
Object oriented analysis and modeling

Testable code

Robert Luko´ka

lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Testable code



Testing

Testing pyramid

We need a lot of tests.

It is good idea to automate most of the testing from the start

of the project.

We need a lot of test at the lowest level

Robert Luko´ka Testable code

https://www.google.com/


OO design and object dependence

OO design is based on objects that interact.

Depencency types:

creates, destroys

calls method

modi�es

. . .

Robert Luko´ka Testable code



Unit test

Unit test

Solitary - at lowest level we always test just one object

Sociable - we may test an object together with a related object

Even if we use sociable unit tests, we want to severely limit the

number of classes tested at once.

Robert Luko´ka Testable code



OO design and object dependence

So how do the dependencies a�ect our ability to write tests?

creates, destroys

calls method

modi�es

. . .

All these dependency types are just bad!!!

Robert Luko´ka Testable code



Dependency injection and dependency inversion

An object should not create other object that is not closely

related, it should get its collaborators via dependency injection.

The object should not depend on collaborator's

implementation, there should be an interface depending on the

essence of the collaboration.

Robert Luko´ka Testable code



OO design and object dependence

So what to do?

creates, destroys - dependency injection

calls method - interface

modi�es - interface

. . .

When we want to run tests we still need the collaborating objects.

Robert Luko´ka Testable code



Test doubles

Collaborations are behind interfaces. So we make an

implementation of these interfaces for the purpose of testing - test

doubles.

M. Fowler: Test doubles

Robert Luko´ka Testable code

https://martinfowler.com/bliki/TestDouble.html


When to write tests?

After writing implementation.

After the object is designed but before writing implementation.

We may use test during the implementation.

Before design.

Guarantees testable design.

During speci�cation by example.

Speci�cation is unambiguous.

We avoid the step speci�cation → test cases.

Harder to achieve readability for all stakeholders, but many

tools emerge.

Robert Luko´ka Testable code



When to write tests?

After writing implementation.

After the object is designed but before writing implementation.

We may use test during the implementation.

Before design.

Guarantees testable design.

During speci�cation by example.

Speci�cation is unambiguous.

We avoid the step speci�cation → test cases.

Harder to achieve readability for all stakeholders, but many

tools emerge.

Robert Luko´ka Testable code



When to write tests?

After writing implementation.

After the object is designed but before writing implementation.

We may use test during the implementation.

Before design.

Guarantees testable design.

During speci�cation by example.

Speci�cation is unambiguous.

We avoid the step speci�cation → test cases.

Harder to achieve readability for all stakeholders, but many

tools emerge.

Robert Luko´ka Testable code



Executable speci�cations

Example: Power

Cucumber

jnario

nahodny link

Robert Luko´ka Testable code

http://langrsoft.com/2006/06/05/are-tests-specs/
https://semaphoreci.com/community/tutorials/introduction-to-writing-acceptance-tests-with-cucumber
http://jnario.org/
https://medium.com/kenshoos-engineering-blog/are-your-unit-tests-readable-f46e521c23e8


Executable speci�cations

More readable:

Easier to read for non-technical stakeholders

De�nes the object interface in a less readable way

Requires non-trivial translation

Guarantees testability of the object

Code:

Hard to read for non-technical stakeholders

De�nes the object interface very clearly

No or easy translation

Guarantees testability of the object

Robert Luko´ka Testable code


