
Persistence and Databases

Principles of Software Design
Persistence and Databases

Robert Luko´ka
lukotka@dcs.fmph.uniba.sk

www.dcs.fmph.uniba.sk/~lukotka

M-255

Robert Luko´ka Persistence and Databases



Persistence and Databases

How to save the state of your application?

90's - It was quite easy. User pressed the save button. No shared
state, single threaded, no need to decide when to save → no issues.

You write code to serialize your state and parse the saved �le.

You save the strings.

What could possibly go wrong?

Some care still needed. E.g. copy the �le, rewrite it and then
delete the copy.

The user should not turn the computer until this process
�nishes.

We need consistency and durability.

Robert Luko´ka Persistence and Databases



Persistence and Databases

How to save the state of your application?

90's - It was quite easy. User pressed the save button. No shared
state, single threaded, no need to decide when to save → no issues.

You write code to serialize your state and parse the saved �le.

You save the strings.

What could possibly go wrong?

Some care still needed. E.g. copy the �le, rewrite it and then
delete the copy.

The user should not turn the computer until this process
�nishes.

We need consistency and durability.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Data exchange formats [1]

BTW, how to serialize data?

Markup languages: XML, JSON, YAML,

Portable, extensible solution (unless you really need to send a
lot of data).

Robert Luko´ka Persistence and Databases



Persistence and Databases

Persistence

Today, we often want to save changes as they appear.

When to save changes?

We do not want to save a state where we removed money
from one account and did not add money to the other

We need: atomicity.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Persistence

In addition: we work on more things concurrently.

We could try to manage discrepancies in data, but we would
prefer not do this as this might get very complex.

Ideally each concurrent tasks should look like it is the only
task being done right now.

We need: isolation.

Robert Luko´ka Persistence and Databases



Persistence and Databases

ACID [2]

Atomicity - Guarantees that each transaction is treated as a
single "unit", which either succeeds completely, or fails
completely.

Consistency -A transaction can only bring the database from
one valid state to another, maintaining database invariants.

Isolation - Concurrent execution of transactions leaves the
database in the same state that would have been obtained if
the transactions were executed sequentially.

Durability - once a transaction has been committed, it will
remain committed.

These properties of database transactions should hold even in the
event of crashes power failures, etc.

Robert Luko´ka Persistence and Databases



Persistence and Databases

ACID Database

There is a lot of complexity associated with persistence (and
related, now almost unavoidable, concurrency)

Strong ACID makes reasoning about what is going on much
easier.

A lot of complexity is transferred to the database
implementation.

The guarantees come at a performance cost (the cost heavily
depends on what you do).

This performance hit can be especially troublesome for
distributed databases - any cooperation between nodes
requires a network call.

The guarantees are way stronger than the requirements for
most business rules.

Robert Luko´ka Persistence and Databases



Persistence and Databases

< ACID

How to relax atomicity and consistency:

Atomicity provided only within a smaller scope (aggregate, one
table).

You cannot create / delete elements together with other
changes.

How to deal with it:

You can simulate transactions in a similar way how you split
transaction when you wait for I/O.

In many use cases you can accept a reasonable risk of creating
inconsistent state and then try to resolve it.

Robert Luko´ka Persistence and Databases



Persistence and Databases

< ACID

Isolation:

Lost update - two transactions concurrently update the same
data, one of them is ignored due to a race condition.

Dirty reads - we read uncommitted data.

Non-repeatable reads - we read the same element twice with
di�erent results (because some other transaction �nished).

Phantom reads - new rows are added or removed by another
transaction to the records being read.

Isolation levels:

Serializable

Repeatable reads

Read committed

Read uncommitted

Robert Luko´ka Persistence and Databases



Persistence and Databases

< ACID

Durability example, MongoDB - write concerns (there are also read
concerns):

Unacknowledged - Write operations that use this write concern
will return as soon as the message is written to the socket.

Acknowledged - Write operations that use this write concern
will wait for acknowledgment from the primary server before
returning.

Journaled - Write operation waits for the server to group
commit to the journal �le on disk.

Replica Acknowledged (two / majority) - Waits for at least two
/ majority of servers for the write operation.

