
Design basics

Object oriented analysis and modeling

Design basics

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Design basics

Design basics

Design - various scopes

Architecture

Component-level design

Low level design

Depending on the project size, there may be more intermediate
levels

Robert Luko´ka Design basics

Design basics

What we want to attain

Modularization

Abstraction

Information hiding

Separation of interface and implementation

Low Coupling

High Cohesion

Su�ciency, Completeness, Easy top understand, . . .

Robert Luko´ka Design basics

Design basics

Modularization

Modularizes requirements, implementation, test cases,

Robert Luko´ka Design basics

Design basics

Abstraction

Identify aspects that are relevant to the problem

Di�erent concepts in the problem domain may become
identical

Classes that do not represent a concept in the domain may
form

Robert Luko´ka Design basics

Design basics

Anemic domain model

Objects have no or little behaviour.

M. Fowler, 2003:

�The fundamental horror of this anti-pattern is that it's so

contrary to the basic idea of object-oriented designing;

which is to combine data and process them together. The

anemic domain model is just a procedural style design,

exactly the kind of thing that object bigots like me ...

have been �ghting since our early days in Smalltalk.

What's worse, many people think that anemic objects are

real objects, and thus completely miss the point of what

object-oriented design is all about.�

Robert Luko´ka Design basics

Design basics

Anemic domain model

May indicate lack of abstraction

Not really an OO design

This my be completely acceptable or even preferred in other
design styles (e.g. functional programming design).

Robert Luko´ka Design basics

Design basics

Information hiding, Separation of interface and

implementation

Encapsulation - a way how to hide internal information

Interface should not depend on the implementation

Robert Luko´ka Design basics

Design basics

Low Coupling

Coupling is the degree of interdependence between software
modules; a measure of how closely connected two routines or
modules are. Disadvantages of high coupling:

A change in one module usually forces a ripple e�ect of
changes in other modules.

Assembly of modules might require more e�ort and/or time
due to the increased inter-module dependency.

A particular module might be harder to reuse

Hard to reuse test

Message transmission/translation/interpretation overhead

. . .

Robert Luko´ka Design basics

Design basics

Coupling

Coupling types

Information expert principle

Placing the responsibility on the class with the most

information required to ful�ll it.

Reduces coupling.

Coupling strength, Coupling distance (high coupling between
objects in the same package is more acceptable)

Robert Luko´ka Design basics

https://en.wikipedia.org/wiki/Coupling_(computer_programming)#Types_of_coupling

Design basics

Connascence

Coupling is a relatively vague term. Connascence tries to �x
this.

Two components are connascent if a change in one would
require the other to be modi�ed in order to maintain the
overall correctness of the system.

http://connascence.io/

Robert Luko´ka Design basics

http://connascence.io/

Design basics

High Cohesion

Cohesion refers to the degree to which the elements inside a
module belong together.

Various metrics: e.g. LCOM4.

Types of cohesion

Robert Luko´ka Design basics

https://en.wikipedia.org/wiki/Cohesion_(computer_science)#Types_of_cohesion

Design basics

Design Veri�cation and Validation

Veri�cation - Check if all design outputs meet design
conditions imposed at the beginning of the process.

Validation - Check if all design outputs meet the customer
needs.

Robert Luko´ka Design basics

Design basics

https://www.slideshare.net/cristalngo/software-design-
principles-57388843

Robert Luko´ka Design basics

