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Abstract A fairly general definition of canonical solutions to algebraic sys-
tems over semirings is proposed. This is based on the notion of summation
semirings, traditionally known as Σ-semirings, and on assigning unambiguous
context-free languages to variables of each system. The presented definition
applies to all algebraic systems over continuous or complete semirings and to
all proper algebraic systems over power series semirings, for which it coincides
with the usual definitions of their canonical solutions. As such, it unifies the ap-
proaches to algebraic systems over semirings studied in literature. An equally
general approach is adopted to study pushdown automata, for which equiva-
lence with algebraic systems is proved. Finally, the Chomsky-Schützenberger
theorem is generalised to the setting of summation semirings.
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1 Introduction

Algebraic systems over formal power series semirings [14,15,17,19], essen-
tially “isomorphic” to weighted context-free grammars [6,20], provide a natural
weight-assigning extension to classical context-free grammars [11]. Instead of
merely generating languages, algebraic systems define formal power series in
several noncommutative variables [4,19]. That is, a weight given by an element
of some semiring is assigned to each word. A correspondence between context-
free grammars and algebraic systems thus is an “algebraic” counterpart of
the correspondence between nondeterministic finite automata and weighted
automata [4] on the level of rational phenomena.
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The vector of formal power series defined by an algebraic system is in
general obtained as its unique canonical solution, for some specific meaning
of “canonical”. However, difficulties arise when trying to define such unique
solutions both for all systems and for all semirings. For this reason, algebraic
systems are usually studied under some restrictive conditions either on the
underlying semiring of coefficients, or on the form of the system. In the former
case, one usually deals with systems over semirings of formal power series,
coefficients of which are taken from a continuous semiring [9,14], or more
generally from a complete semiring [6].1 In the latter case, one is led to consider
proper algebraic systems over arbitrary power series semirings [17,19].

The first of the approaches described above can easily be generalised. One
might consider algebraic systems over some subset S′ of an arbitrary continu-
ous (complete) semiring S, which is not necessarily a semiring of power series.
Each such system defines a single vector of elements of S. For continuous
semirings, this is the approach undertaken, e.g., in [9]. We shall adopt this
generalisation as well – that is, we shall work with systems over semirings that
might, but also might not, be semirings of formal power series.

This article aims to unify the approach based on arbitrary systems over con-
tinuous or complete (not necessarily power series) semirings with the approach
via proper systems over arbitrary power series semirings by developing a com-
mon generalisation of both, and thus to eliminate the need for a choice when
dealing with algebraic systems over semirings. Bloom, Ésik, and Kuich [1,7]
describe a unifying theory of this kind for finite automata over semirings. The
present work can be seen as an attempt to come up with a comparably general
theory for algebraic systems, though using a different approach.

The unifying approach introduced in this article will be based on semirings,
which we shall call summation semirings. This is merely our alternative name
for Σ-semirings of Hebisch and Weinert [10] (the reason for this change in
terminology is to avoid the symbol Σ, which we use here for alphabets). These
can be viewed as a generalisation of complete semirings, in which infinite sums
are defined just for some families of elements called summable families.

We shall associate unambiguous context-free languages called templates
with variables of each algebraic system (over some summation semiring S).
Each template word (i.e., a word from a template language) for a variable y
can be seen as capturing a structure of some derivation tree rooted in y in
a “context-free grammar over S corresponding to the given system”.2 A tem-
plate word w corresponding to a derivation tree of some semiring element s
will have a property that s is a homomorphic image of w under a suitable ho-
momorphism. Hence, a canonical solution to an algebraic system will be well
defined if and only if the family of homomorphic images of its template words
is summable for each variable, in which case the solution will be given by the
vector of sums of these homomorphic images for respective variables.

1 To be more precise, weighted context-free grammars over complete semirings are con-
sidered in [6]. These can nevertheless be viewed as algebraic systems.

2 We shall dispense with a formally defined notion of weighted context-free grammars
over semirings. Nevertheless, an idea of such grammars is useful for gaining intuition.
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We shall see that canonical solutions are solutions in the usual sense and
that their definition is consistent with typical definitions appearing in lit-
erature for systems over continuous and complete semirings and for proper
systems over power series semirings.

An element of a summation semiring will be called algebraic if it is a well-
defined first component of a “partial canonical solution” to some algebraic
system – that is, of a canonical solution possibly containing some undefined
components.

The definition of canonical solutions via templates has an advantage that
several properties of context-free languages can simply be “lifted” to algebraic
elements of a summation semiring. To demonstrate this process, we shall prove
that algebraic systems over summation semirings are equivalent to suitably
defined pushdown automata and extend the Chomsky-Schützenberger theorem
to algebraic elements of a summation semiring.

The approach introduced in this article has a potential to be extended
to structures more general than semirings, such as valuation monoids [6] or
auxiliary weighting structures [13].

2 Preliminaries

A family (ai | i ∈ I) of elements of a set S, indexed by a set I, is a mapping
ϕ : I → S such that ϕ(i) = ai for all i in I. A family (ai | i ∈ I) is finite,
countably infinite, or infinite if the index set I has the respective property.
More generally, (ai | i ∈ I) is of cardinality κ if I is of cardinality κ. We shall
denote the class of all families of elements of S by F(S) and the class of all
finite or countably infinite families of elements of S by Fω(S).

A generalised partition of a set I is a family (Ij | j ∈ J) of subsets of I such
that I =

⋃
j∈J Ij and Ij ∩ Ik = ∅ for all j, k in J such that j 6= k. A partition

of I is a generalised partition (Ij | j ∈ J) of I such that Ij 6= ∅ for all j in J .
A monoid is a triple (M, ·, 1), where M is a set, · is an associative binary

operation on M , and 1 is a neutral element with respect to ·. A monoid (M, ·, 1)
is commutative if · is commutative. A semiring is a quintuple (S,+, ·, 0, 1),
where (S,+, 0) is a commutative monoid, (S, ·, 1) is a monoid, · (multiplication
in S) distributes over + (addition in S) both from left and from right, and
0·a = a·0 = 0 holds for all a in S. We shall often write S instead of (S,+, ·, 0, 1).