Robert Luko´ka Persistence and Databases



Persistence and Databases

< ACID

Durability:

If there is something super important, your write concern is
Replica Acknowledged majority and your read concern requires
you to check majority of replicas.

Doing stu� super save → big response time, long locks (and
thus small throughput).

Note that to guarantee that something is written into majority
of replicas requires signi�cant networking (maybe in seconds).

If the change requires a lock with larger scope, nobody else
can modify that scope.

The system may only manage several such writes each minute.

Robert Luko´ka Persistence and Databases



Persistence and Databases

ACID vs BASE [4]

Basically Available: basic reading and writing operations are
available as much as possible (using all nodes of a database
cluster), but without any kind of consistency guarantees (the
write may not persist after con�icts are reconciled, the read
may not get the latest write).

Soft state: without consistency guarantees, after some amount
of time, we only have some probability of knowing the state,
since it may not yet have converged.

Eventually consistent: If the system is functioning and we wait
long enough after any given set of inputs, we will eventually be
able to know what the state of the database is, and so any
further reads will be consistent with our expectations.

There are various reason to get into an inconsistent state i.e.:

concurrent writes (e.g. in distinct nodes)

preferring availability and act despite some node is unavailable.

Robert Luko´ka Persistence and Databases



Persistence and Databases

ACID vs BASE [4]

To converge to eventually consistent state, we must

exchanging versions or updates of data between servers.

choosing an appropriate �nal state when inconsistency is
detected (reconciliation):

Reconciliation options include:

last writer wins,

user speci�ed con�ict handler,

�rst writer wins.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Causally consistency

Soft state may be inconvenient - if you make an action and the
result disappears for a while (the write has not spread to the replica
you read from), it is very confusing for the user. One can deal with
this problem either on client side or on server side:

Causally consistent sessions:

Read Your Writes
Monotonic reads
Monotonic writes
Writes follow reads

The application can e.g. cache its writes so if it requires to
read previously written value it uses its cached value instead.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Base examples

Con�icting price of a product:

What if we read an old value (new value yet unavailable in our
replica): No problem, this implies a very recent price change.
From the business point of view we can consider the order to
be done few seconds earlier. The di�erence is mostly irrelevant.

Inconsistent values due to concurrent update: Last writer wins
seems mostly �ne.

Inconsistent values due node unavailability: Last writer wins
seems �ne.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Base examples

Content of the cart:

Custom handler: union.

What is the amount on my account?

We need to implement locking. We reconciliate locking issues
very defensively.

Robert Luko´ka Persistence and Databases



Persistence and Databases

CAP theorem

CAP theorem [6] - we cannot achieve all consistency, availability,
and partition tolerance (however they are de�ned) in asynchronous

network model.

Besides this, the name CAP theorem is also used to describe the
following simple observation.

Assume that some node is unavailable (e.g because there is no
link to that node), we get a request.

We can postpone processing the request until the node
becomes available again (no partition tolerance).
We can respond that we cannot handle the request (no
availability).
We try to handle the request, but we cannot guarantee that we
remain consistent with the unavailable node (no consistency)

Robert Luko´ka Persistence and Databases



Persistence and Databases

CAP theorem

Example: two nodes storing one number with one invariant: the
number must be the same in both nodes.

If a request arrives to change the number but due to broken
link, we cannot communicate with other node, if we want to
respond (partition tolerance) and preserve the invariant
(consistency), we have to refuse the change (no availability).

For practical purposes, it is about the balance of availability vs
consistency.

Where the balance is is not a technical decision but a

business decision.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Availability vs consistency

The business often does not require 100% consistency.
Overbooking example:

You want to reserve a room, but the server in charge of
handling the reservation is not available.

Can I process the request if 10 minutes ago 10 rooms were
available (an we rarely get more than one request per day).

If we respond, that we cannot process requests currently,
customer may �nd other accommodation .
It is important for the business to be available, even at the
cost of consistency.
We should probably proceed even if only 1 room is available, in
case of overbooking there are various ways to handle it.
In some businesses overbooking is standard, expecting
cancellations (demonstrates what a non-issue consistency here
is).

As you see often availability >> consistency.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Availability vs consistency

Often availability >> consistency. This applies even if other nodes
are available.

Nobody likes working with slow apps.

