possibly except in the final weights, exclusively the crisp values 0 and 1.
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Corollary 6.9. There is an algorithm that, given a determinisable unary weighted automaton A over Q
and Σ = {c}, computes its deterministic equivalent.

Still using the notation from above, the automaton constructed in this way (in the nontrivial latter case)
has k + p states, where p is at most d · g(p) for the Landau’s function g [38] given for all n ∈ N \ {0} by

g(n) = max { lcm(p1, . . . , ps) | s ∈ N \ {0}; p1, . . . , ps ∈ N \ {0}; p1 + . . .+ ps ≤ n} = e(1+o(1))
√
n lnn.

In other words, the state complexity of determinisation of unary weighted automata over Q is bounded from
above by

Θ(n · g(n)) = e(1+o(1))
√
n lnn.

We now show that this construction cannot be performed significantly better in general, as at least g(n− 1)
states are necessary for determinisation of unary weighted automata over Q or, in fact, over Z. Note that
Θ(g(n)) is also a tight upper bound for the state complexity of determinisation of unary nondeterministic
finite automata without weights by the well-known result of M. Chrobak [13, 14].

Proposition 6.10. For all n ≥ 3, there exists a determinisable unary weighted automaton An over Z
and Σ = {c} with n states such that the number of states of the smallest equivalent deterministic weighted
automaton Bn over Q and Σ = {c} is at least g(n− 1).

Proof. Given n ≥ 3, let s ∈ N \ {0} and p1, . . . , ps ∈ N \ {0} with p1 + . . . + ps ≤ n − 1 be such that
lcm(p1, . . . , ps) = g(n − 1). Without loss of generality, let us assume that p1, . . . , ps ≥ 2 and that these
numbers are pairwise distinct. Let k = n − (1 + p1 + . . . + ps). Then, define An by its associated linear
representation PAn = (n, i, µ, f), where i = (1, 0, . . . , 0), µ(c) is the companion matrix of the polynomial
zkΦ1(z)Φp1(z)Φp2(z) . . .Φps(z), and f = (0, . . . , 0, 1)T . The automaton An is minimal, as the left quotients
of ‖An‖ by ε, c, . . . , cn−1 are obviously linearly independent. Thus

ch‖An‖(z) = chµ(c)(z) = zkΦ1(z)Φp1(z)Φp2(z) . . .Φps(z).

Let f(z) = Φ1(z)Φp1(z)Φp2(z) . . .Φps(z). As Φ1(z) = z−1 is a factor of f(z), it follows that b = 1 whenever
f(z) divides zp − b for some p ∈ N \ {0} and b ∈ Q. Now, the smallest p ∈ N \ {0} such that f(z) divides
zp− 1 is lcm(1, p1, . . . , ps) = lcm(p1, . . . , ps) = g(n− 1), by Theorem 2.9 and irreducibility of the cyclotomic
polynomials. Thus, g(n−1) +k states for Bn are necessary by Corollary 4.5 and Proposition 5.1, while they
are also sufficient by Proposition 6.1.

7. Examples

We now illustrate the algorithms for deciding determinisability and actual determinisation, developed
in the previous section, on a few simple examples.

Example 7.1. For the first example, consider the unary weighted automaton A1 over Z and Σ = {c}
depicted in Fig. 2. This automaton is clearly already minimal and the single matrix µ1(c) of the linear
representation PA1

= (n1, i1, µ1, f1),

µ1(c) =

 0 1 0
0 0 1
0 −2 2

 ,

is the companion matrix of the characteristic polynomial chA1
(z) = ch‖A1‖(z) = z3 − 2z2 + 2z. There is

thus no need to perform the minimisation algorithm.
The polynomial ch‖A1‖(z) factorises as ch‖A1‖(z) = zkf(z), where k = 1 and f(z) = z2 − 2z + 2;

the polynomial f(z) has degree d = 2 and constant coefficient a0 = 2. The companion matrix C of f(z)
thus is

C =

(
0 1
−2 2

)
,
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1 2 3
c:1 c:1

c:−2

c:2

1 1

Figure 2: The automaton A1.

so that
A =

1

|a0|
Cd =

1

2
C2 =

(
−1 1
−2 1

)
.

For the characteristic polynomial of the matrix A, we find out that

chA(z) = z2 + 1 = Φ4(z). (14)

Moreover, by calculating the greatest common divisor of f(z) and f ′(z) = 2z − 2, we see that the roots
of f(z) are pairwise distinct. These observations imply that the automaton A1 is determinisable.