A semiring S is (countably) complete [10,5] if sums over all (countably)
infinite families of elements are defined in S. This is made precise by the
following definition.

Definition 1 A complete (countably complete) semiring is a pair (S, Φ), where
S is a semiring and Φ : F(S)→ S (Φ : Fω(S)→ S) is a mapping assigning to
each family (ai | i ∈ I) in F(S) (in Fω(S)) a semiring element

Φ(ai | i ∈ I) =:
∑
i∈I

ai

so that the following conditions are satisfied:
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(c1) Let n be in N and I = {i1, . . . , in} a finite set with n elements. Then∑
i∈I

ai = ai1 + . . .+ ain .

(c2) Let (ai | i ∈ I) be in F(S) (in Fω(S)) and (Ij | j ∈ J) a generalised
partition (a finite or countably infinite generalised partition) of I. Then

∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai

 .

(c3) Let (ai | i ∈ I) be in F(S) (in Fω(S)) and a in S. Then

a ·

(∑
i∈I

ai

)
=
∑
i∈I

(a · ai) and

(∑
i∈I

ai

)
· a =

∑
i∈I

(ai · a).

Let (X,≤) be a partially ordered set. A directed set [3] in X is a subset
D of X that contains at least one upper bound of {x, y} for each x, y in D.
A complete partially ordered set (CPO) [3] is a partially ordered set (X,≤)
with a bottom element (the least element of X) and a least upper bound supD
for each directed subset D of X. A continuous semiring [5,8] is a semiring
(S,+, ·, 0, 1) with a partial order ≤ on S such that (S,≤) is a CPO with bottom
element 0 and such that a+ supD = sup(a+D), a · (supD) = sup(a ·D), and
(supD) · a = sup(D · a) holds for each a in S and each directed subset D of S.
One might define infinite sums in a continuous semiring S by

∑
i∈I

ai = sup

{∑
i∈F

ai

∣∣∣∣∣ F ⊆ I, F finite

}
.

It is easy to check that S forms a complete semiring with infinite sums defined
like this [5]. Hence, each continuous semiring is complete.

Let S be a semiring, Y = {y1, . . . , yt} a nonempty finite alphabet of vari-
ables, and S∩Y + = ∅. Essentially following [9], let us define a representation3

of a semiring-polynomial over S and Y to be a formal sum p = m1 + . . .+mk,
where k ≥ 1 is in N and m1, . . . ,mk are representations of semiring-monomials
over S and Y . Here, a representation of a semiring-monomial over S and Y
is an alternating sequence m = (a0, yi1 , a1, . . . , ar−1, yir , ar) with r in N, co-
efficients a0, . . . , ar in S, and variable indices i1, . . . , ir in {1, . . . , t}. We shall
usually write a0yi1a1 . . . ar−1yirar instead of (a0, yi1 , a1, . . . , ar−1, yir , ar).

A representation of a S′-monomial over S and Y , where S′ is some subset
of S, is a representation of a semiring-monomial a0yi1a1 . . . ar−1yirar such that

3 Semiring-polynomials can be introduced as a specialisation of the notion of polynomi-
als over a universal algebra [16]. With this definition, a semiring-polynomial can be seen
as a congruence class of a suitable congruence defined on the algebra of representations of
semiring-polynomials as defined below. However, let us stress that this distinction is unim-
portant for our purposes, since similarly as in [9], we shall only be interested in mappings
induced by (representations of) semiring-polynomials.
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the coefficients a0, . . . , ar are in S′. A representation of a S′-polynomial over
S and Y is a formal sum of representations of S′-monomials. We shall call the
representations of semiring-monomials m1, . . . ,mk such that p = m1+. . .+mk

the terms of p and write τ(p) for the set {m1, . . . ,mk}.
Sums and products of representations of semiring-polynomials can be de-

fined in an obvious way.4 A monomial function induced by a representation of
a semiring-monomial m = a0yi1a1 . . . ar−1yirar over S and Y = {y1, . . . , yt}
is a mapping m : St → S defined by m(s1, . . . , st) = a0si1a1 . . . ar−1sirar for
all s1, . . . , st in S. A polynomial function [9] induced by p = m1 + . . . + mk,
where k is in N and m1, . . . ,mk are representations of semiring-monomials, is
a mapping p = m1 + . . .+mk. We shall usually write p instead of p.

Let S be a semiring and Σ a nonempty finite alphabet. A formal power
series over S and Σ is a mapping r : Σ∗ → S. The value r(w) of r on a word
w in Σ∗ is usually denoted by (r, w), and the series r itself is written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.
A formal power series r in S⟪Σ∗⟫ is proper if (r, ε) = 0. The set of all

proper series over S and Σ is denoted by S⟪Σ+⟫.
Let r1 and r2 be in S⟪Σ∗⟫. The sum of r1 and r2 is a series r1 + r2 in

S⟪Σ∗⟫ such that (r1 + r2, w) = (r1, w) + (r2, w) for all w in Σ∗. The Cauchy
product of r1 and r2 is a series r1 · r2 in S⟪Σ∗⟫ such that

(r1 · r2, w) =
∑

u,v∈Σ∗
uv=w

(r1, u)(r2, v)

for all w in Σ∗. It is easy to prove that S⟪Σ∗⟫ constitutes a semiring with
these two operations [4].

A family (ri | i ∈ I) of formal power series in S⟪Σ∗⟫ is locally finite if the
set I(w) = {i ∈ I | (ri, w) 6= 0} is finite for all w in Σ∗.

If r in S⟪Σ∗⟫ is a series, then the support of r, denoted by supp(r), is the
language of all w in Σ∗ such that (r, w) 6= 0. A polynomial over S and Σ is
a series r in S⟪Σ∗⟫ such that supp(r) is finite. The set of all polynomials over
S and Σ is denoted by S〈Σ∗〉.

