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Abstract
Every univariate rational series over an algebraically closed field
is shown to be realised by some polynomially ambiguous unary
weighted automaton. Unary weighted automata over algebraically
closed fields thus always admit polynomially ambiguous equivalents.
On the other hand, it is shown that this property does not hold over
any other field of characteristic zero, generalising a recent observation
about unary weighted automata over the field of rational numbers.
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1 Introduction
Weighted automata over fields and one-letter alphabets, which are the object
of study in this article, are known to exhibit several special properties relating
them to other important concepts in mathematics. First of all, such automata
realise the usual univariate formal power series instead of languages, which has
naturally led to the idea of viewing the objects realised by weighted automata
over general alphabets as noncommutative formal power series [4, 8, 24].
Moreover, unary weighted finite automata over the complex numbers are
known to realise precisely the formal Maclaurin expansions of rational func-
tions analytic at z = 0 – for reasons like this one, the series realised by weighted
finite automata are usually called rational.
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The formalism of weighted regular expressions, equivalent to weighted
finite automata, essentially boils down to the description of rational func-
tions via polynomial fractions in the particular setting of unary alphabets
and complex weights. This is the reason why regular expressions are often –
and perhaps more meaningfully – called rational, even when they are used
to describe languages [24]. The study of rational series and weighted automata,
unary or not, has a long history dating back to the foundational article
of M.-P. Schützenberger [26] – see, e.g., [4, 8, 9, 24].

Every univariate formal power series is uniquely described by its coefficient
sequence – in fact, the difference between a series and its coefficient sequence
is only a matter of interpretation. It is a classical observation that coefficient
sequences of rational series over fields coincide with the sequences arising as
solutions to initial value problems for linear difference equations – i.e., linear
recurrences – with constant coefficients. As a consequence, unary weighted
automata over fields can also be understood as devices realising such sequences;
see, for instance, C. Barloy et al. [1] or J. Bell and D. Smertnig [2].

The gist of the connection between unary weighted automata over fields
and difference equations lies nevertheless in the fact that a unary weighted au-
tomaton can be naturally interpreted as an initial value problem for a linear
autonomous system of first-order difference equations. By the classical theory
of linear difference equations [10], such systems can be seen as “equivalent”
to stand-alone higher-order linear difference equations with constant coeffi-
cients: given a system of k first-order difference equations, the characteristic
polynomial of its matrix determines an “equivalent” k-th order difference
equation; conversely, a k-th order difference equation always corresponds
to a system whose k × k matrix is the companion matrix of the equation’s
characteristic polynomial.

We stick with a classical viewpoint in this article and understand unary
weighted automata as devices realising formal power series. The connection
to difference equations nevertheless remains crucial for our developments.

Degrees of ambiguity have initially been studied as a structural measure
for nondeterministic finite automata without weights, especially from the view-
point of descriptional complexity [22, 27]. Weighted automata with restricted
ambiguity have later attracted significant attention as well. This research has
often been motivated by the idea that algorithmic problems that cannot be
easily solved for unrestricted weighted automata might become more tractable
when the automaton is required to be, e.g., polynomially or finitely ambigu-
ous. Such questions have been studied for weighted automata over tropical
semirings [14–16] and for probabilistic automata [3]. The class of polynomially
ambiguous weighted automata furthermore arises in connection to the weighted
first-order logic of M. Droste and P. Gastin [6], and restricted ambiguity has
also been considered for weighted tree automata [18, 21].

The most widely studied classes of weighted automata with restricted ambi-
guity are comprised by the unambiguous, the finitely ambiguous, the polynomi-
ally ambiguous, and the unrestricted weighted finite automata. This increasing
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chain of weighted automata classes has been referred to as the ambiguity
hierarchy [1, 5, 18]. Although the inclusions in this hierarchy are strict
on the level of automata, their strictness on the level of realised power series
depends on the properties of the underlying semiring – for instance, all these
classes of automata are equally powerful over finite semirings, as can be easily
seen from the equivalence of deterministic and unrestricted weighted automata
that holds in this case [17].

Examples separating certain levels of the ambiguity hierarchy for power
series have been presented, e.g., by D. Kirsten [14] over the tropical semiring
of integers, and by M. Droste and P. Gastin [6] over the semiring of natural
numbers and over the tropical semirings. These results have gradually led
to the observation that the ambiguity hierarchy is strict on the level of power
series over the tropical semirings [5], and to the same observation over the field
of rational numbers [1].

The most important part of the result of C. Barloy et al. [1], establishing
strictness of the ambiguity hierarchy of power series over the rationals, sep-
arates the polynomially ambiguous and the unrestricted rational series over
the rational numbers – it is shown there that the (univariate) generating
function for the Fibonacci numbers, although clearly rational, is not realised
by a polynomially ambiguous weighted automaton over the rationals. Simi-
lar results have been independently obtained by M. Droste and P. Gastin [6],
and by F. Mazowiecki and C. Riveros [19] via a connection to cost-register au-
tomata. Nevertheless, the approach of C. Barloy et al. [1] is by far the most
systematic: they prove a number of characterisations of polynomially am-
biguous unary weighted automata over the rationals, e.g., via what they call
poly-rational expressions and via eigenvalues of linear recurrences. The latter
can be directly used to obtain the negative result for the Fibonacci numbers.

In the present article, we aim to deepen our understanding of polynomi-
ally ambiguous unary weighted finite automata over fields; the particular case
when the underlying field is that of the rational numbers has already been
explored by C. Barloy et al. [1]. We mostly rely on an elementary structural
characterisation of polynomially ambiguous unary automata (Theorem 3.2)
and on the spectral properties of their matrices.