Instead of asking the server about the number of available
rooms, we can decide, it is save to assume that the room is
available and skip the network call.

Especially if we have a very recent replica read.

Sometimes latency >> consistency.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Distributed databases

There are two very distinct ways to distribute a database (those
approaches can be combined):

Replication - storing separate copies at two or more nodes

Single leader - one server receives writes.
Multi leader, Leaderless

Fragmentation - we divide into smaller parts and then store
them on separate nodes

Horizontal fragmentation - e.g. split the rows of the table
Vertical fragmentation - e.g. split the columns of the table
(primary key in both tables)

Single leader replication is the most common solution as writes are
usually much less frequent than reads.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Databases: Underlaying data structure

Databases can be based on various data structures, i.e.:

Key-value pairs: stores data as values accessed by keys.

Documents: stores data as documents accessed by keys.

Values in key-value pairs are opaque, documents are
transparent (thus we can index �elds within document).

Wide column store: stores data in rows in tables, but columns
are not prescribed.

May be interpreted as 2-dimensional key-value store.

Relational tables: stores data as rows in relational tables.

Graphs: stores data as labeled vertices and edges of a
(directed) graph.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Databases: Underlaying data structure

Relational:

Well-known

Standardized and widely used query language - SQL.

R&D > 40 years.

O�er great deal of �exibility.

It is a good default choice. We compare other database types with
relational databases.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Key-value / document / wide column

In all cases you put related data into something: value / document
/ row - we call it an aggregate. Thus these choices are surprisingly
similar in the end.

It is easy to read and modify the aggregate.

Relational database may need to do several joins to obtain the
data (but still doable thanks to relational database �exibility).
This includes acquiring the necessary locks.

It is ine�cient to query something that spans many
aggregates.

This may include acquiring the necessary locks, a lot of locks.

Aggregates de�ne boundaries that help to distribute the data
more e�ciently.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Key-value / document / wide column

Example: Order contains several lines that contain item id, name,
price and quantity. We can store it as a document or as several rows
in a relational table (or tables). First, we want to get the order.

It is easy to read the order.

In relational database we may need to read several rows from
several tables.

Now we want to get how many items with id id we sold yesterday:

We have to read all aggregates from yesterday. That may be a
lot of data.

In relational database we still have to select some rows and put
them together.

Access is excellent if it is within aggregate, but may become
prohibitively hard if it involves many aggregates. Relational
databases work reasonably well in both cases.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Graph databases

We show what are graph databases good for by example. We want
to select an advertisement for a product of similar type as user
looked at in a shop recently.

We might have relational tables like this: Visits(User,
Page), PageCategory(Page, Type), PageContains(Page,
Product), ProductIs(Product, Category),
SimilarCategories(Product, Product, Similarity),
AdvertisementContains(Advertisement, Product)

SELECT ... not easy to write, even harder to execute,
potentially huge locks necessary.

A simple graph traversal problem, quite easy to write in
appropriate query language, not that hard to execute.

This is, indeed, one of the typical use-cases of graph databases.

Robert Luko´ka Persistence and Databases



Persistence and Databases

To put things together

Database type Document Relational Graph

data stored as document row vertex, edge

fragmentation → more fragmented data →
queries → more �exibility →
ACID → more need for ACID transactions →

But

If you can a�ord to use ACID transactions, you probably want
to use them.

Relational databases are typically the safe choice.

Robert Luko´ka Persistence and Databases



Persistence and Databases

Resources I

Wikipedia - ACID

Wikipedia - Isolation

Wikipedia - Eventual consistency

Video: M. Fowler: Introduction to NoSQL

Robert Luko´ka Persistence and Databases

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Eventual_consistency
https://www.youtube.com/watch?v=qI_g07C_Q5I


Persistence and Databases

References I

Wikipedia - Data exchange formats

Wikipedia - ACID

Wikipedia - Isolation

Wikipedia - Eventual consistency

Understanding Durability & Write Safety in MongoDB

S. Gilbert, N. Lynch: Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services

Robert Luko´ka Persistence and Databases

https://en.wikipedia.org/wiki/Data_exchange
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Eventual_consistency
https://scalegrid.io/blog/understanding-durability-write-safety-in-mongodb/
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487

	Persistence and Databases