Let S be a commutative5 semiring and Σ a nonempty finite alphabet. An
algebraic system over S and Σ [17,19] can be defined to be a pair (y,p), where
y = (y1, . . . , yt)

T is a vector of variables such that t ≥ 1 and Σ ∩ Y = ∅ holds
for Y = {y1, . . . , yt}, and where p = (p1, . . . , pt)

T is a vector of polynomials
from S〈(Σ∪Y )∗〉. One usually writes y = p instead of (y,p). A system y = p

4 Note that the resulting algebra is not a semiring. On the other hand, the algebra of
semiring-polynomials, which can be obtained as a factor algebra of the algebra of their
representations, constitutes a semiring [16].

5 Commutativity of S is a commonplace assumption when dealing with algebraic systems
over S⟪Σ∗⟫ [17,19]. However, let us note that it is not strictly necessary [17] and that the
approach presented later in this article subsumes the noncommutative case as well.
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with y = (y1, . . . , yt)
T and p = (p1, . . . , pt)

T is proper [17,19] if (pi, ε) = 0
holds for i = 1, . . . , t and (pi, yj) = 0 holds for i, j = 1, . . . , t. This means that
a system is proper if it corresponds to an ε-free grammar without chain rules.

A solution to an algebraic system y = p over S andΣ with y = (y1, . . . , yt)
T

and p = (p1, . . . , pt)
T is a vector r = (r1, . . . , rt)

T of series from S⟪Σ∗⟫ such
that

ri =
∑

w∈supp(pi)

(pi, w)hr(w)

holds for i = 1, . . . , t and a monoid homomorphism hr : (Σ∪Y )∗ → (S⟪Σ∗⟫, ·)
defined by hr(yj) = rj for j = 1, . . . , t and hr(c) = c for all c in Σ.

It is a well known fact that each proper algebraic system y = p over S
and Σ has a unique proper solution, i.e., a unique solution such that all its
components are proper series [17,19]. Here, let us just note that one way to
establish this fact is to define a metric on S⟪Σ∗⟫ in a usual way [18] by

d(r1, r2) =

{
2−min{|w| | w∈Σ∗; (r1,w)6=(r2,w)} if r1 6= r2
0 if r1 = r2

for all r1, r2 in S⟪Σ∗⟫ and to observe that the subspace (S⟪Σ+⟫, d) of the
metric space (S⟪Σ∗⟫, d) is complete. The metric d can then be extended to
(S⟪Σ∗⟫)t for all integers t ≥ 1 by taking a maximum over all t components,
again yielding a complete subspace ((S⟪Σ+⟫)t, d). It is easy to show that the
“iteration” of each proper algebraic system is a contraction on ((S⟪Σ+⟫)t, d)
for some t, implying existence of a unique proper solution by the Banach fixed
point theorem.

3 Summation Semirings

The unifying approach to algebraic systems developed in this article will be
based on semirings that generalise complete semirings and countably complete
semirings in that infinite sums are not required to be defined for all infinite or
countably infinite families of elements, but just for so called summable families.
Such semirings are called Σ-semirings by Hebisch and Weinert [10]. To avoid
possible confusion regarding the symbol Σ when it comes to alphabets, we
shall use the term summation semirings instead.

Definition 2 A summation semiring is a triple (S,F , Φ), where S is a semi-
ring, F is a nonempty subclass of F(S) consisting of summable families, and
Φ : F → S is a mapping assigning to each family (ai | i ∈ I) in F a semiring
element

Φ(ai | i ∈ I) =:
∑
i∈I

ai

so that the following conditions are satisfied:
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(i) Let n be in N and I = {i1, . . . , in} a finite set with n elements. Then each
(ai | i ∈ I) in F(S) is in F and∑

i∈I
ai = ai1 + . . .+ ain .

(ii) Let (ai | i ∈ I) be in F and (Ij | j ∈ J) a generalised partition of I such
that |J | ≤ κ for some κ that is a cardinality of at least one family in F .

Then (ai | i ∈ Ij) is in F for all j in J ,
(∑

i∈Ij ai

∣∣∣ j ∈ J) is in F , and

∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai

 .

(iii) Let (ai | i ∈ I) be in F(S), J a finite set, and (Ij | j ∈ J) a generalised
partition of I such that (ai | i ∈ Ij) is in F for all j in J . Then (ai | i ∈ I)
is in F as well and, as a consequence of (ii) and (i),

∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai

 .

(iv) Let (ai | i ∈ I) and (bj | j ∈ J) be in F . Then (ai · bj | (i, j) ∈ I × J) is in
F as well and (∑

i∈I
ai

)
·

∑
j∈J

bj

 =
∑

(i,j)∈I×J

(ai · bj).

Example 1 Each complete semiring (S, Φ) constitutes a summation semiring
(S,F , Φ), where F = F(S). Indeed, the condition (c1) of Definition 1 implies
the condition (i) of Definition 2, the condition (c2) of Definition 1 implies the
condition (ii) of Definition 2, the condition (iii) of Definition 2 is trivially
satisfied, and the condition (iv) of Definition 2 is a consequence of conditions
(c1), (c2), and (c3) of Definition 1: as I × J admits a generalised partition

I × J =
⋃
i∈I
{i} × J =

⋃
i∈I

⋃
j∈J
{i} × {j},

it follows that∑
(i,j)∈I×J

(ai · bj) =
∑
i∈I

∑
(i′,j)∈{i}×J

(ai′ · bj) =
∑
i∈I

∑
j∈J

∑
(i′,j′)∈{i}×{j}

(ai′ · bj′) =

=
∑
i∈I

∑
j∈J

(ai · bj) =
∑
i∈I

ai ·∑
j∈J

bj

 =

(∑
i∈I

ai

)∑
j∈J

bj

 .

Similarly, each countably complete semiring (S, Φ) constitutes a summation
semiring (S,F , Φ), where F consists of all finite or countably infinite families
in F(S), i.e., F = Fω(S). This follows in the same way as above, given the fact
that the sets J and Ij for j in J of condition (ii), the set I of condition (iii),
and the set I × J of condition (iv) are all finite or countably infinite.
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Example 2 Each semiring S⟪Σ∗⟫ of formal power series constitutes a summa-
tion semiring (S⟪Σ∗⟫,F , Φ), where F is the class of all locally finite families
of power series in F(S⟪Σ∗⟫) and Φ(ri | i ∈ I) =

∑
i∈I ri = r for all (ri | i ∈ I)

in F , where r is a series such that (r, w) =
∑
i∈I(w)(ri, w) for each w in Σ∗.