We show that every univariate rational series over an algebraically closed
field is realised by some polynomially ambiguous unary weighted automaton.
This means that unary alphabets are not sufficient to separate the two upmost
levels of the ambiguity hierarchy over algebraically closed fields.1 Our observa-
tion is intimately linked to existence of the Jordan canonical form for matrices
over algebraically closed fields.

For fields that are not algebraically closed, we identify a fundamental reason
behind existence of univariate rational series that cannot be realised by a poly-
nomially ambiguous unary weighted automaton. This in a sense explains why
the example based on Fibonacci numbers works over the rationals, and – more

1We do not consider automata over other than unary alphabets in this article – we thus leave
the relation between polynomially ambiguous and unrestricted weighted finite automata over
algebraically closed fields open for general alphabets.
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importantly – allows us to construct such examples over an arbitrary field
of characteristic zero that is not algebraically closed. As a consequence, the in-
clusion between the two upmost levels of the ambiguity hierarchy is strict over
such fields, and unary alphabets are sufficient to establish this property.

In other words, our main results can be summarised as follows: poly-
nomially ambiguous unary weighted automata are expressive equivalents
of unrestricted unary weighted automata over algebraically closed fields,
and they are strictly less expressive than unrestricted unary weighted automata
over fields of characteristic zero that are not algebraically closed.

2 Preliminaries
Fields are understood to be commutative. The symbol N is used to denote
the set of all nonnegative integers, while Q, R, and C denote, respectively,
the fields of rational, real, and complex numbers. Alphabets are always
nonempty and finite; the empty word over any alphabet Σ is denoted by ε.
For S a set and m,n ∈ N, the set of all m × n matrices over S is denoted
by Sm×n; for S a semiring, the identity n×n matrix over S is denoted by In.

Let us briefly collect some basic facts related to formal power series
and weighted automata – the reader is encouraged to consult the chap-
ters [7, 11, 25] of the handbook [8], as well as, e.g., [4, 9, 24] for a more
comprehensive treatment.

A (noncommutative) formal power series over a semiring S and alphabet Σ
is a mapping r : Σ∗ → S interpreted in a slightly unusual way: the value of r
upon w ∈ Σ∗ is denoted by (r, w) instead of r(w) and called the coefficient
of w in r; the series r itself is written as

r =
∑
w∈Σ∗

(r, w)w.

The set of all formal power series over S and Σ is denoted by S⟪Σ∗⟫.
The sum of series r, s ∈ S⟪Σ∗⟫ is a series r + s defined for all w ∈ Σ∗ by

(r + s, w) = (r, w) + (s, w);

the Cauchy product of r, s ∈ S⟪Σ∗⟫ is a series r ·s = rs given for all w ∈ Σ∗ by

(r · s, w) =
∑

u,v∈Σ∗
uv=w

(r, u)(s, v).

Moreover, each a ∈ S can be identified with a series ra ∈ S⟪Σ∗⟫ such that
(ra, ε) = a and (ra, w) = 0 for all w ∈ Σ+; the algebra (S⟪Σ∗⟫,+, ·, 0, 1) is
then a semiring, again [7]. Similarly, each word w ∈ Σ∗ can be identified with
a series rw ∈ S⟪Σ∗⟫ such that (rw, w) = 1 and (rw, x) = 0 for all x ∈ Σ∗ \ {w}.
We may thus, e.g., write aw for the series – a so-called monomial – with
coefficient a at w and all other coefficients zero.
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When Σ is a unary alphabet – say, Σ = {c} – and R is an integral domain,
the semiring R⟪c∗⟫ coincides with the usual integral domain RJcK of formal
power series in a single variable c with coefficients in R. This situation arises
in particular when coefficients are taken from a field – that is, F⟪c∗⟫ and FJcK
can be used interchangeably for a field F.

A family (ri | i ∈ I) of series ri from S⟪Σ∗⟫ – for S a semiring,
Σ an alphabet, and I an arbitrary index set – is locally finite if the set
I(w) = {i ∈ I | (ri, w) 6= 0} is finite for all w ∈ Σ∗. In that case, the sum over
the family can be defined by ∑

i∈I

ri = r,

where r ∈ S⟪Σ∗⟫ is a series whose coefficients are given, for each w ∈ Σ∗,
by a finite sum

(r, w) =
∑
i∈I(w)

(ri, w).

A weighted finite automaton over a semiring S and alphabet Σ
is a quadruple A = (Q, σ, ι, τ), where Q is a finite set of states,
σ : Q× Σ×Q→ S is a transition weighting function, ι : Q→ S is an initial
weighting function, and τ : Q→ S is a terminal weighting function. A run of A
is a word γ = q0c1q1c2q2 . . . qn−1cnqn ∈ (QΣ)∗Q with n ∈ N, q0, . . . , qn ∈ Q,
and c1, . . . , cn ∈ Σ such that σ(qk−1, ck, qk) 6= 0 for k = 1, . . . , n.

Consider a run γ = q0c1q1c2q2 . . . qn−1cnqn of the automaton A with
n ∈ N, q0, . . . , qn ∈ Q, and c1, . . . , cn ∈ Σ. We define the label of γ to be
the word λ(γ) = c1 . . . cn and the value of γ to be the semiring element
σ(γ) = σ(q0, c1, q1)σ(q1, c2, q2) . . . σ(qn−1, cn, qn); we also say that γ is a run
upon λ(γ) from q0 to qn. We say that γ is successful if ι(q0) 6= 0 and τ(qn) 6= 0.
The monomial ‖γ‖ ∈ S⟪Σ∗⟫ realised by a run γ from q0 to qn is defined by

‖γ‖ = (ι(q0)σ(γ)τ(qn)) λ(γ).