Let us also construct the deterministic weighted automaton over Z equivalent to A1. Using notation
from the discussion preceding Algorithm 6.3, it follows by (14) that p = 4 · d = 4 · 2 = 8, which also implies
b = 24 = 16. It follows that f(z) divides z8−16, which can, of course, be directly checked. As a consequence,
A1 is equivalent to a deterministic weighted automaton A′1 such that

PA′1 = (n′1, i
′
1, µ
′
1, f
′
1) ,

where n′1 = 9,
i′1 = (1, 0, 0, 0, 0, 0, 0, 0, 0) ,

µ′1(c) is the companion matrix of z(z8 − 16) = z9 − 16z, i.e.,

µ′1(c) =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 16 0 0 0 0 0 0 0


,

and

f ′1 =
(
(‖A1‖, ε), (‖A1‖, c), (‖A1‖, c2), (‖A1‖, c3), (‖A1‖, c4), (‖A1‖, c5), (‖A1‖, c6), (‖A1‖, c7), (‖A1‖, c8)

)T
=

= (0, 0, 1, 2, 2, 0,−4,−8,−8)
T
.

Note also that five states would in fact be sufficient; this is a consequence of the fact that we have limited
ourselves to the case when b > 0. Abandoning this requirement, we find out that f(z) also divides z4 + 4,
hence an automaton with five states can be constructed as in Proposition 6.1.
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Example 7.2. Let us next consider a unary weighted automaton A2 over Q and Σ = {c} with the corre-
sponding linear representation given by PA2 = (n2, i2, µ2, f2), where n2 = 4, i2 = (2/5, 0, 0, 1/5),

µ2(c) =


−4/5 2 0 −2/5
−2/5 1 1/3 −1/5
−54/5 −54 −6 −27/5
−2/5 1 0 −1/5

 ,

and f2 = (0, 0, 3, 0)T . The minimal automaton B2 equivalent to A2 then has PB2 = (m2, j2, ν2,g2), where
m2 = 3, j2 = (1, 0, 0),

ν2(c) =

 0 1 0
0 0 1
−27 −18 −6

 ,

and g2 = (0, 0, 1)T . The automaton B2 is depicted in Fig. 3.

1 2 3
c:1 c:1

c:−18

c:−27

c:−6

1 1

Figure 3: The automaton B2.

Hence, we get ch‖A2‖(z) = chB2(z) = z3 + 6z2 + 18z + 27 = f(z). The companion matrix C of f(z)
is given directly by ν2(c), while

A =
1

27
C3 =

 −1 −2/3 −2/9
6 3 2/3
−18 −6 −1

 .

The characteristic polynomial of A is chA(z) = z3−z2−z+1 = (z−1)2(z+1) = Φ1(z)2Φ2(z). Moreover, f(z)
is easily found out to have all roots simple. The automaton A2 is determinisable as a result. Finally, similarly
as in the previous example, it is straightforward to observe that the automaton A2 admits a deterministic
equivalent with six states.

Example 7.3. As a final example, consider the unary weighted automaton A3 over N and Σ = {c} depicted
in Fig. 4. That is, PA3 = (n3, i3, µ3, f3) with n3 = 3, i3 = (1, 0, 0),

µ3(c) =

 0 1 0
0 0 1
1 1 0

 ,

and f3 = (0, 0, 1)T . This automaton is clearly minimal, while µ3(c) is the companion matrix of the charac-
teristic polynomial ch‖A3‖(z) = chA3

(z) = z3 − z − 1. There is thus no need to perform minimisation.
Now, C = µ3(c) and

A = −C3 =

 −1 −1 0
0 −1 −1
−1 −1 −1

 .

Computing the characteristic polynomial of A gives us chA(z) = z3 + 3z2 + 2z + 1. However, here we find
that chA(z) is not divisible by any cyclotomic polynomial. We may thus conclude that the automaton A3

is not determinisable.
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Figure 4: The automaton A3.

8. Conclusions

We have proved that the determinisability problem for unary weighted automata over Q, Z, and N
is decidable, thus confirming in part a conjecture of S. Lombardy and J. Sakarovitch [34, Problem 1].
Algorithm 6.3 that we have proposed for this task uses at most O(n3) arithmetic operations over Q in each
its run, where n is the number of states of the input automaton. The determinisability problem is thus
decidable in polynomial time. Moreover, the algorithm for deciding determinisability can be easily modified
so that a deterministic equivalent of the input automaton is produced on output when possible.

Besides the main results summarised above, we have observed that crisp-determinisability of weighted
automata over Q can be decided using similar ideas as well. This implies an alternative algorithm for deciding
the finite image property for univariate rational series over Q. We have also seen in Proposition 6.10 that
the upper bound on the state complexity of determinisation of unary weighted automata over Q, implied
by the determinisation algorithm described, is “almost tight”.

Two obvious problems remain open, namely the remaining part of [34, Problem 1] – i.e., the decidability
of determinisability for weighted automata over Q and larger than unary alphabets – and the possible
extension of the results of this article to other fields. In addition, findings related to Proposition 6.10 suggest
the possibility of studying descriptional complexity of weighted automata over fields in greater depth.
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