Indeed, if I = {i1, . . . , in} for some n in N, then each family (ri | i ∈ I) in
F(S⟪Σ∗⟫) is locally finite, and thus in F . Moreover, for each w in Σ∗,(∑

i∈I
ri, w

)
=
∑
i∈I(w)

(ri, w) =
∑
i∈I(w)

(ri, w) +
∑

i∈I−I(w)

0 =

=
∑
i∈I

(ri, w) = (ri1 + . . .+ rin , w).

Hence,
∑
i∈I ri = ri1 +. . .+rin and the condition (i) of Definition 2 is satisfied.

Next, let (ri | i ∈ I) be a locally finite family in F and (Ij | j ∈ J)
a generalised partition of I.6 Then one has Ij(w) = Ij ∩ I(w) ⊆ I(w) for each
j in J and w in Σ∗, implying that (ri | i ∈ Ij) is locally finite and thus in F .
In addition, the set I(w) admits a partition I(w) =

⋃
j∈J[w] Ij(w), where J [w]

is a finite set J [w] := {j ∈ J | Ij(w) 6= ∅}; clearly, J(w) ⊆ J [w] holds for

J(w) =

j ∈ J
∣∣∣∣∣∣
∑
i∈Ij

ri, w

 6= 0

 .

Thus,
(∑

i∈Ij ri

∣∣∣ j ∈ J) is locally finite. Moreover, for w in Σ∗ fixed,∑
j∈J

∑
i∈Ij

ri

 , w

 =
∑

j∈J(w)

∑
i∈Ij

ri, w

 =

=
∑

j∈J(w)

∑
i∈Ij

ri, w

+
∑

j∈J[w]−J(w)

0 =

=
∑
j∈J[w]

∑
i∈Ij

ri, w

 =
∑
j∈J[w]

∑
i∈Ij(w)

(ri, w) =

=
∑
i∈I(w)

(ri, w) =

(∑
i∈I

ri, w

)
.

This implies that ∑
j∈J

∑
i∈Ij

ri

 =
∑
i∈I

ri

and the condition (ii) of Definition 2 is satisfied.

6 This generalised partition can be of any cardinality, as (0 | i ∈ I′) is in F for any I′.
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For (iii), suppose that (ri | i ∈ I) is in F(S⟪Σ∗⟫) and (Ij | j ∈ J) is
a generalised partition of I such that J is a finite set and (ri | i ∈ Ij) is locally
finite for each j in J . Let w be in Σ∗. Then Ij(w) is finite for each j in J and
I(w) =

⋃
j∈J Ij(w). Hence, I(w) is finite. As w in Σ∗ is arbitrary, (ri | i ∈ I)

is locally finite and thus in F – the condition (iii) of Definition 2 is satisfied.
Finally, let (ri | i ∈ I) and (sj | j ∈ J) be locally finite families in F . Let

w in Σ∗ be fixed. Then (ri · sj , w) can be nonzero only if there are u, v in Σ∗

such that w = uv and such that i is in I(u) and j is in J(v). Finiteness of w
and of the sets I(u) and J(v) then implies that there are at most finitely many
pairs (i, j) in I ×J such that (ri · sj , w) 6= 0. As this holds for all w in Σ∗, the
family (ri · sj | (i, j) ∈ I × J) is locally finite. Moreover, for each w in Σ∗, ∑

(i,j)∈I×J

(ri · sj), w

 =
∑

(i,j)∈(I×J)(w)

∑
u,v∈Σ∗
uv=w

(ri, u)(sj , v) =

=
∑

u,v∈Σ∗
uv=w

∑
i∈I(u)

∑
j∈J(v)

(ri, u)(sj , v) =

=
∑

u,v∈Σ∗
uv=w

 ∑
i∈I(u)

(ri, u)

 ∑
j∈J(v)

(sj , v)

 =

=
∑

u,v∈Σ∗
uv=w

(∑
i∈I

ri, u

)∑
j∈J

sj , v

 =

=

(∑
i∈I

ri

)∑
j∈J

sj

 , w

 .

As a consequence,

∑
(i,j)∈I×J

(ri · sj) =

(∑
i∈I

ri

)∑
j∈J

sj


and the condition (iv) of Definition 2 is satisfied as well.

4 Algebraic Systems over Summation Semirings

We shall now introduce the notion of algebraic systems over summation semi-
rings. The definition of algebraic systems themselves poses no serious problem
– in fact, one could use the same definition for systems over an arbitrary
semiring. The definition of a solution poses no problem as well. The delicate
part of the following considerations is the definition of the canonical solution,
which is needed in order for a system to define a uniquely determined vector
of elements of the underlying semiring S. This is the place, where we shall
make use of the fact that S is a summation semiring.
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Definition 3 Let (S,F , Φ) be a summation semiring and S′ a subset of S
containing 0 and 1. An S′-algebraic system over S is a pair (y,p), where
y = (y1, . . . , yt)

T is a vector of variables with t ≥ 1, where S ∩ Y + = ∅ holds
for Y = {y1, . . . , yt}, and where p = (p1, . . . , pt)

T is a vector of representations
of S′-polynomials over S and Y . We shall usually write y = p for (y,p).

Definition 4 Let (S,F , Φ) be a summation semiring, S′ a subset of S contain-
ing 0 and 1, and y = p an S′-algebraic system over S, where y = (y1, . . . , yt)

T

and p = (p1, . . . , pt)
T . A solution to y = p is a vector (s1, . . . , st)

T in St such
that sj = pj(s1, . . . , st) holds for j = 1, . . . , t.