We denote the set of all runs of A by R(A) and the set of all successful runs
ofA byRs(A). Moreover, given w ∈ Σ∗, letR(A, w) = {γ ∈ R(A) | λ(γ) = w}
and Rs(A, w) = {γ ∈ Rs(A) | λ(γ) = w}. The family (‖γ‖ | γ ∈ R(A)) is
clearly locally finite. We may thus define the behaviour of A by

‖A‖ =
∑

γ∈R(A)

‖γ‖.

It is easy to see that this can be equivalently expressed, again summing over
a locally finite family of series, by

‖A‖ =
∑

γ∈Rs(A)

‖γ‖,
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and that the coefficient at each w ∈ Σ∗ in ‖A‖ is given by

(‖A‖, w) =
∑

γ∈R(A,w)

(‖γ‖, w) =
∑

γ∈Rs(A,w)

(‖γ‖, w) .

In particular, ‖A‖ = 0 when Q = ∅. We also say that the series ‖A‖ is
realised by the automaton A. Series r ∈ S⟪Σ∗⟫ realised by weighted finite
automata over S and Σ, or equivalently by weighted rational expressions over S
and Σ [24], are called rational over S and Σ.

By a weighted automaton, we always understand a weighted finite au-
tomaton in what follows. Moreover, we often confine ourselves to state sets
of the form [n] = {1, . . . , n} for some n ∈ N. We then write A = (n, σ, ι, τ)
as a shorthand for A = ([n], σ, ι, τ).

Given a weighted automaton A over S and Σ, define a function
ambA : Σ∗ → N to count the numbers of successful runs of A on words over Σ
– that is, for all w ∈ Σ∗ by

ambA(w) = |Rs(A, w)| .

We then say that A is unambiguous if ambA(w) ≤ 1 for all w ∈ Σ∗; finitely
ambiguous if there exists k ∈ N such that ambA(w) ≤ k for all w ∈ Σ∗;
and polynomially ambiguous if there exists a polynomial function p : N→ N
such that ambA(w) ≤ p(|w|) for all w ∈ Σ∗.

A weighted automaton A = (Q, σ, ι, τ) over S and Σ is accessible if
for each q ∈ Q there exists a run from some p ∈ Q such that ι(p) 6= 0 to q;
coaccessible if for each p ∈ Q there exists a run from p to some q ∈ Q such
that τ(q) 6= 0; and trim if it is both accessible and coaccessible.

Every weighted automaton over a semiring S and alphabet Σ can also be in-
terpreted as a linear S-representation over Σ – i.e., a quadruple P = (n, i, µ, f),
where n ∈ N is the order of P, i ∈ S1×n is a vector of initial weights,
µ : (Σ∗, ·, ε)→ (Sn×n, ·, In) is a monoid homomorphism, and f ∈ Sn×1 is
a vector of terminal weights. The series realised by P is defined by

‖P‖ =
∑
w∈Σ∗

(iµ(w)f)w.

A series r ∈ S⟪Σ∗⟫ is recognisable if it is realised by a linear S-representation
over the alphabet Σ.

Now, a weighted automaton A = (n, σ, ι, τ) over S and Σ can also be
seen as a linear S-representation PA over Σ given by PA = (n, i, µ, f),
where i = (ι(1), . . . , ι(n)), the matrix µ(c) = (ai,j)n×n is given for every c ∈ Σ
by ai,j = σ(i, c, j) for i, j = 1, . . . , n, and f = (τ(1), . . . , τ(n))T . It is easy
to prove that ‖PA‖ = ‖A‖. The correspondence A 7→ PA is moreover clearly
bijective – every linear representation thus also corresponds to a unique
weighted automaton. These observations establish the classical result, by which
the sets of rational and recognisable series over S and Σ coincide [24, 25].
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When Σ = {c} is a unary alphabet and P = (n, i, µ, f) is a linear
S-representation over Σ, the monoid homomorphism µ is uniquely determined
by the matrix A = µ(c). We thus also write P = (n, i, A, f) in this particular
case, which is nevertheless the one that interests us the most.

LetA = (n, σ, ι, τ) be a weighted automaton over a field F and unary alpha-
bet Σ = {c} with PA = (n, i, A, f). Then it can also be interpreted as an initial
value problem for the first-order linear autonomous system of difference
equations (i.e., recurrences)

xt+1 = Axt for all t ∈ N (1)

with initial conditions given by x0 = f . Indeed, the j-th component of the so-
lution vector xt of this system represents, for j = 1, . . . , n and all t ∈ N,
the coefficient at ct in the series realised by an automaton obtained from
A by setting ι(j) = 1 and ι(k) = 0 for all k ∈ [n] \ {j}. As a consequence,
the coefficient at ct in the behaviour of A is given, for each t ∈ N, by(

‖A‖, ct
)

= i · xt.

The classical theory of difference equations [10] allows us to express
the particular components of the solution vector xt = (x1(t), . . . , xn(t))T of (1)
in closed form over the algebraic closure F of F. Indeed, as a consequence
of the similarity of A to a matrix over F in Jordan canonical form,2 it follows
that for each j ∈ [n], the function xj(t) can be written as

xj(t) =
∑
λ∈σ

α(λ)−1∑
k=0

bλ,k

(
t

k

)
λt−k for all t ∈ N, (2)

where σ denotes the spectrum of A over F, the algebraic multiplicity
of each eigenvalue λ of A is denoted by α(λ), and bλ,k ∈ F for all λ ∈ σ
and k = 0, . . . , α(λ)− 1.3 This also implies that

(
‖A‖, ct

)
=
∑
λ∈σ

α(λ)−1∑
k=0

b′λ,k

(
t

k

)
λt−k for all t ∈ N, (3)

where b′λ,k, for all λ ∈ σ and k = 0, . . . , α(λ)− 1, are constants from F. Recall
that the eigenvalues of A are precisely the roots over F of its characteristic
polynomial

chA(x) = det (xIn −A) ,

2We get xt = Atf = P−1JtP f for some matrices J, P ∈ F and all t ∈ N, where J is in Jordan
canonical form and P is invertible. Now, an easy combinatorial argument can be employed to ob-
serve that each entry of Jt takes the form

(t
k

)
λt−k for some eigenvalue λ of A over F and k ∈ N

that is smaller than the algebraic multiplicity of λ. The entries of P , P−1, and f are constants
(they do not depend on t). See also [10, Subsection 3.3.2].

