
Design basics

Object oriented analysis and modeling

Design basics

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Design basics



Design basics

Design - various scopes

Architecture

Component-level design

Low level design

Depending on the project size, there may be more intermediate
levels
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What we want to attain

Modularization

Abstraction

Information hiding

Separation of interface and implementation

Low Coupling

High Cohesion

Su�ciency, Completeness, Easy top understand, . . .

Robert Luko´ka Design basics



Design basics

Modularization

Modularizes requirements, implementation, test cases, . . . .
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Abstraction

Identify aspects that are relevant to the problem

Di�erent concepts in the problem domain may become
identical

Classes that do not represent a concept in the domain may
form
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Anemic domain model

Objects have no or little behaviour.

M. Fowler, 2003:

�The fundamental horror of this anti-pattern is that it's so

contrary to the basic idea of object-oriented designing;

which is to combine data and process them together. The

anemic domain model is just a procedural style design,

exactly the kind of thing that object bigots like me ...

have been �ghting since our early days in Smalltalk.

What's worse, many people think that anemic objects are

real objects, and thus completely miss the point of what

object-oriented design is all about.�
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Anemic domain model

May indicate lack of abstraction

Not really an OO design

This my be completely acceptable or even preferred in other
design styles (e.g. functional programming design).
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Information hiding, Separation of interface and

implementation

Encapsulation - a way how to hide internal information

Interface should not depend on the implementation
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Low Coupling

Coupling is the degree of interdependence between software
modules; a measure of how closely connected two routines or
modules are. Disadvantages of high coupling:

A change in one module usually forces a ripple e�ect of
changes in other modules.

Assembly of modules might require more e�ort and/or time
due to the increased inter-module dependency.

A particular module might be harder to reuse

Hard to reuse test

Message transmission/translation/interpretation overhead

. . .
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Coupling

Coupling types

Information expert principle

Placing the responsibility on the class with the most

information required to ful�ll it.

Reduces coupling.

Coupling strength, Coupling distance (high coupling between
objects in the same package is more acceptable)
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Connascence

Coupling is a relatively vague term. Connascence tries to �x
this.

Two components are connascent if a change in one would
require the other to be modi�ed in order to maintain the
overall correctness of the system.

http://connascence.io/
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High Cohesion

Cohesion refers to the degree to which the elements inside a
module belong together.

Various metrics: e.g. LCOM4.

Types of cohesion
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Design Veri�cation and Validation

Veri�cation - Check if all design outputs meet design
conditions imposed at the beginning of the process.

Validation - Check if all design outputs meet the customer
needs.
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https://www.slideshare.net/cristalngo/software-design-
principles-57388843

Robert Luko´ka Design basics