We have defined a solution to an S′-algebraic system over S, but we have
no guarantee of its uniqueness. Our next aim therefore is to define a canonical
solution to an S′-algebraic system, which, if it exists, uniquely determines
a vector of elements of S defined by the system. In order to define canonical
solutions, we shall first assign to each S′-algebraic system over S an algebraic
system over a semiring of formal languages over a suitable alphabet, which we
shall call a template system. This we shall obtain from the original system by
replacing each monomial representation m = a0yi1a1 . . . ar−1yirar appearing
in the system by m′ = cm,0yi1cm,1 . . . cm,r−1yircm,r, where cm,0, . . . , cm,r are
symbols of the underlying alphabet.7 The template system thus corresponds to
a context-free grammar in the classical language-generating sense. Note that
this grammar is always unambiguous (it is “almost” an s-grammar [12]).

Definition 5 Let (S,F , Φ) be a summation semiring, S′ a subset of S contain-
ing 0 and 1, and y = p an S′-algebraic system over S, where y = (y1, . . . , yt)

T ,
p = (p1, . . . , pt)

T , and

m = am,0yi(m,1)am,1 . . . am,rm−1yi(m,rm)am,rm

for j = 1, . . . , t and for each m in τ(pj), so that rm is in N, am,0, . . . , am,rm
are in S′, and i(m, 1), . . . , i(m, rm) are in {1, . . . , t}. Let Σ = Σ(y,p) be an
alphabet defined by

Σ =

t⋃
j=1

⋃
m∈τ(pj)

{cm,0, . . . , cm,rm}.

Let us denote by 2Σ1 the set of all singleton subsets of Σ. A template system
corresponding to y = p is a (2Σ1 ∪ {∅, {ε}})-algebraic8 system y = temp(p)
over 2Σ

∗
such that temp(p) = (temp(p1), . . . , temp(pt))

T , where

temp(pj) =
∑

m∈τ(pj)

cm,0yi(m,1)cm,1 . . . cm,rm−1yi(m,rm)cm,rm

7 More precisely, we should write m′ = {cm,0}y1{cm,1} . . . {cm,r−1}yr{cm,r}. However,
we follow here the common practice of identifying a singleton set {c} with c itself.

8 The polynomials of a template system will in fact all be 2Σ1 -polynomials. However, the

sets ∅ and {ε} are the zero and the unity in the semiring 2Σ
∗
, so they have to be included

in order to satisfy the technical condition imposed in Definition 3.
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for j = 1, . . . , t. Let (‖y = temp(p)‖1, . . . , ‖y = temp(p)‖t)T be the least
solution to the system y = temp(p); we shall call the language ‖y = temp(p)‖j
the template corresponding to yj , for j = 1, . . . , t. Let h[y,p] : Σ∗ → (S, ·) be
a monoid homomorphism given by h[y,p](cm,i) = am,i for each monomial m

in
⋃t
j=1 τ(pj) and i = 1, . . . , rm. If (h[y,p](w) | w ∈ ‖y = temp(p)‖j) is in F

for some j in {1, . . . , t}, we shall say that the j-th component ‖y = p‖j of the
canonical solution to y = p is defined and write

‖y = p‖j :=
∑

w∈‖y=temp(p)‖j

h[y,p](w).

If the element ‖y = p‖j is defined for j = 1, . . . , t, we shall say that the vector
(‖y = p‖1, . . . , ‖y = p‖t)T is the canonical solution to y = p. Otherwise we
shall say that the canonical solution is undefined.

Remark 1 Let us note that the above definition in fact contains a hidden (but
obvious) proposition: if (S,F , Φ) is the semiring of formal languages 2Σ

∗
over

some alphabet Σ and S′ is the set 2Σ1 ∪ {∅, {ε}}, then canonical solutions to
S′-algebraic systems over S coincide with their least solutions. This justifies
the use of the common ‖ · ‖j-notation both for the canonical solution to the
original system and for the least solution to the template system.

Remark 2 Note that the idea behind Definition 5 is similar to the idea behind
the homomorphism theorem for weighted context-free grammars in Greibach
normal form proved by Stanat [20] and later in a more general setting by
Droste and Vogler [6]. However, the unambiguous context-free languages used
in [20,6] are defined in a slightly different way than our templates, which
necessitates the Greibach normal form requirement.

Definition 6 Let (S,F , Φ) be a summation semiring and S′ a subset of S
containing 0 and 1. An element a of the semiring S is S′-algebraic over S if
there is an S′-algebraic system y = p over S such that ‖y = p‖1 is defined and
a = ‖y = p‖1. (Note that the canonical solution to y = p might be undefined,
although ‖y = p‖1 is defined.)

The following simple property of systems will be useful in what follows.
Intuitively, it states that applying the template system y = temp(p) (i.e., iter-
ating temp(p)) and then applying the homomorphism h[y,p] is – under some
reasonable circumstances – equivalent to first applying the homomorphism
h[y,p] and then applying the system y = p over the summation semiring.

Lemma 1 Let (S,F , Φ) be a summation semiring, S′ a subset of S containing
0 and 1, and y = p an S′-algebraic system over S, where y = (y1, . . . , yt)

T and
p = (p1, . . . , pt)

T . Let L1, . . . , Lt be languages over the alphabet Σ(y,p) such
that Li ⊆ ‖y = temp(p)‖i and (h[y,p](w) | w ∈ Li) is in F for i = 1, . . . , t.
Then (h[y,p](w) | w ∈ temp(pj)(L1, . . . , Lt)) is in F for j = 1, . . . , t as well
and ∑
w∈temp(pj)(L1,...,Lt)

h[y,p](w) = pj

(∑
w∈L1

h[y,p](w), . . . ,
∑
w∈Lt

h[y,p](w)

)
.
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Proof As y = temp(p) corresponds to an unambiguous grammar and as
Li ⊆ ‖y = temp(p)‖i for i = 1, . . . , t, all unions in temp(p1), . . . , temp(pt)
are disjoint after substituting L1, . . . , Lt for y1, . . . , yt, and all products are
unambiguous (for definition, see, e.g., Sakarovitch [18], p. 228). The claim
then follows by the conditions (iii) and (iv) imposed on summation semirings
in Definition 2 and by an easy structural induction on p1, . . . , pt. ut

We have defined canonical solutions to algebraic systems over summation
semirings, but so far we have not proved that they are solutions in the sense
of Definition 4. We shall now establish this claim.