3The binomial coefficient
(t
k

)
is a nonnegative integer, so it should be interpreted as a sum

of
(t
k

)
ones in F.
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the polynomial itself having coefficients in F; the algebraic multiplicity
of an eigenvalue λ ∈ F is its multiplicity as a root of chA(x).

The constants bλ,k of (2) as well as b′λ,k of (3) are uniquely determined
as solutions to systems of linear equations. Given functions f1, . . . , fn : N→ F
and t ∈ N, the Casorati matrix 4 Cas(t) of f1, . . . , fn is a matrix

Cas(t) =


f1(t) f2(t) · · · fn(t)

f1(t+ 1) f2(t+ 1) · · · fn(t+ 1)
...

...
. . .

...
f1(t+ n− 1) f2(t+ n− 1) · · · fn(t+ n− 1)

 .

The Casorati matrix Cas(0) of the functions
(
t
k

)
λt−k for λ ∈ σ

and k = 0, . . . , α(λ)− 1 is a generalised Vandermonde matrix [10, 13], which
is known to be nonsingular. As a result, after calculating the values
xj(0), . . . , xj(n− 1) using (1), the constants bλ,k can be determined as a unique
solution to a system of n linear equations given by (2) for t = 0, . . . , n− 1,
and similarly for the constants b′λ,k. This also leads to the following observation.

Proposition 2.1 Let F be a field. Any set of pairwise distinct functions f : N → F
of the form f(t) =

(t
k

)
λt−k with λ ∈ F and k ∈ N is then linearly independent.

3 Polynomially Ambiguous Unary Automata
The ambiguity degree of a weighted automaton of course does not depend on its
(nonzero) weights – each weighted automaton A over an arbitrary semiring S
and alphabet Σ is thus polynomially ambiguous if and only if this property
holds for a nondeterministic finite automaton without weights obtained from A
by simply “forgetting about the weights”.5

Decidable structural characterisations of polynomially ambiguous finite
automata are well known [4, 22, 27]. Let us recall the criterion described
by A. Weber and H. Seidl [27].

Theorem 3.1 (A. Weber and H. Seidl [27]) Let A be a trim finite automaton over
an alphabet Σ with state set Q. Then A is polynomially ambiguous if and only if
there is no q ∈ Q with at least two distinct runs from q to q upon the same w ∈ Σ∗.

This characterisation admits a particularly simple form for unary au-
tomata, which we record in Theorem 3.2 below. By what has been said
above, we may state this result for unary weighted automata over an arbitrary
semiring.

4The determinant of the Casorati matrix is usually called the Casoratian and is a discrete
counterpart of the Wrońskian, which is important for the theory of linear differential equations.

5More precisely, one only distinguishes between zero and nonzero weights and interprets this
distinction over the Boolean semiring.
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The graph of a weighted automaton A = (Q, σ, ι, τ) over a semiring S
and unary alphabet Σ = {c} is understood in a usual way – its vertices are
states of A and edges correspond to transitions of A, i.e., they are given
by pairs (p, q) ∈ Q2 such that σ(p, c, q) 6= 0.

Theorem 3.2 Let S be a semiring and A a trim unary weighted automaton over S
and Σ = {c}. Then A is polynomially ambiguous if and only if the strongly connected
components of its graph are all either single vertices, or directed cycles.

Proof First, let A be polynomially ambiguous and suppose that its graph contains
a strongly connected component other than a single vertex or a directed cycle. Then
A contains a state q, for which there are two distinct runs γ1, γ2 from q to q such that
λ(γ1) = cs and λ(γ2) = ct for some s, t ∈ N \ {0}, and both runs begin by a different
transition. By repeating t times the run γ1 and s times the run γ2, we obtain two
distinct runs from q to q upon cst, contradicting Theorem 3.1.

Conversely, let the strongly connected components of the graph of A be all either
single vertices, or directed cycles. Then it is clear that given a state q and t ∈ N, there
can be at most one run upon ct from q to q. The automaton A is thus polynomially
ambiguous by Theorem 3.1. �

Alternatively, one can use the Perron-Frobenius theory (see, e.g., [20])
to establish Theorem 3.2. Let S be a semiring and n ∈ N \ {0}, and first con-
sider a trim unary weighted automaton A over S and Σ = {c} with a strongly
connected graph and with PA = (n, i, A, f). The number of successful runs of A
upon ct can be expressed, for all t ∈ N, by ambA(ct) = ν(i)ν(A)tν(f), where
ν : S → N is a mapping applied componentwise and defined for all a ∈ S by

ν(a) =

{
1 if a 6= 0,
0 if a = 0.

