
Design patterns - Introduction

Robert Lukoťka

November 25, 2015



What is a design pattern?

I General reusable solution to a commonly occurring problem
within a given context in software design

I We already saw several examples: M-C-V, strategy ,
decorator, information expert;

I Design antipatterns - common response to a recurring problem
that is usually ineffective and risks being highly
counterproductive: circular dependency, poltergeist



Additional benefits of using DP

I Easier communication
I Allow to stay at design level without discussing details
I Improved speed of development

Do not overuse



Types of design paterns

I creational patterns: factory method, abstract factory
I structural patterns: decorator
I behavioral patterns: strategy, iterator, observer
I concurrency patterns: thread-specific storage
I architectural patterns: M-C-V
I ...



Strategy design pattern

I Enables an algorithm’s behavior to be selected at runtime.
I Defines a family of algorithms,
I Encapsulates each algorithm, and
I Makes the algorithms interchangeable within that family.
I Class diagrams
I We had several examples during the course

https://www.google.sk/search?q=strategy+design+pattern&source=lnms&tbm=isch&sa=X&ved=0CAcQ_AUoAWoVChMIxum74fCZyQIVQYFyCh21agEI&biw=1315&bih=805


Observer pattern

I Object wants to inform all it’s observers.
I Class diagram
I Class diagram 2
I One of the most used DP in JDK.
I Potential memory leaks and performance decrease in garbage

collecting languages can be solved by using weak references
(inactive objects might not be collected because if a strong
link exists)

I Implemented in Java: Observable class and Observer interface
(but there are several drawbacks in using it: Observable is a
class; setchanged() is protected)

https://en.wikipedia.org/wiki/Observer_pattern#/media/File:Observer.svg
https://mydevelopedworld.files.wordpress.com/2013/03/observer-pattern-uml.png


Decorator pattern

I Allows behavior to be added to an individual object, either
statically or dynamically, without affecting the behavior of
other objects from the same class.

I Class diagram
I Can add small hard to understand classes
I Problems when code depends on specific type
I Example: Java I/O

https://upload.wikimedia.org/wikipedia/commons/e/e9/Decorator_UML_class_diagram.svg


Factory patterns

I Factory pattern uses factory methods to create objects without
having to specify the exact class.

I Button okButton=new RectangularButton(); -coding to
implementation not to interface

I With decorator DP:
Button okButton=new RectangularButton(new BasicButton);



Factory patterns

I It might look like this in the actual code
Button okButton;
if (settings.shape == ButtonShape.square)
okButton=new SquareButton();
elseif (settings.shape == ButtonShape.rectangle)
okButton=new RectangularButton();
elseif (settings.shape == ButtonShape.triangle)
okButton=new TriangularButton();

I You have to do changes here whenever new type is added.
I Solution:

Encapsulate what varies - interface with Factory
method

I More flexibility: Abstract factory



Factory patterns

I It might look like this in the actual code
Button okButton;
if (settings.shape == ButtonShape.square)
okButton=new SquareButton();
elseif (settings.shape == ButtonShape.rectangle)
okButton=new RectangularButton();
elseif (settings.shape == ButtonShape.triangle)
okButton=new TriangularButton();

I You have to do changes here whenever new type is added.
I Solution: Encapsulate what varies - interface with Factory

method
I More flexibility:

Abstract factory



Factory patterns

I It might look like this in the actual code
Button okButton;
if (settings.shape == ButtonShape.square)
okButton=new SquareButton();
elseif (settings.shape == ButtonShape.rectangle)
okButton=new RectangularButton();
elseif (settings.shape == ButtonShape.triangle)
okButton=new TriangularButton();

I You have to do changes here whenever new type is added.
I Solution: Encapsulate what varies - interface with Factory

method
I More flexibility: Abstract factory



Abstract factory example

I interface UICreator has abstract methods buttonCreate that
creates an Button (Button is an interface, the buttonCreate
can have arguments to define e.g. color), + some other
abstract methods like checkBoxCreate;

I if some other functionality is associated with the type we
might use abstract object instead of an interface; e.g.
createMyFancyForm

I class GUICreator implements buttonCreator ... creates a
GraphicalButton

I class TUICreator implements buttonCreator ... creates a
TextButton

I at initialization of the program we choose whether we use
GUICreator or TUIcreator, no need for changes in the
remaining code.

I myUIcreator.createMyFancyForm();



Dependency inversion principle

Wikipedia
Applied to everything:

I No variable should hold a reference to concrete class
I No class should derive from concrete class
I No method should override an implemented method of any of

its base classes
So you have to choose wisely.

https://en.wikipedia.org/wiki/Dependency_inversion_principle


Singleton DP

I Creates objects that have only one instance
I Private Constructor
I Static method that controls that only one object is created
I Careful in in multi-threaded applications



Command DP

I Used to encapsulate all information needed to perform an
action or trigger an event at a later time

I Class diagram
I queuing
I logging
I scheduling
I Decorators: MacroComamand, LoggedCommand,

SheduledCommand

www.google.sk


Null object / Null DP

I Removes the responsibility of handling null from the client
I e.g. Null command



Adapter DP

I Object adapter: Object that uses method of another object to
implement an interface

I Class adapter: Uses inheritance instead of composition
I Class apter can save code for methods that do not need to

adapt, and faster.
I Object adapter is more flexible, e.g. can adapt subclasses
I Java example: old interface Enumeration, new interface

Iterator



Facade pattern DP

I Adapter with intention of simplifying the interface
I Facade does not encapsulates
I Multiple facades possible
I Facades can be used to decouple client from subsystem



Principle of least knowledge

I wiki
I station.getThermometer().getTemperature()
I You may want to add station.getTemperature()
I If applied too much may lead to a lot of wrapper classes and

methods.

https://en.wikipedia.org/wiki/Law_of_Demeter


Template method DP

I Defines a skeleton of an algorithm.
I Subclasses can redefine steps, but not the algorithm.
I Some methods called may the function may be abstract, some

null (hook methods), and some implemented.
I A different example: general sort



Hollywood principle

I wiki
I Low-level components participate in tasks made by high-level

components
I Low-level components do not call high-level components.

https://en.wikipedia.org/wiki/Hollywood_principle


Other DP

I Iterator
I Composite pattern
I State pattern
I Proxy (remote proxy, virtual proxy, protection proxy, ...)
I


	Úvod