Proposition 1 Let (S,F , Φ) be a summation semiring, S′ a subset of S con-
taining the elements 0 and 1, and y = p an S′-algebraic system over S, where
y = (y1, . . . , yt)

T and p = (p1, . . . , pt)
T . Suppose that the canonical solution

(‖y = p‖1, . . . , ‖y = p‖t)T to y = p is defined. Then it is a solution to y = p.

Proof As (‖y = temp(p)‖1, . . . , ‖y = temp(p)‖t)T is a solution to the system
y = temp(p), it follows that

‖y = temp(p)‖j = temp(pj)(‖y = temp(p)‖1, . . . , ‖y = temp(p)‖t)

for j = 1, . . . , t. As a result, Lemma 1 gives us∑
w∈‖y=temp(p)‖j

h[y,p](w) =

= pj

 ∑
w∈‖y=temp(p)‖1

h[y,p](w), . . . ,
∑

w∈‖y=temp(p)‖t

h[y,p](w)

 ,

which rewrites to

‖y = p‖j = pj(‖y = p‖1, . . . , ‖y = p‖t).

Hence, (‖y = p‖1, . . . , ‖y = p‖t)T is a solution to y = p. ut

One is usually interested in least solutions when dealing with algebraic
systems over continuous semirings. We shall now prove that our canonical
solutions coincide with least solutions for summation semirings obtained from
continuous semirings by defining infinite sums for all families of elements in
the usual way. This means that the theory developed herein is consistent with
the well explored theory of algebraic systems over continuous semirings [9,14].

Proposition 2 Let S be a continuous semiring with partial ordering ≤, and
let (S,F , Φ) be a summation semiring such that F = F(S) and

Φ(ai | i ∈ I) =
∑
i∈I

ai = sup

{∑
i∈F

ai

∣∣∣∣∣ F ⊆ I, F finite

}
for all families (ai | i ∈ I) in F . Let S′ be a subset of S containing 0 and 1,
and let y = p be an S′-algebraic system over S, where y = (y1, . . . , yt)

T and
p = (p1, . . . , pt)

T . Then the canonical solution (‖y = p‖1, . . . , ‖y = p‖t)T is
defined and equal to the least solution of y = p with respect to ≤.



A Unifying Approach to Algebraic Systems over Semirings 13

Proof Let X be a set and f = (f1, . . . , fn)T be a vector such that n ≥ 1 is in N
and f1, . . . , fn : Xn → X are mappings. Let x1, . . . , xn be in X. Then we shall
write f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))T . Let us also write
f (0)(x1, . . . , xn) = (x1, . . . , xn)T and f (k+1) = f(f (k)(x1, . . . , xn)) for k in N.

Now, it is well known [9] that the least solution of y = p is given by
sup{p(k)(0, . . . , 0) | k ∈ N}. For all k in N, let us denote(

T
(k)
1 , . . . , T

(k)
t

)
:= temp(p)(k)(∅, . . . , ∅).

By an easy induction using Lemma 1, it follows that

p(k)(0, . . . , 0) =

 ∑
w∈T (k)

1

h[y,p](w), . . . ,
∑

w∈T (k)
t

h[y,p](w)


T

holds for all k in N. For j = 1, . . . , t, we have T
(k)
j ⊆ T (k+1)

j for all k in N and

‖y = temp(p)‖j =
⋃
k∈N T

(k)
j . Moreover, as S is continuous, a ≤ a + b holds

for all a, b in S. As a result, it follows by the definition of infinite sums that

sup


∑

w∈T (k)
j

h[y,p](w)

∣∣∣∣∣∣∣ k ∈ N

 =
∑

w∈‖y=temp(p)‖j

h[y,p](w) = ‖y = p‖j

for j = 1, . . . , t. Summing everything up, we obtain

sup{p(k)(0, . . . , 0) | k ∈ N} = (‖y = p‖1, . . . , ‖y = p‖t)T ,

and the proposition is proved. ut

It is also obvious that our definition is consistent with the definition of
weighted context-free grammars over complete semirings (these can be viewed
as algebraic systems) as studied, e.g., by Droste and Vogler [6].9

Let us note that our approach is also consistent with the theory of proper
algebraic systems over arbitrary power series semirings [17,19]. As mentioned
in Section 2, such systems are known to have unique proper solutions, i.e.,
unique solutions (r1, . . . , rt)

T such that (rj , ε) = 0 for j = 1, . . . , t [17,19]. Let
S be a semiring and Σ be an alphabet. Let (S⟪Σ∗⟫,F , Φ) be a summation
semiring such that F is the class of all locally finite families of power series
in F(S⟪Σ∗⟫) and Φ(ri | i ∈ I) =

∑
i∈I ri = r for all (ri | i ∈ I) in F and r

defined for all w inΣ∗ by (r, w) =
∑
i∈I(w)(ri, w). Each algebraic system over S

and Σ can then be viewed as an S〈Σ∗〉-algebraic system over (S⟪Σ∗⟫,F , Φ).
Moreover, it is straightforward to prove that the canonical solution of each
proper algebraic system viewed in this way is defined and proper. Hence, it is
the unique proper solution. The detailed proof is left for the reader.

9 Droste and Vogler [6] have in fact dealt with grammars over valuation monoids, thus
going beyond semirings.
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We shall now prove that if we take a summable family of homomorphic
images of words from a language that is unambiguous context-free, but not
necessarily a template of an algebraic system, then the sum over this family
is still an algebraic element.

Lemma 2 Let L be a language over a nonempty finite alphabet Σ, let (S,F , Φ)
be a summation semiring, and let h : Σ∗ → (S, ·) be a monoid homomorphism.
If the language L is unambiguous context-free and (h(w) | w ∈ L) is in F ,
then Φ(h(w) | w ∈ L) =

∑
w∈L h(w) is an S′-algebraic element of S, where S′

is the set S′ = h(Σ) ∪ {0, 1}.