Let % be the Perron-Frobenius eigenvalue of ν(A), i.e., an eigenvalue equal
to the spectral radius of ν(A). By Perron-Frobenius theory, there exists
a number p ∈ [n], called the period of the graph of A or the imprimitivity
index of ν(A) [20, Chapter 3], such that for k = 0, . . . , p− 1, one either has
ambA(ct) = Θ(%t) for t→∞ with t ≡ k (mod p), or ambA(ct) = 0 for all
t ∈ N with t ≡ k (mod p), while there is at least one k for which the first
possibility occurs. Now, % = 0 whenever A consists of one state without
a loop and % = 1 whenever the graph of A is a directed cycle through all
states. In these cases, A is polynomially ambiguous. When A is not of this
form, its matrix ν(A) “strictly” dominates a matrix with spectral radius 1
(e.g., an adjacency matrix of a factor of the original graph of A, whose
edges form a directed cycle, not necessarily through all states). It thus fol-
lows by Wielandt’s theorem [20, Theorem 2.1] that % > 1, so that A is not
polynomially ambiguous.
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Note also that it follows from what has been said above that a polynomially
ambiguous strongly connected unary weighted automaton is actually always
finitely ambiguous.6

Now, consider the general case of otherwise unrestricted trim unary
weighted automata. Let A with PA = (n, i, A, f) be such automaton over
a semiring S and one-letter alphabet Σ = {c}. For ν : S → N defined as above,
consider the matrix ν(A) ∈ Nn×n and the associated initial value problem
for the first-order linear autonomous system of difference equations

xt+1 = ν(A)xt for all t ∈ N

with initial conditions given by x0 = ν(f). Then for all t ∈ N, the value
ambA(ct) is obviously given by ν(i) · xt. The components of xt take the form
of (2).7 Now, the spectrum of ν(A) is the multiset union of spectra of matri-
ces corresponding to particular strongly connected components. This means
that when all strongly connected components of the graph of A are either sin-
gle vertices or directed cycles, all eigenvalues of ν(A) are of modulus 1 or 0.
The exponential factors in (2) vanish as a consequence, implying that ambA(ct)
can be bounded from above by a polynomial function in t – A is polynomially
ambiguous. On the other hand, if the graph of A contains a strongly connected
component of some other type and one chooses some state q from this compo-
nent, it follows by what has been said above that the number of runs γ from
q to q with λ(γ) = ct cannot be bounded from above by a polynomial in t.
As A is trim, the same property holds for the number of successful runs upon ct
in A, i.e., for ambA(ct) – the automaton A is not polynomially ambiguous.

Finally, note that the structural characterisation of Theorem 3.2 can
be further refined – when A is polynomially ambiguous, the lowest degree
of a polynomial function, by which ambA(ct) can be bounded from above,
equals the highest possible number of distinct directed cycles that a single
run of A can pass through. Once again, this is a particular case of a known
characterisation for automata over general alphabets [27].

4 The Case of Algebraically Closed Fields
We now examine unary weighted automata over algebraically closed fields.
In sharp contrast with the recent result of C. Barloy et al. [1] for unary
automata over the field of rational numbers, we show that every unary
weighted automaton over an algebraically closed field F is equivalent to some
polynomially ambiguous unary weighted automaton over F.

6The only possible source of ambiguity in such automata is related to the fact that an automaton
may have multiple states with nonzero initial weights.

7One may view this system over N as a system over the field of rational or complex numbers
as well.
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Theorem 4.1 Let F be an algebraically closed field, and A a unary weighted au-
tomaton over F and Σ = {c}. Then there is a polynomially ambiguous unary weighted
automaton J over F and Σ = {c} such that ‖J ‖ = ‖A‖.

Proof Let PA = (n, i, A, f). As the field F is algebraically closed, there exists a matrix
J ∈ Fn×n in Jordan canonical form and an invertible matrix P ∈ Fn×n such that
A = P−1JP . Let us construct a unary weighted automaton J over F and Σ = {c}
such that PJ = (n, iP−1, J, P f). Then ‖J ‖ = ‖A‖, as(

‖J ‖, ct
)

= iP−1JtP f = iP−1
(
PAP−1

)t
P f = iAtf =

(
‖A‖, ct

)
for all t ∈ N.8 Moreover, J is polynomially ambiguous by Theorem 3.2, as the ma-
trix J in Jordan canonical form is necessarily upper triangular, implying that all
strongly connected components of the graph of J consist of a single vertex.9 �

Let us now briefly describe an alternative proof of Theorem 4.1, in which
the polynomially ambiguous equivalent of A is constructed from the closed
form (3) for the coefficient sequence of ‖A‖; note that F = F when F is al-
gebraically closed, implying that the eigenvalues and constants in (3) belong
directly to F in our case.

First, observe that for any semiring S, λ ∈ S, h ∈ N, and b0, . . . , bh ∈ S,
there is a polynomially ambiguous unary weighted automaton Jλ,h[b0, . . . , bh]
over S and Σ = {c} such that for all t ∈ N,

(
‖Jλ,h[b0, . . . , bh]‖, ct

)
=

h∑
k=0

bk

(
t

k

)
λt−k; (4)

λt−k is undefined for t < k, but we assume by convention that
(
t
k

)
λt−k = 0

in that case.
Indeed, one can take Jλ,h[b0, . . . , bh] = (Q, σ, ι, τ) with Q = {0, . . . , h},

σ(p, c, q) =

 λ if q = p,
1 if q = p− 1,
0 otherwise

for all p, q ∈ Q, ι(k) = bk for k = 0, . . . , h, τ(0) = 1, and τ(k) = 0
for k = 1, . . . , h. For h = 3, the automaton just constructed is depicted
in Fig. 1.

This automaton is polynomially ambiguous by Theorem 3.2, and (4) follows
by observing that for k = 0, . . . , h and each t ∈ N, there are exactly

(
t
k

)
runs

8In fact, we could just note that A and J are evidently similar [24]. The observation established
can be rephrased as a well-known fact that similar automata are always equivalent.

