
Software architecture

Object oriented analysis and modeling

Software architecture

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Software architecture



Software architecture

For more details I recommend

Microsoft Application Architecture Guide

Robert Luko´ka Software architecture

https://msdn.microsoft.com/en-us/library/ff650706.aspx


Software architecture

Basic questions

How will the users be using the application?

How will the application be deployed into production and
managed?

What are the quality attribute requirements for the
application, such as security, performance, concurrency,
internationalization, and con�guration?

How can the application be designed to be �exible and
maintainable over time?

What are the architectural trends that might impact your
application now or after it has been deployed?

Robert Luko´ka Software architecture



Software architecture

Software architecture

Architecture should:

Expose the structure of the system but hide the
implementation details.

Realize all of the use cases and scenarios.

Try to address the requirements of various stakeholders.

Handle both functional and quality requirements.

Robert Luko´ka Software architecture



Software architecture

The Architectural Landscape

Consider the environment of the product.

User empowerment
Allow the user to de�ne how they interact with your application, but

keep the key scenarios as simple as possible.

Market maturity.
Use existing platform and technology options.

Flexible design.

Future trends.

Robert Luko´ka Software architecture



Software architecture

More questions to consider

What are the foundational parts of the architecture that
represent the greatest risk if you get them wrong?

What are the parts of the architecture that are most likely to
change, or whose design you can delay until later with little
impact?

What are your key assumptions, and how will you test them?

What conditions may require you to refactor the design?

Robert Luko´ka Software architecture



Software architecture

Software architecture principles

Build to change instead of building to last.

Model to analyze and reduce risk.

Use models and visualizations as a communication and
collaboration tool.

Identify key engineering decisions.

Robert Luko´ka Software architecture



Software architecture

Software architecture principles

Do not try to get it all right the �rst time

Design just as much as you can in order to start testing the
design.

Iteratively add details to the design over multiple passes to
make sure that you get the big decisions right �rst, and then
focus on the details.

Robert Luko´ka Software architecture



Software architecture

Testing the architecture

What assumptions have I made in this architecture?

What explicit or implied requirements is this architecture
meeting?

What are the key risks with this architectural approach?

What countermeasures are in place to mitigate key risks?

In what ways is this architecture an improvement over the
baseline or the last candidate architecture?

Robert Luko´ka Software architecture



Software architecture

How to �nd the right architecture

Determine the Application Type

Determine the Deployment Strategy

Determine the Appropriate Technologies

Determine the Quality Attributes

Determine the Crosscutting Concerns (authentication, logging,
chaching, . . . )

Robert Luko´ka Software architecture



Software architecture

You cannot focus on everything.

Key scenario.

It represents an issue�a signi�cant unknown area or an area
of signi�cant risk.

It refers to an architecturally signi�cant use case.

Business Critical.
High Impact.

It represents the intersection of quality attributes with
functionality.

It represents a tradeo� between quality attributes.

Robert Luko´ka Software architecture



Software architecture

How to �nd the right architecture

Break stu� into layers and components

Keep in mind ordinary design principles

separation of concerns, SRP, Principle of least knowledge,
DRY, Composition over inheritance . . .

Do not mix di�erent stu� into layers (design patterns,
component types, data types).

Be explicit about how layers communicate with each other, use
abstraction.

De�ne a clear contract for components.

Robert Luko´ka Software architecture



Software architecture

Architectural styles

Provide abstract framework for a family of systems

Help communication

We can combine styles

Robert Luko´ka Software architecture



Software architecture

Key architectural styles

Client/Server
Segregates the system into two applications, where the client makes

requests to the server. In many cases, the server is a database with

application logic represented as stored procedures.

Component-Based Architecture
Decomposes application design into reusable functional or logical

components that expose well-de�ned communication interfaces.

Domain Driven Design
An object-oriented architectural style focused on modeling a

business domain and de�ning business objects based on entities

within the business domain.

Robert Luko´ka Software architecture



Software architecture

Key architectural styles

Layered Architecture
Partitions the concerns of the application into stacked groups

(layers).

Message Bus
An architecture style that prescribes use of a software system that

can receive and send messages using one or more communication

channels, so that applications can interact without needing to know

speci�c details about each other.

N-Tier / 3-Tier
Segregates functionality into separate segments in much the same

way as the layered style, but with each segment being a tier located

on a physically separate computer.

Robert Luko´ka Software architecture



Software architecture

Key architectural styles

Object-Oriented
A design paradigm based on division of responsibilities for an

application or system into individual reusable and self-su�cient

objects, each containing the data and the behavior relevant to the

object.

Service-Oriented Architecture (SOA)
Refers to applications that expose and consume functionality as a

service using contracts and messages.

Robert Luko´ka Software architecture



Software architecture

Key architectural styles

Bene�ts of respective styles

Robert Luko´ka Software architecture

https://msdn.microsoft.com/en-us/library/ee658117.aspx#KeyArchitectureStyles


Software architecture

Representing and Communicating Your Architecture Design

Cover various views:

Use case view

Static view

Dynamic view

Physical view

Development view

Robert Luko´ka Software architecture



Software architecture

Visualizing architecture

To capture architecture an high level view of the system -
UML Model diagram

To capture physical architecture - UML Deployment diagram

To capture components and interfaces - UML component
diagrams

High level development view - UML package diagram

Robert Luko´ka Software architecture

http://www.uml-diagrams.org/package-diagrams-overview.html#model-diagram
http://www.uml-diagrams.org/deployment-diagrams-overview.html
http://www.uml-diagrams.org/component-diagrams.html
http://www.uml-diagrams.org/component-diagrams.html
http://www.uml-diagrams.org/package-diagrams-overview.html