Proof Let the language L ⊆ Σ∗ be generated by an unambiguous context-free
grammar G = (N,Σ,P, σ).10 Let G′ = (N,Γ, P ′, σ) be a grammar constructed
from G by labelling terminal symbols so that each occurs in precisely one
production rule precisely once. This can be done for instance as follows: if
π = (ξ → c1 . . . ck) is a production rule in P , where ξ is in N and c1, . . . , ck
are in N ∪ Σ, then let ϕ(π) be a production rule ξ → d1 . . . dk, where for
i = 1, . . . , k,

di =

{
[ci, π, i] if ci is in Σ,
ci if ci is in N.

Moreover, with the same notation as above, let

Γ (π) = {di | i ∈ {1, . . . , k}, ci ∈ Σ}.

One may then take Γ =
⋃
π∈P Γ (π) (without loss of generality, assume that

N ∩ Γ = ∅) and P ′ = {ϕ(π) | π ∈ P}.
Let g : Γ ∗ → Σ∗ be the label-removing homomorphism: g([c, π, i]) = c for

all [c, π, i] in Γ . Next, let G′′ = (N ′′, Γ ∪∆,P ′′, σ) be a context-free grammar
constructed from G′ by first inserting new terminals #π,0, . . . ,#π,k into the
right hand side d1 . . . dk of each production rule π = (ξ → d1 . . . dk) so that
it starts and ends with a terminal and contains no consecutive nonterminals,
next inserting a new nonterminal ζ between each two consecutive terminals
on right hand sides of production rules, and finally adding the rule ζ → cζ ,
where cζ is a new terminal. Formally, let ∆ = {cζ} ∪

⋃
π∈P ′ ∆(π), where

∆(π) = {#π,0, . . . ,#π,k} for each π = (ξ → d1 . . . dk) in P ′ with ξ in N and
d1, . . . , dk in Γ ∪N , and assume that all symbols in ∆ are new. Moreover, let
N ′′ = N ∪ {ζ}, where ζ is a new symbol. Finally, for each π = (ξ → d1 . . . dk)
in P ′, where ξ is in N and d1, . . . , dk are in Γ ∪N , let

ψ(π) = (ξ → #π,0z1d1z1#π,1z2d2z2#π,2z3d3 . . . dk−1zk−1#π,k−1zkdkzk#π,k) ,

where

zi =

{
ζ if di is in Γ ,
ε if di is in N ,

10 Here, N stands for a nonempty finite alphabet of nonterminals, Σ stands for a nonempty
finite alphabet of terminals, N ∩Σ = ∅, P ⊆ N × (N ∪ T )∗ is a set of production rules, and
σ in N is the initial nonterminal.
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for i = 1, . . . , k. The set P ′′ is then given by

P ′′ = {ψ(π) | π ∈ P ′} ∪ {ζ → cζ}.

Let f : (Γ ∪∆)∗ → Σ∗ be a homomorphism such that f(c) = g(c) for each
c in Γ and f(c) = ε for each c in ∆. Then G′′ is an unambiguous grammar cor-
responding to a

(
2Γ∪∆1 ∪ {∅, {ε}}

)
-algebraic system over 2(Γ∪∆)∗ (here, 2Γ∪∆1

denotes the set of all singleton subsets of Γ ∪ ∆), which is (after a suitable
renaming of terminal symbols) a template system for an S′-algebraic system
y = p over the summation semiring S with h[y,p] = h ◦ f . This in particular
means that if ‖G′′‖ is the language generated by G′′, then h(f(x)) = h[y,p](x)
for each x in ‖G′′‖. Moreover, clearly

L =
⋃

x∈‖G′′‖

{f(x)};

as G is unambiguous, this union is obviously disjoint. It then follows by summa-
bility of (h(w) | w ∈ L) and by conditions (i) and (ii) of Definition 2 that the
family

(h(f(x)) | x ∈ ‖G′′‖) = (h[y,p](x) | x ∈ ‖G′′‖)

is summable and that∑
w∈L

h(w) =
∑

x∈‖G′′‖

h(f(x)) =
∑

x∈‖G′′‖

h[y,p](x) = ‖y = p‖1.

As a result,
∑
w∈L h(w) is an S′-algebraic element of S. ut

5 Pushdown Automata over Summation Semirings

We shall now introduce pushdown automata over summation semirings and
prove their equivalence with algebraic systems.

Definition 7 Let (S,F , Φ) be a summation semiring and S′ a subset of S
containing the elements 0 and 1. A pushdown S′-automaton over S is a sextuple
A = (Q,Γ, T, q0, Z0, F ), where Q 6= ∅ is a finite set of states, Γ 6= ∅ is a finite
pushdown alphabet, T ⊆ Q × S′ × Γ × Q × Γ ∗ is a finite set of transitions,
q0 in Q is the initial state, Z0 in Γ is the bottom-of-pushdown symbol, and
F ⊆ Q is a set of final states.

If (p, a, Z, q, γ) in T is a transition, then the automaton can make a step
from a configuration with state p and a symbol Z on the top of the pushdown
to a configuration with state q and with the upmost symbol of the pushdown
replaced by the word γ (the rightmost symbol of γ being the new upmost
symbol of the pushdown), while “reading” the semiring element a. With this
interpretation, it should be clear how the language ‖A‖ recognised by A (by
state) is defined in case S = 2Σ

∗
for some alphabet Σ and S′ = 2Σ1 ∪ {∅, {ε}}



16 Peter Kostolányi

(here, 2Σ1 denotes the set of all singleton subsets of Σ). Similarly as for alge-
braic systems, we shall now use this special case to define the behaviour of
pushdown automata over arbitrary summation semirings.11

Definition 8 Let (S,F , Φ) be a summation semiring, S′ a subset of S con-
taining 0 and 1, and A = (Q,Γ, T, q0, Z0, F ) a pushdown S′-automaton over S.
Let us denote by 2T1 the set of all singleton subsets of T . A template automaton
corresponding to the automaton A is a pushdown (2T1 ∪ {∅, {ε}})-automaton
temp(A) = (Q,Γ, T ′, q0, Z0, F ) over 2T

∗
such that

T ′ = {(p, (p, a, Z, q, γ), Z, q, γ) | (p, a, Z, q, γ) ∈ T}.