9Although the automaton J does not have to be trim in general, it can be turned into a trim
automaton by possibly removing several states. It is clear that the nature of strongly connected
components is not spoiled by this process, and that any of the two automata is polynomially
ambiguous if and only if the other automaton is. Theorem 3.2 thus can be invoked.
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3 2 1 0
c:1 c:1 c:1

c:λ c:λ c:λ c:λ

b3 b2 b1 b0

1

Figure 1: The automaton Jλ,3[b0, b1, b2, b3] for λ, b0, . . . , b3 ∈ S.

upon ct from k to 0, while one has t ≥ k and ‖γ‖ = (bkλ
t−k) ct for every such

run, and no other run upon ct leading from k can be successful.
It now remains to make use of the standard binary operation of union on au-

tomata: given weighted automata A1, A2 over a semiring S and alphabet Σ,
the state set of A1 ∪ A2 is a disjoint union of state sets of both automata,
while the transitions of A1 ∪ A2 are defined as in A1 between states from A1

and as in A2 between states from A2; there are no transitions joining states
from A1 with states from A2, and the initial and terminal weights of states
are also inherited from the original automata. One thus merely “places A1

besides A2”, so that
‖A1 ∪ A2‖ = ‖A1‖+ ‖A2‖.

It is clear that A1 ∪ A2 is polynomially ambiguous whenever A1 and A2 are.
Given a unary weighted automaton A over an algebraically closed field F

and Σ = {c}, it follows by (3) that there is a finite set ς ⊆ F, a mapping
h : ς → N, and constants bλ,k ∈ F for λ ∈ ς and k = 0, . . . , h(λ) such that
for all t ∈ N, (

‖A‖, ct
)

=
∑
λ∈ς

h(λ)∑
k=0

bλ,k

(
t

k

)
λt−k,

i.e.,
‖A‖ =

∑
λ∈ς

∥∥Jλ,h(λ)[bλ,0, . . . , bλ,h(λ)]
∥∥ .

The automaton A is thus equivalent to a polynomially ambiguous automaton
J ′ given by

J ′ =
⋃
λ∈ς

Jλ,h(λ)[bλ,0, . . . , bλ,h(λ)].

Note that although the construction of a polynomially ambiguous automa-
ton just described is closely related to the one given in the proof of Theorem 4.1
and although the matrix J ′ of PJ ′ = (n′, i′, J ′, f ′) is in the Jordan canonical
form as well, the resulting automata are not the same in general.

The automaton J constructed in the proof of Theorem 4.1 is always similar
to the original automaton A, and thus it has the same number of states as A.
On the other hand, the latter construction allows to choose ς and h such that
bλ,h(λ) 6= 0 for all λ ∈ ς. In that case, the resulting automaton J ′ is always
a minimal automaton for the series ‖A‖.
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Example 4.2 The unary weighted automaton F over Q and Σ = {z} in Fig. 2 realises
the generating function

F (z) =
∑
t∈N

Ft z
t =

z

1− z − z2

of the Fibonacci numbers. That is, the sequence (Ft)
∞
t=0 is given by F0 = 0, F1 = 1,

and
Ft+2 = Ft+1 + Ft for all t ∈ N.

It has been shown by C. Barloy et al. [1] that the series F (z) ∈ QJzK is not realised
by any polynomially ambiguous unary weighted automaton over Q.10

z:1

z:1

z:1

1 1

Figure 2: The automaton F realising the series F (z).

On the contrary, it follows by Theorem 4.1 that the series F (z) is realised
by a polynomially ambiguous unary weighted automaton over the field Q of algebraic
numbers – or over the field C of complex numbers – and alphabet Σ = {z}. As

Ft =
1√
5
ϕt − 1√

5
ψt

with

ϕ =
1 +
√

5

2
and ψ =

1−
√

5

2
for all t ∈ N, the automaton J ′ equivalent to F is given by the diagram in Fig. 3.

z:ϕ z:ψ

1
√

5

−1
√

51 1

Figure 3: The automaton J ′ equivalent to F .

In fact, J ′ can also be viewed as an automaton over the real algebraic numbers,
but this is a mere coincidence – it follows by our later results that there is an uni-
variate rational series over Q that cannot be realised by any polynomially ambiguous
unary weighted automaton over the real algebraic numbers.

10Note that the automaton F in Fig. 2 is not polynomially ambiguous by Theorem 3.2, as its
graph consists of a single strongly connected component with two vertices, which does not take
the form of a directed cycle.
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5 Fields that Are Not Algebraically Closed
We now turn our attention to automata over fields that are not alge-
braically closed, for which the situation turns out to be radically different
than for automata over algebraically closed fields. As already mentioned,
C. Barloy et al. [1] have recently shown that polynomially ambiguous unary
weighted automata over the field of rational numbers Q are strictly less
powerful than unrestricted unary weighted automata over the same field.
We now generalise this result by showing that the same holds for every field
of characteristic zero that is not algebraically closed.

In order to establish this result, let us first identify an inherent reason
for non-existence of polynomially ambiguous equivalents of unary weighted
automata over general fields, which takes the form of the following suf-
ficient condition. In what follows, F[x] denotes the ring of polynomials
in one variable x with coefficients in F.

Theorem 5.1 Let F be a field over which there exists an irreducible polynomial
p(x) ∈ F[x] that does not divide a polynomial of the form xn − a with n ∈ N \ {0}
and a ∈ F. Then there is a rational series r over F and Σ = {c} that cannot be realised
by a polynomially ambiguous unary weighted automaton over F and Σ = {c}.

Proof Let F and p(x) ∈ F[x] be as in the statement of the theorem. Without
loss of generality, let us suppose that p(x) = xm + am−1x

m−1 + . . .+ a1x+ a0 is
monic. Consider a unary weighted automaton A over F and Σ = {c} such that
PA = (m, i, A, f), where A is the companion matrix of p(x), i.e.,

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −am−1

 ,

so that the characteristic polynomial of A equals p(x). The automaton A is obviously
strongly connected, as irreducibility of p(x) implies that a0 6= 0. Moreover, let
i = (1, 0, . . . , 0) and f contain at least one nonzero component. Thus ‖A‖ 6= 0.

