
GIT and some other stu�

Principles of Software Design
GIT and some other stu�

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Software con�guration management

Software con�guration management is the task of tracking and
controlling changes in the software. It includes tracking
changes in source code, documentation, and other artefacts.

Primarily done using Version control systems (VCS).

Some other systems can be useful in this context (e.g. Issue
tracking systems)

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What a larger project needs?

For all artefactsit is known where they are.

More versions of the same artefacts.

Multiple people working on the same artefacts concurrently.

Storing historical versions of the artefacts.

. . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les.

Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les.

No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary.

No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images.

Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements.

Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts.

De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler.

Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What to track?

We should track exactly what is necessary to build, run, and work
on the project.

Manually written source �les. Yes

Generated source �les. No - but we need to save the artefacts
needed to generate the source.

Final binary. No.

Images. Yes.

Requirements. Yes.

Deployment scripts. De�nitely.

Compiler. Well, maybe . . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Why you need to store di�erent versions of your software

You need to �x errors in older �versions� of your product still
in use.

Di�erent deployment targets (OS)/

Each historical �version� is its own state.

Useful e.g. if you need to track a newly discovered bug.

Development �versions� of the software.

. . .

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What is a version?

Commit:

Creates a new version of the system

Unit of change in VCS

Each commit should make sense on its own.

A single commit should not be easy to divide to more
commits..

After a commit the project should remain in a sound state
(what sound means varies, e.g. development branch vs
mainline branch).

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What is a version?

Branch:

Separate copies of the system.

A commit a�ects only one branch.

Branches can be created and merged with other branches.

There are various reasons to have slightly di�erent copies of
the system (development, major releases, experimental).

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What is GIT?

Distributed version control

Created for the development of Linux kernel
L. Torvalds: I'm an egotistical bastard, and I name all my

projects after myself. First 'Linux', now 'git'.

GITHub - web based version control repository and Internet
hosting service � do not confuse it with git. Alternatives
include GitLab, BitBucket, SourceForge, . . . ,

GIT is just one particular VCS, there are alternatives too, e.g.
CVS, SVN, . . . Some of the above services support other VCS
than git.

Version control services have many other features to manage
projects unrelated to git.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Distributed version control [1]

Clients instead of just taking the versions they need to work,
have local repository that can contain everything central
VCSserver has.

There may be more equivalent repositories (there may not be a
central server, a decentralized structure may exist - but this is
rare).

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

GIT con�guration [2]

There are three main levels of con�guration:

computer level (--system)

user level (--global)

project level

You need to set

Name

E-mail address

You want to set

Your favorite text editor to write commit messages and other
stu�

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

GIT con�guration [2]

git config --global user.name "Robert Luko´ka"

git config --global user.email lukotka@dcs...

git config --global core.editor vim

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Creating a local repository [3]

git init

git clone

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

File states [4]

Untracked

Unmodi�ed

Modi�ed

Staged

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Basic work�ow in local repository [4]

Basic commands:

git status: shows the state of the �les

git add: changes the state to staged

git rm/mv: if you delete/move �les, let git know

git commit (git commit -a)

You may want to do other stu�:

git diff (or use gitk)

git reset HEAD <file>: unstage

git checkout (--) <file>: throw uncommited changes

git commit --amend: change last commit

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Viewing commit history [5]

git log: Zillions of options [6]

git blame

gitk

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Branches [7]

git branch: shows branches

git branch <name>: creates a branch

git checkout <branchname>: change branch

git branch -d <name>: delete branch

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Branches - merging [9]

git merge - merges some other branch into current branch,
the merged branch still exists.

git tries to merge stu� automatically
if he does not know what to do, it lets you resolve the con�icts
the new commit has links to two commits (top commits of
both branches)

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Branches - rebasing [8]

git rebase - alternative to merging

gits try to apply the commits in other branch one by one
it tries to resolve con�icts
if he does not know what to do, it lets you resolve the con�icts
(this may happen multiple times during a rebase)
the commit history is linear (good for bisecting)

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Remote repository [11]

Basic commands

git clone

git pull: Incorporates changes from a remote repository into
the current branch

git push

Other stu�

git push origin �delete "branchname"

git push --force:
changes commit history
do not do this if more people are working on the branch
e.g. before merging to master you create a better history, then
you need to force push it.

git fetch: just downloads from remote repository, without
merging to current branch

git remote: manage repositories.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Very basic work�ow

git pull

repeat

make changes
git add

git commit

git push

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Stash

How to pull while you have uncommitted changes and you do not
want to lose them?

git stash

git pull

git stash pop - may create a con�ict that needs to be resolved

Stash works like stack, and has many other uses

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Moving to past versions

Each commit is identi�ed by a part of its hash.