Let ‖temp(A)‖ be the language recognised by the template automaton temp(A)
by state. Let h[A] : T ∗ → (S, ·) be a monoid homomorphism given for each
(p, a, Z, q, γ) in T by h[A](p, a, Z, q, γ) = a. If (h[A](w) | w ∈ ‖temp(A)‖) is
in F , then we shall write

‖A‖ :=
∑

w∈‖temp(A)‖

h[A](w)

and call the semiring element ‖A‖ the behaviour of A. Otherwise we shall say
that the behaviour of A is undefined.

Remark 3 Note that the template automaton temp(A) is deterministic for
each pushdown S′-automaton A over S. In particular, this implies that the
language ‖temp(A)‖ is necessarily unambiguous context-free.

Let us now prove a natural counterpart to Lemma 2, which states that if
we take a summable family of homomorphic images of words from a language
that is unambiguous context-free, then the sum over this family is a behaviour
of some pushdown automaton.

Lemma 3 Let L be a language over a nonempty finite alphabet Σ, let (S,F , Φ)
be a summation semiring, and let h : Σ∗ → (S, ·) be a monoid homomor-
phism. If L is unambiguous context-free and (h(w) | w ∈ L) is in F , then
Φ(h(w) | w ∈ L) =

∑
w∈L h(w) is a behaviour of some pushdown S′-automaton

over S, where S′ = h(Σ) ∪ {0, 1}.

Proof Let us denote by 2Σ1 the set of all singleton subsets of the alphabet Σ
and L be recognised by an unambiguous (2Σ1 ∪ {∅, {ε}})-pushdown automa-
ton A = (Q,Γ, T, q0, Z0, F ) over 2Σ

∗
such that z is in Σ ∪ {ε} for each

(p, z, Z, q, γ) in T . Without loss of generality, let us assume that if transi-
tions (p, z, Z, q, γ) and (p, z′, Z, q, γ) are both in T for some p, q in K, Z in Γ ,
γ in Γ ∗, and z, z′ in Σ ∪ {ε}, then z = z′. Let A′ = (Q,Γ, T ′, q0, Z0, F ),
where T ′ = {(p, (p, h(z), Z, q, γ), Z, q, γ) | (p, z, Z, q, γ) ∈ T}. Then A′ is a tem-
plate automaton for some pushdown S′-automaton A′′ = (Q,Γ, T ′′, q0, Z0, F )

11 For the sake of correctness, let us note that the following definition is sound only because
it is consistent with the usual definition for automata over semirings of formal languages.
This is a hidden proposition, which is nevertheless easy to prove.
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over S. Let f : (T ′′)∗ → Σ∗ be a homomorphism given for all (p, z, Z, q, γ) in T
by f(p, h(z), Z, q, γ) = z (this is a valid definition by our earlier assumption
on transitions). Then h[A′′] = h ◦ f . Moreover, unambiguity of A implies that
L can be expressed by a disjoint union

L =
⋃

x∈‖A′‖

{f(x)}.

Hence, it follows by summability of (h(w) | w ∈ L) and by conditions (i) and
(ii) of Definition 2 that the family

(h(f(x)) | x ∈ ‖A′‖) = (h[A′′](x) | x ∈ ‖A′‖)

is summable and∑
w∈L

h(w) =
∑

x∈‖A′‖

h(f(x)) =
∑

x∈‖A′‖

h[A′′](x) = ‖A′′‖,

which is the behaviour of the pushdown S′-automaton A′′ over S. ut

We are now ready to prove the equivalence of pushdown automata over
summation semirings with algebraic systems over summation semirings.

Theorem 1 Let (S,F , Φ) be a summation semiring, S′ a subset of S contain-
ing 0 and 1, and a in S. Then a is S′-algebraic over S if and only if a = ‖A‖
for some pushdown S′-automaton A over S with defined behaviour.

Proof Let a be S′-algebraic over S and y = p be an S′-algebraic system such
that a = ‖y = p‖1. The language ‖y = temp(p)‖1 is unambiguous context-
free and it follows by Lemma 3 that

a = ‖y = p‖1 =
∑

w∈‖y=temp(p)‖1

h[y,p](w)

is a behaviour of some pushdown S′-automaton over S.

For the converse, let a = ‖A‖ for some pushdown S′-automaton A over S.
Then ‖temp(A)‖ is unambiguous context-free and it follows by Lemma 2 that

a = ‖A‖ =
∑

w∈‖temp(A)‖

h[A](w)

is S′-algebraic over S, completing the proof. ut
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6 The Chomsky-Schützenberger Theorem

Let us finally generalise the Chomsky-Schützenberger theorem [2] to algebraic
elements of summation semirings.

Theorem 2 Let (S,F , Φ) be a summation semiring, S′ a subset of S contain-
ing 0 and 1, and a an S′-algebraic element of S. Then there exists a nonempty
finite “left-bracket” alphabet Y , a monoid homomorphism h : (Y ∪Y )∗ → (S, ·),
and a rational language R ⊆ (Y ∪ Y )∗ such that (h(w) | w ∈ DY ∩R) is in F
and

a =
∑

w∈DY ∩R
h(w),

where Y = {y | y ∈ Y }, Y ∩Y = ∅, and DY is the Dyck language over Y ∪Y .

Proof Let y = p be an S′-algebraic system over S such that a = ‖y = p‖1. By
the classical Chomsky-Schützenberger theorem for languages [2], there is an
alphabet Y , a homomorphism h′ : (Y ∪Y )∗ → Σ[y,p]∗, and a rational language
R ⊆ (Y ∪ Y )∗ such that ‖y = temp(p)‖1 = h′(DY ∩ R) =

⋃
w∈DY ∩R{h

′(w)}.
Moreover, it is not hard to see that since ‖y = temp(p)‖1 is unambiguous, the
restriction of h′ toDY ∩R can be assumed to be injective. Taking h = h[y,p]◦h′
and using conditions (i) and (ii) of Definition 2 thus completes the proof. ut
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