Suppose for contradiction that there is a polynomially ambiguous unary weighted
automaton A′ over F and Σ = {c} such that PA′ = (m′, i′, A′, f ′) and ‖A′‖ = ‖A‖,
and assume that A′ is trim. As characteristic polynomials of matrices corresponding
to directed cycles are always of the form xn − a for some n ∈ N \ {0} and a ∈ F \ {0},
it follows by Theorem 3.2 that the characteristic polynomial of A′ can be written as

chA′(x) = x`
s∏
j=1

(
xnj − aj

)
(5)

for some `, s ∈ N, n1, . . . , ns ∈ N \ {0}, and a1, . . . , as ∈ F \ {0}.
Now, by linear independence of pairwise distinct functions of the form

(t
k

)
λt−k

(Proposition 2.1), it follows that the expressions (3) for (‖A‖, ct) and for (‖A′‖, ct)
have to be the same, which together with ‖A‖ 6= 0 implies that A and A′ have at least
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one eigenvalue λ ∈ F in common. This eigenvalue λ thus has to be a root of p(x)
over F, so that p(x) ∈ F[x] is, by its irreducibility over F, the minimal polynomial
of λ with respect to the extension F of F. As λ is at the same time a root of chA′(x),
the polynomial p(x) has to divide chA′(x). By (5) and uniqueness of polynomial
factorisation, this means that p(x) divides either x or xnj − aj for some j ∈ [s]:
a contradiction.

The series r = ‖A‖, rational over F and Σ = {c}, thus cannot be realised
by a polynomially ambiguous weighted automaton over F and Σ = {c}. �

Next, let us observe that the sufficient condition of Theorem 5.1 admits
a simple equivalent form.

Proposition 5.2 Let F be a field. An irreducible polynomial p(x) ∈ F[x] divides
a polynomial of the form xn − a with n ∈ N \ {0} and a ∈ F if and only if for every
two roots ν, ξ of p(x) from the algebraic closure F of F, there exists n ∈ N \ {0} such
that νn = ξn ∈ F.

Proof The “only if” direction is clear. For the converse, assume that for every pair
of roots ν, ξ ∈ F of p(x), there exists n(ν, ξ) ∈ N \ {0} such that νn(ν,ξ) = ξn(ν,ξ) ∈ F.
Let n be the least common multiple of all such n(ν, ξ), so that λn has the same value
in F for all roots λ ∈ F of p(x). Denote this common value by a. It follows that p(x)
divides the polynomial (xn − a)k for some k ∈ N\{0}. Then, by irreducibility of p(x)
and uniqueness of polynomial factorisation, we conclude that p(x) actually divides
the polynomial xn − a. �

Corollary 5.3 Let F be a field, for which there exists an irreducible polynomial
p(x) ∈ F[x] and roots ν, ξ ∈ F of p(x) such that there is no n ∈ N \ {0} satisfying
νn = ξn ∈ F. Then there is a rational series r over F and Σ = {c} that cannot be
realised by a polynomially ambiguous unary weighted automaton over F and Σ = {c}.

We now show that the assumptions of Theorem 5.1 – or equivalently,
of Corollary 5.3 – are satisfied by any field F of characteristic zero that is not
algebraically closed. Let us start with the case when F is uncountable.

Lemma 5.4 Let F be an uncountably infinite field of characteristic zero that is not
algebraically closed. Then there exists a rational series r over F and Σ = {c} that
cannot be realised by a polynomially ambiguous unary weighted automaton over F
and Σ = {c}.

Proof As F is not algebraically closed, there exists a polynomial p(x) ∈ F[x] of degree
at least two, irreducible over F. Let ν, ξ ∈ F be two distinct roots of p(x) over F.11

11Their existence follows from separability of irreducible polynomials over fields of characteristic
zero (see, e.g., S. Roman [23, Corollary 1.6.3]).
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We first show that there exists a ∈ F \ {0} such that 1 + aν and 1 + aξ
have no common positive integer power – that is, there is no n ∈ N \ {0}
for which (1 + aν)n = (1 + aξ)n. Indeed, every b ∈ F such that (1 + bν)n = (1 + bξ)n

for n ∈ N \ {0} is clearly a root of the polynomial

Ψn(x) = (1 + xν)n − (1 + xξ)n

from F[x]. The coefficient at x in Ψn(x) is n(ν − ξ). As the characteristic of F
has to be zero and as ν 6= ξ, necessarily n(ν − ξ) 6= 0. Thus Ψn(x) is a nonzero
polynomial of degree at most n – and as such, it has at most n distinct roots over F.
As a consequence, we see that the set

B = {b ∈ F | ∃n ∈ N \ {0} : Ψn(b) = 0}

is at most countably infinite. However, the field F is uncountably infinite, which
means that F \B is nonempty. Any a ∈ F \B therefore has the desired property,
i.e., there is no n ∈ N \ {0} for which (1 + aν)n = (1 + aξ)n, while obviously a 6= 0.
Let such a be fixed for the rest of this proof.

Let us finally consider the polynomial p(x) = p
(
x−1
a

)
∈ F[x]. Clearly, both 1 + aν

and 1 + aξ are roots of p(x). Moreover, p(x) is irreducible over F, as otherwise we
would have

p(x) = p1(x) · p2(x)

for some non-constant polynomials p1(x), p2(x) ∈ F[x], which would imply

p(x) = p (ax+ 1) = p1 (ax+ 1) · p2 (ax+ 1) = p1(x) · p2(x)

for non-constant polynomials p1(x) = p1 (ax+ 1) and p2(x) = p2 (ax+ 1) in F[x],
contradicting irreducibility of p(x). Existence of a rational series r from the statement
of the lemma thus follows by Corollary 5.3. �

Let us now establish the same result for countably infinite fields of charac-
teristic zero that are not algebraically closed.