HEAD: What we see in the working directory, normally top of
the branch, however we can move wherever we want by git

checkout.

HEAD i: points i commits back.

git revert <commit>: This does not change the history,
just adds a new commit.

git reset --hard <commit>: This changes the history.

git rebase -i HEAD k: interactive rebase is a good tool to
adjust history

git tag: tag important commits (version bumps, etc.)

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

.gitignore

Used to determine which �les should be untracked by default.

It is good idea to track this �le.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

GIT Hooks [12]

A way to run custom scripts when certain important actions occur.

Can be used to block the action

Client side / sever side

On commit / on merge / on push / . . .

E.g. runs automated tests before merge into master, if they do
not succeed, merge fails.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Pull request

Pull requests are a common way to manage mainline

The contributor pushes a branch (into a repository or its fork).

Requests that the project maintainer (or whoever has rights to
perform the operation) to merge the changes into the master

The reason for the name: the contributor asks somebody to
pull his version to become part of the mainline.

Mostly handled by web based version control repositories, with
many additional features.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Work�ows [13]

There are various possible work�ows. Example

master branch

development branch - merges to master only on important
milestones

feature branches - merges to development branch only when
the feature (or an important part of the feature) is �nished

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Make

Allows to run various commands

Compared to shell scripts, it checks prerequisites

You create a �le named �Make�le�. Basic syntax:
goal: dependencies (files or other goals)

<tab> command

<tab> command

<tab> ...

Further examples

Robert Luko´ka GIT and some other stu�

https://www.cs.colby.edu/maxwell/courses/tutorials/maketutor/


GIT and some other stu�

Make

Why to use make (or stand-alone automated build)?

Everybody has his favorite IDE, but the build should work for
everybody.

Minimize dependencies

Con�gure build for distinct deployments

. . .

It is very common to generate make�les

e.g. CMake

Many languages have own tools to automate build (often mixed
with dependency management)

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Markdown

A lightweight approach to add formatting to text �le.s

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

What else should you know

SSH, SCP, SFTP, rsync.

To make a deployment script - shell script.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

How to initiate a small project

Initiate version controlling (e.g. git)

Set up how the project is compiled and build (e.g. Make�le)

Deployment script

Basic documentation template (e.g. Markdown)

Set coding standards, work�ows, how quality will be enforced,
how automatic testing integrates the work�ow . . . (git,
make�le, . . . )

Set up reasonable project structure to attain these goals.

Robert Luko´ka GIT and some other stu�



GIT and some other stu�

Resources I

Distributed version control

Getting Started - First-Time Git Setup

Creating a repository

Working with local repository

Viewing commit history

Branches

Merging

Git tutorial

Hooks

Example work�ows

GIT hooks

Make�le tutorial

An Introduction to Make�les

Mastering Markdown

Robert Luko´ka GIT and some other stu�

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/docs/gittutorial
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://buddy.works/blog/5-types-of-git-workflows
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://makefiletutorial.com/
https://www.gnu.org/software/make/manual/html_node/Introduction.html
https://guides.github.com/features/mastering-markdown/


GIT and some other stu�

References I

Distributed version control

Getting Started - First-Time Git Setup

Creating a repository

Working with local repository

Viewing commit history

Git log

Branches

Rebasing

Merging

Rebase

Robert Luko´ka GIT and some other stu�

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
https://git-scm.com/docs/git-log
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Rebasing
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase


GIT and some other stu�

References II

Remotes

Hooks

Example work�ows

Pull request - Wikipedia

Robert Luko´ka GIT and some other stu�

https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://buddy.works/blog/5-types-of-git-workflows
https://en.wikipedia.org/wiki/Distributed_version_control#Pull_requests

	GIT and some other stuff