Lemma 5.5 Let F be a countably infinite field of characteristic zero that is not
algebraically closed. Then there exists a rational series r over F and Σ = {c} that
cannot be realised by a polynomially ambiguous unary weighted automaton over F
and Σ = {c}.

Proof As F is of characteristic zero, its prime subfield P is isomorphic to Q, and as F
is countably infinite, its transcendence degree κ over P is surely at most ℵ0. Let S
with |S| = κ be a subset of R that is algebraically independent over Q, and consider
the subfield Q(S) of R. Then F and Q(S) are algebraically closed fields of the same
transcendence degree over their isomorphic prime subfields – the fields F and Q(S)
are thus isomorphic as well (see, e.g., T. W. Hungerford [12, Theorem VI.1.12]).

Let ϕ : F→ Q(S) be an isomorphism. As F is not algebraically closed, it is isomor-
phic to a proper subfield K = ϕ(F) of Q(S) ⊆ C, while K = Q(S). We show existence
of an irreducible polynomial p(x) ∈ K[x] and roots ν, ξ ∈ K of p(x) such that there is
no n ∈ N \ {0} satisfying νn = ξn ∈ K. Via the isomorphism ϕ, this clearly implies
that the sufficient condition of Corollary 5.3 is fulfilled both for K and for F, so that
existence of the series r from the statement of the lemma is assured as well.
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First, note that as K = Q(S) with S ⊆ R, the field K contains precisely the roots
of polynomials with coefficients from Q(S) ⊆ R; by the complex conjugate root
theorem, this implies that K is closed under complex conjugation.

Let α = a+ bi with a, b ∈ R be an element of K \K. Then actually a, b ∈ R ∩K,
as closure of K under complex conjugation together with i ∈ Q ⊆ K implies that

a =
α+ α

2
and b =

α− α
2i

,

are both in K. If a, b, and i were all in K, then α would be in K as well, contradicting
our assumption. As a result, K either does not contain i, or it does not contain some
real number η ∈ K.

If K does not contain the imaginary unit i, take

p(x) = x2 − 6

5
x+ 1

with roots
ν =

3 + 4i

5
and ξ =

3− 4i

5
.

Then p(x) ∈ Q[x] ⊆ K[x] is irreducible over K, as i would clearly be in K whenever
ν or ξ was. Moreover, as any positive integer power of ν or ξ is of the form a+ bi
for a, b ∈ Q – i.e., it is a Gaussian rational – the imaginary unit i would be in K
whenever any such number with b 6= 0 was in K. Thus, if ν and ξ have a common
positive integer power from K, it is necessarily real. As |ν| = |ξ| = 1, we can actually
assume that

νn = ξn = 1

for some n ∈ N \ {0}. However, this is impossible, as ν and ξ are well known not to
be complex roots of unity.12 There is thus no n ∈ N \ {0} such that νn = ξn ∈ K,
which finishes the proof in case K does not contain i.

For the remaining case, let us suppose that K does not contain some real number
η ∈ K. Let q(x) ∈ K[x] be the minimal – hence irreducible – polynomial of η with
respect to the extension K of K. If there exists a root ϑ of q(x) such that |ϑ| 6= |η|,
then there clearly is no n ∈ N \ {0} such that ϑn = ηn, and we may directly take
p(x) = q(x), ν = η, and ξ = ϑ. Otherwise, let us first note that the roots of q(x)
are all distinct by separability of irreducible polynomials over fields of characteristic
zero. Take p(x) = q(x− 1). This polynomial is irreducible and has 1 + η as a root.
Moreover, it easily follows by distinctness of the roots of q(x) that there is no other
root of p(x) with the same absolute value as 1 + η. We may thus take η for ν
and any other root of p(x) for ξ – then surely νn 6= ξn for all n ∈ N \ {0}. The lemma
is proved in the remaining case as well. �

We may now summarise our findings by the following theorem, which is
in a sense the main result of this section.

Theorem 5.6 Let F be a field of characteristic zero that is not algebraically closed.
Then there exists a rational series r over F and Σ = {c} that cannot be realised
by a polynomially ambiguous unary weighted automaton over F and Σ = {c}.

Proof As every field of characteristic zero is infinite, the theorem follows directly
by Lemma 5.5 and Lemma 5.4. �

12For instance, as (3 + 4i)2 = −7 + 24i ≡ 3 + 4i (mod 5), it follows that there is no n ∈ N \ {0}
such that the real part of (3 + 4i)n equals 5n, which has to hold whenever νn = 1.
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6 Conclusions
We have studied the power of polynomially ambiguous unary weighted au-
tomata over fields – more precisely, the question of whether they are expressive
equivalents of unrestricted unary weighted automata. This question has al-
ready been answered in the particular case of automata over the rational
numbers by C. Barloy et al. [1], who have shown that there are univariate
rational series over Q that cannot be realised by a polynomially ambiguous
automaton. This implies that the inclusion between the two upmost levels
of the ambiguity hierarchy is strict for rational series over Q.

In the two main results of this article, we have resolved this question for two
classes of abstract fields. First, we have proved that polynomially ambiguous
and unrestricted unary weighted automata are equivalent over algebraically
closed fields. This result has thus most notably been established for the fields
of complex and algebraic numbers. On the other hand, we have observed
that among fields of characteristic zero, algebraically closed fields are the only
fields with the said property. In other words, polynomially ambiguous unary
weighted automata are strictly less powerful than unrestricted unary weighted
automata over fields of characteristic zero that are not algebraically closed.
This generalises the result from [1] and establishes the same observation, e.g.,
for automata over the real numbers or over algebraic number fields. We leave
open the case of fields with positive characteristic.
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